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CHAPTER 1

Introduction

In this bachelor thesis the Douglas-Rachford Algorithm for optimal transport will be in-
troduced and analysed. The idea of optimal transport and its relevant definitions will be
given as well as the necessary analytical tools to apply the Douglas-Rachfrod Algorithm to
the proposed optimal transport problem. The optimal transport problem, which is going to
be the basis of our approach will be discretized and than transferred into the appropriate
form demanded by the algorithm. Because the Douglas-Rachford Algorithm is a proximal
splitting method, the proximal operator, a very important and crucial tool for proximal
splitting methods is going to play a significant role in this work. Furthermore four con-
structed variations of the Douglas-Rachford Algorithm are given and evaluated by taking
appropriate reference solutions f∗ and m∗ and looking at the L1 norm regarding the error
|f − f∗| and |m −m∗|. This can be achieved because the Douglas-Rachford Algorithm is
implemented in Matlab for our discretized optimal transport problem. Comparing the four
variations of the Douglas-Rachford Algorithm, analysing the amount of iterations one has
to compute for a satisfying result and the accuracy of the approximations, is done at last
to evaluate the approach and algorithms at hand.
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CHAPTER 2

Optimal Transport

Optimal transport is a concept where one tries to find a cost efficient way of moving mass
from one place to another. Mathematically this means one has a distribution of particles at
a point x described by a density f and wants to find a map T which specifies the movement
of the particles from x to their destination T (x), given by a density g. The key is to try
and find an optimal map T so the movement of the particles is minimal.

2.1 Monge formulation

Having two densities of mass f, g ≥ 0 with∫
Rd
f(x)dx =

∫
Rd
g(y)dy = 1

the aim is to find a map T : Rd 7→ Rd minimizing

M(T ) =
∫
Rd
|T (x)− x|f(x)dx

such that ∫
A
g(y)dy =

∫
T−1(A)

f(x)dx

for every Borel subset A ⊂ Rd. Reformulating this problem with measures instead of
densities with the identity (T#µ) = µ(T−1(A)) one gets:

min
{
M(T ) =

∫
c(x, T (x))dµ(x) : T#µ = ν

}
(1.1)

with c : X × Y 7→ R being a cost function for transferring the particles at x to its location
T (x). Furthermore one has a correlation between the densities and the map T when one
considers the euclidean setting where f and g induce measures and the cost function is the
euclidean norm. Then the identity

g(T (x))det(∂T (x)) = f(x)

can be found but with this setting there are certain limitations as to the way the mass is
moved. The particles at x cannot be divided and moved to different destinations in this
model, the splitting of mass cannot be described through a map T .[2] That is why some
thought was done as to generalize this formula to make it applicable to more complex and
general settings.
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2.2 Kantorovich formulation

The Kantorovich formulation is concerned with the same optimal transport problem but
uses more generalized measures and connects them with maps which can describe splitting
of mass and are more general in their properties. One has µ ∈ P(X), ν ∈ P(Y ) and a cost
function c : X × Y 7→ [0,∞]. The Kantorovich formulation is

inf
{
K(γ) :=

∫
X×Y

c(x, y)d(x, y) : γ
∫

Π(µ, ν)
}

(1.2)

where
π(µ, ν) = {γ ∈ P(X × Y ) : πx#γ = µ, πy#γ = ν}

and πx is a projection from X × Y to X, πy is a projections form X × Y to Y . Instead of
describing the destination T (x) for the particles at x one specifies for (x, y) the amount of
mass moving from x to y.[2][p.2]
Optimal transport always guaranties that the transported mass is preserved and the two
general descriptions of the optimal transport problem given before, are the foundation on
which optimal transport builds. In the following we are going to restrict our focus on
the case where the cost c is given as c(x, y) = |x − y|p. Moreover due to interest in the
development over time we are going to consider only those settings where the continuity
equation in time, is solved.

2.3 Optimal transport for time dependent arguments

Regarding optimal transport with the relevant arguments being dependent on time the
continuity equation ∂tf + Ov = 0 guaranties that existing mass is preserved after applying
the optimal map.
Following[2][p.169,170] a vector field vt(x) solving the continuity equation and a density
µ(t, x) describing the movement of the particles, can be interpreted as the ODE

Ẏx(t) = vt(Yx(t)) with Yx(0) = x

where Yt(x) = yx(t) and one tries to find a measure µt which fulfils

µt := (Yt#µ0)

with µ0 being the initial distribution of the particles we are interested in.
This means, that the continuity equation in relation to our arguments reads

∂tµt + O(µtvt) = 0.

For further restriction to simpler settings we give some relevant definitions as defined in
chapter 5 of[2].

Definition 2.3.1. The Wassersteinspace Wp

For X = Rd, p ∈ [1,∞) define the Wassersteinspace Wp(X), as the space Pp(X), with the
metric Wp.
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Definition 2.3.2. The Wassersteindistance Wp

For µ, ν ∈ Pp(Ω) and p ∈ [1,∞) we define

Wp(µ, ν) := min
{∫

Ω×Ω
|x− y|pdγ : γ ∈ Π(µ, ν)

} 1
p

as the Wassersteindistance. This is the p-root of the minimal transport costs c(x, y) =
|x− y|p. This distance is also a metric.

Definition 2.3.3. constant speed geodesic
A curve ω : [0, 1] 7→ X is said to be a geodesic between x0 and x1 ∈ X if it minimizes the
length of all curves such that ω0 = x0 and ω1 = x1.
ω is said to be a constant speed geodesic between ω0 and ω1 ∈ X if it satisfies

d(w(t), w(s)) = |t− s|d(w(0), w(1)) ∀t, s ∈ [0, 1]

Definition 2.3.4. geodesic space
A space (X, d) is a geodesic space if

d(x, y) = min{Length(ω) : ω ∈ AC(X) with ω(0) = x and ω(1) = y}.

AC(X)is the set of all absolutely continuous curves in X and

Length(ω) :=
∫ 1

0
|ω′|(t)dt.

Benamou and Brenier found a way to rewrite and improve the optimal transport problem
described with a velocity field. With the Benamou-Brenier formula the non-convex optimal
transport problem is now a convex optimization problem and thus admits a solution. The
different functional’s involved are defined as

Bp(ρ,E) :=
∫

Ω
fp(ρ,E) and fp : R× Rd 7→ R ∪ {∞}

with

fp(t, x) :=


1
p
|x|p
tp−1 , if t > 0

0, if t = 0, x = 0
∞, otherwise

and the resulting optimisation problem becomes

(BpP ) min{B(ρ,E) : ∂tpt + O·Et = 0, ρ0 = µ, ρ1 = ν}.

Inserting the definitions of f and B into the problem (BpP ) we get

BpP = min
(ρt,Et)∈C√

∫ 1

0
Bp(ρt, Et)dt =

∫ 1

0

∫
Ω
fp(ρt(x), Et(x))dxdt (1.3)

as our optimal transport problem with the set of constraints

Cp = {(ρt, Et) : ∂tpt + O·Et = 0, ρ0 = µ, ρ1 = ν}.
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Theorem 2.3.5. Let Ω be compact and convex, with µ, ν ∈ P(Ω)

W ρ
p (µ, ν) = min{B(ρ,E) : ∂tρ+ O·E = 0, ρ0 = µ, ρ1 = ν}.

ρ and E are interpreted as measures on Ω× [0, 1], with [0, 1] representing time.
idea for proof:
Because of W ρ

p being a geodesic space we can write

W ρ
p (µ, ν) =

(
min

{∫ 1

0
|ρ|dt, ρ0 = µ, ρ1 = ν

})p
.

Restricting the minimum to constant speed geodesic it follows

W ρ
p (µ, ν) = min

{∫ 1

0
|ρ|pdt, ρ0 = µ, ρ1 = ν

}
.

Now, due to the existence of a vector field

W ρ
p (µ, ν) = min

{∫ 1

0
||vt||pdt, ∂tρtO·(ρtvt) = 0, ρ0 = µ, ρ1 = ν

}
.

Changing the variables by setting Et = ρtvt we get the proposed result.

For more details we refer to p.184 of[2].
Because of this theorem we know, that the Benamou-Brenier formula and the Monge and
Kantorovich formulation are all equivalent optimal transport problems. With the restriction
to constant speed geodesics in Wp and γ = γt := (id, T )#µ, which essentially means there
exists a transport map in the sense of the Monge formulation, one gets the following optimal
transport problem.
With the geodesic path between f0 and f1 being the density t 7→ f(x, t) and t parametrizing:

f(x, t) = f0(Tt(x))| ∗ det(∂Tt(x))|

and
Tt = (1− t)Idd + tT,

the densities f(x, t) and the velocity field v(x, t) solve the non-convex optimal transport
problem,

min
(v,f)∈C0

1
2

∫ d

[0,1]

∫ 1

0
f(x, t)‖v(x, t)‖2dtdx (1.4)

under the constraints

C0 = {(v, f) ∈: ∂tf + divx(fv) = 0, v(0, ∗) = v(1, ∗) = 0, f(∗, 0) = f0, f(∗, 1) = f1}.

Because of this context the transport map Tt with the velocity field vt solve the ODE and
we get

Ṫx(t) = vt(Tx(t)) with Tx(0) = x

where Tt(x) = Tx(t).[1]
The value vt(x) of the velocity field in this circumstances can be interpreted as the speed
of the particles passing x at time t.[2]
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In the following we will only be concerned with the optimal transport problem in Benamou-
Brenier form for p = 2 and Ω = [0, 1]d.
Based on everything we looked at in this chapter from now on we will regard the convex
optimal transport problem defined in [1]as

min
(m,f)∈C

J (m, f) =
∫

[0,1]d

∫ 1

0
J(m(x, t), f(x, t))dtdx (1.5)

where ∀(m, f) ∈ Rd × R, J(m, f) =


‖m‖2

2f , if f > 0
0, if (m, f) = (0, 0)
∞ otherwise

and

C = {(m, f) : ∂tf + divx(m) = 0,m(0, ·) = m(1, ·) = 0, f(·, 0) = f0, f(·, 1) = f1}.

It is important to stress the fact, that our constraint only allows solutions for the continuity
equation and sets our arguments to have Dirichlet boundary conditions. To simplify our
problem we are going to focus on the one dimensional case and begin discretizing every
component of our proposed problem.





11

CHAPTER 3

Discretization

In this chapter we are going to discretize the relevant functions and constraints of our
original problem (1.5). For that we need to consider a discretization grid, reformulate the
relevant conditions and approximate every involved function.

3.1 Grids

The Grid on which we want to approximate the arguments m, f is given by dividing
[0, 1]2 into (N + 1) × (P + 1) points. This is going to be the centered grid in our con-
text

Gc =
{(

xi = i

N
, tj = j

P

)
∈ [0, 1]2, 0 ≤ i ≤ N , 0 ≤ j ≤ P

}
.

Ec = (R2)Gc is the finite dimensional space of centered variables and our arguments are
going to be defined as

V = (m, f) ∈ Ec = (mi,j , fi,j)0≤j≤P
0≤i≤N .

Following [1]we use a staggered grid to approximate the relevant arguments m,f by m̃, f̃
with the linear operators explained at the end of this chapter. The introduction of those
auxiliary variables is said to be natural but why there is an advantage is not explicitly
explained. On this introduced staggered grid we can use a symmetric difference scheme and
therefore accomplish second order consistency. The grid, which refines the original centered
grid in space is defined as

Gxs =
{
xi =

(i+ 1
2)

N
, tj = j

P
∈ [−1, 2N + 1]

2N × [0, 1] , −1 ≤ i ≤ N , 0 ≤ j ≤ P
}
.

This means, that in space our grid is redefined with smaler steps taken but in time we take
steps as before. This is also done in time so the according grid is

Gts =
{
xi = i

N
, tj =

(j + 1
2)

P
∈ [0, 1]× [−1, 2P + 1]

2P , 0 ≤ i ≤ N ;−1 ≤ j ≤ P
}
.

Consequently we have two grids, which enables the use of symmetric differences and is very
differently to the centered grid, with which it has no overlap. The arguments we define on
those grids are

U = (m̃, f̃) ∈ Es =
(
(m̃i,j)0≤j≤P

−1≤i≤N , (f̃i,j)
−1≤j≤P
0≤i≤N

)
and Es = RGx

s × RGt
s is the finite dimensional space of staggered variables.

11
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3.2 Midpoint Interpolation

The midpoint interpolation I is a linear operator defined as

I : Es 7→ Ec(m̃, f̃) 7→ (m, f)

for all 0 ≤ i ≤ N and for all 0 ≤ j ≤ P the operator calculates

mi,j = (m̃i−1,j + m̃i,j)
2 and fi,j = (f̃i,j−1 + f̃i,j)

2 .

3.3 Divergence Operator

The divergence operator div is a linear operator defined as

div : Es 7→ RGc(m̃, f̃) 7→

 div(U)1,1 . . . div(U)1,P+1
...

...
div(U)N+1,1 . . . div(U)N+1,P+1

 .
for all 0 ≤ i ≤ Nand for all 0 ≤ j ≤ P the operator estimates the divergence by

div(U)i,j = N(m̃i,j − m̃i−1,j) + P (f̃i,j − f̃i,j−1).

It is important to point out that the linear operators map variables from the staggered grid
into the centered grid and especially when implementing the algorithm one must have the
different dimensions of the domains in mind.

3.4 Boundary Condition

The proposed problem on our set C has Dirichlet boundary conditions and therefore we
need to define a linear operator b as

b : Es 7→ RP+1 × RP+1 × RN+1 × RN+1

with

b(U) = ((m̃−1,j , m̃N,j)j=0, (m̃−1,j .m̃N,j)j=P , (f̃i,−1, f̃i,P )i=0, (f̃i,−1, f̃i,P )i=N ).

To ensure the boundary conditions are fulfilled we set

b0 = (0, 0, f0, f1) ∈ RP+1 × RP+1 × RN+1 × RN+1.

Here f0 and f1 are densities related to our original optimal transport problem.
The formula b(U) = b0 needs to be set for our problem to ensure the boundary conditions
are met.
By applying all our operators and the definition of our arguments U, V the original problem
can now be written as the discrete convex problem

min
U∈Es

J (I(U)) + ιC(U), (2.1)
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with

ιC :=
{

0, U ∈ C
∞, otherwise

,

where
J (V ) =

∑
k∈Gc

J(mk, fk) with k = (i, j) ∈ Gc.

Our set C now becomes

C = {U ∈ Es : div(U) = 0 and b(U) = b0}.

Because we defined our argument V with the interpolation operator using U , the identity
I(U) = V must be maintained. This is realized by the indicator function

ιCs,c(U, V )

with
Cc,s = {(U, V ) ∈ Es × EcV = I(U)}.

Hence our original problem with all the relevant conditions and functions now reads

min
U,V ∈Es×Ec

J (V ) + ιc(U) + ιc,s(U, V ). (2.2)

The problem being broken down into something discrete, which can be implemented, gives
rise to outlining four possible variations of the Douglas-Rachford proximal splitting Algo-
rithm.
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CHAPTER 4

The Douglas-Rachford Algorithm

The main idea behind proximal splitting methods is to divide the relevant functions of a
problem into a sum of functions, which can easily be computed. The proximal operator is
an approximative convex functional acting as the substitute for those functions because its
properties are supporting simpler handling and efficiency. The Douglas-Rachford Algorithm
is one of the algorithms using this functional to approximate a solution to an optimization
problem. We first want to give an overview of what the algorithm is going to be like before
defining and calculating the necessary proximal operators. That definition and the actual
proximal operators in our problem will be dealt with in chapter four.
The Douglas-Rachford Algorithm is a Proximal splitting method to approximate the solu-
tion of

min
z∈H

G1(z) +G2(z). (3)

The algorithm uses a sequence (z(l), w(l)) ∈ H2 with the initial values (z(0), w(0)) ∈ H and
computes

w(l+1) = w(l) + α(ProxγG1(2z(l) − w(l))− z(l))
z(l+1) = ProxγG2(w(l+1)).

In each iteration the algorithm applies the proximal operator for the minimization of G1
and then applies the proximal operator for minimizing G2 based on the step before.
The following four algorithms are tailored to our discrete convex problem.
Asymmetric DR
For every argument z, we are going to define our two functions G1 and G2 as

G1(z) := J (V ) + ιc(U)
G2(z) := ιc,s(z) (3.1)

with z = (U, V ) ∈ H = Es × Ec. By swapping the definitions of G1 and G2 we receive a
different algorithm due to G1 and G2 having different roles in the algorithm.
Asymmetric DR’
With the argument being the same z = (U, V ) ∈ H = Es × Ec and now G1 and G2 defined
as

G1(z) := ιc,s(z)
G2(z) := J (V ) + ιc(U) (3.2)

15
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the second variation of the Douglas-Rachford algorithm is found. To have symmetric roles
for all the relevant functions in our discrete problem one can consider splitting the problem
into
Symmetric DR

G1(z) := J (V ) + ιc(U) + ιc,s(Ũ , Ṽ )
G2(z) := ιD(z) (3.3)

with z = (U, V, Ũ , Ṽ ) ∈ H = (Es×Ec)2 whereas D = {z = (U, V, Ũ , Ṽ ) ∈ H = (Es×Ec)2;U =
Ũ , V = Ṽ } thus adding a function ιD to have all the necessary functions of our original
problem combined in G1. Again by swapping the definitions of G1 and G2
Symmetric DR’
with z = (U, V, Ũ , Ṽ ) ∈ H = (Es × Ec)2 we define

G1(z) := ιD(z)
G2(z) := J (V ) + ιc(U) + ιc,s(Ũ , Ṽ ). (3.4)

These four variations of the Douglas-Rachford Algorithm are approximates of the optimal
transport problem (2.2) and will later be evaluated and compared. But first we need to
calculate the relevant proximal operators to apply the proposed algorithm.
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CHAPTER 5

The Proximal Operator

The Proximal operator is a crucial tool in being able to minimize a non-smooth functional. It
is a single valued map that minimizes a strongly convex functional dependent on the original
function. By compromising between finding the minimum of the non-smooth function F
and being close to the argument z, the proximal operator approximates the minimum of
that function F. The scalar γ plays a role as to what extent steps toward the minimum are
taken. But most importantly the proximal operator has a unique minimizer, which is why
it plays a significant role in optimization. [3]

5.1 Definition proximal operator

Definition 5.1.1. Proximal operator
Let H be a Hilbert space we define

ProxγF (z) = argmin
z̃∈H

1
2‖z − z̃‖

2 + γF (z̃).

The proximal operator has several useful properties which make computing easier for our
context. We will only give the ones relevant for our approach but we refer the reader to[3].
The proximal operator is separable in the sense that if f is separable, meaning

f(x, y) = ϕ(x) + ψ(y)

the resulting proximal operator then becomes

Proxγf (u, v) = (Proxγϕ(u),Proxγψ(v)).

When F(z) is fully separable, given as

F (z) =
n∑
i=1

Fi(zi) then the proximal operator can be written as (ProxγF (v))i = ProxγFi(vi).

The proximal operator is often considered to be a generalization of projections, because of
their strong correlation. Essentially when F is an indicator function one also tries to min-
imize that function, but in a projection restricting the domain has, roughly speaking, the
same effect. This relation is going to become very apparent, when calculating the relevant
proximal operators for our algorithms later on.

Additionally we will need two important analytical tools for working with proximal opera-
tors.

17
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5.2 Legendre-Fenchel transform

Definition 5.2.1. Legendre-Fenchel transform

F ∗(w) = max
z∈H
〈z, w〉 − F (z).

The proximal operator of the Legendre-Fenchel functional can be computed as efficiently
and easily as the proximal operator of the original function F and plays an important role
in the next theorem.

5.3 Fenchel-Rockafellar

Theorem 5.3.1. Fenchel-Rockafellar
let X ⊆ Rd, A∈ Rd×d and X∗ dual space of X. The theorem states

inf{f(x) + g(Ax) : x ∈ X} = max{−f∗(A∗y)− g∗(−y)|y ∈ X∗}

for f, g convex ∃ x subject to f(x) < +∞ g(Ax) < +∞ g continuous at Ax.

This Theorem is very important for calculating the proximal operators because of its strong
and useful statement. We will not be giving the proof of this theorem but refer the reader
to[4].
The proposed problem in (2.2) consists of several functions, which need to be ’translated’
into their proximal operator for our proximal splitting approach to work. As outlined
in the chapter before, the different Douglas-Rachford Algorithms also consist of another
function ιD(z) not explicitly defined in (2.2) but crucial to our setting for the symmetric
DR algorithms. Therefore we need to calculate several proximal operators most of which
are indicator functions thus having projections as their proximal operator.

5.4 Proximal operator for the functional J

Calculating this proximal operator we use the separability of the proximal operator men-
tioned at the beginning of the chapter because J is a fully separable function.

ProxγJ (V ) = ProxγJ(Vk)k∈Gc

To get the proximal operator for J(Vk) we set m̃, f̃ as arbitrary but fixed arguments and
get

ProxγJ(m̃, f̃) = argmin
(m,f)

1
2‖(m, f)− (m̃, f̃)‖2 + J(m, f)

= argmin
(m,f)

1
2((m− m̃)2 + (f − f̃)2) + γ

m2

2f .
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To solve this minimization problem we define F (m, f) = 1
2(m− m̃)2 + (f − f̃)2 + γm

2

2f and
now set F ′(m, f) = 0 thus get 0 = ∂F

∂f and 0 = ∂F
∂m . Differentiating the function F we have

the equations

0 = f − f̃ − γ m
2

2f2

and
0 = m− m̃+ γm

f
.

This means for the value m we get the formula

m = fm̃

f + γ
.

For f we have to solve the third order polynomial equation

0 = f3 + 2f2γ + fγ2 − f̃f2 − 2ff̃γ − f̃γ2 − γ

2 m̃
2

and set f∗ as the solution. We can therefore define, for all f∗ ≥ 0 and

µ(f∗) = f∗m̃

f∗ + γ

the proximal operator as

ProxγJ(m, f) =
{

(µ(f∗), f∗) iff∗ > 0
(0, 0) otherwise

.

Because of
ProxγJ (V ) = ProxγJ(Vk)k∈Gc = ProxγJ(mk, fk)k∈Gc

our final proximal operator is

ProxγJ (V ) =
{

(µ(f∗k ), f∗k ) iff∗k > 0
(0, 0)

(4.1)

for all k ∈ Gc and for all f∗k ≥ 0 with µ(f∗k ) = f∗k m̃k

f∗
k

+γ .

5.5 Proximal operator of ιC

The Proximal operator of ιC(U) can be found by redrafting the set C with the linear
equation Ax = y. To do so one must consider the constraints in the original set C

C = {U ∈ Es, div(U) = 0 and b(U) = b0}

following this we define

A =
(
div
b

)
and y =

(
0
b0

)
.
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This means we can write our proximal operator as follows

Proxγιc(U) = argmin
Ũ∈C

1
2‖U − Ũ‖

2 + γιc(Ũ).

For simplification we now only concern ourselves with the minimum of this function but we
will later give the argument minimum U.

min
Ũ∈C

1
2‖U − Ũ‖

2 + γιc(Ũ)

= min
Ũ∈C
AŨ=y

1
2‖U − Ũ‖

2

= min
Ũ∈C

1
2‖U − Ũ‖

2 + sup
λ
〈λ,AU − y〉 (1)

= sup
λ

min
U

1
2‖U − Ũ‖

2 + 〈λ,AU〉 − 〈λ, y〉

= sup
λ

min
U

1
2‖U − Ũ‖

2 + 〈A∗λ,U〉 − 〈λ, y〉

= sup
λ

min
U

1
2(〈U − Ũ , U − Ũ〉) + 〈A∗λ,U〉 − 〈λ, y〉

= sup
λ

min
U

1
2(〈U − Ũ , U〉 − 〈U − Ũ , Ũ〉) + 〈A∗λ,U〉 − 〈λ, y〉

= sup
λ

min
U

1
2(〈U,U〉 − 〈Ũ , U〉 − 〈U, Ũ〉+ 〈Ũ , Ũ〉) + 〈A∗λ,U〉 − 〈λ, y〉

= sup
λ

min
U

1
2(〈U,U〉 − 2〈Ũ , U〉+ 〈Ũ , Ũ〉) + 〈A∗λ,U〉 − 〈λ, y〉

Solving the minimization problem dependent on U we get a formula for U .

1
2(U trU−2(Ũ trU) + Ũ trŨ) + (A∗λ)trU − (λtry)

⇒ ∂U
1
2(2U tr − 2Ũ tr) + (A∗λ)tr = U tr − Ũ tr + (A∗λ)tr

To get the minimum we must now set this derivative to 0

U tr − Ũ tr + (A∗λ)tr = 0⇔ U = (Ũ tr − (A∗λ)tr)tr = Ũ −A∗λ

and by inserting this for U we get

sup
λ

1
2‖Ũ −A

∗λ− Ũ‖2 + 〈A∗λ, Ũ −A∗λ〉 − 〈λ, y〉.



21

By reorganizing and using definitions of the norm and the scalar product we can calculate

= sup 1
2‖ −A

∗λ‖2 + 〈A∗λ, Ũ〉 − 〈A∗λ,A∗λ〉 − 〈λ, y〉

= sup 1
2‖A

∗λ‖2 + 〈A∗λ, Ũ〉 − ‖A∗λ‖2 − 〈λ, y〉

= sup−1
2‖A

∗λ‖2 + 〈A∗λ, Ũ〉 − 〈λ, y〉

= sup−1
2‖A

∗λ‖2 + 〈λ,AŨ〉 − 〈λ, y〉

= sup−1
2‖A

∗λ‖2 + 〈λ,AŨ − y〉

= sup−1
2〈A

∗λ,A∗λ〉+ 〈λ,AŨ − y〉 (2)

= sup−1
2〈λ,AA

∗λ〉+ 〈λ,AŨ − y〉

= sup−1
2(λtrAA∗λ) + (λtr(AŨ − y))

. deviating the gotten term for λ we have

⇒ ∂λ − 1
2(λtrAA∗ + λtr(AA∗)tr) + (AŨ − y)tr = λtr(AA∗)− (AŨ − y)tr).

Again setting that to 0 we get

λtr(AA∗)− (AŨ − y)tr) = 0⇔ λtr = (AŨ − y)tr(AA∗)−1

⇔ λ = ((AŨ − y)tr(AA∗)−1)tr

⇔ λ = (AA∗)−1(AŨ − y).

Inserting the found formula for λ into the one we have for U

U = Ũ −A∗(AA∗)−1(AŨ − y)
= Ũ −A∗((AA∗)−1AŨ − (AA∗)−1y)
= Ũ −A∗(AA∗)−1AŨ +A∗(AA∗)−1y.

U is now the solution of

argmin
Ũ

1
2‖U − Ũ‖

2 + sup
λ
〈λ,AU − y〉

and considering every step of our calculation is allowed, the resulting proximal operator is
the orthogonal projector onto C

Projc = Id−A∗(AA∗)−1A+A∗(AA∗)−1y.

Now the only thing left to proof is that (1) and (2) are equivalent, meaning every step from
(1) to (2) is indeed allowed and the swapping of min and sup is a legitimate step in our
calculation. The Fenchel-Rockafellar theorem introduced at the beginning of this chapter
allows us to proof the necessary equivalence of (1) and (2). The theorem was

inf{f(x) + g(Ax)|x ∈ X} = max{−f∗(A∗y)− g∗(−y)|y ∈ X∗}
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with f, g convex and ∃x subject to f(x) < +∞; g(Ax) < +∞ with g continous at Ax. To
use it in our context we need to set f and g appropriately. We define

f(x) = −〈x,AŨ − y〉 = −〈x, b〉

and calculate the Legendre-Fenchel transform

f∗(w) = sup
z∈H
〈z, w〉+ 〈z, b〉 = sup

z∈H
〈z, w + b〉 =

{
0, w = −b
∞, otherwise

=: ι{b}

while obviously our f satisfies the Fenchel-Rockafellar assumptions. Furthermore we define

g(x) = 1
2‖x‖

2

and
g∗(w) = sup

z∈H
〈z, w〉 − 1

2‖z‖
2 = wtrw − 1

2‖w‖
2 = ‖w‖2 − 1

2‖w‖
2 = 1

2‖w‖
2

where g also satisfies the Fenchel-Rockafellar assumptions. Now the actual proof is quite
short and easy,

Proof.

(2) = sup−1
2‖A

∗λ‖2 − 〈λ,AŨ − y〉

= − inf
(1

2‖A
∗λ‖2 + 〈λ,AŨ − y〉

)
= −max

{
ι{b}(Az)−

1
2‖z‖

2|z ∈ X∗
}

= min
{1

2‖z‖
2z ∈ X∗s.t Az = −b = −AŨ + y

}
with Ũ = U + z and z = Ũ − U

= min
{1

2‖z‖
2 : AU = y

}
= (1)

.

5.6 Proximal operator of ιCc,s

The Proximal operator of ιCc,s(U, V ) can be found by now redrafting the set Cc,s with the
linear equation Ax = y. The original set Cc,s was defined as

Cc,s = {Z = (U, V ) ∈ Es × Ec; I(U) = V }

following this we set
A =

(
I −Id

)
and y = 0.
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This means we can calculate the proximal operator exactly like we did with the indicator
function of the set C. We then have

ProxγιCc,s
(Z) = argmin

Z̃∈Cc,s

1
2‖Z − Z̃‖

2 + γιCc,s(Z̃)

Here we will also restrict ourselves to looking at the minimum but later on will have calcu-
lated the argument minimum Z.

min
Z̃∈Cc,s

1
2‖Z − Z̃‖

2 + γιCc,s(Z̃) = min
Z̃∈Cc,s

Z̃:AZ=0

1
2‖Z − Z̃‖

2

(3) = min
Z̃

1
2‖Z − Z̃‖

2 + sup
λ
〈λ,AZ〉

= sup
λ

min
Z

1
2‖Z − Z̃‖

2 + 〈λ,AZ〉

= sup
λ

min
Z

1
2‖Z − Z̃‖

2 + 〈A∗λ, Z〉

= sup
λ

min
Z

1
2(〈Z − Z̃, Z − Z̃〉) + 〈A∗λ, Z〉

= sup
λ

min
Z

1
2(〈Z − Z̃, Z〉 − 〈Z − Z̃, Z̃〉) + 〈A∗λ, Z〉

= sup
λ

min
Z

1
2(〈Z,Z〉 − 〈Z̃, Z〉 − 〈Z, Z̃〉+ 〈Z̃, Z̃〉) + 〈A∗λ, Z〉

= sup
λ

min
Z

1
2(〈Z,Z〉 − 2〈Z̃, Z〉+ 〈Z̃, Z̃〉) + 〈A∗λ, Z〉

Now we can solve the minimization problem dependent on Z.

1
2(ZtrZ−2(Z̃trZ) + Z̃trZ̃) +A∗λtr

⇒ ∂Z
1
2(2Ztr − 2Z̃tr) + (A∗λ)tr = Ztr − Z̃tr + (A∗λ)tr

as before we set the derivative to 0 and then have a formula

Ztr − Z̃tr + (A∗λ)tr = 0⇔ Z = (Z̃tr − (A∗λ)tr)tr = Z̃ −A∗λ

inserting this for Z we get

sup 1
2‖Z̃ −A

∗λ− Z̃‖2 + 〈A∗λ, Z̃ −A∗λ〉.
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By reorganizing and using definitions of the norm and the scalar product we can calculate

= sup 1
2‖ −A

∗λ‖2 + 〈A∗λ, Z̃〉 − 〈A∗λ,A∗λ〉

= sup 1
2‖A

∗λ‖2 + 〈A∗λ, Z̃〉 − ‖A∗λ‖2

= sup−1
2‖A

∗λ‖2 + 〈A∗λ, Z̃〉

= sup−1
2‖A

∗λ‖2 + 〈λ,AZ̃〉

(4) = sup−1
2〈A

∗λ,A∗λ〉+ 〈λ,AZ̃ − y〉

= sup−1
2〈AA

∗λ,A∗λ〉+ 〈λ,AZ̃ − y〉

= sup−1
2〈λ,AA

∗λ〉+ 〈λ,AZ̃ − y〉

= sup−1
2(λtrAA∗λ) + (λtr(AZ̃)).

Solving this we deviate for λ and receive

⇒ ∂λ− 1
2(λtrAA∗ + λtr(AA∗)tr) + (AZ̃)tr = λtr(AA∗)− (AZ̃)tr).

Setting ∂λ = 0 it follows

λtr(AA∗)− (AZ̃)tr) = 0⇔ λtr = (AZ̃)tr(AA∗)−1

⇔ λ = ((AZ̃)tr(AA∗)−1)tr

⇔ λ = (AA∗)−1(AZ̃).

Inserting this formula into the one we found for Z, we now have

Z = Z̃ −A∗(AA∗)−1(AZ̃)

where Z is the minimizer we wanted to get. The resulting proximal operator is the orthog-
onal projector onto Cc,s and can be written as

Projcc,s
= Id−A∗(AA∗)−1A.

Now we also have to proof the equivalence of (3) and (4) with the Fenchel-Rockafellar
theorem as before. For f we now set

f(x) = −〈x,AZ̃〉 = −〈x, b〉.

The Legendre-Fenchel transform of this is

f∗(x) = sup
z∈H
〈z, w〉 − 〈z,AZ〉 = sup

z∈H
〈z, w − b〉 =

{
0, w = −b
∞, otherwise

=: ι{b2}

while f satisfies the Fenchel-Rockafellar assumptions. Setting g as

g(x) = 1
2‖x‖

2
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and the Legendre-Fenchel transform being

g∗(x) = sup
z∈H
〈z, w〉 − 1

2‖z‖
2 = wtrw − 1

2‖w‖
2 = ‖w‖2 − 1

2‖w‖
2 = 1

2‖w‖
2

with g satisfying the Fenchel-Rockafellar assumptions, we can now proof the wanted equiv-
alence of (3) and (4).

Proof.

(4) = sup−1
2‖A

∗λ‖2 − 〈λ,AZ̃〉 = − inf
(1

2‖A
∗λ‖2 + 〈λ,AZ̃〉

)
= −max

{
ι{b}(Az)−

1
2‖z‖

2|z ∈ X∗
}

= min
{1

2‖z‖
2z ∈ X∗s.t Az = −b = −AZ̃

}
with Z̃ = Z + z and z = Z̃ − Z

= min
{1

2‖z‖
2 : AZ = 0

}
= (3)

The last proximal operator we are going to calculate is the one, which was constructed, so
the relevant functions could be in the firs argument of the Douglas-Rachford algorithm.

5.7 Proximal operator of ιD

The constructed function ιD is the simplest one yet and the minimizer can be calculated
like this

ProxγιD (U, V,W,X) = argmin
(Ũ Ṽ W̃ X̃)∈H

1
2
(
‖(U, V,W,X)− (Ũ Ṽ W̃ X̃)‖2

)
+ γιD(Ũ Ṽ W̃ X̃)

= argmin
(Ũ Ṽ W̃ X̃)∈H
Ũ=W̃ ,Ṽ=X̃

1
2‖(U, V,W,X)− (Ũ Ṽ W̃ X̃)‖2

= argmin
(Ũ Ṽ W̃ X̃)∈H
Ũ=W̃ ,Ṽ=X̃

1
2‖(U − Ũ) + (V − Ṽ ) + (W − W̃ ) + (X − X̃)‖2

= argmin
(Ũ Ṽ W̃ X̃)∈H
Ũ=W̃ ,Ṽ=X̃

1
2
(
‖U − Ũ‖2 + ‖V − Ṽ ‖2 + ‖W − W̃‖2 + ‖X − X̃‖2

)

= argmin
(Ũ Ṽ W̃ X̃)∈H

1
2
(
‖U − Ũ‖2 + ‖V − Ṽ ‖2 + ‖W − Ũ‖2 + ‖X − Ṽ ‖2

)
= 1

2((〈U,U〉 − 2〈Ũ , U〉+ 〈Ũ , Ũ〉) + (〈W,W 〉 − 2〈Ũ ,W 〉+ 〈Ũ , Ũ〉)

+ (〈V, V 〉 − 2〈Ṽ , V 〉+ 〈Ṽ , Ṽ 〉) + (〈X,X〉 − 2〈Ṽ , X〉+ 〈Ṽ , Ṽ 〉))
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Solving this minimization problem we differentiate for component Ũ and Ṽ and set the
derivative= 0

⇒∂Ũ 4Ũ − 2(U +W ) = 0⇔ U +W

2 = Ũ

⇒∂Ṽ 4Ṽ − 2(V +X) = 0⇔ V +X

2 = Ṽ

Because Ũ = W̃ and Ṽ = X̃ our Proximal operator is defined as

ProxγιD(U, V, Ũ , Ṽ ) = 1
2(U + Ũ , V + Ṽ , U + Ũ , V + Ṽ )

Having calculated all proximal operators necessary for the Douglas-Rachford-Algorithm we
can now implement every relevant component and apply this algorithm to our optimal
transport problem.
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CHAPTER 6

Numerical Results

6.1 Implementation

As shown in chapter three the algorithm consist of two functions G1 and G2, which are
composed of the relevant functions calculated in the chapter before. To implement those
functions we transform every component of the necessary proximal operators into Matlab
code. For the proximal operator of J we use the newton method [5] to solve the third
order polynomial equation thus receiving f∗. The additional calculations concerning this
proximal operator as defined in the relevant section are easily transformed into Matlab
functions.
The proximal operators of the two important indicator functions are implemented by
constructing the matrices representing the linear functions of our disretization and solv-
ing the linear system of equations given by the projections of each function ιC(U) and
ιCc,s(U, V ). The code for the constructed indicator function ιD is implemented by trans-
forming ProxγιD(U, V, Ũ , Ṽ ) = 1

2(U + Ũ , V + Ṽ , U + Ũ , V + Ṽ ) into code.
With all these functions we are able to implement the four different variations of the
Douglas-Rachford Algorithm by seperating the argument to calculate each step and re-
garding appropriate parameters. In addition to those essential function we also implement
functions to calculate the discrete L1 norm for our approximations and reference solutions
as to be able to evaluate the proposed algorithms.

6.2 Evaluation

To evaluate the different algorithms given in chapter three we set the boundary conditions
for f and consequently our reference solution f∗, as the Gaussian curves to approximate
delta peaks. For delta peaks it is known that the optimal mass transport is linear movement
of that mass in time. That means the mass distribution after a set amount of time p will
be the same delta peak at t = p. Furthermore we will set the reference solution m∗ for our
setting using the identity m = fv with v being the velocity field talked about in the first
chapter.
In our setting this means the velocity v is the distance between c0 and c1, where c0 represents
the x position of the Gaussian peak of the boundary condition f0 and c1 of f1 accordingly.
We set those Gaussian curves with parameters c0 = 0.25, c1 = 0.75 and σ = 0.1. When
evaluating the error ofm and f for simplification we calculate their distance to the reference
solutions using the L1 norm rather than the more appropriate wassersteinmetric.
First we are looking at the distance between f , m and their reference solutions f∗, m∗ by
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calculating their discrete L1 norm in time and space. We plot the error for various time
and space steps, whereas we set P = 2N and observe the changes for each algorithm, DR1
being the asymmetric Douglas-Rachford Algorithm, DR2 the asymmetric’ DR-Algorithm
and DR2 and DR3 the symmetric ones.

Figure 6.1: Comparison of the four DR-Algorithms with respect to the time step P after 1000 Iter-
ations

The graphic 6.1 shows, selecting larger values for P improves the accuracy of the approx-
imated solution to our optimal transport problem f and m. One can also detect the dif-
ferences between the symmetric and asymmetric DR-Algorithms, which suggests the con-
structed functions G1 and G2 for the symmetric Douglas-Rachford Algorithms, where we
wanted to have the influence of all the relevant functions independent of each other is in fact
less accurate than the asymmetric algorithms, even though the discrepancy is very small.
Furthermore we can easily determine, that a certain value of P , namely more than 25 needs
to be set to have good results in our example. The last aspect, which is illustrated by the
above figure is that the variations where one simply switched the role of the two functions
G1 and G2, seems to have no notable effect of improvement either way although the roles
of those functions in the Douglas-Rachford Algorithm is quite different.
Now we would like to take a look at the importance of the amount of Iterations one has to
compute to get a satisfing approximation.
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Figure 6.2: Comparison of the four DR-Algorithms for N=24,P=48 with respect to the amount of
iterations

Here the argument form before, that the error of the symmetric variations is greater than
the error of the asymmetric variations of the Douglas-Rachford Algorithm is more obvious.
Especially after a small number of iterations DR3 and DR4 have an apparent disadvantage
to the asymmetric variations. After 500 iterations the approximation are quite accurate
and iterating further does not significantly improve the accuracy.
Consequently the asymmetric Douglas-Rachford variations are sufficient for finding an ap-
proximative solution of an optimal transport problem, such as or similar as the one we
looked at throughout this work.
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CHAPTER 7

Conclusion

The Douglas-Rachford Algorithm for the Benamou-Brenier approach to an optimal trans-
port problem was handled throughout this work by transforming the proposed problem into
a discrete one the Douglas-Rachford Algorithm can be applied to. The relevant optimal
transport theory background and necessary assumptions for simpler handling have been
taken into account and have been addressed. Furthermore the algorithm was evaluated and
certain aspects have been criticised. The important aspect of optimal transport one should
have in mind is the fact, that as outlined in theorem2.3.5 the Monge, Kantorovich and
Benamou-Brenier formulations concerning optimal transport are equivalent, which allows
one to choose the best or better yet easiest approach according to a given problem. Dis-
cretizing given problems is a crucial aspect of numerical mathematics and therefore plays a
significant role in this paper, especially the use of appropriate grids and analytical tools for
approximating the relevant functions. Most importantly the proximal operator introduced
in this work is essential not only for this specific algorithm but for many more numeric
approaches. Having evaluated the four variations of the Douglas-Rachford Algorithm one
can say the need for constructing the symmetry between the functions is not necessary and
offers no improvement to our setting.
But one must have in mind the considerable simplifications, which were made and therefore
keep in mind the restricted purpose and usage of this specific approach. This thesis only
considered the one dimensional case with regard only to basic settings, therefore it presents
many opportunities for further in depth analysis of the Douglas-Rachford Algorithm.
The four variations dealt with in this work are just some of many possible definitions to
transform the optimal transport problem into the algorithm setting. The settings such as
the cost function could be formulated more generally thus adapting the optimal transport
problem accordingly. Furthermore other proximal splitting methods could be implemented
and evaluated regarding the specific problem. Additionally one could consider not using the
staggered variables,thus discretizing the proposed problem with regard to only the centered
grid. Comparing the outcome of both versions and therefore evaluating each approach could
shed some light onto the usefulness of the staggered grid for the optimal transport problem.

Due to the code being implemented with very basic tools and approaches,one other issue
would be to take a look at the efficiency and performance of the implementation, especially
with regard to the inversion during the calculation of the projections onto the constraint
sets.
All in all this work dealt with many important aspects of optimal transport and gave an
introduction to the numeric handling of a given problem and the several considerations,
steps necessary to use an algorithm for receiving a solution.
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