

Fachbereich Mathematik und Informatik

Bachelorarbeit

Untersuchung von Bifurkationsdiagrammen bei Rissausbreitung in einem Atomgittermodell

Investigation of bifurcation diagrams for crack propagation in an atomistic grid model

Erstgutachter:	Prof. Dr. Benedikt Wirth
Zweitgutachter:	JunProf. Dr. Manuel Friedrich
vorgelegt von:	Lena Schmedt
Matrikelnummer:	448820
E-Mail:	l_schm73@wwu.de
Studiengang:	Ein-Fach-Bachelor Mathematik
eingereicht in:	Münster, am 31. Mai 2021

Inhaltsverzeichnis

Einl	inleitung		1
Kon 2.1 2.2 2.3 2.4 2.5 2.6 2.7	struktie Gitter Energ Kritise Bifurk Annał Unter Appro	on und Aufbau des Modells konstruktion und Funktionenraum iedifferenzenfunktional che und reguläre Punkte cationspunkt amen an das Modell teilung des Parametrisierungsintervalls oximation des Modells	2 3 4 4 5 6
Bew	<i>r</i> eise zu	ır Analyse des Modells	7
3.13.23.3	Vorbe 3.1.1 3.1.2 3.1.3 3.1.4 Aussa 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 Konve 3.3.1	reitungen	7 7 8 9 12 16 16 22 24 25 32 38 39
Aus	3.3.2 3.3.3 3.3.4 3.3.5 blick	Theorem 11: approximierter Bifurkationspfad und Konvergenz Hilfslemma 12: Bifurkationspunkte von \mathcal{B}_R	39 48 49 49 51
	Einl Kon 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Bew 3.1 3.2 3.3	Einleitung Konstruktia 2.1 Gitter 2.2 Energ 2.3 Kritisa 2.4 Bifurk 2.5 Annal 2.6 Unter 2.7 Appro Beweise zu 3.1 Vorbe 3.1.1 3.1.2 3.1.3 3.1.4 3.2 Aussa 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.3 Konve 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 Ausblick	EinleitungKonstruktion und Aufbau des Modells2.1Gitterkonstruktion und Funktionenraum2.2Energiedifferenzenfunktional2.3Kritische und reguläre Punkte2.4Bifurkationspunkt2.5Annahmen an das Modell2.6Unterteilung des Parametrisierungsintervalls2.7Approximation des Modells2.7Approximation des Modells3.1Lemma 1: ABCD-Lemma3.1.1Lemma 1: ABCD-Lemma3.1.2Theorem 2: theoretisches Haupttheorem3.1.3Hilfslemma 3: Vorarbeit für den Beweis von Theorem 23.1.4Hilfslemma 4: Vorarbeit für den Beweis von Theorem 23.2.1Lemma 5: Abschätzung für $ v $ mit $v \in \dot{\mathcal{H}}^1$ 3.2.2Theorem 6: Regularität von \mathcal{E} 3.2.3Theorem 7: Regularität des Diagramms3.2.4Proposition 8: Existenz eines Eigenpaares3.2.5Theorem 9: Verfallseigenschaft Lösung und EV3.3Hilfslemma 10: Abschneideoperator T_R 3.3.4Hilfslemma 12: Bifurkationsplukte von \mathcal{B}_R 3.3.4Hilfslemma 13: Erweiterung von Theorem 23.3.5Theorem 14: Konvergenz der approximierten Bifurkationspunkte

Literatur

52

1 Einleitung

In den Materialwissenschaften ist es von großer Wichtigkeit, Defekte und deren Verhalten in einem Werkstoff beschreiben und vorhersagen zu können. Dafür ist es notwendig, sich damit zu beschäftigen, auf welche Weise sich diese Defekte verändern. Im Speziellen wird es sich bei den hier betrachteten Defekten um Risse und deren Ausbreitung handeln. Der Ansatz, ein Kontinuumsmodell zu betrachten, um die Rissausbreitung rigoros beschreiben zu können, scheitert allerdings. An der Risspitze herrschen nicht-lineare und diskrete Effekte vor, die zu einer Singularität führen und durch ein Kontinuumsmodell nicht beschrieben werden können. Es ist also unabdingbar, den Riss auf einer atomaren Ebene in einer kristallinen Struktur zu betrachten. Dabei wird die Rissausbreitung, die durch bindungstrennende Ereignisse voranschreitet mithilfe von Bifurkationstheorie in Banachräumen beschrieben und analysiert.

Unter einer Bifurkation ist im Allgemeinen die qualitative Zustandsänderung in einem nicht linearen System zu verstehen, welche durch einen sogenannten Bifurkationsparameter λ beeinflusst wird. Dieses Verhalten lässt sich mithilfe eines Bifurkationsdiagrammes darstellen [7]. In diesem Setup kann der Spannungsintensitätsfaktor (SIF) k, der bislang als Maß für Stabilität im Kontinuum fungiert hat, als "Ladeparameter", der durch die Grenzbedingung auf den atomistischen Riss wirkt, interpretiert werden und übernimmt die Funktion des Bifurkationsparameters. Das Bifurkationsdiagramm, welches sich durch die Ausbreitung des Risses ergibt, hat die Form einer Schlangenkurve, wobei sich die Stabilität des Systems an jedem Bifurkationspunkt ändert. Entweder von stabil zu instabil, wenn eine Gitterbindung getrennt wird oder andersherum von instabil zu stabil, wenn die nächste Gitterbindung von der Rissspitze erreicht wird.

In Kapitel zwei dieser Arbeit werde ich zunächst den formalen Aufbau und die zugrundeliegende Struktur darlegen und einen Überblick über die wichtigsten Definitionen geben. Auch werde ich Annahmen anführen, die hier getroffen werden und in den Beweisen der Aussagen über das Modell zum tragen kommen. Schließlich werden die zuvor definierten Räume und das beschriebene Setup approximiert, um eine diskrete Grundlage zu schaffen, auf der man numerische Berechnungen durchführen kann.

Der Hauptteil der Arbeit ist Abschnitt drei, in dem Theoreme und Propositionen zu dem Modell formuliert werden. Dabei liegt das Hauptaugenmerk auf den Beweisen, die dort im Detail geführt werden.

Diesem liegt, wie auch dem Rest der Arbeit, zum Großteil [2] zugrunde und Erkenntnisse stammen weitgehend, sofern nicht anders angegeben, aus dieser Quelle.

Lena Schmedt

2 Konstruktion und Aufbau des Modells

2.1 Gitterkonstruktion und Funktionenraum

Im Folgenden betrachten wir die Rissgeometrie auf einer Gitterbasis. Diese ist das um $(\frac{1}{2}, \frac{1}{2})$ verschobene Einheitsgitter Λ , wobei der Riss Γ_0 und die daran angrenzenden Gitterpunkte mit Γ_{\pm} bezeichnet werden.

$$\Lambda := \{ l - (\frac{1}{2}, \frac{1}{2}) \mid l \in \mathbb{Z}^2 \}$$
$$\Gamma_0 := \{ (x_1, 0) \mid x_1 \le 0 \}$$
$$\Gamma_{\pm} := \{ m \in \Lambda \mid m_1 < 0 \text{ und } m_2 = \pm \frac{1}{2} \}$$

Außerdem wird angenommen, dass Interaktionen zwischen Atomen auf den Gitterpunkten ausschließlich in die "Nächste-Nachbar"-Richtungen (NN-Richtungen) stattfinden. Bei einem homogenen Gitter sind diese gegeben durch

$$\mathcal{R} = \{\pm e_1, \pm e_2\},\$$

im Falle eines Risses reduzieren sie sich hingegen zu

$$\tilde{R}(m) := \begin{cases} R & , \text{ für m } \notin (\Gamma_+ \cup \Gamma_-) \\ R \setminus \{ \mp e_2 \} & , \text{ für m } \in \Gamma_{\pm}. \end{cases}$$

Für eine Verschiebung auf dem Gitter $u : \Lambda \to \mathbb{R}$ definieren wir die beiden diskreten Gradienten Du(m) und $\tilde{D}u(m) \in \mathbb{R}^{\mathcal{R}}$ durch

$$(Du(m))_{\rho} := D_{\rho}u(m)$$

und

$$(\tilde{D}u(m))_{\rho} := \begin{cases} D_{\rho}u(m) &, \text{ falls } \rho \in \tilde{R}(m) \\ 0 &, \text{ falls } \rho \notin \tilde{R}(m) \end{cases}$$

Dabei ist $D_{\rho}u(x)$ zu verstehen als $D_{\rho}u(x) = u(x + \rho) - u(x)$. Mithilfe von \tilde{D} wird ein geeigneter diskreter Sobolevraum mit zugehöriger Norm und innerem Produkt definiert.

$$\dot{\mathcal{H}}^{1} := \{ u : \Lambda \to \mathbb{R} \mid \tilde{D}u \in \ell^{2} \text{ und } u(\frac{1}{2}, \frac{1}{2}) = 0 \}$$
$$\|u\|_{\dot{\mathcal{H}}^{1}} := \|\tilde{D}u\|_{\ell^{2}} = \left(\sum_{m \in \Lambda} |\tilde{D}u(m)|^{2}\right)^{1/2}$$
$$^{1} \text{ definiere:} \qquad (u, v)_{\dot{\mathcal{H}}^{1}} := \sum_{m \in \Lambda} \tilde{D}u(m) \cdot \tilde{D}v(m)$$
$$\mathcal{H}^{c} := \{ u : \Lambda \to \mathbb{R} \mid \text{supp}(Du) \text{ ist kompakt} \}$$

Für u und $v \in \dot{\mathcal{H}}^1$ definiere:

2.2 Energiedifferenzenfunktional

Als Nächstes führen wir das Energiedifferenzenfunktional $\mathcal{E} : \dot{\mathcal{H}}^1 \times \mathbb{R} \to \mathbb{R}$ ein, welches definiert ist durch

$$\mathcal{E}(u,k) = \sum_{m \in \Lambda} V(D\hat{u}_k(m) + Du(m)) - V(D\hat{u}_k(m)).$$

Dabei ist k der SIF, der hier als Bifurkationsparameter wirkt und

$$\hat{u}_k : \Lambda \to \mathbb{R}, \ \hat{u}_k(x) = k \cdot \sqrt{r} \cdot \sin\left(\frac{\theta}{2}\right)$$

die kontinuierliche linearisierte Elastizitätslösung, die sich im homogenen Fall durch Lösen einer geeigneten Poissongleichung ergibt. In diesem Fall fungiert \hat{u}_k allerdings lediglich als Grenzbedingung. $V : \mathbb{R}^{\mathcal{R}} \to \mathbb{R}$ sei ein geeignetes interatomares Ortspotential. Dies ist in diesem Modell ein NN-Paarpotential der Form

$$V(Du(m)) = \sum_{\rho \in \mathcal{R}} \phi(D_{\rho}u(m))$$

mit $\phi \in C^{\alpha}(\mathbb{R})$ für ein $\alpha \geq 5$, welches

$$\phi(0) = 0, \ \phi'(0) = 0, \ \phi''(0) = 1 \text{ und } \phi'''(0) = 0$$

erfüllt. Außerdem soll ein $R_{\phi} \in \mathbb{R}$ existieren, sodass gilt:

$$\phi'(r) = 0 \qquad \forall r \text{ mit } |r| \ge R_{\phi}.$$

Die Nutzung des SIF k als Variable in der Definition von \mathcal{E} erlaubt es uns, k als Bifurkationsparameter aufzufassen und Bifurkationsanalyse zu betreiben, um den Fortlauf und die Ausbreitung des Risses als Folge von Bifurkationen zu beschreiben, die hier den bindungstrennenden Ereignissen entsprechen.

Die Arbeit beschäftigt sich zu großen Teilen mit der Analyse der Menge S von kritischen Punkten des Energiedifferenzenfunktionals. Diese ist gegeben durch

$$S := \{ (u,k) \in \dot{\mathcal{H}}^1 \times \mathbb{R} \mid \delta_u \mathcal{E}(u,k) = 0 \in (\dot{\mathcal{H}}^1)^* \}$$

wo $\delta_u \mathcal{E} : \dot{\mathcal{H}}^1 \times \mathbb{R} \to (\dot{\mathcal{H}}^1)^*$ die partielle Fréchetableitung ist, welche durch

$$\langle \delta_u \mathcal{E}(u,k), v \rangle = \sum_{m \in \Lambda} \nabla V(D\hat{u}_k(m) + Du(m)) \cdot Dv(m)$$

gegeben ist. Dabei beschreib
t \boldsymbol{v} die Richtung, in die die Fréchetableitung ausgewert
et wird.

2.3 Kritische und reguläre Punkte

Im Weiteren versucht man nun, stetige Pfade innerhalb der Menge S zu finden, die beschreiben, wie das Modell auf Veränderungen des SIF k reagiert.

Mit dem Satz über implizite Funktionen existiert tatsächlich für jedes Wertepaar (\bar{u}_0, k_0) aus S ein lokal eindeutiger Pfad von Lösungen $(\bar{u}_s, \bar{k}_s) \in S$ in der Nähe eben dieses Wertepaares.Der Pfad wird mit einem Index $s \in \mathbb{R}$ parametrisiert.

Alle diese Punkte (\bar{u}_s, \bar{k}_s) heißen reguläre Punkte, womit gemeint ist, dass

$$H_s := \delta_{uu}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s) : \dot{\mathcal{H}}^1 \to (\dot{\mathcal{H}}^1)^*$$

$$\tag{2.1}$$

ein Isomorphismus ist.

Einige der Punkte aus S, die über einem kritischen Wert von k liegen, haben weitere, charakterisierende Eigenschaften und werden als *(einfacher quadratischer) Wendepunkt* oder *Bifurkationspunkt* bezeichnet.

2.4 Bifurkationspunkt

Ein Bifurkationspunkt taucht bei $(\bar{u}_b, \bar{k}_b) \in S$ auf, falls ein $\gamma_b \in \dot{\mathcal{H}}^1$ existiert mit

$$i) \quad \text{Ker}(H_b) = \text{span}\{\gamma_b\}$$

$$ii) \quad \delta_{uk}^2 \mathcal{E}(\bar{u}_b, \bar{k}_b)[\gamma_b, 1] \neq 0$$

$$iii) \quad \delta_{uuu}^3 \mathcal{E}(\bar{u}_b, \bar{k}_b)[\gamma_b, \gamma_b, \gamma_b] \neq 0.$$

Dabei folgt aus *iii*), dass der kleinste Eigenwert die Null mit einer von Null verschiedenen Geschwindigkeit passiert und so einen Wechsel der Stabilität der Lösung an jedem Bifurkationspunkt impliziert.

2.5 Annahmen an das Modell

Um das vorgestellte Modell weiter analysieren zu können, ist es notwendig einige Annahmen zu treffen. Alle weiteren Aussagen der Arbeit beruhen auf der Gültigkeit dieser Annahmen.

Annahme 1

Es existiert ein Bifurkationsdiagramm in Form eines injektiven, stetigen Pfades B mit $B: [0,1] \to \dot{\mathcal{H}}^1 \times \mathbb{R}$, welcher gegeben ist durch

$$B(s) := (\bar{u}_s, k_s).$$

Dabei ist $\text{Im}(B) \subset S$ kompakt und für jedes $s \in [0, 1]$ entweder ein regulärer Punkt (wie in 2.3) oder ein Wendepunkt (wie in 2.4). Außerdem wird angenommen, dass nur endlich viele Wendepunkte bei $s \in \{b_1, ..., b_M\}$ auftreten. Dies impliziert insbesondere, dass Im(B) eine sich nicht selbst schneidende Schlangenkurve ist.

Annahme 2

Es existiert ein c > 0, sodass für jedes $s \in [0, 1]$ ein Unterraum U_s von $\dot{\mathcal{H}}^1$ mit Kodimension kleiner gleich 1 existiert, sodass für alle $v \in U_s$ gilt:

$$\langle H_s v, v \rangle \ge c \|v\|_{\dot{\mathcal{H}}^1}^2.$$

Diese zweite Annahme hat zur Konsequenz, dass jedes Paar $B(s) = (\bar{u}_s, \bar{k}_s)$ entweder einen Bifurkationspunkt, eine stabile Lösung oder eine instabile Lösung darstellt.

Annahme 3

Später wird in 3.2.3 gezeigt werden, dass das Bild von B eine eindimensionale $C^{\alpha-1}$ Mannigfaltigkeit in $\dot{\mathcal{H}}^1 \times \mathbb{R}$ ist. Darüber hinaus wird folgende Annahme getroffen:

Die Funktion $\mathcal{B} : [0,1] \to \dot{\mathcal{H}}^1 \times \mathbb{R}$ ist eine konstante Geschwindigkeitsparametisierung der Mannigfaltigkeit $\operatorname{Im}(\mathcal{B}) \subset \dot{\mathcal{H}}^1 \times \mathbb{R}$.

2.6 Unterteilung des Parametrisierungsintervalls

Mit dem durch die Definition der Bifurkationspunkte implizierten Wechsel der Stabilität an diesen Stellen ergibt sich, dass das Infimum des Spektrums von H_s in der Nähe der Bifurkationspunkte und auf den instabilen Abschnitten dazwischen ein Eigenwert ist. Dies wollen wir nutzen, um das Parametrisierungsintervall [0, 1] in zwei Bereiche zu unterteilen.

Wir nehmen dafür an, dass ein endlicher Ausschnitt des Bifurkationsdiagramms betrachtet wird und deshalb ohne Einschränkung angenommen werden kann, dass man mit einem stabilen Abschnitt startet und die Anzahl der Bifurkationspunkte gerade ist. Für $\{b_1, ..., b_M\}$ wie in Annahme 1 setzen wir $I_k := (b_{2k-1} - \xi, b_{2k} + \xi)$ mit $\xi > 0$ klein genug. Damit unterteilen wir [0,1] in

$$\mathcal{I}_{\mathrm{pt}} := igcup_{k=1}^{M/2} I_k \subset [0,1] \ \mathrm{und} \ \mathcal{I}_{\mathrm{pos}} := [0,1] \setminus \mathcal{I}_{\mathrm{pt}}$$

Weiter bezeichnen wir mit

$$\mathcal{B}_{\mathrm{pt}} := \mathcal{B}_{\mathrm{pt}}(\mathcal{I}_{\mathrm{pt}}) \text{ und } \mathcal{B}_{\mathrm{pos}} := \mathcal{B}_{\mathrm{pos}}(\mathcal{I}_{\mathrm{pos}})$$

die zugehörigen Bereiche des Bifurkationsdiagramms mit nichtleerem Punktspektrum $(\sigma_p(H_s) \neq \emptyset)$ bzw. mit positivem Spektrum $(\sigma(H_s) \subset [c, \infty])$. Graphisch wird dies in Abbildung 1 auf Seite 6 veranschaulicht. Außerdem lässt sich, da instabile Abschnitte und Umgebungen von Bifurkationspunkten zu \mathcal{B}_{pt} gehören, festhalten, dass die Konstante c aus Annahme 2 klein genug gewählt werden kann, sodass gilt:

$$s \in \mathcal{I}_{\text{pos}} \Rightarrow U_s = \mathcal{H}^1.$$

Abbildung 1: Abgebildet ist hier das Bifurkationsdiagramm als Schlangenkurve. Die roten Punkte stellen die Bifurkationspunkte dar. Die roten Bereiche gehören zu \mathcal{B}_{pt} und beinhalten sowohl die Bifurkationspunkte und kleine Umgebungen von diesen, als auch die instabilen Lösungen, wohingegen die blauen, stabilen Abschnitte zu \mathcal{B}_{pos} gehören. (Quelle: [2])

2.7 Approximation des Modells

Das bisherige Modell weist die Problematik auf, dass es numerisch nicht berechenbar ist. Um den Lösungspfad \mathcal{B} numerisch approximieren zu können, wird also im Folgenden ein endliches Gebiet betrachtet. Dieses Gebiet wird mit Ω_R bezeichnet und es erfüllt

$$(B_R \cap \Lambda) \subset \Omega_R \subset \Lambda,$$

wobei B_R der Ball um die Rissspitze mit Radius R ist und \hat{u} als Grenzbedingung auf $\Lambda \setminus \Omega_R$ agiert.

Außerdem betrachten wir nun den Lösungsraum

$$S_R := \{ (u^R, k) \in \mathcal{H}^0_R \times \mathbb{R} \mid \delta_u \mathcal{E}(u^R, k) = 0 \in (\mathcal{H}^0_R)^* \}$$

mit $\mathcal{H}^0_R := \{ v : \Lambda \to \mathbb{R} \mid v = 0 \text{ auf } \Lambda \setminus \Omega_R \}.$

3 Beweise zur Analyse des Modells

3.1 Vorbereitungen

Die Beweise der Aussagen des Artikels beruhen im Wesentlichen auf den Aussagen zweier Lemmata. Diese werde ich im Folgenden vorab vorstellen.

Das Erste stammt aus [6] und wird hier ohne Beweis angeführt.

3.1.1 Lemma 1: ABCD-Lemma

Sei \mathcal{H} ein Hilbertraum mit zugehörigem Dualraum \mathcal{H}^* . Betrachte den linearen Operator $M: \mathcal{H} \times \mathbb{R} \to \mathcal{H}^* \times \mathbb{R}$ von der Form

$$M := \begin{bmatrix} A & b \\ (c, \cdot)_{\mathcal{H}} & d \end{bmatrix},$$

wobei $A : \mathcal{H} \to \mathcal{H}^*$ selbstadjungiert ist, d.h. $\langle Av, w \rangle = \langle Aw, v \rangle$ für alle $v, w \in \mathcal{H}$, $b \in \mathcal{H}^* \setminus \{0\}, \ c \in \mathcal{H} \setminus \{0\}$ und $d \in \mathbb{R}$. Dann gilt:

(i) Falls A ein Isomorphismus von \mathcal{H} nach \mathcal{H}^* ist, so ist M ein Isomorphismus zwischen $\mathcal{H} \times \mathbb{R}$ und $\mathcal{H}^* \times \mathbb{R}$ genau dann, wenn $d - (c, A^{-1}b)_{\mathcal{H}} \neq 0$;

außerdem:

(ii) Falls $\dim(\operatorname{Ker}(A)) = \operatorname{codim}(\operatorname{Range}(A)) = 1$ mit $\operatorname{Ker}(A) = \operatorname{span}\{\gamma\}$, so ist M ein Isomorphismus zwischen $\mathcal{H} \times \mathbb{R}$ und $\mathcal{H}^* \times \mathbb{R}$ genau dann, wenn $\langle b, \gamma \rangle \neq 0$ und $(c, \gamma)_{\mathcal{H}} \neq 0$.

Das zweite Theorem ist angelehnt an Theorem 1 aus [5] und benötigt die Einführung des folgenden Aufbaus.

Seien im Folgenden X, Y und Z reelle Banachräume und sei $F \in C^k(U \times Y, Z)$ für ein $k \ge 1$, wobei U eine beschränkte, offene Teilmenge von X ist. Die totale Ableitung von F an der Stelle $(x, y) \in X \times Y$ wird als $DF(x, y) \in \mathcal{L}(X \times Y, Z)$ bezeichnet und die partiellen Ableitungen in die Richtungen x, bzw. y als $D_xF(x, y) \in \mathcal{L}(X, Z)$, bzw. als $D_yF(x, y) \in \mathcal{L}(Y, Z)$.

3.1.2 Theorem 2: theoretisches Haupttheorem

Angenommen eine Funktion $y: U \to Y$ sei Lipschitzstetig mit Lipschitzkonstante c_2 und es existieren Konstanten c_0 und c_1 , sowie eine monoton wachsende Funktion $L_1: \mathbb{R} \to \mathbb{R}$, sodass die folgenden drei Hypothesen erfüllt sind:

(i) Für jedes $x_0 \in U$ ist $D_y F(x_0, y(x_0))$ ein Isomorphismus von Y nach Z mit

$$\sup_{x_0 \in U} \|D_y F(x_0, y(x_0))^{-1}\| \le c_0;$$

(ii) Wir haben die gleichförmige Schranke

$$\sup_{x_0 \in U} \|D_x F(x_0, y(x_0))\| \le c_1;$$

(iii) Für jedes $x_0 \in U, \, \xi > 0$ und alle $(x, y), \, die \, ||x - x_o|| + ||y - y(x_0)|| \le \xi \, erf \ddot{u} llen, gilt$

$$||DF(x,y) - DF(x_0,y(x_0))|| \le L_1(\xi)(||x - x_0|| + ||y - y(x_0)||).$$

Dann folgt, dass Konstanten a, d > 0 existieren, die lediglich von c_0, c_1, c_2 und L_1 abhängen, sodass falls

$$\sup_{x_0 \in U} \|F(x_0, y(x_0))\| \le d$$

ist, eine eindeutige Funktion $g: \cup_{x_0 \in U} B(x_0; a) \to Y$ existient, sodass gilt:

$$F(x,g(x)) = 0.$$

Dabei ist mit $B(x_0; a)$ der Ball um den Punkt x_0 mit Radius a gemeint. Außerdem ist g auf ihrem Definitionsbereich eine C^k -Funktion und für alle $x_0 \in U$ und alle $x \in B(x_0; a)$ gilt die Abschätzung

$$||g(x) - y(x_0)|| \le K_0(||x - x_0|| + ||F(x_0, y(x_0))||),$$

wobei $K_0 > 0$ nur von den Konstanten c_0 und c_1 abhängt.

Der Beweis dieses Theorems ist angelehnt an den Beweis von Theorem 1 aus [5] und auf Seite 15 zu finden. Dieser beruht dabei auf den Aussagen weiterer Hilfslemmata, welche wir zunächst anführen und beweisen werden.

Lena Schmedt

3.1.3 Hilfslemma 3: Vorarbeit für den Beweis von Theorem 2

Seien X,Y wieder Banachräume und f eine C^1 -Abbildung von einer Umgebung von $x_0 \in X$ nach Y. Bezeichne außerdem $y_0 = f(x_0)$. Angenommen, $Df(x_0)$ sei ein Isomorphismus von X nach Y mit

$$\|Df(x_0)^{-1}\| \le M. \tag{3.1}$$

Wenn $\delta > 0$ so gewählt wird, dass gilt

$$||x - x_0|| \le \delta \Rightarrow ||Df(x) - Df(x_0)|| \le \frac{1}{2M},$$
(3.2)

dann existiert eine eindeutige C¹-Funktion g, die auf $B(y_0; \frac{\delta}{2M})$ mit Bild in $B(x_0; \delta)$ definiert ist, sodass $f \circ g = id_y$ ist.

Desweiteren erhalten wir für alle $y \in B(y_0; \frac{\delta}{2M})$ die Abschätzung

$$||g(y) - g(y_0)|| \le 2M ||y - y_0||.$$

Beweis von Hilfslemma 3

Betrachte die Abbildung $A_y: X \to X$, welche definiert ist durch

$$A_y(x) = x_0 + Df(x_0)^{-1} \left(y - y_0 + f(x_0) + Df(x_0) \cdot (x - x_0) - f(x) \right).$$

Dabei ist $Df(x_0).(x - x_0)$ zu verstehen als die Ableitung von f an der Stelle x_0 , ausgewertet in Richtung $(x - x_0)$.

Seien $x \in B(x_0; \delta)$ und $y \in B(y_0; \frac{\delta}{2M})$. Dann gilt:

$$|A_y(x) - x_0| = |Df(x_0)^{-1} (y - y_0 + f(x_0) + Df(x_0) \cdot (x - x_0) - f(x))|$$

$$\leq \underbrace{|Df(x_0)^{-1}|}_{\stackrel{(3.1)}{\leq M}} \cdot \left(\underbrace{|y - y_0|}_{\leq \frac{\delta}{2M}} + \underbrace{|f(x_0) + Df(x_0) \cdot (x - x_0) - f(x)|}_{(*)}\right)$$

Zu (*):
Es gilt
$$f(x) = f(x_0) + \int_{s=0}^{1} \underbrace{Df(x_0 + s(x - x_0)).(x - x_0)}_{=\frac{d}{ds}f(x_0 + s(x - x_0))} ds.$$

Damit ergibt sich

$$\begin{aligned} |f(x_0) + Df(x_0).(x - x_0) - f(x)| \\ &= |\underbrace{Df(x_0).(x - x_0)}_{\text{unabhängig von } s} - \int_{s=0}^{1} Df(x_0 + s(x - x_0)).(x - x_0) \, \mathrm{d}s| \\ &= |\int_{0}^{1} Df(x_0) - Df(x_0 + s(x - x_0)) \, \mathrm{d}s \, (x - x_0)| \\ &\leq \int_{0}^{1} \underbrace{|Df(x_0) - Df(x_0 + s(x - x_0))|}_{\leq \frac{3 \cdot 2}{2M}} \, \mathrm{d}s \cdot \underbrace{|x - x_0|}_{\leq \delta} \\ &\leq \frac{\delta}{2M} \end{aligned}$$

 $\Rightarrow |A_y(x) - x_0| \leq M \cdot \left(\frac{\delta}{2M} + \frac{\delta}{2M}\right) = \frac{\delta}{2} + \frac{\delta}{2} = \delta.$ Somit gilt, dass A_y für $y \in B(y_0; \frac{\delta}{2M})$ eine Abbildung von $B(x_0; \delta)$ in sich selbst ist. Wie folgt kann man außerdem einsehen, dass A_y eine Kontraktion ist: Seien $x, z \in B(x_0; \delta)$ und $y \in B(y_0; \frac{\delta}{2M})$ wie zuvor. Dann gilt:

$$|A_{y}(x) - A_{y}(z)| = |Df(x_{0})^{-1}(y - y_{0} + f(x_{0}) + Df(x_{0}).(x - x_{0}) - f(x) - y + y_{0} - f(x_{0}) - Df(x_{0}).(z - x_{0}) + f(z))|$$

$$\leq \underbrace{|Df(x_{0})^{-1}|}_{\overset{(3.1)}{\leq} M} \cdot \underbrace{|Df(x_{0}).(x - z) - f(x) + f(z)|}_{(**)}$$

Für (**) gilt dabei wie schon zuvor für z statt x_0 mit

$$f(x) = f(z) + \int_0^1 Df(z + s(x - z)).(x - z) \, \mathrm{d}s$$
:

$$|Df(x_0).(x-z) - f(x) + f(z)| = |Df(x_0).(x-z) - \int_0^1 Df(z+s(x-z)).(x-z) \, \mathrm{d}s|$$

$$\leq \int_0^1 \underbrace{|Df(x_0) - Df(z+s(x-z))|}_{\leq \frac{3}{2M}} \, \mathrm{d}s \cdot |x-z| \leq \frac{1}{2M} \cdot |x-z|,$$

also insgesamt

$$|A_y(x) - A_y(z)| \le M \cdot \frac{1}{2M} \cdot |x - z| = \frac{1}{2} \cdot |x - z|$$

und A_y ist somit für $y \in B(y_0; \frac{\delta}{2M})$ eine Kontraktion von $B(x_0; \delta)$ in sich selbst mit Kontraktionskonstante $c = \frac{1}{2}$.

Damit lässt sich der Banachsche Fixpunktsatz anwenden.

Man erhält also, dass A_y einen eindeutigen Fixpunkt $x \in B(x_0; \delta)$ besitzt. Dies bedeutet konkret:

$$\begin{aligned} A_y(x) =& x_0 + Df(x_0)^{-1}(y - y_0 + f(x_0) + Df(x_0).(x - x_0) - f(x)) = x \\ & \stackrel{y_0 = f(x_0)}{\Leftrightarrow} Df(x_0)^{-1}(y + Df(x_0).(x - x_0) - f(x)) = x - x_0 \\ & \Leftrightarrow Df(x_0).(x - x_0) - f(x) = Df(x_0).(x - x_0) \\ & \Leftrightarrow y - f(x) = 0 \\ & \Leftrightarrow y = f(x) \end{aligned}$$

Äquivalent ausgedrückt existiert demnach ein eindeutiges $x \in B(x_0; \delta)$, sodass y = f(x)ist. Das heißt, für jedes $y \in B(y_0; \frac{\delta}{2M})$ existiert ein Urbild von f in $B(x_0; \delta)$. Dies definiert eine C^1 -Funktion

$$g: B(y_0; \frac{\delta}{2M}) \to B(x_0; \delta)$$
$$y \mapsto g(y) = x,$$

für die gilt: $f \circ g = id_Y$.

Betrachte nun den zweiten Teil der Aussage des Lemmas, die Ungleichung

 $||g(y) - g(y_0)|| \le 2M ||y - y_0||.$

Um diese zu zeigen, sei $x \in B(x_0; \delta)$. Dann folgt mit (3.1) und (3.2)

$$\|Df(x_0)^{-1}(Df(x) - Df(x_0))\| \le \|Df(x_0)^{-1}\| \cdot \|Df(x) - Df(x_0)\| \le M \cdot \frac{1}{2M} = \frac{1}{2}.$$
(3.3)

Zudem kann man Df(x) schreiben als:

$$Df(x_0)(I + Df(x_0)^{-1}(Df(x) - Df(x_0))) = Df(x_0)(I + Df(x_0)^{-1}Df(x) - I)$$

= $Df(x_0)Df(x_0)^{-1}Df(x)$
= $Df(x).$

Das heißt, Df(x) ist genau dann invertierbar, wenn die Faktoren der linken Seite invertierbar sind. $Df(x_0)$ ist nach Voraussetzung invertierbar. Es bleibt also zu zeigen, dass auch $I + Df(x_0)^{-1}(Df(x) - Df(x_0))$ invertierbar ist.

Betrachte dazu ein
$$v \in \ker(I + Df(x_0)^{-1}(Df(x) - Df(x_0)))$$
. Für dieses gilt:

$$0 = |0| = |v + Df(x_0)^{-1}(Df(x) - Df(x_0))v|$$

$$\stackrel{(3.3)}{\leq} |v| + \frac{1}{2}|v| = \frac{3}{2}|v|$$

$$\Rightarrow v = 0.$$

Damit ist $\ker(I + Df(x_0)^{-1}(Df(x) - Df(x_0))) = 0$ und der Ausdruck somit invertierbar. Wir erhalten also die Invertierbarkeit von Df(x). Es folgt:

$$\begin{split} \|Df(x)^{-1}\| &\leq \|Df(x_0)^{-1}\| \cdot \|(I + Df(x_0)^{-1}(Df(x) - Df(x_0))^{-1}\| \\ &\leq \frac{\|Df(x_0)^{-1}\|}{1 - \|Df(x_0)^{-1}(Df(x) - Df(x_0)\|} \\ &\leq 2M. \end{split}$$

So erhalten wir für alle $y \in B(y_0; \frac{\delta}{2M})$

$$||Dg(y)|| = ||Df(x)^{-1}|| \le 2M.$$

Damit folgt also auch für den diskreten Differenzenquotienten die Abschätzung

$$\frac{\|g(y) - g(y_0)\|}{\|y - y_0\|} \le 2M$$

und somit die letzte Aussage des Hilfslemmas.

3.1.4 Hilfslemma 4: Vorarbeit für den Beweis von Theorem 2

Seien X, Y, Z Banachräume und f eine C^1 -Abbildung von einer Umgebung von $(x_0, y_0) \in X \times Y$ nach Z.

Bezeichne $f_0 = f(x_0, y_0) \in X \times Y$.

Angenommen, die folgenden Hypothesen seien erfüllt:

i) Die Abbildung $D_y f_0$ ist ein Isomorphismus von Y nach Z mit

$$\|(D_y f_0)^{-1}\| \le c_0; \tag{3.4}$$

ii) Wir haben die Abschätzung

$$\|D_x f_0\| \le c_1; \tag{3.5}$$

iii) Es existiert eine monoton wachsende Funktion $L_1 : \mathbb{R}_+ \to \mathbb{R}_+$, sodass für alle $(x, y) \in X \times Y$ mit $||(x, y) - (x_0, y_0)|| \le \xi$ gilt:

$$\|Df(x,y) - Df_0\| \le L_1(\xi)(\|x - x_0\| + \|y - y_0\|).$$
(3.6)

Dann kann man drei nur von c_0, c_1 und L_1 abhängige Konstanten $\alpha, \beta, \gamma > 0$ finden, sodass, falls $||f_0|| \leq \gamma$ ist, eine eindeutige C¹-Funktion g existiert, welche auf $B(x_0; \alpha)$ definiert ist, ihr Bild in $B(y_0; \beta)$ hat und die

$$f(x,g(x)) = 0$$

Außerdem erhalten wir für eine Konstante $K_0 = K_0(c_0, c_1) > 0$ und alle $x \in B(x_0; \alpha)$

 $||g(x) - y_0|| \le K_0(||x - x_0|| + ||f_0||).$

Beweis von Hilfslemma 4

Definiere auf einer Umgebung von (x_0, y_0) die Abbildung F mit Bild in $X \times Z$ durch

$$F(x,y) = (x, f(x,y)).$$

Um 3.1.3 auf die Funktion F anwenden zu können, überprüfe Bedingungen (3.1) und (3.2).

Prüfe zunächst (3.1): Zeige also: $Df(x_0)$ ist Isomorphismus von $X \to Y$ mit $||Df(x_0)^{-1}|| \le M$. Betrachte $DF_0 = DF(x_0, y_0) \in \mathcal{L}(X \times Y; X \times Z)$. Es gilt

$$DF_0 = DF(x_0, y_0) = D(x_0, f(x_0, y_0))$$

= $\begin{pmatrix} \frac{d}{dx}(x_0, f(x_0, y_0)) \\ \frac{d}{dy}(x_0, f(x_0, y_0)) \end{pmatrix} = \begin{pmatrix} 1 & D_x f_0 \\ 0 & D_y f_0 \end{pmatrix}$

Da D_yf_0 nach Voraussetzung als Isomorphismus von $y\to Z$ invertierbar ist, folgt durch Auflösen gegen die Einheitsmatrix

$$(DF_0)^{-1} = \begin{pmatrix} 1 & -D_x f_0 \cdot (D_y f_0)^{-1} \\ 0 & (D_y f_0)^{-1} \end{pmatrix}.$$

Wir erhalten für alle $x \in X$ und $z \in Z$ also

$$(DF_0)^{-1}(x,z) = (DF(x_0,y_0))^{-1}(x,z)$$

= $(x, (D_yf_0)^{-1}.(z - D_xf_0.x)).$

Damit, und mit den Voraussetzungen (3.4) und (3.5) an $(D_y f_0)^{-1}$ und $D_x f_0$ folgt

$$\begin{aligned} \|(DF_0)^{-1}(x,z)\| &= \|(x,(D_yf_0)^{-1}.(z-D_xf_0.x))\| \\ &\leq \|x\| + \|(D_yf_0)^{-1}\| \cdot (\|z\| + \|D_xf_0\| \cdot \|x\|) \\ &\leq \|x\| + c_0\|z\| + c_0c_1\|x\| \\ &= (1+c_0c_1)\|x\| + c_0\|z\| \\ &\leq \max(1+c_0c_1,c_0) \cdot \|(x,z)\| \end{aligned}$$

und damit

$$||(DF_0)^{-1}|| \le \max(c_0, 1 + c_0c_1) =: M.$$

Überprüfe nun (3.2): Wir haben für alle $(x, y) \in X \times Y$

$$DF(x, y) - DF_0 = (0, Df(x, y) - Df_0)$$

und mit (3.6) erhalten wir für $(x, y) \in B(x_0, y_0; \xi)$

$$||DF(x,y) - DF_0|| = ||Df(x,y) - Df_0||$$

$$\leq L_1(\xi) \cdot (||x - x_0|| + ||y - y_0||)$$

$$\leq L_1(\xi) \cdot \xi.$$

Wenn wir nun die Konstante $\beta > 0$ so wählen, dass $\beta L_1(\beta) \leq \frac{1}{2M}$, erhalten wir für alle $(x, y) \in B(x_0, y_0; \beta)$

$$||DF(x,y) - DF_0|| \le \beta L_1(\beta) \le \frac{1}{2M}.$$

Mit 3.1.3 existiert also eine eindeutige C^1 -Funktion G, definiert auf dem Ball $B(x_0, f_0; \frac{\beta}{2M})$ mit Bild in $B(x_0, y_0; \beta)$, sodass $F \circ G = id_{X \times Z}$. Offenbar ist die Funktion G von der Form

$$G(x,z) = (x,\phi(x,z)) \text{ mit } f(x,\phi(x,z)) = z,$$

mit einer Abbildung $\phi : (X \times Z) \to Y$, denn so gilt:

$$F \circ G(x, z) = F(x, \phi(x, z)) = (x, f(x, \phi(x, z)) = (x, z).$$

Wenn wir z = 0 fest wählen und annehmen, dass $||f_0|| \le \gamma \le \frac{\beta}{4M}$ ist, erhalten wir als Konsequenz die Existenz einer eindeutigen C^1 -Funktion $g: x \mapsto g(x) = \phi(x, 0)$ definiert auf $B(x_0; \alpha)$ mit $\alpha = \frac{\beta}{4M}$ und Bild in $B(y_0; \beta)$, sodass gilt

$$f(x, g(x)) = f(x, \phi(x, 0)) = 0.$$

Indem wir $||g(y) - g(y_0)|| \le 2M ||y - y_0||$ aus 3.1.3 auf die Funktion *G* anwenden, erhalten wir mithilfe von $\phi(x_0, f_0) = y_0$ für alle $x \in B(x_0; \alpha)$

$$\begin{aligned} \|g(x) - y_0\| &= \|\phi(x, 0) - \phi(x_0, f_0)\| \\ & \stackrel{\text{oBdA } \|x_0\| \le \|x\|}{\le} \|x + \phi(x, 0) - (x_0 + \phi(x_0, f_0))\| \\ &= \|G(x, 0) - G(x_0, f_0)\| \\ &\le 2M \cdot (\|x - x_0\| + \|f_0\|) \end{aligned}$$

die übrige Abschätzung mit $K_0 := 2M$.

Beweis von Theorem 2:

Wir versuchen, 3.1.4 auf jeden Punkt $(x_0, y(x_0))$ mit $x_0 \in U$ anzuwenden. Die Konstanten α, β, γ und K_0 aus 3.1.4 hängen nur von c_0, c_1 und L_1 ab, welche wiederum nach den Voraussetzungen von Theorem 2 nicht von dem gewählten $x_0 \in U$ abhängen, sondern für alle $x_0 \in U$ anwendbar sind.

Mit 3.1.4 folgt nun, dass unter der Bedingung

$$\sup_{x_0 \in U} \|f(x_0, y(x_0))\| \le \gamma,$$

für jedes $x_0 \in U$ eine eindeutige C^1 -Funktion g_0 existiert, die auf $B(x_0; \alpha)$ definiert ist, ihr Bild in $B(y(x_0); \beta)$ hat und $f(x, g_0(x)) = 0$ erfüllt. Nun bleibt es zu prüfen, dass sich diese, von den Punkten x_i aus U abhängigen Funktionen g_i , zu einer auf ganz Uwohldefinierten C^1 -Funktion g zusammensetzen lassen.

Sei $\delta := \min(\frac{\alpha}{2}, \frac{\beta}{2c_2})$ und seien $x_0, x_1 \in U$ mit $||x_o - x_1|| < \delta$. Zeige also im Folgenden, dass die beiden durch 3.1.4 implizierten Funktionen g_0 und g_1 auf dem Schnitt der offenen Bälle $\mathring{B}(x_0; \delta)$ und $\mathring{B}(x_1; \delta)$ übereinstimmen.

Sei also $x \in \check{B}(x_0; \delta) \cap \check{B}(x_1; \delta)$. Wir schreiben mithilfe der \triangle -Ungleichung

$$||g_1(x) - y(x_0)|| \le ||g_1(x) - y(x_1)|| + ||y(x_1) - y(x_0)||.$$

Man kann in 3.1.4 ohne Beschränkung β durch $\theta\beta$ für ein $\theta \in [0, 1]$ ersetzen und annehmen, dass $||f_0|| \leq \frac{\theta\beta}{4M}$. Dann findet man eine Funktion g, die den Ball $B(x_0; \theta\alpha)$ in den Ball $B(y_0; \theta\beta)$ abbildet. Nutze dies für $\theta = \frac{1}{2}$.

Wir erhalten für $d \leq \frac{\beta}{8M}$, dass $\sup_{x_0 \in U} ||f(x_0, y(x_0))|| \leq d$. Wie vorher in 3.1.4 haben wir $\alpha = \frac{\beta}{4M}$ und $K_0 = K_1 = 2M$. Damit folgt:

$$\begin{aligned} \|g_1(x) - y(x_1)\| &\leq K_1(\|x - x_1\| + \|f_1\|) \\ &\leq 2M(\delta + \frac{\beta}{8M}) \\ &\leq 2M(\frac{\alpha}{2} + \frac{\beta}{8M}) \\ &= 2M(\frac{\beta}{8M} + \frac{\beta}{8M}) = \frac{\beta}{2} \end{aligned}$$

Auf der anderen Seite gilt mit der vorausgesetzten Lipschitzste
tigkeit von y mit Lipschitzkonstant
e c_2

$$||y(x_1) - y(x_0)|| \le c_2 ||x_1 - x_0|| \le c_2 \cdot \delta \le c_2 \cdot \frac{\beta}{2c_2} = \frac{\beta}{2}.$$

Insgesamt gilt somit

$$||g_1(x) - y(x_0)|| \le \frac{\beta}{2} + \frac{\beta}{2} = \beta$$

und $g_1(x) \in B(y(x_0); \beta)$. Wegen der Eindeutigkeit der impliziten Funktion $g_0 : B(x_0; \alpha) \to B(y(x_0); \beta)$ gilt

$$g_1(x) = g_0(x)$$
 für alle $x \in B(x_0; \delta) \cap B(x_1; \delta)$.

Indem man für alle x_0 aus $U g(x) = g_0(x)$ auf $\mathring{B}(x_0; \delta)$ setzt, definieren wir also eine eindeutige C^1 -Funktion $g : \bigcup_{x_0 \in U} \mathring{B}(x_0; \delta) \to Y$, welche f(x, g(x)) = 0 erfüllt und für alle $x_0 \in U \mathring{B}(x_0; \delta)$ nach $B(y(x_0); \frac{\beta}{2})$ abbildet. Für $a < \delta$ und $b = \frac{\beta}{2}$ ist also der erste Teil des Theorems erfüllt.

Wegen der gültigen Abschätzung $||g(x) - y_0|| \le K_0(||x - x_0|| + ||f_0||)$ aus 3.1.4, welche auf $y_0 = y(x_0)$ angewandt wird, folgt auch

$$||g(x) - y(x_0)|| \le K_0 \cdot (||x - x_0|| + ||f(x_0, y(x_0))||)$$

Man erhält also, dass die Funktionen g_i auf sich überschneidenden Definitionsbereichen übereinstimmen und sich demnach zu einer auf ganz U wohldefinierten C^1 -Funktion gergänzen.

Dies beendet den Beweis.

3.2 Aussagen über das Modell

3.2.1 Lemma 5: Abschätzung für |v| mit $v \in \dot{\mathcal{H}}^1$

Falls $v \in \dot{\mathcal{H}}^1$, dann gilt für jedes $l \in \Gamma_{\pm}$:

$$|v(l)| \lesssim \|v\|_{\dot{\mathcal{H}}^1} (1 + \log|l|).$$

Beweis von Lemma 5

Da wir uns in einer Geometrie mit Riss befinden, müssen wir bei dem Beweis in zwei Fälle unterscheiden und betrachten $l \in \Gamma_+$ und $l \in \Gamma_-$ separat voneinander.

Wir setzen $\hat{x} := (\frac{1}{2}, \frac{1}{2})$ und erhalten per Definition von $\dot{\mathcal{H}}^1$, dass gilt: $v \in \dot{\mathcal{H}}^1 \Rightarrow v(\hat{x}) = 0$.

Fall 1: Sei $l \in \Gamma_+$.

 $l \in \Gamma_+$ impliziert, dass $l = (l_1, l_2)$ von der Form $(l_1, \frac{1}{2})$ sein muss und wir erhalten $(l - \hat{x}) \cdot e_2 = 0$. Betrachte nun eine Folge von Quadraten $(Q_i)_{i=0}^N \subset \mathbb{R}^2 \setminus (D_{\Gamma} \cup \Gamma_0)$. Dabei bezeichne

$$D_{\Gamma} := \{ x \in \mathbb{R}^2 \mid x_1 \le \frac{1}{2} \text{ und } x_2 \in (-\frac{1}{2}, \frac{1}{2}) \} \setminus \Gamma_0$$

den Kontinuumsbereich, der von Γ_+ und Γ_- eingeschlossen wird und $\Gamma := \partial D_{\Gamma} \setminus \Gamma_0$ die kontinuierlichen Linien, die Γ_{\pm} enthalten und D_{Γ} begrenzen.

Die Quadrate sind in e_1 -Richtung ausgerichtet, also so, dass die unteren Kanten der Quadrate auf Γ_+ liegen, und wie folgt definiert.

 Q_0 und Q_N seien Einheitsquadrate, die \hat{x} , beziehungsweise l tangieren. Dabei sei \hat{x} der Mittelpunkt der Seite des Quadrates Q_0 , die an Γ_+ angrenzt und analog l der Mittelpunkt der Seite von Q_N , die auf Γ_+ liegt.

Die Quadrate Q_1, \ldots, Q_{N-1} sind so definiert, dass sie den Raum zwischen Q_0 und Q_N so füllen, dass die Innenflächen von benachbarten Quadraten jeweils disjunkt sind und sich ihre Seitenlängen um den Faktor 2 unterscheiden. Außerdem soll jeweils eine Seite des kleineren Quadrates in der des Größeren liegen.

Abbildung 2: Darstellung der Konstruktion der Quadratfolge und der Rissumgebung.

Bezeichne nun h_i die Seitenlänge des Quadrates Q_i . Dann gilt nach Konstruktion

$$h_{i+1} = 2h_i$$
 für $i < \frac{N}{2}$
 $h_i = 2h_{i+1}$ für $i > \frac{N}{2}$

Induktiv erhält man:

$$\begin{aligned} &\text{für } i < \frac{N}{2}: \qquad h_i = 2 \cdot h_{i-1} = 2 \cdot 2 \cdot h_{i-2} = \dots = 2^i \cdot h_0 \stackrel{h_0 = 1}{=} 2^i \\ &\text{und für } i > \frac{N}{2}: \qquad h_i = 2 \cdot h_{i+1} = 2 \cdot 2 \cdot h_{i+2} = \dots = 2^{N-i} \cdot h_N \stackrel{h_N = 1}{=} 2^{N-i}. \end{aligned}$$

Außerdem gilt:

$$\begin{aligned} |l - \hat{x}| &= h_0 + h_1 + h_2 + \dots + h_N - 1 \stackrel{h_0 = 1}{=} h_1 + h_2 + \dots + h_N \\ &= \sum_{i=1}^{\frac{N}{2}} 2^i + \sum_{i=\frac{N}{2}}^{N} 2^{N-i} = \sum_{i=1}^{\frac{N}{2}} 2^i + \sum_{i=0}^{\frac{N}{2}} 2^i \\ &\ge 2 \cdot \sum_{i=1}^{\frac{N}{2}} 2^i = 2 \cdot \sum_{i=0}^{\frac{N}{2}-1} 2^{i+1} = 4 \cdot \sum_{i=0}^{\frac{N}{2}-1} 2^i \\ &\stackrel{\text{geometrische Reihe}}{=} 4 \cdot \frac{2^{\frac{N}{2}} - 1}{2 - 1} = 4 \cdot (2^{\frac{N}{2}} - 1) \end{aligned}$$

Es folgt:

$$\begin{aligned} |l - \hat{x}| &\geq 4 \cdot \left(2^{\frac{N}{2}} - 1\right) \\ \Leftrightarrow \frac{|l - \hat{x}|}{4} + 1 &\geq 2^{\frac{N}{2}} = (\sqrt{2})^{N} \\ \Leftrightarrow \log\left(1 + \frac{|l - \hat{x}|}{4}\right) &\geq N \cdot \log\sqrt{2}. \end{aligned}$$
(*)

Außerdem gilt $\log(1+z) \leq \log(z) + \log(2) \quad \forall z \geq 1 \quad (**), da$

$$\log(1+z) \le \log(z) + \log(2) \Leftrightarrow \log \frac{1-z}{z} \le \log(2) \Leftrightarrow \frac{1-z}{z} \le 2 \Leftrightarrow z \ge 1.$$

Damit folgt:

$$N \stackrel{(*)}{\lesssim} \log(1 + \frac{|l - \hat{x}|}{4}) \stackrel{(**)}{\leq} \log\frac{|l - \hat{x}|}{4} + \log(2)$$
$$= \log(2) - \log(4) + \log|l - \hat{x}| \lesssim 2 + \log|l - \hat{x}|$$

Für die Anzahl ${\cal N}$ der Quadrate gilt demnach

$$N \lesssim (2 + \log|l - \hat{x}|) \lesssim 1 + \log|l|.$$

Hierbei ist $\leq zu$ verstehen als $(...) \leq C \cdot (...)$ für eine Konstante C, die in diesem Fall unabhängig von l ist.

Abbildung 3: Darstellung der Triangulierung zur Definition des Interpolationsoperators I, mit Nummerierung der Gitterpunkte als $m_{i,j}$ und Benennung der Elemente der Triangulierung.

Sei im Folgenden I ein P1-Interpolationsoperator auf der Rissgeometrie. Dazu unterteilen wir das Gebiet $\mathbb{R}^2 \setminus \Gamma_0$. Die einzelnen Quadrate des Gitters teilen wir in je zwei rechtwinklige Dreiecke und führen über diese Triangulierung \mathcal{T} den stückweise linearen Interpolationsoperator I ein. Dieser ist so konstruiert, dass er auf D_{Γ} wohldefiniert und stetig über Γ ist.

Definiere für Iv den Mittelwert auf einem Quadrat Q_j durch

$$(v)_{Q_j} := \frac{1}{|Q_j|} \int_{Q_j} Iv(x) \,\mathrm{d}x.$$

Es gilt die Abschätzung

$$\begin{aligned} |(v)_{Q_{j+1}} - (v)_{Q_j}| &= \left|\frac{1}{|Q_{j+1}|} \int_{Q_{j+1}} Iv(x) \, dx - \left|\frac{1}{|Q_j|} \int_{Q_j} Iv(x) \, dx \right| \\ &\lesssim \|\nabla Iv\|_{L^2(\mathbb{R}^2 \setminus \Gamma_0)} \overset{(\star)}{\lesssim} \|v\|_{\dot{\mathcal{H}}^1}. \end{aligned}$$

Um die Abschätzung (*) einzusehen, nummeriere die Gitterpunkte $m \in \Lambda$ als $m_{i,j}$.

Dann gilt zum einen

$$||v||_{\dot{\mathcal{H}}^{1}}^{2} = \sum_{m_{i,j} \in \Lambda} |\tilde{D}v(m_{i,j})|^{2} = \sum_{m_{i,j}} \left| \begin{pmatrix} v(m_{i+1,j}) - v(m_{i,j}) \\ v(m_{i-1,j}) - v(m_{i,j}) \\ v(m_{i,j+1}) - v(m_{i,j}) \\ v(m_{i,j-1}) - v(m_{i,j}) \end{pmatrix} \right|^{2}$$
$$= \sum_{m_{i,j}} |v(m_{i+1,j}) - v(m_{i,j})|^{2} + \sum_{m_{i,j}} |v(m_{i-1,j}) - v(m_{i,j})|^{2}$$
$$+ \sum_{m_{i,j}} |v(m_{i,j+1}) - v(m_{i,j})|^{2} + \sum_{m_{i,j}} |v(m_{i,j-1}) - v(m_{i,j})|^{2}.$$

Zum anderen gilt:

$$\begin{split} \|\nabla Iv\|_{L^{2}}^{2} &= \sum_{T \in \mathcal{T}} \int_{T} |\nabla Iv|^{2} dx \\ &= \sum_{T \in \mathcal{T}} |T| \cdot |\nabla Iv(T)|^{2} \\ &= \sum_{T \in \mathcal{T}} |T| \cdot |D_{e_{1}}Iv(T)|^{2} + \sum_{T \in \mathcal{T}} |T| \cdot |D_{-e_{1}}Iv(T)|^{2} \\ &+ \sum_{T \in \mathcal{T}} |T| \cdot |D_{e_{2}}Iv(T)|^{2} + \sum_{T \in \mathcal{T}} |T| \cdot |D_{-e_{2}}Iv(T)|^{2}. \end{split}$$

Indem man die Dreiecke der Triangulierung mit ihren Eckpunkten $m_{i,j}$ identifiziert, gilt dabei exemplarisch für den ersten Summanden

$$\sum_{T \in \mathcal{T}} |T| \cdot |D_{e_1} Iv(T)|^2 = \sum_{m_{i,j}} (|T_1(m_{i,j})| + |T_2(m_{i,j})|) \cdot |D_{e_1} Iv(m_{i,j})|^2$$
$$= \sum_{m_{i,j}} |v(m_{i+1,j}) - v(m_{i,j})|^2.$$

Führe dies analog für die anderen Summanden durch und erhalte

$$\begin{aligned} \|\nabla Iv\|_{L^2}^2 &= \sum_{m_{i,j}} |v(m_{i+1,j}) - v(m_{i,j})|^2 + \sum_{m_{i,j}} |v(m_{i-1,j}) - v(m_{i,j})|^2 \\ &+ \sum_{m_{i,j}} |v(m_{i,j+1}) - v(m_{i,j})|^2 + \sum_{m_{i,j}} |v(m_{i,j-1}) - v(m_{i,j})|^2 \end{aligned}$$

Damit folgt also die Abschätzung (*) $\|\nabla Iv\|_{L^2} \lesssim \|v\|_{\dot{\mathcal{H}}^1}$.

Als Resultat dieser Ungleichung ergibt sich

$$|(u)_{Q_{N}} - (u)_{Q_{0}}| \stackrel{\Delta-\text{Ungleichung}}{\leq} \sum_{j=1}^{N} |(u)_{Q_{j}} - (u)_{Q_{j-1}}| \\ \lesssim \sum_{j=1}^{N} \|\nabla Iv\|_{L^{2}(\mathbb{R}^{2} \setminus \Gamma_{0})} \stackrel{(\star)}{\lesssim} \sum_{j=1}^{N} \|v\|_{\dot{\mathcal{H}}^{1}} \\ = N \cdot \|v\|_{\dot{\mathcal{H}}^{1}} \lesssim (2 + \log |l|) \cdot \|v\|_{\dot{\mathcal{H}}^{1}}.$$
(3.7)

Außerdem gilt natürlich

$$|(v)_{Q_0} - v(\hat{x})| \le \sup_{x \in Q_0} |v(x) - v(\hat{x})| \le \|\nabla Iv\|_{L^{\infty}(Q_0)}$$
(3.8)

und analog

$$|v(l) - (v)_{Q_N}| \le \sup_{x \in Q_0} |v(l) - v(x)| \le \|\nabla Iv\|_{L^{\infty}(Q_N)}.$$
(3.9)

Da Iv auf einem endlich dimensionalen Raum lebt, erhalten wir weiter die Abschätzung

$$\begin{aligned} \|\nabla Iv\|_{L^{\infty}(Q_{i})} &\lesssim \|\nabla Iv\|_{L^{2}(Q_{i})} \\ & \overset{\text{Ubergang zu größerem Gebiet}}{\lesssim} \|\nabla Iv\|_{L^{2}(\mathbb{R}^{2}\setminus\Gamma_{0})} \lesssim \|v\|_{\dot{\mathcal{H}}^{1}}. \end{aligned} (3.10)$$

Mit diesem Wissen lässt sich nun die Aussage des Lemmas zeigen.

$$\begin{aligned} |v(l)| \stackrel{v(\hat{x})=0}{=} |v(l) - v(\hat{x})| \stackrel{\Delta-\text{Ungleichung}}{\leq} \underbrace{|v(l) - (v)_{Q_N}|}_{(3.9)} + \underbrace{|(v)_{Q_N} - (v)_{Q_0}|}_{(3.7)} + \underbrace{|(v)_{Q_0} - v(\hat{x})|}_{(3.8)} \\ \lesssim \|\nabla Iv\|_{L^{\infty}(Q_N)} + (2 + \log|l|) \cdot \|v\|_{\dot{\mathcal{H}}^1} + \|\nabla Iv\|_{L^{\infty}(Q_0)} \\ \stackrel{(3.10)}{\lesssim} \|v\|_{\dot{\mathcal{H}}^1} + (2 + \log|l|) \cdot \|v\|_{\dot{\mathcal{H}}^1} + \|v\|_{\dot{\mathcal{H}}^1} \\ \lesssim (1 + \log|l|) \cdot \|v\|_{\dot{\mathcal{H}}^1} \end{aligned}$$

Dies beweist die Aussage für $l \in \Gamma_{\pm}$.

Fall 2: Sein nun also $l \in \Gamma_{-}$.

Da sich l nun auf der anderen Seite des Risses als \hat{x} befindet, können wir das obige Argument nicht mehr nutzen, da die konstruierte Folge von Quadraten nun nicht länger eine Teilmenge von $\mathbb{R}^2 \setminus (D_{\Gamma} \cup \Gamma_0)$ ist.

Mithilfe der Definition eines weiteren Punktes $\hat{a} := (\frac{1}{2}, \frac{1}{2})$ wechseln wir also zunächst auf die andere Seite des Risses. Damit können wir schließen:

$$\begin{aligned} |v(l)| &= |v(l) - v(\hat{x})| \le |v(l) - v(\hat{a})| + |v(\hat{a}) - v(\hat{x})| \\ &\stackrel{Fall \ 1}{\lesssim} (1 + \log |l|) \cdot ||v||_{\dot{\mathcal{H}}^1} + |v(\hat{a}) - v(\hat{x})|. \end{aligned}$$

Auch für $|v(\hat{a}) - v(\hat{x})|$ kann man, da man den Riss nicht quert, die Ungleichung anwenden, indem man eine geeignete Quadratfolge (diesmal vertikal) wählt. Insgesamt gilt also:

$$\begin{aligned} |v(l)| &\lesssim (1 + \log|l|) \cdot \|v\|_{\dot{\mathcal{H}}^1} + (1 + \log|l|) \cdot \|v\|_{\dot{\mathcal{H}}^1} \\ &\lesssim (1 + \log|l|) \cdot \|v\|_{\dot{\mathcal{H}}^1} \end{aligned}$$

und somit ist der Beweis beendet und die Aussage gezeigt.

3.2.2 Theorem 6: Regularität von \mathcal{E}

Das Energiedifferenzenfunktional \mathcal{E} ist wohldefiniert auf $\dot{\mathcal{H}}^1 \times \mathbb{R}$ und α -mal stetig differenzierbar.

Beweis von Theorem 6

Zunächst zerlegen wir das Energiedifferenzenfunktional in einen Hauptteil $\mathcal{E}_{\text{bulk}}$ und einen Teil \mathcal{E}_{Γ} , der zu der Rissoberfläche gehört, indem wir schreiben

$$\mathcal{E}(u,k) = \mathcal{E}_{\text{bulk}}(u,k) + \mathcal{E}_{\Gamma}(u,k).$$

Dabei sind $\mathcal{E}_{\text{bulk}}$ und \mathcal{E}_{Γ} folgendermaßen definiert:

$$\mathcal{E}_{\text{bulk}}(u,k) := \sum_{m \in \Lambda} \sum_{\rho \in \tilde{R}(m)} \Phi\left(D_{\rho}\hat{u}_{k}(m) + D_{\rho}u(m)\right) - \Phi(D_{\rho}\hat{u}_{k}(m)),$$
$$\mathcal{E}_{\Gamma}(u,k) := \sum_{m \in \Gamma_{\pm}} \sum_{\rho \in R \setminus \tilde{R}(m)} \Phi\left(D_{\rho}\hat{u}_{k}(m) + D_{\rho}u(m)\right) - \Phi(D_{\rho}\hat{u}_{k}(m)).$$

Zeige also, dass beide Teile wohldefiniert auf $\dot{\mathcal{H}}^1 \times \mathbb{R}$ und stetig differenzierbar sind. $\mathcal{E}_{\text{bulk}}$ erfüllt dies nach Theorem 2.3 aus [1]. Es bleibt also lediglich die Wohldefiniertheit von \mathcal{E}_{Γ} zu zeigen.

Wir halten zunächst fest, dass gilt

$$\hat{u}_{-k}(l_1, l_2) = -k \cdot \sqrt{r} \cdot \sin(\frac{\theta}{2}) \stackrel{\text{sin}(\underline{)} \text{ ist}}{\underset{\text{punktsymmetrisch}}{=}} k \cdot \sqrt{r} \cdot \sin(\frac{-\theta}{2})$$
$$= \hat{u}_k(l_1, -l_2).$$

Für $m \in \Gamma_{\pm}$ und $\rho \in R \setminus \tilde{R}(m)$ erhalten wir also

$$\begin{aligned} |D_{\rho}\hat{u}_{k}(m)| &= |\hat{u}_{k}(m+\rho) - \hat{u}_{k}(m)| = |\hat{u}_{k}(m_{1}, -m_{2}) - \hat{u}_{k}(m_{1}, m_{2})| \\ &= |-\hat{u}_{k}(m) - \hat{u}_{k}(m)| = |-2\hat{u}_{k}(m)| \\ &\approx |\underbrace{-2 \cdot k}_{<\infty} \cdot \sqrt{m} \cdot \underbrace{\sin(\frac{\pm \pi}{2})}_{\pm 1}| \\ &\xrightarrow[|m| \to \infty]{} |m|^{\frac{1}{2}}. \end{aligned}$$

Außerdem gilt für $u \in \dot{\mathcal{H}}^1$

$$\begin{split} |Du(m)| &\approx 4|u(m+1) - u(m)| \lesssim |u(m+1)| + |u(m)| \\ &\leq \\ 3.2.1 & \|u\|_{\dot{\mathcal{H}}^1} \cdot (1 + \underbrace{\log |m+1|}_{\leq 2 \log |m|}) + \|u\|_{\dot{\mathcal{H}}^1} (1 + \log |m|) \\ &\underbrace{\leq 2 \log |m|}_{\leq 2 (1 + \log |m|)} \\ &\leq 3 \cdot \|u\|_{\dot{\mathcal{H}}^1} \cdot (1 + \log |m|) \\ &\leq 1 + \log |m| \\ &\lesssim \log |m|. \end{split}$$

Es gilt also $|D_{\rho}u(m)| \leq |Du(m)| \lesssim \log |m|$, also auch $-\log |m| \lesssim |D_{\rho}u(m)|$. Dies impliziert, dass

$$\left|\underbrace{D_{\rho}\hat{u}_{k}(m)}_{\longrightarrow|m|^{\frac{1}{2}}} + \underbrace{D_{\rho}u(m)}_{\lesssim \log|m|}\right| \ge C_{0}|m|^{\frac{1}{2}} - C_{1}\log|m|$$
(3.11)

für ge
eignete Konstanten ${\cal C}_0$ und ${\cal C}_1$ ist.

Mit Annahme 2 $(\exists R_{\phi} > 0 : \phi(r) = 0 \ \forall r \text{ mit } |r| > R_{\phi})$ folgt somit für jedes $m \in \Gamma_{\pm}$ mit ausreichend großem |m|:

$$\phi \underbrace{\left(D_{\rho} \hat{u}_{k}(m) + D_{\rho} u(m) \right)}_{> R_{\phi} \text{ für } |m| \to \infty} - \phi \underbrace{\left(D_{\rho} \hat{u}_{k}(m) \right)}_{> R_{\phi} \text{ für } |m|}_{\text{groß genug}} = 0$$

Damit gilt für $\mathcal{E}_{\Gamma}(u,k) = \sum_{m \in \Gamma_{\pm}} \sum_{\rho \in R \setminus \tilde{R}(m)} \phi\left(D_{\rho}\hat{u}_{k}(m) + D_{\rho}u(m)\right) - \phi(D_{\rho}\hat{u}_{k}(m))$, dass nur über eine endliche Summe summiert wird und \mathcal{E}_{Γ} somit wohldefiniert auf $\dot{\mathcal{H}}^{1} \times \mathbb{R}$ ist.

Es bleibt also die Differenzierbarkeitseigenschaften des Funktionals zu zeigen. Diese folgen wie in Theorem 2.8 iii) aus [8]. Damit ist der Beweis geschlossen.

3.2.3 Theorem 7: Regularität des Diagramms

Die Menge $Im(\mathcal{B}) \subset \dot{\mathcal{H}}^1 \times \mathbb{R}$ ist eine eindimensionale $C^{\alpha-1}$ Mannigfaltigkeit.

Beweisidee von Theorem 7

Es gilt zunächst, dass \mathcal{E} ein $C^{\alpha-1}$ -Funktional ist. Zeige also, dass Im(\mathcal{B}) eine $C^{\alpha-1}$ -Mannigfaltigkeit ist, d.h. im Allgemeinen, es existieren Karten (U, ϕ) , wobei U offene Umgebungen in Im(\mathcal{B}) sind und $\phi : U \to \mathbb{R}$, sodass gelten:

- i) ϕ ist bijektiv von U nach $\phi(U)$
- ii) U überdecken $\operatorname{Im}(\mathcal{B})$

<u>م</u> ۲

iii) $\forall (U_1, \phi_1), (U_2, \phi_2) : \phi \circ \phi_2^{-1} \in C^{\alpha - 1}(\phi_2(U_1 \cap U_2)).$

Es gilt $\mathcal{B} : [0,1] \to \text{Im}(\mathcal{B})$, wobei \mathcal{B} nach Voraussetzung injektiv und stetig ist. Wähle also U = [0,1] und $\phi = \mathcal{B}^{-1}$.

Wenn $\operatorname{Im}(\mathcal{B}) \subset V$ eine Einbettung ist, so soll gelten: $\phi^{-1} : \phi(U) \to V$. Hier gilt also:

Im(\mathcal{B}) ist eine eindimensionale $C^{\alpha-1}$ -Mannigfaltigkeit in $\dot{\mathcal{H}}^1 \times \mathbb{R}$ genau dann, wenn Im(\mathcal{B}) das Bild einer injektiven $C^{\alpha-1}$ -Abbildung von [0, 1] nach $\dot{\mathcal{H}}^1 \times \mathbb{R}$ ist.

Für den Beweis definiere Mengen, die zu den Umgebungen von Bifurkationspunkten gehören als

$$\mathcal{I}_f := \bigcup_{i=1}^M (b_i - \xi, b_i + \xi)$$
 und $\mathcal{B}_f := \mathcal{B}(\mathcal{I}_f)$ als Bild der Menge unter \mathcal{B} .

Nach Voraussetzung ist $\text{Im}(\mathcal{B})$ kompakt.

Dann gilt auch $\operatorname{Im}(\mathcal{B}) \setminus \mathcal{B}_f = \operatorname{Im}(\mathcal{B}) \setminus \operatorname{Im}(\mathcal{I}_f) \stackrel{\operatorname{Injektivität von }\mathcal{B}}{=} \mathcal{B}([0,1] \setminus \mathcal{I}_f)$ ist kompakt, da [0,1] $\setminus \mathcal{I}_f$ kompakt ist und zudem \mathcal{B} stetig und Bilder kompakter Mengen unter stetigen Abbildungen wieder kompakt sind. Das heißt, es existiert eine endliche Folge von Punkten $\{(\bar{u}_{s_i}, \bar{k}_{s_i})\}_{i=1,\ldots,N}$, sodass $\operatorname{Im}(\mathcal{B}) \setminus \mathcal{B}_f$ von den offenen Umgebungen überdeckt wird (dies zeigt Bedingung (*ii*)). Desweiteren gilt, wie später im Beweis von 3.3.2 gezeigt werden wird, dass $H_{s_i} = \delta_{uu}^2 \mathcal{E}(\bar{u}_{s_i}, \bar{k}_{s_i})$ an jedem solchen Punkt ($\bar{u}_{s_i}, \bar{k}_{s_i}$) ein Isomorphismus ist. Wir können also 3.1.2 auf $\delta_u \mathcal{E}(\bar{u}_{s_i}, \bar{k}_{s_i})$ anwenden und erhalten eine lokal eindeutige $C^{\alpha-1}$ -Funktion g von kritischen Punkten, d.h. die Punkte (u, k) $\in \dot{\mathcal{H}}^1 \times \mathbb{R}$, für die $\delta_u \mathcal{E}(u, k) = 0$ gilt, wo $k \mapsto u(k)$. Damit folgt, dass $\operatorname{Im}(\mathcal{B}) \setminus \mathcal{B}_f$ eine stückweise $C^{\alpha-1}$ -Mannigfaltigkeit ist. Dies wollen wir noch für \mathcal{B}_f etablieren.

Betrachten wir also das erweiterte System $\tilde{F}: (\dot{\mathcal{H}}^1 \times \mathbb{R}) \to \mathbb{R}$, welches gegeben ist durch

$$F(u,k,t) = \langle \delta_u \mathcal{E}(u,k), (u - \bar{u}_{b_i}, \gamma_{b_i})_{\dot{\mathcal{H}}^1} - t \rangle.$$

Dabei ist γ_{b_i} der Eigenvektor, der in 2.4 eingeführt wurde.

Wir können das ABCD-Lemma auf das System \tilde{F} an den Stellen $(\bar{u}_{b_i}, \bar{k}_{b_i})$ anwenden was es uns wiederum ermöglicht, 3.1.2 zu nutzen. Dies liefert uns schließlich einen lokal eindeutigen $C^{\alpha-1}$ -Graphen $t \mapsto (u(t), k(t))$, wo insbesondere gilt $k(0) = \bar{k}_{b_i}$.

Wegen der Eindeutigkeit muss dieser Pfad wieder mit \mathcal{B} , also (\bar{u}_s, k_s) übereinstimmen.

3.2.4 Proposition 8: Existenz eines Eigenpaares

Es gelten folgende Aussagen:

i) Unter den Annahmen 1-3 existieren $C^{\alpha-2}$ -Funktionen $\gamma : \mathcal{I}_{pt} \to \dot{\mathcal{H}}^1$ und $\mu : \mathcal{I}_{pt} \to \mathbb{R}$, sodass

$$H_s \gamma_s = \mu_s J \gamma_s.$$

Dabei ist $H_s = \delta_{uu}^2 \mathcal{E}(u_s, k_s)$ und J eine Rieszabbildung, wie ein isometrischer Isomorphismus zwischen $\dot{\mathcal{H}}^1$ und $(\dot{\mathcal{H}}^1)^*$. Dies ist äquivalent zu

$$\langle H_s \gamma_s, v \rangle = \mu_s(\gamma_s, v)_{\dot{\mathcal{H}}^1} \text{ für alle } v \in \dot{\mathcal{H}}^1$$

ii) Außerdem gilt: Für j = 1, ..., M haben wir $\mu_{b_j} = 0$ mit dem zugehörigen Eigenvektor aus 2.4 und $\mu'_{b_j} \neq 0$, was einen Wechsel der Stabilität an der Stelle $s = b_j$ impliziert.

Beweis von Proposition 8

Sei $B \subset [0,1], \quad Y = \dot{\mathcal{H}}^1 \times \mathbb{R}$ und $Z = (\dot{\mathcal{H}}^1)^* \times \mathbb{R}$. Betrachte im Folgenden das System

$$G: B \times Y \to Z,$$

das gegeben ist durch

$$G(s,(\gamma,\mu)) := (H_s\gamma - \mu J\gamma, (c,\gamma)_{\dot{\mathcal{H}}^1} - 1),$$

wobei $c \in \dot{\mathcal{H}}^1$ geeignet gewählt wird.

Die Produkträume werden zudem mit ihren kanonischen Normen ausgestattet, es gilt also $||(u,k)||_{\dot{\mathcal{H}}^1 \times \mathbb{R}} = ||u||_{\dot{\mathcal{H}}^1} + |k|.$

Außerdem teilen wir die Menge \mathcal{B}_{pt} in zwei Teilmengen auf; eine in der Nähe der Bifurkationspunkte, die andere auf den instabilen Abschnitten fern der Bifurkationspunkte. Führe für diese Bereiche den Beweis getrennt voneinander.

Teil a): Umgebungen von Bifurkationspunkten

Zur Vereinfachung der Notation der Ableitungen von G setze $y := (\gamma, \mu)$ und sei im

Folgenden $c = \gamma_{b_i}$. Es gilt dann

$$D_y G(b_i, (\gamma_{b_i}, \mu_{b_i})) := D_y G(b_i, y)_{y = (\gamma_{b_i}, \mu_{b_i})} = \begin{pmatrix} H_{b_i} - \mu_{b_i} J & -J\gamma_{b_i} \\ (\gamma_{b_i}, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix}.$$

Ziel ist es nun, 3.1.2 anzuwenden. Überprüfe im Folgenden also die Voraussetzungen i - iii des Theorems.

Für *i*) zeige, dass $D_y(s, (\gamma_{b_i}, \mu_{b_i}))$ für alle $s \in (b_i - \xi, b_i + \xi)$ ein Isomorphismus von $\dot{\mathcal{H}}^1 \times \mathbb{R}$ nach $(\dot{\mathcal{H}}^1)^* \times \mathbb{R}$ ist und

$$\sup_{s \in (b_i - \xi, b_i + \xi)} \|D_y G(s, (\gamma_{b_i}, \mu_{b_i}))^{-1}\| \le c_0 \quad \text{erfüllt.}$$

Mithilfe des ABCD-Lemmas gilt, dass

$$D_y G(s, (\gamma_{b_i}, \mu_{b_i})) = \begin{pmatrix} H_s - \mu_{b_i} J & -J\gamma_{b_i} \\ (\gamma_{b_i}, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix} \text{ für } s = b_i$$

invertierbar ist.

Nach 3.2.2 ist \mathcal{E} mindestens 5-mal stetig differenzierbar, also ist insbesondere die Abbildung $s \mapsto H_s$ stetig. Ebenso sind $(D_y G(b_i, (\gamma_{b_i}, \mu_{b_i}))) \mapsto (D_y G(b_i, (\gamma_{b_i}, \mu_{b_i})))^{-1}$ und $\|\cdot\|$ stetig. Es folgt also, dass $\|D_y G(s, (\gamma_{b_i}, \mu_{b_i}))^{-1}\|$ als Verkettung stetiger Funktionen für alle s in einer Umgebung von b_i existiert und stetig ist und somit $D_y G(s, (\gamma_{b_i}, \mu_{b_i}))$ auch für diese s invertierbar ist; die Umgebungen, für die das gilt, bezeichnen wir mit $(b_i - \xi, b_i + \xi)$.

Mit der Beschränktheit von $D_y G(s, (\gamma_{b_i}, \mu_{b_i}))$ ist Voraussetzung *i*) erfüllt.

Ebenso ist Voraussetzung *ii*) erfüllt, da $D_s G(s, (\gamma_{b_i}, \mu_{b_i})) = \begin{pmatrix} \delta_s H_s \\ 0 \end{pmatrix}$ beschränkt ist.

Zu Voraussetzung *iii*):

Zeige, dass für alle $s \in (b_i - \xi, b_i + \xi)$ und alle $(\tilde{s}, (\gamma, \mu))$ mit $|\tilde{s} - s| + \|(\gamma, \mu) - (\gamma_{b_i}, \mu_{b_i})\| \le \xi$:

$$\|DG(\tilde{s}, (\gamma, \mu)) - DG(s, (\gamma_{b_i}, \mu_{b_i}))\| \le L_1(\xi) \cdot (|\tilde{s} - s| + \|(\gamma, \mu) - (\gamma_{b_i}, \mu_{b_i})\|)$$

Es ist $DG(s, (\gamma, \mu)) = \begin{pmatrix} \delta_s H_s \gamma & 0\\ H_s - \mu J & -J\gamma\\ (c, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix}$. Damit folgt:

$$\begin{aligned} \|DG(\tilde{s},(\gamma,\mu)) - DG(s,(\gamma_{b_{i}},\mu_{b_{i}}))\| \\ &\leq \|\delta_{s}H_{\tilde{s}}\gamma - \delta_{s}H_{s}\gamma_{b_{i}}\| + \|H_{\tilde{s}} - \mu J - H_{s} + \mu_{b_{i}}J\| + \|\gamma_{b_{i}} - \gamma\| + \|(c,\cdot)_{\dot{\mathcal{H}}^{1}} - (c,\cdot)_{\dot{\mathcal{H}}^{1}}\| \\ &\leq \|\delta_{s}H_{\tilde{s}}\gamma - \delta_{s}H_{s}\gamma_{b_{i}}\| + \|H_{\tilde{s}} - H_{s}\| + \|\mu - \mu_{b_{i}}\| + \|\gamma - \gamma_{b_{i}}\| \end{aligned}$$

Dabei gilt:

$$\begin{split} \|\delta_s H_{\tilde{s}}\gamma - \delta_s H_s \gamma_{b_i}\| &\leq \|\delta_s H_{\tilde{s}}\gamma - \delta_s H_{\tilde{s}}\gamma_{b_i}\| + \|\delta_s H_{\tilde{s}}\gamma_{b_i} - \delta_s H_s \gamma_{b_i}\| \\ &\leq \sup_{\tilde{s} \in (b_i - \xi, b_i + \xi)} \|\delta_s H_{\tilde{s}}\| \cdot \|\gamma - \gamma_{b_i}\| + \|\delta_s H_{\tilde{s}} - \delta_s H_s\| \cdot \|\gamma_{b_i}\| \\ &\leq \sup_{\tilde{s} \in (b_i - \xi, b_i + \xi)} \|\delta_s H_{\tilde{s}}\| \cdot \|\gamma - \gamma_{b_i}\| + \sup_{s \in (b_i - \xi, b_i + \xi)} \|\delta_{ss}^2 H_s\| \cdot |\tilde{s} - s| \cdot \|\gamma_{b_i}\|, \end{split}$$

außerdem

$$\|H_{\tilde{s}} - H_s\| \le \sup_{s \in (b_i - \xi, b_i + \xi)} \|\delta_s H_s\| \cdot |\tilde{s} - s|$$

und

$$\|\mu - \mu_{b_i}\| + \|\gamma - \gamma_{b_i}\| \le \|(\gamma, \mu) - (\gamma_{b_i}, \mu_{b_i})\|.$$

Insgesamt erhalten wir also

$$\begin{split} \|DG(\tilde{s},(\gamma,\mu)) - DG(s,(\gamma_{b_{i}},\mu_{b_{i}}))\| \\ &\leq \sup_{\tilde{s}\in(b_{i}-\xi,b_{i}+\xi)} \|\delta_{s}H_{\tilde{s}}\| \cdot \|\gamma - \gamma_{b_{i}}\| + \sup_{s\in(b_{i}-\xi,b_{i}+\xi)} \|\delta_{ss}^{2}H_{s}\| \cdot \|\gamma_{b_{i}}\| \cdot |\tilde{s}-s| \\ &+ \sup_{s\in(b_{i}-\xi,b_{i}+\xi)} \|\delta_{s}H_{s}\| \cdot |\tilde{s}-s| + \|(\gamma,\mu) - (\gamma_{b_{i}},\mu_{b_{i}})\| \\ &\leq \sup_{\tilde{s}\in(b_{i}-\xi,b_{i}+\xi)} \|\delta_{s}H_{\tilde{s}}\| \cdot (|\tilde{s}-s| + \|(\gamma,\mu) - (\gamma_{b_{i}},\mu_{b_{i}})\|) \\ &+ \sup_{s\in(b_{i}-\xi,b_{i}+\xi)} \|\delta_{ss}^{2}H_{s}\| \cdot \|\gamma_{b_{i}}\| \cdot (|\tilde{s}-s| + \|(\gamma,\mu) - (\gamma_{b_{i}},\mu_{b_{i}})\|) \\ &+ \sup_{s\in(b_{i}-\xi,b_{i}+\xi)} \|\delta_{s}H_{s}\| \cdot (|\tilde{s}-s| + \|(\gamma,\mu) - (\gamma_{b_{i}},\mu_{b_{i}})\|) \\ &+ 1 \cdot (|\tilde{s}-s| + \|(\gamma,\mu) - (\gamma_{b_{i}},\mu_{b_{i}})\|) \\ &= \underbrace{(2 \cdot \sup_{s\in(b_{i}-\xi,b_{i}+\xi)} \|\delta_{s}H_{s}\| + \sup_{s\in(b_{i}-\xi,b_{i}+\xi)} \|\delta_{ss}^{2}H_{s}\| \cdot \|\gamma_{b_{i}}\| + 1)}_{=:L_{1}(\xi)} \\ &\cdot (|\tilde{s}-s| + \|(\gamma,\mu) - (\gamma_{b_{i}},\mu_{b_{i}})\|). \end{split}$$

3.1.2 lässt sich also auf G anwenden und wir erhalten eine eindeutige Funktion

$$g: \bigcup_{\tilde{s}\in(b_i-\xi,b_i+\xi)} B(\tilde{s},a) \to \dot{\mathcal{H}}^1 \times \mathbb{R},$$
$$s \mapsto (\gamma_s, \mu_s),$$

sodass $G(s, (\gamma_s, \mu_s)) = (H_s \gamma_s - \mu_s J \gamma_s, (\gamma_s, \gamma_s)_{\dot{\mathcal{H}}^1} - 1) = 0$ ist. Dabei ist $a \in \mathbb{R}$ eine Konstante (vgl. 3.1.2).

Aus $H_s \gamma_s - \mu_s J \gamma_s = 0$ folgt somit, dass (γ_s, μ_s) ein Eigenpaar zu s ist und aus $(\gamma_s, \gamma_s)_{\dot{\mathcal{H}}^1} - 1 = 0$, dass $\|\gamma_s\| = 1$ ist.

Das heißt, für $s \in (b_i - \xi, b_i + \xi)$ mit $\xi > 0$ klein genug, existiert ein Eigenpaar (γ_s, μ_s) .

Es bleibt Teil *ii*) der Proposition zu zeigen. Überprüfe also, ob $\mu'_s := \frac{d\mu_s}{ds}$ an der Stelle $s = b_i$ ungleich 0 ist.

Betrachte also $H_s\gamma_s=\mu_sJ\gamma_s$ und differenziere beide Seiten nach
 s. Wir erhalten mit der Produktregel

$$\frac{\mathrm{d}}{\mathrm{d}s}\delta_{uu}^{2}\mathcal{E}(\bar{u}_{s},\bar{k}_{s})[\gamma_{s}] = \begin{pmatrix}\delta_{u}\\\delta_{k}\end{pmatrix}\delta_{uu}^{2}\mathcal{E}(\bar{u}_{s},\bar{k}_{s})[\gamma_{s}]\cdot\begin{pmatrix}\bar{u}'_{s}\\\bar{k}'_{s}\end{pmatrix} + H_{s}[\gamma'_{s}]$$

$$= \delta_{uuu}^{3}\mathcal{E}(\bar{u}_{s},\bar{k}_{s})[\bar{u}'_{s},\gamma_{s}] + \delta_{uuk}^{3}\mathcal{E}(\bar{u}_{s},\bar{k}_{s}[\gamma_{s},\bar{k}'_{s}] + H_{s}[\gamma'_{s}]$$

$$= \mu'_{s}J[\gamma_{s}] + \mu_{s}J[\gamma'_{s}].$$
(3.12)

Außerdem haben wir nach Definition eines Bifurkationspunktes $\bar{k}'_{b_i} = 0$. Durch Differenzieren von $\delta_u \mathcal{E}(\bar{u}_s, \bar{k}_s) = 0$ nach *s* erhalten wir

$$\frac{\mathrm{d}}{\mathrm{d}s}\delta_{u}\mathcal{E}(\bar{u}_{s},\bar{k}_{s}) = \begin{pmatrix}\delta_{u}\\\delta_{k}\end{pmatrix}\delta_{u}\mathcal{E}(\bar{u}_{s},\bar{k}_{s})\cdot\begin{pmatrix}\bar{u}'_{s}\\\bar{k}'_{s}\end{pmatrix} = 0$$

$$\Leftrightarrow \delta^{2}_{uu}\mathcal{E}(\bar{u}_{s},\bar{k}_{s})[\bar{u}'_{s}] + \underbrace{\delta^{2}_{uk}\mathcal{E}(\bar{u}_{s},\bar{k}_{s})}_{=:b_{s}}[\bar{k}'_{s}] = 0$$

$$\Leftrightarrow H_{s}\bar{u}'_{s} + \underbrace{\bar{k}'_{s}}_{\substack{s=0 \text{ für}\\s=b_{i}}}b_{s} = 0 \Leftrightarrow H_{s}\bar{u}'_{s} = 0.$$
(3.13)

Mit $H_{b_i}\bar{u}'_{b_i} = 0 = 0 \cdot \bar{u}'_{b_i}$ folgt, dass \bar{u}'_{b_i} Eigenvektor von H_{b_i} zum Eigenwert 0 ist. Es gilt also $\bar{u}'_{b_i} \in \ker(H_{b_i}) = \operatorname{span}\{\gamma_{b_i}\}$ nach Definition eines Bifurkationspunktes. \bar{u}'_{b_i} lässt sich also schreiben als $\alpha\gamma_{b_i}$ für ein $\alpha \neq 0$, das die konstante Geschwindigkeit der Parametrisierung darstellt.

Testet man nun (3.12) an der Stelle $s = b_i$ mit γ_{b_i} , so erhält man

$$\underbrace{\delta^{3}_{uuu}\mathcal{E}(\bar{u}_{b_{i}},k_{b_{i}})[\bar{u}'_{b_{i}},\gamma_{b_{i}},\gamma_{b_{i}}]}_{i)}_{i)} + \underbrace{\delta^{3}_{uuk}\mathcal{E}(\bar{u}_{b_{i}},k_{b_{i}})[\gamma_{b_{i}},\gamma_{b_{i}}k'_{b_{i}}]}_{iii} + \underbrace{H_{b_{i}}[\gamma'_{b_{i}},\gamma_{b_{i}}]}_{iii)}_{iii)}}_{iii)} = \underbrace{\mu'_{b_{i}}J[\gamma_{b_{i}}]\gamma_{b_{i}}}_{iv)} + \underbrace{\mu_{b_{i}}J[\gamma'_{b_{i}}]\gamma_{b_{i}}}_{v)}.$$

Für *i*) gilt dabei unter Verwendung von $\bar{u}'_{b_i} = \alpha \gamma_{b_i}$, dass man *i*) schreiben kann als $\alpha \cdot \langle \delta^3_{uuu} \mathcal{E}(\bar{u}_s, \bar{k}_s)[\gamma_{b_i}, \gamma_{b_i}], \gamma_{b_i} \rangle$. Der Summand *ii*) fällt wegen $\bar{k}'_{b_i} = 0$ weg.

Der Summand *ii*) fällt wegen $k'_{b_i} = 0$ weg. Da $\gamma_{b_i} \in \ker(H_{b_i})$ ist, gilt Gleiches für *iii*). Mit $\langle \gamma_{b_i}, \gamma_{b_i} \rangle = \|\gamma_{b_i}\|^2 = 1$ bleibt bei *iv*) lediglich μ'_{b_i} stehen. Auch der letzte Summand fällt wegen $\langle \gamma'_{b_i}, \gamma_{b_i} \rangle = [\frac{1}{2} \underbrace{\|\gamma_s\|^2}_{1}]'_{s=b_i} = 0$ weg. Insgesamt ergibt sich also

$$\underbrace{\alpha}_{\neq 0} \cdot \underbrace{\langle \delta_{uuu}^3 \mathcal{E}(\bar{u}_{b_i}, \bar{k}_{b_i}) [\gamma_{b_i}, \gamma_{b_i}], \gamma_{b_i} \rangle}_{\neq 0} = \mu'_{b_i} \neq 0.$$

Dies beweist i) und ii) der Proposition für $s = b_i$ und beendet somit Teil a) des Beweises.

Teil b): instabile Abschnitte fern der Bifurkationspunkte

Im Folgenden nehmen wir ohne Verlust an Allgemeinheit an, dass das System an dem Bifurkationspunkt b_i von einem stabilen zu einem instabilen Abschnitt wechselt.

Das Resultat aus Teil a) sichert uns die Existenz eines Eigenvektors für $s \in (b_i - \xi, b_i + \xi)$, setze also $t_1 := b_i + \xi - \epsilon$ mit $0 < \epsilon < \xi$. Dann existiert für t_1 ein Eigenvektor und wir setzen $c := \gamma_{t_1}$. Die Abbildung G_{t_1} lautet dann also $(H_s \gamma - \mu J \gamma, (\gamma_{t_1}, \gamma)_{\dot{\mathcal{H}}^1} - 1)$. Durch erneutes Anwenden von 3.1.2 wie in Teil a) auf das neue System G_{t_1} erhalten wir ein neues Intervall $(t_1 - \xi_1, t_1 + \xi_1) \subset \mathcal{I}_{\text{pt}}$, für das die Voraussetzungen des Theorems erfüllt sind. Wählt man nun beispielsweise $t_2 := t_1 + \frac{\xi_1}{2}$, so kann man iterativ 3.1.2 anwenden und so versuchen, den gesamten instabilen Abschnitt zu erschließen.

Um dies realisieren zu können, benötigt man allerdings eine untere Schranke für die ξ_i , die nicht von den t_j abhängt. Sonst würden die Schritte immer kleiner und der neu erschlossene Bereich würde gegen 0 konvergieren, sodass nicht ganz $I_{\rm pt}$ überdeckt werden kann.

Wegen $\mu'_t = \alpha \langle \delta^3_{uuu} \mathcal{E}(\bar{u}_s, \bar{k}_s) [\gamma_t, \gamma_t], \gamma_t \rangle \neq 0$ folgt, dass $\mu_t < 0$ ist und wir den Unterraum, der in Annahme 2 eingeführt wird, als

$$U_t := \{ v \in \dot{\mathcal{H}}^1 \mid (v, \gamma_t)_{\dot{\mathcal{H}}^1} = 0 \}$$
(3.14)

charakterisieren können.

Für diese $v \in U_t$ gilt dann $\langle H_t v, v \rangle \ge c \cdot \|v\|_{\dot{\mathcal{H}}^1}^2$.

Betrachte ein beliebiges Paar $(u,k) \in \dot{\mathcal{H}}^1 \times \mathbb{R}$ und zerlege u als $u = \alpha \gamma_t + v$ für $\alpha \in \mathbb{R}$ und $v \in U_t$.

Das Ziel ist es nun, auf eine untere Schranke von

$$\|D_y G(t, \gamma_t, \mu_t)[u, k]\| = \left\| \begin{pmatrix} H_t u - \mu_t J u & -kJ\gamma_t \\ (\gamma_t, u)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix} \right\| = \|H_t u - \mu_t J u - kJ\gamma_t\| + |(\gamma_t, u)_{\dot{\mathcal{H}}^1}|$$

hinzuarbeiten.

Um dies zu tun, halte zwei Abschätzungen fest. Zum einen gilt

$$\begin{split} \langle (H_t - \mu_t J)u - kJ\gamma_t, \frac{v}{\|v\|_{\dot{\mathcal{H}}^1}} \rangle &= \langle (H_t - \mu_t J)(\alpha\gamma_t + v) - kJ\gamma_t, \frac{v}{\|v\|_{\dot{\mathcal{H}}^1}} \rangle \\ &= \langle \alpha \underbrace{(H_t\gamma_t - \mu_t J\gamma_t)}_{=0, \text{ da Eigenpaar}} - kJ\gamma_t + (H_t - \mu_t J)v, \frac{v}{\|v\|_{\dot{\mathcal{H}}^1}} \rangle \\ \overset{\text{Linearität}}{=} \langle -kJ\gamma_t, \frac{v}{\|v\|_{\dot{\mathcal{H}}^1}} \rangle + \langle (H_t - \mu_t J)v, \frac{v}{\|v\|_{\dot{\mathcal{H}}^1}} \rangle \\ &= -kJ \cdot \frac{1}{\|v\|_{\dot{\mathcal{H}}^1}} \cdot \underbrace{\langle \gamma_t, v \rangle}_{=0, \text{ da } v \in U_t} + \langle (H_t - \mu_t J)v, \frac{v}{\|v\|_{\dot{\mathcal{H}}^1}} \rangle \\ &= \frac{1}{\|v\|_{\dot{\mathcal{H}}^1}} \cdot (\langle H_tv, v \rangle - \mu_t \langle v, v \rangle) \\ \overset{\text{Annahme } 2, v \in U_t}{\geq} \frac{1}{\|v\|_{\dot{\mathcal{H}}^1}} \cdot (c \cdot \|v\|_{\dot{\mathcal{H}}^1}^2 - \mu_t \|v\|_{\dot{\mathcal{H}}^1}^2) \\ &= (c - \mu_t) \cdot \|v\|_{\dot{\mathcal{H}}^1}. \end{split}$$

Zum anderen haben wir

$$\langle (H_t - \mu_t J)u - kJ\gamma_t, -\gamma_t \rangle = \langle (H_t - \mu_t J)\alpha\gamma_t + (H_t - \mu_t J)v - kJ\gamma_t, -\gamma_t \rangle$$

$$= \langle (H_t - \mu_t J)\alpha\gamma_t - kJ\gamma_t, -\gamma_t \rangle + \langle (H_t - \mu_t J)v, -\gamma_t \rangle$$

$$= \langle -kJ\gamma_t, -\gamma_t \rangle$$

$$= k \cdot \langle \gamma_t, \gamma_t \rangle = k.$$

Mit diesen beiden Abschätzungen folgt

$$\begin{aligned} \|H_t u - \mu_t J u - k J \gamma_t\| &= \sup_{\substack{\tilde{v} \in \dot{\mathcal{H}}^1 \\ \|\tilde{v}\| = 1}} |\langle H_t u - \mu_J u - k J \gamma_t, \tilde{v} \rangle| \\ &\geq \max(|c - \mu_t| \cdot \|v\|_{\dot{\mathcal{H}}^1}, |k|) \\ &\geq \frac{1}{2} \cdot (|c - \mu_t| \cdot \|v\|_{\dot{\mathcal{H}}^1} + 1 \cdot |k|) \\ &\geq \frac{1}{2} \cdot \min(|c - \mu_t|, 1) (\|v\|_{\dot{\mathcal{H}}^1} + |k|), \end{aligned}$$

da die Bedingungen an das Supremum sowohl für $\tilde{v} = \frac{v}{\|v\|_{\dot{\mathcal{H}}^1}}$, als auch für $\tilde{v} = -\gamma_t$ erfüllt sind.

Außerdem erhalten wir mit $u = \alpha \gamma_t + v$, $\|\gamma_t\|_{\dot{\mathcal{H}}^1} = 1$ und $(\gamma_t, v)_{\dot{\mathcal{H}}^1} = 0$

$$|(\gamma_t, u)_{\dot{\mathcal{H}}^1}| = |\alpha| = \|\alpha\gamma_t\|_{\dot{\mathcal{H}}^1}.$$

Setze $\tilde{c}_o(t)^{-1} := \min\{\frac{1}{2}(c-\mu_t), \frac{1}{2}\} \stackrel{\mu_t < 0}{\geq} \min\{\frac{1}{2}c, \frac{1}{2}\} =: c_0^{-1}$ und erhalte so eine Konstante, die unabhängig von t ist.

Dann gilt mit $\|\alpha \gamma_t\|_{\dot{\mathcal{H}}^1} + \|v\|_{\dot{\mathcal{H}}^1} + |k| \stackrel{\triangle - \text{Ungl.}}{\geq} \|u\|_{\dot{\mathcal{H}}^1} + |k| = \|(u, k)\|_{\dot{\mathcal{H}}^1 \times \mathbb{R}}$:

$$\begin{split} \|D_{y}G(t,\gamma_{t},\mu_{t})[u,k]\| &= \|H_{t}u-\mu_{t}Ju-kJ\gamma_{t}\| + |(\gamma_{t},u)_{\dot{\mathcal{H}}^{1}}| \\ &\geq \underbrace{\min\left(\frac{1}{2}\left|c-\mu_{t}\right|,\frac{1}{2}\right)}_{=\tilde{c}_{0}(t)^{-1}<1} (\|v\|_{\dot{\mathcal{H}}^{1}}+|k|) + \|\alpha\gamma_{t}\|_{\dot{\mathcal{H}}^{1}} \\ &\geq \tilde{c}_{0}(t)^{-1} \cdot (\|v\|_{\dot{\mathcal{H}}^{1}} + \|\alpha\gamma_{t}\|_{\dot{\mathcal{H}}^{1}} + |k|) \\ &\geq \tilde{c}_{0}(t)^{-1} \cdot (\|(u,k)\|_{\dot{\mathcal{H}}^{1}\times\mathbb{R}}). \end{split}$$

Auf ähnliche Weise erhalten wir

$$||D_s G(t, (\gamma_t, \mu_t))|| = ||(\delta^3_{uuu} \mathcal{E}(\bar{u}_t, \bar{k}_t)[\gamma_t, u'_t] + \delta^3_{uuk} \mathcal{E}(\bar{u}_t, \bar{k}_t)[\gamma_t, k'_t]||$$

$$\leq ||\delta^3_{uuu} \mathcal{E}(\bar{u}_t, \bar{k}_t)|| + ||\delta^3_{uuk} \mathcal{E}(\bar{u}_t, \bar{k}_t)|| \cdot |k'_t| =: \tilde{c}_1(t) \leq c_1,$$

für $c_1 := \max_{t \in \mathcal{I}_{pt}} \tilde{c}_1(t)$.

Nach 3.2.2 ist \mathcal{E} für ein $\alpha \geq 5$ ein C^{α} -Funktional und \mathcal{B} eine $C^{\alpha-1}$ -Funktion von s. Damit ist $\tilde{c}_1(t)$ stetig und der Satz von Minimum und Maximum lässt sich anwenden, sodass man die Existenz von c_1 erhält. Das bedeute, die Annahmen i) und ii) von 3.1.2 sind erfüllt.

Auch Voraussetzung *iii*) ist für die Funktion

$$L_1(\xi) := \sup_{(s,y)\in B(\tilde{s},(\gamma_{\tilde{s}},\mu_{\tilde{s}}),\xi)} \|D^2 G(s,y)\|$$

 mit

$$B(\tilde{s}, (\gamma_{\tilde{s}}, \mu_{\tilde{s}}), \xi) = \{ (s, (\gamma, \mu)) \in \mathbb{R} \times (\mathcal{H}^1 \times \mathbb{R}) : |s - \tilde{s}| + ||\gamma - \gamma_{\tilde{s}}|| + |\mu + \mu_{\tilde{s}}| \le \xi \}$$

erfüllt. Es gilt nämlich für ein beliebiges Paar $(s_0, (\gamma_0, \mu_0)) \in \mathbb{R} \times (\dot{\mathcal{H}}^1 \times \mathbb{R})$ mit $\xi > (\|s - s_0\| + \|\gamma_s - \gamma_0\| + \|\mu_s - \mu_0\|)$:

$$\begin{split} \|DG(s,\underbrace{(\gamma,\mu)}_{=:y}) - DG(s_0,\underbrace{(\gamma_0,\mu_0)}_{=:y_0})\| \\ &= \|\int_0^1 D^2 G(s_0 + t \cdot (s - s_0), y_0 + t \cdot (y - y_0)) \cdot (s - s_0, y - y_0)\| \\ &\leq \sup_{t \in [0,1]} \|D^2 G(s_0 + t \cdot (s - s_0), y_0 + t \cdot (y - y_0))\| \cdot (\|s - s_0\| + \|y - y_0\|) \\ &\leq L_1(\xi) \cdot (\|s - s_0\| + y - y_0\|) \\ &= L_1(\xi) \cdot (\|s - s_0\| + \|\gamma - \gamma_0\| + \|\mu - \mu_0\|). \end{split}$$

Das bedeutet wiederum, 3.1.2 lässt sich anwenden und wir erhalten Eigenpaare (γ_t, μ_t) . Dabei wähle die Konstanten aus den Beweisen von 3.1.2 bis 3.1.4 wie vorher, also $M := \max\{c_o, 1 + c_0c_1\}, \quad \beta$ so, dass $\beta L_1(\beta) \leq \frac{1}{2M}$ und $\alpha = \frac{\beta}{4M}$. Außerdem sei $\xi = \delta - \epsilon = \min\{\frac{\alpha}{2}, \frac{\beta}{2c_2}\} - \epsilon$ für $\epsilon > 0$. Damit ist ξ unabhängig von t und wir können iterativ ganz \mathcal{I}_{pt} überdecken; Es existiert also für alle $s \in \mathcal{I}_{pt}$ ein Eigenpaar.

Bleiben die Regularitätseigenschaften von μ und γ , also die $C^{\alpha-2}$ -Regularität der Abbildung $s \mapsto (\mu_s, \gamma_s)$ für $s \in \mathcal{I}_{pt}$, zu zeigen.

Wir halten fest, dass G eine glatte Funktion von μ und γ und \mathcal{E} nach 3.2.2 eine C^{α} -Funktion von s ist. Da in G $\delta^2_{uu}\mathcal{E}$ betrachtet wird, ist G also eine $C^{\alpha-2}$ -Funktion von s. Mit 3.1.2 folgt also, dass $s \mapsto (\mu_s, \gamma_s)$ eine $C^{\alpha-2}$ -Funktion auf \mathcal{I}_{pt} ist, und somit γ und $\mu C^{\alpha-2}(\mathcal{I}_{pt})$ -Funktionen sind, was den Beweis beendet.

3.2.5 Theorem 9: Verfallseigenschaft Lösung und EV

Für jedes $s \in [0,1]$ und $l \in \Gamma$ mit |l| groß genug gilt, dass für jedes $\delta > 0$ die atomistische Veränderung \bar{u}_s die Abschätzung

$$|\tilde{D}\bar{u}_s(l)| \le C \cdot |l|^{-\frac{3}{2}+\delta}$$

erfüllt.

Falls zudem $s \in \mathcal{I}_{pt}$ ist, so erfüllt außerdem der Eigenvektor $\gamma_s \in \dot{\mathcal{H}}^1$ aus 3.2.4 die Abschätzung

$$|\tilde{D}\gamma_s(l)| \le C \cdot |l|^{-\frac{3}{2} + \delta}.$$

In beiden Fällen ist C eine allgemeine Konstante, die unabhängig von s gewählt werden kann.

Beweis von Theorem 9

Definiere zunächst die Funktion $v : \Lambda \to \mathbb{R}$ durch

$$v(m) := D_{2\tau} \mathcal{G}(m, l) := \mathcal{G}(m, l+\tau) - \mathcal{G}(m, l),$$

wobei $\tau \in \tilde{\mathcal{R}}(l)$ und $\mathcal{G} : \Lambda \times \Lambda \to \mathbb{R}$ die Gitter-Green-Funktion für die antiplane Rissgeometrie ist.

Nach Theorem 2.6 aus [1] erfüllt diese die Verfallseigenschaft

$$|D_{\rho}v(m)| = |D_{1\rho}D_{2\tau}\mathcal{G}(m,l)| \lesssim \left(1 + |w(m)| |w(l)| |w(m) - w(l)|^{2-\delta}\right)^{-1}, \qquad (3.15)$$

wo $\rho \in \mathcal{R}(m)$ ist, w die komplexe Quadratwurzel und $\delta > 0$ beliebig klein ist. Hierbei ist \leq wie auch zuvor zu verstehen als $\leq C_{\delta} \cdot (\dots)$, wobei C von δ abhängen kann.

Teil 1: Verfallsrate von \bar{u}_s

Wir nutzen die Erkenntnisse aus [1], um die Verfallsrate von \bar{u}_s zu zeigen. Es gilt demnach:

$$D_{\tau}\bar{u}_{s}(l) = \sum_{m \in \Lambda} (H_{s}(\underbrace{D_{2\tau}\mathcal{G}(m,l)}_{=:v(m)})\bar{u}_{s}(m) = \sum_{m \in \Lambda} H_{s}v(m)\bar{u}_{s}(m)$$

$$\stackrel{\text{particlle Summation}}{=} \sum_{m \in \Lambda} \tilde{D}\bar{u}_{s}(m) \cdot \tilde{D}v(m)$$

$$= \sum_{m \in \Lambda} \sum_{\rho \in \tilde{\mathcal{R}}(m)} D_{\rho}\bar{u}_{s}(m) \cdot D_{\rho}v(m).$$

Da \bar{u}_s ein kritischer Punkt ist, gilt für diesen:

$$\begin{aligned} \langle \delta_u \mathcal{E}(\bar{u}_s, \bar{k}_s), v \rangle &= \sum_{m \in \Lambda} \delta V(D\hat{u}_{\bar{k}_s}(m) + D\bar{u}_s(m)) \cdot Dv(m) \\ &= \sum_{m \in \Lambda} \sum_{\rho \in \mathcal{R}(m)} \phi'(D_\rho \hat{u}_{\bar{k}_s}(m) + D_\rho \bar{u}_s(m)) \cdot D_\rho v(m) = 0 \qquad \forall v \in \dot{\mathcal{H}}^1. \end{aligned}$$

Diesen Term kann man also als erweiterte Null ergänzen und somit schreiben:

$$D_{\tau}\bar{u}_{s}(l) = \sum_{m \in \Lambda} \sum_{\rho \in \tilde{\mathcal{R}}(m)} \left(D_{\rho}\bar{u}_{s}(m) - \phi'(D_{\rho}\hat{u}_{\bar{k}_{s}}(m) + D_{\rho}\bar{u}_{s}(m)) \right) \cdot D_{\rho}v(m)$$
(3.16)

$$+\sum_{m\in\Gamma\pm}\sum_{\rho\in\mathcal{R}\setminus\tilde{\mathcal{R}}(m)}\left(-\phi'(D_{\rho}\hat{u}_{\bar{k}_{s}}(m)+D_{\rho}\bar{u}_{s}(m))\right)\cdot D_{\rho}v(m).$$
 (3.17)

In dem ersten Summanden (3.16) werden explizit die Bindungen über den Riss hinweg ausgeschlossen. Dies ermöglicht die Anwendung von Theorem 2.4 aus [1] auf diesen Teil von $D_{\tau} \bar{u}_s(l)$ und man erhält so die Abschätzung

$$\left|\sum_{m\in\Lambda}\sum_{\rho\in\tilde{\mathcal{R}}(m)}\left(D_{\rho}\bar{u}_{s}(m)-\phi'(D_{\rho}\hat{u}_{\bar{k}_{s}}(m)+D_{\rho}\bar{u}_{s}(m))\right)\cdot D_{\rho}v(m)\right|\lesssim |l|^{-\frac{3}{2}+\delta}.$$

Der zweite Summand (3.17) hingegen lässt sich nicht mithilfe der Abschätzung für v(m), die in Theorem 2.4 aus [1] verwendet wird, abschätzen, da ausschließlich Bindungen über den Riss hinweg betrachtet werden, die in der ursprünglichen Abschätzung ausgeschlossen werden.

Es gilt aber, wie schon zuvor in (3.11) gezeigt, dass

$$|D_{\rho}\hat{u}_k(m) + D_{\rho}u(m)| \ge C_0|m|^{\frac{1}{2}} - C_1 \log|m|.$$

Für |m| groß genug wird die rechte Seite größer als die Konstante R_{ϕ} , für welche wiederum gilt, dass $\phi'(m) = 0$ für $|m| \ge R_{\phi}$.

Das heißt, man summiert effektiv nur über diejenigen Gitterpunktementlang des Risses, für die gilt

$$C_0 |m|^{\frac{1}{2}} - C_1 \log |m| < R_{\phi}$$

$$\Leftrightarrow |m| < C(C_0, C_1, R_{\phi}) \sim R_{\phi}^3.$$

Betrachtet man beide Seiten des Risses, so sind dies also in etwa $2 \cdot R_{\phi}^3$ Gitterpunkte. Zerlege also auch $D_{\rho}v(m)$ in eine Summe von finiten Differenzen entlang der Bindungen, die um den Riss herum gehen. Es gilt für diese jeweils mithilfe von (3.15):

$$|D_{\rho}v(m)| = |D_{1\rho}D_{2\tau}\mathcal{G}(m,l)| \lesssim \frac{1}{1 + \sqrt{|m|}\sqrt{|l|}} |\omega(m) - \omega(l)|^{2-\delta}$$

Wie zuvor werden auch hier nur diejenigen Gitterpunkte m betrachtet, für die gilt: $|m| < C(C_0, C_1, R_{\phi}) \sim R_{\phi}^3$. Damit gilt für ausreichend große $|l|: |\omega(m) - \omega(l)| \gtrsim \sqrt{|l|}$ und da $|m| \geq \frac{1}{2}$ ist für alle m, ist auch $\sqrt{|m|} \geq \sqrt{\frac{1}{2}}$ und man erhält insgesamt

$$|D_{\rho}v(m)| \lesssim \frac{1}{1 + \sqrt{\frac{1}{2}}\sqrt{|l|}\sqrt{|l|}^{2-\delta}} \lesssim \frac{1}{\sqrt{|l|}^{3-\delta}} = |l|^{-\frac{3}{2}+\delta}.$$

Für den zweiten Summanden (3.17) erhalten wir also

$$\begin{split} |\sum_{m\in\Gamma\pm}\sum_{\rho\in\mathcal{R}\setminus\tilde{\mathcal{R}}(m)} \left(-\phi'(D_{\rho}\hat{u}_{\bar{k}_{s}}(m)+D_{\rho}\bar{u}_{s}(m))\right)\cdot D_{\rho}v(m)| \\ \lesssim 2\cdot R_{\phi}^{3}\cdot C\cdot |l|^{-\frac{3}{2}+\delta} \\ \lesssim \tilde{C}\cdot |l|^{-\frac{3}{2}+\delta}. \end{split}$$

Insgesamt ergibt sich für $\tau \in \tilde{\mathcal{R}}(l)$ also die Behauptung

$$|\tilde{D}\bar{u}_s(l)| \lesssim |l|^{-\frac{3}{2}+\delta} + \tilde{C} \cdot |l|^{-\frac{3}{2}+\delta} \lesssim C \cdot |l|^{-\frac{3}{2}+\delta}.$$

Teil 2: Verfallsrate von γ_s Wie in Teil 1 schreibe

$$D_{\tau}\gamma_s(l) = \sum_{m \in \Lambda} \tilde{D}\gamma_s(m) \cdot \tilde{D}v(m).$$
(3.18)

Betrachte die Summe

$$\sum_{m \in \Lambda} \sum_{\rho \in \tilde{R}(m)} \phi'' \left(D_{\rho} \hat{u}_{\bar{k}_{s}}(m) + D_{\rho} \bar{u}_{s}(m) \right) \cdot D_{\rho} \gamma_{s}(m) \cdot D_{\rho} v(m)$$

$$+ \sum_{m \in \Gamma_{\pm}} \sum_{\rho \in R \setminus \tilde{R}(m)} \phi'' \left(D_{\rho} \hat{u}_{\bar{k}_{s}}(m) + D_{\rho} \bar{u}_{s}(m) \right) \cdot D_{\rho} \gamma_{s}(m) \cdot D_{\rho} v(m).$$
(3.19)

$$(3.19) = \sum_{m \in \Lambda} \phi'' \left(D_{\rho} \hat{u}_{\bar{k}_s}(m) + D_{\rho} \bar{u}_s(m) \right) \cdot D_{\rho} \gamma_s(m) \cdot D_{\rho} v(m)$$
$$= \delta^2_{uu} \mathcal{E}(\bar{u}_s, \bar{k}_s) [\gamma_s, v]$$
$$= \langle H_s \gamma_s, v \rangle \stackrel{3.2.4}{=} \mu_s (\gamma_s, v)_{\dot{\mathcal{H}}^1}$$
$$\stackrel{2.1}{=} \mu_s \cdot \sum_{m \in \Lambda} \tilde{D} \gamma_s(m) \cdot \tilde{D} v(m) \stackrel{(3.18)}{=} \mu_s \cdot D_\tau \gamma_s(l).$$

Für den Eigenwert μ_s gilt, dass er entweder negativ oder nahe Null liegt und somit eine Konstante C gefunden werden kann, sodass $\mu_s < C < 1$ gilt. Findet man also für $(1 - \mu_s)D_{\tau}\gamma_s(l)$ eine Abschätzung nach oben, so gilt diese auch für $D_{\tau}\gamma_s(l)$.

Betrachte im Folgenden also die Abschätzung

$$D_{\tau}\gamma_{s}(l) \lesssim (1-\mu_{s}) \cdot D_{\tau}\gamma_{s}(l) \stackrel{(3.18)}{=} (1-\mu_{s}) \sum_{m \in \Lambda} \tilde{D}\gamma_{s}(m) \cdot \tilde{D}v(m)$$

$$\stackrel{(\star)}{=} \sum_{m \in \Lambda} \sum_{\rho \in \tilde{\mathcal{R}}(m)} \left(D_{\rho}\gamma_{s}(m) - \phi'' \left(D_{\rho}\hat{u}_{\bar{k}_{s}}(m) + D_{\rho}\bar{u}_{s}(m) \right) D_{\rho}\gamma_{s}(m) \right) \cdot D_{\rho}v(m)$$

$$(3.20)$$

$$+ \sum_{m \in \Gamma_{\pm}} \sum_{\rho \in \mathcal{R} \setminus \tilde{\mathcal{R}}(m)} \left(-\phi'' \left(D_{\rho}\hat{u}_{\bar{k}_{s}}(m) + D_{\rho}\bar{u}_{s}(m) \right) D_{\rho}\gamma_{s}(m) \right) \cdot D_{\rho}v(m).$$

$$(3.21)$$

Dabei können wir analog zu *Teil 1* beim zweiten Summenden auch hier den zweiten Summanden (3.21) durch $|l|^{-\frac{3}{2}+\delta}$ abschätzen.

Um den ersten Summanden (3.20) abzuschätzen, entwickl
e $\phi^{\prime\prime}$ um den Entwicklungspunkt 0.

Dabei ergibt sich mittels der Annahmen an die Ableitungen von ϕ (also $\phi''(0) = 1$ und $\phi'''(0) = 0$):

$$\phi'' \left(D_{\rho} \hat{u}_{\bar{k}_{s}}(m) + D_{\rho} \bar{u}_{s}(m) \right) = \phi''(o) + \phi'''(o) \cdot \left(D_{\rho} \hat{u}_{\bar{k}_{s}}(m) + D_{\rho} \bar{u}_{s}(m) \right) \\ + \underbrace{\frac{\phi''''(\xi)}{2} \cdot \left(D_{\rho} \hat{u}_{\bar{k}_{s}}(m) + D_{\rho} \bar{u}_{s}(m) \right)^{2}}_{=:R_{2}(m)} \\ = 1 + R_{2}(m).$$

Hierbei sei ξ zwischen 0 und $\left(D_{\rho}\hat{u}_{\bar{k}_s}(m) + D_{\rho}\bar{u}_s(m)\right)$ und R_2 bezeichne das Restglied der Taylorentwicklung. R_2 ist dabei durch die größte Ableitung von $\hat{u}_{\bar{k}_s}(m) = \bar{k}_s \cdot \sqrt{r} \cdot \sin(\frac{\theta}{2})$

beschränkt.

Differenziere $\hat{u}_{\bar{k}_s}$ also in Richtung r und erhalte

$$D\hat{u}_{\bar{k}_s}(m) \lesssim C \cdot \frac{1}{\sqrt{r}} \sim C \cdot |m|^{-\frac{1}{2}}.$$

Damit lässt sich $|R_2(m)|$ beschränken durch

$$|R_2(m)| \lesssim \left(|m|^{-\frac{1}{2}}\right)^2 = |m|^{-1}.$$

Wir können den ersten Summanden (3.20) also wie folgt abschätzen:

$$\begin{aligned} &|\sum_{m\in\Lambda}\sum_{\rho\in\tilde{\mathcal{R}}(m)} \left(D_{\rho}\gamma_{s}(m) - \phi''\left(D_{\rho}\hat{u}_{\bar{k}_{s}}(m) + D_{\rho}\bar{u}_{s}(m)\right)D_{\rho}\gamma_{s}(m)\right)D_{\rho}v(m)| \\ &= |\sum_{m\in\Lambda} \left(\tilde{D}\gamma_{s}(m) - (1 + R_{2}(m))\tilde{D}\gamma_{s}(m)\right)\tilde{D}v(m)| \\ &= |\sum_{m\in\Lambda} \left(\tilde{D}\gamma_{s}(m) - \tilde{D}\gamma_{s}(m) - R_{2}(m)\tilde{D}\gamma_{s}(m)\right)\tilde{D}v(m)| \\ &\leq \sum_{m\in\Lambda} |\tilde{D}\gamma_{s}(m)| \cdot |\tilde{D}v(m)| \cdot |R_{2}(m)| \end{aligned}$$
(3.22)

$$\overset{\text{CS-Ungl.}}{\leq} \|\gamma_s\|_{\dot{\mathcal{H}}^1} \cdot \|v(m) \cdot R_2(m)\|_{\dot{\mathcal{H}}^1} = \|\gamma_s\|_{\dot{\mathcal{H}}^1} \cdot \left(\sum_{m \in \Lambda} |\tilde{D}v(m)|^2 \cdot |R_2(m)|^2\right)^2 .$$

Dies liefert eine erste Abschätzung für $|D_{\tau}\gamma_s(l)|$, nämlich $|D_{\tau}\gamma_s(l)| \lesssim |l|^{-1}$, die sich folgendermaßen ergibt:

Es gilt, wie gezeigt:

$$D_{\tau}\gamma_s(l) \lesssim |l|^{-\frac{3}{2}+\delta} + \left(\sum_{m \in \Lambda} |R(m)|^2 \cdot |\tilde{D}v(m)|^2\right)^{\frac{1}{2}}.$$

Untersuche also, wie sich der letzte Summand abschätzen lässt. Splitte dazu die Summe in

$$\sum_{m \in \Lambda} = \underbrace{\sum_{|m| \le \frac{1}{2}|l|}}_{i)} + \underbrace{\sum_{|m| \ge 2|l|}}_{ii)} + \underbrace{\sum_{\frac{1}{2}|l| \le |m| \le 2|l|}}_{iii)}$$

auf und halte fest, dass

$$|R_2(m)|^2 \cdot |D_{\rho}v(m)|^2 \lesssim \frac{1}{|m|^2} \cdot \left(1 + \sqrt{|m|} \cdot \sqrt{|l|} \cdot \left(\left|\sqrt{|m|} - \sqrt{|l|}\right|\right)^{2-\delta}\right)^{-2} \text{ gilt.}$$

 $Zu \ i)$:

$$\sum_{|m| \le \frac{1}{2}|l|} \frac{1}{|m|^2} \cdot (1 + \sqrt{|m|} \cdot \sqrt{|l|} \cdot (|\sqrt{|m|} - \sqrt{|l|}|)^{2-\delta})^{-2} \\ \times \sqrt{|l|} \\ \times \sum_{|m| \le \frac{1}{2}|l|} \frac{1}{|m|^3} \cdot |l|^{-3+\delta} \xrightarrow{\text{Riemann-}}_{\text{integral}} \int_{|m| \in [1, \frac{|l|}{2}]} \frac{1}{|m|^3} \, \mathrm{d}m \cdot |l|^{-3+\delta} \\ = \int_{r=1}^{\frac{|l|}{2}} \frac{r}{r^3} \, \mathrm{d}r \cdot |l|^{-3+\delta} \lesssim |l|^{-1} \cdot |l|^{-3+\delta} = |l|^{-4+\delta}.$$

Zu ii):

Auch ii) lässt sich auf ähnliche Weise wie i) abschätzen:

$$\sum_{|m|\geq 2|l|} \frac{1}{|m|^2} \cdot (1+\sqrt{|m|} \cdot \sqrt{|l|} \cdot (|\sqrt{|m|} - \sqrt{|l|}|)^{2-\delta})^{-2} \\ \times \sqrt{|m|} \\ \times |l|^{-1} \cdot \sum_{|m|\geq 2|l|} |m|^{-5+\delta} \overset{\text{Riemann-}}{\underset{\text{integral}}{\approx}} |l|^{-1} \int_{|m|\geq 2|l|} |m|^{-5+\delta} \, \mathrm{d}m = |l|^{-1} \int_{r=2|l|}^{\infty} \frac{r}{r^{5-\delta}} \, \mathrm{d}r \\ \lesssim |l|^{-1} \cdot |l|^{-3+\delta} = |l|^{-4+\delta}.$$

Zu iii):

Bei der letzten Summe kommt nun ein Term der Ordnung $|l|^{-2}$ hinzu.

$$\sum_{\substack{\frac{1}{2}|l| \leq |m| \leq 2|l| \\ |l| \neq |m|}} \underbrace{\frac{|m|^{-2} \cdot (1 + \sqrt{|m|} \cdot \sqrt{|l|} \cdot (|\sqrt{|m|} - \sqrt{|l|} |)^{2-\delta})^{-2}}_{\leq \sqrt{|l|} \neq 0, \text{ also } \geq 1} \\ + \underbrace{\sum_{\substack{|l| = |m| \\ l| = 2}} |l|^{-2} \cdot \left(1 + \sqrt{|l|} \cdot \sqrt{|l|} \cdot 0\right)^{-2}}_{=|l|^{-2}} \\ \leq |l|^{-4} + |l|^{-2} \leq |l|^{-2}$$

Insgesamt erhält man schließlich

$$|D_{\tau}\gamma_{s}(l)| \lesssim |l|^{-\frac{3}{2}+\delta} + \left(|l|^{-4+\delta} + |l|^{-4+\delta} + |l|^{-2}\right)^{\frac{1}{2}}$$
$$\lesssim |l|^{-\frac{3}{2}+\delta} + |l|^{-1} \lesssim |l|^{-1}.$$

Betrachtet man erneut den Ausgangsausdruck (3.22) und wendet bei der Umformung nicht die Cauchy-Schwarz-Ungleichung an, sondern nutzt $|R_2(m)| \cdot |\tilde{D}\gamma_s(m)| \leq |m|^{-1} \cdot |m|^{-1} \leq |m|^{-2}$, so ergibt sich

$$\begin{split} &|\sum_{m\in\Lambda}\sum_{\rho\in\tilde{\mathcal{R}}(m)} \left(D_{\rho}\gamma_{s}(m) - \phi''\left(D_{\rho}\hat{u}_{\bar{k}_{s}}(m) + D_{\rho}\bar{u}_{s}(m)\right)D_{\rho}\gamma_{s}(m)\right)D_{\rho}v(m)|\\ &\lesssim \sum_{m\in\Lambda}|R_{2}(m)|\cdot|\tilde{D}\gamma_{s}(m)|\cdot|\tilde{D}v(m)|\\ &\lesssim \sum_{m\in\Lambda}|m|^{-2}\cdot\left(1+\sqrt{|m|}\cdot\sqrt{|l|}\cdot\left(|\sqrt{|m|} - \sqrt{|l|}\,|\right)^{2-\delta}\right)^{-1} \overset{(*)}{\lesssim}|l|^{-\frac{3}{2}+\delta}, \end{split}$$

wobe
i $\delta>0$ wie zuvor beliebig klein gewählt werden kann.

(*) ergibt sich durch analoge Anwendung der Riemannsumme wie zuvor, um $|D_{\tau}\gamma_s(l)| \lesssim |l|^{-1}$ zu zeigen. Teile auch hier $\sum_{m \in \Lambda}$ in ähnliche Partialsummen auf:

$$\sum_{m \in \Lambda} = \underbrace{\sum_{|m| < \frac{|l|}{2}}^{ij}}_{|m| < \frac{|l|}{2}} + \underbrace{\sum_{\substack{|l| \le |m| \le 2|l| \\ \frac{|l|}{2} \le |m| \le 2|l| \\ |\sqrt{|m|} - \sqrt{|l|} |>|l|^{\frac{1}{4}}}_{|\sqrt{|m|} - \sqrt{|l|} |\le|l|^{\frac{1}{4}}} + \underbrace{\sum_{|m| \le 2|l| \le |m|}^{iv}}_{|\sqrt{|m|} - \sqrt{|l|} |\le|l|^{\frac{1}{4}}} + \underbrace{\sum_{|m| \le |l| \le |m|}^{iv}}_{|m| \ne |l|} + \underbrace{\sum_{|m| \le |m|}^{iv}}_{|m| \le |m|} + \underbrace{\sum_{|m| \le |m|}^{iv}}_{|m| \le |m|}$$

Dann ergibt sich

$$\sum_{m \in \Lambda} |m|^{-2} \cdot \left(1 + \sqrt{|m|} \cdot \sqrt{|l|} \cdot \left(|\sqrt{|m|} - \sqrt{|l|} | \right)^{2-\delta} \right)^{-1} \\ \lesssim \underbrace{|l|^{-\frac{3}{2} + \frac{\delta}{2}}}_{i)} + \underbrace{|l|^{-\frac{3}{2} + \frac{\delta}{4}}}_{iii} + \underbrace{|l|^{-2}}_{iiii} + \underbrace{|l|^{-2}}_{ivi} + \underbrace{|l|^{-\frac{3}{2} + \delta}}_{vj} \quad \lesssim |l|^{-\frac{3}{2} + \delta}.$$

Insgesamt erhalten wir also

$$|D_{\tau}\gamma_{s}(l)| \lesssim |l|^{-\frac{3}{2}+\delta} + |l|^{-\frac{3}{2}+\delta} \lesssim |l|^{-\frac{3}{2}+\delta},$$

was den Beweis von *Teil 2* beendet.

3.3 Konvergenzverhalten

Um die Konvergenzeigenschaften beweisen zu können, benötigen wir neben den Hilfslemmata zur Bifurkationstheorie aus den Vorbereitungen 3.1, die wir genutzt haben, um die Aussagen über das Modell zu beweisen, ein weiteres Hilfsresultat aus [2]. Dieses Lemma wird ohne Beweis angeführt.

3.3.1 Hilfslemma 10: Abschneideoperator T_R

Es existiert ein Abschneideoperator $T_R: \dot{\mathcal{H}}^1 \to \mathcal{H}^0_R$, sodass $T_R = 0$ auf $\Lambda \setminus B_R$ und

$$\|T_R v - v\|_{\dot{\mathcal{H}}^1} \lesssim \|v\|_{\dot{\mathcal{H}}^1(\Lambda \setminus B_{R/2})} := \left(\sum_{m \in \Lambda \setminus B_{R/2}} |\tilde{D}v(m)|^2\right)^{\frac{1}{2}}$$

 $\forall v \in \dot{\mathcal{H}}^1 \text{ erfüllt ist.}$

3.3.2 Theorem 11: approximierter Bifurkationspfad und Konvergenz

Unter den Annahmen 1,2 und 3 aus 2.5 existiert ein $R_0 > 0$, sodass für alle $R \ge R_0$ ein approximierter $C^{\alpha-1}$ Bifurkationspfad $B_R : [0,1] \to \mathcal{H}^0_R \times \mathbb{R}$, gegeben durch

$$B_R(s) := (\bar{u}_s^R, k_s^R)_s$$

existiert.

Dabei ist $Im(B_R) \subset S_R$ und für jedes $\beta > 0$ gilt sowohl

$$\|\bar{u}_{s}^{R} - \bar{u}_{s}\|_{\dot{\mathcal{H}}^{1}} + |\bar{k}_{s}^{R} - \bar{k}_{s}| \lesssim R^{-\frac{1}{2} + \beta}$$

als auch

$$|\mathcal{E}(\bar{u}_s^R, \bar{k}_s^R) - \mathcal{E}(\bar{u}_s, \bar{k}_s)| \lesssim R^{-1+\beta},$$

wobei wie auch zuvor $B(s) = (\bar{u}_s, \bar{k}_s)$ ist.

Beweis von Theorem 11

Wir betrachten das erweiterte System $F: B \times Y \to Z$, wobei $B = [0, 1], \quad Y = \mathcal{H}_R^0 \times \mathbb{R}$ und $Z = (\mathcal{H}_R^0)^* \times \mathbb{R}$ ist, also $F: [0, 1] \times (\mathcal{H}_R^0 \times \mathbb{R}) \to (\mathcal{H}_R^0)^* \times \mathbb{R}$, welches gegeben ist durch

$$F(s,y) = \left(\delta_u \mathcal{E}(u_y,k_y), (u_y - \bar{u}_s, \bar{u}'_s)_{\dot{\mathcal{H}}^1}\right)$$

mit $\bar{u}'_s = \frac{\mathrm{d}\bar{u}(s)}{\mathrm{d}s}$ und $y = (u_y, k_y)$.

Es gilt dabei:

$$D_s F(s,y) = (0, D_s(u_y - \bar{u}_s, \bar{u}'_s)_{\dot{\mathcal{H}}^1})$$

= $(0, (u_y - \bar{u}_s, \bar{u}''_s)_{\dot{\mathcal{H}}^1} - (\bar{u}'_s, \bar{u}'_s)_{\dot{\mathcal{H}}^1})$

und

$$D_y F(s,y) = \begin{pmatrix} \delta^2_{uu} \mathcal{E}(u_y,k_y) & \delta^2_{uk} \mathcal{E}(u_y,k_y) \\ (\bar{u}'_s,\cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix}.$$

Außerdem definiere die Abbildung $y_R: B \to Y$ durch

$$y_R(s) = (T_R \bar{u}_s, \bar{k}_s).$$

Ziel ist es nun, mithilfe des ABCD-Lemmas zu zeigen, dass F die Bedingen von 3.1.2 erfüllt und wir dieses somit auf F anwenden können.

Es gilt: $F(s, y_R(s)) = \left(\delta_u \mathcal{E}(T_R \bar{u}_s, \bar{k}_s), (T_R \bar{u}_s - \bar{u}_s, \bar{u}'_s)_{\dot{\mathcal{H}}^1}\right).$ Damit folgt

$$D_y F(s, y_R(s)) = \begin{pmatrix} \delta_{uu}^2 \mathcal{E}(T_R \bar{u}_s, \bar{k}_s) & \delta_{uk}^2 \mathcal{E}(T_R \bar{u}_s, \bar{k}_s) \\ (\bar{u}'_s, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix}$$
$$=: \begin{pmatrix} A_s^R & b_s^R \\ (\bar{u}'_s, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix}.$$

Außerdem definiere die exakten Operatoren $A_s := H_s = \delta_{uu}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s)$ und $b_s := \delta_{uk}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s)$. Zerlege also $D_y F(s, y_R(s))$ mithilfe dieser Definitionen zu

$$D_y F(s, y_R(s)) = \begin{pmatrix} A_s^R & b_s^R \\ (\bar{u}'_s, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix} = \begin{pmatrix} A_s & b_s \\ (\bar{u}'_s, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix} + \begin{pmatrix} A_s^R - A_s & b_s^R - b_s \\ 0 & 0 \end{pmatrix}$$
$$=: M_s^1 + M_s^2.$$

Dabei behandeln wir hier A_s als Einschränkung auf \mathcal{H}_0^R (auf $\Lambda \setminus \omega_R$ verschwindet A_s also) und b_s fassen wir als ein Element aus $(\mathcal{H}_0^R)^*$ auf. Es gilt:

$$\lim_{R \to \infty} \|T_R \bar{u}_s - \bar{u}_s\| \overset{\text{Def. von } T_R \bar{u}_s}{\lesssim} \lim_{R \to \infty} \left(\sum_{m \in \Lambda \setminus B_{R/2}} |\tilde{D} \bar{u}_s(m)|^2 \right)^{\frac{1}{2}}$$

$$\overset{\text{Theorem 9}}{\leq} \lim_{R \to \infty} \left(\sum_{m \in \Lambda \setminus B_{R/2}} \left| C \cdot |m|^{-\frac{3}{2} + \delta} \right|^2 \right)^{\frac{1}{2}}.$$

Für $R \to \infty$ gilt für die in der Summe noch involvierten Gitterpunkte $m \in \Lambda \setminus B_{R/2}$ auch $|m| \to \infty$. Dadurch werden die einzelnen Summanden in der Summe beliebig klein. Es folgt also:

$$\lim_{R \to \infty} \|T_R \bar{u}_s - \bar{u}_s\| \lesssim \lim_{R \to \infty} \left(\sum_{m \in \Lambda \setminus B_{R/2}} \left| C \cdot |m|^{-\frac{3}{2} + \delta} \right|^2 \right)^{\frac{1}{2}} < \epsilon$$

für alle $\epsilon > 0$. Das heißt, $T_R \bar{u}_s \to \bar{u}_s$ konvergiert stark in $\dot{\mathcal{H}}^1$ für $R \to \infty$. Da außerdem $\mathcal{E} \in C^{\alpha}$ für $\alpha > 5$ ist, also insbesondere $\delta^2_{uu} \mathcal{E}$ und $\delta^2_{uk} \mathcal{E}$ stetig sind, gilt

$$\lim_{R \to \infty} \left(\|M_s^2\| \right) = \lim_{R \to \infty} \left(\|A_s^R - A_s\|_{\mathcal{L}(\dot{\mathcal{H}}^1, (\dot{\mathcal{H}}^1)^*)} + \|b_s^R - b_s\|_{(\dot{\mathcal{H}}^1)^*} \right) \\
= \lim_{R \to \infty} \|\delta_{uu}^2 \mathcal{E}(T_R \bar{u}_s, \bar{k}_s) - \delta_{uu}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s)\| + \lim_{R \to \infty} \|\delta_{uk}^2 \mathcal{E}(T_R \bar{u}_s, \bar{k}_s) - \delta_{uk}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s)\| \\
\overset{\text{Stetigkeit}}{=} \|\delta_{uu}^2 \mathcal{E}(\underbrace{\lim_{R \to \infty} T_R \bar{u}_s}_{\bar{u}_s}, \bar{k}_s) - \delta_{uu}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s)\| + \|\delta_{uk}^2 \mathcal{E}(\underbrace{\lim_{R \to \infty} T_R \bar{u}_s}_{\bar{u}_s}, \bar{k}_s) - \delta_{uk}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s)\| \\
= 0. \tag{3.23}$$

Versuche nun, das ABCD-Lemma auf $M_s^1 = \begin{pmatrix} A_s & b_s \\ (\bar{u}'_s, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix}$ anzuwenden, um zu zeigen, dass dies ein Isomorphismus ist. Interpretiere M_s^1 dabei als Operator von $\dot{\mathcal{H}}^1 \times \mathbb{R}$ nach $(\dot{\mathcal{H}}^1)^* \times \mathbb{R}$. Zeige später außerdem, dass M_s^2 lediglich eine kleine Perturbation ist.

Halte zunächst fest, dass für alle Punkte (\bar{u}_s, \bar{k}_s) des Bifurkationspfades analog zu (3.13) die Gleichung

$$A_s \bar{u}'_s + k'_s b_s = 0 \tag{3.24}$$

erfüllt ist. Unterscheide hierbei drei Fälle.

Fall 1; $s \in \mathcal{I}_{pos}$:

Sei $s \in \mathcal{I}_{\text{pos}} = [0, 1] \setminus \mathcal{I}_{\text{pt}}$, also aus den stabilen Abschnitten ohne die Umgebungen der Bifurkationspunkte. Nach Annahme 2 gilt für $s \in \mathcal{I}_{\text{pos}}$, dass ein c > 0 existiert, sodass für alle $v \in \dot{\mathcal{H}}^1$ gilt: $\langle A_s v, v \rangle \ge c \cdot \|v\|_{\dot{\mathcal{H}}^1}^2$. A_s ist also koerziv.

Nach 3.2.2 ist $\mathcal{E} \alpha$ -mal stetig differenzierbar, insbesondere ist also auch $A_s = \delta_{uu}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s)$ stetig und das Lemma von Lax Milgram lässt sich anwenden. Dieses lautet wie folgt:

Sei X ein reeller Hilbertraum und $b: X \times X \to \mathbb{R}$ eine stetige und koerzive Bilinearform mit Koerzivitätskonstante c.

Dann existiert genau ein stetiger linearer Operator $T: X \to X$, der $b(x, y) = \langle Tx, y \rangle$ erfüllt. Dabei ist T invertierbar und $||T^{-1}|| \leq \frac{1}{c}$.

In diesem Fall ist $X := \dot{\mathcal{H}}^1$, $b : X \times X \to \mathbb{R} := \langle A_s v, w \rangle$ und $T := A_s$. Wir erhalten also, dass A_s ein Isomorphismus, also insbesondere invertierbar, ist. Um i) des ABCD-Lemmas anwenden zu können, muss überprüft werden, ob

$$0 - (\bar{u}'_s, (A_s)^{-1}b_s)_{\dot{\mathcal{H}}^1} \neq 0$$

ist. Dies ist erfüllt, da zusammen mit (3.24) gilt: $A_s \bar{u}'_s + \bar{k}'_s b_s = 0 \Leftrightarrow \bar{u}'_s = -\bar{k}'_s (A_s)^{-1} b_s$. Somit folgt:

$$\langle \bar{u}'_{s}, (A_{s})^{-1}b_{s} \rangle_{\dot{\mathcal{H}}^{1}} = \langle -\bar{k}'_{s}(A_{s})^{-1}b_{s}, (A_{s})^{-1}b_{s} \rangle_{\dot{\mathcal{H}}^{1}}$$

$$= -\underbrace{\bar{k}'_{s}}_{\neq 0} \cdot \langle (A_{s})^{-1}b_{s}, (A_{s})^{-1}b_{s} \rangle_{\dot{\mathcal{H}}^{1}}$$

$$= -\bar{k}'_{s} \cdot (-\bar{k}'_{s})^{-1} \cdot (-\bar{k}'_{s})^{-1} \cdot \langle -\bar{k}'_{s}(A_{s})^{-1}b_{s}, -\bar{k}'_{s}(A_{s})^{-1}b_{s} \rangle_{\dot{\mathcal{H}}^{1}}$$

Da (\bar{u}_s, \bar{k}_s) reguläre Punkte sind, gilt weiter

$$-\bar{k}'_{s} \cdot (-\bar{k}'_{s})^{-1} \cdot (-\bar{k}'_{s})^{-1} \cdot \langle -\bar{k}'_{s}(A_{s})^{-1}b_{s}, -\bar{k}'_{s}(A_{s})^{-1}b_{s} \rangle_{\dot{\mathcal{H}}^{1}}$$

$$= \underbrace{(-\bar{k}'_{s})^{-1}}_{\neq 0} \cdot \underbrace{\langle \bar{u}'_{s}}_{\neq 0}, \bar{u}'_{s} \rangle_{\dot{\mathcal{H}}^{1}} \neq 0.$$
(3.25)

Das ABCD-Lemma ist also anwendbar und M_s^1 ist ein Isomorphismus für $s \in \mathcal{I}_{pos}$.

Fall 2; $s \in \mathcal{I}_{pt}, s \neq b_i$: Sei nun $s \in \mathcal{I}_{pt}$ so, dass an der Stelle s kein Bifurkationspunkt, also $s \neq b_i$ für $i \in \{1, \ldots, M\}$, ist. Wir zeigen wie folgt, dass A_s auch in diesem Fall ein Isomorphismus ist.

Nach 3.2.4 gilt, dass ein Eigenpaar (μ_s, γ_s) existiert, welches $A_s \gamma_s = \mu_s J \gamma_s$ erfüllt. Jedes $v \in \dot{\mathcal{H}}^1$ kann nun in $v = \alpha \gamma_s + w$ zerlegt werden, wobei $w \in U_s$ und $\alpha \in \mathbb{R}$. Dies gilt, da U_s nach (3.14) das orthogonale Komplement zu span $\{\gamma_s\}$ ist. Da $\gamma_s, \frac{w}{\|w\|} \in \dot{\mathcal{H}}^1$ mit $\|\gamma_s\| = \|\frac{w}{\|w\|}\| = 1$ sind, lässt sich damit festhalten, dass

$$||A_s v|| = \sup_{\substack{\tilde{v} \in \dot{\mathcal{H}}^1 \\ ||\tilde{v}|| = 1}} |\langle A_s v, \tilde{v} \rangle| \ge \frac{1}{2} \cdot \left(|\langle A_s v, \gamma_s \rangle| + |\langle A_s v, \frac{w}{||w||} \rangle| \right).$$

Außerdem können wir weiter abschätzen, dass

$$\begin{split} |\langle A_s v, \gamma_s \rangle| &= |\langle A_s(\alpha \gamma_s + w), \gamma_s \rangle| \stackrel{\text{Skalarprodukt}}{=} |\alpha \langle A_s \gamma_s, \gamma_s \rangle + \langle A_s w, \gamma_s \rangle \\ \stackrel{(3.2.4)}{=} |\alpha \langle \mu_s \gamma_s, \gamma_s \rangle + \langle A_s w, \gamma_s \rangle| \\ &= |\alpha \mu_s \cdot \underbrace{\|\gamma_s\|}_{=1} + \langle A_s w, \gamma_s \rangle| \\ \stackrel{(3.2.4)}{=} |\alpha \mu_s + \mu_s \underbrace{(\gamma_s, w)}_{=0}| = |\alpha \mu_s| \end{split}$$

und

$$\begin{split} |\langle A_s v, \frac{w}{\|w\|} \rangle| &= |\langle A_s(\alpha \gamma_s + w), \frac{w}{\|w\|} \rangle| = |\alpha \langle A_s \gamma_s, \frac{w}{\|w\|} \rangle + \langle A_s w, \frac{w}{\|w\|} \rangle| \\ \stackrel{(3.2.4)}{=} |\alpha \cdot \frac{1}{\|w\|} \cdot \mu_s \underbrace{(\gamma_s, w)}_{=0} + \langle A_s w, \frac{w}{\|w\|} \rangle| = |\langle A_s w, \frac{w}{\|w\|} \rangle| \\ \text{mit } \langle A_s w, \frac{w}{\|w\|} \rangle &= \frac{1}{\|w\|} \langle A_s w, w \rangle \stackrel{\text{Ann. 2}}{\geq} \frac{1}{\|w\|} \cdot c \cdot \|w\|^2 = c \|w\|. \end{split}$$

Also erhalten wir $|\langle A_s v, \frac{w}{\|w\|} \rangle| \ge c \cdot \|w\|$ und insgesamt gilt

$$||A_s v|| \ge \frac{1}{2} (|\alpha \mu_s| + c||w||).$$

Weiter haben wir $||v|| = ||\alpha\gamma_s + w|| \le |\alpha| \cdot ||\gamma_s|| + ||w|| = |\alpha| + ||w||.$ Setze $\tilde{c} := \frac{1}{2} \cdot \min\{|\mu_s|, c\}.$ Für $v \in \mathcal{H}^1$ gilt dann:

$$\|A_s v\| \ge \frac{1}{2} \left(|\alpha| |\mu_s| + c \|w\| \right)$$

$$\ge \frac{1}{2} \cdot \min\{|\mu_s|, c\} \cdot \underbrace{\left(|\alpha| + \|w\| \right)}_{\ge \|v\|}$$

$$\ge \underbrace{\frac{1}{2} \cdot \min\{|\mu_s|, c\}}_{=\tilde{c}} \cdot \|v\| = \tilde{c} \|v\|.$$

Damit lässt sich wie in *Fall 1* das Lemma von Lax-Milgram anwenden. Wir erhalten, dass A_s ein Isomorphismus ist. Zusammen mit $(\bar{u}'_s, (A_s)^{-1}b_s) \neq 0$ aus (3.25) und dem ABCD-Lemma *i*) folgt wie oben, dass M_s^1 ebenso ein Isomorphismus für $s \in I_{\text{pt}}$ mit $s \neq b_i$ ist.

Fall 3; $s = b_i$:

Sei schließlich $s = b_i$ für ein $i \in \{1, \ldots, M\}$.

Nutze in diesem Fall ii) des ABCD-Lemmas, um zu zeigen, dass M_s^1 ein Isomorphismus ist. Betrachte wieder Annahme 2. Demnach existiert ein Unterraum U_s mit Kodimension höchstens 1, sodass ein c > 0 existiert mit $\langle A_s v, v \rangle \ge c \cdot ||v||_{\mathcal{H}^1}^2$ für alle $v \in U_s$.

Sei also $0 \neq v \in \text{Ker}(A_s)$. Dann gilt $\langle A_s v, v \rangle = \langle 0, v \rangle = 0 > c \cdot ||v||_{\dot{\mathcal{H}}^1}^2$. Das heißt, Ker $(A_s) \not\subseteq U_s$. Da U_s Kodimension höchstens 1 hat, gilt also dim $(\text{Ker}(A_s)) \leq 1$, auf der anderen Seite ist Ker (A_s) nicht-trivial, also dim $(\text{Ker}(A_s)) \geq 1$. Insgesamt erhalten wir, dass dim $(\text{Ker}(A_s)) = 1$.

Für $s = b_i$ folgt mit 3.2.4 außerdem, dass $\mu_s = 0$ ist und somit auch $A_s \gamma_s = 0$ sein muss. Wir haben also ein $\gamma_s \in \text{Ker}(A_s)$ gefunden und können somit festhalten, dass $\text{Ker}(A_s)$ von γ_s aufgespannt wird. Zudem gilt wegen $A_s \bar{u}'_s + \bar{k}'_s b_s = 0$ mit $\bar{k}'_s = 0$, dass $A_s \bar{u}'_s = 0$, also $\bar{u}'_s = \gamma_s$ ist. Damit folgt, dass $\langle \bar{u}'_s, \gamma_s \rangle = \langle \gamma_s, \gamma_s \rangle = 1 \neq 0$ gilt.

Außerdem ist nach Definition eines Bifurkationspunktes in 2.4 $\langle b_s, \gamma_s \rangle = (\delta_{uk}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s), \gamma_s) \neq 0.$

Damit sind alle Voraussetzungen für das ABCD-Lemma ii) erfüllt und wir erhalten, dass M_s^1 auch für $s = b_i$ ein Isomorphismus ist.

gleichmäßige Stabilität von M_s^1 :

Bislang haben wir gezeigt, dass M_s^1 für alle $s \in [0, 1]$ ein Isomorphismus von $\dot{\mathcal{H}}^1 \times \mathbb{R}$ nach $(\dot{\mathcal{H}}^1)^* \times \mathbb{R}$ ist. Insbesondere folgt daraus, dass für jedes $x = (u_x, k_x) \in \dot{\mathcal{H}}^1 \times \mathbb{R}$ eine Konstante $\tilde{c}_s > 0$ existiert, sodass gilt: $||M_s^1 x|| \geq \tilde{c}_s ||x||$. Dabei hängt die Konstante \tilde{c}_s allerdings von dem zuvor festgehaltenen s ab. Wir versuchen nun eine Konstante \tilde{c} zu finden, die die Abschätzung unabhängig von dem gewählten s erfüllt.

Betrachtet man also $M_s^1 = \begin{pmatrix} \delta_{uu}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s) & \delta_{uk}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s) \\ (\bar{u}'_s, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix}$, so fällt auf, dass die Abbildung $s \mapsto M_s^1$ in der Operatornorm stetig sein muss, da \mathcal{E} ausreichend glatt und somit sowohl $\delta_{uu}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s)$ als auch $\delta_{uk}^2 \mathcal{E}(\bar{u}_s, \bar{k}_s)$ stetig sind und außerdem wegen 3.2.3 auch die Abbildung $s \mapsto (\bar{u}_s, \bar{k}_s)$ stetig ist.

Um zu zeigen, dass auch die Abbildung $s \mapsto \tilde{c}_s = \inf_x \frac{\|M_s^1 x\|}{\|x\|}$ stetig ist, betrachte folgende Kette von Ungleichungen:

$$\begin{split} & \frac{\|M_s^1 x\|}{\|x\|} - \|M_t^1 - M_s^1\| \le \frac{\|M_s^1 x\|}{\|x\|} - \frac{\|(M_t^1 - M_s^1)x\|}{\|x\|} \\ & \le \frac{\|M_s^1 x\|}{\|x\|} \\ & \le \frac{\|M_t^1 x\|}{\|x\|} + \frac{\|(M_s^1 - M_t^1)x\|}{\|x\|} \le \frac{\|M_t^1 x\|}{\|x\|} + \|M_s^1 - M_t^1\| \end{split}$$

Lässt man nun s gegen t konvergieren, so ist wegen der gezeigten Stetigkeit von M_s^1 in Operatornorm $||M_s^1 - M_t^1|| = 0$. Wir erhalten

$$\tilde{c}_t \le \tilde{c}_s \le \tilde{c}_t.$$

 \tilde{c}_s konvergiert für $s \to t$ also gegen \tilde{c}_t und wir bekommen Stetigkeit für \tilde{c}_s . Damit lässt sich der Satz von Minimum und Maximum nutzen und es ergibt sich, dass das Infimum inf \tilde{c}_s auf [0,1] angenommen wird und somit insbesondere positiv ist.

Insgesamt erhalten wir also eine universelle Konstante $\tilde{c} > 0$, sodass gilt

$$\|M_s^1 x\| \ge \tilde{c} \|x\| \quad \forall s \in [0, 1], \ x \in \mathcal{H}_0^R \times \mathbb{R}.$$

$$(3.26)$$

Lena Schmedt

gleichmäßige Stabilität:

Unter Benutzung der Definition von M_s^2 können wir $||D_yF(s, y_R(s))x||$ beschränken. Es gilt nach Definition

$$D_y F(s, y_R(s)) = M_s^1 + M_s^2 = \begin{pmatrix} A_s & b_s \\ (\bar{u}'_s, \cdot)_{\dot{\mathcal{H}}^1} & 0 \end{pmatrix} + \begin{pmatrix} A_s^R - A_s & b_s^R - b_s \\ 0 & 0 \end{pmatrix}.$$

Damit folgt für $x = (u_x, k_x) \in \mathcal{H}_0^R \times \mathbb{R}$:

$$\begin{split} \|D_{y}F(s,y_{R}(s))x\| &= \|M_{s}^{1}x + M_{s}^{2}x\| \geq \|M_{s}^{1}x\| - \|M_{s}^{2}x\| \\ \stackrel{(3.26)}{\geq} \tilde{c}\|x\| - \underbrace{\|M_{s}^{2}x\|}_{&= \|A_{s}^{R} - A_{s}\| \cdot \|u_{x}\| + \|b_{s}^{R} - b_{s}\| \cdot |k_{x}|} \\ &\geq \tilde{c}\|x\| - \left(\|A_{s}^{R} - A_{s}\| \cdot \|u_{x}\| + \|b_{s}^{R} - b_{s}\| \cdot |k_{x}|\right) \end{split}$$

Zu Beginn in (3.23) haben wir bereits festgestellt, dass

$$\lim_{R \to \infty} \left(\|A_s^R - A_s\| + \|b_s^R - b_s\| \right) = 0 \text{ ist.}$$

Wir finden also ein ausreichend großes R, sodass $||A_s^R - A_s|| \cdot ||u_x|| + ||b_s^R - b_s|| \cdot |k_x|$ so klein wird, dass gilt

$$||D_y F(s, y_R(s))x|| \ge \frac{\tilde{c}}{2} ||x||.$$

Dies sichert wie schon zuvor, dass $D_y F(s, y_R(s))$ ein Isomorphismus von $\mathcal{H}_0^R \times \mathbb{R}$ nach $(\mathcal{H}_0^R)^* \times \mathbb{R}$ ist und deshalb die Bedingung *i*) von 3.1.2 mit der einheitlichen Schranke

$$\|D_y F(s, y_R(s))x\| \ge \frac{\tilde{c}}{2} \|x\| \qquad \forall s \in [0, 1], \ x \in \mathcal{H}_0^R \times \mathbb{R}$$

erfüllt.

Damit ist die Konstante c_0 aus (3.1.2, Bedingung i)) gegeben durch $c_0 = \frac{2}{\tilde{c}}$. Nun bleibt noch, die Bedingungen ii) und iii) zu überprüfen.

Für *ii*) betrachte

$$\begin{aligned} \|D_s F(s, y_R(s))\| &= \|(0, (T_R \bar{u}_s - \bar{u}_s, \bar{u}''_s)_{\dot{\mathcal{H}}^1} - (\bar{u}'_s, \bar{u}'_s)_{\dot{\mathcal{H}}^1}\| \\ &= |(T_R \bar{u}_s - \bar{u}_s, \bar{u}''_s)_{\dot{\mathcal{H}}^1} - 1|. \end{aligned}$$

Für ausreichend große R lässt sich dies abschätzen zu $|-1 + (T_R \bar{u}_s - \bar{u}_s, \bar{u}''_s)_{\dot{\mathcal{H}}^1}| \leq 2$. Damit ist ii) aus Theorem 2 erfüllt für die Konstante $c_1 = 2$. Betrachte, um iii) zu verifizieren die Funktion

$$L_1(\xi) := \sup_{(s_*, y_*) \in S(s, y_R(s), \xi)} \|D^2 F(s_*, y_*)\|,$$

 mit

$$S(s, y_R(s), \xi) := \{ (s_0, y_0) \in \mathbb{R} \times (\mathcal{H}_0^R \times \mathbb{R}) : |s - s_0| + \|T_R \bar{u}_s - u_0\| - |\bar{k}_s - k_0| \le \xi \}.$$

Es gilt für einen allgemeinen Punkt $(s, y) \in \mathbb{R} \times (\mathcal{H}_0^R \times \mathbb{R})$ und ein $\xi > (\|s - s_0\| + \|y - y_0\|)$:

$$\begin{aligned} \|DF(s,y) - DF(s_0,y_0)\| &= \|\int_0^1 D^2 F(s_0 + t(s - s_0), y_0 + t(y - y_0)) \cdot (s - s_0, y - y_0)\| \\ &\leq \sup_{t \in [0,1]} \|D^2 F(s_0 + t(s - s_0), y_0 + t(y - y_0))\| \cdot (\|s - s_0\| + \|y - y_0\|) \\ &\leq L(\xi) \left(\|s - s_0\| + \|y - y_0\|\right) \quad \text{mit } L(\xi) = \sup_{t \in [0,1] \|D^2 F(s_0 + t(s - s_0), y_0 + t(y - y_0))\|} \end{aligned}$$

Dabei gilt $L(\xi) \leq L_1(\xi)$ und ersetzt man das Paar (s, y) durch $(s, y_R(s))$, so erhält man die geforderte Abschätzung:

$$\|DF(s, y_R(s)) - DF(s_0, y_0)\| \le L_1(\xi)(\|s - s_o\| + \|T_R\bar{u}_s - u_0\| + \|\bar{k}_s - k_0\|).$$

Mit der Abbildung L_1 ist also auch Bedingung *iii*) erfüllt.

Zudem erhält man, dass

$$\sup_{s \in [0,1]} \|F(s, y_R(s))\| = \sup_{s \in [0,1]} (\|\delta_u \mathcal{E}(\underbrace{T_R \bar{u}_s}_{R \to \infty}, \bar{k}_s)\| + |(\underbrace{T_R \bar{u}_s - \bar{u}_s}_{R \to \infty}, \gamma_s)|) \xrightarrow{R \to \infty}_{\substack{R \to \infty \\ \bar{u}_s \\ \text{writischer Punkt ist}}} (||\delta_u \mathcal{E}(\underbrace{T_R \bar{u}_s}_{R \to \infty}, \bar{k}_s)\| + |(\underbrace{T_R \bar{u}_s - \bar{u}_s}_{R \to \infty}, \gamma_s)|) \xrightarrow{R \to \infty}_{\substack{R \to \infty \\ \to 0}} 0$$

Es existiert also eine Konstante d, die unabhängig von c_0, c_1, c_2 und L_1 ist, sodass $\sup_{s \in [0,1]} ||F(s, y_R(s))|| \le d$ gilt.

Damit lässt sich 3.1.2 für ausreichend große R anwenden, ungeachtet dessen, wie schlecht die Konstanten c_0, c_1, c_2 gewählt waren und wie ungünstig sich L_1 verhält.

Mit 3.1.2 folgt nun, dass ein approximierter Bifurkationspfad $B_R : [0,1] \to \mathcal{H}_0^R \times \mathbb{R}$ mit $B_R(s) := (\bar{u}_s^R, \bar{k}_s^R)$ existiert, sodass gilt

$$F(s, (\bar{u}_s^R, \bar{k}_s^R)) = (\delta_u \mathcal{E}(\bar{u}_s^R, \bar{k}_s^R), (\bar{u}_s^R - \bar{u}_s, \bar{u}_s')_{\dot{\mathcal{H}}^1}) = 0.$$

Insbesondere ist also auch $\delta_u \mathcal{E}(\bar{u}_s^R, \bar{k}_s^R) = 0.$ Außerdem gilt mit einem *u* zwischen $T_R \bar{u}_s$ und \bar{u}_s

$$\begin{split} \|\bar{u}_{s}^{R} - T_{R}\bar{u}_{s}\|_{\dot{\mathcal{H}}^{1}} + |\bar{k}_{s}^{R} - \bar{k}_{s}| &\leq K_{0} \cdot (|s - s| + \underbrace{\|F(s, y_{R}(s))\|}_{\|\delta_{u}\mathcal{E}(T_{R}\bar{u}_{s}, \bar{k}_{s})\| + |(T_{R}\bar{u}_{s} - \bar{u}_{s}, \bar{u}_{s}')|} \\ &= K_{0} \cdot (\|\delta_{u}\mathcal{E}(T_{R}\bar{u}_{s}, \bar{k}_{s})\| + |(T_{R}\bar{u}_{s} - \bar{u}_{s}, \bar{u}_{s}')|) \\ & \text{Taylorent. von } \delta_{u}\mathcal{E} \\ & \leq \sup_{um \ \bar{u}_{s}} \underbrace{\|(\underbrace{\delta_{u}\mathcal{E}(\bar{u}_{s}, \bar{k}_{s})}_{=0} + \underbrace{\delta_{uu}^{2}\mathcal{E}}_{beschränkt} (u, \bar{k}_{s}) \cdot (T_{R}\bar{u}_{s} - \bar{u}_{s})\|}_{\leq \|T_{R}\bar{u}_{s} - \bar{u}_{s}\|} \\ & \leq \|T_{R}\bar{u}_{s} - \bar{u}_{s}\|. \end{split}$$

Mit der geforderten Eigenschaft an T_R aus 3.3.1, dass $||T_R v - v||_{\dot{\mathcal{H}}^1} \lesssim \left(\sum_{m \in \Lambda \setminus B_{R/2}} |\tilde{D}v(m)|^2\right)^{\frac{1}{2}}$ und der Abschätzung $|\tilde{D}\bar{u}_s(l)| \leq C \cdot |l|^{-\frac{3}{2}+\delta}$ aus 3.2.5 kann man nun weiter folgern, dass gilt

Mit der \triangle -Ungleichung gilt: $\|\bar{u}_s^R - \bar{u}_s\|_{\dot{\mathcal{H}}^1} \leq \|\bar{u}_s^R - T_R \bar{u}_s\|_{\dot{\mathcal{H}}^1} + \|T_R \bar{u}_s - \bar{u}_s\|_{\dot{\mathcal{H}}^1}.$ Damit ergibt sich schließlich die Abschätzung

$$\begin{split} \|\bar{u}_{s}^{R} - \bar{u}_{s}\|_{\dot{\mathcal{H}}^{1}} + |\bar{k}_{s}^{R} - \bar{k}_{s}| &\leq \|\bar{u}_{s}^{R} - T_{R}\bar{u}_{s}\|_{\dot{\mathcal{H}}^{1}} + |\bar{k}_{s}^{R} - \bar{k}_{s}| + \|T_{R}\bar{u}_{s} - \bar{u}_{s}\|_{\dot{\mathcal{H}}^{1}} \\ &\lesssim |R|^{-\frac{1}{2} + \beta} + |R|^{-\frac{1}{2} + \beta} \\ &\lesssim |R|^{-\frac{1}{2} + \beta}. \end{split}$$

Dies zeigt die erste Abschätzung des Theorems.

Skizziere den Beweis der zweiten Abschätzung des Theorems $|\mathcal{E}(\bar{u}_s^R, \bar{k}_s^R) - \mathcal{E}(\bar{u}_s, \bar{k}_s)| \lesssim R^{-1+\beta}$ analog zu dem Beweis von Theorem 2.4 aus [4]. Führe also zunächst die dort verwendeten Bezeichnungen ein:

$$\begin{split} \dot{\mathcal{W}}^c &:= \{ u : \Lambda \to \mathbb{R} \mid \text{supp}(\nabla u) \text{ ist kompakt } \} \cong \mathcal{H}^c \\ \dot{\mathcal{W}}^{1,2} &:= \{ u : \Lambda \to \mathbb{R} \mid \nabla u \in L^2 \} \cong \dot{\mathcal{H}}^1 \\ \dot{\mathcal{W}}^0(\Omega_R) &:= \{ v \in \dot{\mathcal{W}}^c \mid v = 0 \text{ auf } \Lambda \setminus \Omega_R \}, \quad \text{wo } \Omega_R \subset \Lambda \text{ mit } (B_R \cap \Lambda) \subset \Omega_R \text{ ist.} \end{split}$$

Betrachtet wird hier wie auch zuvor ein Abschneide
operator $T_R : \dot{\mathcal{W}}^{1,2} \to \dot{\mathcal{W}}^0(\Omega_R)$, der für ausreichend große R

- i) $DT_R u(l) = Du(l)$ für alle $l \in \Lambda \cap B_{R/2}$
- ii) $\|DT_Ru Du\|_{l^2} \lesssim \|Du\|_{\ell^2(\Lambda \setminus B_{R/2})}$

 (\star)

erfüllt.

Außerdem gilt nach Theorem 2.3 aus [4]: $|D\bar{u}_s(l)| \leq |l|^{-1+\beta}$. Für ausreichend große R ist \mathcal{E} zweimal differenzierbar entlang des Abschnittes $\{(1-t) \cdot (\bar{u}_s, \bar{k}_s) + t \cdot (\bar{u}_s^R, \bar{k}_s^R) \mid t \in [0, 1]\}$. Damit gilt also:

$$\begin{aligned} |\mathcal{E}(\bar{u}_{s}^{R},\bar{k}_{s}^{R}) - \mathcal{E}(\bar{u}_{s},\bar{k}_{s})| &= |\int_{0}^{1} \langle \delta \mathcal{E}\left((1-t) \cdot (\bar{u}_{s},\bar{k}_{s}) + t \cdot (\bar{u}_{s}^{R},\bar{k}_{s}^{R})\right), (\bar{u}_{s}^{R},\bar{k}_{s}^{R}) - (\bar{u}_{s},\bar{k}_{s})\rangle \, \mathrm{d}t| \\ & \delta \mathcal{E}(\bar{u}_{s},\bar{k}_{s})^{=0}|\int_{0}^{1} \langle \delta \mathcal{E}\left((1-t) \cdot (\bar{u}_{s},\bar{k}_{s}) + t \cdot (\bar{u}_{s}^{R},\bar{k}_{s}^{R})\right) - \delta \mathcal{E}(\bar{u}_{s},\bar{k}_{s}), (\bar{u}_{s}^{R},\bar{k}_{s}^{R}) - (\bar{u}_{s},\bar{k}_{s})\rangle \, \mathrm{d}t| \end{aligned}$$

Mit $\langle \delta \mathcal{E}(T_R \bar{u}_s, \bar{k}_s), v \rangle = \langle \delta \mathcal{E}(T_R \bar{u}_s, \bar{k}_s) - \delta \mathcal{E}(\bar{u}_s, \bar{k}_s), v \rangle \lesssim \|DT_R \bar{u}_s - D\bar{u}_s\|_{l^2} \cdot \|Dv\|_{l^2}$ für alle $v \in \dot{\mathcal{W}}^0(\Omega_R)$ gilt auch:

$$\begin{aligned} |\mathcal{E}(\bar{u}_s^R, \bar{k}_s^R) - \mathcal{E}(\bar{u}_s, \bar{k}_s)| &\lesssim \|D\bar{u}_s^R - D\bar{u}_s\|_{\ell^2} \cdot \|D\bar{u}_s^R - D\bar{u}_s\|_{\ell^2} \\ &\lesssim \|DT_R\bar{u}_s - D\bar{u}_s\|_{\ell^2}^2 \\ &\stackrel{ii)}{\lesssim} \|D\bar{u}_s\|_{\ell^2(\mathbb{R}\setminus B_{R/2})} \\ &\stackrel{(\star)}{\lesssim} \int_{\mathbb{R}\setminus B_{R/2}} (|l|^{-1+\beta})^2 \, \mathrm{d}l = \int_{\mathbb{R}\setminus B_{R/2}} |l|^{-2+2\beta} \, \mathrm{d}l \lesssim R^{-1+\beta}. \end{aligned}$$

Damit sind die Abschätzungen gezeigt und der Beweis beendet.

Um nun das letzte Theorem des Artikels beweisen zu können, benötigen wir zwei weitere Hilfslemmata als technische Vorbereitungen, die ich hier ohne Beweis angeben werde. Das erste ist aus ([3], Theorem 4.1) entnommen und wurde in [2] als Lemma 4.6 zitiert. Im Folgenden wird aus Lesbarkeitsgründen $\bar{k}_R(b_i^R)$ für $\bar{k}_{b_i^R}^R$ geschrieben.

3.3.3 Hilfslemma 12: Bifurkationspunkte von \mathcal{B}_R

Sei $(\bar{u}_{b_i}, \bar{k}_{b_i}) \in \mathcal{B}$ ein einfacher quadratischer Wendepunkt. Unter den Annahmen 1,2 und 3 aus 2.5 hat das Bifurkationsdiagramm \mathcal{B}_R für ausreichend große R einen quadratischen Wendepunkt an der Stelle $s = b_i^R$, wobei $|b_i^R - b_i| \to 0$ für $R \to \infty$ gilt.

Daraus ergibt sich folgende Abschätzung:

$$\bar{k}_R(b_i^R) - \bar{k}(b_i) \leq \|\bar{u}_R'(b_i) - \bar{u}'(b_i)\|_{\dot{\mathcal{H}}^1}^2 + |\bar{k}_R'(b_i) - \bar{k}'(b_i)|^2$$
(3.28)

$$+ \|\bar{u}_R(b_i) - \bar{u}(b_i)\|_{\dot{\mathcal{H}}^1}^2 + |\bar{k}_R(b_i) - \bar{k}(b_i)|^2$$
(3.29)

$$+ \inf_{v \in \mathcal{H}^{\mathcal{R}}_{*}} \|v - \gamma_{b_{i}}\|_{\dot{\mathcal{H}}^{1}}^{2}.$$

$$(3.30)$$

Das nächste Hilfslemma benötigen wir, um später Terme der Ungleichung des vorherigen Lemmas abschätzen zu können. Es ist eine Erweiterung von 3.1.2, stammt aus [5] und liefert eine zusätzliche Aussage über Ableitungen.

3.3.4 Hilfslemma 13: Erweiterung von Theorem 2

Angenommen, die Voraussetzungen von 3.1.2 seien alle erfüllt und zusätzlich gelte

$$\sup_{x_0 \in U} \|DF(x_o, y(x_o))\| \le c_1.$$

Dann existiert eine stetige Funktion $K : \mathbb{R}_+ \to \mathbb{R}_+$, die nur von c_0, c_1 und L_1 abhängt, sodass für alle $x_0 \in U$ und alle $x \in B(x_0, a)$ gilt, dass

$$||Dg(x) - Dy(x_0)|| \le K(||Dy(x_0)||) \cdot (||x - x_0|| + ||F(x_0, y(x_0))|| + ||D_xF(x_0, y(x_0)) + D_yF(x_0, y(x_0)) \cdot D_xy(x_0)||).$$

3.3.5 Theorem 14: Konvergenz der approximierten Bifurkationspunkte

Für ausreichend große R besitzt der Bifurkationspfad \mathcal{B}_R aus 3.3.2 M Bifurkationspunkte im Sinne von 2.4, die an den Stellen $s \in \{b_1^R, \ldots, b_M^R\} \subset (0, 1)$ auftreten. Für jeden dieser Punkte gilt dabei

$$|\bar{k}_R(b_j^R) - \bar{k}(b_j)| \lesssim R^{-1+\beta}$$
 für ein belibieges $\beta > 0$.

Beweis von Theorem 14:

Mit 3.3.3 folgt, dass \mathcal{B}_R quadratische Wendepunkte an den Stellen $s = b_i$ hat, wobei $b_i^R \to b_i$ für $R \to \infty$. Demnach hat auch \mathcal{B}_R M approximierte Bifurkationspunkte, welche ebenso wie die von \mathcal{B} in dem Intervall (0, 1) liegen. Es bleibt also, die Summanden rechts der Ungleichung aus 3.3.3 abzuschätzen. Betrachte diese zunächst einzeln.

Zu (3.28):

Betrachte die Abbildung $F(s, y_R(s)) = (\delta_u(T_R \bar{u}_s, k_s), (T_R \bar{u}_s - \bar{u}_s, \bar{u}'_s)_{\dot{\mathcal{H}}^1})$ aus dem Beweis von 3.3.2. Diese erfüllt, wie dort bereits gezeigt, die Voraussetzungen von 3.1.2. Zudem gilt:

$$\|DF(s, y_R(s))\| = \left\| \begin{pmatrix} 0 & (T_R \bar{u}_s - \bar{u}_s, \bar{u}''_s)_{\dot{\mathcal{H}}^1} - (\bar{u}'_s, \bar{u}'_s)_{\dot{\mathcal{H}}^1} \\ \delta^2_{uu} \mathcal{E}(T_R \bar{u}_s, \bar{k}_s) & (\bar{u}'_s, \cdot)_{\dot{\mathcal{H}}^1} \\ \delta^2_{uk} \mathcal{E}(T_R \bar{u}_s, \bar{k}_s) & 0 \end{pmatrix} \right\| \le c_1.$$

Damit sind alle Voraussetzungen von 3.3.4 erfüllt und man erhält

$$\begin{split} \|\bar{u}_{s}^{\prime R} - \bar{u}_{s}^{\prime}\| + |\bar{k}_{s}^{\prime R} - \bar{k}_{s}^{\prime}| &\leq \|\bar{u}_{s}^{\prime R} - T_{R}\bar{u}_{s}^{\prime}\| + |\bar{k}_{s}^{\prime R} - \bar{k}_{s}^{\prime}| + \|T_{R}\bar{u}_{s}^{\prime} - \bar{u}_{s}^{\prime}\| \\ &\stackrel{3.3.4}{\leq} \|F(s, y_{R}(s))\| + \|D_{s}F(s, y_{R}(s)) + D_{y}F(s, y_{R}(s)) \cdot D_{s}y_{R}(s))\| \\ &+ \|T_{R}\bar{u}_{s}^{\prime} - \bar{u}_{s}^{\prime}\| \\ &\leq R^{-\frac{1}{2} + \beta} \end{split}$$

Zu (3.29): Nach 3.3.2 gilt bereits $\|\bar{u}_s^R - \bar{u}_s\|_{\dot{\mathcal{H}}^1} + |\bar{k}_s^R - \bar{k}_s| \lesssim R^{-\frac{1}{2} + \beta}.$

Zu (3.30): Es gilt

$$\inf_{v \in \mathcal{H}_0^R} \|v - \gamma_{b_i}\|_{\dot{\mathcal{H}}^1} \stackrel{T_R \gamma_{b_i} \in \mathcal{H}_0^R}{\leq} \|T_R \gamma_{b_i} - \gamma_{b_i}\|.$$

Da auch für γ_{b_i} die Abschätzung aus 3.2.5 gilt, erhält man damit analog zu (3.27)

$$\|T_R\gamma_{b_i} - \gamma_{b_i}\| \lesssim R^{-\frac{1}{2} + \beta}.$$

Betrachtet man nun $s=b_i,$ so ergibt sich mit 3.3.3 insgesamt

$$\begin{aligned} |\bar{k}_R(b_i^R) - \bar{k}(b_i)| &\lesssim \left(R^{-\frac{1}{2}+\beta}\right)^2 + \left(R^{-\frac{1}{2}+\beta}\right)^2 + \left(R^{-\frac{1}{2}+\beta}\right)^2 \\ &\lesssim R^{-1+\beta}. \end{aligned}$$

Damit ist die Aussage bewiesen.

4 Ausblick

In dieser Arbeit haben wir untersucht, wie man die Rissausbreitung eines skalaren Risses in senkrechter Richtung zur Gitterebene in einem 2D-Modell mit NN-Paarinteraktionen analysieren kann.

Dabei haben wir den Ansatz der Bifurkationstheorie gewählt und in Kapitel 3.2 bewiesen, dass dieser verwendbar ist, um die Rissausbreitung auf Quadratgittern beschreiben zu können.

Die Wahl des Spannungsintensitätsfaktors k als geeigneter Bifurkationsparameter, um das Bifurkationsverhalten festhalten zu können, hat sich dabei als möglich und sinnvoll herausgestellt.

In Kapitel 3.3 wurden schließlich für endliche Gebiete Konvergenzgeschwindigkeiten abhängig von der Gebietsgröße herausgearbeitet, mit denen diese approximierten Bifurkationsergebnisse gegen das theoretische Bifurkationsverhalten auf einem unendlichen Gitter konvergieren. Dabei fällt auf, dass dies nur recht langsam mit einer Geschwindigkeit von R^{-1} (vgl. 3.3.5) passiert und die Gebietsgröße somit einen sehr großen Einfluss auf die Qualität der Analyseergebnisse hat.

Fortführend wären interessante Fragestellungen, ob und inwiefern diese gravierenden Gebietsgrößeneffekte beispielsweise durch eine geeignetere Wahl der Grenzbedingungslösung gemindert oder weitgehend umgangen werden können (vgl. [2]).

Desweiteren ist von großer Relevanz, inwiefern sich die Erkenntnisse auf andere, komplexere Setups übertragen lassen. So ist nach [2] beispielsweise numerisch validiert, dass sich die Theorie auch für beliebige, endliche Interaktionen statt lediglich einfache "Nächste-Nachbar "-Paarinteraktionen anwenden lässt. Dies und anderes tatsächlich rigoros beweisen zu können, bedarf allerdings weiterer Forschung.

Literatur

- Maciej Buze, Thomas Hudson, and Christoph Ortner. Analysis of an atomistic model for anti-plane fracture. *Mathematical Models and Methods in Applied Sciences*, 29, 09 2019.
- [2] Maciej Buze, Thomas Hudson, and Christoph Ortner. Analysis of cell size effects in atomistic crack propagation. ESAIM: Mathematical Modelling and Numerical Analysis, 54, 02 2020.
- [3] K. A. Cliffe, A. Spence, and S. J. Tavener. The numerical analysis of bifurcation problems with application to fluid mechanics. *Acta Numerica*, 9:39–131, 2000.
- [4] V. Ehrlacher, C. Ortner, and A. V. Shapeev. Analysis of boundary conditions for crystal defect atomistic simulations, 2016.
- [5] P.A. Raviart F. Brezzi, J. Rappaz. Finite dimensional approximation of nonlinear problems. *Numerische Mathematik*, 1980.
- [6] Herbert B. Keller. Numerical solution of bifurcation and nonlinear eigenvalue problems. In Applications of bifurcation theory: proceedings of an Advanced Seminar conducted by the Mathematics Research Center, the University of Wisconsin at Madison, pages 359–384, 1977.
- [7] Hassan K Khalil. *Nonlinear systems; 3rd ed.* Prentice-Hall, Upper Saddle River, NJ, 2002. The book can be consulted by contacting: PH-AID: Wallet, Lionel.
- [8] C. Ortner and F. Theil. Justification of the cauchy–born approximation of elastodynamics. Archive for Rational Mechanics and Analysis, 03 2013.

Eigenständigkeitserklärung

Hiermit versichere ich, dass die vorliegende Arbeit über die Untersuchung von Bifurkationsdiagrammen bei Rissausbreitung in einem Atomgittermodell selbstständig von mir und ohne fremde Hilfe verfasst worden ist, dass keine anderen Quellen und Hilfsmittel als die angegebenen benutzt worden sind und dass die Stellen der Arbeit, die anderen Werken – auch elektronischen Medien – dem Wortlaut oder Sinn nach entnommen wurden, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht worden sind. Mir ist bekannt, dass es sich bei einem Plagiat um eine Täuschung handelt, die gemäß der Prüfungsordnung sanktioniert werden kann.

Ich erkläre mich mit einem Abgleich der Arbeit mit anderen Texten zwecks Auffindung von Übereinstimmungen sowie mit einer zu diesem Zweck vorzunehmenden Speicherung der Arbeit in einer Datenbank einverstanden.

Ich versichere, dass ich die vorliegende Arbeit oder Teile daraus nicht anderweitig als Prüfungsarbeit eingereicht habe.

Ort, Datum

Unterschrift