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Zusammenfassung. Das Ziel dieser Masterarbeit ist die diskrete Version von Plateaus
Problem in riemannschen Mannigfaltigkeiten zu lösen. Um die Existenz von kontinu-
ierlichen Minimalflächen sicherzustellen, wurden zunächst die klassischen Resultate
der Differentialgeometrie untersucht. Diese stellen jedoch zusätzliche Anforderungen
an die riemannsche Mannigfaltigkeit, zum Beispiel nach oben beschränkte Schnitt-
krümmung und von der Null weg-beschränkten Injektivitätsradius. Daher wurden
zusätzlich einige Resultate der Geometrischen Maßtheorie untersucht, die weniger
Bedingungen an die Riemannschen Mannigfaltigkeiten stellen. Pinkall und Polthier
entwickelten einen Algorithmus, um diskrete Minimialflächen im euklidschen Raum
zu berechnen. Das Setting und der Algorithmus wurden, nach kleinen Anpassungen
für Riemannsche Mannigfaltigkeiten, übernommen. Da es üblich ist, in Formen-
Räumen (shape spaces) statt der echten Distanz eine (lokale) Approximation zu
verwenden, wurde dem Algorithmus ein Verfeinerungsschritt für die Triangulierung
hinzugefügt. Dieser stellt sicher, dass die Triangulierung die Mannigfaltigkeit fein
genug auflöst, sodass die Distanz-Approximationen gut genug sind. Pinkall und
Polthier zeigten, dass ihr Algorithmus im Dreidimensionalen konvergiert. Dies gilt
allgemein für den endlich dimensionalen euklidischen Raum. Für allgemeine rie-
mannsche Mannigfaltigkeiten existiert derzeit noch kein Beweis. Trotzdem wird
der Algorithmus auf verschiedene Räume mit einer nicht-euklidischen Metrik an-
gewandt: auf einen Raum mit einer deformierten euklidischen Metrik und auf zwei
Formen-Räume, die der offen und geschlossen viskosen Stäben. Dabei zeigen die
Experimente, dass der Algorithmus in einigen Fällen konvergiert, was aber stark
abhängt von der Wahl der initialen Punkte und der Art der initialen Triangulie-
rung.





Abstract. The aim of this master thesis is to solve the discrete version of Plateau’s
problem in Riemannian manifolds. For Riemannian manifolds with additional con-
ditions with regard to the curvature and injectivity radius differential geometry
provides the existence of (classical) minimal surfaces. Geometric measure theory
can be used to show the existence for Riemannian manifolds with fewer constraints.
Pinkall and Polthier developed an algorithm to compute discrete minimal surfaces
in an Euclidean space. This setting and algorithm were used and adapted to work in
Riemannian manifolds. In the setting of shape spaces distance approximations were
used, which are only valid for points close to each other. This is why a refinement
step was added to the algorithm, to show that a finer triangulation achieves no bet-
ter optimum of the minimized Dirichlet energy. Pinkall and Polthier showed that
their algorithm works in the three-dimensional Euclidean space. This theorem also
valid for the finite-dimensional Euclidean space. The convergence of the algorithm
for Riemannian manifolds is not yet shown. However, the algorithm was applied to
a distorted Euclidean space and the shape spaces of open and closed viscous rods
and several experiments show that the algorithm converges but depends on a good
selection of initial points and the initial triangulation.
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1 Introduction

Many famous mathematicians worked on the subject of minimal surfaces, one of the
first who considered minimal surfaces was Joseph-Louis Lagrange in 1760. However,
the problem of finding minimal surfaces for a given boundary curve is named after
Joseph Plateau who worked with real world minimal surfaces, soap films spanned
by a wire frame, in the 19th century. The first major breakthrough in finding a
solution to the problem Lagrange stated was done by Jesse Douglas in 1931 [Dou31]
and simultaneously by Tiber Radó in 1930 [Rad30]. In 1936 Douglas received one
of the two first Fields Medals for his work on this problem. In the following decades
mathematicians worked on extensions and modifications of this problem and a whole
new area of mathematics was developed, the so-called geometric measure theory by
Federer and Fleming in 1969 [Fed69].
The aim of this thesis is to study an algorithm to compute discrete minimal surfaces
in Riemannian manifolds. The motivation for this is the application to shape spaces.
Since minimal surfaces are the natural higher dimensional equivalent to geodesics
and M. Rumpf and B. Wirth developed a variational approach to discrete geodesics
[RW13] the question arised if this can be generalized to discrete minimal surfaces.
This thesis provides a proof-of-concept. It shows that there are solutions of Plateau’s
problem in general finite-dimensional shape spaces, that the proposed algorithm
converges in finite-dimensional Euclidean space and that it converges in experiments
for some shape spaces.
Such an algorithm may help to extend the theory of discrete differential geome-
try and has applications in computer science. For example, given several three-
dimensional shapes which are modelled by vertices and edges as well as a meaning
of a distance between such models a weighted interpolation of these shapes can be
computed. This can improve existing shape classification based on discrete geodesic
calculus.

This thesis is structured as follows. First, in chapter 2 the theory of discrete
geodesics by M. Rumpf and B. Wirth is presented and gives a short introduction
to continuous and discrete geodesics and shows an example.
Chapter 3 consists of three parts, section 3.1 explains the access to minimal surfaces
through differential geometry. Since the results from differential geometry are not
satisfactory, section 3.2 gives a short introduction to geometric measure theory and
states the existence and regularity theorems that imply the existence of minimal
surfaces in shape spaces that are explained in the section 3.3. The last section 3.4
gives a summary of the results which are the most relevant for the discrete setting
and shape spaces.
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1 Introduction

In chapter 4 the discrete setting and the algorithm to compute discrete minimal
surfaces are defined. The ideas and definitions originate in an algorithm from U.
Pinkall and K. Polthier [PP93] for the three-dimensional Euclidean space. This
algorithm was modified and extended to discrete surfaces in Riemannian manifolds.
Furthermore, a convergence theorem of the original algorithm for finite-dimensional
Euclidean space and some details on the implementation are given.
Here a convergence theorem for the finite-dimensional Euclidean space is given.
In the next chapter 5 experiments show how the algorithm performs in several
different settings. Section 5.1 shows a classical setting in an Euclidean space with
the standard metric where the convergence is expected and the following setting have
increasing complexity of distance approximations, a distorted Euclidean metric, the
shape space of open viscous rods and the shape spaces of closed viscous rods. In
chapter 6 a summary of the results is drawn and an outlook is given that explains
some promising ideas which could increase the performance of the algorithm and
yield a convergence theorem for Riemannian manifolds.
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2 Interpolation in Shape Spaces

In section 2.1 the preliminaries to Riemannian manifolds and continuous geodesics
are defined, followed by the definition of the discrete counterparts of the geodesics
and some properties of discrete geodesics in section 2.2. The third section 2.3
introduces the shape space of viscous rods and some computational experiments
for this shape space are shown. In more detail shape spaces will be introduced in
section 3.3.

2.1 Preliminaries

This section contains a list of definitions and properties for Riemannian manifolds.
It defines the exponential map, injectivity radius, differential forms, outer derivative,
Riemannian volume form.
In the following let (M, g) be an m-dimensional, smooth, Riemannian manifold, i.e.
a smooth m-dimensional manifold M equipped with a Riemannian metric g. The
Riemannian metric g is an inner product (i.e. a non degenerate, positive definite and
symmetric bilinear form) which is defined on each tangent space TpM and depends
smoothly on the base point p ∈M.
Let x = (x1, . . . , xm) : U → Ω ⊂ Rm denote the local coordinates for an open
subset U ⊂ M. Then the Riemannian metric can be represented in these local
coordinatesby a positive definite, symmetric matrix (gij(x))i,j=1,...,m where the coef-
ficients depend smoothly on x.
A (smooth) curve Γ is a (smooth) map [a, b]→M for a < b ∈ R. It is called closed
if Γ(a) = Γ(b) and simple if the restriction Γ|]a,b[ is injective. A closed, simple curve
is also called Jordan curve.

The Riemannian metric is defined on the tangent space, however, it induces a metric
on the manifold with the help of curves minimizing the length.

Definition 2.1 (Length and energy). Given a differentiable manifoldM the length
L(γ) and energy E(γ) of a smooth curve γ : [a, b]→M where a < b ∈ R are defined
as

L(γ) :=

∫ b

a

‖γ̇(t)‖ dt (2.1)

and

E(γ) :=
1

2

∫ b

a

‖γ̇(t)‖2 dt, (2.2)

3



2 Interpolation in Shape Spaces

where γ̇(t) = dγ
dt

(t) is the derivative of γ(t) in the tangent space Tγ(t)M of M and

‖γ̇(t)‖ =
√
〈γ̇(t), γ̇(t)〉 with 〈 , 〉 the scalar product in the tangent space.

Theorem 2.2 shows that the energy is an upper bound for the length up to a constant
factor.

Theorem 2.2. Let γ : [a, b]→M be a smooth curve then

(L(γ))2 ≤ 2(b− a)E(γ) (2.3)

and equality holds if and only if ‖γ̇(t)‖ is constant.
If γ is parameterized proportionally to arc-length then

L(γ) = 2 · E(γ). (2.4)

Proof. Consider the Hölder inequality∫
‖f(t)g(t)‖dt ≤

(∫
‖f(t)‖2dt

) 1
2
(∫
‖g(t)‖2dt

) 1
2

(2.5)

with f(t) = γ̇(t) and g(t) = 1. This yields

(L(γ))2 =

(∫ b

a

‖γ̇(t)‖ dt
)2

≤
∫ b

a

‖γ̇(t)‖2dt ·
∫ b

a

1dt = (b− a) ·
∫ b

a

‖γ̇(t)‖2dt

= 2(b− a)
1

2

∫ b

a

‖γ̇(t)‖2dt = 2(b− a) · E(γ).

Thus, equation (2.3) is proven.
The Inequality (2.5) is an equality if and only if f(t) = c · g(t). Here it means that
‖γ̇(t)‖ = c · 1 for a constant c ∈ R.
Parameterized proportionally to arc-length means a = 0, b = 1 and ‖γ̇‖ = 1, which
implies the second statement (2.4).

Theorem 2.3 (Distance). Let M be a Riemannian manifold, p, q ∈M. Then

d(p, q) := inf{L(γ) |γ : [a, b]→M piecewise smooth curve

with γ(a) = p, γ(b) = q}

defines a distance function and satisfies the usual axioms (positive definite, sym-
metric, triangle inequality).

The topology induced by this distance function d coincides with the original mani-
fold topology onM. A geodesic is the shortest curve between two (close) points and
is typically defined as a solution to the Euler-Lagrange equation of the energy (2.2).
Using the coordinates (x1(γ(t)), . . . , xm(γ(t))), the notation ẋi(t) := d

dt
xi(γ(t)), and

Γijk =
1

2
gil · (gjl,k + gkl,j − gjk,l),
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2.1 Preliminaries

where

(gij)i,j=1,...,m = (gij)
−1 and gjl,k =

∂

∂xk
gjl

the Euler-Lagrange equations can be stated in local coordinates. The expressions
Γijk are called Christoffel symbols.

Definition 2.4 (Geodesic). A smooth curve γ : [a, b]→M for a < b which satisfies

ẍ(t) + Γijk(x(t))ẋj(t)xk(t) = 0 for i = 1, . . . ,m

is called a geodesic.

Due to Picard-Lindelöf’s existence theorem for differential equations geodesics exist
for a short time.

Theorem 2.5 ([Jos08, Theorem 1.4.2]). LetM be a Riemannian manifold, p ∈M,
v ∈ TpM. Then there exists ε > 0 and precisely one geodesic

c : [0, ε]→M

with c(0) = p and ċ(0) = v. In addition, c depends smoothly on p and v.

This leads to the exponential map which diffeomorphically maps a neighbourhood
of 0 ∈ TpM onto a neighbourhood of p ∈M.

Definition 2.6 (Exponential Map). Let M be a Riemannian manifold, p ∈ M,
then

Vp : = {v ∈ TpM | cv is defined on [0, 1]}
expp :Vp →M

v 7→ cv(1)

is called exponential map.

Since for all p ∈ M there exists a small neighbourhood U ⊂ M such that expp
maps U diffeomorphically onto a subset of Rm, normal- and polar-coordinates can
be defined that have an easy local representation of the metric g.

Definition 2.7 (Injectivity Radius). Let M be a Riemannian manifold, p ∈ M.
The injectivity radius of p is

i(p) := sup{ρ > 0 | expp is defined on dρ(0) ⊂ TpM and injective}

where dρ := {y ∈ Rm | ρ ≥ ‖y‖} ⊂ TpM. The injectivity radius of the manifold M
is

i(M) := inf
p∈M

i(p).

Furthermore, locally a geodesic is a curve of minimal length [Jos08, Corollary 1.4.2].

5



2 Interpolation in Shape Spaces

Differential Forms The notations and definitions are taken from [Lan99]. One
possibility how to introduce differential forms is to define what these locally on the
tangent spaces and then glue this smoothly together.

Definition 2.8 (Differential Form, Wedge Product). Let V be an n-dimensional
vector space. Then AltkV marks the space of alternating k-forms, i.e. ω ∈ AltkV
is a k-linear mapping Ω : V × · · · × V︸ ︷︷ ︸

k

→ R such that if v1, . . . , vk ∈ V are linearly

dependent then ω(v1, . . . , vk) = 0.
A differential k-form on a differentiable manifold M is defined as the mapping
ω :M→ AltkTpM which assigns each p ∈M an alternating k-form ωp ∈ AltkTpM
and is differentiable in charts. The space of differential forms in denoted by ΩkM.
For k = 0, Ω0M is defined, due to consistency, as the space C∞(M), the smooth
functions from M to R. These differential forms induce a so-called exterior algebra
with the wedge product as the outer product. This is again defined locally. Let V be
a vector space, ω ∈ AltrV and η ∈ AltsV . Then

∧ : AltrV × AltsV → Altr+sV

(ω, η) 7→ ω ∧ η
(2.6)

is defined as the wedge product with

ω ∧ η(v1, . . . , vr+s) :=

1

r!s!

∑
τ∈S(r+s)

sgn(τ) · ω(vτ(1), . . . , vτ(r)) · η(vτ(r+1), . . . , vτ(r+s)).

Definition 2.9 (Outer Derivative d). There is a unique mapping Ωk d−→ Ωk+1 called
outer derivative characterised by

• df ∈ Ω1M is the usual differential of f for f ∈ Ω0M = C∞(M);

• d ◦ d = 0;

• d(ω ∧ η) = dω ∧ η + (−1)rω ∧ η for ω ∈ Ωr.

The usual differential of f ∈ C∞(M) in local coordinates x can be written as
( ∂f
∂xi

)i=1,...,m.

A map φ : V → W from one vector space to another induces a map from AltkW to
AltkV by pulling back the values.

Definition 2.10 (Pullback). The pullback φ∗ : AltkW → AltkV for the vector
spaces V and W of a map φ : V → W is defined as

(φ∗ω)(v1, . . . , vk) = ω(φ(v1), . . . , φ(vk)) (2.7)

for all alternating k-forms ω ∈ AltkW . This structure extends to differentiable
manifolds by applying this local definition the tangent spaces.

6



2.2 Discrete Geodesic Calculus

The top forms of an orientable differential manifold, i.e. forms in ΩmM where m
is the dimension of M, are special, since they can be integrated. There is one top
form in Riemannian manifolds, the so-called Riemannian volume element, which
gives a proper definition for the volume of a manifold.

Definition 2.11 (Riemannian Volume Element). LetM be an oriented Riemannian
manifold, then

ωM :=
√
det(gij)dx

1 ∧ · · · · ∧ ·dxm (2.8)

is the Riemannian volume form in local coordinates (x1, . . . , xm).

2.2 Discrete Geodesic Calculus

In “Discrete Geodesic Calculus in Shape Space and Applications in the Space of
Viscous Fluidic Objects.” by M. Rumpf and B. Wirth [RW13] a discrete geodesic
calculus was developed which allows to compute an approximation to a geodesic
between two given objects in shape spaces. Shape spaces can be modelled by Rie-
mannian manifolds. Section 2.3 will show an example of a shape space and sec-
tion 3.3 gives a more detailed introduction to shape spaces. In the referenced paper
the discrete counterparts of the continuous energy and length of curves are defined
and it is shown that discrete curves converge to continuous geodesics for increasing
number of points.
For a manifold M the discrete counterpart to a smooth curve γ is a discrete set
of points, a so-called discrete K-path defined as a (K + 1)-tuple (y0, . . . , yK) with
yk ∈ M for k = 0, . . . , K. Since shape spaces are modelled by Riemannian man-
ifolds, the exact distance between two shapes can be computed by the induced
distance function. However, in most cases this is expensive, hence a distance ap-
proximation is used. Let d(., .) denote the exact distance induced by the Riemannian
metric, then

W (x, y) ≈ d2(x, y) (2.9)

gives a squared distance approximation which is valid for x close to y.

Definition 2.12 (Discrete Length and Energy). Let y = (y0, . . . , yK) be a discrete
K-path, then the discrete length L and the discrete energy E are defined as

Ldiscrete(y) =
K∑
k=1

√
W (yk−1, yk) (2.10)

and

Ediscrete(y) = K ·
K∑
k=1

W (yk−1, yk), (2.11)

where W (., .) is the squared distance approximation.

For the existence of an energy-minimizing K-path and the convergence of the dis-
crete energy to the continuous energy see [RW13, Theorem 4.4, Corollary 4.10].

7



2 Interpolation in Shape Spaces

Length versus Energy

A intuitive idea to obtain a K-path of minimal length connecting two points p and
q in M would be minimizing the length. However, there are several reasons why
the energy is better suited. The two main reasons are

1. that minimizing the length does not necessarily converge to a length-minimizing
curve for K →∞ due to the distance approximation

2. that the property of geodesics parametrized by arc-length translates to equidis-
tribution of the points in the discrete setting. (Equidistribution is not guar-
anteed when minimizing the length, even in the continuous setting there exist
curves of minimal length which are no geodesics).

The first reason can be explained by the following example. Consider figure 2.1 and
assume that the surface M is embedded in R3 and W (x, y) := ‖x − y‖2

3, i.e. the
Euclidean metric of R3, is used as distance approximation to the actual distance in
M which is induced by shortest continuous curves in M.

.p .q

M

Figure 2.1: Assume that the surface M is embedded in R3. The curve connecting
p and q represents a geodesic in the embedded manifold.

In this setting a valid K-path connection p and q is γ = (p, . . . , p︸ ︷︷ ︸
K-times

, q) with a discrete

length L(γ) = ‖p− q‖3 which is lower than any continuous connecting curve inM.
The second reason consists actual of two statements, a theorem proves the equidis-
tribution of points when minimizing the energy and an example shows that there
are smooth curves of minimal length which are no geodesics.

8



2.2 Discrete Geodesic Calculus

Theorem 2.13. Let γ : [0, 1]→M be a geodesic between p and q in M with p 6= q
close enough so that γ is unique. Let y = (y0, y1, y2) be a 2-path with y0 = p and
y2 = q. Then y minimizes the discrete energy if and only if y1 = γ(0.5) when using
the exact distance as distance approximation.

Remark: Here, as distance approximation the exact distance is used. [RW13] shows
the equidistribution more generally, but theorem 2.13 is the core of the equidistri-
bution.

Proof. The theorem is shown in two steps, first it is shown that y1 has to be on the
geodesic γ and second that y1 = γ(0.5). Both parts are proven by contradiction.
First assume that there is a y1 6= γ(t) for all t ∈ [0, 1] such that Ediscrete(y) is
minimal. Then with l1 := d(y0, y1) and l2 := d(y1, y2) the discrete energy of y can
be computed as

Ediscrete(y) = 2 · (l21 + l22).

However, for yopt = γ(0.5) and l3 := d(y0, yopt) = d(yopt, y2) it holds that

l1 + l2 > d(y0, y2) = 2 · l3 ⇒ l3 <
l1 + l2

2
.

since γ is the unique geodesic. Using ỹ = (y0, γ(0.5), y2) leads to

Ediscrete(ỹ) = 4 · l23 < 2 · (l1 + l2)2

2

= 2 · 1

2
(l21 + l22) + 2 · l1 · l2 ≤

1

2
· Ediscrete(y) +

1

2
· 2(l21 + l22)

= Ediscrete(y)

which is a contradiction to the assumption. For the second part assume that there
exists a t1 ∈ [0, 1]\{0.5} such that E(y) is minimal. With the same notation as
in the previous case, l3 = l1+l2

2
since geodesics are parametrized by arc length.

However, since l1 6= l2, it follows that

Ediscrete(ỹ) = 4 · l23 = 2 · (l1 + l2)2

2

= 2 · 1

2
(l21 + l22) + 2 · l1 · l2 <︸︷︷︸

l1 6=l2

1

2
· Ediscrete(y) +

1

2
· 2(l21 + l22)

= Ediscrete(y).

An example of a length-minimal smooth curve which is no geodesic is the curve
γ : [0, 1] → R3 with the standard metric which connects x and y by a line with a
non-constant derivative

γ(t) = x+ sin(t · π
2

) · (y − x).

The curve has L(γ) = ‖x−y‖3, the same length as a geodesic. The energy, however,
is a lot worse E(γ) = π

4
‖x− y‖2

3.

9



2 Interpolation in Shape Spaces

2.3 Interpolation of Viscous Rods

A simple shape space is the space of viscous rods, which was also used in [RW15].
For now it suffices to know about shape spaces that they are a set of two- or three-
dimensional objects which are homotopy equivalent to one or multiple reference
objects with a Riemannian metric, which induces a distance function. In most
cases the computation of the exact distance is expensive. That is why distance
approximations are used. A more detailed introduction to shape spaces will be
done in chapter 3.3.
The discretisation of this shape space simplifies a viscous rod to a polygonal line of
straight rods glued together. The space of such rods can be classified into so-called
closed and open viscous rods. For a closed rod the start point and end point have
to coincide, for an open rod there is no additional constraint. The distance defined
on this shape space describes the physical effort it takes to stretch or bend one rod
into another. The approximation to the squared distance in terms of lengths and
angles of the rod is as follows. Given two rods γ, β with γ = (lγ1 , . . . , l

γ
n, α

γ
1 , . . . , α

γ
n)

and β = (lβ1 , . . . , l
β
n, α

β
1 , . . . , α

β
n) then

W (γ, β) =
n∑
i=1

(lγi − l
β
i )2

lγi
+ 2 ·

n∑
i=1

(αγi − α
β
i )2

lγi + lγi+1

. (2.12)

Here lγi and αγj describe the lengths of the straight segments and the angles at
the vertices, respectively. The first term of (2.12) considers the stretching and the
second term the bending. These can be weighted separately by adding constant
factors to the functional. Figure 2.2 shows an example of a discrete, closed rod.

l1

l2

l3

l4

l5

l6

l7

α1

α2 α3

α4

α5

α6
α7

Figure 2.2: Example of a closed rod where the lengths and angles are indicated.

Typically elements in shape spaces are equivalence classes, where the relation is in-
duced by translation and rotation invariance and sometimes scale invariance. This
makes Euclidean interpolation impossible, unless a standard representative is fixed.
Nevertheless, figure 2.3 shows a K-path, obtained by choosing the same representa-
tive (obtained by setting the first point to (0, 0) and fixing the the direction of the
first segment) and taking an Euclidean average of the coordinates of the vertices.
The discrete energy of this curve is Ldiscrete(γ) = 3.639 computed with the shape
space distance approximation of equation 2.12. The next figure 2.4 shows a dis-
crete geodesic. This example clearly shows that even for a few points, the differ-

10



2.3 Interpolation of Viscous Rods

Figure 2.3: Discrete curve which minimizes the Euclidean distance. The blue shapes
mark the two initial given objects of the shape space. The discrete K-
path is drawn in black. Ldiscrete(γ) ≈ 3.639

ences between the two interpolations are obvious. This discrete geodesic is com-
puted as minimizer of the discrete energy introduced earlier, the discrete length is
Ldiscrete(γ) = 2.208.

Figure 2.4: Discrete curve which minimizes the shape space distance approximation
of the closed viscous rods. The blue shapes mark the two initial given
objects of the shape space. The discrete K-path is drawn in black.
Ldiscrete(γ) ≈ 2.208

11



3 Theoretical Setting and Existence

Searching for minimal surfaces with a given boundary is called “Plateau’s Prob-
lem”. It consists in finding a surface of least area which is bounded by a given
curve. Section 3.1 considers Plateau’s Problem for Riemannian manifolds in terms
of area and Dirichlet energy. It shows why the energy functional is better suited
to solve Plateau’s Problem than the area. This is followed by an overview of some
classical results, beginning with Douglas and Radó who were the first who showed
the existence of a solution in some generality. This section closes with a modern
existence theorem from differential geometry, theorem 3.13.
The second section 3.2 deals with so-called integral currents, the generalisation of
smooth surfaces in the setting of geometric measure theory. This approach was
chosen since there are more general existence and regularity results for higher di-
mensions and codimensions. And last, in section 3.3, shape spaces are explained in
more detail with some references.

3.1 Plateau’s Problem for Riemannian Manifolds

This section states Plateau’s problem for Riemannian manifolds which were intro-
duced in the previous chapter 2.1. The aim of this chapter is to give an overview
of the classical results from differential geometry and an existence theorem for har-
monic maps which implies a solution to Plateau’s problem. First the definitions
of area and Dirichlet energy for manifolds are given and compared. To under-
stand the following section, basic knowledge about differential geometry is needed.
The main reference for this introduction is [Jos08]. Dierkes et. al. cover the three-
dimensional case of the problem of Plateau in detail in [DJK+10b], [DJK+10c] and
[DJK+10a].With the application to shape spaces in mind some simplifications were
made.

3.1.1 Area Minimization

Originally the idea was to find a surface of least area, which is bounded by a wire
frame (or multiple wires).
The surface is usually a Riemannian surface, that is a one-dimensional complex
manifold [Jos08, Definition 8.2.1]. However, most of the following definitions and
theorems regarding minimal surfaces are restrained to the unit disk in R2 = C

D = {z ∈ C | z = u+ iv, ‖z‖ < 1} (3.1)

12



3.1 Plateau’s Problem for Riemannian Manifolds

which has as boundary ∂D = S1 the standard 1-sphere, which suffices for the ap-
plication of disk-type minimal surfaces.

There exists a definition for an area or more general a volume of a manifold with
the help of the Riemannian volume element.

Definition 3.1 (Area). The area of an orientable smooth Riemannian manifold
(M, g) is defined as

A(M) =

∫
M
ωM (3.2)

if the integral exists, where ωM =
√

det gij dx
1∧· · ·∧dxn is the Riemannian volume

element.

The higher-dimensional equivalent is sometimes denoted by Am(Ω) for Ω ⊂ Rm to
mark the dimension of the surrounding space. One flaw of the here used Lebesque-
measure is that if Ω is a subset of Rm with Am(Ω) <∞ then Am+1(Ω) = 0 for the
natural embedding of Ω in Rm+1.

Definition 3.2 (Area). The area of a smooth map f : D →M is defined as

A(f) =

∫
D

f ∗ωM (3.3)

where f ∗ωM is the pull back of the differential form ωM.

This area can be computed by

A(f) =

∫
D

√
det(J(f)t · J(f))dudv

=

∫
D

‖fu ∧ fv‖

where J(f) is the Jacobi matrix of f and the area is invariant under reparametri-
sations. This leads to the classical problem of Plateau.

Definition 3.3 (Plateau’s Problem, Area). Let Γ be a simple, closed curve in M,
then f : D̄ →M is a solution to Plateau’s problem if it fulfills the following condi-
tions:

1. f ∈ C0(D̄,M) ∩ C2(D,M);

2. A(f) is minimal;

3. The restriction f∂D of f to the boundary ∂D of the parameter domain D is a
homeomorphism of ∂D onto im(Γ).

13



3 Theoretical Setting and Existence

Figure 3.1: Plane unit disk with hairs.

Similar to the minimization of the energy and length of curves, the class of surfaces
of least area for a given boundary contain undesired surfaces. Figure 3.1 gives an
example of an unwanted surfaces. Since hairs, as straight lines, have zero area such
hairs do not increase the total area. Such a surface with hairs can be represented by
a smooth map [DJK+10b, p. 50]. However, as theorem 3.6 will show, a conformal
map which minimizes the Dirichlet energy also minimizes the area. Hence, it was
proposed by Hilbert to minimize the Dirichlet energy instead [DJK+10b, p. 248].

3.1.2 Dirichlet Energy Minimization

Definition 3.4 (Dirichlet energy). Let f : D →M be a smooth map the Dirichlet
energy is defined as

ED(f) =
1

2

∫
D

tr(J(f)t · J(f))du · dv =
1

2

∫
D

(‖fu‖2 + ‖fv‖2)du · dv. (3.4)

Functions which are critical points of equation 3.4 are called harmonic, this property
is sometimes denoted by ∆f = 0 which refers to the Laplace-Beltrami Operator ∆.
[Jos08, Lemma 8.1.1].

Definition 3.5 (Conformal). A C1-map f : D → N is called conformal if

‖fu‖2 = ‖fv‖2 and 〈fu, fv〉 = 0. (3.5)

Theorem 3.6. Let (M, g) be a finite dimensional Riemannian manifold. Let
D ⊂ R2 be the standard disk bounded by the unit circle and f : D → M a dif-
ferentiable map, then

ED(f) ≤ A(f) (3.6)

and equality holds if and only if the map f is conformal.

14



3.1 Plateau’s Problem for Riemannian Manifolds

Proof. By comparing the integrands of energy and area

ED(f) =
1

2

∫
D

(‖fu‖2 + ‖fv‖2)dudv

A(f) =

∫
D

‖fu ∧ fv‖dudv

the desired result can be shown. The wedge product satisfies the Lagrange-identity

‖fu ∧ fv‖ =
√
‖fu‖2‖fv‖2 − ‖〈fu, fv〉‖2

≤ ‖fu‖ · ‖fv‖ (3.7)

≤ 1

2
(‖fu‖2 + ‖fv‖2) (3.8)

and so the inequality is shown. For equality in the case of conformal mappings the
inequalities 3.7 and 3.8 need to be sharpened. These two inequalities are equations
if and only if f is conformal.

Now the definition of Plateau’s problem 3.3 can be reformulated with the help of
the Dirichlet energy and a solution of the Dirichlet version of Plateau’s problem
implies a solution of the Area version.

Definition 3.7 (Plateau’s Problem, Dirichlet). Given a simple closed curve Γ in
M, then f : D̄ →M is a solution to Plateau’s problem for the boundary contour if
it fulfills the following conditions:

1. f ∈ C0(D̄,M) ∩ C2(D,M);

2. The surface f satisfies in D the conditions:

a) f is a critical point of the Dirichlet energy functional.

b) ‖fu‖2 = ‖fv‖2, 〈fu, fv〉 = 0, i.e. f is conformal.

3. The restriction f∂D of f to the boundary ∂D of the parameter domain D is a
homeomorphism of ∂D onto im(Γ).

3.1.3 Classical Existence Theorems

Plateau’s problem was first formulated in 1760 by Lagrange, but it was first solved
to some generality in 1930 simultaneously by Radó and Douglas.

Theorem 3.8 (Radó 1930). For any Jordan curve Γ in R3 which bounds at least
one continuous surface with a finite area both versions of Plateau’s Problem have a
common solution.

Radò showed that there are infinitely many solutions to the problem of least area
and with the additional constraint to the boundary curve he showed that there is
a solution to Plateau’s problem, which implies that there is a minimal surface as a
solution to the problem of least area.
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3 Theoretical Setting and Existence

Theorem 3.9 (Douglas 1931). For any Jordan curve Γ in Rn, n ≥ 2 there is a
solution to the problem of Plateau.

With another approach J. Douglas could solve Plateau’s problem for a general
n-dimensional Euclidean space and by a limit-process he got rid of the additional
constraint that there must exist a continuous surface of finite area bounded by the
boundary curve. For this work, Douglas was awarded with one of the first two
Fields medals in 1936.
In 1937 Courant extended Plateau’s problem to multiple Jordan curves ([Cou37]).
More relevant to the setting of this thesis is the work of C. B. Morrey in 1948
[Mor48]

Theorem 3.10 (Morrey 1948). Let (M, g) be a homogeneously regular, finite-
dimensional Riemannian manifold, and Γ a Jordan curve in M, then there exists
a solution to Plateau’s problem.
If M is smooth, then the minimal surface is at least two-times differentiable on the
interior.

Homogeneously regular was introduced by Morrey in [Mor48, p. 838] and is a con-
dition to the metric in local coordinates.

Definition 3.11 (Homogeneously regular). A differentiable Riemannian manifold
M is said to be homogeneously regular if there exist numbers k and l (independent
of x0) with 0 < k ≤ l, such that any point x0 in M lies in an open set in M which
can be mapped on the unit hypercube R : |xi| < 1 by a differentiable map such that
x0 corresponds to the origin and the gαβ(x) satisfy the condition that

k
m∑
i=1

(ξi)2 ≤
∑
α,β

gαβ(x)ξαξβ ≤ l
m∑
i=1

(ξi)2 (3.9)

for all (x1, . . . , xm) on R and all (ξ1, . . . , ξm).

Every compact manifold is homogeneously regular. For (non-compact) complete
manifolds this is equivalent to bounded from below injectivity radius and bounded
sectional curvature. There exists even more theory for minimal hypersurfaces and
surfaces of higher codimensions (see for example [HKW76]) but restrictive require-
ments to the underlying Riemannian manifold are needed as well.

3.1.4 Existence of Conformal and Harmonic Mappings

In this thesis a more modern existence theorem based on differential geometry by
J. Jost is presented. As in most approaches to Plateau’s problem only the existence
of a harmonic map is considered. This is based on the fact that there always exists
a reparametrisation to a conformal mapping under which the Dirichlet energy is
unchanged. This is the so-called Lichtenstein’s theorem.
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3.1 Plateau’s Problem for Riemannian Manifolds

For a smooth map f : D →M the Dirichlet energy is invariant under composition
with a conformal diffeomorphism τ : D → D

ED(f) = ED(f ◦ τ). (3.10)

This can be shown using the complex structure of the surface and the transforma-
tion rule for integrals. More details can be found in [HW07] or [Cou50].

If a Dirichlet minimizer is found, Lichtenstein’s theorem provides the existence of a
conformal reparametrisation.

Theorem 3.12 (Lichtenstein’s theorem). Let Ω ⊂ R2 be a subset bounded by a
closed Jordan curve Γ of class Cm,α for a given m ∈ N and α ∈ (0, 1), and
let (gjk(x)) be a positive definite, symmetric 2-matrix-valued function on Ω̄ with
gjk ∈ Cm−1,α(Ω̄). Then there exists a conformal mapping τ from D̄ onto Ω̄ which
is of class Cm,α(D̄,R2).

To apply this theorem to a harmonic map f : D →M, take Ω as D with the metric
gik induced by the pullback of the Riemannian metric from M via f . Then there
is a map τ : D̄ → D̄ which is conformal with respect to the induced and Euclidean
metric. Then f ◦ τ : D →M is conformal and harmonic.

As a consequence of theorem 3.6 conformal and harmonic maps are local area
minimizers, and because of the reparametrisation of Lichtenstein the existence of
harmonic maps implies the existence of area minimizers. In differential geometry
there are several theorems covering existence of harmonic mappings (see [Jos08]
and [HW07]). One existence result without overly restrictive requirements is the
following.

Theorem 3.13 ([Jos08, Theorem 8.3.2]). Let M be a complete Riemannian man-
ifold with sectional curvature K bounded from above by κ and injectivity radius i0
greater than 0, and p ∈M. Let

0 < r < min

(
i0
2
,
π

2
√
κ

)
. (3.11)

Let Γ : ∂D → Br(p) be continuous and admitting an extension f̄ : D → Br(p) of
finite energy where Br(p) := {q ∈ M | d(q, p) ≤ r} is a geodesic ball in M with
radius r.
Then there exits a harmonic map

f : D → Br(p) ⊂M (3.12)

with
f |∂D = Γ (3.13)

and f minimizes the Dirichlet energy among all such maps.
The modulus of continuity of f is controlled by r, κ, ED(f̄) and the modulus of Γ,
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i.e. given ε > 0, there exists δ = δ(r, κ,Γ) > 0 such that |x1 − x2| < δ implies
d(f(x1), f(x2)) < ε. Finally, for any σ > 0 the modulus of continuity of f on
{z : |z| ≤ 1− σ} is controlled by σ, r, κ and ED(f̄).

For the theorem, complete is to be understood with respect to the distance. Further-
more, the sectional curvature of a manifold is needed which is usually defined via
the Riemannian curvature tensor [Jos08, Definition 3.3.2]. This definition and the
proof of theorem 3.13 are omitted since a lot of additional results from differential
geometry are needed.

3.2 Geometric Measure Theory

Another approach to finding minimal surfaces is through geometric measure theory.
It is based on the work of Federer [Fed69] and can be seen as differential geometry,
generalised through measure theory. First steps towards a better understanding of
this theory were done by Morgan [Mor88] and De Lellis [DLS11].
Two main aspects of geometric measure theory are abstracting surfaces to currents
and using the Hausdorff measure (or in general not the Lebesgue measure). Cur-
rents were developed by De Rham in 1955 and extended in “Normal and Integral
Currents” by Federer and Fleming [FF60] in 1960.

Theorem 3.13 developed in the previous section about harmonic maps from differ-
ential geometry needs the curvature to be bounded from above and the injectivity
radius to be bounded from below. These are rather strong requirements, since the
sectional curvature of shape spaces is often unknown. There are several other results
emerging from differential geometry [HW07], always having additional requirements
to the manifold like non-positive curvature. The result geometric measure theory
aims for is more general and the goal for this thesis is the following conclusion.

Theorem 3.14 ([XDC88]). Any null homologous curve on a Riemannian manifold
bounds a least area surface, which is a classical minimal surface in the interior.

Here, null homologous means that the curve is contractible to a point. All of
the following definitions and results are done for closed subsets of Rn, since each
m-dimensional Riemannian manifold can be smoothly embedded as a closed subset
in Rn for n ≥ 2m+ 1. It can even be approximated by an isometric embedding.

Theorem 3.15 (Withney embedding theorem). A smooth m-dimensional manifold
can be smoothly embedded in R2m+1 as a closed subset.

Theorem 3.16 (Nash isometric embedding theorem). Let (M, g) be an m-dimensional
Riemannian manifold and f :M→ Rn a smooth embedding with n ≥ m+ 1. Then
for arbitrary ε > 0 there exists an embedding fε :M→ Rn which is

1. in class C1,
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3.2 Geometric Measure Theory

2. isometric,

3. ε-close to f , i.e.: ||f(x)− fε(x)|| < ε ∀x ∈M.

Therefore, it suffices to find a minimal surface for a closed subset K of Rn. Usually,
the dimensions are denoted by m+ n for the manifold where m is the dimension of
the current, the so-called codimension. If the manifold is embedded, n marks the
dimension of the surrounding Euclidean space and the dimension of the manifold is
denoted by m+ n̄.

In the next section 3.2.1 the currents and Hausdorff measure are introduced and it
is shown that area-minimizing currents minimize the typical area (if this term is
applicable). Section 3.2.2 states the existence and regularity results, this is done
without proof, but further references are will be given.

3.2.1 Federer-Fleming Theory of Integral Currents

The following definitions are taken from C. De Lellis [DL11] and L. Simon [Sim83]
with references to the original work of H. Federer [FF60], F. J. Almgren [Alm93],
and S. Xu-Dong Chang [XDC88] unless stated otherwise.
This chapter introduces the generalisation of surfaces and shows that the mass of a
current coincides with the area of the corresponding surface if one exists.
Let Ωm

c (Rn+m) ⊂ Ωm(Rn+m) denote the space of smooth, compactly supported
m-forms (denoted by Dm(Rn+m) in [Fed69, Section 4.1.7]) as a subspace of the
smooth m-forms.
The support spt(ω) of a smooth m-form is the closure of the subset U ⊂ Rn+m s.th.

∀x ∈ U : ω(x) 6= 0. (3.14)

The so-called currents are elements of the dual space and are denoted by DmRn+m.
Note that the Rn+m in Ωm(Rn+m) and Dm(Rn+m) is dropped if the context is clear.

Definition 3.17 (Current, De Rham, [DL11]). An m-dimensional current T is a
continuous linear map T : Ωm

c (Rn+m)→ R. The term continuity is to be interpreted
in the following sense. T (ωk)→ T (ω) whenever ωk ⊂ Ωm

c is a sequence such that

1. there exists an open subset Ω ⊂ Rm+n with Ω̄ ⊂ Rm+n compact
such that spt(ωk) ⊂ Ω for all k. (This property is sometimes denoted by
Ω ⊂⊂ Rm+n);

2. the sequence ωk → ω converges in Cj(Ω) for all j.

This can be made local by taking a subset U ⊂ Rn+m and defining the currents as
the dual space of Ωm

c (U). The support spt(T ) of a current T is the complement
of the maximal open set U for which T (ω) = 0 whenever spt(ω) ⊂ U (see [Fed69,
Section 4.1.1]).
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3 Theoretical Setting and Existence

With the standard definition of D0 = C∞0 (Rn+m) as the smooth functions with
compact support, the zero-dimensional currents are the distributions. Using the
standard topology on Dm(Rn+m) (see [Sim83]) a sequence of m-dimensional currents
T k converges to T if T k(ω)→ T (ω) for every ω ∈ Ωm

c (Rn+m). Using the differential
for smooth forms the boundary of a current can be consistently defined.

Definition 3.18. (Boundary, De Rham) An (m− 1)-dimensional current S is the
boundary of an m-dimensional current T if

T (dω) = S(ω) for every ω ∈ Ωm
c . (3.15)

S will then be denoted by ∂T .

Application to Surfaces

Each smooth m-dimensional oriented surface Σ in Rn+m induces a current JΣK by
integration

JΣK : Ωm
c (Rm+n)→ R

ω 7→
∫

Σ

ω
(3.16)

over m-forms. The boundary of a current is consistent with the boundary of a
surface by Stokes theorem. ∫

Σ

dω =

∫
∂Σ

ω

Hausdorff Measure, Mass and Comass

Definition 3.19 (Hausdorff Measure). The Hausdorff measure Hm(A) for a subset
A ⊂ Rn and a nonnegative integer m is defined as

Hm(A) := lim
δ→0

inf
A⊂∪Sj

diam(Sj)≤δ

∑
αm

(
diam(Sj)

2

)m
(3.17)

where the diameter of S is

diam(S) = sup{‖x− y‖ | x, y ∈ S} (3.18)

and αm is the m-dimensional Lebesgue volume of the m-dimensional unit ball Bm
1 (0).

This definition can be extended to any nonnegative real number m by setting

α(m) = Γ

(
1

2

)m
/Γ
(m

2
+ 1
)

(3.19)

with Γ(n) the usual Gamma function. Observe that H0 equals the counting measure
and if Hm(A) <∞ then Hk(A) = 0 for any m < k <∞.
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3.2 Geometric Measure Theory

Recall that a simple m-vector is an element of Λm(Rm+n) of the form v1 ∧ · · · ∧ vm
and there is a natural length of a simple m-vector, |v1∧· · ·∧vm|, the m-dimensional
Hausdorff measure of the parallelogram spanned by the vectors v1, . . . , vm.1

Ωm
c induces a norm on Dm, the dual norm. Another dual pair are the so-called mass

and comass.

Definition 3.20 (Comass). Let ω ∈ Ωm
c . Then the comass of ω is the norm

‖ω‖c := max{〈ω(p), v1 ∧ · · · ∧ vm〉 | p ∈ Rn+m, |v1 ∧ · · · ∧ vm| = 1} (3.20)

where 〈·, ·〉 is the inner product on Ωm naturally induced.

Simon shows, how an inner product is naturally induced in his lecture notes [Sim83].
He also defines the norm and dual norm on currents without the comass and uses
|ω| = supp∈U〈ω(x), ω(x)〉 12 . This leads to the same mass.

Definition 3.21 (Mass). Let T ∈ DmRn+m. The mass of T is defined as

M(T ) := sup
‖ω‖c≤1

T (ω), (3.21)

or localised
‖T‖(Ω) = sup

ω∈Ωm
c

spt(ω)∈Ω
‖ω‖c≤1

T (ω). (3.22)

One important theorem of geometric measure theory is that the mass of a current
induced by a surface coincides with the area of the surface. This is based on the
so-called area formula and leads to area-minimizing currents.

Theorem 3.22 (Area Formula). Suppose f : Rm → Rn is smooth and injective
with m ≤ n and U ⊂ Rm is Lebesgue Lm-measurable then∫

U

f ∗ωRn = Hm(f(U)) (3.23)

where ωRn is the Riemannian volume element of Rn.

Remark Federer and Simon proved this theorem for Lipschitzian not necessarily
injective functions. Equation 3.23 is then∫

U

Jmf(x)dLmx =

∫
Rn

N(f |U, y)dHmy.

Here Jmf(x) =
√
|J tf(x) · Jf(x)| for Jf(x) the Jacobian of f . Thus, the left hand

side coincides with
∫
U
f ∗ωRn . On the right hand side N(f |U, y) is the multiplicity

1In the previous section this was defined with the help of the Lebesgue measure, but as a following
theorem states, in this case they coincide.
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and can be defined by N(f |U, y) := H0(f−1({y})) ∩ U . Since in theorem 3.22 f is
required to be injective, N(f |U, y) = 1f(U) and thus∫

Rn

N(f |U, y)dHmy =

∫
Rn

1f(U)dHmy = Hm(f(U))

Last it remains to show that M(JΣK) = Hm(Σ) for an m-dimensional surface Σ.
Therefore,

Am(Σ) = sup
ω∈Ωm

c
‖ω‖c≤1

∫
Σ

ω.

Thus,

M(JΣK) = Am(Σ).

Simon shows this in detail in his lecture notes [Sim83, p. 133].

Existence of Mass Minimizers and Integral Currents

Functional analysis shows that there exist mass minimizing currents [DL11].

Theorem 3.23 (Existence, De Lellis). Let Z be an (m − 1)-dimensional current
and T̄ an m-dimensional current with ∂T̄ = Z and M(T̄ ) < ∞. Then there is a
current T0 such that ∂T0 = Z and

M(T0) = min{M(T ) | ∂T = Z}. (3.24)

If spt(T̄ ) ⊂ K for some closed set K there exists a current T0 such that ∂T0 = Z,
spt(T0) ⊂ K and

M(T0) = min{M(T ) | ∂T = Z and spt(T ) ⊂ K}. (3.25)

However, this yields unsatisfactory currents, see for example the Lavrentiv gap in
[DL11]. This is why the class of currents is restricted to integral currents, defined
in [Fed69, 4.1.24] or simplified in [DL11].

Definition 3.24 (Integer Rectifiable and Integral Currents). A current T is integer
rectifiable if there are a sequence of oriented C1 surfaces Σi ⊂ Rm+n, a sequence of
pairwise disjoint closed subsets Ki ⊂ Σi and a sequence of positive integers ki such
that ∑

i

kiA
m(Ki) <∞ (3.26)

T (ω) =
∑
i

ki

∫
Ki

ω ∀ω ∈ Dm (3.27)

T is integral if both T and ∂T are integer rectifiable.
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The mass of an integral current is then M(T ) =
∑

i kiA
m(Σi). Surfaces are obvi-

ously integral and searching in this class of minimizers avoids the Lavrentiv gap,
but to assert that the current of the minimizing process is again integral is no easy
task.
This definition of integer rectifiable currents can be made local, by saying the condi-
tions of 3.24 are satisfied for the restriction TxΩ to any bounded open set Ω ⊂ Rn+m.

3.2.2 Compactness and Existence

The space of integer rectifiable currents is not a vector space any more, so there is no
simple functional-analytic principle which provides a good compactness property.
However, this is needed for extracting a convergent subsequence. A fundamental
result in the theory of Federer and Fleming is that the space of integral currents is
compact in a suitable sense.

Theorem 3.25 (Compactness of integral currents). If T k is a sequence of integral
m-dimensional currents such that

supk(M(T k) +M(∂T k)) <∞ (3.28)

then there is a subsequence, not relabelled, and an integral m-dimensional current
T such that T k → T .

The compactness theorem 3.25 provides the existence of mass minimizing integer
rectifiable currents in analogy to theorem 3.23.

Corollary 3.26 (Existence). Let Z be an (m − 1)-dimensional integer rectifiable
current and T̄ an m-dimensional integral current with ∂T̄ = Z and M(T̄ ) < ∞.
Then there is an integer rectifiable current T0 such that ∂T0 = Z and

M(T0) = min{M(T ) | T is integer rectifiable, ∂T = Z}. (3.29)

If spt(T̄ ) ⊂ K for some closed set K then there exists an integer rectifiable current
T0 such that ∂T0 = Z, spt(T0) ⊂ K and

M(T0) = min{M(T ) | T is integer rectifiable, ∂T = Z and spt(T ) ⊂ K}. (3.30)

One interesting result is a theorem which shows that finite mass implies that the
boundary is integer rectifiable.

Theorem 3.27 (Boundary rectifiability). If T is integer rectifiable and M(∂T ) <∞
then T is integral.

Furthermore, for a boundary current there is an extension with bounded mass.

Theorem 3.28 (Isoperimetric inequality). There is a C > 0 depending on the
dimensions m and n with the following property. Let S be an integer rectifiable
m-dimensional current in Rm+n with ∂S = 0. Then there is an integral current T
with ∂T = S and

M(T ) ≤ C(M(S))(m+1)/m. (3.31)
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3 Theoretical Setting and Existence

Area Minimizing Currents and Regularity of Area Minimizing Currents

The following regularity theorems are not only valid for solutions of corollary 3.26,
but for a class of integer rectifiable currents which are so-called area-minimizing
which is a more general concept. This overview is based on [DL11]. Each solution
of 3.26 is, in fact, area-minimizing.

Definition 3.29 (Area-Minimizing). Let Ω ⊂ Rn be open and Σ ⊂ Rn be a smooth
complete submanifold without boundary of dimension m + n̄. An m-dimensional
integer rectifiable current T is area-minimizing in Σ ∩ Ω if

• spt(T ) ⊂ Σ;

• M(T + ∂S) ≥ M(T ) for every (m + 1)-dimensional integral current S with
spt(S) ⊂ Σ ∩ Ω.

The first item ensures that T lies in Σ and the second item shows that no variation of
T has lower mass, which corresponds to minimal area. The analysis of the regularity
consists in defining the set of non regular points.

Definition 3.30. p ∈ spt(T )\spt(∂T ) is an interior regular point if there is a
positive radius r > 0, a smooth embedded submanifold Γ of Σ and a positive in-
teger Q such that TxBr(p) = QJΓK. The set of interior regular points, which of
course is relatively open in spt(T )\spt(∂T ), is denoted by Reg(T ). Its complement
spt(T )\(spt(∂T ) ∪Reg(T )), the interior singular set of T , is denoted by Sing(T ).

The previous theorem 3.26 stated the existence of area-minimizing currents. The fol-
lowing theorems summarise the existing regularity theorems for the codimension 1
case and higher codimensions.

Theorem 3.31 (Regularity in codimension 1). Let Ω ⊂ Rn be open, Σ ⊂ Rn be
a smooth complete submanifold without boundary of dimension m + 1 and T an
m-dimensional area-minimizing current. Then the following holds.

1. For m ≤ 6, Sing(T )∩Ω is empty (Fleming and De Giorgi (m = 2)), Almgren
(m = 3), Simons (4 ≤ m ≤ 6).

2. For m = 7, Sing(T ) ∩ Ω consists of isolated points (Federer).

3. For m ≥ 8, Sing(T ) ∩ Ω has Hausdorff dimension at most m − 7 (Federer)
and it is countably (m − 7)-rectifiable, namely, up to a set of Hm−7-measure
zero, it can be covered by countably many C1 surfaces of dimension m − 7
(Simon).

4. The results (2)-(3) are optimal, namely for every m ≥ 7 there are area-
minimizing integral currents T in the Euclidean space Rm+1 for which Sing(T )
has positive Hm−7 measure (Bombieri-De Giorgi-Giusti).
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3.3 Shape Spaces

Theorem 3.32 (Regularity in codimension n̄ ≥ 2). Let Ω ⊂ Rn be open, Σ ⊂ Rn

be a smooth complete submanifold without boundary of dimension m+ n̄ and T an
m-dimensional area-minimizing current. Then for n̄ ≥ 2 the following holds.

1. For m = 1, Sing(T ) ∩ Ω is empty.

2. For m ≥ 2, Sing(T ) ∩ Ω has Hausdorff dimension at most m− 2 (Almgren).

3. Result (2) is optimal, namely for every m ≥ 2 there are area-minimizing
integral currents T in the Euclidean space Rm+2 for which Sing(T ) has positive
Hm−2 measure (Bombieri-De Giorgi-Giusti).

The second result was sharpened by Chang for two-dimensional area-minimizing
currents.

Theorem 3.33 (m = 2, n̄ ≥ 2). Assume that Ω, Σ are as in definition 3.29 and
T an area-minimizing current, n̄ ≥ 2 and m = 2. Then Sing(T ) ∩ Ω consists of
isolated points.

With this theorem Chang concludes the statement in theorem 3.14.

3.3 Shape Spaces

Shape spaces model two- or three-dimensional geometric objects and are often used
in statistics and computer vision. They were introduced in 1977 by D. G. Kendall.
At first, an object in a shape space was modelled as a finite set of vertices with a
centre point modulo the rotation group. In this thesis I follow the general approach
[KBCL09, Chapter 11] also followed by M. Rumpf and B. Wirth in [RW13]. Here,
an object in a shape space is modelled as a closed subset of R2 or R3. The space
is equipped with a Riemannian metric. Therefore, it can be seen as an infinite
Riemannian manifold. Discretizing these closed subsets leads to finite-dimensional
Riemannian manifolds.

A shape space is always based on a fixed reference model which is a closed subset
v ⊂ Rd and as such describes the shape of the shape space O. Then the underlying
set for O is induced by all closed subsets u which are homotopy equivalent to v.
To enforce a more differentiable structure, the homotopy equivalence is sometimes
replaced by homeomorphisms or diffeomorphisms. In most cases, the interesting
part are the deformations of the objects in shape spaces and not the location or
orientation, so-called rigid body transformations. Translation and rotation induce
an equivalence class ∼ on the closed sets in Rn.

Definition 3.34 (Infinite-Dimensional Shape Space). For a closed subset v ⊂ Rd

the shape space induced by v is defined as

O := {u ⊂ Rd | u closed, u and v are homotopy equivalent}/∼ (3.32)

where the equivalence relation ∼ is induced by translation and rotation.
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3 Theoretical Setting and Existence

A geometrical interpretation of the tangent space of O at u are deformations of u,
i.e. the velocity fields u→ Rd.
Adding a Riemannian metric on the tangent space leads to infinite-dimensional
Riemannian manifolds.

Example 3.35. Take the unit circle S1 in R2 as reference object v. Let

M := E(S1,R2)/∼ ∪ ∼′

be the space of all smooth embeddings up to reparametrisations, rotations and trans-
lations, i.e. ∼ is induced by translation and rotation and ∼′ is induced by diffeo-
morphisms τ : S1 → S1. The additional equivalence relation ∼′ is needed to ignore
parametrisations of S1. This set is isomorphic to a subset of O induced by v since
in O only homotopy equivalence was requested and for f, g ∈ E(S1,R2), f(S1) is
diffeomorphic to g(S1). The tangent space to f ∈ E(S1,R2) is a subset of the space
of smooth functions from S1 to R2. These functions are velocity fields to S1 and
describe deformations of f(S1). A Riemannian metric is then a map

gf : TpM× TpM→ R

which is symmetric, positiv definit and linear and smooth in p ∈M.

Fletcher and Whitaker considered the space of solid shapes in [FW06] in detail. The
shape space O can be simplified to finite-dimensional manifolds by using a discrete
set of points for the shapes with a connectivity specified by a so-called simplical
complex.
A k-simplex for k > 3 is the higher-dimensional equivalent of points, edges and
triangles, so-called zero-, one- and two-simplices, and the faces of a triangle are all
edges and vertices of that triangle, the faces of an edge are the two vertices of that
edge. A set of simplices creates a (simplicial) k-complex K if

• for each m-simplex in K, m ≤ k;

• the faces of each simplex are in K;

• the intersection of two simplices in K is ∅ or a face of both.

An abstract simplicial complex, or the type of a simplicial complex refers to the
adjacency of the vertices and not the location of the vertices. So, two simplicial
complexes of the same type have a one-to-one correspondence of points, edges and
triangles. The exact location of these points can, however, differ from one to the
other.

Definition 3.36 (Shape Space). For a fixed finite simplicial complex v in Rd, d = 2
or 3, the shape space induced by v is defined as

O := {u | u is a simplicial complex of the same type as v

and u is homotopy equivalent to v}/∼.
(3.33)

With an equivalence relation ∼ induced by translation and rotation invariance.
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3.4 Summary

Since all objects v ∈ O can be described by a tuple of k points in Rd and a fixed
abstract simplicial complex, O can locally be seen as Rk·d. Again with a Riemannian
metric on the tangent space, this leads to finite-dimensional Riemannian manifolds.

Example 3.37. Take S1 the unit circle in R2 as reference object v, discretized by
k-points. The corresponding shape space is then the shape of closed viscous rods, as
in 2.3. Kendall systematically explores such spaces in [Ken89] where his pre-shape
spaces are the equivalent to the shape spaces introduced here. His shape spaces ignore
also scaling of the objects.

3.4 Summary

With the help of geometric measure theory it can be concluded that for a shape
space modelled by a smooth finite-dimensional Riemannian manifold and a Jordan
curve as boundary which admits an extension to a disk-type surface of finite area
there exists a solution of Plateau’s problem. The interesting fact of this theory is
that it shows also the limits of such a general approach. The two-dimensional case
of minimial surfaces is a special case where only zero-dimensional sets violate the
smoothness of the resulting surface. And even further regularity results state that
these sets of singular points in two dimensions consist only of isolated points. In
higher-codimensions the singular sets occur and are higher dimensional.
This general result helps when the injectivity radius and curvature are unknown or
too expensive to compute to show that minimal surfaces exist. However, in most
cases the application in mind is of local character. That means that the given Jordan
curve may lie in a geodesic ball Bρ(p) around a point p, for such a setting the differ-
ential geometry results suffice. Furthermore, the differential geometry approach is
better understood and may be better suited to help establish a convergence theorem
for algorithms computing discrete minimial surfaces.
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4 Discretisation and Algorithms

Most algorithms solve Plateau’s problem by applying a two-step algorithm. They
alternate between seeking a harmonic mapping and a conformal reparametrisation.
One flaw of such algorithms is that each step could violate the previous result. The
main idea for the algorithm implemented in this master thesis originates from the
paper “Computing Discrete Minimal Surfaces and their Conjugate” by U. Pinkall
and K. Polthier ([PP93]). They proposed a one-step algorithm to minimize the
Dirichlet energy of maps f : Ω→ R3, where Ω ⊂ R2, with a fixed boundary curve Γ,
such that f(∂Ω) = Γ. The trick of Pinkall and Polthier’s algorithm is that they do
not try to minimize the typical Dirichlet energy ED(f) = 1

2

∫
Ω
‖∇f‖2 but instead

they stepwise minimize the Dirichlet energy of the flow minf
1
2

∫
Σi
‖∇f : Σi →M‖2

from a given surface Σi to the next surface in the manifold M.

This chapter first defines the discrete setting in section 4.1 and next the algorithm in
section 4.2 where it is proven that the algorithm converges for the finite-dimensional
Euclidean space in theorem 4.7. Then details on the implementation are given in
section 4.3.

4.1 Discrete Setting

The previous chapter 3 introduced the continuous setting for Plateau’s problem.
In this section, the results are transferred to a discrete setting. The following
definitions, lemmas and propositions are taken from [PP93], with some small mod-
ifications.

The discrete counterpart of a continuous surface is based on triangles. More tech-
nically this can be seen again as a simplicial two-complex which was introduced in
section 3.3.

An additional property for discrete surfaces needed is that they must be homoge-
neous which means that each one-simplex is the face of a two-simplex, and each
zero-simplex the face of a one-simplex. Therefore, it suffices to note all triangles for
a homogeneous simplicial two-complex.

Definition 4.1 (Discrete Surface). A discrete surface Σ in Rn is a connected ho-
mogeneous simplicial two-complex

Σ := {∆0, . . . ,∆N} (4.1)
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4.1 Discrete Setting

consisting of a finite number of triangles ∆i for 0 ≤ i ≤ N . The triangles may be
degenerated. A connected homogeneous simplicial two-complex is also called trian-
gulation.

In this setting a triangle is degenerated if one angle of the triangle is 0 or π, whis
implies that all angles of that triangle are degenerated. The area of a discrete
surface is defined as the summation over the areas of the triangles.

A(Σ) :=
N∑
i=0

A(∆i) (4.2)

Definition 4.2 (Area-Minimal). A discrete surface is (locally) area-minimal if and
only if small perturbations of surface vertices in a small region increase the total
area.

Let
f : Σ1 → Σ2 (4.3)

be a map between two triangulations with the same underlying topology, i.e. the
abstract simplicial complexes of Σ1 and Σ2 are identical which means that they
have corresponding triangles, edges and vertices. Assume that f is defined on the
vertices and continued as a linear map into the interior of the triangles. With this
the energy of a map between discrete surfaces can be defined for a general energy
functional E.

Definition 4.3 (Energy). The energy of a map between discrete surfaces is the sum
over the energies of all linear triangular mappings

fi : ∆1,i → ∆2,i (4.4)

where ∆1,i and ∆2,i are the i-th corresponding triangles from Σ1 to Σ2 mapped onto
each other by fi.

E(f) =
n∑
i=1

E(fi) (4.5)

Definition 4.4 (Energy-Minimal). A discrete surface is (locally) energy-minimal
if and only if small perturbations of surface vertices in a small region increase the
total energy.

Pinkall and Polthier found in [PP93] an easy way to compute the Dirichlet energy
where the dependencies on the domain and image triangulation are clear.

Theorem 4.5. Let f : ∆1 → ∆2 be a linear map between the two triangles ∆1 and
∆2. Then

ED(f) =
1

4

3∑
i=1

cotαi · a2
i . (4.6)

where αi and ai are opposite angle and length as in figure 4.1.
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4 Discretisation and Algorithms

∆1

αi

∆2

ai
f linear

Figure 4.1: Linear mapping f : ∆1 → ∆1.

Proof. The Dirichlet energy is computed as in the continuous setting (definition
3.4) on each triangle as

ED(f) =
1

2

∫
∆1

|∇f |2 =
1

2

∫
∆1

tr J(f)t · J(f).

To compute the integral first a two-dimensional representation for tr (J(f)t · J(f))
needs to be found and then the integral can be solved.
Since f is a linear mapping from one triangle-simplex to another and has a two-
dimensional tangent space, f can be seen as a linear mapping from R2 → R2. As-
sume ∆2 is the simplex specified by three points h0, h1, h2 ∈ Rn, ∆1 by g0, g1, g2 ∈ Rn

and ∆e the standard simplex in R2 specified by e0 = (0 0)t, e1 = (1 0)t and
e2 = (0 1)t. Let ψ, φ be the linear maps from the standard simplex to the sim-
plices ∆1 and ∆2 such that

ψ(ei) = gi, φ(ei) = hi for i = 0, 1, 2.

Then f is the composition f(p) = ψ(φ−1(p)). Define

v1 = g1 − g0 v2 = g2 − g0

and without loss of generality assume they are linearly independent. φ : R2 → Rn

is still a multi-dimensional map, but the image of φ is a two-dimensional plane
H ∈ Rn. Therefore it is possible to choose an orthonormal basis (b1, . . . , bn) for Rn

such that H is spanned by b1 and b2 and b1 = v1
‖v1‖ . With this basis it suffices to

explain φ on the first two dimensions

v1 = ‖v1‖ · b1

v2 = ‖v2‖ ·Rangle(v1,v2) · b1,

where Rα =

(
cosα − sinα
sinα cosα

)
is the two-dimensional rotation matrix for the re-

duced basis b1, b2. So v2 can be represented as

v2 = ‖v2‖ ·


〈v1,v2〉
‖v1‖·‖v2‖√

1−
(
〈v1,v2〉
‖v1‖·‖v2‖

)2

 .
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4.1 Discrete Setting

∂φ represents the corresponding matrix to the reduced basis

∂φ =

‖v1‖ 〈v1,v2〉
‖v1‖

0 ‖v2‖ ·
√

1−
(
〈v1,v2〉
‖v1‖·‖v2‖

)2



and

(∂φ)t · ∂φ

=

 ‖v1‖ 0

〈v1,v2〉
‖v1‖ ‖v2‖ ·

√
1−

(
〈v1,v2〉
‖v1‖·‖v2‖

)2

 ·
‖v1‖ 〈v1,v2〉

‖v1‖

0 ‖v2‖ ·
√

1−
(
〈v1,v2〉
‖v1‖·‖v2‖

)2


=

(
‖v1‖2 〈v1, v2〉
〈v1, v2〉 ‖v2‖2

)

and det ∂φ =
√
‖v1‖2 · ‖v2‖2 − 〈v1, v2〉2 = ‖v1 ∧ v2‖ by Lagrange’s identity. Analo-

gously for ψ:

(∂ψ)t · ∂ψ =

(
‖w1‖2 〈w1, w2〉
〈w1, w2〉 ‖w2‖2

)

Shift the order of the matrices in the trace computation since tr(A ·B) = tr(B ·A)
and apply some further basic matrix-calculation rules to compute the trace of ∂f t∂f

tr((∂f)t · ∂f)

=tr((∂φ−1)t · (∂ψ)t · ∂ψ · ∂φ−1)

=tr((∂ψ)t · ∂ψ · ∂φ−1 · (∂φ−1)t)

=tr((∂ψ)t · ∂ψ · ((∂φ)t · ∂φ)−1)

=

(
‖v1‖2 〈v1, v2〉
〈v1, v2〉 ‖v2‖2

)
·
(
‖w1‖2 〈w1, w2〉
〈w1, w2〉 ‖w2‖2

)−1

=
1

(det∂φ)2

(
‖v1‖2 〈v1, v2〉
〈v1, v2〉 ‖v2‖2

)
·
(
‖w2‖2 −〈w1, w2〉
−〈w1, w2〉 ‖w1‖2

)
=

1

(det∂φ)2
(〈v1, v1〉 · 〈w2, w2〉 − 2〈v1, v2〉 · 〈w1, w2〉+ 〈v2, v2〉 · 〈w1, w1〉) .

31



4 Discretisation and Algorithms

Using the substitution v3 := v2−v1 and therefore −2〈v1, v2〉 = ‖v3‖2−‖v1‖2−‖v2‖2

yields

tr((∂f)t · ∂f)

=
1

(det∂φ)2

(
‖v1‖2〈w2, w2〉+ (‖v3‖2 − ‖v1‖2 − ‖v2‖2)〈w1, w2〉+ ‖v2‖2〈w1, w1〉

)
=

1

(det∂φ)2

(
‖v1‖2〈w2 − w1, w2〉+ ‖v3‖2〈w1, w2〉+ ‖v2‖2〈w1 − w2, w1〉

)
=

1

(det∂φ)

(
‖v1‖2 〈w2 − w1, w2〉

(det∂φ)
+ ‖v3‖2 〈w1, w2〉

(det∂φ)
+ ‖v2‖2 〈w1 − w2, w1〉

(det∂φ)

)
.

Since cot(α) = cos(α)
sin(α)

and

cos(angle(w1, w2)) =
〈w1, w2〉
‖w1‖ · ‖w2‖

sin(angle(w1, w2)) =
‖w1 ∧ w2‖
‖w1‖ · ‖w2‖

it follows that 〈w1,w2〉
det∂φ

= cot(angle(w1, w2)). Additionally,

‖(w2 − w1) ∧ w2)‖ = ‖(w1 − w2) ∧ w1)‖ = ‖(w1) ∧ w2)‖

shows that 〈(w2−w1),w2〉
det∂φ

= cot(angle(w2−w1, w2) and 〈(w1−w2),w1〉
det∂φ

= cot(angle(w1−w2, w1)
or in the shorter notation α1, α2, α3 and a1, a2, a3 as figure 4.1 indicates

tr((∂f)t · ∂f) =
1

det∂φ

3∑
i=1

cot(αi) · a2
i .

Now the Dirichlet energy can be computed as

ED(f) =
1

2

∫
∆1

tr((∂f)t∂f)

=
1

2

∫
∆e

tr((∂f)t∂f)(det∂φ)

=
1

2

∫
∆e

1

det∂φ

3∑
i=1

cot(αi) · a2
i (det∂φ)

=
1

2

3∑
i=1

cot(αi) · a2
i

∫
∆e

1

=
1

4

3∑
i=1

cot(αi) · a2
i .
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4.2 Algorithm of Pinkall and Polthier

Remark Pinkall and Polthier showed this in [PP93] for simplicial complexes Σg in
Rm and Σh in Rn with (possibly) different metrics g on Rm and h on Rn. Then the
norms and scalar-products in the proof of 4.5 have to be modified to ‖.‖h and ‖.‖g
but the result stays the same with respect to the different metric. That means that
the angles αi are computed with the help of g and the lengths ai with the help of h.

Application to Riemannian Manifolds

The question arises wheter this works in a Riemannian manifold, too.

The abstract simplicial complex is independent of the embedding space and only
specifies the number of vertices and the connectivity of the vertices. Therefore,
definition 4.1 in the Euclidean setting extends to a discrete structure for a surface
inM. To make it easier to cope with maps and the energy formula, here it is addi-
tionally required, that all triangles are unique geodesic triangles. That means that
when the points p1, p2, p3 ∈ M form the triangle ∆ in the simplicial complex Σ,
there is a chart φ : U → Rm with p1, p2, p3 ∈ U and all points in U can be uniquely
connected by geodesics.
For two geodesic triangles ∆g and ∆h in two Riemannian manifolds (M, g) and
(N , h) with (possibly) different Riemannian metrics g and h a map f : ∆g → ∆h

induced by the vertices can be extended to a linear map on the interior by lo-
cal coordinates. Let the points (p1, p2, p3) ⊂ U ⊂ M be the vertices of ∆g and
(q1, q2, q3) ⊂ V ⊂ N be the vertices of ∆h with the charts (φ, U) and (ψ, V ) speci-
fied as before, then ψ ◦ f ◦ φ−1 : Rm → Rn is a map as in the Euclidean setting 4.3
with different induced metrics. Since f is constructed by map on single triangles
the energy formula (4.6) is valid if the triangulation is fine enough which means
that all triangles in the triangulation are geodesic triangles.

4.2 Algorithm of Pinkall and Polthier

The previous theorem 4.5 showed that the Dirichlet energy depends only on the
angles in the domain triangulation and the lengths in the image triangulation. Typ-
ically, to minimize the Dirichlet energy a map f : D → Σ from a triangulation of
the unit disk D in R2 to the discrete surface Σ in the manifold M is minimized.
Therefore, a triangulation of D would be needed. A conformal reparametrisation
would then change the domain triangulation of the disk. Pinkall and Polthier pro-
posed to take the map f : Σi → Σ from one discrete surface Σi in M to the next
discrete surface f(Σi) = Σ to avoid this two-step algorithm.

Definition 4.6 (Plateau’s Problem, Discrete). Let Γ = (Γ1, . . . ,ΓN) be the bound-
ary points and Σ0 an initial discrete surface where the boundary points coincide with
Γ. The goal is to find a discrete locally area-minimizing surface Σ in the set of all
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4 Discretisation and Algorithms

discrete surfaces of the same simplicial complex type and with the same boundary
points.

S = {Σ |Σ is a simplicial two-complex with fixed boundary

and of the same type as Σ0}
(4.7)

Algorithm 1 contains the pseudo code of the algorithm of Pinkall and Polthier.
Step 3 needs to solve an minimization problem in each step. As initial data for the

Algorithm 1 Minimal Surface

1: Take Σ0 as the initial discrete surface Σ, set i to 0.
2: repeat
3: Compute Σi+1 as the minimum minΣ

1
2

∫
Σi
|∇f : Σi → Σ|2.

4: Set Σi+1 := Σ and i to i+ 1.
5: until |A(Σi−1)− A(Σi)| < ε

minimization f := idΣi
is used. In step 5 A(Σi) = ED(idΣi

) can be used for the
area computation, since idΣi

is harmonic and conformal.

Hierarchical Algorithm

The distance approximations for the shape spaces are only locally valid, which
means that the elements must be close enough. Consequently, the discrete surface
is only a good approximation to a continuous surface if the triangulation is fine
enough. The degree of the refinement needed depends on the shape space and the
distance approximation. Therefore, the algorithm was modified to an adaptive, hi-
erarchical algorithm to validate the granularity of the refinement. That means that
the algorithm of Pinkall and Polthier is repeatedly applied for triangulations with
increasing number of vertices. For each refinement the outcome of the algorithm
is used as input and then a new optimisation step is done. The convergence of
this outer loop means that the discrete surface is a good approximation for the
continuous surface.

Algorithm 2 Hierarchical Minimal Surface

1: Take an initial triangulation Σ0,0 as the initial Σ , set i and j to 0.
2: repeat
3: repeat
4: Compute Σi+1 as the minimum minΣ

1
2

∫
Σi
|∇f : Σi →M |2.

5: Set i to i+ 1.
6: until |A(Σj,i)− A(Σj,i−1)| < ε
7: Refine the simplicial complex of Σi,j.
8: Set i to 0 and j to j + 1.
9: until |A(Σj,0)− A(Σj−1,0)| < ε
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4.2 Algorithm of Pinkall and Polthier

Algorithm 2 shows the modified version of the algorithm. Step 3 to 5 correspond to
the original algorithm 1. Step 2 starts an outer loop which contains the refinement
process.

In the case where the surface lies in R3 with the standard metric, [PP93] provides
a convergence theorem.

Theorem 4.7. The algorithm 1 converges in Rn with the Euclidean metric to a
discrete surface as solution of Plateau’s problem 4.6 if no triangle degenerates during
the minimization.

Proof. The proof can be divided into three steps.

1. The algorithm constructs a sequence (Σi, fi) with decreasing area.

2. The space of all possible triangulations is compact which implies that there
exists a converging minimal subsequence.

3. The limit has zero Dirichlet energy derivative.

The main key of the proof is the compactness in item 2. In the hope to generalize
this to Riemannian manifolds this is done very detailed in this thesis despite the
fact that this was omitted in [PP93].

Step 1 The sequence of {Σi, fi} provided by the algorithm has decreasing area,
since

A(Σi) = ED(id|Σi
) ≥ ED(fi : Σi → Σi+1)

≥ ED(id|Σi+1
) = A(Σi+1).

Step 2 Let Spos ⊂ S denote the set of all non-degenerating discrete surfaces with
the same boundary and the same simplicial complex type. The compactness is
shown in the following corollary 4.10. Assume for now, that the space is compact,
then there exists a subsequence Σi converging uniformly to a limit surface Σ.

Step 3 Show for the sequence Σi → Σ, that Σ is a critical point of the Dirichlet
energy.
For Spos as in Step 2 with ‖.‖ the product topology as induced topology define Fi
as

Fi :M→ R
X 7→ ED(fi : Σi → X).

In the Euclidean setting, Fi is quadratic and has a minimum in Σi+1, i.e.

∇Fi|Σi+1
= 0.
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4 Discretisation and Algorithms

Because Spos is compact, there is a uniform bound smax on the norm of ∇2fi inde-
pendent of i. That means that by the mean value theorem

∇Fi|Σi
= ∇Fi|Σi

−∇Fi|Σi+1
= ∇2Fi|ξ|Σi − Σi+1|2

and with the uniform bound

∇Fi|Σi
≤ smax|Σi − Σi+1|2.

Since Σi → Σ it follows for the limit Fi → FΣ that ∇FΣ|Σ = 0. That means that Σ
is a critical point of the energy function ED(fi : Σ→ X).

The compactness of Spos is an important aspect of the proof, since it is needed to
extract a converging subsequence and to get a uniform bound. Pinkall and Polthier
did not explain what they meant by non-degenerating, however, the requirement is
that during the process no angles should degenerate. So it should also be avoided
that angles converge to 0 or π. Therefore an ε-criterion for the non-degeneracy is
introduced. For a triangle with vertices x1, x2, and x3 and corresponding angles α1,
α2, and α3 non-degeneracy with respect to ε̃ > 0 or ε > 0 means that for all angles

x

x2

x1

α1

α2

α3

0 + ε̃ ≤ αi ≤ π − ε̃ for i = 1, 2, 3

or

− 1 + ε ≤ cosαi ≤ 1− ε for i = 1, 2, 3. (4.8)

Take

Sεpos := S ∩ {Σ simplicial two-complex | all ∆i have no ε-degenerated angles}

as the set of all possible discrete surfaces. Drop the ε if the exact value is not
relevant, as in theorem 4.7. The compactness of Sεpos is shown step-by-step, first in
lemma 4.8 for triangles with two fixed vertices, then in corollary 4.9 for triangles
with one fixed vertex and finally for a generic simplicial complex as in corollary
4.10.
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4.2 Algorithm of Pinkall and Polthier

Lemma 4.8. Given x1, x2 ∈ Rn such that x1 6= x2 then

Sε(x1, x2) := {x ∈ Rn |(x1, x2, x) spans a triangle

where no angle is ε-degenerated }
(4.9)

is a closed subset of Rn and bounded w.r.t. ‖.‖2, hence, compact.

Proof. Need to show that Sε(x1, x2) is closed and bounded.

Show that Sε(x1, x2) is closed: The non degenerate condition can be formulated
with

F (x) =

cosα1

cosα2

cosα3

 =


‖x2−x‖2+‖x1−x‖2−‖x2−x1‖2

2‖x2−x‖·‖x1−x‖
‖x2−x1‖2+‖x1−x‖2−‖x2−x‖2

2‖x2−x1‖·‖x1−x‖
‖x2−x‖2+‖x2−x1‖2−‖x1−x‖2

2‖x2−x‖·‖x2−x1‖


x ∈ Sε(x1, x2)⇔ F (x) ⊂ [−1 + ε, 1− ε]3. (4.10)

The condition that the sum α1 + α2 + α3 = π is automatically satisfied, if equa-
tion 4.10 is satisfied. F : Rn → R3 is continuous for all x ∈ Rn\{x1, x2}. Since
[−1 + ε, 1− ε]3 ⊂ R3 is a closed subset, the preimage F−1({[−1 + ε, 1− ε]3}) is also
closed.

Show that Sε(x1, x2) is bounded: Assume Sε(x1, x2) is unbounded, then there

exists a sequence (xk)k∈N ⊂ Sε(x1, x2) such that ‖xk‖ k→∞−−−→∞. W.l.o.g. x1 = 0.
Then

cos(α3) =
‖x2 − xk‖2 + ‖xk‖2 − ‖x2‖2

2‖x2 − xk‖ · ‖xk‖

≥︸︷︷︸
a·b≤a2+b2

2

‖x2 − xk‖2 + ‖xk‖2 − ‖x2‖2

‖x2 − xk‖2 + ‖xk‖2

= 1− ‖x2‖2

‖x2 − xk‖2 + ‖xk‖2︸ ︷︷ ︸
k→∞−−−→0

gets arbitrarily close to one, i.e. the angle α3 degenerates. Therefore, Sε(x1, x2) is
bounded.

The next step is a similar result for a triangle, where one point is fixed and another
point lies in a compact subset. Here it follows that again the set of all such triangles
is compact.
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4 Discretisation and Algorithms

Corollary 4.9. Let K ⊂ Rd be compact and x1 ∈ Rd, then

Sε(x1, K) := {(x, y) ∈ R2·d | x ∈ K, y ∈ Sε(x1, x)} (4.11)

is compact.

Proof. The set is bounded, because K and Sε(x1, x) are compact.
For the closedness, let xk, yk be a converging sequence in Sε(x1, K) with

(xk, yk)
k→∞−−−→ (x, y)

with respect to the product topology. Then x ∈ K since K is compact. It remains
to show that y ∈ Sε(x1, x). Since the condition 4.10 is satisfied for all yk and xk
corresponding to x and x2 in terms of condition 4.10, the limits for each term exist
and the divisors are 6= 0. Therefore, this condition is also satisfied for k →∞.

The proof works for subsets

{(x, y, z) ∈ Rn·d | x ∈ K1, y ∈ K2, z ∈ Sε(x, y)}
and compact sets K1 and K2 with an analogous argumentation.

Corollary 4.10.

Sεpos := S ∩ {Σ simplicial two-complex | all ∆i have no ε-degenerated angles}
is compact.

Proof. This is proven by induction over the number of interior points. For a fixed
set Γ = (Γ1, . . . ,ΓN) of boundary vertices and a fixed abstract simplicial complex
define

Sεk := {(y1, . . . , yk) ∈ (Rn)k |where (y1, . . . , yk) are the inner vertices

and no triangle is ε-degenerated.}
as the set of all possible discrete surfaces.

Base Case k = 1: Since there is only one interior vertex, all triangles of the
simplicial complex have at least two fixed vertices. Therefore, Sε1 is the intersection
of finitely many Sε(Γi,Γj) and is, hence, compact.

Inductive Step k → k + 1: Assume Sεk is a compact set for a fixed boundary
set Γ and all simplicial complexes with k inner vertices. Let Σk+1 be an arbitrary
simplicial complex for the boundary Γ and k + 1 inner vertices, then there exists a
simplicial complex Σk such that Σk+1 emerges from Σk by adding an interior vertex
and a finite number of triangles {∆1, . . . ,∆Q}. Since Sεk is compact for all types of
simplicial complexes with k interior vertices, for all triangles ∆i at least two vertices
lie in compact sets. Therefore, Sεk+1 = Sεk×∩Sε(Ki, Kj) is compact again as a finite
intersection of compact sets times a compact set.

Figure 4.2 shows an example where the new simplicial complex specified by the 5
interior vertices {p1, p2, p3, p4, q} emerges from the simplicial complex with 4 interior
vertices {p1, p2, p3, p4} and adding the missing four triangles.
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Figure 4.2: An example triangulation for 8 fixed outer points and 5 interior points.

4.3 Implementation

In this section the main ideas of the implementation are explained.
To get the code running see the supplied “Readme.md” in the code-archive of the
enclosed CD. The algorithm was implemented due to efficiency in C. Besides the
standard libraries, GSL1, LAPACK2 and OpenMP3 are needed, gcc4 v. 4.9.2 was
used to compile the source code. GSL is the gnu scientific library and includes
a BGFS-method5 which is used for the optimisation step. Alternatively, in the
Euclidean case, LAPACK is used to solve linear equations for the exact solution.
OpenMP is used to parallelize the computations. That is not necessary but gives a
considerable speedup. To visualise the shape spaces and create plots gnuplot6, par-
aview7 and tikz8 were used. These are, however, not necessary to run the program.
The code I wrote can roughly be divided into four parts:

1. Discrete Geodesic Calculus
This is needed for the boundary computation in shape spaces.

1http://www.gnu.org/software/gsl/
2http://www.netlib.org/lapack/
3http://openmp.org/
4https://gcc.gnu.org/
5Broyden-Fletcher-Goldfarb-Shanno algorithm, a quasi-Newton optimisation method
6http://www.gnuplot.info/
7http://www.paraview.org/
8https://www.ctan.org/pkg/pgf
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4 Discretisation and Algorithms

2. Minimal Surface
For the minimal surface computation, the energy computation is implemented
as in theorem 4.5.

3. Distance Approximations
Different underlying spaces were used for the energy computations, so an
abstraction to the distance approximation was implemented. A shape space
is then represented by points in Rk·d and a map Rk·d × Rk·d → R.

4. Triangulation
The discrete surfaces are represented by triangulations.

Discrete Geodesics

The discrete geodesic calculus part is an implementation of section 2.2. Given a
shape space with a distance approximation, two points in the shape space and
the length of the discrete curve, the algorithm computes a discrete geodesic γ
connecting these two points. This is solved by directly minimizing the energy
E(γ) = K ·

∑
iW (γi, γi+1) with a BFGS-method supplied by GSL.

Minimal Surfaces

The minimal surface part is in principal the same as the discrete geodesic part, since
it implements the Dirichlet energy and then uses again BFGS for minimizition. To
compute the energy of a triangulation Σ the formula

ED(Σ) =
∑
∆∈Σ

ED(∆) =
∑
∆∈Σ

1

4

3∑
i=1

cotατi |aτi |2n (4.12)

is used. The angle αi was computed with help of the law of cosine

cosαi =
b2 + c2 − a2

2 · b · c
(4.13)

where a, b and c are the corresponding lengths of edges, computed by the distance

p1 p2

p3

b

ac

α

β

γ

approximation. Let the triangle ∆ for which the integral is computed have the

40



4.3 Implementation

vertex points p1, p2 and p3 and lengths a =
√
W (p2, p3), b =

√
W (p3, p1), and

c =
√
W (p1, p2). This performs badly for a rough triangulation, but the closer

the points in M the better is the Euclidean approximation to the actual geodesic
triangle. Therefore, assume that the triangulation is fine enough so that this gives
a good angle approximation. In the Euclidean case if a triangle is degenerated, i.e.
an angle is less than 0◦ or greater than 180◦, then all angles are degenerated. Since
here the angles are computed with the formula

cos−1 a
2 + b2 − c2

2ab
(4.14)

the angle is degenerated if
a2 + b2 − c2

2ab
≤ −1

or
a2 + b2 − c2

2ab
≥ 1.

Therefore, the previous statement is still true.

Lemma 4.11. The non-degeneracy condition is equivalent to the three triangle in-
equalities for the distances of the points p1, p2 and p3

−1 <
a2 + b2 − c2

2ab
< 1

⇔ a+ b− c > 0 ∧ +a− b+ c > 0 ∧ −a+ b+ c > 0

Proof. Since a, b, c > 0, a short calculation shows this.

− 1 <
a2 + b2 − c2

2ab
< 1

⇔ − 2ab < a2 + b2 − c2 < 2ab

⇔ − (a+ b)2 < −c2 ∧ (a− b)2 < c2

⇔︸︷︷︸
a,b,c>0

a+ b > c ∧ |a− b| < c

⇔ c < a+ b ∧ a− b < c ∧ b− a < c

⇔ c < a+ b ∧ a < c+ b ∧ b < c+ a

These inequalities also implies that α1 +α2 +α3 = π since the angles of a Euclidean
triangle sum up to pi. Furthermore, if these inequalities are satisfied, the Dirichlet
energy ED(idΣi

: Σi → M) is positive, and has another representation depending
only on the lengths.
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4 Discretisation and Algorithms

Theorem 4.12.

ED(f : ∆1 → ∆2) =
1

4
(cotα1 · a2

2 + cot β1 · b2
2 + cot γ1 · c2

2)

where α1 corresponds to the opposite angle of a1 in the domain triangle and a2 is the
length in the image triangle, analogously for β2, b2, γ2 and c2. This can be simplified
to

ED(id∆) =
1

4

a2
2(b2

1 + c2
1 − a2

1) + b2
2(a2

1 + c2
1 − b2

1) + c2
2(a2

1 + b2
1 − c2

1)√
(−(a4

1 + b4
1 + c4

1) + 2 · (a2
1b

2
1 + b2

1c
2
1 + c2

1a
2
1))

. (4.15)

When f is the identity id∆ which means that the domain triangle and image triangle
coincide the previous equations simplify to

ED(id∆) =
1

4

√
(−(a4 + b4 + c4) + 2 · (a2b2 + b2c2 + c2a2)). (4.16)

Proof. Let ∆1 and ∆2 be defined by the lengths (a1, b1, c1) and (a2, b2, c2), respec-
tively, let (α1, β1, γ1) denote the induced angles in ∆1. Consider

cot(cos−1(s)) =
s√

1− s2

then

a2
2 · cot(α1) = a2

2 · cot(cos−1

(
b2

1 + c2
1 − a2

1

2b1c1

)
)

=
a2

2(b2
1 + c2

1 − a2
1)

2b1c1

·

√1−
(
b2

1 + c2
1 − a2

1

2b1c1

)2
−1

= a2
2(b2

1 + c2
1 − a2

1)

(√
−(a4

1 + b4
1 + c4

1) + 2(a2
1b

2
1 + b2

1c
2
1 + c2

1a
2
1)

)−1

.

Computing a2
2 · cot(α1) + b2

2 · cot(β1) + c2
2 · cot(γ1) proves (4.15).

The second equation follows from a calculation in the numerator of (4.15) with
a := a1 = a2, b := b1 = b2 and c := c1 = c2. The numerator computes as

a2(b2 + c2 − a2) + b2(a2 + c2 − b2) + c2(a2 + b2 − c2)

=− (a4 + b4 + c4) + 2(a2b2 + b2c2 + c2a2).

and this is the square of the denominator. So it proves (4.16).

Remarks

1. In the Euclidean setting, the degeneracy of a triangle is equivalent to two
lengths adding up to the third, e.g. a = b + c. (4.16) shows that then the
Dirichlet energy ED(∆) = 0 which implies that the impact of degenerated
triangles on the Dirichlet energy of a triangulation is non-negative.
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4.3 Implementation

2. An interesting fact for shape spaces is based on cotα > 0 for all angles
0 < α < π/2. Therefore, when the initial triangle is acute, the Dirichlet
energy is positive, independent of the lengths in the image triangle. This ap-
plies also to distance approximations which are neither symmetric, positive
definite nor satisfy the triangle inequality.

Distance Approximations

The main key to implementing a shape space is to provide the squared distance
approximation. Therefore, every formula, where a distance is required, was refor-
mulated, such that W ( , ) is used. For the BGFS-methods additionally the distance
derivatives were needed.

Triangulation

To represent the surfaces or geodesics, a triangulation was implemented. It can be
specified by a set of points and a connectivity matrix. To compute the Dirichlet
energy only the triangulation and distance approximation are needed. The triangu-
lation can be saved to and read from a vtk file to make it compatible with paraview
in the three-dimensional setting.
To implement the hierarchical algorithm mentioned in 4.2 a refinement method was
implemented. One of the most simple refinements is splitting each existing triangle
into four new triangles by creating new vertices in the middle of each edge and
connecting those.

(a) Initial 3 point triangulation. (b) After one refinement step.

Figure 4.3: Visualisation of the refinement method.

This refinement method behaves better than the more naive refinement which is
achieved by simply adding the centroid and three edges connecting the old vertices
with the centroid. Since in the used refinement method there are always less than
or equal to 6 triangles at all vertices of the refinement if the initial triangulation
satisfies this property. This is not valid in the case of adding the centroid.
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4 Discretisation and Algorithms

The number of vertices v, edges e and connections t depends on the initial triangu-
lation and can be computed with the help of

v(n) = v(n− 1) + e(n− 1)

e(n) = 2 · e(n− 1) + 3 · t(n− 1)

t(n) = 4 · t(n− 1) = 4n−1 · t0.

Or by solving the recursive definitions

v(n) = v0 +
1

4
(2n − 1)(4e0 + (2n+1 − 1)t0) = v0 +O(2n)e0 +O(22n)t0 (4.17)

e(n) = 2n−3(4 · eo + 3(2n − 1)t0) = O(22n)t0 +O(2n)e0

t(n) = 4n−1 · t0 = O(2n)t0.

Equation (4.17) shows that the number of vertices is exponential in the number of
refinement steps. That is why in most cases only up to 10 refinement steps were
computed.
During the refinement new shapes have to be computed. Ideally, these shapes would
be computed with the help of discrete geodesics since the new points should lie in
the middle of an edge. Since for each edge a discrete geodesic would have to be
computed this is way too expensive. For example a triangulation with 6 initial
triangles has, after 5 refinement steps, 3169 vertices and 6144 edges. Therefore,
the midpoints are computed by an Euclidean averaging of the Rn representation of
those shapes.
For an initial triangulation in a shape space there is still missing a method to
compute initial data. In the case of discrete geodesics it is possible to take 0 as
initial data, not so in the case of discrete minimal surfaces, since the used algorithm
always needs non degenerated angles.
In the experiments two initialisation methods were evaluated.

1. By choosing the origin and orientation as shown in the chapter 2.3, one could
simply compute an Euclidean interpolation.

2. By setting all the interior points to an edge vertex and performing first a step
of a different algorithm to minimize the energy.

The algorithm of the second case, to minimize the Dirichlet energy, is not based on
Pinkall and Polthier’s algorithm, but instead minimizes directly the energy of the
map f : D →M from the unit disk in R2 into the manifold. This can be computed
with the help of algorithm 1 by setting the angles of the start manifold to the angles
of a triangulation of the unit disk.
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5 Examples

The algorithm was tested first on some simple examples to evaluate its behaviour
and then applied to shape spaces. The pictures were created with gnuplotb, par-
aview and tikz.

5.1 Euclidean Space

The first example is a validation for the algorithm, the second example shows that
the algorithm works in a slightly more complex setting. Furthermore, two differ-
ent initialisations for the interior vertices of the minimal surfaces are tested and
compared.

5.1.1 Standard Metric

The first case is the typical problem of Plateau which means that, for a boundary
curve Γ in R3 with the standard metric which bounds at least one surface of finite
area, find a surface of least area bounded by this curve. In this setting theorem
3.8 ensures that a minimal surface exists and theorem 4.7 shows that the algorithm
1 converges to such a minimal surface. With this algorithm it also is possible to
compute minimal surfaces bounded by multiple boundary curves, however, in this
thesis only minimal surfaces of disk-type are computed.

The boundary curve is given by a set of points {x1, . . . , xn} ⊂ R3 which discretize
a simple closed curve. As distance the standard distance d2(x, y) = ‖x − y‖2

2 is
used. Therefore, the Dirichlet energy is a quadratic problem and there is an exact
solution in each step of algorithm 1. The smooth sinus-like curve

Γ(t) =

 sin(2 · π · t)
cos(2 · π · t)

−1 + sin2(2 · π · t)


is used in the following test cases as boundary.

Exact Solution

Figure 5.1 shows a side and top view of the resulting surface computed by the
algorithm. This discrete surface looks like it approximates a smooth surface and
could describe a soap-film bounded by a wire.
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(a) side-view (b) top-view

Figure 5.1: A discrete minimal surface in R3 with a sinus-like boundary curve. The
triangulation consists of 384 triangles and 217 vertices.

Since in this case the standard metric is used, the Dirichlet energy is a quadratic
function and there is an exact form for the solution (see [PP93]). Figure 5.2 shows
the Dirichlet energy and number of points over the iterate count where the exact
solution is used in each step. Each coloured segment encodes a refinement, the
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Figure 5.2: Convergence graph for the hierarchical algorithm 2 in the Euclidean
setting with exact solutions in each step. The Dirichlet energy is plotted
versus the number of algorithm, the colour encodes the refinement.

number of vertices is given in the legend. This configuration starts with 6 outer
vertices and one inner vertex and an optimum for the Dirichlet energy is reached
after only a few steps. Since in this granularity the optimum is reached, the tri-
angulation is refined and a new optimization process is started. The new Dirichlet
energy for 19 vertices varies a lot from the earlier one. After only one step the
energy is close to the optimum with 19 vertices, but it takes some time to converge.
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5.1 Euclidean Space

This is qualitatively the same for the refinement with 61 vertices. For even finer
triangulations the energy does not vary that much after a refinement and it takes
fewer optimisation steps for a fixed refinement.
This shows that the algorithm behaves as expected. There is a convergence for
each refinement and there is even an overall convergence. Furthermore, for a fixed
refinement the convergence looks interesting since after a few steps the Dirichlet
energy is close to the optimum but it takes a lot of steps to finally converge, this
was also observed in [PP93].

Approximated Solution

In a general setting the minimization of the Dirichlet energy requires an optimisation
algorithm. For this, a quasi-Newton optimisation algorithm is used. The c-library
GSL provides an implementation of a BFGS1-method and, as a validation, this was
also tested in the standard Euclidean case. Figure 5.3 shows the graph for the same
setting as before but with an optimisation step instead of the exact solution. Both,

0 50 100 150 200 250 300
3

3.2

3.4

3.6

3.8

4

Iteration

D
ir

ic
h

le
t

E
n

er
gy

Dirichlet energy vs. iteration

#Vertices
v = 7
v = 19
v = 61
v = 217
v = 817
v = 3169
v = 12481
v = 49537
v = 197377

Figure 5.3: Convergence graph for the hierarchical algorithm 2 in the Euclidean
setting, computing the minimum by a BFGS-method in each step. The
Dirichlet energy is plotted against the number of iteration steps, the
colour encodes the refinement.

the exact and the BFGS method, achieve the same values for the Dirichlet energy
in all cases where both can compute a solution. However, the exact method needs
a system of linear equations to be solved and the used algorithm to solve linear
equations fails if the triangulation has too many interior points.

1Broyden-Fletcher-Goldfarb-Shanno algorithm
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Initial Simplicial Complex

The used triangulation not only influences the type of surface but also influences the
conformality of the surface. In figure 5.4 four different initial simplicial complexes
are compared. There are only slight differences in the Euclidean setting, however,
a bad initial simplicial complex leads to bad artifacts in the more complex cases.

(a) 1 trian-
gle

(b) 3 trian-
gles

(c) 4 trian-
gles

(d) 6 trian-
gles

Figure 5.4: Four different types of initial simplicial complexes.

Figure 5.5 shows the discrete surfaces for the different initial simplicial complexes.
This shows that the conformality depends on the initial triangulation. However,
table 5.1 shows that the Dirichlet energies are close for highly refined triangulations.

(a) 465 inner vertices
and ED = 5.288.

(b) 361 inner vertices
and ED = 5.269

(c) 481 inner vertices
and ED = 5.28.

(d) 721 inner vertices
and ED = 5.285.

Figure 5.5: Discrete minimial surfaces for the same boundary curve and four differ-
ent initial simplicial comlexes.

Initialisation

The interior vertices of the discrete surface need an initialisation. In an Euclidean
setting an arithmetic average can be easily computed, but this fails or is expensive
in more complicated settings. Therefore, an additional method for the initialisation
in the Euclidean setting was tested. The idea of the additional algorithm, denoted
be disk-minimization algorithm, is to minimize the Dirichlet energy of the map
f : D → M for a fixed triangulation of the unit disk D ⊂ R2. This ignores the
conformality condition, but does not require non-degenerated triangles in the initial
discrete surface. Therefore, the interior points can all be set to one of the boundary
points. The minimizer of this Dirichlet energy can be computed with the help of
algorithm 1 with D as the initial surface. That means that the initial angles are all
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Table 5.1: Performance of the algorithm in the Euclidean setting with different ini-
tial simplicial complexes.

Simplicial Complex Refinement ED #Vertices #Interior

t1 3 5.268100357 45 21
t1 4 5.285079522 153 105
t1 5 5.288472731 561 465
t1 6 5.289197269 2145 1953
t3 3 5.207916545 109 85
t3 4 5.269204511 409 361
t3 5 5.284385311 1585 1489
t3 6 5.288155516 6241 6049
t4 3 5.253207633 256 113
t4 4 5.280781112 545 481
t4 5 5.287193087 2113 1985
t4 6 5.288857261 8321 8065
t6 3 5.274307712 217 169
t6 4 5.285678166 817 721
t6 5 5.288479064 3169 2977
t6 6 5.289184153 12481 12097

set to the same value, e.g. to π
3
.

Figure 5.6: Initial triangulation with an Euclidean averaging as initialisation step
with 217 vertices.

Figure 5.6 shows the initialisation of the triangulation for 217 vertices. This tri-
angulation is achieved as described in section 4.3. This explains the edges in the
figure, however, the Dirichlet energy for this surface is still close to the optimum
(see table 5.2). An advantage of this initialisation is that it is easy and fast to
compute when it is possible to compute it.

In figure 5.4 the triangulation for the disk-minimizer algorithm is shown. Here the
same simplicial complex as in the Euclidean averaging is used but all interior vertices
are set to one (arbitrary) boundary point. The triangulation after the initialisation
step (fig 5.7 (b)) is already close to the optimum.
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(a) Pre init (b) Post init

Figure 5.7: Triangulation before and after the initialisation.

Table 5.2: Performance of the algorithm in the Euclidean setting with different ini-
tialisation methods.

Initialisation ED Initialisation ED Optimisation #Vertices #Interior

Euclidean 4.181745 4.181745 7 1
Euclidean 5.276228 4.995270 19 7
Euclidean 5.583723 5.212980 61 37
Euclidean 5.661445 5.270553 217 169
disk-min π/3 4.181745 4.181745 7 1
disk-min π/3 5.027355 4.995271 19 7
disk-min π/3 5.253754 5.212971 61 37
disk-min π/3 5.310858 5.270344 217 169

Table 5.2 shows the Dirichlet energy after the initialisation step and after the con-
vergence for that refinement. The optimum for the additional initialisation step is
slightly lower than with the Euclidean averaging.

5.1.2 Distorted Metric

The second case uses a slightly more complex distance function and tries to evaluate
whether this algorithm could work in Riemannian manifolds. The setting is basically
the same as before, Γ describes a discrete simple and closed curve in Rn, but now
the distance is distorted by effects motivated by gravity. This means that instead
of the Euclidean distance a distance approximation is used that is defined as the
squared standard distance multiplied with a positive function f : R→ R>0.

W (x, y) = f(‖x‖) · ‖x− y‖2 (5.1)
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5.1 Euclidean Space

For the following computations f(t) = ε+ σ · (t− δ)η with ε = 1, σ = 1, δ = 1 and
η = 2 is used.
The derivatives of W (x, y) are

∂

∂x
W (x, y) =

∂

∂x
f(‖x‖) · ‖x− y‖2 + f(‖x‖) · ∂

∂x
‖x− y‖2

= σ · η · (‖x‖ − δ)η−1 x

‖x‖
· ‖x− y‖2

+ 2 · f(‖x‖)(x− y)

and

∂

∂y
W (x, y) = −2f(‖x‖) · (x− y).

The motivation for this example is that a sphere S2 is embedded as usual in R3 and
it is cheaper to walk on the surface of the sphere than to travel through the sphere
or the orbit.

The boundary curve is again a smooth curve sampled at some points. Here, as
boundary curve, a flat circle Γ

Γ(t) =

r · sin(2 · π · t)
r · cos(2 · π · t)

z0


is used which is shifted in the z-coordinate by z0. In the first example z0 is slightly
above the xy-plane, in the second example z0 is greater than the radius of the sphere
and r controls the radius of the boundary curve.
Figure 5.8 shows the discrete minimal surface for z0 = 0.01. With the standard
metric the minimal surface of such a curve would be the disk bounded by this
curve. In the image the surface avoids the origin and has a bump towards the
distorting sphere.

Figure 5.8: Three different views of the discrete minimal surface with a distorted
metric and transparent sphere. The boundary has a shift z0 = 0.01.
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Figure 5.9: Number of Iteration vs Dirichlet Energy of the iteration steps for the
distorted Euclidean setting with a shift z0 = 0.01 and radius r = 1.

Figure 5.11 shows the discrete minimal surface for z0 = 2 and radius r = 2. Here
again, the discrete minimal surface is no planar disk but has a bump towards the
sphere.
As the graphs 5.9 and 5.10 show, the algorithm converges for both boundary curves.

Initial Simplicial Complex

In the standard Euclidean setting the impact of the different initial simplicial com-
plexes was little. In this distorted case, however, for some initial triangulations the
discrete surface degenerated during the algorithm (see figure 5.12). This happened
for the initial simplicial complex with 6 triangles. Normally this is a good triangu-
lation because in combination with the used refinement each interior vertex always
has 6 surrounding triangles.
For the initial examples (figures 5.8 and 5.11) the initial simplicial complex with
four initial triangles was used.

Initialisation

In the case of a distorted metric, not only the initial triangulation, but also the
initialisation has a much greater impact since the Euclidean average is a bad ap-
proximation. Table 5.3 compares the Euclidean average to the disk-minimizer ini-
tialisation.
For the same refinement and initial simplicial complex the Dirichlet energy after
the initialisation differs a lot. The triangulation achieved by the disk-minimizer is
already close to the optimum whereas the Euclidean average is a lot worse. Fur-
thermore, the optimal values differ.
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Figure 5.10: Number of Iterations vs Dirichlet Energy of the iteration steps for the
distorted Euclidean setting with a shift z0 = 2 and radius r = 2.

Figure 5.11: Three different views of the discrete minimal surface with a distorted
metric and transparent sphere. The boundary is above the sphere.

5.2 Shape Spaces: Finite Viscous Rods

This section considers shape spaces as defined in section 3.3. These are more compli-
cated than the Euclidean space with the distorted metric from before. The elements
of the shape spaces are approximated by finite piecewise jointed straight wires. The
distance approximation is motivated by the physical energy it would take to bend
and stretch one such wire into another. There are two different representations ei-
ther for an open or a closed rod, where the open setting is more simple and provides
the basis for the closed setting. For a more detailed introduction to viscous rods
see [RW15].

5.2.1 Visualisation

Since discrete minimal surfaces in shape spaces are generally not embeddable in R2

or R3 the visualisation is trickier. However, each point of the shape spaces can be
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Figure 5.12: Discrete minimal surfaces for two different initial complexes. Here no
angles are degnerated, however, the triangulation has varying triangles
with some close to degenerated.

Table 5.3: Distorted metric setting with two different initialisation methods.

Initialisation ED Initialisation ED Optimisation #Vertices #Interior

Euclidean 11.214788 8.055520 817 721
Euclidean 11.230132 8.060863 3169 2977
disk-min π/3 8.059823 8.057655 817 721
disk-min π/3 8.063619 8.061419 3169 2977

printed in R2 and the structure of the triangulation is independent of the shape
space. One way to visualize a discrete minimal surface is by printing each object on
a grid defined by the abstract simplicial complex. Figure 5.13 shows two examples
for such grids. The advantage of this method is that even for higher refinements
the indices stay the same. That means that, even after a refinement step, the same
shapes can easily be plotted.

Figure 5.13: Two grids for printing a minimal surface with 7 and 19 initial points

During the computation of discrete minimal surfaces in shape spaces it often occurs
that triangles degenerate. Therefore, another visualisation of the discrete surface is
computed. This second visualisation is based again on the grid of the triangulation
and the fact that the discrete surface is approximated by Euclidean triangles. This
means that the three vertices of a triangle in the shape space induce three length a,
b and c and these can in turn induce a triangle in R2 which is used to compute the
angles for the Dirichlet energy. These approximated Euclidean triangles are printed
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5.2 Shape Spaces: Finite Viscous Rods

within the grid as figure 5.14 shows. For all triangles the same scale factor was used
such that the relative lengths can be compared.

(a) Distorted Euclidean space (b) Shape space

Figure 5.14: A visualisation of the approximated triangles for two different settings.
(b) has degenerated triangles.

In a setting with a symmetric distance approximation the common edge of two
adjacent triangles has the same length. However, in the distorted Euclidean space
and the shape spaces this is not necessarily the case. Figure 5.14 (b) shows an
example where triangles are degenerated. The plotted circles show that there is no
triangle with the edge lengths induced by the vertices. More technically, the lengths
a, b and c correspond to a triangle in R2 if and only if a + b > c, a + c > b and
b+ c > a.

5.2.2 Open Viscous Rods

Approximation of the Distance

An open finite viscous rod is represented by a list of n lengths and n− 1 angles.

γ = (l1, . . . , ln, α1, . . . , αn−1) (5.2)

For two such rods γ and β the distance is approximated by

Wopen(γ, β) =
n∑
i=1

(lγi − l
β
i )2

lγi
+

1

2

n−1∑
i=1

(αγi − α
β
i )2

lγi + lγi+1

(5.3)
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with derivatives

∂

∂lγk
Wopen(γ, β) =1−

(
lβk
lγk

)2

− 1

2

(
(αγk−1 − α

β
k−1)2

(lγk−1 + lγk)2
+

(αγk − α
β
k)2

(lγk + lγk+1)2

)
∂

∂αγk
Wopen(γ, β) =

αγk − α
β
k

lγk + lγk+1

∂

∂lβk
Wopen(γ, β) =− 2 + 2

lβk
lγk

∂

∂αβk
Wopen(γ, β) =− αγk − α

β
k

lγk + lγk+1

.

(a) p1 (b) p2 (c) p3

Figure 5.15: Three open viscous rods which are close to each other.

Boundary Curve

The boundary curve of the shape space examples consists of three given rods which
are connected by geodesics. Note that this curve is not even smooth anymore.
Here the initial rods can be seen in figure 5.15 and are very close to each other
(approximated distance from p1 to p2 it is 0.00567, from p2 to p3 it is 0.00582, and
from p3 to p1 it is 0.00571).

Minimal Surface

The metric for the open and closed viscous rods is a lot more complicated and,
additionally, the distance approximation is not symmetric. This makes the compu-
tation of discrete minimal surfaces more complicated and, therefore, fails very often
due to degenerated triangles. The first example consists of three initial rods with
respect to the metric approximation and shows that it is possible for the algorithm
to find a discrete minimal surface locally. The initial interior points are taken as
the Euclidean average of the lengths and angles. Figure 5.16 (a) shows the resulting
discrete surface and the graph in figure 5.17 shows that the algorithm converges. In
this example no angles degenerate during the minimisation process.
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5.2 Shape Spaces: Finite Viscous Rods

(a) Discrete Minimal Surface (b) Approximated Euclidean Triangles

Figure 5.16: Open viscous rods with close initial data.

In figure 5.18 (a) the red shapes mark the three initial given points. In blue are the
discrete geodesics connecting these three points and in black are the interior points
of the discrete minimal surface drawn. Here the initial simplicial complex with 6
triangles is used.

5.2.3 Closed Viscous Rods

A closed finite viscous rod is usually represented by the coordinates, which specify
the joints of the wire. The energy is still based on lengths and angles, so a trans-
formation is needed, which makes the functional more complicated. This approach,
however, makes it easy to handle the requirement of closedness.

Derivatives of the Distance Approximation

A closed finite viscous rod is represented by a list of n points in R2. Implemented
as x ∈ R2n.

x = (x1, . . . , xn) ∈ (R2)n

The approximation to the distance is computed as the composition

Wclosed(x, y) = W (P (x), P (y)), (5.4)

where P : (R2)n −→ (Rn)2 is the mapping which transforms the coordinates in
lengths and angles and W : (Rn)2 × (Rn)2 −→ R≥0 is a modified version of the
distance for non-closed finite viscious rods as in the previous chapter.
To simplify the derivatives and avoid too many cases, assume −1 = n − 1, 0 = n,
n+ 1 = 1 and so on.
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Figure 5.17: Convergence graph for open viscous rods.

Modified Energy Let γ = (lγ1 , . . . , l
γ
n, α

γ
1 , . . . , α

γ
n) and β = (lβ1 , . . . , l

β
n, α

β
1 , . . . , α

β
n)

be the lengths and angles representation. Then the distance approximation is de-
fined as

W (γ, β) =
n∑
i=1

(lγi − l
β
i )2

lγi
+ 2

n∑
i=1

(αγi − α
β
i )2

lγi + lγi+1

. (5.5)

Lengths and Angles The length part is pretty simple, for the angles some addi-
tional computations are needed.

P (x) =P (x1, . . . , xn) = (‖x1 − x2‖, . . . , ‖xn−1 − xn‖, ‖xn − x1‖, (5.6)

θx2(x1, x3), θx3(x2, x4), . . . , θxn−1(xn−2, xn), θxn(xn−1, x1), θx1(xn, x2)) (5.7)

The maps θq(v, w) : R2 ×R2 ×R2 −→ [0, 2π] compute the clockwise oriented angle
between the vectors v − q and w − q

θ̄q(v, w) := cos−1 〈v − q, w − q〉
‖v − q‖ · ‖w − q‖

(5.8)

and

θq(v, w) =

{
θ̄q(v, w) if 〈(v − q)⊥, (w − q)〉 ≤ 0

2π − θ̄q(v, w) if 〈(v − q)⊥, (w − q)〉 > 0
(5.9)

for y = (y1, y2) is y⊥ = (y2,−y1).
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5.2 Shape Spaces: Finite Viscous Rods

(a) Pre Initialisation (b) Post Initialisation

Figure 5.18: Open viscous rods with badly initialised data

Derivatives For the BFGSmethod the first derivatives of Wclosed are needed. The
following paragraph gives the derivatives of the single functions and the derivatives
of Wclosed are computed with the help of chain rule.

∂

∂v
θ̄q(v, w) =

1√
1−

(
〈v−q,w−q〉
‖v−q‖·‖w−q‖

)2

(
〈v − q, w − q〉(v − q)
‖v − q‖3‖w − q‖

− w − q
‖v − q‖ · ‖w − q‖

)

∂

∂w
θ̄q(v, w) =

1√
1−

(
〈v−q,w−q〉
‖v−q‖·‖w−q‖

)2

(
〈v − q, w − q〉(w − q)
‖w − q‖3‖v − q‖

− v − q
‖v − q‖ · ‖w − q‖

)

∂

∂q
θ̄q(v, w) = − 1√

1−
(
〈v−q,w−q〉
‖v−q‖·‖w−q‖

)2
·

(
2q − (v − w)

‖v − q‖ · ‖w − q‖
+ 〈v − q, w − q〉

(
v − q

‖v − q‖3 · ‖w − q‖
+

w − q
‖v − q‖ · ‖w − q‖3

))

and thus

∂

∂v
θq(v, w) =

{
∂
∂v
θ̄q(v, w) if 〈(v − q)⊥, w − q〉 ≤ 0

− ∂
∂v
θ̄q(v, w) otherwise.
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The derivatives ∂
∂w

and ∂
∂q

can be computed analogously. The partial derivative of

P (x) is

∂

∂xk
P (x1, . . . , xn) =(

0, . . . , 0,− xk−1 − xk
‖xk−1 − xk‖

,
xk − xk+1

‖xk − xk+1‖
, 0, . . . , 0,

0, . . . ,
∂

∂xk
θxk−1

(xk−2, xk),
∂

∂xk
θxk(xk−1, xk+1),

∂

∂xk
θxk+1

(xk, xk+2), . . . , 0

)
.

Here it suffices to know 5 entries so this problem does not increase with n. The
total derivative of W (γ, β) = W ((lγ1 , . . . , l

γ
n, α

γ
1 , . . . , α

γ
n), (lβ1 , . . . , l

β
n, α

β
1 , . . . , α

β
n)) is

∂

∂lγk
W (γ, β) = 1−

(
lβk
lγk

)2

− 2

(
(αγk−1 − α

β
k−1)2

(lγk−1 + lγk)2
+

(αγk − α
β
k)2

(lγk + lγk+1)2

)
∂

∂αγk
W (γ, β) =

(αγk − α
β
k)

lγk + lγk+1

∂

∂lβk
W (γ, β) = −2 + 2

lβk
lγk

∂

∂αβk
W (γ, β) = −(αγk − α

β
k)

lγk + lγk+1

.

Collecting all these cases leads to

∂

∂xk
W (P (x), P (y)) =W1(P (x), P (y)) · ∂

∂xk
P (x) (5.10)

∂

∂yk
W (P (x), P (y)) =W2(P (x), P (y)) · ∂

∂yk
P (x). (5.11)

Note that since ∂
∂yk
P (x) is zero except for 5 entries, only these 5 entries are computed

for W1 and W2.

Boundary Curve

In this setting similar to the open rods the three initial points from figure 5.19 are
given and used as input for the algorithm.

Minimal Surface

These are not as close as in the open viscous rod case but with a proper initial
simplicial complex and initialisation a discrete minimal surface can be computed.
These points, however, are further apart, the approximate distances of these shapes
are, from p1 to p2 1.0170, p2 to p3 1.0861 and p3 to p1 1.0045. Figure 5.20 shows
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5.2 Shape Spaces: Finite Viscous Rods

(a) p1 (b) p1 (c) p1

Figure 5.19: Closed viscous rods

(a) Pre Initialisation (b) Post Initialisation

Figure 5.20: Discrete surfaces pre and post an initialisation step for closed viscous
rods with badly initialised data

the discrete minimal surface, here again with the initialisation step. It is possible
to work again with an Euclidean averaging of the coordinates of the closed viscous
rods, however, in general this approach is more interesting. The convergence graph,
see figure 5.21, shows that in this configuration the algorithm converges as well,
until even by refinement no better optimum is achieved. This is due to the fact,
that during the process of the algorithm in this configuration no angles degener-
ate. When starting with a different initial simplicial complex this does not work
as well. In figure 5.22 the approximated Euclidean triangles can be seen. This
shows the triangles with 45 vertices right before the first refinement step. In com-
parison to different initial simplicial complexes this simple starting triangulation
looks good. Figure 5.23 shows the approximated Euclidean triangles for different
initial simplicial complexes. Two of those have degenerated triangles from the be-
ginning and the third has nearly degenerated triangles. These are images after the
initialisation step, where each length should be approximately the same. Further
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Figure 5.21: Convergence graph for close viscous rods.

refinements only increase the number of degenerated angles, hence this structure of
the simplicial complex is not suited for this specific problem.

5.3 Summary

The previous examples show that with the help of the algorithm of Pinkall and
Polthier and some modifications it is possible to compute discrete minimal surfaces
in Riemannian manifolds and especially in shape spaces. In the Euclidean setting
the algorithm performs quite well as expected. In the more complicated case and
the first example of a Riemannian manifold, the Euclidean space R3 with a distorted
metric as distance approximation, it can be seen that different initial simplicial com-
plexes have an impact on the conformal structure of the triangulation and that an
initialisation step to compute the initial data such that no angles are degenerated
works and is even close to the optimum.
The last two examples showed that it is possible to compute discrete minimal sur-
faces in shape spaces. However, the convergence depends on a good triangulation
depending on the specific setting. It is important to choose an initial simplicial com-
plex suited for the initial shapes and computing initial interior vertices as starting-
point for the optimisation step.
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5.3 Summary

Figure 5.22: Approximated Euclidean triangles for the discrete surface of closed
viscous rods.

(a) t3 (b) t4 (c) t6

Figure 5.23: Discrete surfaces for the closed viscous rods with bad initial simplicial
complexes. (a) has many triangles with angles > π

2
at the boundary,

(b) and (c) have degenerated triangles. This shows the approximated
Euclidean triangles after the additional initialisation step.
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6 Outlook

While testing the algorithm a lot of triangles degenerated, either because one side
was way too large, or because one side was way too small. This is a problem be-
cause if at one point during the algorithm a triangle is degenerated the algorithm
diverges. This actually happened in a lot of case, however, by choosing carefully an
initial simplicial complex and initialisation as presented in the closed viscous rods
case, the algorithm converges. Pinkall and Polthier motivated in [PP93] further
refinement steps when degenerations occurred during the process of the algorithm.
A different way to avoid degenerated triangles is by computing better lengths and
angles through the discrete geodesic calculus. However, the discrete geodesic cal-
culus was only used in an initial step to compute the geodesics for the boundary
curve. Computing all lengths and/or angles with this calculus is very expensive and
early tests showed that the gain does not justify the computational efforts.
The reason why the Dirichlet energy converges to negative infinity in case of de-
generated triangles in shape spaces is due to the distance approximations. These
are neither symmetric nor do they satisfy the triangle inequalities. For a distance
approximation which satisfies the triangle inequalities the Dirichlet energy is always
positive. So better distance approximations could lead to fewer degenerated trian-
gles.

Shape spaces can be interpreted as Riemannian manifolds. For a boundary curve
disk-type minimal surfaces exist and the algorithm of Pinkall and Polthier can be
applied to Riemannian manifold such that discrete minimal surface can be com-
puted. These results motivate finding a proof for a convergence of the algorithm of
Pinkall and Polthier in Riemannian manifolds. This seems, however, manageable in
the case of finite-dimensional manifolds when the initial points are sufficiently close
or by adding additional requirements to the injectivity radius and curvature such
that the set of all possible discrete surfaces is compact again.

Pinkall and Polthier based their convergence theorem of the algorithm on the com-
pactness of the set of possible surfaces. Here, the non-degeneracy condition implies
compactness. Considering the set of all discrete surfaces with bounded Dirichlet
energy which satisfy the boundary condition could lead to a similar compactness
theorem in the finite-dimensional Euclidean case, allowing triangles to degenerate
during the process. In both cases the existence of a discrete minimal surface which
satisfies the boundary condition and has finite Dirichlet energy is needed anyway,
so the set of all such discrete surfaces is not empty.
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Furthermore,the algorithm of Pinkall and Polthier is not per-se limited to disk-type
minimal surfaces. Given a different initial simplicial complex, the algorithm can
compute discrete minimal surfaces for multiple boundary curves. This could work
in Riemannian manifolds as well.

Considering the discrete geodesic calculus, this was only the next step, from discrete
geodesics to two-dimensional minimal surfaces. It would be desirable to compute
discrete minimal surfaces of higher codimension. That means that for example for
k given objects in a shape space where for each k − 1 subset of points there is a
(k − 1)-dimensional minimal surface connecting these k − 1 points. The task is
then to compute a discrete minimal surface of codimension k, bounded by these
lower-dimensional minimal surfaces. In this case, however, even the theory does
not provide the existence of smooth minimal surfaces, stronger requirements are
necessary.

Moreover, only finite-dimensional Riemannian manifolds were treated, shape spaces
in general are Hilbert manifolds and as such infinite-dimensional. Then the existence
of continuous minimal surfaces is no consequence of the standard geometric measure
theory and has to be further investigated.
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