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Abstract

In optimal control theory there are often problems where the control takes on only
values from a discrete set of given points. These problems are called multi-bang control
problems. They are challenging since the penalty functional that achieves that the
control takes on only values from the discrete set is neither convex nor lower semi-
continuous. Replacing this penalty functional by its convex regularization yields that
we can derive a primal-dual optimality system. It can be shown that the primal-dual
optimality system has a unique solution and under certain condition coincides with the
solution of the original problem. The Moreau-Yosida approximation can be applied
to the optimality system. The regularized system is amenable to a solution with a
semismooth Newton method.
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1. Introduction

If one works in the field of optimal control theory, one can find problems where the
control variable takes on only two different values. One of the standard introduction
problems is the drag racing pilot who needs to cover a given distance in minimal time.
To achieve this goal he needs to use maximum acceleration and after some meters max-
imum breaking, in order to be able to stop at the finishing line.

This kind of optimal control problem is called bang-bang control problem. Christian
Clason and Karl Kunisch introduced a multi-bang control in their paper ‘Multi-Bang
Control of Elliptic Systems’ [7]. According to this paper a multi-bang control is a control
that takes on only values from a discrete set of given points. The two authors considered
in their paper the following problem:min

u,y

1
2 ‖y − z‖+ α

2 ‖u‖
2
L2 + β

∫
Ω

d∏
i=1
|u(x)− ui|0 dx,

s. t. Ay = u, u1 ≤ u(x) ≤ ud for almost every x ∈ Ω,

(1.1)

for given α, β > 0, real numbers u1 < ... < ud, d ≥ 2 and a target z ∈ L2(Ω). They
assumed that V is a Hilbert space and that A : V → V ∗ is an isomorphism. Moreover, the
embeddings V ↪→ L2(Ω) ↪→ V ∗ should be continuous, compact and dense. Furthermore,
|·|0 is defined as follows:

|t|0 :=

{
0 if t = 0,

1 if t 6= 0.

They have proven that they can find a unique solution if they take the convex relaxation

of α
2 ‖u‖

2
L2 + β

∫
Ω

d∏
i=1
|u(x)− ui|0 dx and that this solution is continuously dependent of

the target z. Additionally, they were able to show that one can find conditions under
which the solution of the problem with the relaxation is the solution of (1.1).

This work aims to prove that problem (1.1) still has a unique solution in two dimen-
sions, i.e. we consider vector-valued functions y and u instead of scalar functions. It
is too difficult to prove this in generality in two dimensions since R2 is not ordered.
Therefore, we want to prove it for a given set of eight control states and for β = ∞.
Moreover, we take the indicator function instead of |·|0. During the thesis we find some
points at which we can give more general statements. Furthermore, we look only on
a special constraint. We have decided to take the linearised elasticity equation as the
constraint because in this equation the two components of the vector field are linked.
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1. Introduction

Consequently, we are not able to use the theorems from Clason and Kunisch in each
component. We have not found a real application of this model yet. We could make
up some artificial problem with an area that is full of Piezo elements. These elements
convert a force into electric voltage or vice versa. This in not a problem someone has to
deal with in reality.

This thesis is organized in the following way. The next chapter deals with the linearised
elasticity equation. We start with the problem that is to be modelled and derive from
this the linearised elasticity equation. Afterwards, we prove in 2.1 that the linearised
elasticity equation has a unique solution. In chapter 3 we give a short introduction to
optimal control theory. Chapter 4 contains all definitions and theorems from convex
analysis that we will need during the rest of the thesis. A collection of parts from mono-
tone operator theory that is going to be used can be found in chapter 5.
The mainpart of this thesis starts in chapter 6. We are going to introduce the considered
multi-bang control problem. In 6.1 we deal with the optimality system for our problem.
Existence of a unique solution and continuous dependence on the target are proven in
6.2. The last section of this chapter deals with the structure of the solution.
Chapter 7 addresses the numerical calculation of a solution. Therefore, we need to intro-
duce the Moreau-Yosida regularization of our system, since we can apply a semismooth
Newton method only on the regularized system. In the next section we define a semis-
mooth Newton method and prove that it converges locally superlinear. Last but not
least we want to give some numerical examples.
In the last chapter we want to summarize all findings and give some ideas for further
research topics.
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2. Linearised Elasticity Equation - an
Example for a Vector-Valued PDE

This chapter is based on Braess’ study [2]. We consider a very flat solid body Ω ⊂ R2.
One side of the body is attached to a wall. The question to be model is how the body
is deformed when we apply a force to it (cf. figure 2.1).

Figure 2.1.: Model of the deforma-
tion of a flat body.
The black arrow indi-
cates the direction of
the force.

We assume that the body is made out of an elas-
tic material that is isotropic, i.e. the elasticity is
the same in every direction, and homogeneous, this
means that the elasticity is the same everywhere in
the material. We also assume that we only have
small strains, e.g. a very stiff material. This is the
requirement for Hooke’s linear law. The resulting
PDE for this problem is the Lamé equation

−2µ div ε(u)− λ grad div u = f in Ω,

u = 0 on Γ0,

σ(u) · ν = g on Γ1,

(2.1)

where ε is the symmetrized gradient that is a linear
approximation of the strain. σ represents the stress
tensor. ε and σ are tensor fields and u is a vector
field. This is the translation. The fields are linked
through the kinematic principle

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.2)

and Hooke’s law

σ = λtr(ε) Id +2µε. (2.3)

f and g are also vector fields. f is the uniformly distributed volume load and g the uni-
formly distributed linear load. By multiplication with a test function v and integration
over Ω we get

−2µ

∫
Ω

div ε(u) · v dx− λ
∫

Ω
grad div u · v dx =

∫
Ω
f · v dx

Green⇔ 2µ

∫
Ω
ε(u) : ∇v dx+ λ

∫
Ω

div udiv v dx− 2µ

∫
∂Ω
ε(u)ν · v dσ

−λ
∫
∂Ω

div(u) Id ν · v dσ =

∫
Ω
f · v dx.

(2.4)
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2. Linearised Elasticity Equation - an Example for a Vector-Valued PDE

Here ε(u) : ε(v) := tr(ε(u)T ε(v)). Since A : B = AT : B = A : BT for A,B ∈ Rn×n, A
symmetric, it holds ε(u) : ∇v = ε(u) : ∇v+(∇v)T

2 = ε(u) : ε(v). Therefore, (2.4) is
equivalent to

2µ

∫
Ω
ε(u) : ε(v) dx+ λ

∫
Ω

div udiv v dx− 2µ

∫
∂Ω
ε(u)ν · v dσ

−λ
∫
∂Ω

div(u) Id ν · v dσ =

∫
Ω
f · v dx.

(2.5)

We have to define the space for our test functions:

H1
Γ :=

{
v ∈ H1(Ω)2 : v(x) = 0 for x ∈ Γ0

}
.

Furthermore, we can use the definition of σ (2.3) and receive the variational formulation:

Variational formulation of the Lamé equation 2.1. Find u ∈ H1
Γ such that

2µ(ε(u), ε(v))2 + λ(div u,div v)2 = (f, v)2 +

∫
Γ1

g · v dx (2.6)

holds for all v ∈ H1
Γ and (·, ·)2 denotes the corresponding L2-inner product.

2.1. Existence and Uniqueness of a Solution of the Linearised
Elasticity Equation

In the following we are going to prove that (2.6) has a unique solution for all appropriate
f and g. Since the left-hand side of (2.6) is a bilinear form and the right-hand side a
linear functional in the dual space (H1

Γ)∗, we are going to use the lemma of Lax-Milgram
for this proof.

Theorem 2.2 (Lemma of Lax-Milgram). Let V be a real Hilbert space, a : V × V → R
a continuous and coercive bilinear form and l ∈ V ∗. Then there exists a unique solution
u ∈ V of

a(u, v) = l(v) ∀v ∈ V.

The continuity of a(u, v) = 2µ(ε(u), ε(v))2 + λ(div u,div v)2 follows directly with the
triangle inequality and the Cauchy-Schwarz inequality. We need a few more efforts to
verify that our bilinear form is coercive.

Theorem 2.3 (1. Korn’s inequality). Let Ω be an open and bounded subset of Rn with
a piecewise smooth boundary. Then it exists a constant c = c(Ω) > 0 such that∫

Ω
ε(v) : ε(v) dx+ ‖v‖2L2 ≥ c ‖v‖2H1 ∀v ∈ H1(Ω)n.

For v ∈ H1
Γ we can simplify this inequality and get Korn’s second inequality. We prove

only the simplified version, because we need this inequality to confirm that our bilinear
form is coercive.
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2. Linearised Elasticity Equation - an Example for a Vector-Valued PDE

Theorem 2.4 (2. Korn’s inequality). Let Ω ⊂ R2 be an open and bounded subset with a
piecewise smooth boundary. Assume that Γ0 ⊂ ∂Ω has a positive 1-dimensional measure.
Then there exists a constant c̃ > 0 that depends on Ω and Γ0 such that∫

Ω
ε(v) : ε(v) dx ≥ c̃ ‖v‖2H1 ∀v ∈ H1

Γ(Ω).

Proof. Assume that the inequality is not true. In this case we can find a sequence
(vn) ∈ H1

Γ(Ω) such that

‖ε(vn)‖2L2 :=

∫
Ω
ε(v) : ε(v) dx ≤ 1

n
and |vn|H1 = 1.

The assumption on Γ0 and Friedrich’s inequality [see Braess [2] Chap. 2.1 for the in-
equality and the proof] yield that ‖vn‖H1 ≤ c1 for all n and a reasonable constant
c1 > 0. Due to the fact that H1(Ω) is a compact subspace of L2(Ω) there exists a
convergent subsequence regarding the ‖.‖L2-norm of (vn). With theorem 2.3 we get for
this subsequence c ‖vnk − vnl‖

2
H1 ≤ ‖ε(vnk − vnl)‖

2
L2 + ‖vnk − vnl‖

2
L2 ≤ 2 ‖ε(vnk)‖2L2 +

2 ‖ε(vnl)‖
2
L2 + ‖vnk − vnl‖

2
L2 ≤ 2

nk
+ 2

nl
+ ‖vnk − vnl‖

2
L2 . Therefore, our subsequence is a

Cauchy-sequence in H1(Ω) and converges with regard to the ‖.‖H1-norm to a u0 since
H1(Ω) is a Banach space. It holds for u0 that ‖ε(u0)‖L2 = limk→∞ ‖ε(vnk)‖L2 = 0 and
|u0|H1 = limk→∞ |vnk |H1 = 1. It follows from ‖ε(u0)‖L2 = 0 that u0(x) = Ax+b. In this
case b ∈ R2 and A ∈ R2×2 is a skew-symmetric matrix. Since we have zero boundary
conditions on Γ0 we get u0 = 0. This is a contradiction to |u0|H1 = 1.

With Korn’s second inequality we get an upper bound for the first term of our bilinear
form and since the second term is positive we get

a(u, u) = 2µ(ε(u), ε(u))2 + λ(div u,div u)2 ≥ 2µc̃ ‖u‖2H1 .

This last estimation confirms the coercivity of the bilinear form and Lax-Milgram 2.2
guarantees that there is a unique solution for the variational formulation of the Lamé
equation for all given controls f and g.
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3. Optimal Control Theory

In this chapter we want to give a short introduction to optimal control theory. It follows
with its ideas and definitions chapter 1 from Hinze, Pinnau, Ulbrich and Ulbrich [11].
We often have the problem that we want to minimize a functional with a certain con-
straint. These constrains are very often partial differential equations (PDEs). An ex-
ample from physics is the stationary heating of a solid object Ω ⊂ R3. We apply a
temperature distribution u(x) - the control - to the boundary ∂Ω of the object. Our
aim is to find a temperature distribution y : Ω → R - the state - of the object that is
close to a given temperature distribution y0 : Ω→ R. We need to consider the fact that
we cannot heat the whole object immediately. The temperature distribution y(x) inside
the object can be modelled with the Laplace equation

−∆y(x) = 0, x ∈ Ω (3.1)

and Robin-Boundary-Conditions

κ
∂y

∂ν
= β(x)(u(x)− y(x)), x ∈ ∂Ω. (3.2)

Here κ > 0 is the heat conduction coefficient of the object’s material and β : ∂Ω→ (0,∞)
is a positive function that models the coefficient for the heat exchange with the exterior.
Furthermore, the control is pointwise bounded a(x) ≤ u(x) ≤ b(x), for all x ∈ ∂Ω
according to a bounded heating capacity. Since we want y(x) to be close to y0(x) and
we have to take care of the temperature distribution at the boundary, we have to solve
the following problem:

min
y,u

J(t, u) :=
1

2
‖y(x)− y0(x)‖2L2(Ω) +

α

2
‖u(x)‖2L2(∂Ω) ,

subject to −∆y = 0 on Ω,

∂y

∂ν
=
β

κ
(u− y) on ∂Ω,

a ≤ u ≤ b on ∂Ω.

(3.3)

We can reformulate the constraints. The second one is equivalent to

∂y

∂ν
− β

κ
(u− y) = 0 on ∂Ω

and the third constrained can be split into the following two constraints:

u− a ≥ 0 and b− u ≥ 0 on ∂Ω.
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3. Optimal Control Theory

We can now introduce two functionals e and c, where e summarizes all equality con-
straints and c collects all inequality constraints:

e(y, u) =

 −∆y

∂y

∂ν
− β

κ
(u− y)

 , c(y, u) =

(
u− a
b− u

)
.

With this functionals we can rewrite our minimization problem (3.3):

min
y∈Y,u∈U

J(y, u) s.t. e(y, u) = 0, c(y, u) ∈ N , (3.4)

where Y and U are appropriate Banach spaces that contain functions y : Ω → R and
u : Ω → R respectively and N = {(v1, v2) ∈ U × U, vi ≤ 0, i = 1, 2}. On this level of
abstraction we can give the definition of an optimal control problem.

Definition 3.1. An optimal control problem is an optimization problem of the following
form:

min
y∈Y,u∈U

J(y, u),

subject to e(y, u) = 0, (state equation)

c(y, u) ∈ K,

(3.5)

where J : Y ×U → R is called objective function, e : Y ×U → Z is the equality constraint
operator, c : Y × U → X is the inequality constraint operator and K ⊂ X is a closed
convex cone. U, Y,X and Z are real Banach spaces.
y is called state variable and u is the control variable. A central aspect of optimal control
theory is that the state equation is assumed to have a (unique) solution y for all given
controls u.

In chapter 6 we are going to introduce the optimal control problem that is going to
be considered. Our problem has an elliptic partial differential operator as the state
equation. We already know that our state equation, the Lamé equation, has a unique
solution for every given right-hand side [see chapter 2].

7



4. Convex Analysis

In this chapter we want to list several definitions and theorems from convex analysis.
These are taken from Bauschke and Combettes [1], Schirotzek [13] and Ekeland and
Temam [8].
We start with the definition of the Fenchel conjugate and some additional properties of
this.

Definition 4.1 (Fenchel conjugate). Let H be a Hilbert space and F : H → R̄.

F∗(y) = sup
x
〈x, y〉 − F(x), (4.1)

where 〈·, ·〉 denotes the inner product, is called Fenchel conjugate of F at y.

Theorem 4.2. Let H be a Hilbert space and F : H → [−∞,+∞]. Then the Fenchel
conjugate F∗ is convex and lower semi-continuous.

Proof. Assume that F 6≡ +∞, otherwise we are finished since the constant function is
lower semi-continuous and convex. It follows directly from the definition of F∗ that it
yields

F∗(u) = sup
x∈domF

〈x, u〉 − F(x) = sup
(x,ξ)∈epiF

〈x, u〉 − ξ (4.2)

for u ∈ H and epiF = {(u, t) ∈ H×R | F(u) ≤ t} is the epigraph of F . We can show
that F (x,ξ) : H → R̄, u 7→ (〈x, u〉 − ξ)(x,ξ)∈epiF is lower semi-continuous and convex:
We start with the proof for the convexity of F (x,ξ). Let (u1, t1) and (u2, t2) be elements
of epiF (x,ξ) and take λ ∈ [0, 1], then

F (x,ξ)(λu1 + (1− λ)u2) = 〈x, λu1 + (1− λ)u2〉 − ξ
= λ(〈x, u1〉 − ξ) + (1− λ)(〈x, u2〉 − ξ)
= λF (x,ξ)(u1) + (1− λ)F (x,ξ)(u2)

≤ λt1 + (1− λ)t2.

Hence, λ(u1, t1) + (1− λ)(u1, t1) ∈ epiF and therefore F (x,ξ) is convex.
A function is lower semi-continuous if and only if its epigraph is closed. For a proof see
Lemma 1.24 in [1]. Therefore, we have to show that epiF (x,ξ) is closed.
Let (ua, ta) be a sequence in epiF (x,ξ) that converges to (u, t) ∈ H×R, then

F (x,ξ)(u) = 〈x, u〉 − ξ (∗)
= lim 〈x, ua〉 − ξ ≤ lim ta = t.

8



4. Convex Analysis

(∗) holds since the inner product is continuous in both arguments.
This inequality shows that (u, t) ∈ epiF (x,ξ) and therefore F (x,ξ) is lower semi-continuous.

The supremum of the family (F (x,ξ))(x,ξ) of lower semi-continuous and convex functions
is lower semi-continuous and convex, since it holds

epi( sup
(x,ξ)∈epiF

F (x,ξ)) =
⋂

(x,ξ)∈epiF

epiF (x,ξ) . (4.3)

Because of the facts that the epigraph of each F (x,ξ) is convex as we have shown above
and that the intersection of convex sets is convex, the epigraph of sup(x,ξ)∈epiF F (x,ξ) is
convex and therefore the supremum is convex, too. It remains to prove that (4.3) holds
true. Let (u, t) ∈ H×R, then

(u, t) ∈ epi( sup
(x,ξ)∈epiF

F (x,ξ))

⇔ sup
(x,ξ)∈epiF

F (x,ξ)(u) ≤ t

⇔F (x,ξ)(u) ≤ t ∀(x, ξ) ∈ epiF
⇔(u, t) ∈ epiF (x,ξ) ∀(x, ξ) ∈ epiF

⇔(u, t) ∈
⋂

(x,ξ)∈epiF

epiF (x,ξ) .

The next step is to show the lower semi-continuity of the supremum.
Combining the fact that lower semi-continuity is equivalent to a closed epigraph with
(4.3) we get that the supremum of a family of lower semi-continuous functions is lower
semi-continuous. Thus, the assumption is proven.

Now we consider the definition of the subdifferential and the interplay between the
Fenchel conjugate and the subdifferential.

Definition 4.3 (Subdifferential). Let H be a real Hilbert space and F : H → (−∞,+∞]
be a proper functional, i.e. −∞ /∈ F(H) and domF 6= ∅. The set-valued operator

∂ F : H → 2H, x 7→ {u ∈ H |(∀y ∈ H) F(y) ≥ F(x) + 〈y − x, u〉} , (4.4)

is called subdifferential of F . F is subdifferentiable at x if ∂ F(x) 6= ∅ and the subgradi-
ents of F at x are the elements of ∂ F(x).

Theorem 4.4. Let H be a real Hilbert space, F : H → R be proper, convex and lower
semi-continuous, then it holds

x ∈ domF , y ∈ ∂ F(x) ⇔ y ∈ domF∗, x ∈ ∂ F∗(y). (4.5)

9



4. Convex Analysis

Proof. By the definition of the subgradient we get

y ∈ ∂ F(x)

⇔F(v) ≥ F(x) + 〈v − x, y〉 ∀v ∈ H
⇔〈v, y〉 − F(v) ≤ 〈x, y〉 − F(x) ∀v ∈ H
⇔F∗(y) + F(x) ≤ 〈x, y〉 .

The Young-inequality reads 〈x, y〉 ≤ F(x) + F∗(y) ∀x ∈ domF , y ∈ H. We deduce

〈x, y〉 = F(x) + F∗(y)⇔ y ∈ ∂ F(x). (4.6)

From this it follows that y ∈ domF∗ . Furthermore, for each v ∈ H we get using the
Young-inequality and (4.6) 〈v − y, x〉 ≤ F(x) +F∗(v̄)− (F(x) +F∗(y) = F∗(v)−F∗(y).
Consequently, we have x ∈ ∂ F∗(y).
It remains to show that y ∈ domF∗, x ∈ ∂ F∗(y)⇒ x ∈ domF , y ∈ ∂ F(x). Since F∗ is
proper, convex and lower semi-continuous as we proved in 4.2, we get from (4.6) applied
on F∗ instead of F , 〈y, x〉 = F∗(y)+F∗∗(x). As a result, we have x ∈ domF∗∗ . Because
of the fact that F is proper, convex and lower semi-continuous, it holds F∗∗ = F . We
obtain y ∈ ∂ F(x) by applying (4.6) again.

We are going to introduce the normal integrand and see how we can calculate the
Fenchel conjugate of an integral of a normal integrand.

Definition 4.5 (Normal integrand). Let B be a Borel subset of Rm, Ω ⊂ Rn open,
f : Ω×B → R. The function f is called normal integrand if the two following conditions
hold:
a) for almost all x ∈ Ω, f(x, .) is lower semi-continuous on B,
b) there exists a Borel function, i.e. the inverse image of every closed set is a Borel set,

f̄ : Ω×B → R such that f̄(x, .) = f(x, .) for almost every x ∈ Ω.

Theorem 4.6. Let Ω ⊂ Rn be open and bounded, g a non-negative normal integrand of
Ω×Rm. The Fenchel conjugate of the functional F : Lp(Ω,Rm)→ R, u 7→

∫
Ω f(x, p(x))

is under the assumption that there exists a p0 ∈ L∞(Ω,Rm) such that F(p0) < +∞ given
by

F∗(p) =

∫
Ω
f∗(x, p(x)) dx, (4.7)

where f∗ : Ω× Rm → R, (x, y) 7→ supv∈Rm y · v − g(x, v) is the Fenchel conjugate of f .

Proof. Let us recall that the dual space of Lq(Ω,Rm) is given by Lq
′
(Ω,Rm) for 1 ≤ q ≤

∞, where 1
q + 1

q′ = 1. We start the proof with fixing a p in Lq
′
(Ω,Rm). We set

Φ(x) = sup
ξ∈Rm

ξ · p(x)− f(x, ξ),

Φn(x) = max
|ξ|≤n

ξ · p(x)− f(x, ξ).

10



4. Convex Analysis

The Φn’s are clearly increasing and it is obvious that Φn(x)
n→∞−→ Φ(x) for all x in Ω.

Moreover, it holds for all n ≥ ‖p0‖∞

Φn(x) ≥ p0(x)p(x)− f(x, p0(x))︸ ︷︷ ︸
:=Ψ(x,p0(x))

.

It holds ∫
Ω

Ψ(x, p0(x)) dx =

∫
Ω
p0(x)p(x)− f(x, p0(x)) dx

≤ ‖p0‖L∞
∫

Ω
|p(x)| dx+

∫
Ω
f(x, p0(x)) dx <∞,

since p0 ∈ L∞(Ω,Rm), p ∈ Lq
′
(Ω,Rm) and f is a normal integrand. Hence, Ψ is in-

tegrable over Ω and according to the measurable selection theorem there exists for all
n ∈ N a measurable function p̄n : Ω→ Rm such that ‖p̄n‖∞ ≤ n and it holds:

Ψ(x, p̄n(x)) = p̄n(x)p(x)− f(x, p̄n(x)) = Φn(x).

It follows that Φn is measurable for all n and therefore that Φ is measurable and hence∫
Ω

Φ(x) dx = sup
n∈N

∫
Ω

Φn(x) dx = sup
n∈N

∣∣∣∣∫
Ω
p̄n(x)p(x)− f(x, p̄n(x)) dx

∣∣∣∣ .
As for all n ∈ N it is p̄n ∈ L∞(Ω,Rm) ⊂ Lq(Ω,Rm) we get∫

Ω
Φ(x) dx ≤ sup

u∈Lp

∣∣∣∣∫
Ω
u(x)p(x)− f(x, u(x)) dx

∣∣∣∣ = F∗(p).

It remains to prove that F∗(p) ≤
∫

Ω Φ(x) dx. By definition of Φ it holds for all u ∈
Lq(Ω,Rm)

u(x)p(x)− f(x, u(x)) ≤ Φ(x)

and therefore ∫
Ω
u(x)p(x)− f(x, u(x)) dx ≤

∫
Ω

Φ(x) dx.

Since this inequality is true for all u ∈ Lq(Ω,Rm), it remains true for the supremum:

F∗(p) ≤
∫

Ω
Φ(x) dx.

Because we have bounded F∗(p) from below and from above by
∫

Ω Φ(x) dx the two terms
must be equal. Looking again at the definition of Φ(x) we find that it is none other than
f∗(x, p(x)).

We are going to present a generalised differential for locally Lipschitz continuous func-
tions that are not convex.
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4. Convex Analysis

Definition 4.7 (Clarke directional derivative and subdifferential). Let H be a real Hilbert
space, D ⊂ H be open, x̄ ∈ D and F : D → R. For y ∈ H

F◦(x̄; y) := lim sup
t↓0
x→x̄

1

τ
(F(x+ τy)−F(x)) (4.8)

is called Clarke directional derivative of F at x̄ in the direction y.
If F is locally Lipschitz continuous around x̄, then the Clarke subdifferential of F at x̄
is given by

∂◦F(x̄) := {x∗ ∈ H | 〈x∗, y〉 ≤ F◦(x̄; y)∀y ∈ H} . (4.9)

The next theorem yields that the Clarke subdifferential equals the convex subdiffer-
ential if the function is locally Lipschitz continuous and convex.

Theorem 4.8. If D ⊂ H is convex and F is convex and locally Lipschitz continuous
around x̄ ∈ H, then it holds

∂ F(x̄) = ∂◦F(x̄).

Proof. Let δ > 0, then by the definition of the limit superior and by the fact that F is
convex we get

F◦(x̄; y) = inf
ε∈(0,ε0)

sup
τ∈(0,ε)

x∈B(x̄,δε)

1

τ
(F(x+ τy)−F(x))

= inf
ε∈(0,ε0)

sup
x∈B(x̄,δε)

1

ε
(F(x+ εy)−F(x)).

(4.10)

Let L be the Lipschitz constant of F around x̄, then we obtain with the help of the
triangle inequality

1

ε
|F(x+ εy)−F(x)− (F(x̄+ εy)−F(x̄))|

≤1

ε
(|F(x+ εy)−F(x̄+ εy)|+ |F(x̄)−F(x)|)

≤2

ε
L ‖x− x̄‖ ≤ 2δL if ‖x− x̄‖ < δε for ε small enough.

The directional G-derivative is defined by FG(x̄; y) = limτ↓0
1
τ (F(x̄+ τy)− F(x̄)). The

last estimate provides an estimation of (4.10) by the directional G-derivative:

F◦(x̄; y) ≤ inf
ε∈(0,ε0)

1

ε
(F(x̄+ εy)−F(x̄)) + 2δL = FG(x̄; y) + 2δL.

δ > 0 is arbitrary, hence we have F◦(x̄; y) ≤ FG(x̄; y). It follows directly from the
definitions of the two directional derivatives that the reversed inequality holds. Thus,
we have F◦(x̄; y) = FG(x̄; y) and the claim follows with the fact that for a convex F
the subdifferential can be written as ∂ F(x̄) = {u ∈ H | 〈u, y〉 ≤ FG(x̄; y)∀y ∈ H} [see
Schirotzek [13], Prop. 4.1.6 for a proof].
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4. Convex Analysis

In a finite dimensional space as Rn Rademacher’s theorem yields that a locally Lips-
chitz continuous function is almost everywhere differentiable. This provides the following
characterisation of Clarke’s subdifferential.

Theorem 4.9. If F : Rn → R is locally Lipschitz continuous around x̄, let ΩF ⊂ Rn
denote the null set, where F is not differentiable, and let S ⊂ Rn be also a null set, then
we have

∂◦F(x̄) = co

{
lim
k→∞

F ′(xk)|xk → x̄, xk /∈ ΩF ∪ S
}
. (4.11)

See Clarke [4] theorem 2.5.1 p. 63 for a proof of this theorem.
At this point we have collected all definitions and theorems from convex analysis that
we are going to use in the sequel. Our next step is to list all definitions and theorems
from monotone operator theory that we need in chapter 6 and 7.
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5. Monotone Operators

For the proof of the existence of a solution for our multi-bang control problem in chapter
6 we need some basics from monotone operator theory. The theory of this section follows
some parts of chapters 20, 21 and 24 of Bauschke and Combettes [1]. Whenever we have
a Hilbert space 〈·, ·〉 denotes the inner product.

Definition 5.1. Let H be a real Hilbert space and A : H → 2H be a set-valued operator.
A subset U of H×H is monotone if

∀(x, u), (y, v) ∈ U 〈x− y, u− v〉 ≥ 0.

The operator A is monotone if the graph of A, graphA = {(x, u) ∈ H×H |u ∈ Ax}, is
a monotone set.

Furthermore, we need to define when a monotone operator is maximally monotone.

Definition 5.2. Let H be a real Hilbert space and A : H → 2H be a monotone operator.
A is called maximally monotone if it holds for each (x, u) ∈ H×H that (x, u) ∈ graphA
if and only if

〈x− y, u− v〉 ≥ 0 ∀(y, v) ∈ graphA.

Our next step is to prove that the subdifferential, defined in 4.3, of a proper lower
semi-continuous and convex function is maximally monotone.

Theorem 5.3. Let H be a real Hilbert space and F : H → (−∞,+∞] be a proper lower
semi-continuous and convex functional. Then the subdifferential ∂ F as defined in 4.3 is
maximally monotone.

For the proof of this theorem we need Minty’s theorem. This theorem is recited from
Bauschke and Combettes [1, Thm. 21.1].

Theorem 5.4 (Minty’s theorem). Let H be a real Hilbert space and A : H → 2H be a
monotone operator. A is maximally monotone if and only if

ran(Id +A) = H,

where ran(·) is the range of the operator.

We do not want to prove this theorem, since this is beyond the limits of this thesis.
With Minty’s theorem we are able to prove 5.3.
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5. Monotone Operators

Proof. The first step is to verify that ∂ F is a monotone operator. We take two elements
(x, u), (y, v) in graph(∂ F). Then by the definition of the subdifferential 4.3 it holds

F(y) ≥ F(x) + 〈y − x, u〉

and
F(x) ≥ F(y) + 〈x− y, v〉 .

Adding these two inequalities yields

〈x− y, u− v〉 ≥ 0.

Hence, by definition 5.1 ∂ F is monotone.
The next step is to show that ran(Id +∂ F) = H . It is clear that ran(Id +∂ F) =
dom(Id +∂ F)−1. We use at this point without a proof that proxF = (Id +∂ F)−1, where
proxF is the proximal mapping of F [see 7.4 for the definition of the proximal mapping
and 7.7 for the proof of this statement]. It follows from the definition of the proximity
operator that domProxF = H for a proper lower semi-continuous and convex functional
F . Thus, we can conclude that ran(Id +∂ F) = H . Since we verified all requirements of
Minty’s theorem it follows from 5.4, that ∂ F is maximally monotone for every proper
lower semi-continuous and convex functional F .

We want to state a condition under which a maximally monotone operator is surjec-
tive. For this we need the Rockafellar-Veselý theorem. It is recited from Bauschke and
Combettes [1, Thm. 21.15], they also give a proof of this theorem.

Theorem 5.5 (Rockafellar-Veselý). Let H be a real Hilbert space, A : H → 2H be
maximally monotone and let x ∈ H. Then A is locally bounded at x if and only if
x /∈ boundary(domA).

Corollary 5.6. Let H be a real Hilbert space and let A, that maps from H to 2H, be
maximally monotone. A is surjective, if the following holds:

lim
‖x‖→∞

inf ‖Ax‖ =∞. (5.1)

Proof. Our first step is to show that A is surjective if and only if A−1 is locally bounded
everywhere on H. Assume that A−1 is locally bounded everywhere on H. By the
Rockafellar-Veselý theorem we get that for all x ∈ H, x /∈ boundary(domA−1). Thus,
domA−1 = H and therefore ranA = H. This yields that A is surjective.
Assume now that A is surjective. Then domA−1 = H and it yields that
x /∈ boundary(domA−1). Again by Rockafellar-Veselý A−1 is locally bounded every-
where on H.
Consequently, we assume that there exists a u ∈ H such that A−1 is not locally bounded
at u. Then there exists a sequence (xn, un) ∈ graphA, such that un → u and ‖xn‖ → ∞.
Ergo, ∞ = lim‖xn‖→∞ inf ‖Axn‖ ≤ lim ‖un‖ = ‖u‖ . This is a contradiction to the defi-
nition of u. As a deduction we get that A−1 must be locally bounded everywhere on H
and thus, that A is surjective.
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5. Monotone Operators

In addition we need to think about sums and compositions of maximally monotone
operators.

Theorem 5.7. Let A and B be maximally monotone operators from a real Hilbert space
H to 2H. A+B is maximally monotone if

cone(domA− domB) = span(domA− domB),

where cone(·) is the conical hull of the set, i.e. the smallest cone in H that contains the
set.

Proof. The Fitzpatrick function of a monotone operator A from H to 2H is given by

FA : H×H → [−∞,+∞], (x, u) 7→ sup
(y,v)∈graphA

(〈y, u〉+ 〈x, v〉 − 〈y, v〉).

We define the projection onto the first argument Q1 : H×H → H, (x, u) 7→ x. For a
maximally monotone operator A it holds

domA ⊂ Q1(domFA).

To verify this take x ∈ domA, then there exists a u ∈ H such that (x, u) ∈ graphA.
By the definition of the Fitzpatrick function it follows FA(x, u) = supy∈H(〈y,Ax〉 +
〈x,Ay〉 − 〈y,Ay〉) = supy∈H(〈x,Ax〉 − 〈x− y,Ax−Ay〉). The supremum is 〈x, u〉 since
〈x− y,Ax−Ay〉 ≥ 0. The positivity is given because A is maximally monotone. This
implies that x ∈ Q1(domFA). Furthermore, it holds

Q1(domFA) ⊂ dom A.

Then we get

cone(domA− domB) ⊂ cone(Q1 domFA −Q1 domFB)

⊂ span(Q1(domFA)−Q1(domFB))

⊂ span(dom A− dom B)

= span(domA− domB)

= cone(domA− domB).

It follows from this that 0 ∈ sri(Q1(domFA)−Q1(domFB)), where sri denotes the strong
relative interior. Hence, we get that A+B is maximally monotone. For a proof of this
implication see Bauschke and Combettes [1, Thm. 24.2].

There are three conditions which imply the condition of theorem 5.7.

Corollary 5.8. Let H be a real Hilbert space, A,B : H → 2H be maximally monotone.
If one of the following holds

i) domB = H,
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5. Monotone Operators

ii) domA ∩ int(domB) 6= ∅,

iii) 0 ∈ int(domA− domB),

then A+B is maximally monotone.

Proof. Clearly (i) implies (ii). Since domA ∩ int(domB) is not empty, there exists at
least one element such that x ∈ domA and x ∈ int domB. Hence, 0 ∈ int(domA −
domB) because int(domB) is open. It follows from (iii) that cone(domA − domB) =
span(domA− domB). Therefore, by theorem 5.7 A+B is maximally monotone.

The next theorem of this section deals with the composition of a maximally monotone
operator and a linear operator. We recite this theorem from Bauschke and Combettes [1,
Thm. 24.5].

Theorem 5.9. Let H and K be real Hilbert spaces, A : K → 2K be a maximally monotone
operator and let L be a bounded linear operator from H to K with domain H such that
cone(ranL−domA) = span(ranL−domA). Then L∗AL is maximally monotone, where
L∗ is the adjoint operator.

Proof. The Hilbert direct sum of two Hilbert spaces is given by

H⊕K :=
{

(xh, xk) ∈ H×K| ‖xh‖2H + ‖xk‖2K < +∞
}
.

H⊕K is a Hilbert space and the inner product is given by

〈(xh, xk), (yh, yk)〉 = 〈xh, yh〉H + 〈xk, yk〉K .

We are going to write H×K instead of H⊕K.
Let B : H → 2H and A : K → 2K be maximally monotone. Then B × A : H×K →
2H×K, (x, y) 7→ Bx × Ay is clearly maximally monotone by the definition of the inner
product for the Hilbert direct sum.
Set B = NgraphL the normal cone operator of graphL, that is defined by

NgraphL(xh, xk) =


{(uh, uk) ∈ H×K| sup 〈graphL− (xh, xk), (uh, uk)〉 ≤ 0}

if (xh, xk) ∈ graphL,

∅ otherwise.

From the definition of the normal cone operator follows directly that NgraphL is maxi-
mally monotone. Further we set

C : H×K → 2H×K, (x, y) 7→ {0} ×Ay.

C is also maximally monotone by the statement from above about the product of two
maximally monotone operators, since the zero-operator is clearly maximally monotone.
We have domB = graphL and domC = H× domA and thus dom(B + C) ⊂ graphL.
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5. Monotone Operators

Claim:
For all (x, u) ∈ H×H and for all v ∈ K it holds

(u, v) ∈ (B + C)(x, Lx)⇔ u+ L∗v ∈ L∗(A(Lx)). (5.2)

Take (x, u) ∈ H×H and v ∈ K. Then (B+C)(x, Lx) = NgraphL(x, Lx)+({0}×A(Lx)).
Firstly, we take a closer look on

NgraphL(x, Lx) =

{
(uh, uk) ∈ H×K

∣∣∣∣ sup
y∈H
〈(y, Ly)− (x, Lx), (uh, uk)〉 ≤ 0

}

=

{
(uh, uk) ∈ H×K

∣∣∣∣ sup
y∈H
〈y − x, uh + L∗uk〉 ≤ 0

}
H

= {(L∗w,−w)|w ∈ K} .

Then we have

(u, v) ∈ (B + C)(x, Lx)⇔ (u, v) ∈ NgraphL(x, Lx) + ({0} ×A(Lx))

⇔ (u, v) ∈ {(L∗w,−w)|w ∈ K}+ ({0} ×A(Lx))

⇔ ∃w ∈ K s.t. u = L∗w and v + w ∈ A(Lx)

⇔ u+ L∗v ∈ L∗(A(Lx)).

This proves (5.2). As we already mentioned above it is domB − domC = graphL −
(H× domA) = H×(ranL − domA) and since cone(ranL − domA) = span(ranL −
domA) it follows cone(domB − domC) = span(domB − domC). Ergo, we can deduce
with theorem 5.7 that B + C is maximally monotone. Take (z, w) such that

∀x ∈ H inf 〈x− z, L∗(A(Lx))− w〉 ≥ 0. (5.3)

Additionally choose (x, u) ∈ H×H, v ∈ K such that ((x, Lx), (u, v)) ∈ graph(B +C). It
follows with (5.2) that u+ L∗v ∈ L∗(A(Lx)) and we get from (5.3)

0 ≤ 〈x− z, u+ L∗v − w〉
= 〈x− z, u− w〉+ 〈Lx− Lz, v − 0〉
= 〈(x, Lx)− (z, Lz), (u, v)− (w, 0)〉 .

We can deduce by the maximal monotonicity of B+C that ((z, Lz), (w, 0)) ∈ graph(B+
C) and with (5.2) it follows w ∈ L∗(A(Lz)), i.e. (z, w) ∈ graph(L∗(A(Lx))) and therefore
L∗AL is maximally monotone.

With this theorem we have all the knowledge that we need to prove that our multi-
bang problem in chapter 6 has a solution.
We want to list additionally a lemma from Brezis, Crandall and Pazy [3] that we are
going to need for a proof in chapter 7.
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Theorem 5.10. Let H be a Hilbert space and B ⊂ H×H be maximally monotone. If
(un, vn) is a sequence in B where each component converges weakly, i.e. un ⇀ u, vn ⇀ v
and it holds

lim sup
n,m→∞

〈un − um, vn − vm〉 ≤ 0. (5.4)

Then (u, v) ∈ B.

Proof. We have
lim

n,m→∞
〈un − um, vn − vm〉 = 0

since B is monotone.
Let (uni , vni) be a subsequence of (un, vn) such that 〈uni , vni〉 → L. The first fact
together with (5.4) yield

0 = lim
ni→∞

(
lim

nk→∞
〈uni − unk , vni − vnk〉

)
= lim

ni→∞
〈uni , vni〉 − 〈uni , v〉 − 〈u, vni〉+ L

= 2L− 2 〈u, v〉 .

Thus L = 〈u, v〉 and 〈un, vn〉 → 〈u, v〉. From this we can deduce that
〈x− u, y − v〉 ≥ 0 ∀ (x, y) ∈ B. This implies that (u, v) ∈ B by the maximal monotonic-
ity of B.
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6. Multi-Bang Control Problem

This chapter is based on the ideas of Clason and Kunisch [7].
As mentioned in the introduction a bang-bang control is a control variable that attains
its control constrains u1 and u2 almost everywhere. In analogy to this we want to
introduce a multi-bang control. This is as already stated before a control that takes
on almost everywhere values from a discrete set of given control states ui [cf. Clason
and Kunisch [7], Introduction]. Therefore, we want to find a solution for the following
optimal control problem:

min
u,y∈L2(Ω,R2)

α

2
‖y − z‖2L2 + ‖u‖2L2 +

∫
Ω

δB(u(x)) dx,

s.t. Ay = u,

(6.1)

for a given open and bounded subset Ω of R2 and a given target z ∈ L2(Ω,R2).

B =

{(
1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
−1
−1

)
,

(
2
2

)
,

(
2
−2

)
,

(
−2
2

)
,

(
−2
−2

)}
:= {u1, u2, · · · , u8} .

Here δB is the indicator function of B given by

δB(t) =

{
0 if t ∈ B,
∞ otherwise.

A : H1
Γ → (H1

Γ)∗, Ay = u is the state equation and is assumed to be the linearised
elasticity equation with homogeneous Neumann conditions on Γ1

−2µdiv ε(y)− λ grad div y = u in Ω,

y = 0 on Γ0,

∇y · n = 0 on Γ1,

(6.2)

where ∇y is the deformation gradient

∇y =

(
∂y1

∂x1

∂y1

∂x2
∂y2

∂x1

∂y2

∂x2

)
and Id is the identity on R2×2. We recall the definition of the symmetrized gradient
ε(y) = 1

2(∇y +∇yT ). Γ0 and Γ1 are parts of the boundary of Ω as defined in figure 2.1.
We think back to the definition of H1

Γ that is given in section 2.1:

H1
Γ :=

{
v ∈ H1(Ω)2 : v(x) = 0 for x ∈ Γ0

}
.
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In this section we also verified that our state equation has a unique solution for all given
controls u, such that we can write y = A−1u.
We are able to split our cost functional in two parts. One part is the distance between
our state and the target

F : L2(Ω,R2)→ R, u 7→ α

2

∥∥A−1u− z
∥∥2

L2 .

This functional is easy to deal with, since it is Fréchet differentiable. The other part
takes care of the form of our control u:

G̃ : L2(Ω,R2)→ R, u 7→ ‖u‖2L2 +

∫
Ω

δB(u(x)) dx.

G̃ is challenging since it is neither lower semi-continuous nor convex. Thus, we are going
to look at the convex relaxation G of G̃, which is given by

G : L2(Ω,R2)→ R, u 7→
∫
Ω

max(‖u‖∞ , 1) dx+ δU (u),

where δU denotes the indicator function of the admissible set

U :=
{
u ∈ L2(Ω) : ‖u‖∞ ≤ 2

}
.

As we are going to see later we can find conditions under which the control of the problem
with G instead of G̃ also fulfils the requirement that it takes only values from B.
Hence, we are going to analyse the following optimal control problem:

min
u,y∈L2(Ω,R2)

α

2
‖y − z‖2L2 +

∫
Ω

max(‖u‖∞ , 1) dx,

s.t. Ay = u, ‖u‖∞ ≤ 2.

(6.3)

With the given definitions of F and G we can rewrite our system as

min
u
F(u) + G(u). (6.4)

With the definitions of the Fenchel conjugate 4.1 and the subdifferential 4.3 we can state
the primal-dual optimality system.

Theorem 6.1. The necessary optimality conditions for (6.4) are:{
p̄ = −F ′(ū),

ū ∈ ∂G∗(p̄).
(6.5)
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Proof. The necessary optimality condition is 0 ∈ F ′(ū) + ∂ G(ū). We set p̄ = −F ′(ū)
since F is Fréchet differentiable. As a result we get the optimality system{

p̄ = −F ′(ū),

p̄ ∈ ∂ G(ū).

By theorem 4.4 we get that the second term is equivalent to ū ∈ ∂G∗(p̄).

∂ G∗ is convex and lower semi-continuous according to theorem 4.2. Hence, the primal-
dual optimality system is well-defined. Therefore, we can claim the formal optimality
system for (6.3).

6.1. Formal Optimality System

We remember our functions:

F : L2(Ω)→ R, u 7→ α

2

∥∥A−1u− z
∥∥2

L2 ,

G : L2(Ω)→ R, u 7→
∫

Ω
max(‖u‖∞ , 1) dx+ δU (u).

(6.6)

In consonance with (6.5) we have to calculate the Fréchet derivative of F and the sub-
differential of the Fenchel conjugate of G.

6.1.1. Fenchel Conjugate and Subdifferential

By definition 4.1 it is
G∗(p) = sup

u∈L2(Ω,R2)

〈u, p〉L2 − G(u).

Since G is the integral of the function

g : R2 → R, v 7→ max(max(|v1| , |v2|), 1) + δ‖v‖∞≤2(v)

we can compute the Fenchel conjugate pointwise as stated in theorem 4.6:

G∗(p) =

∫
Ω
g∗(p(x)) dx.

We need to confirm the requirements of 4.6. g is clearly non-negative. Ergo, it remains
to verify that g is a normal integrand. The function is convex and therefore it is lower
semi-continuous. Furthermore, g is a Borel function itself since the inverse image of
every closed subset of R is a Borel set. Consequently, g is a normal integrand as stated
in 4.5. Thus, we can apply theorem 4.6 and have to calculate the Fenchel conjugate of
g.

For this we assume that the supremum for given q is attained at v̄. We have to
distinguish the following two cases:
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(i) 0 ≤ ‖v̄‖∞ ≤ 1. Then g(v̄) = 1 and therefore

g∗1(q) = ‖q‖`1 − 1.

(ii) 1 ≤ ‖v̄‖∞ ≤ 2. Then g(v̄) = ‖v̄‖∞ and hence

g∗(q) = sup
1≤|v1|,|v2|≤2

q1 · v1 + q2 · v2 −max(|v1| , |v2|).

We can assume without restriction of generality that |v1| ≥ |v2| . It follows that

g∗2(q) = |v1| (‖q‖`1 − 1)

=

{
‖q‖`1 − 1 if ‖q‖`1 ≤ 1,

2(‖q‖`1 − 1) if ‖q‖`1 ≥ 1.

We have to decide which of these cases gives the biggest value according to q, since
g∗(q) = max {g∗1(q), g∗21(q), g∗22(q)}. For ‖q‖`1 ≤ 1 it is g∗1(q) = g∗21(q) and for ‖q‖`1 ≥ 1
the maximal value is g∗22(q). From this it follows:

g∗(q) =

{
‖q‖`1 − 1 if ‖q‖`1 ≤ 1,

2(‖q‖`1 − 1) if ‖q‖`1 ≥ 1.
(6.7)

We are going to verify that the Fenchel conjugate g∗ is locally Lipschitz continuous, so
that we can use theorem 4.8 to calculate the subdifferential.

It is clear that g∗ is Lipschitz continuous for ‖q‖`1 < 1 and for ‖q‖`1 > 1. Because of
this we have to look only at a neighbourhood U of ‖q‖`1 = 1. Let q1, q2 ∈ U such that
‖q1‖`1 ≤ 1 and ‖q2‖`1 ≥ 1. We get

|g∗(q1)− g∗(q2)| = | ‖q1‖`1 + 1− 2 ‖q2‖`1 |
= 2 ‖q2‖`1 − ‖q1‖`1 − 1

≤ 2| ‖q2‖`1 − ‖q1‖`1 | ≤ 2 ‖q1 − q2‖`1 .

Hence, g∗ is locally Lipschitz continuous and we can calculate the Clarke subdifferential
instead of the convex subdifferential according to theorem 4.8. In addition g is a function
on R2. Thus, we can use theorem 4.9 to derive the Clarke subdifferential.
We start with the case ‖q‖`1 < 1. We have to take care of four different cases. The
gradient for q1 6= 0 and q2 6= 0 is

∇g∗(q) =

(
sgn(q1)
sgn(q2)

)
.

If q1 = 0 and q2 ∈ (−1, 1), q2 6= 0, Clarke’s generalized gradient is by definition (4.11)
the convex hull of (−1, sgn(q2))T and (1, sgn(q2))T :

∇g∗(q) =

(
−1

sgn(q2)

)
+ λ

(
2
0

)
, λ ∈ [0, 1] .
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Analogously we get for q1 ∈ (−1, 1), q1 6= 0 and q2 = 0

∇g∗(q) =

(
sgn(q1)
−1

)
+ λ

(
0
2

)
, λ ∈ [0, 1] .

The convex hull of the last two cases is Clarke’s generalized gradient for q1 = q2 = 0

∇g∗(q) = [−1, 1]× [−1, 1].

For the second case we have to discriminate three further cases to calculate the Clarke’s
generalized gradient.

∇g∗(q) =

(
2 sgn(q1)
2 sgn(q2)

)
, if q1 6= 0 and q2 6= 0.

By theorem 4.9 the Clarke’s generalized gradient is given by the convex hull of both
gradients if one component of q is zero:

∇g∗(q) =

(
−2

2 sgn(q2)

)
+ λ

(
4
0

)
, λ ∈ [0, 1] if q1 = 0 and q2 ∈ (−∞,−1) ∪ (1,∞),

∇g∗(q) =

(
2 sgn(q1)
−2

)
+ λ

(
0
4

)
, λ ∈ [0, 1] if q1 ∈ (−∞,−1) ∪ (1,∞) and q2 = 0.
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The subdifferential is by 4.8 and 4.9

∂g∗(q) = co({∇g∗1(q)} ∪ {∇g∗2(q)})

=



(
sgn(q1)

sgn(q2)

)
if ‖q‖`1 < 1 and q1, q2 6= 0,(

−1

sgn(q2)

)
+ λ

(
2

0

)
, λ ∈ [0, 1] if q1 = 0 and |q2| ∈ (0, 1),(

sgn(q1)

−1

)
+ λ

(
0

2

)
, λ ∈ [0, 1] if |q1| ∈ (0, 1) and q2 = 0,

[−1, 1]× [−1, 1] if q1 = q2 = 0,(
2 sgn(q1)

2 sgn(q2)

)
if ‖q‖`1 > 1 and q1, q2 6= 0,(

−2

2 sgn(q2)

)
+ λ

(
4

0

)
, λ ∈ [0, 1] if q1 = 0 and |q2| ∈ (1,∞),(

2 sgn(q1)

−2

)
+ λ

(
0

4

)
, λ ∈ [0, 1] if |q1| ∈ (1,∞) and q2 = 0,

(2− λ)

(
sgn(q1)

sgn(q2)

)
, λ ∈ [0, 1] if ‖q‖`1 = 1 and q1, q2 6= 0,(

(2− δ)µ
(2− δ) sgn(q2)

)
, δ ∈ [0, 1], µ ∈ [−1, 1] if q1 = 0 and |q2| = 1,(

(2− δ) sgn(q1)

(2− δ)µ

)
, δ ∈ [0, 1], µ ∈ [−1, 1] if |q1| = 1 and q2 = 0.

(6.8)
The different cases of the subdifferential are visualised in figure 6.1.

6.1.2. Fréchet Derivative

We already computed ∂ G∗, so it remains according to (6.5) to compute the Fréchet

derivative of F(u) = α
2

∥∥A−1u− z
∥∥2

L2 . We can eliminate the state variable y since we
have shown in section 2.1 that there exists a solution of the linearised elasticity equation
(6.2) for every given control u. In line with Clason [5] the Gateaux derivative is given
by

d

dt
F(u+ tφ)

∣∣
t=0

=
d

dt

(α
2

∥∥A−1(u+ tφ)− z
∥∥2

L2

) ∣∣
t=0

=
d

dt
(
α

2

∫
Ω
|A−1(u+ tφ)− z|2 dx)

∣∣
t=0

=
α

2

∫
Ω

2A−1uA−1φ+ 2t(A−1φ)2 − 2A−1φz dx
∣∣
t=0

= α
〈
A−1u− z,A−1φ

〉
L2

=
〈
αA−∗(A−1u− z), φ

〉
L2 .
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Figure 6.1.: The subdifferential ∂g∗.

Thus, the Gateaux derivative of our functional reads

DF(u) = αA−∗(A−1u− z).

It holds additionally

| F(u+ φ)−F(u)− 〈DF(u), φ〉 |
‖φ‖L2

=
|α
〈
A−1u− z,A−1φ

〉
+ α

2

〈
A−1φ,A−1φ

〉
− α

〈
A−1u− z,A−1φ

〉
|

‖φ‖L2

=
α

2
|
〈
A−∗(A−1φ),

φ

‖φ‖L2

〉
|

Cauchy−Schwarz
≤ 1

2

∥∥A−∗(A−1φ)
∥∥
L2

‖φ‖L2→0
−→ 0

By section 2.2 of Clason’s lecture notes [5] F is Fréchet differentiable and the Fréchet
derivative is

F ′(u) = αA−∗(A−1u− z). (6.9)

6.2. Existence and Stability of the Solution

In this section we are going to prove that the formal optimality system (6.5) has a unique
solution (ū, p̄). First we introduce sets Qi’s, S, Pij ’s and Lij ’s to give the subdifferential
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a more compact expression.

Qi =



{
q ∈ R2 |q1, q2 > 0 ∧ q2 + q2 < 1

}
i = 1,{

q ∈ R2 |q1 > 0, q2 < 0 ∧ q1 − q2 < 1
}

i = 2,{
q ∈ R2 |q1 < 0, q2 > 0 ∧ −q1 + q2 < 1

}
i = 3,{

q ∈ R2 |q1, q2 < 0 ∧ −q1 − q2 < 1
}

i = 4,{
q ∈ R2 |q1, q2 > 0 ∧ q1 + q2 > 1

}
i = 5,{

q ∈ R2 |q1 > 0, q2 < 0 ∧ q1 − q2 > 1
}

i = 6,{
q ∈ R2 |q1 < 0, q2 > 0 ∧ −q1 + q2 > 1

}
i = 7,{

q ∈ R2 |q1, q2 < 0 ∧ −q1 − q2 > 1
}

i = 8,

(6.10)

and

S =
4⋂
i=1

Qi. (6.11)

The Pij ’s are defined as follows:

Pij =

{⋂j
k=i

(
Qk ∩Qk+4

)
i=1,3, j = i+1,⋂3

k=0Qi+2k i=1,2, j = i+2.
(6.12)

From here we agree that Pij = Pji since each combination of indices exists only once.
This agreement makes the definition of the Lij ’s easier:

Lij =


(
Qi ∩Qj

)
\ (S ∪ Pij) i = 1,3, j = i + 1 and i = 1,2, j= i+2,(

Qi ∩Qj
)
\ Pi−4j−4 i = 5,7, j = i + 1 and i = 5,6, j= i+2,(

Qi ∩Qj
)
\ (Pij1 ∪ Pij2) i = 1,...,4, j = i + 4, j1 = 2, j2 = 3 for i

= 1,4 and j1 = 1, j2 = 4 for i = 2,3.

(6.13)

In figure 6.2 the different sets are illustrated.
We can rewrite (6.5) using the Fréchet derivative of F as

−p̄ = αA−∗(A−1u− z)
ū ∈ ∂ G∗(p̄),

(6.14)

where the subdifferential ∂ G∗ is given by theorem 4.6 pointwise almost everywhere as

∂ G∗(p)(x) = ∂g∗(p(x)) =



ui if p(x) ∈ Qi, 1 ≤ i ≤ 8,

co {ui, uj} if p(x) ∈ Lij , 1 ≤ i ≤ 7,
2 ≤ j ≤ 8,

co {u1, u2, u3, u4} if p(x) = S,

co {ui, uj , ui+4, uj+4} if p(x) = Pij , 1 ≤ i ≤ 3,
2 ≤ j ≤ 4.

(6.15)

Theorem 6.2. There exists a unique solution (ū, p̄) to (6.14) in L2(Ω,R2)×L2(Ω,R2).
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Figure 6.2.: Domains for the definition of ∂g∗.

Proof. We can eliminate p̄ from (6.14) by inserting the first equation into the second:

ū ∈ ∂ G∗(αA−∗(z −A−1ū)).

Also we aim to eliminate ū from this equation. So we introduce ȳ = z − A−1ū and get
the reduced optimality condition

z ∈ ȳ +A−1∂ G∗(αA−∗ȳ). (6.16)

We want to show that Id +A−1∂ G∗(αA−∗·) is maximally monotone, since we can deduce
from this that our operator is surjective.
We have proven in theorem 4.2 that G∗ is lower semi-continuous and convex. Therefore,
theorem 5.3 yields that ∂ G∗ is a maximally monotone operator. Now we have to verify
that A−1∂ G∗(αA−∗·) fulfils the hypotheses of theorem 5.9 so that we can conclude that
A−1∂ G∗(αA−∗·) is maximally monotone.
A and therefore A∗ are isomorphisms. It follows that A−∗ is a bounded operator. Since
we have shown in section 2.1 that the linearised elasticity equation has a solution for all
u ∈ (H1

Γ)∗ the domain of A−∗ is (H1
Γ)∗. It holds that L2(Ω,R2) is compactly embedded in

(H1
Γ)∗. It remains to prove that cone(ranA−∗ − dom ∂ G∗) = span(ranA−∗ − dom ∂ G∗).

cone(ranA−∗ − dom ∂ G∗) =
⋃
λ>0

λ(ranA−∗ − dom ∂ G∗) = L2(Ω,R2),

since ranA−∗ = H1
Γ ↪→ L2(Ω,R2) because of the fact that A−∗ is an isomorphism

and dom ∂ G∗ = L2(Ω,R2). Clearly span(ranA−∗ − dom ∂ G∗) = L2(Ω,R2) and thus,
A−1∂ G∗(αA−∗·) is maximally monotone by theorem 5.9. Obviously Id is maximally
monotone and dom Id = L2(Ω,R2). Because of this it holds that dom(A−1∂ G∗(αA−∗·))∩
int(dom Id) 6= ∅ and therefore we get from theorem 5.8 that Id +A−1∂ G∗(αA−∗·) is max-
imally monotone.
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As mentioned above A−1∂ G∗(αA−∗·) is maximally monotone and it follows by definition
5.1 that 〈

v, ∂A−1∂ G∗(αA−∗v)−A−1∂ G∗(αA−∗0)
〉
L2 ≥ 0

for all v ∈ L2(Ω,R2).〈
y +A−1∂ G∗(αA−∗y), y

〉
L2 = ‖y‖2L2 +

〈
A−1∂ G∗(αA−∗y), y

〉
L2

≥ ‖y‖2L2 +
〈
A−1∂ G∗(αA−∗0), y

〉
L2

‖y‖L2→∞→ ∞

Thus, Id +∂A−1∂ G∗(αA−∗·) is coercive and with theorem 5.6 the operator is surjectiv.
So for all z ∈ L2(Ω,R2) there exists a ȳ ∈ L2(Ω,R2) such that (6.16) is satisfied. We
can reformulate (6.16) for the solution ȳ as follows:

A(z − ȳ) ∈ ∂ G∗(αA−∗ȳ).

So the solution (ū, p̄) can be defined by

ū := A(z − ȳ) ∈ ∂ G∗(p̄),
p̄ := αA−∗ȳ = αA−∗(z −A−1ū).

We can deduce from this that p̄ is even an element of H1
Γ.

Our last step is to prove the uniqueness of the solution. Assume that ȳ1, ȳ2 ∈ L2(Ω,R2)
are two solutions of (6.16). Then

z ∈ ȳ1 +A−1∂ G∗(αA−∗ȳ1) and z ∈ ȳ2 +A−1∂ G∗(αA−∗ȳ2).

Subtracting these equations and making use of the fact that Id +A−1∂ G∗(αA−∗·) is
maximally monotone yields

0 ∈ ȳ1 +A−1∂ G∗(αA−∗ȳ1)− ȳ2 −A−1∂ G∗(αA−∗ȳ2)

⇒ 0 ∈
〈
ȳ1 +A−1∂ G∗(αA−∗ȳ1)− ȳ2 −A−1∂ G∗(αA−∗ȳ2), ȳ1 − ȳ2

〉
L2

= ‖ȳ1 − ȳ2‖2L2 +
〈
A−1∂ G∗(αA−∗ȳ1)−A−1∂ G∗(αA−∗ȳ2), ȳ1 − ȳ2

〉
L2︸ ︷︷ ︸

≥0 by monotonicity of ∂ G∗

≥ ‖ȳ1 − ȳ2‖2L2 ,

and therefore ȳ1 = ȳ2. Now we have to verify that it follows that the pair (ū, p̄) is unique.
It holds ū = A(z − ȳ) and p̄ = A−∗ȳ, A is an isomorphism and ȳ is unique. Hence, the
pair (ū, p̄) is also unique.

Later we need the solution of ū in order to remember that for a pair (ū, p̄) that satisfies
ū ∈ ∂ G∗(p̄) we have pointwise for almost all x

ū(x) ∈


ui if p(x) ∈ Qi, 1 ≤ i ≤ 8,

co {ui, uj} if p(x) ∈ Lij , 1 ≤ i ≤ 7, 2 ≤ j ≤ 8,

co {u1, u2, u3, u4} if p(x) = S,

co {ui, uj , ui+4, uj+4} if p(x) = Pij , 1 ≤ i ≤ 3, 2 ≤ j ≤ 4.

(6.17)
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We are going to show that our solution triple (ū, ȳ, p̄) depends continuously on our
target function z ∈ L2(Ω,R2).

Theorem 6.3. Let z ∈ L2(Ω,R2) and (ūz, ȳz, p̄z) be the corresponding solution to (6.14).
The following three statements hold:
a) There exists a constant K > 0 such that

‖ȳz1 − ȳz2‖L2 + ‖p̄z1 − p̄z2‖H1 ≤ K ‖z1 − z2‖L2

for all z1, z2 ∈ L2(Ω,R2).

b) For a sequence (zn)n ∈ L2(Ω,R2) with zn → z it holds (uzn , yzn) ⇀ (uz, yz) weakly in
(H1

Γ)∗ ×H1
Γ and pzn → pz strongly in H1

Γ.

c) For z ∈ L2(Ω,R2), let W be a compact subset of
⋃8
i=1Qi. A is an isomorphism

from H2(Ω) ∩ H1
Γ(Ω) to L2(Ω,R2) and Ω ⊂ R2 thus we can find a neighbourhood

Uz ⊂ L2(Ω,R2) and a constant KW such that

‖uz̃ − uz‖H2(ΩW ) ≤ KW ‖z̃ − z‖L2 ∀z̃ ∈ U(z),

where ΩW = {x|p̄(x) ∈W} .

Proof. a) For given z1, z2 ∈ L2(Ω,R2) let y1, y2 be the solution to (6.16) respectively.
Then it holds

z1 − z2 ∈ y1 − y2 +A−1(∂ G∗(αA−∗y1))−A−1(∂ G∗(αA−∗y2)).

From this we get

〈z1 − z2, y1 − y2〉L2

=
〈
y1 − y2 +A−1(∂ G∗(αA−∗y1))−A−1(∂ G∗(αA−∗y2)), y1 − y2

〉
L2

= ‖y1 − y2‖2L2

+
〈
(∂ G∗(αA−∗y1))− (∂ G∗(αA−∗y2)), A−∗y1 −A−∗y2

〉
L2︸ ︷︷ ︸

≥0, since ∂ G∗ is monotone

≥‖y1 − y2‖2L2 .

So we have

‖y1 − y2‖2L2 ≤ 〈z1 − z2, y1 − y2〉L2 ≤ ‖z1 − z2‖L2 ‖y1 − y2‖L2 .

The last estimation holds by Cauchy-Schwarz’s inequality.

⇒ ‖y1 − y2‖L2 ≤ ‖z1 − z2‖L2
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We can obtain from (6.14) and from the definition of y that y = A∗p.

‖z1 − z2‖L2 ≥
1

2
‖y1 − y2‖L2 +

1

2
‖y1 − y2‖L2

=
1

2
‖y1 − y2‖L2 +

1

2
‖A∗(p1 − p2)‖L2

≥ 1

2
‖y1 − y2‖L2 +

1

2
‖A∗‖ ‖p1 − p2‖H1

Γ

≥ min

(
1

2
,
1

2
‖A∗‖

)
︸ ︷︷ ︸

:= 1
K

(
‖y1 − y2‖L2 + ‖p1 − p2‖H1

Γ

)

The claim of a) follows.

b) For this part of the proof we set (ūzn , ȳzn , p̄zn) = (un, yn, pn) to simplify the nota-
tion. The first part of this theorem yields that (pn)n∈N is bounded in H1

Γ. By the
Rellich-Kondrachov compactness theorem [see [9], Thm. 5.1] H1

Γ is compactly em-
bedded in L2(Ω,R2). So (pn)n∈N is precompact in L2(Ω,R2) and hence there exists a
subsequence pnk such that pnk → p̄ := p̄z almost everywhere in Ω. Since ‖un‖∞ ≤ 2
the sequence (un)n∈N is bounded in L2(Ω,R2) and because of this there again exists
a subsequence (unk) such that unk ⇀ ũ weakly for some ũ ∈ L2(Ω,R2). The Qi’s are
open and as shown above pn → p almost everywhere, so it follows from (6.17) that

un → ū almost everywhere on

{
x ∈ Ω|p(x) ∈

8⋃
i=1

Qi

}
.

Since un ⇀ ũ and un is constant on Qi and these sets are open, we conclude that
ũ = ū.
It remains to consider the sets S, Pij , Lij as defined in (6.11), (6.12) and (6.13).
As shown above un ⇀ ũ weakly for some ũ ∈ L2(Ω,R2) independent of p(x). Using
Mazur’s theorem [see Yosida [15], Theorem V.1.2 for a proof] we obtain that for every
ε > 0 there exist coefficients γnj ≥ 0 with

∑ln
j=1 γ

n
j = 1 and indices nj ∈ n, n+ 1, ...

such that

ũn :=

ln∑
j=1

γnj unk → ũ strongly.

Hence we can take another subsequence ũnk of ũn such that ũnk → ũ almost every-
where. Now our aim is to verify that ũ is in ∂ G∗(p) on the union of the Lij ’s, Pij ’s
and S. All ũn’s are in the closed convex hull of some ui’s by (6.17). Therefore, ũ
must also be an element of this closed convex hull. This yields that ũ ∈ ∂ G∗(p) for
almost all x ∈ Ω. Hence, (ũ, y, p) satisfies (6.14). Since we have proven uniqueness
of the solution of (6.14) in the previous theorem this implies that ũ = u.

c) Let the sets Qi belong to the solution (ūz, ȳz, p̄z) of (6.14). Since we can restrict A
to an isomorphism form H2(Ω) ∩ H1

Γ(Ω) to L2(Ω,R2) and our Ω is a subset of R2
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we get from part b) of this theorem that pz̃ → pz as z̃ → z. Because of this there
exists a neighbourhood Uz of z such that {x ∈ Ω|p̄z ∈W ∩Qi} ⊂ {x ∈ Ω|pz̃ ∈ Qi}
for 1 ≤ i ≤ 8. It follows that

ūz = ūz̃ = ui on {x ∈ Ω|p̄z ∈W ∩Qi} .

Therefore, we know that the distance between ūz and ūz̃ is zero for all x ∈ ΩW . So
the claim follows.

6.3. Structure of the Solution

In this section we want to deal with the structure of our solution ū. We recall that our
aim was to get a multi-bang control, i.e. ū = ui almost everywhere. So we want to find
conditions under which we can fulfil this.
We observe that we can divide Ω in 9 different sets:

Ω =

8⋃
i=1

{x ∈ Ω|ū(x) = ui} ∪ {x ∈ Ω|ū(x) /∈ {u1, ..., u8}}

=:
8⋃
i=1

Ai ∪ S.

A :=
⋃8
i=1Ai is called the multi-bang arc and S the singular arc.

Clason and Kunisch [7, Prop. 2.3] were able to characterize the structure of the
solution for scalar functions as follows:

Ω =
8⋃
i=1

{x ∈ Ω|ū(x) = ui} ∪ {x ∈ Ω|ȳ(x) = z(x)} ,

under the assumption that A is a second order elliptic partial differential operator of the
form

Ay = −
n∑

i,j=1

∂xi(ai,j∂xjy) +

n∑
i=1

∂xi(biy)

with ai,j ∈W 1,∞(Ω), bi ∈ L∞(Ω) and that A fulfils

A−∗(L2(Ω)) ⊂W 2,1(Ω).

This is not possible for vector-valued functions as the following example shows.
The distance between the state y and the target z is given by the first equation of the
optimality system (6.14) as

1

α
A∗p = y − z. (6.18)
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Our aim is to construct an example were y−z 6= 0 on the singular arc. We can construct
a triple (u, y, p) that fulfils the optimality system (6.14) and from this we can deduce a
target z which does not fulfil the condition of Calson and Kunisch.
We take Ω = [0, 1]2 and choose A = −∆ with homogeneous Dirichlet boundary condi-
tions on Γ0 = {0} × [0, 1] ∪ {1} × [0, 1] and inhomogeneous Dirichlet conditions on the
other part of ∂Ω. We know that the Laplace operator is self-adjoint. Therefore, we need
according to (6.18) a p with −∆p 6= 0. Our choice is

p(x, y) =

(
−x2 + x

0

)
.

This p has homogeneous boundary conditions on Γ0 and p(x, 0) = p(x, 1) = −x2 + x on
∂Ω \ Γ0.
We observe that p(x) ∈ L12 =

{
q ∈ R2 |q ∈ (0, 1)× {0}

}
for all x ∈ Ω and therefore Ω is

the singular arc.
From the definition of L12 (6.8) we get that u must be in the following set if we want to
fulfil the second equation the optimality system (6.14):

u(x, y) ∈
(

1
−1

)
+ λ

(
0
2

)
, λ ∈ [0, 1].

We choose u(x, y) =

(
1
0

)
. We calculate the solution of the PDE numerically. A linear

finite element approach is used. Ω is uniformly triangulated with Nh = 256×256 nodes.
The code for the mass and the stiffness matrix can be found in appendix A.
Furthermore, we choose α = 100.
Figure 6.3 shows ‖z − y‖2 at each point of the triangulation. As one can observe in
figure 6.3 that y(x) 6= z(x) for all

p(x) ∈ L12 = {x ∈ Ω|p(x) ∈ (0, 1)× 0} = Ω.

So the characterisation of the singular arc given by Calson and Kunisch is not applicable
for vector-valued functions.
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6. Multi-Bang Control Problem

Figure 6.3.: Norm of the residual of the state y and the target z
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We want to compute a solution for our primal-dual optimality system (6.5). This can
be written with the introduction of the optimal state ȳ = A−1u as follows

Aȳ = ū,

1

α
A∗p̄ = z − ȳ,

ū ∈ ∂ G∗(p̄).

(7.1)

The subdifferential is set-valued and this causes problems for the numerical computation
of a solution. Consequently, we are going to regularize the subdifferential. We use the
Moreau-Yosida regularization since this regularization is single-valued as we will see
later.

7.1. Moreau-Yosida Regularization

At first we want to give the definition of the infimal convolution. From this we can
derive the definition of the Moreau envelope. We need this definition to define the
Moreau-Yosida regularization. The following definitions are taken form Bauschke and
Combettes [1].

Definition 7.1 (Infimal convolution). Let H be a real Hilbert space, f, g : H → (−∞,+∞] .
The infimal convolution of f and g is given by

f�g : H → R, x 7→ inf
y∈H

(f(y) + g(x− y)). (7.2)

f�g is exact at x ∈ H if the infimum is attained, i.e. (f�g)(x) = miny∈H f(y)+g(x−y).

The Moreau envelope of a function f is the infimal convolution of f with a function g
that depends on a parameter γ.

Definition 7.2 (Moreau envelope). Again let H be a real Hilbert space, f a function
from H to (−∞,+∞] and γ ∈ (0,∞).

fγ = f�

(
1

2γ
‖·‖2

)
, i.e. fγ(x) = inf

y∈H
(f(y) +

1

2γ
‖x− y‖2) (7.3)

is the Moreau envelope of f of parameter γ.

We want to mention several properties of the Moreau envelope.
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Theorem 7.3. Let f be a proper convex function from a Hilbert space H to (−∞,+∞].
The Moreau envelope of f is convex, real-valued and exact.

Proof. By assumption f is convex and 1
2γ ‖·‖

2 is supercoercive, hence convex. Thus,
we get that the Moreau envelope is convex [for a proof that the infimal convolution
of two convex functions is convex see Bauschke and Combettes [1] Prop. 12.11]. The

supercoercivity yields also that f�
(

1
2γ ‖·‖

2
)

is exact [see again [1] Prop. 12.14 for a

more detailed proof]. The Moreau envelope is real-valued because of the fact that fγ is
bounded from above on every ball in H [see [1] Prop. 12.9].

Our next step is to define the proximal mapping of f and list the interplay between
the proximal mapping and the Moreau envelope.

Definition 7.4 (Proximal mapping). Let f be a proper lower semi-continuous and con-
vex function from H to (−∞,+∞]. proxf (x) is the unique point in H for which the
minimum in the definition of f1 is attained, i.e.

f1(x) = min
y∈H

(
f(y) +

1

2
‖x− y‖2

)
:= f(proxf (x)) +

1

2
‖proxf (x)− x‖2 .

proxf : H → H is called proximal mapping.

Theorem 7.5. We can write the Moreau envelope with the definition of the proximal
mapping in the following way:

fγ(x) = f(proxγf (x)) +
1

2γ

∥∥proxγf (x)− x
∥∥2
. (7.4)

Proof. The first step is to verify that (γf)1 = γ(fγ).

(γf)1 = min
y∈H

(γf(y) +
1

2
‖x− y‖2) = γ(min

y∈H
f(y) +

1

2γ
‖x− y‖2) = γfγ

From this we get in a second step

fγ =
1

γ
(γf)1 =

1

γ
(γf(proxγf (x)) +

1

2

∥∥x− proxγf (x)
∥∥2
.

As a result, we get our claim.

We want to mention that we can also write the proximal mapping in the following
way

proxγf (x) = arg miny∈H f(y) +
1

2γ
‖x− y‖2 . (7.5)

Since we now know about the Moreau envelope of a function we want to define the
Yosida approximation of a set-valued operator.
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Definition 7.6 (Yosida approximation). Let A : H → 2H be a set-valued operator on a
Hilbert space H and let γ ∈ (0,∞). The resolvent of A is given by

JA = (Id +A)−1. (7.6)

Aγ =
1

γ
(Id−JγA) (7.7)

is called Yosida approximation of A of index γ.

Our next theorem shows the connection between the resolvent of ∂f and the proximal
mapping.

Theorem 7.7. Let H be a Hilbert space and f : H → (−∞,+∞] be proper and convex.
Then proximal mapping of γf equals the resolvent of γ∂f , i.e.

proxγf = Jγ∂f = (Id +γ∂f)−1. (7.8)

Proof. Let y ∈ H be an arbitrary point and set p = proxγf (x). For all α ∈ (0, 1) we
define pα = αy + (1− α)p. From the definition of the proximal mapping we get

γf(p) ≤ γf(pα) +
1

2
‖x− pα‖2 −

1

2
‖x− p‖2

≤ α(γf)(y) + (1− α)(γf)(p)− α 〈x, y〉+ α 〈x, p〉+
α2

2
〈y, y〉

+ α 〈y, p〉 − α2 〈y, p〉 − α 〈p, p〉+
α2

2
〈p, p〉

= α(γf)(y) + (1− α)(γf)(p)− α 〈x− p, y − p〉+
α2

2
〈y − p, y − p〉 .

The second inequality yields because of the convexity of f . We obtain from this inequality
through dividing by α

〈y − p, x− p〉+ γf(p) ≤ γf(y) +
α

2
‖y − p‖2 .

For α → 0 we get 〈y − p, x− p〉 + γf(p) ≤ γf(y) and since y ∈ H was arbitrary we
achieve with the definition of the subdifferential 4.3 that

x− p ∈ γ∂f(p)⇔ p ∈ (Id +γ∂f)−1(x).

For the other inclusion let p = (Id +γ∂f)−1(x). This is obviously equivalent to x− p ∈
γ∂f(p). Again with the definition of the subdifferential 4.3 it holds

〈y − p, x− p〉+ γf(p) ≤ γf(y)∀y ∈ H

⇔γf(p) +
1

2
‖x− p‖2 ≤ γf(y) +

1

2
‖x− p‖2 + 〈y − p, p− y〉+

1

2
‖p− y‖2 ∀y ∈ H

⇔γf(p) +
1

2
‖x− p‖2 ≤ γf(y) +

1

2
‖x− y‖2 ∀y ∈ H .

This yields that the minimum is attained at p and therefore we have p = proxγf (x).
Finally we have proxγf = (Id +γ∂f)−1.
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Now we are able to define the Moreau-Yosida regularization.

Definition 7.8 (Moreau-Yosida regularization). Let H be a Hilbert space and f : H →
(−∞,+∞) be a proper convex function. Then

(∂f)γ(p) =
1

γ

(
p− proxγf (p)

)
(7.9)

is the Moreau-Yosida regularization of ∂f .

In the following theorem we want to list several properties of proxγf and (∂f)γ . This
theorem is recited from Clason, Ito and Kunisch [6, Prop. 2.3].

Theorem 7.9. Let f be a proper convex function from a Hilbert space H to (−∞,+∞).
Then
a) (∂f)γ = (fγ)′,

b) (∂f)γ is single-valued, maximally monotone and Lipschitz continuous with Lipschitz
constant 1

γ ,

c) ‖(∂f)γ(x)‖ ≤ infq∈∂f(v) ‖q‖H for all x ∈ H,

d) f(proxγf (x)) ≤ fγ(x) ≤ f(x) for all γ > 0 and v ∈ H.

Proof. a) Let x, y ∈ H with x 6= y. Then set p = proxγf (x) and q = proxγf (y). By
theorem 7.5 we get

fγ(y)− fγ(x) = f(q)− f(p)︸ ︷︷ ︸
≥ 1
γ
〈q−p,x−p〉 by Thm. 7.7

+
1

2γ

(
‖y − q‖2 − ‖x− p‖2

)

≥ 1

2γ

(
‖y − q‖2 − ‖x− p‖2 + 2 〈q − p, x− p〉

)
=

1

2γ

(
‖y − q‖2 − 2 〈y − q, x− p〉+ ‖x− p‖2

− 2 ‖x− p‖2 + 2 〈y − q, x− p〉+ 2 〈q − p, x− p〉
)

=
1

2γ

(
‖y − q − x+ p‖2 + 2 〈y − x, y − p〉

)
≥1

γ
〈y − x, y − p〉 .

Analogous we get fγ(x) − fγ(y) ≥ 1
γ 〈x− y, y − q〉. Adding these two inequalities

yields

0 ≤ 1

γ
(〈y − x, y − q〉 − 〈y − x, x− p〉)

=
1

γ
(〈y − x, (y − q)− (x− p)〉) .
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An operator T : D → H, where D is a subset of a Hilbert space H, is called firmly
nonexpansive if ∀ x, y ∈ D ‖Tx− Ty‖2 + ‖(Id−T )x− (Id−T )y‖2 ≤ ‖x− y‖2. The
proximal mapping is firmly nonexpansive [see Bauschke and Combettes [1], Prop.
12.27 for a proof]. Thus, we get that

0 ≤ 1

γ
(〈y − x, (y − q)− (x− p)〉)

≤ 1

γ

(
‖y − x‖2 − ‖q − p‖2 − 〈q − p, (y − q)− (x− p)〉︸ ︷︷ ︸

≥0, proxγf firmly nonexpansive

)

≤ 1

γ
‖y − x‖2 .

Therefore, limy→x
fγ(y)−fγ(x)−〈y−x,γ−1(x−p)〉

‖y−x‖ = 0 and therefore fγ is Fréchet differ-

entiable with derivative 1
γ (Id−proxγf ). The Fréchet derivative equals the Moreau-

Yosida approximation of ∂f .

b) The Lipschitz continuity follows directly from the fact that proxγf and therefore
Id−proxγf are firmly nonexpansive and thus both operators are Lipschitz continuous

with constant 1. Hence, 1
γ (Id−proxγf ) is Lipschitz continuous with constant 1

γ .

Since we verified in theorem 7.7 that proxγf = (Id +γ∂f)−1, (Id +γ∂f)−1 and also
Id−(Id +γ∂f)−1 are firmly nonexpansive. This yields the maximally monotonicity of
those two operators. From the maximally monotonicity of Id−(Id +γ∂f)−1 we can
deduce that (∂f)γ is γ-coercive and thus maximally monotone. The Moreau-Yosida
regularization is single-valued because the proximal mapping is unique.

c) Let y = (∂f)γ(x) and q ∈ ∂f(x). Then

y = (∂f)γ(x)⇔ y =
1

γ

(
Id−(Id +γ∂f)−1

)
(x)

⇔ (Id +γ∂f)−1(x) = x− γy
⇔ y ∈ ∂f(x− γy)

⇔ (x− γy, y) ∈ graph ∂f.

We have proven in theorem 5.3 that ∂f is maximally monotone and accordingly we
get

0 ≤ 1

γ
〈x− (x− γy), q − y〉 = 〈y, q − y〉 ≤ ‖q‖ ‖y‖ − ‖y‖2 ,

where the last inequality holds due to Cauchy-Schwarz. Thus, we have

‖(∂f)γ(x)‖ ≤ ‖q‖ ∀q ∈ ∂f(x).

Consequently, this is also true for the infimum.

d) From the definition of the proximal mapping it is clear that f(proxγf (x)) ≤ fγ(x). We
can derive the second inequality directly from the definition of the Moreau envelope.
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Now we are able to define the regularized system. For brevity we set Hγ := (∂ G∗)γ .

Ayγ = uγ
1

α
A∗pγ = z − yγ

uγ = Hγ(pγ)

(7.10)

Since Hγ is maximally monotone and the other prerequisites are not changed we can
deduce that (7.10) has a unique solution (uγ , yγ , pγ) with the same arguments as in the
proof of theorem 6.2. We need to think about the convergence of our regularised system.
The poof of this theorem is in line with Clason, Ito and Kunisch [6].

Theorem 7.10. The sequence {(uγ , yγ , pγ)}γ>0 converges weakly to the solution (ū, ȳ, p̄)
of (7.1) as γ → 0.

Proof. Our first step is to prove that we can find a subsequence of {(uγ , yγ , pγ)}γ>0 that
converges weakly as γ → 0 to the solution (ū, ȳ, p̄). Therefore, observe that we can
bound (G∗γ)∗(0) in the following way:

(G∗γ)∗(0) = sup
p∈L2(Ω,R2)

−G∗γ(p) = inf
p∈L2(Ω,R2)

G∗γ(p) ≤ inf
p∈L2(Ω,R2)

G∗(p).

Here we have used the definition of the Fenchel conjugate 4.1 and theorem 7.9 c). Since
uγ is optimal for any given γ > 0 we get

F(uγ) ≤ F(uγ) + (G∗γ)∗(uγ) ≤ F(0) + (G∗γ)∗(0) ≤ F(0) + inf
p∈L2(Ω,R2)

G∗(p)

according to the facts that (G∗γ)∗ is non-negative and the estimation above. This yields
that {F(uγ)}γ>0 is bounded. Now we are going to show that the boundedness of

{F(uγ)}γ>0 implies boundedness of {F ′(uγ)}γ>0.∥∥F ′(uγ)
∥∥
L2 =

∥∥αA−∗(A−1uγ − z)
∥∥
L2 ≤ α

∥∥A−∗∥∥∥∥A−1uγ − z
∥∥
L2 ≤ C,

because A−∗ is an isomorphism and therefore its operator norm is bounded. The ‖·‖L2-
norm is bounded since {F(uγ)}γ>0 is bounded.

It follows from the boundedness of {F ′(uγ)}γ>0 that

{pγ}γ>0 =
{
F ′(uγ)

}
γ>0

is bounded. Our next goal is to verify that {uγ}γ is also bounded. We have

‖uγ‖L2 = ‖Hγ(pγ)‖L2

7.9
≤ inf

q∈∂ G∗(pγ)
‖q‖L2 ≤ C̃.

The last inequality holds true since our ∂ G∗ is bounded. {yγ}γ>0 =
{
A−1uγ

}
γ>0

is also

bounded because of the fact that A−1 is an isomorphism.
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Thus {(uγ , yγ , pγ)}γ>0 is bounded and hence contains a weakly convergent subsequence.
[See Bauschke and Combettes [1], Lemma 2.37 for a proof of this fact.] Let uγn ⇀
û, yγn ⇀ ŷ and pγn ⇀ p̂.
We want to prove that the graph of F ′ is weakly closed: Let (un, gn) be a sequence in
graphF ′ that converges weakly to (u, g). We get that

gn = αA−∗(A−1un − z).

As un ⇀ u
αA−∗(A−1un − z) ⇀ αA−∗(A−1u− z) = g.

As a result (u, g) is an element of graphF ′ and thus the claim follows.
Accordingly to the weak closedness of graphF ′ we get

p̂ = −F ′(û).

Using that F ′ is monotone by theorem 5.3 and the relations of (7.10) yields

〈Hγ1(pγ1)−Hγ2(pγ2), pγ1 − pγ2〉 = −
〈
uγ1 − uγ2 ,F ′(uγ1)−F ′(uγ2)

〉
≤ 0

for any γ1, γ2 > 0. This implies that

lim sup
n,m→∞

〈Hγn(pγn)−Hγm(pγm), pγn − pγm〉 ≤ 0.

The maximal monotonicity of Hγ and the fact that Hγ(pγ) ∈ ∂ G∗(pγ) give that we can
apply theorem 5.10 to the graph of ∂ G∗. According to this theorem (p̂, û) ∈ graph ∂ G∗.
Since A is an isomorphism it holds Aŷ = û. Altogether (û, ŷ, p̂) is a solution of (7.1).
Now we aim to verify that the whole sequence converges to the solution (ū, ȳ, p̄):
Assume that there exists a subsequence (ũγn , ỹγn , p̃γn) of (uγ , yγ , pγ) that converges
weakly to (ũ, ỹ, p̃) 6= (û, ŷ, p̂). With the same arguments as before we get that (ũ, ỹ, p̃)
is also a solution of (7.1). System (7.1) has a unique solution as mentioned before and
therefore (ũ, ỹ, p̃) = (û, ŷ, p̂). This is a contradiction to our assumption and this implies
that (uγ , yγ , pγ) ⇀ (ū, ȳ, p̄).

7.1.1. Proximal Mapping of g∗

We need to derive the proximal mapping of γg∗. Therefore, we use that proxγg∗(v) =
(Id +γ∂g∗)−1(v) and that the following equivalence holds

w := (Id +γ∂g∗)−1(v)⇔ v ∈ (Id +γ∂g∗)(w) = w + γ∂g∗(w). (7.11)

To calculate the proximal mapping we go along with the cases in the subdifferential.

i) w ∈ Q1 : In this case we have v = w + γ

(
1
1

)
. Solving this relation for w we get

w = v−γ
(

1
1

)
. The definition of Q1 yields that w1, w2 > 0 and w1 +w2 < 1. Using

all conditions we get that

v1, v2 > γ and v1 + v2 < 1 + 2γ.
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For the Moreau-Yosida regularization we have

(∂g∗)γ(p) =
1

γ

(
p− proxγg∗(p)

)
=

1

γ

(
p− p+ γ

(
1
1

))
=

(
1
1

)
.

We can calculate the Qγi ’s for i = 2, 3, 4 in the same way. For all these Qi’s the
proximal mapping is p− γui and therefore the Moreau-Yosida regularization equals
ui. The sets for the definition of (∂g∗)γ are the Qi’s shifted with γui.

ii) w ∈ Q5: In this case we have v = w+ γ

(
1
1

)
. Solving this equation for w and using

the definition of Q5, i.e. w1, w2 > 0 and w1 + w2 > 1, we get

v1, v2 > 2γ and v1 + v2 > 1 + 4γ.

The Moreau-Yosida regularization is again ui since the subdifferential of g∗ is single-
valued on all Qi’s. For i = 5, 6, 7, 8 Qγi equals Qi shifted with γui.

iii) w ∈ S: In this case w1 = w2 = 0 and from (7.11) we get that v1 ∈ [w1 − γ,w1 + γ]
and v2 ∈ [w2 − γ,w2 + γ]. Hence, we have

v ∈ [−γ, γ]× [−γ, γ] .

The Moreau-Yosida regularization reads the following:

(∂g∗)γ(p) =
1

γ

((
p1

p2

)
−
(

0
0

))
=

1

γ
p.

iv) w ∈ P12: In this case w =

(
1
0

)
and we have v ∈ w+ γ

(
(2− δ)

(2− δ)µ

)
for δ ∈ [0, 1] and

µ ∈ [−1, 1]. This yields v1 = 1 + γ(2− δ) and v2 = (v1 − 1)µ. Altogether we have

v1 ∈ [1 + γ, 1 + 2γ] and v2 ∈ [1− v1, v1 − 1] .

For the Moreau-Yosida regularization we can insert our point P12

(∂g∗)γ(p) =
1

γ

(
p−

(
1
0

))
.

We can proceed in the same way for the other Pij ’s.

v) w ∈ L12: In this case v ∈ w + γ

((
1
−1

)
+ λ

(
0
2

))
for λ ∈ [0, 1]. Additionally, we

have 0 < w1 < 1 and w2 = 0 from the definition of L12. Thus, we get

v1 ∈ (γ, 1 + γ) and v2 ∈ [−γ, γ] .

Since w2 = 0 we have 0 = v2 + γ − 2λγ and we can determine λ = v2
2γ + 1

2 . From
the definition of v2 we see that it holds λ ∈ [0, 1] .

(∂g∗)γ(p) =
1

γ

[
p− p+ γ

((
1
−1

)
+

(
p2

2γ
+

1

2

)(
0
2

))]
=

(
1
p2

γ

)
.
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We can do the same calculation for L24, L34 and L13. The sets for the regularization
are neighbourhoods of 2γ in one direction and 1 in the other direction of the axes.
The Moreau-Yosida regularization is constant in the component that is not 0 and
in the other component it is the component divided by γ.

vi) w ∈ L56: In this case v ∈ w + γ

((
2
−2

)
+ λ

(
0
4

))
for λ ∈ [0, 1]. We have again

w2 = 0 and w1 > 1 from the definition of L56. Hence, using both conditions

v1 > 1 + 2γ and v2 ∈ [−2γ, 2γ] .

We can compute λ as in the case before since w2 = 0 again. Here we get λ = v2
4γ + 1

2
and by the definition of v2 λ is again in [0, 1] and therefore it is well-defined. As the
Moreau-Yosida regularization we have

(∂g∗)γ(p) =
1

γ

[
p− p+ γ

((
2
−2

)
+

(
p2

4γ
+

1

2

)(
0
4

))]
=

(
2
p2

γ

)
.

As in the case before we can calculate the sets and regularizations in the same way
for L68, L78 and L57. The sets are 4γ hoses around the axes and for the regularization
we have the same as in case v).

vii) w ∈ L15: In this case we have ‖w‖`1 = 1, w1, w2 > 0 and v ∈ w + γ(2− λ)

(
1
1

)
for

λ ∈ [0, 1]. From these restrictions on w we get for v

v1 − 1 < v2 < v1 + 1 and 1 + 2γ ≤ v1 + v2 ≤ 1 + 4γ.

With the equation w1 + w2 = 1 we can determine λ as 2 − v1+v2−1
2γ . From this we

get the following Moreau-Yosida regularization:

(∂g∗)γ(p) =
1

γ

[
p− p+ γ

(
2− 2 +

p1 + p2 − 1

2γ

)(
1
1

)]
=

1

2γ

[(
p1 + p2

p1 + p2

)
−
(

1
1

)]
.

We can proceed analogously for L26, L48 and L37.
In figure 7.1 one can see the different sets for the definition of the regularization. To
sum up all our definitions we want to state first the sets and then the regularization.
The regularized version of Qi is

Qγi =



{
q ∈ R2 |q1, q2 > γ ∧ q1 + q2 < 1 + 2γ

}
i = 1,{

q ∈ R2 |q1 > γ, q2 < −γ ∧ q1 − q2 < 1 + 2γ
}

i = 2,{
q ∈ R2 |q1 < −γ, q2 > γ ∧ −q1 + q2 < 1 + 2γ

}
i = 3,{

q ∈ R2 |q1, q2 < −γ ∧ −q1 − q2 < 1 + 2γ
}

i = 4,{
q ∈ R2 |q1, q2 > 2γ ∧ q1 + q2 > 1 + 4γ

}
i = 5,{

q ∈ R2 |q1 > 2γ, q2 < −2γ ∧ q1 − q2 > 1 + 4γ
}

i = 6,{
q ∈ R2 |q1 < −2γ, q2 > 2γ ∧ −q1 + q2 > 1 + 4γ

}
i = 7,{

q ∈ R2 |q1, q2 < −2γ ∧ −q1 − q2 > 1 + 4γ
}

i = 8,

(7.12)
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Figure 7.1.: Subdomains for the definition of (∂g∗)γ .

and the one of S
Sγ =

{
q ∈ R2 |q ∈ [−γ, γ]× [−γ, γ]

}
. (7.13)

The regularized sets of the Pij ’s and Lij ’s are

P γij =



{
q ∈ R2 |q1 ∈ [1 + γ, 1 + 2γ] ∧ q2 ∈ [1− q1, q1 − 1]

}
i = 1, j = 2,{

q ∈ R2 |q1 ∈ [1 + q2,−1− q2, ] ∧ q2 [−1− 2γ,−1− γ]
}

i = 2, j = 4,{
q ∈ R2 |q1 ∈ [−1− 2γ,−1− γ] ∧ q2 ∈ [1 + q1,−1− q1]

}
i = 3, j = 4,{

q ∈ R2 |q1 ∈ [1− q2, q2 − 1] ∧ q2 ∈ [1 + γ, 1 + 2γ]
}

i = 1, j = 3,

(7.14)
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Lγij =



{
q ∈ R2 |γ < q1 < 1 + γ ∧ −γ ≤ q2 ≤ γ

}
i = 1, j = 2,{

q ∈ R2 | − γ ≤ q1 ≤ γ ∧ −1− γ < q2 < −γ
}

i = 2, j = 4,{
q ∈ R2 | − 1− γ < q1 < −γ ∧ −γ ≤ q2 ≤ γ

}
i = 3, j = 4,{

q ∈ R2 | − γ ≤ q1 ≤ γ ∧ γ < q2 < 1 + γ
}

i = 1, j = 3,{
q ∈ R2 |q1 > 1 + 2γ ∧ −2γ ≤ q2 ≤ 2γ

}
i = 5, j = 6,{

q ∈ R2 | − 2γ ≤ q1 ≤ 2γ ∧ q2 < −1− 2γ
}

i = 6, j = 8,{
q ∈ R2 |q1 < −1− 2γ ∧ −2γ ≤ q2 ≤ 2γ

}
i = 7, j = 8,{

q ∈ R2 | − 2γ ≤ q1 ≤ 2γ ∧ q2 > 1 + 2γ
}

i = 5, j = 7,{
q ∈ R2 |q1 − 1 < q2 < q1 + 1 ∧ 1 + 2γ ≤ q1 + q2 ≤ 1 + 4γ

}
i = 1, j = 5,{

q ∈ R2 | − q1 − 1 < q2 < −q1 + 1 ∧ 1 + 2γ ≤ q1 − q2 ≤ 1 + 4γ
}

i = 2, j = 6,{
q ∈ R2 |q1 − 1 < q2 < q1 + 1 ∧ 1 + 2γ ≤ −q1 − q2 ≤ 1 + 4γ

}
i = 4, j = 8,{

q ∈ R2 | − q1 − 1 < q2 < −q1 + 1 ∧ 1 + 2γ ≤ −q1 + q2 ≤ 1 + 4γ
}

i = 3, j = 7.

(7.15)

The Moreau-Yosida regularization reads the following:

(∂g∗)γ(q) =



ui if q ∈ Qγi ,
1
γ p if q ∈ Sγ ,
1
γ (p− Pij) if q ∈ P γij ,(

sgn(p1)
p2

γ

)
if q ∈ Lγ12 ∨ q ∈ L

γ
34,(

p1

γ

sgn(p2)

)
if q ∈ Lγ24 ∨ q ∈ L

γ
13,(

2 sgn(p1)
p2

γ

)
if q ∈ Lγ56 ∨ q ∈ L

γ
78,(

p1

γ

2 sgn(p2)

)
if q ∈ Lγ68 ∨ q ∈ L

γ
57,

p1+p2

2γ

(
1

1

)
− 1

2γ

(
sgn(p1)

sgn(p2)

)
if q ∈ Lγ15 ∨ q ∈ L

γ
48,

p1−p2

2γ

(
1

−1

)
− 1

2γ

(
sgn(p1)

sgn(p2)

)
if q ∈ Lγ26 ∨ q ∈ L

γ
37.

(7.16)
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7.2. Semismooth Newton Method

Now we want to compute a solution of our regularized system (7.10) with a semismooth
Newton method. We can reduce our regularized system via elimination of uγ to the
state and the dual variable

1

α
A∗pγ = z − yγ ,

Ayγ = Hγ(pγ).
(7.17)

First we want to give the definition of semismoothness. It is recited from [11], Def 2.1.

Definition 7.11. Let X,Y be Banach spaces and G : X → Y be a continuous operator.
Additionally let ∂∗ G be a generalized differential of G, e.g. the subdifferential if G is
convex or the Clarke differential. Then G is called semismooth at x ∈ X if

sup
M∈∂∗ G(x+d)

‖G(x+ d)− G(x)−Md‖Y = o(‖d‖x) for ‖d‖x → 0. (7.18)

A Newton method aims to solve the problem:

For a given operator G : X → Y, find x̄ ∈ X such that G(x̄) = 0.

(cf. [10], p. 3)
For a semismooth operator a Newton method is defined via the following algorithm
according to [11] chapter 2.4.5.

Algorithm 1 Semismooth Newton method

Choose an initial point x0 ∈ X (sufficiently close to the solution x̄)
for k = 1,2, ... do

Choose Mk ∈ ∂∗ G(xk).
Solve Mkδx

k = −G(xk) for δxk.
Set xk+1 = xk + δxk.

end for

Consequently, we are interested in the solution of the following problem:

F (y, p) :=

(
y − z + 1

αA
∗p

Ay −Hγ(p)

)
=

(
0
0

)
. (7.19)

Our next goal is to verify that F is semismooth. Therefore, we want to list two properties
of semismoothness. This theorem is also in line with chapter two of [11].

Theorem 7.12. Let X,Y, Yi, i = 1, 2 be Banach spaces.
i) If the operators Gi : X → Yi, i = 1, 2 are semismooth at x, then the operator
G := (G1,G2) : X → Y1 × Y2, x 7→ (G1(x),G2(x)) is also semismooth at x. Here
(∂∗ G1, ∂

∗ G2) is defined as the direct product of the generalized differentials of the
components, i.e. for M ∈ (∂∗ G1, ∂

∗ G2)(x) we have Mv = (M1v,M2v), where
M1 ∈ ∂∗ G1(x) and M2 ∈ ∂∗ G2(x).
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ii) If the operators Gi : X → Y, i = 1, 2 are semismooth at x, then the operator G+ :=
G1 +G2 : x → Y, x 7→ G1(x) + G2(x) is also semismooth at x. Here ∂∗ G+ :=
∂∗ G1 +∂∗ G2.

Proof. i) For all M ∈ ∂∗ G(x + d) there exist by definition Mi ∈ ∂∗ Gi(x + d), i =
1, 2 such that Mv = (M1v,M2). We want to use the following norm on Y1 × Y2:
‖·‖Y1×Y2

= ‖·‖Y1
+ ‖·‖Y2

.

sup
M∈∂∗ G(x+d)

‖G(x+ d)− G(x)−Md‖Y1×Y2

= sup
(M1,M2)∈∂∗ G(x+d)

‖(G1(x+ d),G2(x+ d))− (G1(x),G2(x))− (M1d,M2d)‖Y1×Y2

= sup
(M1,M2)∈∂∗ G(x+d)

‖G1(x+ d)− G1(x)−M1d‖Y1
+ ‖G2(x+ d)− G2(x)−M2d‖Y2

≤ sup
M1∈∂∗ G1(x+d)

‖G1(x+ d)− G1(x)−M1d‖Y1

+ sup
M2∈∂∗ G2(x+d)

‖G2(x+ d)− G2(x)−M2d‖Y2

= o(‖d‖x) for ‖d‖x → 0,

since both terms are of o(‖d‖x) for ‖d‖x → 0.
ii)

sup
M∈∂∗ G+(x+d)

∥∥G+(x+ d)− G+(x)−Md
∥∥
Y

= sup
(M1+M2)∈∂∗ G+(x+d)

‖G1(x+ d) + G2(x+ d)− G1(x)− G2(x)−M1d−M2d‖Y

≤ sup
M1∈∂∗ G1(x+d)

‖G1(x+ d)− G1(x)−M1d‖Y

+ sup
M2∈∂∗ G2(x+d)

‖G2(x+ d)− G2(x)−M2d‖Y

= o(‖d‖x) for ‖d‖x → 0,

.

Part i) of this theorem yields that we need to prove that F1 and F2 are semismooth.
F1 is continuously differentiable in y and p and because of this it is semismooth. F2 is
also continuously differentiable in y, but not in p. So it remains to verify that Hγ is
semismooth. We recall the definition of Hγ(p):

Hγ(p)(x) = hγ(p(x)) := (∂g∗)γ(p(x)),

i.e. Hγ is the superposition operator of hγ . By theorem 7.9 hγ is Lipschitz continuous
with constant 1

γ . This yields that hγ is almost everywhere directional differentiable by
Rademacher’s theorem. Furthermore, hγ is by its definition (7.16) piecewise differen-
tiable. Thus, it holds for the directional derivative

h′γ(q; δq) := lim
t→0

1

t
(hγ(q + tδq)− hγ(q))
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at q in direction q that

lim
‖δq‖→0

1

δq

∥∥h′γ(q + δq; δq)− h′γ(q; δq)
∥∥ = 0.

Therefore, hγ is semismooth. [See [14], Prop. 2.7 for a proof that the condition for
the directional derivative is equivalent to (7.18) in finite dimensions.] According to
Ulbrich [14] Thm. 3.49 the restriction of the superposition Hγ from H1

Γ ↪→ Lp(Ω,R2) to
L2(Ω, R2) for any p > 2 is semismooth and hence Newton differentiable.
At this point we have verified that F defined in (7.19) is semismooth. To apply a
semismooth Newton method we need to calculate ∂∗F . The challenging part is the
derivative of Hγ .
Using the definition that is given by Clason, Ito and Kunisch in [6] the Newton derivative
DNHγ : H1

Γ → L2(Ω,R2) at p in direction of δp is given pointwise almost everywhere by

[DNHγ(p)δp] (x) ∈ ∂◦hγ(p(x))δp(x).

Here ∂◦ denotes the Clarke derivative as defined in 4.7.
Consequently, for our hγ stated in (7.16) the Newton derivative at p in direction δp is
defined pointwise almost everywhere by

[DNHγ(p)δp] (x) =



(
0 0

0 0

)
if p(x) ∈ Qγi ,(

1
γ 0

0 1
γ

)
δp(x) if p(x) ∈ Sγ ∨ p(x) ∈ P γij ,(

0 0

0 1
γ

)
δp(x) if p(x) ∈ Lγ12 ∨ p(x) ∈ Lγ34,(

1
γ 0

0 0

)
δp(x) if p(x) ∈ Lγ24 ∨ p(x) ∈ Lγ13,(

0 0

0 2
γ

)
δp(x) if p(x) ∈ Lγ56 ∨ p(x) ∈ Lγ78,(

2
γ 0

0 0

)
δp(x) if p(x) ∈ Lγ68 ∨ p(x) ∈ Lγ57,(

1
2γ

1
2γ

1
2γ

1
2γ

)
δp(x) if p(x) ∈ Lγ15 ∨ p(x) ∈ Lγ48,(

1
2γ − 1

2γ

− 1
2γ

1
2γ

)
δp(x) if p(x) ∈ Lγ26 ∨ p(x) ∈ Lγ37.

(7.20)

For a semismooth Newton step according to 1 we need to obtain (δy, δp) by solving(
Id 1

αA
∗

A −DNHγ(pk)

)(
δy
δp

)
=

(
z − yk − 1

αA
∗pk

−Ayk +Hγ(pk)

)
(7.21)
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for given (yk, pk) and set yk+1 = yk + δy and pk+1 = pk + δp.
The last goal of this section is to prove that this iteration converges superlinearly. To
reach this goal we need to show uniform solvability of the Newton system (7.21). The
proof of this theorem is in line with Clason, Ito and Kunisch [6] and Clason and Kunisch
[7].

Theorem 7.13. For any p ∈ H1
γ and any (w1, w2) ∈ (H1

γ)∗ × (H1
γ)∗ there exists a

solution (δy, δp) ∈ H1
γ× ∈ H1

γ of the system{
δy + 1

αA
∗δp = w1,

Aδy −DNHγ(p)δp = w2,
(7.22)

which satisfies
‖δy‖H1 + ‖δp‖H1 ≤ C(‖w1‖H−1 + ‖w2‖H−1).

Proof. First observe that ‖[DNHγ(p)] δp‖L2 ≤ 2
γ ‖δp‖L2 almost everywhere by its defi-

nition (7.20). Inserting δp = A−∗(α(w1 − δy)) into the second equation of (7.22) and
applying A−1 implies that (7.22) is equivalent to

δy + αA−1DNHγ(p)A−∗δy = A−1w2 + αA−1DNHγ(p)A−∗w1. (7.23)

The next step is to verify that DNHγ is maximally monotone.
By theorem 7.9 b) hγ is maximally monotone. Hence for all t > 0, all δq and almost all
q it holds

0 ≤ (hγ(q + tδq)− hγ(q)) · (q + tδq − q) =
1

t
(hγ(q + tδq)− hγ(q)) · (t2δq).

This is equivalent to

0 ≤ 1

t
(hγ(q + tδq)− hγ(q)) · δq

and as t→ 0 we get for the limit

h′γ(q; δq) · δq ≥ 0.

We need to look at

〈DNHγ(p)δp, δp〉L2 =

∫
Ω

[DNHγ(p)δp] (x) · δp(x) dx

=

∫
Ω

h′γ(p(x); δp(x)) · δp(x) dx ≥ 0,

by the estimation above.
Therefore, DNHγ is maximally monotone. Since A−1 and A−∗ are isomorphisms the op-
erator A−1DNHγA

−1 is maximally monotone according to theorem 5.9. The arguments
are the same as in the proof of 6.2. Minty’s theorem 5.4 yields that

49



7. Numerics

ran(Id +A−1DNHγA
−1) = H1

Γ and this implies the existence of a solution δy of (7.23)
and thus the existence of a solution δp.
Now we take the inner product of (7.23) with δy and use that A−1 and A−∗ are iso-
morphisms from (H1

Γ)∗ to H1
Γ and that the embedding H1

Γ ↪→ L2(Ω,R2) ↪→ (H1
Γ)∗ is

continuous

‖δy‖2L2 ≤ ‖δy‖2L2 +
〈
αDNHγ(p)A−∗δy,A−∗δy

〉
L2

C.S.
≤
∥∥A−1w2

∥∥
L2 ‖δy‖L2 +

∥∥αDNHγ(p)A−1w1

∥∥
L2

∥∥A−∗δy∥∥
L2

≤
∥∥A−1w2

∥∥
L2 ‖δy‖L2 +

2α

γ

∥∥A−1w1

∥∥
L2

∥∥A−∗δy∥∥
L2

≤ C (‖w1‖H−1 + ‖w2‖H−1) ‖δy‖L2 .

A∗ is an isomorphism and hence coercive. This implies together with the first equation
of (7.22)

‖δp‖H1 ≤ ‖A∗δp‖H−1 ≤ ‖w1‖H−1 + ‖δy‖H−1 ≤ C1(‖w1‖H−1 + ‖δy‖L2).

The second equation together with the boundedness of DNHγ yields

‖δy‖H1 ≤ ‖Aδy‖H−1 ≤ ‖w2‖H−1 + ‖DNHγ(p)δp‖H−1 ≤ C2(‖w2‖H−1 + ‖δp‖L2).

Combining the last three estimations we get

‖δy‖H1 + ‖δp‖H1 ≤ C1(‖w1‖H−1 + ‖δy‖L2) + C2(‖w2‖H−1 + ‖δp‖L2)

≤ C̃ (‖w1‖H−1 + ‖w2‖H−1) .

The boundedness of the inverse Newton matrix together with the Newton differentia-
bility of Hγ leads according to Hinze, Pinnau, Ulbrich and Ulbrich [11, Thm. 2.12 ] to
the following result:

Theorem 7.14. The semismooth Newton method (7.21) converges locally superlinearly
in H1

Γ ×H1
Γ.

We need to define a stopping criterion for our Newton iteration. Therefore, we intro-
duce active sets:

Aγi (p) = {x ∈ Ω|p(x) ∈ Qγi } ,
AγS(p) = {x ∈ Ω|p(x) ∈ Sγ} ,

AγP ij(p) =
{
x ∈ Ω|p(x) ∈ P γij

}
,

AγLij(p) =
{
x ∈ Ω|p(x) ∈ Lγij

}
.

We terminate the iteration if all active sets coincide for pk and pk+1. At this point the
regularized control can be derived by uk+1 = Hγ(pk+1). Thus, our semismooth Newton
method reads the following:
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Algorithm 2 Semismooth Newton method for the regularized system (7.17)

Start with γ0 = 1 and (y0, p0) = (0, 0).
while γm > 10−10 and there are nodes in the regularized active sets and
# iterations < maxit and # iterations > 1 do

while Not all active sets coincide do
Solve the regularized optimality system (7.17) via the semismooth Newton itera-
tion (7.21).

end while
Set γm+1 = 1

10γ
m.

end while

We observed the same problem that is mentioned by Clason, Ito and Kunisch [6].
In our example the strategy from above failed to provide a sufficient initial guess for
the next Newton step. Therefore, we implemented also a backtracking line search in
addition to the Newton iteration. Due to this extra routine we need to change our
stopping criterion to all active sets coincide and the norm of the residual < 10−6.

7.3. Numerical Examples

Now we are going to show the structure of the optimal control for Ω = [0, 1]2 and A the
linearised elasticity equation with homogeneous Dirichlet conditions on Γ0 = λ (1, 0)T

for λ ∈ [0, 1] and homogeneous Neumann conditions on Γ1 = ∂Ω \ Γ0.

We take a combination of the code of Clason, Ito and Kunisch [6] and of Clason
and Kunisch [7]. Therefore, we take a uniform triangulation Th of the domain Ω with
Nh = 128×128 nodes. The state y and the adjoint state p are discretized with piecewise
linear finite elements. As done in the two papers listed above we approximate the
integration over the piecewise defined functions Hγ(ph) and DNHγ(ph)δph in the weak
formulation of (7.21) by multiplication of the mass matrix with a vector of nodal points.
The space of piecewise linear finite elements based on the interior points {xj}Nhj=1 of Th
is denoted by Vh. Furthermore, let v ∈ RNh be defined by vj = vh(xj) for 1 ≤ j ≤ Nh,
xj ∈ Th and vh ∈ Vh. Hγ(p) ∈ RNh and DHγ(p) ∈ RNh are defined via

(Hγ(p))j = hγ(p(xj)), (DHγ(p))j = DNHγ(ph)(xj), 1 ≤ j ≤ Nh.

Then the variational formulation of second equation of (7.21) reads

2µ 〈ε(δyh), ε(vh)〉L2 + λ 〈div δyh,div vh〉L2 − 〈DNHγ(pkh)δph, vh〉L2

= −2µ〈ε(ykh), ε(vh)〉L2 − λ〈div ykh,div vh〉L2 + 〈Hγ(pkh), vh〉L2 ∀ vh ∈ Vh.

This variational formulation is approximated by

2µKhδy + λLhδy −Mh(DHγ(p) ◦ δp) = −2µKhy
k − λLhyk +MhHγ(pk),
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where Ah = 2µKh + λLh is the stiffness matrix of the linearised elasticity equation and
Mh is the mass matrix corresponding to Vh and ◦ denotes the pointwise product of two
matrices. The code that was used for the examples can be found in appendix A.

We want to illustrate two effects of the weight α. Therefore, we take the eight control
states given in the introduction of chapter 6{(

1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
−1
−1

)
,

(
2
2

)
,

(
2
−2

)
,

(
−2
2

)
,

(
−2
−2

)}
.

Observe that the homogeneous Dirichlet conditions on Γ0 yield that we can not get a
true multi-bang control as a solution since the nodes in Γ0 have to be in Sγ . Thus, the
termination criterion for the continuation is every time the bound of γ or the convergence
of the Newton iteration in one step. This boundary condition is visualised in all plots
of the control uγ . Furthermore, we agree that our control is a true multi-bang control if
the solution is in the set of control states at all nodes besides the N boundary nodes in
Γ0.
For the first examples the first component of the target is a scaled with 1

10 version of
Matlab’s peaks function

z1(x1, x2) =
3

10
(4− 6x1)2 e−(6x1−3)2−(6x2−2)2

−
(

1

5
(6x1 − 3)− (6x1 − 3)3 − (6x2 − 3)5

)
e−(6x1−3)2−(6x2−3)2

− 1

30
e−(6x1−2)2−(6x2−3)2

and for the second component z2(x1, x2) we take the Matrix of the discrete version of z1

rotated counterclockwise by 90 degrees, i.e. z2(x1, x2) = rot90(z1(x1, x2)), see figure 7.2.
This function has in the whole domain values that between -1 and 1 in both components.

For α = 5 · 103 we find 149 nodes at which the control is unequal all control states
ui. If we disregard the boundary nodes where uγ has to be zero, there are 21 nodes that
does not fulfil our assumption. Hence we do not have a true multi-bang solution. This
result is reached for γ = 10−10 and the corresponding partition of the domain is shown
in figure 7.3(a). The blue area indicates the singular arc and the green area the nodes
where uγ attains on of control states of smaller magnitude, i.e. uγ of the green nodes is
in {(

1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
−1
−1

)}
,

and the red area the nodes where uγ attains the control states with larger magnitude.
For α = 50 we have disregarding the mentioned boundary nodes only 10 nodes at which
uγ is not one of the control states and thus uγ is again not a true multi-bang control.
In figure 7.3(b) one can see the partition of the domain. The continuation is terminated
because the bound of γ = 10−10 is reached. Since α is the weight for the distance be-
tween the state and the target this is the result we expected.
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Figure 7.2.: Discrete version of the target z

(a) α = 5 · 103 (b) α = 50

Figure 7.3.: Effect of α on the nodes in regularized sets (blue = singular arc, green =
part of multi-bang arc with smaller magnitude, red = multi-bang arc with
larger magnitude)
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We want to mention that we can not choose α < 10−4 in this setting because in this
case the Newton iteration in the second continuation step is terminated after the first
iteration and therefore the whole continuation is terminated after the second step. Fur-
thermore, we are not able to get a true multi-bang control for this setting.

For the second effect of α we choose again a scaled version of Matlab’s peaks function
for the first component and the rotated array for the second component. This time our
scale factor is 10, thus the first component of the target is

z1(x1, x2) = 30 (4− 6x1)2 e−(6x1−3)2−(6x2−2)2

− 100

(
1

5
(6x1 − 3)− (6x1 − 3)3 − (6x2 − 3)5

)
e−(6x1−3)2−(6x2−3)2

− 10

3
e−(6x1−2)2−(6x2−3)2

.

The minimal value of this function in our domain is -65.48 and the maximal value is
81.05. We do not give a plot of this target since one can not see that the vectors are
longer than the ones in figure 7.2 due to the scaling of the plot routine.
For α = 5 · 10−3 the continuation terminated at γ = 10−9 and the solution uγ is a true
multi-bang control, see figure 7.4(a). Here we find again that all arrows have the length√

2. This is shown in figure 7.5(a).
The continuation terminated at γ = 10−7 for α = 5 · 10−1. The solution is also a true
multi-bang control, but in this case all control states are attained, see 7.4(b). The control
uγ is visualized by figure 7.4(b).
A true multi-bang solution can also be found for α = 1. The continuation is terminated
at γ = 10−6. Again all control states are attained, but as we can see in figure 7.5(c) there
are less nodes where the smaller ui’s are attained. The control for this set of parameters
is shown in 7.4(c).
We do not get a true multi-bang control for α = 50, there is one node beside the boundary
nodes in one of the regularized sets. See figure 7.4(d) for the plot of the control. We
observe in figure 7.5(d) that this control has only values within the control states with
larger magnitude, i.e. {(

2
2

)
,

(
2
−2

)
,

(
−2
2

)
,

(
−2
−2

)}
.

This set of example shows that a larger value of α causes that the control states with
larger magnitude are attained.

Our next step is to take a look at the convergence of the continuation and of the
Newton iteration.
Table 7.1 shows the number of Newton iterations and the number of nodes in the reg-
ularized sets for each γ and different values of α. One can see the interplay of γ and α
in table 7.1. The smaller α the smaller γ to get the optimal solution. We also want to
mention that the continuation fails to converge if we have a solution that is not a true
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(a) α = 5 · 10−3 (b) α = 5 · 10−1

(c) α = 1 (d) α = 50

Figure 7.4.: Effect of α on the structure of the control

α = 50 α = 1 α = 0.5 α = 0.005

γ It n(γ) It n(γ) It n(γ) It n(γ)

1 7 804 6 12508 5 15991 2 16384
1e-1 2 189 3 2256 4 3675 2 16384
1e-2 3 135 3 402 3 604 4 12576
1e-3 3 130 3 149 3 174 3 2358
1e-4 3 129 3 130 2 133 3 436
1e-5 2 129 2 128 2 129 2 169
1e-6 2 129 1 128 2 128 3 132
1e-7 2 129 1 128 2 129
1e-8 2 129 2 128
1e-9 2 129 1 128
1e-10 2 129

Table 7.1.: Convergence history of continuation for different α (It are the number of
Newton iterations and n(γ) are in the number of nodes that are in one of the
regularized sets at the end of the Newton iteration)
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(a) α = 5 · 10−3 (b) α = 5 · 10−1

(c) α = 1 (d) α = 50

Figure 7.5.: Effect of α on the control states that are attained (blue = singular arc, green
= part of multi-bang arc with smaller magnitude, red = part multi-bang arc
with larger magnitude)

56



7. Numerics

Iteration 1 2 3 4 5 6

γ = 100 16384 25920 10236 510 4 0

γ = 10−1 23846 602 0

γ = 10−2 4432 22 0

γ = 10−3 558 12 0

γ = 10−4 50 2 0

γ = 10−5 4 0

γ = 10−6 0

Table 7.2.: Convergence history of the Newton iteration for example in figure 7.4(c)
(shown are the number of nodes that change the active set after each itera-
tion)

multi-bang control, see column 2 of 7.1.

Furthermore, we want to take a look at the convergence of the Newton iteration.
We picked example 7.4(c). The convergence history looks similar for all cases where a
true multi-bang solution is attained. In table 7.2 we can see the typical convergence
of a semismooth Newton method. At the beginning there are some steps with very
small or even without decrease. Then we reach the superlinear phase in which the al-
gorithm converges in a few steps. Thus, in the next step of the continuation we start
in the superlinear phase and therefore the Newton iteration converges within a few steps.

At a last step we want to plot the states for both given targets, each for one value of
alpha since they look very similar. See figure 7.6 for the plots with α = 50. This figure
7.6 visualises the target’s influence on the state.

The last figure shows the distance between the target z and the state y. All plots look
similar, they are only scaled with different factors. Figure 7.7 shows the residual for the
second version of the target and α = 1.
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(a) Target with scale factor 1
10

(b) Target with scale factor 10

Figure 7.6.: State for different target

Figure 7.7.: Distance between state and target
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8. Conclusion

The goal of this thesis was to provide a vector-valued version of Clason’s and Kunisch’s
multi-bang control of elliptic systems [7]. Before we were able to state our multi-bang
control problem, we needed to list some basics.

Our choice for the elliptic PDE was the linearised elasticity equation, since in this
PDE the two components are linked. We started with the definition of this equation,
motivated by the deformation problem that can be modelled with this equation. Af-
terwards we derived the weak formulation and proved that the weak formulation has a
unique solution for all given right-hand sides.
The next step was to give a short introduction to optimal control theory. We motivated
this introduction with the stationary heating of a solid object.

In advance of the main part of this thesis we collected several definitions and theo-
rems from convex analysis and monotone operator theory. We introduced our multi-bang
control problem with the linearised elasticity equation as the constraint and fixed set of
control states in chapter 6. Then we explained how we derived the primal-dual optimal-
ity system for our problem. This included the calculation of a Fenchel conjugate and its
subdifferential and the calculation of the Fréchet derivative. In the following we were
able to prove the existence of a unique solution of this optimality system. The stability
of this solution was also part of this section. In the last section we took a look on the
structure of our solution. Clason and Kunisch were able to give a better classification of
the structure of the solution. We found an example that proves that this is not possible
for the vector-valued problem.

The last part aims to give an explanation for a numerical solution of the primal-dual
optimality system. Since one of the equations of the system is set-valued, we needed to
introduce the Moreau-Yosida regularization of the optimality system. We also proved
that the solution of the regularized system converges weakly to the real solution. After-
wards we defined semismoothness and verified that our regularized system is semismooth.
With this knowledge we could define a semismooth Newton method. A next step was
to show that the semismooth Newton method converges locally superlinear. As a last
point we listed an algorithm that is a combination of the semismooth Newton method
and a backtracking. Finally, we gave some numerical examples that illustrate our theory.

A further research topic could be the generalization of our vector-valued multi-bang
problem in the sense of arbitrary control states. It should not be too difficult to prove
all our theorems for eight arbitrary control states that are the vertices of two different
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squares centred in the origin and parallel to the axes. It is more complex to give the
generalization of our problem to an arbitrary number of control states.
Clason, Ito and Kunisch were able to find similar results for optimal control with switch-
ing structure and a parabolic PDE as the constraint [6]. Thus, it would be interesting
to see if one can find similar results to ours for multi-bang problems with non-elliptic
PDEs as constraints.
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A. Matlab Code

function multibang2d
%This function solves the multibang control problem
% min alpha/2 \ |y-yd\|ˆ2 + \int \max(\max( |u1 | , |u2|),1)
% s.t. -\div(2\mu \epsilon(y) + \lambda \tr(\epsilon(y))Id)= u,
% \max( |u1(x) | , |u2(x)|) <= 2
% using the approach described in my masterthesis.
% The code is a combination of the code from Calson, Ito and Kunisch
% regarding the paper 'A Convex Analysis Approach to Optimal Control with
% Switching Structure for Partial Differential Equations' and the code of
% Clason and Kunisch that belongs to the paper 'Multi-Bang Control of
% Elliptic Systems'.

clear all
close all

%% setup
% problem parameters
N = 128; % number of nodes per dimension
maxit = 300; % max number of Newton steps
alpha = 5e3; % control cost parameter (Lˆ2)
tmin = 1e-10; % minimal step length for line search
ub = [1 1 -1 -1 2 2 -2 -2;...

1 -1 1 -1 2 -2 2 -2]; % matrix of control states
d = length(ub); % number of control states
%material parameters
E = 1; % elastic modulus
nu = 0.3; % Poisson's ratio
mu = E / (2*(1 + nu)); % Lamé constant
lambda = E * nu / ((1 + nu)*(1 - 2*nu)); % Lamé constant

% setup grid, assemble stiffness and mass matrix
[K,L,M,xx,yy] = assemble2dFEM(N);
A = 2 * mu* K + lambda * L;

% setup target
z1 = peaks(N)/10;
z2 = rot90(z1);

% extract every tenth node for the plots
i = 1:10:N;

xxl = xx(i,i);
yyl = yy(i,i);
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z1l = z1(i,i);
z2l = z2(i,i);

% plot every 10th point of target
figure(1)
quiver(xxl,yyl,z1l,z2l);
title('target');
xlim([-0.1 1.1]);
ylim([-0.1 1.1]);
axis equal;

z = [z1(:) ; z2(:)];

% precompute some terms
Mz = M*z(:); AT = A'; N2 = N*N; a1 = 1/alpha;

%% compute control
% initialize iterates
y = zeros(N2,2); % state variable
p = zeros(N2,2); % dual variable
as = zeros(2*d+3,N2); % active sets

% continuation: start with gammaˆ0 = 1
gamma = 1;
while gamma > 1e-10

it = 1; nold = 1e99; tau = 1; tflag = '';

fprintf('\nCompute solution for gamma = %1.3e:\n',gamma);
while true

% update active sets and compute from them Hg
% and the diagonals of DHg

as old = as;

% Q iˆgamma
as(1,:) = (p(:,1) > gamma & p(:,2) > gamma &...

sum(abs(p),2) < 1 + 2 * gamma);
as(2,:) = (p(:,1) > gamma & p(:,2) < - gamma & ...

sum(abs(p),2) < 1 + 2 * gamma);
as(3,:) = (p(:,1) < - gamma & p(:,2) > gamma &...

sum(abs(p),2) < 1 + 2 * gamma);
as(4,:) = (p(:,1) < - gamma & p(:,2) < - gamma & ...

sum(abs(p),2) < 1 + 2 * gamma);
as(5,:) = (p(:,1) > 2 * gamma & p(:,2) > 2 * gamma & ...

sum(abs(p),2) > 1 + 4 * gamma);
as(6,:) = (p(:,1) > 2 * gamma & p(:,2) < - 2 * gamma & ...

sum(abs(p),2) > 1 + 4 * gamma);
as(7,:) = (p(:,1) < - 2 * gamma & p(:,2) > 2 * gamma & ...

sum(abs(p),2) > 1 + 4 * gamma);
as(8,:) = (p(:,1) < - 2 * gamma & p(:,2) < - 2 * gamma &...

sum(abs(p),2) > 1 + 4 * gamma);

Hg = as(1:d,:)'*ub';
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% Sˆgamma
as(d+1,:) = ( -gamma <= p(:,1) & p(:,1) <= gamma & ...

-gamma <= p(:,2) & p(:,2) <= gamma);
Hg = Hg + (1/gamma * p) .* repmat(as(d+1,:)',1,2);

% P i,jˆgamma
as(d+2,:) = ( 1 + gamma <= p(:,1) & p(:,1) <= 1 + 2*gamma & ...

1 - p(:,1) <= p(:,2) & p(:,2) <= p(:,1) - 1);
Hg = Hg + ...

(1/gamma * [(p(:,1) - 1) p(:,2)]).* repmat(as(d+2,:)',1,2);

as(d+3,:) = (1 + p(:,2) <= p(:,1) & p(:,1) <= -1 - p(:,2) &...
-1 - 2*gamma <= p(:,2) & p(:,2) <= -1 - gamma);

Hg = Hg + ...
(1/gamma * [p(:,1) (p(:,2) + 1)]).* repmat(as(d+3,:)',1,2);

as(d+4,:) = ( -1 - 2*gamma <= p(:,1) & p(:,1) <= -1 - gamma & ...
1 + p(:,1) <= p(:,2) & p(:,2) <= -1 - p(:,1));

Hg = Hg + ...
(1/gamma * [(p(:,1) + 1) p(:,2)]).* repmat(as(d+4,:)',1,2);

as(d+5,:) = ( 1 - p(:,2) <= p(:,1) & p(:,1) <= p(:,2) - 1 &...
1 + gamma <= p(:,2) & p(:,2) <= 1 + 2*gamma);

Hg = Hg + ...
(1/gamma * [p(:,1) (p(:,2) - 1)]).* repmat(as(d+5,:)',1,2);

% L i,jˆgamma
as(d+6,:) = ((gamma < p(:,1) & p(:,1) < 1 + gamma) | ...

(-1 - gamma < p(:,1) & p(:,1) < -gamma)) & ...
(-gamma <= p(:,2) & p(:,2) <= gamma);

Hg = Hg + [sign(p(:,1)), (p(:,2)/gamma)].* repmat(as(d+6,:)',1,2);

as(d+7,:) = (-gamma <= p(:,1) & p(:,1) <= gamma) & ...
((gamma < p(:,2) & p(:,2) < 1 + gamma) | ...
(-1 - gamma < p(:,2) & p(:,2) < -gamma));

Hg = Hg + [(p(:,1)/gamma), sign(p(:,2))].* repmat(as(d+7,:)',1,2);

as(d+8,:) = (1 + 2*gamma < p(:,1) | p(:,1) < -1 - 2*gamma) &...
(-2*gamma <= p(:,2) & p(:,2) <= 2*gamma);

Hg = Hg + ...
[(2*sign(p(:,1))) (p(:,2)/gamma)].* repmat(as(d+8,:)',1,2);

DHg22 = sum(as([d+1:d+6,d+8],:)'/gamma,2);

as(d+9,:) = (-2*gamma <= p(:,1) & p(:,1) <= 2*gamma) & ...
(1 + 2*gamma < p(:,2) | p(:,2) < - 1 - 2*gamma);

Hg = Hg + ...
[(p(:,1)/gamma) (2*sign(p(:,2)))].* repmat(as(d+9,:)',1,2);

DHg11 = sum(as([d+1:d+5,d+7,d+9],:)'/gamma,2);

as(d+10,:) = (p(:,1) - 1 < p(:,2) & p(:,2) < p(:,1) + 1 & ...
1 + 2*gamma <= sum(abs(p),2) & ...
sum(abs(p),2) <= 1 + 4*gamma);

Hg = Hg + (repmat((p(:,1) + p(:,2))/(2*gamma),1,2) - ...

63



A. Matlab Code

[sign(p(:,1)) sign(p(:,2))]/(2*gamma))...
.* repmat(as(d+10,:)',1,2);

DHg12 = as(d+10,:)' /(2*gamma);
DHg21 = as(d+10,:)' /(2*gamma);

as(d+11,:) = (-p(:,1) - 1 < p(:,2) & p(:,2) < -p(:,1) +1 &...
1 + 2*gamma <= sum(abs(p),2) & ...
sum(abs(p),2) <= 1 + 4*gamma);

Hg = Hg + (([(p(:,1) - p(:,2)), (-p(:,1) + p(:,2))] - ...
[sign(p(:,1)), sign(p(:,2))])/(2*gamma))...
.* repmat(as(d+11,:)',1,2);

DHg11 = DHg11 + sum(as([d+10, d+11],:)'/(2 * gamma),2);
DHg12 = DHg12 - as(d+11,:)' /(2*gamma);
DHg21 = DHg21 - as(d+11,:)' /(2*gamma);
DHg22 = DHg22 + sum(as([d+10,d+11],:)'/(2*gamma),2);

% build up the full Matrix DHg
DHg = [spdiags(DHg11,0,N2,N2), spdiags(DHg12,0,N2,N2); ...

spdiags(DHg21,0,N2,N2), spdiags(DHg22,0,N2,N2)];

% system matrix, right hand side
C = [M a1*AT; A -M*DHg];
rhs = [Mz-M*y(:)-a1*AT*p(:); -A*y(:) + M*Hg(:)];
nr = norm(rhs(:));

% line search
if nr >= nold % if no decrease: backtrack

% (never on first iteration)
tau = tau/2;
y(:) = y(:) - tau*dx(1:2*N2);
p(:) = p(:) - tau*dx(1+2*N2:end);
if tau < tmin % accept non-monotone step

tflag = 'n';
else % bypass rest of while loop;

continue;
end

end

% terinate Newton?
update = nnz((as-as old));

fprintf('It# %i: update = %i,\t residual = %1.3e,\t tau = %1.3e\n',...
it,update,nr,tau);

if update == 0 && nr < 1e-6 % success, solution found
break;

elseif it == maxit % failure, too many iterations
break;

end

% semismooth Newton step
dx = C\rhs;
y(:) = y(:)+dx(1:2*N2);
p(:) = p(:)+dx(2*N2+1:end);
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% otherwise update information, continue
it = it+1; nold = nr; tau = 1; tflag = '';

end %newton

% check convergence
if it < maxit % converged: accept iterate

u = Hg;

regnodes = nnz(as(d+1:end,:)); % number of nodes in
% regularized active sets

fprintf('Solution has %i node(s) in regularized active sets\n',...
regnodes);

if regnodes == 0 | | it == 1 % solution optimal: terminate
break;

else % reduce gamma, continue
gamma = gamma/10;

end
else % not converged: reject, terminate

fprintf('Iterate rejected, returning u gamma for gamma = %1.3e\n',...
gamma*10);

break;
end

end

% calculate distance of x and z
resyz = sqrt(sum(reshape(y(:)-z,N2,2).ˆ2,2));

u1 = reshape(u(:,1),N,N);
u2 = reshape(u(:,2),N,N);
y1 = reshape(y(:,1),N,N);
y2 = reshape(y(:,2),N,N);

% extrac every 10th points to be able to plot the state and the control
u1l = u1(i,i);
u2l = u2(i,i);

y1l = y1(i,i);
y2l = y2(i,i);

% plot control
figure(2)
quiver(xxl,yyl,u1l,u2l);
title('control');
xlim([-0.1 1.1]);
ylim([-0.1 1.1]);
axis equal;
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% Build color matrix to see the different domains: Singular arc and
% multi-bang arc
fb = zeros(N2,1);
for i = 1:N2

if sum(as(1:4,i) == 1) == 1
fb(i) = 1;

end
if sum(as(5:8,i) == 1) == 1

fb(i) = 2;
end

end
figure(3)

% plot partition of domain
x = linspace(0,1,N);
imagesc(x,x,flipud(reshape(fb,N,N)))
caxis([0,2]);

% plot state
figure(4)
quiver(xxl,yyl,y1l,y2l);
title('state');
xlim([-0.1 1.1]);
ylim([-0.1 1.1]);
axis equal;

% plot residual of y and z
figure(5)
imagesc(x,x,reshape(resyz,N,N));
title('residual');
end

function [K,L,M,xx,yy] = assemble2dFEM(n)
a = 0; b = 1; % computational domain [a,b]ˆ2
nel = 2*(n-1)ˆ2; % number of nodes
h2 = ((b-a)/(n-1))ˆ2; % Jacobi determinant of transformation (2*area(T))
n2 = n * n;

% nodes
[xx,yy] = meshgrid(linspace(0,1,n));

% triangulation
tri = zeros(nel,3);
ind = 1;
for i = 1:n-1

for j = 1:n-1
node = (i-1)*n+j+1; % two triangles at node
tri(ind,:) = [node node-1 node+n]; % triangle 1 (lower left)
tri(ind+1,:) = [node+n-1 node+n node-1]; % triangle 2 (upper right)
ind = ind+2;

end
end

% Mass and stiffness matrices
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L11e = 1/2 * [1 0 -1 0 1 0 -1 0 0]'; % elemental block matrices for
L12e = 1/2 * [-1 1 0 0 0 0 1 -1 0]'; % div u * div v
L22e = 1/2 * [1 -1 0 -1 1 0 0 0 0]';
Me = h2/24 * [2 1 1 1 2 1 1 1 2]'; % elemental mass matrix

ent = 9*nel;
row = zeros(ent,1);
col = zeros(ent,1);
valM = zeros(ent,1);
valL11 = zeros(ent,1);
valL12 = zeros(ent,1);
valL22 = zeros(ent,1);
valK11 = zeros(ent,1);
valK12 = zeros(ent,1);
valK22 = zeros(ent,1);

ind = 1;
for el=1:nel

ll = ind:(ind+8); % local node indices
gl = tri(el,:); % global node indices
row(ll) = gl([1;1;1],:); rg = gl';
col(ll) = rg(:,[1 1 1]);
valK11(ll) = L11e + 1/2 * L22e;
valK12(ll) = 1/2 * L12e;
valK22(ll) = L22e + 1/2 * L11e;
valL11(ll) = L11e;
valL12(ll) = L12e;
valL22(ll) = L22e;
valM(ll) = Me;
ind = ind+9;

end

Ml = sparse(row,col,valM);
M = [ Ml, sparse(n2,n2); sparse(n2,n2), Ml];
L11 = sparse(row,col,valL11);
L12 = sparse(row,col,valL12);
L22 = sparse(row,col,valL22);
L = [ L11 , L12; L12', L22];
K11 = sparse(row,col,valK11);
K12 = sparse(row,col,valK12);
K22 = sparse(row,col,valK22);
K = [K11, K12; K12' , K22];

% modify matrices for homogenenous Dirichlet conditions on Gamma 0
bdnodd = find(abs(yy-a) < eps); %nodes for Dirichlet condition

M([bdnodd; bdnodd + n2],:) = 0;
K([bdnodd; bdnodd + n2],:) = 0; K(:,[bdnodd; bdnodd + n2]) = 0;
L([bdnodd; bdnodd + n2],:) = 0; L(:,[bdnodd; bdnodd + n2]) = 0;
for j = [bdnodd; bdnodd + n2]'

K(j,j) = 1;
L(j,j) = 1;

end
end
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% This function is used to build the stiffness- and the massmatrix to solve
% the problem -\Delta y = u.
% The code is a variation of the code from Clason and Kunisch that belongs
% to the paper 'Multi-Bang Control of Elliptic Systems'.

function [K,M,xx,yy,bdnod0,bdnodD] = assembleFEMLaplace2d(n)
a = 0; b = 1; % computational domain [a,b]ˆ2
nel = 2*(n-1)ˆ2; % number of nodes
h2 = ((b-a)/(n-1))ˆ2; % Jacobi determinant of transformation (2*area(T))
n2 = n*n;

% nodes
[xx,yy] = meshgrid(linspace(0,1,n));

% triangulation
tri = zeros(nel,3);
ind = 1;
for i = 1:n-1

for j = 1:n-1
node = (i-1)*n+j+1; % two triangles at node
tri(ind,:) = [node node-1 node+n]; % triangle 1 (lower left)
tri(ind+1,:) = [node+n-1 node+n node-1]; % triangle 2 (upper right)
ind = ind+2;

end
end

% Mass and stiffness matrices
Ke = 1/2 * [2 -1 -1 -1 1 0 -1 0 1]'; % elemental stiffness matrix
Me = h2/24 * [2 1 1 1 2 1 1 1 2]'; % elemental mass matrix

ent = 9*nel;
row = zeros(ent,1);
col = zeros(ent,1);
valk = zeros(ent,1);
valm = zeros(ent,1);

ind = 1;
for el=1:nel

ll = ind:(ind+8); % local node indices
gl = tri(el,:); % global node indices
row(ll) = gl([1;1;1],:);
rg = gl';
col(ll) = rg(:,[1 1 1]);
valk(ll) = Ke;
valm(ll) = Me;
ind = ind+9;

end
M1 = sparse(row,col,valm);
M = [M1 , sparse(n2,n2); sparse(n2,n2), M1];
K1 = sparse(row,col,valk);
K = [K1 , sparse(n2,n2); sparse(n2,n2), K1];

68



A. Matlab Code

% modify matrices for homogenenous Dirichlet conditions
bdnod0 = [find(abs(xx-a) < eps); find(abs(xx-b) < eps)]; % find 0 nodes
bdnodD = [find(abs(yy-a) < eps); find(abs(yy-b) < eps)]; % find other

% bdnods
M([bdnod0; bdnod0 + n2],:) = 0;
K([bdnod0; bdnod0 + n2],:) = 0; K(:,[bdnod0; bdnod0 + n2]) = 0;
for j = [bdnod0; bdnod0 + n2]'

K(j,j) = 1; %#ok<SPRIX>
M(j,j) = 1;

end
end
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Anwendungen in der Elastizitätstheorie. Springer, 1992.

[3] H. Brezis, M. G. Crandall, and A. Pazy. Perturbations of nonlinear maximal
monotone sets in banach space. COMMUNICATIONS ON PURE AND APPLIED
MATHEMATIC, 23:123 – 144, 1970.

[4] F. H. Clarke. Optimization and Nonsmooth Analysis. Society for Industrial and
Applied Mathematics, 1990.

[5] C. Clason. Mathematische bildverarbeitung. Universtity Lecture, 2014.

[6] C. Clason, K. Ito, and K. Kunisch. A convex analysis approach to optimal con-
trols with switching structure for partial differential equations. ESAIM: Control,
Optimisation and Calculus of Variations, 2015.

[7] C. Clason and K. Kunisch. Multi-bang control of elliptic systems. Annales de
l’Institut Henri Poincare (C) Non Linear Analysis, 31:1109 – 1130, 2013.

[8] I. Ekeland and R. Temam. Convex analysis and variational problems, volume 1.
North-Holland Publishing company, 1976.

[9] L. C. Evans. Partial Differential Equations. American Mathematical Society, 2010.

[10] M. Hintermüller. Semismooth newton method and applications, 2010.

[11] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE
constraints, volume 23. Springer, New York, 2009.

[12] D. Kinderlehrer and G. Stampacchia. An Introduction to Variational Inequalities
and Their Applications. Society for Industrial and Applied Mathematics, 2000.

[13] W. Schirotzek. Nonsmooth Analysis. Springer, 2007.

[14] M. Ulbrich. Semismooth Newton Methods for Variational Inequalities and
Constrained Optimization Problems in Function Spaces. SIAM, 2011.

[15] K. Yosida. Functional Analysis. Springer, 1974.

72


	Introduction
	Linearised Elasticity Equation - an Example for a Vector-Valued PDE
	Existence and Uniqueness of a Solution of the Linearised Elasticity Equation

	Optimal Control Theory
	Convex Analysis
	Monotone Operators
	Multi-Bang Control Problem
	Formal Optimality System
	Fenchel Conjugate and Subdifferential
	Fréchet Derivative

	Existence and Stability of the Solution
	Structure of the Solution

	Numerics
	Moreau-Yosida Regularization
	Proximal Mapping of g*

	Semismooth Newton Method
	Numerical Examples

	Conclusion
	Matlab Code
	List of Figures
	List of Tables
	Bibliography

