
Discretization via line measures for a
curvature regularization framework

Master Thesis
submitted in fulfillment of the requirements for the degree of

Master of Science

University of Münster, Germany
Department of Mathematics and Computer Sciences
Institute for Computational and Applied Mathematics

Supervisor and first assessor:
Prof. Dr. Benedikt Wirth
Second assessor:
Prof. Dr. Martin Burger

Submitted by:
Daniel Tinius

Münster, September 2015

Abstract

In this thesis we propose a new discretization scheme for an existing convex curvature regular-
ization framework for image processing. The essential idea is to apply regularity on the level
lines of images, which is accomplished using functional lifting of the image gradient into a Radon
measure in three-dimensional space Ω×S1, where Ω is the image domain, and the normals to the
level lines are represented in S1. Utilizing the special structure of this higher-dimensional mea-
sure we propose a new discretization based on linear combinations of short line measures, and
present two efficient methods for numerically solving the resulting linear optimization problems.

Through various examples including deconvolution, binary segmentation, inpainting and a
specialized noise removal we show the diversity of the framework and the effectiveness of the
new discretization.

i

Declaration of Academic Integrity

I hereby confirm that this thesis on Discretization via line measures for a curvature regularization
framework is solely my own work and that I have used no sources or aids other than the ones
stated. All passages in my thesis for which other sources, including electronic media, have been
used, be it direct quotes or content references, have been acknowledged as such and the sources
cited.

(date and signature of student)

I agree to have my thesis checked in order to rule out potential similarities with other works and
to have my thesis stored in a database for this purpose.

(date and signature of student)

ii

Contents

1 Introduction 1

2 Prerequisites 2
2.1 Measure theory . 2

2.1.1 Radon-measures and functions of bounded variation 2
2.1.2 Distance functions on measures . 3

2.2 Convex optimization . 6

3 Image Regularization Framework 10
3.1 Functional lifting . 10
3.2 Functionals acting on polygons . 12
3.3 Generalization to admissible polygons . 15

3.3.1 Generalization to imaging problems . 18
3.4 Convex Relaxation . 19
3.5 Functionals TVX0 and TVX1 . 20
3.6 Applications for imaging problems with L2 data term 20
3.7 Data terms . 21

3.7.1 Noise removal . 21
3.7.2 Binary segmentation . 21
3.7.3 Inpainting . 22
3.7.4 Deconvolution . 22
3.7.5 Thin structures preserving noise removal 22

4 Discretization via Line Measures 26
4.1 Discrete setting . 26

4.1.1 Discrete compatibility condition . 28
4.1.2 Discrete directional derivative . 30
4.1.3 Discrete partial derivative in label direction 31
4.1.4 Discrete flow balancing condition . 32
4.1.5 Discrete projection . 32

4.2 Matrix representation of discrete operators . 33
4.3 Discrete formulations for TVX . 35

4.3.1 Discrete TVX0 . 35
4.3.2 Discrete TVX1 . 36

5 Numerical algorithms 38

iii

5.1 Primal-Dual algorithm . 38
5.1.1 TVX0-PD . 40
5.1.2 TVX1-PD . 41

5.2 Linear programming . 42
5.2.1 Generalization for quadratic data terms 42
5.2.2 Transformation of norm minimization problems 43
5.2.3 TVX0-LP . 45
5.2.4 TVX1-LP . 46

6 Applications and Evaluation 47
6.1 Numerical results . 47

6.1.1 Noise removal . 47
6.1.2 Binary segmentation . 49
6.1.3 Inpainting . 51
6.1.4 Deconvolution . 53
6.1.5 Thin structures preserving noise removal 54

6.2 Comparison of discretizations . 58
6.3 Performance evaluations . 60

6.3.1 Implementation details . 60
6.3.2 Memory consumption . 60
6.3.3 Running times . 62
6.3.4 Performance conclusions . 65

7 Conclusions 67

List of Figures 69

References 71

iv

1 Introduction

Many applications in image processing rely on additional information introduced through regu-
larization. While for a long time first-order smoothness conditions have been predominant, more
recent research has shown that higher-order features such as curvature are often better suited
for solving problems such as image segmentation, inpainting or noise removal. The underlying
assumption is that level lines of images are mostly smooth with only small curvature.

This thesis discusses one approach to curvature regularization that has been proposed in [7].
The essential idea is to impose regularity on the level lines of images by assigning penalties
to all vertices where two level lines meet. The penalty is based on a metric distance between
the incoming and outgoing orientations of the two connected level lines. Hence the authors
considered functionals that each depend on one particular metric in S1 and are defined as the
sum of all vertex penalties. The article proposes two exemplary penalty functionals where the
first one counts all vertices, and the second one measures the total sum of the absolute external
angles, which in case of smooth level lines corresponds to the total absolute curvature.

The main focus of this work is a new numerical discretization for the curvature regularization
framework, that was designed to capture the special structure of these functionals. To obtain a
convex representation for the vertex penalizing functionals the authors used a technique called
’functional lifting’ to represent image gradients by higher-dimensional Radon measures. These
measures are essentially composed of line measures, an observation that will prove crucial to
the proposed method. We will approximate the lifted measures using linear combinations of
short, local line measures and show that this approach can be solved with high efficiency using
different numerical algorithms including standard linear programming.

We will proceed as follows. The second chapter will introduce the main mathematical concepts
including an introduction to Radon measure theory and convex analysis. The third chapter will
then summarize the derivation of the curvature regularization framework and propose a few
sample applications. In the fourth and fifth chapter we will introduce the new discretization
and show different formulations that can be solved using different algorithms and solvers. The
last chapter will then contain numerical results for all of the proposed example applications,
and an evaluation that compares the new method to the original one. Moreover we study two
different methods of solving the example problems in terms of practical usability and performance
comparisons.

1

2 Prerequisites

In this first chapter we will summarize the main mathematical concepts that will be used
throughout this thesis. The first part covers a condensed introduction into Radon-measure
theory and functions of bounded variations, which will be substantial for the derivation of the
curvature regularization framework. The second part will focus on convex analysis and especially
convex duality theory that will be helpful for the numerical discretization.

2.1 Measure theory

2.1.1 Radon-measures and functions of bounded variation

In this thesis we will consider a regularization framework based on measures and therefore we
will start by introducing a few common definitions.

In the following let Ω ⊂ R2 be a connected open set, i.e. a domain. With S1 we denote the
unit sphere in R2, Cc(X) the space of continuous functions with compact support and C0(X)
its completion with respect to the sup-norm. Further we denote by B(Ω) the Borel algebra
generated by the open subsets of Ω.

Definition 2.1 (Total Variation). The total variation of a function u ∈ L1(Ω) is defined as

TV(u) = sup
{∫

Ω
udivϕ dx

∣∣∣∣ ϕ ∈ C∞c (Ω,R2), ‖ϕ‖∞ ≤ 1
}
. (2.1)

The function u is said to be of bounded variation if its total variation is finite, i.e. TV(u) <∞.

Definition 2.2 (Space BV). The space of functions of bounded variation is the set

BV(Ω) =
{
u ∈ L1(Ω)

∣∣∣ TV(u) <∞
}
.

Together with the norm ‖u‖BV = ‖u‖1 + TV(u) it is a Banach space.

Definition 2.3 (Finite Radon Measures). A set function µ : B(Ω) → Rd is called a finite
Radon measure if it is countably additive, regular and satisfies µ(∅) = 0.

A finite Radon measure µ : B(Ω)→ R is called positive, denoted by µ ≥ 0, if µ(E) ≥ 0 for all
E ∈ B(Ω).

Definition 2.4 (Total variation measure). Let µ : B(Ω)→ Rd be a finite Radon measure. Then
the total variation measure |µ| is defined as

|µ| (E) = sup
{ ∞∑
n=0
|µ(En)|

∣∣∣∣∣ En ∈ B(Ω) pairwise disjoint, E =
∞⋃
n=0

En

}

2

Definition 2.5. The space of Radon measures is the set

M(Ω,Rd) =
{
µ ∈ B(Ω)→ Rd)

∣∣∣ µ Radon measure
}
.

M(Ω,Rd) together with the norm ‖µ‖M = |µ| (Ω) is a Banach space.

The next theorem will state a well-known characterization of the space M(Ω,Rd).

Theorem 2.6. Let X be a locally compact and separable metric space. Then the dual of the
Banach space C0(X,Rd) can be identified with M(X,Rd) under the pairing

〈µ, u〉 =
∫
X
udµ.

Moreover the dual norm is |µ| (X).

Proof. See [2] Remark 1.57.

Hence any Radon measure can be identified by a linear functional acting on continuous func-
tions. We close this section with a list of convenient properties that will be used throughout
this paper.

Theorem 2.7.

1. Let µ : B(Ω)→ Rd be a finite Radon measure. Then its total variation measure is always
a positive finite Radon measure, i.e. |µ| ≥ 0.

2. For any function u ∈ BV(Ω) its distributional derivative ∇u is a Radon measure in
M(Ω,R2).

3. For any function u ∈ BV(Ω) its distributional derivative ∇u can be decomposed with respect
to its total variation measure, i.e. there exists a density σ ∈ L1

|∇u|(Ω,R2) such that

∇u = σ |∇u|

where σ(x) ∈ S1 |∇u|-almost everywhere. The pairing (σ, |∇u|) is called polar decomposi-
tion of ∇u.

Proof. We will not exercise proofs of these statements here, since they can for example be found
in [2]. For the first and last statement see [2, Theorem 1.6 and Corollary 1.29]. For the second
statement notice that the definition of BV(Ω) used in [2] differs from the one used in this thesis,
as it defines u ∈ L1(Ω) to be a function of bounded variation if the distributional derivative of
u is representable by a finite Radon measure, see [2, Definition 3.1]. However by [2, Proposition
3.6] (Variation of BV functions) the two definitions are compatible.

2.1.2 Distance functions on measures

In this section we will introduce two distance functions on M(Ω) that will later be used in a
specialized type of noise removal.

3

Wasserstein distance

The first metric in consideration is the Wasserstein metric, which is commonly used in optical
transport problems. The idea is to compare two measures of the same mass by finding an
optimal plan to transform one into the other using translations. The cost associated with the
transformation is defined through the distance function of the metric space in consideration.
Hence, the greater the distance, the more expensive the transformation is. Precisely:

Definition 2.8. Let (X, d) be a complete separable metric space and p ≥ 1. The Wasserstein-p
distance between two probability measures µ1, µ2 ∈ Pp(X) is defined by

distpWp
(µ1, µ2) = inf

{∫
X2
d(x1, x2)p dµ(x1, x2)

∣∣∣∣ µ ∈ Γ(µ1, µ2)
}

where Γ(µ1, µ2) =
{
γ ∈ P(X2)

∣∣∣ πi#γ = µi for i = 1, 2
}

is the set of transport plans, πi# : X2 →
X denotes the canonical projections, and Pp is the set of all probability measures with finite p-th
moment, i.e. Pp(X) = {µ ∈ P(X) |

∫
X d(x, x̄)p dµ(x) < +∞ for some x̄ ∈ X}.

We will only utilize the Wasserstein distance for p = 1, which can be expressed in the following
dual formulation.

Theorem 2.9. The Wasserstein-1 distance for two probability measures µ1, µ2 ∈ P(X) with
bounded support can be expressed as

distW1(µ1, µ2) = sup
{∫

X
ϕd(µ1 − µ2)

∣∣∣∣ ϕ : X → R 1− Lipschitz
}
.

Proof. See [3] Section 7.1.

Remark 2.10. Notice that distW 1(µ1, µ2) can only be finite if (µ1−µ2)(X) =
∫
X 1 d(µ1−µ2) =

0, since constant functions are 1-Lipschitz. Moreover distW 1 corresponds to the dual Lipschitz
norm and hence is convex.

H−1 distance

The second metric in consideration is a distance measured in H−1, i.e. the space of bounded
linear functionals on the Sobolev space H1

0 . We will give a characterization of the H−1 norm
that is closely related to Poisson’s equation. In some sense, we therefore compare two measures
by smoothing their differences and computing the total energy.

Throughout this section Ω ⊂ Rn denotes an open and bounded domain.

Definition 2.11. Denote by H1(Ω) = W 1,2(Ω) is the Sobolev space and by H1
0 the closure of

C∞c (Ω) in H1
0 (Ω) endowed with the norm

‖f‖H1
0

= ‖∇f‖L2(Ω) for f ∈ H1
0 .

4

Definition 2.12. H−1(Ω) denotes the dual space to H1
0 (Ω) endowed with the norm

‖f‖H−1 = sup
u∈H1

0

〈f, u〉H−1,H1
0

‖u‖H1
0

for f ∈ H−1,

where the dual pairing is defined as 〈f, u〉H−1,H1
0

=
∫

Ω fudx.

Theorem 2.13. Let Ω ⊂ Rn be a bounded and open set and g ∈ H−1(Ω), then

‖g‖H−1 =
∥∥∥∇(−∆)−1g

∥∥∥
L2
.

Proof. Let g ∈ H−1(Ω). Using Riesz’s representation theorem we can deduce the existence of
an isometric isomorphism Φ : H−1 → H1

0 such that 〈g, v〉H−1,H1
0

= 〈Φ(g), v〉H1
0

for all v ∈ H1
0

and

‖g‖H−1 = sup
f∈H1

0

〈g, f〉H−1,H1
0

‖f‖H1
0

= sup
f∈H1

0

〈Φ(g), f〉H1
0

‖f‖H1
0

= ‖Φ(g)‖H1
0

= ‖∇Φ(g)‖L2 (i)

since the optimum is attained at Φ(g). Moreover,

〈g, f〉H−1,H1
0

=
∫

Ω
gf dx = 〈Φ(g), f〉H1

0
=
∫

Ω
∇Φ(g)∇f dx for all f ∈ H1

0

which coincides with the weak formulation of Poisson’s equation with zero boundary conditions,
and consequently Φ(g) = (−∆)−1g. Together with (i) this establishes the statement.

Using this theorem we can define a distance function between measures.

Definition 2.14. Let µ1, µ2 ∈M(Ω) ∩H−1(Ω). Then

dist2
H−1(µ1, µ2) =

∥∥∥µ1 − µ2
∥∥∥2

H−1
=
∥∥∥∇(−∆)−1(µ1 − µ2)

∥∥∥2

L2
.

(a) Gaussian noise,
σ = 0.05

(b) Salt-and-pepper noise,
1% corrupted

Figure 2.1: Comparison of two noise profiles and the solution of Poisson’s equation. Observe that
the energy required to remove the salt-and-pepper noise is much higher, although only
few noise particles have been introduced. Hence we expect that the H−1 metric will be
better suited for Gaussian noise removal, since removing single particles with strong
peaks is associated with very high costs.

5

2.2 Convex optimization

To compute numerical results we will propose different algorithms that each require optimization
problems to be stated in a standard form. The next chapter will show that, for example linear
programming is well suited for many problems using the proposed curvature regularization. In
its standard form it can only handle minimization or maximization problems while the regular-
ization framework consists of a convex-concave saddle-point form. To overcome this limitation
we will apply classic results from duality theory.

We begin with a few standard definitions. This section based on [12].

Definition 2.15. A set S ⊂ Rn is said to be

convex if λx+ (1− λ)y ∈ S whenever x, y ∈ S and 0 ≤ λ ≤ 1,

affine if λx+ (1− λ)y ∈ S whenever x, y ∈ S and λ ∈ R.

The affine hull of S is the smallest affine set containing S, i.e.

aff S =
{
y =

k∑
i=1

λixi

∣∣∣∣∣ k ∈ N, λi ∈ R, xi ∈ S for 1 ≤ i ≤ k,
k∑
i=1

λi = 1
}
.

Next we will require a definition for the interior of a convex set. However, often we are dealing
with low-dimensional subsets in a higher dimensional space and therefore the topological interior
is not meaningful.

Definition 2.16. Let C ⊂ Rn be a non-empty convex set. Then the relative interior of C is
defined as relintC = {x ∈ aff C | ∃ε > 0, Bε(x) ∩ aff C ⊂ C} .

Figure 2.2: Relative interior for C =
{
x ∈ R3

∣∣ x2
1 + x2

2 ≤ 1, x3 = 0
}

.

Definition 2.17. For a function f : S ⊂ Rn → R ∪ {±∞} the epigraph is the set

epi f = {(x, λ) | x ∈ S, λ ∈ R, λ ≥ f(x)}

and f is said to be convex, if epi f is a convex subset in Rn+1. Further f is said to be concave,
if −f is convex.

Definition 2.18. For a set S ∈ Rn its indicator function is defined as

1∞S (x) =

0 if x ∈ S,

∞ otherwise.

6

Clearly a set is convex if and only if its associated indicator function is convex.

Definition 2.19. Let f : S ⊂ Rn → R ∪ {±∞} be a convex function. Then the effective
domain of f is defined as the set

dom f = {x ∈ Rn | ∃λ, (x, λ) ∈ epi f} = {x | f(x) < +∞} .

The convex function f is said to be proper (convex), if its epigraph is non-empty and contains
no vertical lines, i.e. if f(x) < +∞ for at least one x and f(x) > −∞ for every x. Likewise, a
function g is said to be proper concave, if −g is proper (convex).

Another way to check if a convex function f is proper is to inspect the effective domain, i.e.
f is proper if and only if dom f is non-empty and f restricted to dom f is finite.

Definition 2.20. A function f : Rn → R ∪ {∞} is said to be closed if epi f is closed.

For convex functions we can find a more advanced characterization for closedness that directly
relates to lower semi-continuity.

Theorem 2.21. Let f : Rn → R ∪ {±∞}. Then the following conditions are equivalent:

(a) f is lower semi-continuous, i.e. lim infx→x0 f(x) ≥ f(x0) for all x0 ∈ Rn.

(b) epi f is a closed set in Rn+1.

Proof. See [12, Theorem 7.1].

Definition 2.22. The convex relaxation or lower semi-continuous envelope of a proper
convex function f is defined as

f̄(x) = (cl f)(x) = lim inf
y→x

f(y).

In other words, the lower semi-continuous envelope is the greatest lower semi-continuous
function that is majorized by f. With that definition we can give an alternative characterization
for closedness of a convex function. A convex function f is closed if cl f = f . If f is proper then
closedness is the same as lower semi-continuity.

Now with this short summary of all requirements we can formulate the main result of this
section.

Definition 2.23. The conjugate of a function f : Rn → R ∪ {±∞} is defined as

f∗(x∗) = sup
x∈Rn

x · x∗ − f(x).

If f is concave then its concave conjugate is defined as

f?(x∗) = −f∗(−x∗) = inf
x∈Rn

x · x∗ − f(x).

7

Theorem 2.24 (Fenchel’s Duality Theorem). Let f be a proper convex function on Rn, and let
g be a proper concave function on Rn. One has

inf
x
f(x)− g(x) = sup

x∗
g?(x∗)− f∗(x∗)

if either of the following conditions is satisfied:

(a) relint dom f ∩ relint dom g 6= ∅,

(b) f and g are closed, and relint dom g? ∩ relint dom f∗ 6= ∅.

Under (a) the supremum is attained at some x∗, while under (b) the infimum is attained at some
x. If (a) and (b) both hold, the infimum and supremum are necessarily finite.

Proof. See [12, Theorem 31.1].

Theorem 2.25. Let f be a closed proper convex function on Rn, let g be a closed proper concave
function on Rm, and let A : Rn → Rm be a linear operator. One has

inf
x
f(x)− g(Ax) = sup

x∗
g?(x∗)− f∗(ATx∗)

if either of the following conditions is satisfied:

(a) There exists an x ∈ relint dom f such that Ax ∈ relint dom g,

(b) There exists an x∗ ∈ relint dom g? such that ATx∗ ∈ relint dom f∗.

Under (a) the supremum is attained at some x∗, while under (b) the infimum is attained at some
x.

Proof. See [12, Corollary 31.2.1].

The following proposition is of course an application of Theorem 2.25 and will be helpful in
recasting optimization problems in a saddle-point form to a minimization problem, especially
when the linear objective function is subject to a Lipschitz constraint.

Proposition 2.26. For β ∈ Rn and C ∈ Rm×n the following equality holds:

sup
ϕ∈Rn

‖Cϕ‖∞≤1

ϕ · β = min
ϕ∗∈Rm

CTϕ∗+β=0

‖ϕ∗‖1 .

Proof. The above problem can be reformulated as

sup
ϕ∈Rn

‖Cϕ‖∞≤1

ϕ · β = − inf
ϕ∈Rn

‖Cϕ‖∞≤1

−ϕ · β = − inf
ϕ∈Rn

−ϕ · β −
(
− 1∞{‖ϕ̂‖∞≤1}(Cϕ)

)

which motivates the definition of f : Rn → R and g : Rm → R ∪ {−∞} as

f(ϕ) = −ϕ · β, g(ϕ) = −1∞{‖ϕ̂‖∞≤1}(ϕ).

8

As f is a linear function it is convex, proper and continuous and therefore, using Theorem 2.21,
also closed. Obviously g is proper concave and closed since its epigraph can be computed as
epi−g = {(x, λ) | ‖x‖∞ ≤ 1, λ ≥ 0} = [−1, 1]m × [0,∞) and hence is closed in Rm+1. Moreover

dom f = {ϕ | −ϕ · β < +∞} = Rn ⇒ relint dom f = Rn,

dom g = {ϕ̂ | −g(ϕ̂) < +∞} = {ϕ̂ | ‖ϕ̂‖∞ ≤ 1} ⇒ relint dom g = {ϕ̂ | ‖ϕ̂‖∞ < 1} .

Trivially 0 ∈ relint dom f and CT 0 = 0 ∈ relint dom g. Hence requirement (a) of Theorem 2.25
is met and we have

sup
ϕ∈Rn

‖Cϕ‖∞≤1

ϕ · β = − inf
ϕ∈Rn

f(ϕ)− g(Cϕ) = − max
ϕ̂∈Rm

g?(ϕ̂)− f∗(CT ϕ̂) = min
ϕ̂∈Rm

f∗(CT ϕ̂)− g?(ϕ̂)

and the conjugates are computed as

f∗(ϕ∗) = sup
ϕ∈Rn

ϕ · ϕ∗ + β · ϕ =

0 if ϕ+ β = 0,

∞ otherwise.
, g?(ϕ∗) = inf

ϕ∈Rm
‖ϕ‖∞≤1

ϕ · ϕ∗ = −‖ϕ∗‖1

which yields the proposed formula.

9

3 Image Regularization Framework

The goal of this thesis is to derive a new discretization for the curvature regularization framework
proposed in [7]. But before going into details we will summarize the idea and main results from
the original article. Technical results will only be stated if necessary for the new results from
this thesis.

3.1 Functional lifting

Utilizing the theory from the first chapter we will next introduce the concept of functional
lifting, which will be the foundation for finding a convex relaxation of a class of functionals that,
when applied to images, are able to penalize curvature of the level lines. Consider the following
motivational example.

Let x : I → Ω ⊂ R2 be the parameterization of a smooth planar curve with inner normal
ν : I → S1. Then the lifting of this curve is defined as s 7→ (x(s), ν(s)). Through the lifting the

Figure 3.1: Lifting of a smooth curve to the space Ω × S1. Depending on the orientation of
the normal, indicated by the red arrows, the curve is lifted to different heights in
three-dimensional space.

intrinsic local orientation of the curve is now accessible in the additional dimension. To apply
this to level lines of images we need to generalize this idea. For one we need a mechanism to
extract local orientations, and we need to keep in mind that level lines in general are non-smooth
curves.

This will be addressed using the theory from the first chapter. For any image u ∈ BV(Ω) we
know that the distributional derivative ∇u is a Radon measure that can readily be decomposed
using the polar decomposition from Theorem 2.7, i.e. ∇u = σ |∇u|. As pointed out before, the
density σ conveniently satisfies that σ(x) ∈ S1 |∇u|-almost everywhere and is oriented normal
to the level lines. Since we are considering Ω ⊂ R2 we can easily rotate the density to be
tangentially to the level lines.

10

Definition 3.1 (Rotation Operator ⊥). The operator that rotates ν ∈ S1 counterclockwise by
π
2 is defined as

ν⊥ :=
(

0 −1
1 0

)
ν.

Figure 3.2: Example for u : Ω = (−1, 1)2 → R, u(x) = ‖x‖1. The first figure displays u, the
second illustrates the level lines of u and the orientations of density σ, and the third
figure shows the orientations of −σ⊥. Notice that by choosing the negative rotated
direction the function is increasing on the left-hand side.

Equipped with the necessary theory we are now ready to define the functional lifting of an image
gradient.

Definition 3.2 (Functional lifting of ∇u). Let u ∈ BV(Ω). The functional lifting of ∇u is the
measure µ = µ(∇u) ∈M(Ω× S1) with∫

Ω×S1
ϕ dµ =

∫
Ω
ϕ(x,−σ(x)⊥) d |∇u|

for each ϕ ∈ C0(Ω× S1).

This definition and its properties are best explained on a simple example. Consider u ∈ BV(Ω)
as a binary image of a polygon P as in Figure 3.3. The distributional derivative ∇u is of course
constantly zero inside and outside the polygon and has support only on the boundary Γ = ∪iΓi
where u jumps from 0 to 1.

As we decompose ∇u on Γ to ∇u = σ |∇u| we notice that the density σ(x) is pointing to the
interior of the polygon. On each piece Γi of the boundary σ(x) is constantly pointing in the
same direction. Consequently when we apply the functional lifting, each piece of the boundary
is lifted to different heights, where the height is depending only on the orientation of σ(x).

11

Figure 3.3: Lifting applied on a simple polygonal binary image u, where u is constant inside and
outside of the polygon P , i.e. u|P = 1 and u|Ω\P = 0. Notice again that −σ(x)⊥,
indicated by the green arrows, is oriented so that the function is increasing on the
left-hand side.

The measure µ associated with ∇u now acts on these lifted level lines. Applied to a function
ϕ ∈ C0(Ω × S1) it integrates only along the corresponding tangential direction. Further notice
the following properties of µ:

1. x 7→
(
x,−σ(x)⊥

)
is measurable (with respect to |∇u|) between Ω→ Ω× S1.

2. µ is a positive Radon measure.
3. The measure |∇u| can be recovered from µ by∫

Ω
ϕd |∇u| =

∫
Ω×S1

ϕ(x) dµ(x, ν) for all ϕ ∈ C0(Ω).

4. In the same way the measure ∇u can be recovered from µ by∫
Ω
ϕ · d∇u =

∫
Ω
ϕ(x) · σ(x)︸ ︷︷ ︸

−σ⊥⊥

d |∇u| =
∫

Ω×S1
ϕ(x)σ(x)⊥ dµ for all ϕ ∈ C0(Ω,R2).

In the next section we will continue with the example of a binary polygonal image. The goal
still is to derive functionals that are able to penalize vertices of a polygon. However, instead
of trying to solve this task for the flat two-dimensional image we can now directly utilize the
orientations of the gradient in Ω× S1.

3.2 Functionals acting on polygons

This section will introduce functionals that are able to penalize vertices of characteristic functions
of polygons by acting on the lifted gradient. As a first motivational example consider a polygon
consisting only of a single vertex centered at zero. Precisely:

Let Ω = B1(0) be the (open) unit disk centered at zero. Further let µ ∈ M(Ω × S1) represent
the integration on two unit line segments with orientations ν1, ν2 ∈ S1 meeting at zero. Then
for each ϕ ∈ C0(Ω× S1)

∫
Ω×S1

ϕ dµ =
∫ 0

−1
ϕ(tν1, ν1) dt+

∫ 1

0
ϕ(tν2, ν2) dt.

12

Figure 3.4: Single vertex polygon in B1(0) with incoming and outgoing orientations ν1 and ν2.

Now we consider the distributional directional derivative of µ with respect to (−ν, 0), i.e. we
test with ϕ = ∇x ψ(x, ν) · ν for ψ ∈ C∞c (Ω× S1):

∫
Ω×S1

∇x Ψ(x, ν) · ν dµ =
∫ 0

−1

∂

∂t
Ψ(tν1, ν1) dt+

∫ 1

0

∂

∂t
Ψ(tν2, ν2) dt

= Ψ(0, ν1)−Ψ(0, ν2)

= 〈δν1 − δν2 ,Ψ(0, ·)〉

where δν denotes the delta distribution at ν. This result leads to the following observations:

1. In order to penalize vertices of polygons, we need functionals acting on M(S1).
2. It is desirable to control the penalty for each pair of orientations ν1 and ν2 individually.

To measure differences between orientation we can of course always select a metric on S1. The
idea is then to generalize this metric to act on M(S1) which is possible for the following class
of metrics.

Assumption 3.3. Let ρ : S1 × S1 → [0,∞) such that

1. ρ defines a metric on S1

2. ρ is lower semi-continuous, i.e. ρ = supi∈I ρi where I is a non-empty index set and
ρi ∈ C(S1 × S1) is a continuous metric for each i ∈ I.

Definition 3.4. For a metric ρ : S1 × S1 → [0,∞) satisfying Assumption 3.3 the functional
‖·‖ρ :M(S1)→ [0,∞] is defined as

‖µ‖ρ = sup
ϕ∈Cρ

〈µ, ϕ〉

with Cρ =
{
ϕ ∈ C(S1)

∣∣ ϕ(η1)− ϕ(η2) ≤ ρ(η1, η2) for all η1, η2 ∈ S1}.

Definition 3.5. We call a functional a weak* sequentially lower semi-continuous norm, if it is

1. non-negative,
2. positively homogeneous and positive definite,
3. weak* sequentially lower semi-continuous,
4. satisfies the triangle inequality,
5. but may also attain the value ∞.

The following theorem will show that ‖·‖ρ indeed satisfies Definition 3.5.

Theorem 3.6. The functional ‖·‖ρ :M(S1)→ [0,∞] has the following properties:

13

1. ‖·‖ρ is a weak* sequentially lower semi-continuous norm,

2. for each ν1, ν2 ∈ S1, it holds that ‖δν1 − δν2‖ρ = ρ(ν1, ν2).

Proof. From the symmetry of ρ we conclude that ϕ ∈ Cρ ⇔ −ϕ ∈ Cρ and therefore Cρ = −Cρ.
Hence we obtain the non-negativity

‖µ‖ρ = sup
ϕ∈Cρ

〈µ, ϕ〉 = sup
ϕ∈Cρ

|〈µ, ϕ〉| ≥ 0.

Using the same argument and with λ ∈ R we can establish the positive homogeneity

‖λµ‖ρ = sup
ϕ∈Cρ

〈λµ, ϕ〉 = sup
ϕ∈Cρ

〈|λ|µ, sgn(λ)ϕ〉 = |λ| sup
sgn(λ)Cρ

〈µ, ϕ〉 = |λ| ‖µ‖ρ .

Since ‖·‖ρ is the pointwise supremum of sequentially weak* continuous functionals, the weak*
lower semi-continuity follows directly. Now for all µ1, µ2 ∈M(S1) and ϕ ∈ Cρ we have

〈µ1 + µ2, ϕ〉 ≤ ‖µ1‖ρ + ‖µ2‖ρ ⇒ ‖µ1 + µ2‖ρ = sup
ϕ∈Cρ

〈µ1 + µ2, ϕ〉 ≤ ‖µ1‖ρ + ‖µ2‖ρ

which yields the triangle inequality. As the proof of the positive definiteness and the second
statement requires more work we refer to [7, Proposition 3.5].

Remark 3.7. Since Cρ contains constant functions, ‖µ‖ρ is only finite if
∫
S1 1 dµ = 0. Other-

wise:

sup
ϕ∈Cρ

〈µ, ϕ〉 ≥ sup
c∈R

∫
S1
cdµ =∞.

As stated in the introduction we will consider two metrics. The first one will turn out to
count the number of vertices with distinct incoming and outgoing orientations and the other to
measure the total sum of absolute exterior angles between incoming and outgoing edges.

Example 3.8 (Discrete Metric). Let ρ0 : S1 × S1 → {0, 1} be the discrete metric, i.e.

ρ0(ν1, ν2) =

0 if ν1 = ν2
1 if ν1 6= ν2

= sup
λ>0

min(1, λ−1|ν1 − ν2|).

This metric is admissible in the sense of Assumption 3.3. The set Cρ0 contains all functions
ϕ ∈ C(S1) that satisfy maxν1∈S1 ϕ(ν1)−minν2∈S1 ϕ(ν2) ≤ 1. This can be restated as

Cρ0 = 1R + {‖ϕ‖∞ ≤ 1
2} = 1R + {ϕ ∈ C∞(S1) | ‖ϕ‖∞ ≤ 1

2},

where the closure is being taken in C(S1), and 1 denotes the constant 1-function Hence for
µ ∈M(S1) and in light of Remark 3.7 we can compute ‖µ‖ρ0

as

‖µ‖ρ0
=

sup‖ϕ‖∞≤ 1
2
〈µ, ϕ〉 = 1

2 ‖µ‖M if
∫
S1 1 dµ = 0,

∞ else.

14

Example 3.9 (Geodesic metric). Let ρ1 : S1 × S1 → [0, π] be the metric measuring geodesic
distances, i.e.

ρ1(ν1, ν2) = min
{
|t1 − t2|

∣∣ νi =
(

cos(ti), sin(ti)
)
, i = 1, 2

}
.

Figure 3.5: Geodesic dis-
tance on S1.

Then the set Cρ1 consists of all Lipschitz continuous functions in C(S1) with Lipschitz constant
not exceeding 1, i.e.

Cρ1 =
{
ϕ ∈ C(S1)

∣∣∣ ϕ′(ν) exists for almost every ν ∈ S1 and
∥∥ϕ′∥∥∞ ≤ 1

}
= {ϕ ∈ C∞(S1) | ‖ϕ′‖∞ ≤ 1}

where the closure again is being taken in C(S1). The functional ‖·‖ρ1
then corresponds to a dual

Lipschitz norm.

3.3 Generalization to admissible polygons

We will continue by generalizing the single vertex polygon case to a general class of admissible
polygons.

Definition 3.10 (Admissible polygons). Let Ω ⊂ R2 be a bounded Lipschitz domain. A relatively
closed polygon P ⊂ Ω is said to be an admissible polygon if

1. the line segments of P in Ω are (up to boundary points) given by

[xi, yi] = {λxi + (1− λ)yi | λ ∈ [0, 1]}

for I ≥ 3 and x1, ..., xI , y1, ..., yI ∈ Ω,
2. the vertices are distinct, i.e. the collections (xi)1≤i≤I , (yi)1≤i≤I are each pairwise disjoint,
3. the line segments are connected, i.e. for 1 ≤ i ≤ I it holds that xi+1 = yi if yi ∈ Ω and

that yi and xi+1 lie on the same connected component of ∂Ω if yi ∈ ∂Ω, where xI+1 = x1,
4. the line segments [xi, yi] are pairwise disjoint for 1 ≤ i ≤ I, i.e., the polygon does not

intersect itself,
5. P lies on the left hand side with respect to the oriented segments [xi, yi], i.e. for each

x = λxi + (1 − λ)yi with 1 ≤ i ≤ I and λ ∈ (0, 1) there exists a neighborhood of U of x
such that

P ∩ U =
{
z ∈ U

∣∣∣ (z − x) · (yi − xi)⊥ ≥ 0
}
.

Informally speaking, a polygon P is admissible if it consists only of unique vertices, is non self-
intersecting (often called a ”simple polygon”) with the extension that it can also be defined on
the boundary of the potentially open set Ω. The exclusion of self-intersecting polygons further

15

ensures that for admissible polygons the interior and exterior can be clearly distinguished by
examining if the vertices are defined clockwise or counterclockwise.

Figure 3.6: The first three polygons are admissible and the interior is determined by the order of
the vertices. The last polygon cannot be oriented and therefore it is not admissible.
Note that the end points yi are only marked if they do not correspond to xi+1.

Now let P be an admissible polygon, and u = 1∞P the characteristic function of P , which is of
course contained in BV(Ω). In light of the introductory example of a single vertex polygon, we
will again compute the distributional directional derivative of the functional lifting of ∇u. We
start by applying ∇u to a test function ϕ ∈ C0(Ω,R2), which yields

∫
Ω
ϕ d∇u =

∫
Ω
ϕ · σ d |∇u| =

I∑
i=1

∫ 1

0
|yi − xi|ϕ

(
xi(t)

)
· ν⊥i dt

with xi(t) = (1 − t)xi + tyi, νi = yi−xi
|yi−xi| for 1 ≤ i ≤ I. Hence the functional lifting of ∇u as in

Definition 3.2 can be computed as

∫
Ω×S1

ϕ dµ =
I∑
i=1

∫ 1

0
|yi − xi|ϕ

(
xi(t), νi

)
dt

for all test functions ϕ ∈ C0(Ω × S1). This is in compliance with the notion that the func-
tional lifting integrates tangentially along the level sets of u. Now as with the single vertex
polygon we consider ϕ(x, ν) = ∇x ψ(x, ν) · ν for a continuous function ψ ∈ C0(Ω×S1) for which
∇x ψ ∈ C0(Ω× S1,R2). Tested against the functional lifting µ we conclude, utilizing νI+1 = νi,

∫
Ω×S1

ϕ dµ =
I∑
i=1

∫ 1

0
|yi − xi| ∇x Ψ(x(t), νi) · νi dt

=
I∑
i=1

∫ 1

0

∂

∂t
Ψ(xi(t), νi) dt

=
I∑
i=1

ψ(yi, νi)− ψ(xi, νi) =
∑

1≤i≤I
yi∈Ω

ψ(yi, νi)− ψ(yi, νi+1).

If we again choose a metric ρ according to Assumption 3.3 and select ψ such that ψ(x, ·) ∈ Cρ
for each x ∈ Ω we can establish the inequality∫

Ω×S1
ϕdµ ≤

∑
1≤i≤I
yi∈Ω

ρ(νi, νi+1).

16

In Theorem 3.6 we were able to show that, for the simplified case of a single vertex polygon, the
right hand side can be attained, which motivates the following definition.

Definition 3.11. For ρ : S1 × S1 → [0,∞) according to Assumption 3.3 and µ ∈M(Ω× S1),
let

Tρ(µ) = sup
Ψ∈Mρ(Ω)

∫
Ω×S1

∇x Ψ(x, ν) · ν dµ(x, ν)

where Mρ(Ω) =
{
Ψ ∈ C0(Ω× S1)

∣∣ ∇x Ψ ∈ C0(Ω× S1,R2), Ψ(x, ·) ∈ Cρ for all x ∈ Ω
}
.

Proposition 3.12. The functional Tρ is sequentially weak* lower semi-continuous, positively
homogeneous, and satisfies the triangle inequality.

Proof. This statement can be derived in analogy to the first part of Theorem 3.6 by replacing
Cρ with {(x, ν) 7→ ∇x ψ(x, ν) · ν | ψ ∈Mρ(Ω)}.

Proposition 3.13. Let ρ be a metric satisfying Assumption 3.3. For P being an admissible
polygon, u = 1∞P and µ the lifting of ∇u it holds that

Tρ(µ) =
∑

1≤i≤I
yi∈Ω

ρ(yi − xi
|yi − xi|

,
yi+1 − xi+1
|yi+1 − xi+1|

).

Proof. See [7, Proposition 3.13].

The last statement verifies that for admissible polygons the functional Tρ indeed is the sum
over all vertices measuring differences of the incoming and outgoing orientations using the pre-
scribed metric ρ.

Example 3.14. For ρ0 the discrete metric from Example 3.8 the functional Tρ0 corresponds to
to the number of vertices with a change in orientation, i.e.

Tρ0 = #
{
yi ∈ Ω

∣∣∣∣ yi − xi|yi − xi|
6= yi+1 − xi+1
|yi+1 − xi+1|

}
.

Figure 3.7: At the marked
vertex the incoming and
outgoing orientations are
equal. Therefore Tρ0 = 3.

Example 3.15. For ρ1 the geodesic metric from Example 3.9 we have for yi ∈ Ω

ρ1(yi − xi
|yi − xi|

,
yi+1 − xi+1
|yi+1 − xi+1|

) = γ(yi)

where γ is the unsigned external angle, i.e. the absolute value of the external angle between the
incoming and outgoing orientation at vertex yi. Consequently Tρ1 corresponds to the sum of all
external angles, i.e.

17

Tρ1(µ) =
∑

1≤i≤I
yi∈Ω

γ(yi). Figure 3.8: The red arcs
at each vertex indicate
the unsigned external
angle γ(yi).

If P is a convex polygon with vertices completely inside Ω, if follows that Tρ1 = 2π.

Figure 3.9: Vertices
connected by a
piecewise smooth C2

boundary.

As a final statement in this section, we will generalize the idea of poly-
gons with straight boundaries to sets, where the vertices are connected
by smooth curves. The last example already provides the intuition that
Tρ1 measures the total curvature of P . If we replace each corner of the
polygon by an arc Ai with radius ri > 0 that smoothly connects the
line segments meeting at yi, then the length of that arc would be γ(yi)ri
and the absolute value of the curvature |κ| of Ai would be 1

ri
. Therefore∫

Ai
|κ| dH1 = γ(yi).

The functional Tρ0 , on the other hand, is not meaningful for sets with
smooth curved boundaries since it counts the number of genuine vertices.
But a set with smooth curves can be viewed as a polygon with infinitely many genuine vertices
and therefore Tρ0 yields ∞.

Proposition 3.16. Let ρ0 be the discrete and ρ1 be the geodesic metric on S1. Let P ⊂ Ω with
piecewise C2 boundary ∂P ⊂ Ω, i.e. ∂P contains a set x1, ..., xI of vertices which are connected
by C2 arcs. For simplicity, assume ∂P to be homeomorphic to S1. Then for µ being the lifted
gradient of the characteristic function 1∞P it holds that

Tρ0(µ) =

#
{
xi
∣∣ ∂P is not C1 at xi

}
if κ = 0 on ∂P \ {x1, ..., xI},

∞ else,

Tρ1(µ) =
∫
∂P\{x1,...,xI}

|κ| dH1 +
∑

1≤i≤I
γ(xi),

where κ is the curvature of the curve ∂P and γ(xi) its unsigned external angle at xi.

Proof. See [7, Proposition 3.16].

3.3.1 Generalization to imaging problems

In the previous section we considered functionals Tρ that can be applied to characteristic func-
tions of polygons or sets with piecewise smooth boundaries. Before these functionals can be
applied to image problems we need a generalization for arbitrary images. First we note that for
binary u ∈ BV(Ω) the functional lifting µ of ∇u satisfies µ ∈ M(Ω × S1), and therefore Tρ(µ)
still makes sense. We can use this observation to derive a functional that acts on the sublevel
sets of u. Precisely, denoting by µt the functional lifting of ∇1∞{u<t} and α, β > 0

Rα,βρ (u) =
∫
R
α ‖µt‖M + βTρ(µt) dt. (3.1)

18

This functional contains two non-linear operations that complicate numerical computation and
global optimization. They can be identified as

1. the extraction of sublevel sets, i.e. (u, t) 7→ 1∞{u<t},
2. the functional lifting operation, i.e. u 7→ µ(∇u).

3.4 Convex Relaxation

To deal with the first problem we consider the following relaxation.

Proposition 3.17. For u ∈ BV(Ω), a metric ρ according to Assumption 3.3, α, β > 0 and Rα,βρ
according to (3.1) it holds that

α ‖µ‖M + βTρ(µ) ≤ Rα,βρ .

Proof. See [7, Section 4.1].

That implies: Considering the functional lifting of ∇u instead of the sublevel sets gives a
relaxation of Rα,βp .

As with the second problem, we consider a convex relaxation, i.e. we are looking for a convex
superset of

G∇ =
{

(u, µ) ∈ BV(Ω)× µ(Ω× S1)
∣∣∣ µ is the functional lifting of ∇u

}
.

Although the closed convex hull of G∇ in an appropriate topology exists theoretically, we are
looking for a superset that is computationally accessible. Therefore we notice the following
minimum requirements such a superset must satisfy. Let u ∈ BV(Ω). Then

1. the gradient lifting is a positive measure, i.e. µ ≥ 0,
2. for every ϕ ∈ C∞c (Ω,R2) the following compatibility condition is satisfied:∫

Ω
ϕ · ∇udx =

∫
Ω
ϕ · σ d |∇u| =

∫
Ω×S1

ϕ · ν⊥ dµ(x, ν) (3.2)

Consequently we choose

M∇ =
{

(u, µ) ∈ L1(Ω)×M(Ω× S1)
∣∣∣ µ ≥ 0,∫

Ω
ϕ · ∇udx =

∫
Ω×S1

ϕ · ν⊥ dµ(x, ν) for all ϕ ∈ C∞c (Ω,R2)
}
⊃ G∇ (3.3)

as a candidate for the convex relaxation, acknowledging that there may exist tighter relaxations.

Proposition 3.18. The set M∇ according to (3.3) is non-empty, convex, and sequentially closed
with respect to weak convergence in L1 and weak* convergence in M(Ω × S1). Moreover, for
each (u, µ) ∈M∇ it follows that u ∈ BV(Ω).

Proof. See [7, Proposition 4.1].

19

Combining these relaxations yields the following central definition:

Definition 3.19. Let α, β > 0. For u ∈ L1(Ω) define

R̄α,βρ (u) = inf
µ∈M(Ω×S1)

(u,µ)∈M∇

α ‖µ‖M + βTρ(µ)

where we set the infimum of the empty set to ∞.

Remark 3.20. The weighting parameter α controls the influence of the length-based term, while
β controls the influence of the curvature term.

Proposition 3.21. The functional R̄α,βρ : L1(Ω) → [0,∞] is lower semi-continuous, convex,
and positively one-homogeneous, i.e. R̄α,βρ (λu) = λR̄α,βρ (u) for λ ≥ 0 and u ∈ L1. It furthermore
obeys the estimate αTV ≤ R̄α,βρ ≤ Rα,βρ .

Proof. See [7, Proposition 4.4].

3.5 Functionals TVX0 and TVX1

The next two examples are the results of using the discrete or geodesic metrics from Examples 3.8
and 3.9 with functional R̄α,βρ . For the derivation see again [7, Examples 4.5, Example 4.6].

Example 3.22 (TVXα,β
0). For α, β > 0 and ρ0 the discrete metric from Example 3.8 we can

compute

TVXα,β
0 (u) := R̄α,βρ0 (u) = inf

µ∈M(Ω×S1)
(u,µ)∈M∇

α ‖µ‖M + β

2 ‖∇ν µ‖M .

Example 3.23 (TVXα,β
1). Let α, β > 0 and ρ1 be the geodesic metric from Example 3.9. Then

we define for each ψ ∈ C∞(Ω× S1) the projection (πxψ)(x) =
∫
S1 ψ(x, ν) dν. The set

M̃ρ1(Ω) =
{

(x, ν) 7→ ψ(x, ν) + ϕ(x)
∣∣∣ ψ ∈ C∞c (Ω× S1), πxψ = 0, ‖∂νψ‖∞ ≤ 1, ϕ ∈ C∞c (Ω)

}
can be identified to be sufficient to test with Definition 3.11 in order to obtain Tρ1. Therefore

TVXα,β
1 (u) := R̄α,βρ1 (u) = inf

µ∈M(Ω×S1)
(u,µ)∈M∇

sup
ψ∈C∞c (Ω×S1)

πxψ=0
‖∂νψ‖∞≤1

α ‖µ‖M + β〈∇ν µ, ψ〉.

3.6 Applications for imaging problems with L2 data term

As our intermediate goal was to derive curvature-dependent functionals that can be applied
to different image problems, we conclude this section with the final theorem that clarifies the
existence of solutions when using convex L2 data terms.

20

Theorem 3.24. Let G : L2(Ω) → (−∞,∞] be bounded from below, convex, lower semi-
continuous and such that

G(un)→∞ whenever
{
|
∫

Ω u
n dx| → ∞ and

∥∥∥un − |Ω|−1 ∫
Ω u

n dx
∥∥∥

2
is bounded.

Then, for each α, β > 0 there exists a solution u∗ of the variational problem

min
u∈L2(Ω)

R̄α,βρ (u) +G(u).

In case that G is strictly convex, the solution is unique if the minimum is finite.

Proof. See [7, Theorem 4.7].

3.7 Data terms

The last chapter will provide numerical examples of the capabilities of the new discretization
that will be proposed in the next chapter. Therefore we will introduce a few sample applications.
The first ones have mostly been adopted from the original article, and will be used to compare
the new discretization with the initial one from [7]. The thin structure preserving noise removal
will be used to demonstrate the behavior of the regularization framework in a field where we
expect better results than with classical first-order smoothness conditions.

3.7.1 Noise removal

The first application is noise removal. We will consider Gaussian and impulse noise which can
be treated using an Lp data fidelity term. For 1 ≤ p ≤ 2 and a noisy image f ∈ Lp(Ω) we define

G(u) = 1
p

∫
Ω
|u− f |p dx.

For the verification that Theorem 3.24 is applicable compare with [7, Example 4.9]. Notice that
for p = 2 the functional is strictly convex and hence in that case the solution is unique.

3.7.2 Binary segmentation

As a second example we are going to address binary segmentation, which is the task of separating
the domain of an image into two partitions, such as foreground and background. Let f ∈ L1(Ω)
be an external segmentation field that is negative for points likely to be in the background and
positive for points likely to be in the foreground. The associated data term is then defined as

G(u) =
∫

Ω
fudx+ 1∞D (u)

where D =
{
u ∈ L2(Ω)

∣∣ 0 ≤ u(x) ≤ 1 a.e. in Ω
}
. The assumptions for Theorem 3.24 are again

satisfied, see [7, Example 4.8].

21

3.7.3 Inpainting

Next we apply the regularization framework to image inpainting. Image inpainting can be used
to restore missing information in an image. Consider a non-null set Ω′ ⊂ Ω on which the
incomplete image I ∈ L2(Ω′) is defined. Then the data term is defined as

G(u) =

0 if u|Ω′ = I,

∞ otherwise.

Compare with [7, Example 4.10] for the existence of a minimizer for Theorem 3.24. However,
that minimizer can only be finite if the data has enough regularity.

3.7.4 Deconvolution

As a variation of standard noise removal we consider the task of image deconvolution, where the
input image is subject to blurring and (optionally) noise. For 1 ≤ p ≤ 2, a blurred and noisy
image f ∈ Lp(Ω), and a bounded linear operator PSF : Lp(Ω)→ Lp(Ω) satisfying

‖PSFun‖pp →∞

whenever the sequence (un) satisfies∣∣∣∣∫
Ω
un dx

∣∣∣∣→∞ and
{∥∥∥∥un − |Ω|−1

∫
Ω
un dx

∥∥∥∥
2

}
is bounded, (3.4)

we define the data term for image deconvolution as

G(u) = 1
p
‖PSFu− f‖pp .

Of course Theorem 3.24 is applicable as G is non-negative, convex and continuous, and satisfies
G(un)→∞ if (un) satisfies (3.4) since

‖PSFun − f‖pp ≥ 21−p ‖PSFun‖pp − ‖f‖
p
p →∞.

3.7.5 Thin structures preserving noise removal

As a last example we will introduce a form of noise removal that is well suited to preserve thin,
line-like structures as, for example, can be found in medical images of blood vessel networks.

The images in consideration consist of connected line segments with the special property that
whenever a line branches into multiple segments, the total width of these new lines remains
the same as the width of the original one. Moreover, when two lines merge the newly formed
segment receives the combined width of the two segments. Instead of considering a ’width’,
we will more generally use a density to describe these line segments, which can, for instance
be measured as the intensity of gray values. Due to the special structure of these images they
can be viewed as a (directed) graph, where at every interior node the sum of all incoming edge
weights equals the sum of all outgoing edge weights. This property further enables us to find an
equivalent level-set representation of the image.

22

Figure 3.10: Image with balanced flows, its associated graph and its level set representation.

In summary, we consider an input density I ∈ M(Ω) that has been perturbed by noise. We
will use the same functionals to apply regularity to the output as before, but the data-fidelity
measure will act on the projection of the lifted quantity onto M(Ω).

Hence for a data-fidelity measure G : M(Ω) × M(Ω) → [0,∞] we consider the following
optimization problem

inf
µ∈M(Ω×S1)

(u,µ)∈M∇

α ‖µ‖M + βTρ(µ) +G(
∫
S1

dµ, I),

where u corresponds to the level set representation and the projection of µ to the noise reduced
density, i.e. the quantity of interest. The level set image is merely a byproduct of the com-
putation, and is of no particular interest. Since the objective is also independent of u we will
reformulate the problem independently of u. First notice that for any (u, µ) ∈M∇ and ϕ ∈ C∞c∫

Ω×S1
∇ϕ(x) · ν dµ(x, ν) =

∫
Ω×S1

(∇ϕ(x))⊥ · ν⊥ dµ(x, ν) = −
∫

Ω
udiv((∇ϕ)⊥) dx = 0 (3.5)

as div((∇ϕ)⊥) = curl∇ϕ = 0. Therefore the modified optimization problem is

inf
µ∈MΘ

α ‖µ‖M + βTρ(µ) +G(
∫
S1

dµ, I) (3.6)

where the constraints set MΘ is given by

MΘ =
{
µ ∈M(Ω× S1)

∣∣∣∣ µ ≥ 0,
∫

Ω×S1
∇ϕ(x) · ν dµ(x, ν) = 0 for all ϕ ∈ C∞c (Ω,R)

}
. (3.7)

Proposition 3.25. The set MΘ according to (3.7) is non-empty, convex and sequentially closed
with respect to weak* convergence in M(Ω× S1).

Proof. The proof is a slightly modified version of the proof of [7, Proposition 4.1]. MΘ is of
course non-empty and convex. For a sequence µn ∗

⇀ µ inM(Ω×S1) and for each ψ ∈ C0(Ω×S1)
with ψ ≥ 0 it holds that ∫

Ω×S1
ψ dµ = lim

n→∞

∫
Ω×S1

ψ dµn ≥ 0

since each µn is positive, which establishes that µ is a positive measure. The weak* convergence

23

further implies convergence of the integrals∫
Ω×S1

∇ϕ(x) · ν dµ(x, ν) = lim
n→∞

∫
Ω×S1

ϕ(x) · ν dµn(x, ν) = 0.

for each ϕ ∈ C∞c . Consequently MΘ is weak*-closed.

Theorem 3.26. Let G : M(Ω) → [0,∞] be weak* lower semi-continuous and convex. Then,
for each α > 0 and β > 0 there exists a solution µ∗ of the variational problem

inf
µ∈MΘ

α ‖µ‖M + βTρ(µ) +G(
∫
S1

dµ).

Proof. The proof is an application of the direct method. If the objective function F (µ) =
α ‖µ‖M+βTρ(µ) +G(

∫
S1 dµ) is constant ∞ then statement is trivial. Hence we assume that F

is finite for at least one µ ∈MΘ. Since ‖µ‖M , Tρ(µ) and G(µ) are all non-negative F is bounded
below. Hence there exists a minimizing sequence (µn) with F (µn) → infµ∈MΘ F (µ) > −∞.
Without loss of generality we assume that (F (µn)) is finite for every n ≥ 1 and monotonically
decreasing. Thus (µn) is bounded, as

‖µn‖M ≤ α
−1(α ‖µn‖M + βTρ(µn) +G(

∫
S1

dµn)
)
≤ α−1F (µ1) <∞.

Consequently there exists a subsequence (µnk) and a µ∗ ∈M(Ω× S1) with µnk ∗⇀ µ∗ and from
Proposition 3.25 it follows that µ∗ ∈ MΘ, since MΘ is weak* sequentially closed. Moreover,
since ‖µ‖M, Tρ(µ) and G are sequentially weak* lower semi-continuous we can conclude

F (µ∗) ≤ lim inf
n→∞

F (µn),

implying that µ∗ is a minimizer.

Because of the similarity to the initial definition of functionals TVX0 and TVX1 we use the
following naming convention.

Notation 3.27. Using the notation from Theorem 3.26 we refer to the problem

inf
µ∈MΘ

α ‖µ‖M + β

2 ‖∇ν µ‖+G(
∫
S1

dµ)

as TVX0 regularization of G and

inf
µ∈MΘ

sup
ψ∈C∞c (Ω×S1)∫

S1 ψ dν=0
‖∂νψ‖∞≤1

α ‖µ‖+ β〈∇ν µ, ψ〉+G(
∫
S1

dµ)

as TVX1 regularization of G.

As data fidelity measures on M(Ω) we will use the Wasserstein-1 and the H−1 metrics as
introduced in the first chapter.

24

Remark 3.28. Another intention for this example is to study the quality of this type of noise
removal in a two-dimensional setting as it could possibly be applied in biological cell tracking in
a video sequence.

Figure 3.11: Illustration of a video sequence of cells. In the first three frames a cell moves around
and then divides itself into two moving daughter cells.

A video sequence can be viewed as a three dimensional image where the third dimension corre-
sponds to time, i.e. informally speaking a discrete three-dimensional image can be obtained by
stacking the frames one above the other. When applying this to video frames with moving cells
as illustrated in Figure 3.11 we obtain three-dimensional paths on which the cells travel. When a
cell divides itself the volume (density) of the cell is distributed to a set of new paths originating
at the point (x, t) ∈ Ω× R+ on which the cell divided itself.

Figure 3.12: Video of moving cells as three-dimensional image. At infinite frame rate each cell
then moves on a continuous path until the cell divides itself. The points along the
paths correspond to discrete locations as in Figure 3.11.

In this sense this thesis considers one-dimensional cell tracking, where each cell

• has an initial width (density),

• can move left and right,

• can divide itself into new cells that in sum have the same width (density) as the cell itself.

In this scenario it is of special interest that the regularization is able to recover missing parts of
the cells’ path and hence in a sense serves as interpolation.

The generalization of the curvature regularization framework to three-dimensional images is
an active field of research, and this thesis will only cover two-dimensional cases.

25

4 Discretization via Line Measures

The authors of the article ”Convex relaxation of a class of vertex penalizing functionals” [7]
proposed a discretization for the two functionals TVX0 and TVX1 based on a non-local finite
differences scheme, which treats the lifted quantity µ ∈M(Ω× S1) as a differentiable function.
Note that this is not an accurate representation as we expect µ to be composed of line measures
with support only on one-dimensional subsets in Ω× S1.

This thesis will discuss a new discretization that has been modeled based on representing µ
by line measures. The space of directions S1 will be discretized into K distinct orientations that
directly connect nodes in a discrete grid in Ω. Hence we will not require any interpolation
between nodal values, which is one of the disadvantages of the initial approach because it
introduces dissipation and prevents measures from concentrating on one-dimensional lines.

First we will introduce the discrete operators, conditions and energies, and then present two
methods of numerically computing them. One approach utilizes the first-order primal-dual
algorithm from [9], and the other employs standard linear or quadratic programming.

4.1 Discrete setting

During the entire section we consider Ω =
(
0,Mh

)
×
(
0, Nh

)
to be an open rectangular region

that is discretized on a covering, regular Cartesian grid

Ω̄h ={(ih, jh) | 0 ≤ i ≤M, 0 ≤ j ≤ N}

where M denotes the height, N the width of a discrete image and h the size of a discrete pixel.
The grid points are denoted by xij = (ih, jh) for (i, j) ∈ Ω̄1, where Ω̄1 is simply the set of all
indices belonging to grid points inside Ω̄h, a notation we will frequently use.

Moreover we consider the space of piecewise constant images

Uh =
{
U : Ω→ R

∣∣∣ U ∣∣(ih,ih+h)×(jh,jh+h) = const , for all 0 ≤ i ≤M − 1, 0 ≤ j ≤ N − 1
}
,

referred to as the space of discrete pixel images and for any image u : Ω → R we set U :
Ωh → R ∈ Uh to the L2 projection of u onto the set Uh. To discretize the lifted quantities
µ ∈M(Ω× S1) we will consider weak-* approximations.
As indicated in the introduction we expect µ to be composed of line measures with support only
on one-dimensional subsets in Ω×S1. Hence we will provide a new method that, different from
the one proposed in [7], will not treat µ as a differentiable functional.

26

From the set of feasible directions on the unit Cartesian grid

{(ν1, ν2) ∈ Z× Z | gcd(ν1, ν2) = 1}

we select K distinct directions ν∗k and rescale them to be consistent to our grid with scaling h,
i.e. νk = hν∗k . This choice ensures that all νk are perfectly aligned to the grid, and that we do
not select positive multiples of the same direction.

Figure 4.1: In all computations we used the illustrated choice of directions, where for K = 4 we
selected the orientations indicated by the red arrows, for K = 8 by the red and green
arrows and for K = 16 additionally by the blue arrows. Occasionally the number of
discrete orientations will be set to K = 32 utilizing all indicated arrows.

The lifted quantity µ will then be discretized on a regular grid

Ω̄h × S1
K =

{
(ih, jh, θk)

∣∣∣ (i, j) ∈ Ω̄1, 1 ≤ k ≤ K
}

where θk ∈ [0, 2π) is the angle associated with discrete direction νk. At every node of the discrete
image grid Ω̄h we consider K line measure segments with orientations νk connecting node xij
with nodes xij + νk. Using this representation we approximate measures µ ∈ M(Ω × S1) by
discrete versions

∑
(i,j)∈Ω̄1

K∑
k=1

akijµijk (4.1)

where akij ≥ 0 and µijk are the line measure segments with orientation νk and density 1 at node
xij ∈ Ω̄h, i.e. measures defined by∫

Ω×S1
ϕ(x, ν) dµijk(x, ν) =

∫
{ckij}

ϕ(x, νk
|νk|

) dH1(x) ∀ϕ ∈ Cc(Ω× S1,R)

with {ckij} = {xij + tνk | t ∈ [0, 1]} denoting the line segment between nodes xij and xij + νk.
As segments {ckij} can naturally be parameterized by t 7→ xij + t νk|νk| the line integral resolves to

∫
{ckij}

ϕ(x, νk
|νk|

) dH1(x) =
∫ |νk|

0
ϕ(xij + t

νk
|νk|

,
νk
|νk|

) dt.

Remark 4.1. To keep notation concise we identify nodes in Ω̄h × S1
K by (xij , νk), i.e. by the

direction νk rather than the associated angle θk.
Further notice that in general grid points along the vertical axes are not equally spaced as the

discrete directions νk are not required to be uniformly distributed on the unit circle. The spacing

27

between node (xij , νk1) and (xij , νk2) can be computed via the geodesic metric ρ1, i.e.

dist
(
(xij , νk1), (xij , νk2)

)
= ρ1(νk1 , νk2).

Figure 4.2: The lower grid displays the standard cell-centered discretization of the pixel image.
The discrete lifted quantity however is stored node-centered as it is computed between
cells of the image. Further notice that for any illustration we will use the top-left
corner as origin of the grid, as this is consistent with the matrix ordering. Moreover
the two grids do not share the same size.

Observe that images and the lifted quantities are discretized on grids with different numbers
of nodes. While a discrete image is defined in RM×N , lifted measures are defined through
coefficients in R(M+1)×(N+1)×K . Because it is used very frequently we will apply the following
shorthand

M̄ = M + 1, N̄ = N + 1

which follows the notion that we cover Ω̄ with M̄N̄ points xij .

4.1.1 Discrete compatibility condition

First we need an approximation of the image gradient ∇u. As the discrete image U only provides
constant values inside each cell, the best available approximation of first-order derivatives is
based on a first-order finite differences reconstruction. For every i, j ∈ N0 consider the following
two hat functions:

ϕ1
ij(x) = 1

h31 (ih−h,ih+h)
×(jh,jh+h)

(x)
(
h− |x1 − ih|

0

)
,

ϕ2
ij(x) = 1

h31 (ih,ih+h)
×(jh−h,jh+h)

(x)
(

0
h− |x2 − jh|

)
.

(a) ϕ1
ij (b) ϕ2

ij

Figure 4.3: Test functions ϕ1,2
ij . In both images the red circle indicates the cell (ih, ih + h) ×

(jh, jh+ h) and the blue cube the associated node (ih, jh).

28

Inserting ϕ1
ij into the compatibility condition (3.2) yields, for 1 ≤ m ≤M−1 and 0 ≤ n ≤ N−1

∫
Ω
∇u · ϕ1

ij dx = 1
h3

∫
[ih−h,ih+h]
×[jh,jh+h]

∂u

∂x1
(h− |x1 − ih|) dx

= 1
h3

∫
[ih−h,ih]
×[jh,jh+h]

∂u

∂x1
(h+ x1 − ih) dx+ 1

h3

∫
[ih,ih+h]
×[jh,jh+h]

∂u

∂x1
(h− x1 + ih) dx

= 1
h

(1
h2

∫
[ih,ih+h]
×[jh,jh+h]

udx− 1
h2

∫
[ih−h,ih]
×[jh,jh+h]

udx
)

= Uij − Ui−1,j
h

,

where Uij by definition corresponds to the pixel value of pixel (i, j). Through the same argument
we conclude that

∫
Ω∇u · ϕ2

ij dx = Uij−Ui,j−1
h for 0 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1. Therefore the

first part of the condition reduces to a simple forward difference quotient with between pixel
values with Neumann boundary conditions.

For the second part we insert the discrete form of µ (4.1) into the compatibility condition and
test against hat-functions ϕ1,2

ij , yielding

∫
Ω×S1

ϕ1,2
ij (x) · ν⊥ dµ ≈

∑
(m,n)∈Ω̄1

K∑
k=1

akmn

∫
Ω×S1

ϕ1,2
ij · ν

⊥ dµijk

=
∑

(m,n)∈Ω̄1

K∑
k=1

akmn

∫
{ckmn}

ϕ1,2
ij ·

ν⊥k
|νk|

dH1(x).

Because the sets {ckmn} are only simple line segments and ϕ1,2
ij has support on open rectangular

regions this expression can easily be computed through one of the following cases:

1. The direction νk of the line segment is oriented normal to the level sets of ϕ1,2
ij .

(i) νk,1 = 0 ⇒
∫
{ckmn} ϕ

2
ij · ν⊥k dH1(x) = 0,

(ii) νk,2 = 0 ⇒
∫
{ckmn} ϕ

1
ij · ν⊥k dH1(x) = 0.

2. The line segment {ckmn} does not have an intersection with the support of ϕ1,2
ij .

(iii) {ckmn} ∩ (ih− h, ih+ h)× (jh, jh+ h) = ∅ ⇒
∫
{ckmn} ϕ

1
ij · ν⊥k dH1(x) = 0,

(iv) {ckmn} ∩ (ih, ih+ h)× (jh− h, jh+ h) = ∅ ⇒
∫
{ckmn} ϕ

2
ij · ν⊥k dH1(x) = 0.

3. The line segment {ckmn} has an intersection with the support of ϕ1,2
ij , then the intersection

itself again is a line segment and the integral evaluations to a non-zero coefficient.

In the last case the integration breaks down to computing the intersection points of the line
segment with the rectangular support of ϕ1,2

ij , and then integrating a polynomial of degree
1. This can easily be precomputed by hand, or using symbolic integration on a computer, as
we did. The most important aspect, however, is that in light of the first two observations the
compatibility condition becomes sparse. Figure 4.4 exemplary shows a list of precomputed values

29

for ϕ1
ij and K = 16. As ϕ2

ij can be obtained by clockwise rotation, the corresponding coefficients
are essentially the same, except for a negative sign due to the definition of the rotation operator.

Figure 4.4: Precomputed offsets and coefficients used in compatibility condition for a test function
ϕ1
ij. The red circle indicates a node (ih, jh), and the blue rectangle the support of

the test function. For every discrete orientation νk all nodes are marked where the
integration in the compatibility-condition is non-zero. Notice, that the pixel spacing
has been set to h = 1.

Combining the previous statements we obtain the discrete compatibility condition

∑
(m,n)∈Ω̄1

K∑
k=1

akmn

∫
{ckmn}

ϕ1
ij ·

ν⊥k
|νk|

dH1(x) = Uij − Ui−1,j
h

, (4.2)

∑
(m,n)∈Ω̄1

K∑
k=1

akmn

∫
{ckmn}

ϕ2
ij ·

ν⊥k
|νk|

dH1(x) = Uij − Ui,j−1
h

, (4.3)

where due to boundary conditions

• (4.2) must be satisfied for 1 ≤ i ≤M − 1 and 0 ≤ j ≤ N − 1,

• (4.3) must be satisfied for 0 ≤ i ≤M − 1 and 1 ≤ j ≤ N − 1.

4.1.2 Discrete directional derivative

The next important step is the discretization of the directional derivate ∇ν µ. To compute this
we consider a continuous function ϕ ∈

{
f ∈ C0(Ω× S1,R)

∣∣ ∇x f ∈ C0(Ω× S1,R2)
}

and test µ
against (x, ν) 7→ ∇x ϕ(x, ν) · ν. Then for each line measure µijk we have∫

Ω×S1
∇x ϕ(x, ν) · ν dµijk =

∫
{ckij}
∇x ϕ(x, νk

|νk|
) · νk
|νk|

dx

=
∫ |νk|

0

∂

∂t
ϕ(xij + t

νk
|νk|

,
νk
|νk|

) dt

=ϕkij+ν∗
k
− ϕkij ,

30

where ϕkij = ϕ(xij , νk|νk|) and ϕkij+ν∗
k

= 0 if (i, j) + ν∗k /∈ Ω̄1 due to ϕ being in Cc(Ω × S1). With
this representation the discrete form of ∇ν µ is computed as follows

−〈∇ν µ, ϕ〉 =
∫

Ω×S1
∇x ϕ(x, ν) · ν dµ ≈

∑
(i,j)∈Ω̄1

K∑
k=1

akij

∫
Ω×S1

∇x ϕ(x, νk
|νk|

) · νk dµijk

=
∑

(i,j)∈Ω̄1

K∑
k=1

akij(ϕkij+ν∗
k
− ϕkij)

=
K∑
k=1

∑
(i,j)∈Ω̄1

(i,j)−ν∗k∈Ω̄1

ϕkija
k
ij−ν∗

k
−

K∑
k=1

∑
(i,j)∈Ω̄1

ϕkija
k
ij , (4.4)

where akij−ν∗
k

denotes the linear coefficient at line measure µi−ν∗
k,1,j−ν

∗
k,2,k

. The weight akij−ν∗
k

then belongs to the incoming, and akij to the outgoing line measure segment at node xij with
orientation νk.

Figure 4.5: Illustration of flows for the directional derivative ∇ν µ for K =
4. The red circles indicate outgoing flow, the green circles
incoming flow. As line measures for different νk are lifted
to varying heights every node has only one incoming and one
outgoing flow.

4.1.3 Discrete partial derivative in label direction

To implement TVX1 we additionally need to deal with the constrained optimization problem

sup
ϕ∈C∞c (Ω×S1)∫
S1 ϕ(x,ν) dν=0
‖∂νϕ‖∞≤1

〈∇ν µ, ϕ〉.

Using (4.4) the expression evaluates to

sup
ϕ∈C∞c (Ω×S1)∫
S1 ϕ(x,ν) dν=0
‖∂νϕ‖∞≤1

K∑
k=1

∑
(i,j)∈Ω̄1

(i,j)−ν∗k∈Ω̄1

ϕkija
k
ij−ν∗

k
−

K∑
k=1

∑
(i,j)∈Ω̄1

ϕkija
k
ij

where ϕkij = ϕ(xij , νk|νk|) is only evaluated at discrete point values. Therefore the constraints may
be reformulated as

sup∑K

k=1 ϕ
k
ij=0

|ϕkij−ϕk−1
ij |≤ρ1(νk,νk−1)

K∑
k=1

∑
(i,j)∈Ω̄1

(i,j)−ν∗k∈Ω̄1

ϕkija
k
ij−ν∗

k
−

K∑
k=1

∑
(i,j)∈Ω̄1

ϕkija
k
ij (4.5)

with ρ1 denoting the geodesic distance in S1 and periodic boundary conditions, i.e. ν0 = νK and
ϕ0
ij = ϕKij .

31

4.1.4 Discrete flow balancing condition

In the specialized noise removal the compatibility condition is replaced by flow-balancing con-
dition (3.5). For every line measure µijk and ϕ ∈ C∞0 (Ω) we have as usual

∫
Ω×S1

∇ϕ(x) · ν dµijk =
∫
{ckij}
∇ϕ(x) · νk

|νk|
dH1(x) =

∫ |νk|
0

∂

∂t
ϕ(x+ t

νk
|νk|

) dt = ϕij+νk − ϕij

where ϕij = ϕ(xij) and ϕij+ν∗
k

= 0 whenever (i, j) + ν∗k /∈ Ω̄1. Hence

∫
Ω×S1

∇ϕ(x) · ν dµ(x, ν) ≈
∑

(i,j)∈Ω1

K∑
k=1

akij

∫
{ckij}
∇ϕ(x) · νk

|νk|
dH1(x)

=
∑

(i,j)∈Ω1

K∑
k=1

akij(ϕij+νk − ϕij)

=
∑

(i,j)∈Ω1

ϕij

K∑
k=1

(akij−ν∗
k
− akij) = 0 for all ϕ ∈ C∞0

with akij−ν∗
k

= 0 whenever (i, j)− ν∗k /∈ Ω1, which is satisfied if

∑
1≤k≤K

(i,j)−ν∗k∈Ω̄1

akij−ν∗
k
−

K∑
k=1

akij = 0 for all (i, j) ∈ Ω̄1 (4.6)

Figure 4.6: Flow-balancing
condition for one node (i,j)
and K = 8 outgoing and in-
coming line measures.

The last equation illustrates the name flow-balancing condition,
since it ensures that at every node (i, j) the total incoming mass
and total outgoing mass of the connected line measures are in
equilibrium. Notice that, depending on the directions νk, we
possibly introduce a small numerical error at the boundary, since
the node for the incoming measure might not be discretized.

4.1.5 Discrete projection

We also need a discrete projection that maps a measure µ ∈ M(Ω × S1) to a two-dimensional
measure πµ ∈M(Ω),

πµ =
∫
S1

dµ.

The projection should be properly aligned to the discrete image grid, therefore we have to
distribute the point mass stored at cell nodes to the correct cells. In case of vertical or horizontal
directions, we split the mass equally to the cells normal to the direction, and in any other case
the mass is distributed equally to all cells through which the direction passes.

Figure 4.7: Distribution of mass along the different directions νk.

32

We define Iij as the set of nodes

Iij =
{

(m,n, k)
∣∣∣ H1({ckmn} ∩ [ih, ih+ h]× [jh, jh+ h]) > 0

}
for which the line measures µmnk pass through cell (i, j). For every feasible discrete direction νk
the mass is distributed equally to the adjacent cells, therefore we compute weights ωk according
to

ωk = 1
l+k

min
(
1,max(l−k ,

1
2)
)

with l+k = max(|ν∗k,1|, |ν∗k,2|), l
−
k = min(|ν∗k,1|, |ν∗k,2|). The discrete projection is then defined as

(πµ)ij =
∑

(m,n)∈Ω̄1

K∑
k=1

akm,nωk1Iij (m,n, k). (4.7)

4.2 Matrix representation of discrete operators

All discrete operators defined in the previous section can be formulated in terms of sparse
matrices. In order to use standard matrix algebra we implicitly reshape the discrete image into
a vector in RMN . In the same way the linear coefficients a ∈ RM̄×N̄×K of the discrete lifted
measure are implicitly reshaped into a vector in RM̄N̄K . But to keep notation simple we use the
same symbols interchangeably.

Remark 4.2. In our computations we always used a linear indexing scheme based on concate-
nating all columns of the image matrix into one long column vector.

Example 4.3. The matrix indices of a discrete image U ∈ R3×4 are linearized as follows:

U =


1 u11 4 u12 7 u13 10 u14

2 u21 5 u22 8 u23 11 u24

3 u31 6 u32 9 u33 12 u34

 .
In the same way the indices of a ∈ R3×4×3 are linearized by concatenating the matrices for each
k into one matrix and then using the same linear indexing scheme as with the image U .

Figure 4.8: Linearized indexing scheme for three-dimensional coefficients.

We will use the same naming convention for the matrix operators as was introduced in the
original article [7], as most of the results still apply with minor changes. Analogous to the
previous section we begin with the discrete compatibility condition.

33

Let A ∈ R2MN×MN be the forward difference operator defined by

(A1u)ij =


uij−ui−1,j

h if 1 ≤ i ≤M − 1, 0 ≤ j ≤ N − 1,

0 otherwise,

(A2u)ij =


uij−ui,j−1

h if 0 ≤ i ≤M − 1, 1 ≤ j ≤ N − 1,

0 otherwise.
(4.8)

Further denoted by D ∈ R2MN×M̄N̄K is the operator implementing (4.2)

(D1a)ij =


∑

(m,n)∈Ω1

K∑
k=1

akmn
1
|νk|

∫
{ckmn}

ϕ1
ij · ν⊥k dH1(x) if 1 ≤ i ≤M − 1, 0 ≤ j ≤ N − 1,

0 otherwise,

(D2a)ij =


∑

(m,n)∈Ω1

K∑
k=1

akmn
1
|νk|

∫
{ckmn}

ϕ2
ij · ν⊥k dH1(x) if 0 ≤ i ≤M − 1, 1 ≤ j ≤ N − 1,

0 otherwise.

Notice again that, even though the large summation might suggest otherwise, D is sparse, and
that all coefficients 1

|νk|
∫
{ckmn} ϕ

1,2
ij · ν⊥k dH1(x) are fully determined.

Figure 4.9: Sparse pattern of D for K = 8 directions. The four empty block matrices correspond
the directions normal to level sets of ϕ1

ij and ϕ2
ij respectively.

Next let B ∈ RM̄N̄K×M̄N̄K be the operator that implements the discrete directional derivative
∇ν µ according to (4.4)

(Ba)ijk =

a
k
ij − akij−ν∗

k
if (i, j)− ν∗k ∈ Ω̄1,

akij otherwise.

Denoted by C ∈ RM̄N̄K×M̄N̄K is the operator that computes the partial derivative ∂ν according
to (4.5)

(Cϕ)ijk = (ϕijk − ϕij,k−1)ρ1(νk, νk−1)−1

utilizing periodic boundary conditions, i.e. ν0 = νK and ϕij0 = ϕijK . As before ρ1 : S1×S1 → R
denotes the geodesic metric.

Moreover denoted by P ∈ RMN×M̄N̄K is the projection operator (4.7)

(Pa)ij =
∑

(m,n)∈Ω̄1

K∑
k=1

akm,nωk1Iij (m,n, k) .

Notice that we project the measure onto the slightly smaller grid of pixel images.

34

Finally denoted by F ∈ RM̄N̄×M̄N̄K is the operator implementing the flow-balancing condition
(4.6)

(Fa)ij =
∑

1≤k≤K
(i,j)−ν∗k∈Ω̄1

akij−ν∗
k
−

K∑
k=1

akij .

4.3 Discrete formulations for TVX

The last section showed that all operators required to discretize the proposed regularization
framework are linear operators, and therefore a wide range of algorithms is applicable to nu-
merically solve problems of the form 3.24.

In the following we will first make use of the primal-dual algorithm that was also discussed
in the original article, and secondly introduce a standard linear programming approach. The
two methods require the optimization problem to be posed in a specific form, which we will now
formulate using the discrete operators from the previous section.

The following will show that functionals TVX0 and TVX1 can be written as linear optimization
problems. Since linear programming is a special case of quadratic programming we will later
generalize the formulation to allow a larger class of data terms, such as the removal of Gaussian
noise based on an `2 data term.

4.3.1 Discrete TVX0

The functional TVX0 is defined as

inf
µ∈M(Ω×S1)
(u,µ)∈M∇

α ‖µ‖M + β

2 ‖∇ν µ‖M .

In its discrete form the constraint M∇ is defined as

M∇ =
{

(u, a)
∣∣∣ akij ≥ 0, Au = Da

}
.

To apply the primal-dual algorithm from [9] we need a saddle-point formulation. Therefore we
introduce Lagrange multipliers ϕ ∈ R2MN for the linear constraint Au = Da, which yields the
desired form:

min
u,a

max
ψ,ϕ

α
∑
ijk

akij |νk|+ β〈Ba, ψ〉+ 〈Au−Da,ϕ〉

subject to akij ≥ 0,

|ψijk| ≤ 1
2 .

(4.9)

35

To apply linear programming we need a pure minimization formulation with a linear objective
function and linear constraints. We consider the (not yet linear) minimization problem

min
u,a

α
∑
ijk

akij |νk|+
β

2 ‖Ba‖1

subject to a ≥ 0,

Au = Da.

(4.10)

This is of course not the final form, since the objective is still non-linear due to the 1-norm. The
next section will show multiple ways for transforming the above problem into a linear program.
Since that choice has shown to have a strong impact on the numerical computations and highly
depends on the solver, we decided to leave it open at this point.

4.3.2 Discrete TVX1

The functional TVX1 is defined as

inf
µ∈M(Ω×S1)

(u,µ)∈M∇

sup
ψ∈C∞c (Ω×S1)∫
S1 ψ(x,ν) dν=0
‖∂νψ‖∞≤1

α ‖µ‖M + β〈∇ν µ, ψ〉.

Of course, just like for TVX0, the discrete set M∇ is defined as

M∇ =
{

(u, a)
∣∣∣ akij ≥ 0, Au = Da

}
.

We again introduce a set of Lagrange multipliers ϕ ∈ R2MN to account for constraint Au = Da.
Further we introduce an auxiliary variable ζ ∈ RM̄N̄K and another set of Lagrange multipliers
v ∈ RM̄N̄K to handle the constrained optimization (4.5). Then the saddle-point formulation is:

min
u,a,v

max
ψ,ϕ,ζ

α
∑
ijk

akij |νk|+ β〈Ba, ψ〉+ 〈Au−Da,ϕ〉+ 〈Cψ − ζ, v〉

subject to akij ≥ 0,∑
k

ψijk = 0,

|ψijk| ≤ 1.

(4.11)

To apply linear programming the system needs to be reformulated as minimization problem. As
previously noted the constraint

∫
S1 ψ(x, ν) dν = 0 is optional and serves to increase the numerical

stability by reducing the space of allowed test functions. While this has proven to be true for
the first-order primal-dual algorithm our tests have shown that the constraint is unnecessary for
linear or quadratic programming, and in many cases reduces the rate of convergence. Hence we
will drop it here. To rewrite TVX1 as a minimization problem we can apply proposition 2.26 to

36

the constrained maximization problem (4.5)

sup
ψ∈C∞c (Ω×S1)
‖∂νψ‖∞≤1

〈∇ν µ, ψ〉 = sup
ψ∈RM̄N̄K

‖Cψ‖∞≤1

(Ba) · ψ = min
ψ∈RM̄N̄K

CTψ+Ba=0

‖ψ‖1 .

Hence with auxiliary variable p ∈ RM̄N̄K the functional TVX1 can be reformulated as the
following (not yet linear) minimization problem

min
u,a,s,p

α
∑
ijk

akij |νk|+ β ‖p‖1

subject to akij ≥ 0,

Au = Da,

CT p+Ba = 0.

(4.12)

Again as with TVX0 we did not replace the 1-norm at this point, and thus the formulation is not
yet a linear program. This step will be done in the next section, acknowledging that the choice
of an equivalent formulation potentially has a strong impact on the numerical computations.

37

5 Numerical algorithms

With the saddle-point and the minimization formulations available we can utilize different nu-
merical algorithms to compute image problems regularized by TVX0 or TVX1 as in Theo-
rem 3.24. First we will provide exact formulations for the primal-dual algorithm and then for a
linear programming approach.

5.1 Primal-Dual algorithm

The first-order primal-dual algorithm from [9] can solve minimization problems with known
saddle-point structure of the form

min
x∈X

max
y∈Y
〈Kx, y〉+ G(x)−F∗(y)

where X and Y are finite-dimensional vector spaces, K is a linear operator and G and F∗ are
proper, convex, and lower-semi-continuous functions. We will use the same method as described
in [7], which utilizes diagonal preconditioning and an additional overrelaxation step that has
been shown to speed up convergence, see [11].

For a linear operator K ∈ Rm×n the diagonal preconditioning matrices T ∈ Rn×n, S ∈ Rm×m

are defined by

Tbb =
(m∑
a=1
|Kab|

)−1
, Saa =

(n∑
b=1
|Kab|

)−1
. (5.1)

To utilize this algorithm it is important that the proximity operators of G and F∗ have closed-
form solutions that can be computed efficiently. This is the case for many standard image
problems, as the examples will show. The algorithm is defined as follows.

38

Algorithm 1 Primal-Dual Algorithm
Input: Linear operator K

Preconditioning matrices T ,S according to (5.1)
Proximity maps proxT ,G ,proxS,F∗
Overrelaxation parameter γ ∈ [0, 1)

1: x0 = 0, y0 = 0 . Initialization
2: repeat
3: xl+

1/2 = proxT ,G(xl − T KT yl)
4: yl+

1/2 = proxS,F∗(yl + SK(2xl+1/2 − xl))
5: (xl+1, yl+1) = (xl+1/2, yl+

1/2) + γ(xl+1/2 − xl, y1+1/2 − yl)
6: until Termination criterion satisfied

The proximity operators are defined by

proxT ,G(x̂) = argmin
x

1
2
〈
T −1(x− x̂), x− x̂

〉
+ G(x),

proxS,F∗(ŷ) = argmin
y

1
2
〈
S−1(y − ŷ), y − ŷ

〉
+ F∗(y).

To apply the algorithm all that is left is to specify the operator K and the proximity maps
proxT ,G and proxS,F∗ . Using the saddle-point formulation from the previous section this task
is straightforward. As first termination criterion we check if an error estimator dropped below
a prescribed threshold, and additionally limit the maximum number of iterations. We use a
standard root-mean-squared (RMS) error estimator, separately for the primal and the dual
variable

errp(l) = ‖x
l − xl−1‖2√

n
, errd(l) = ‖y

l − yl−1‖2√
m

and the following termination criterion

crit1(l) =
(
errp(l) < tol1

)
∧
(
errd(l) < tol2

)
∧
(
l ≤ lmax

)
(5.2)

where lmax is set to a very high number and only serves to limit the runtime.
As a second criterion we additionally measure the primal and dual feasibility root-mean-

squared error. Essentially when transforming a constrained optimization problem into the stan-
dard form of the primal-dual algorithm there are two types of constraints. The first one are
simple constraints for which projecting onto the associated set of feasible points is simple and
explicit. These constraints will always be satisfied after each iteration. The second type of
constraints is usually expressed by introducing Lagrange multipliers. For these constraints we
can measure the (root-mean-squared) primal and dual feasibility error by

errpf(l) =

√
‖Epxl‖22

n
, errdf(l) =

√
‖Edyl‖22
m

where the matrix Ep contains all primal, and Ed all dual constraints of the second type. As

39

alternative criterion we then use

crit2(l) = crit1(l) ∧
(
errpf(l) < tol3

)
∧
(
errdf(l) < tol4

)
(5.3)

which, aside from estimating the optimality of the solution based on the convergence speed, in
a sense permits control over the quality of the solution.

5.1.1 TVX0-PD

Casting TVX0 from (4.9) into the standard form of the primal-dual algorithm requires only a
few steps. With

m = M̄N̄K + 2MN, n = M̄N̄K +MN

we set x = (a, u) ∈ Rn, y = (ψ,ϕ) ∈ Rm and obtain G and F∗ as

G(x) = α
∑
ijk

akij |νk|+ 1∞[0,∞)MNK (a) +G(u),

F∗(y) = 1∞[− 1
2 ,

1
2]MNK (ψ).

The linear operator K ∈ Rm×n is then defined as

K =
(
βB 0
−D A

)
.

The associated proximal maps are

x = proxT ,G(x̂)⇐⇒ akij = max(0, âkij − αT aijk |νk|)

u = proxT u,G

y = proxS,F∗(ŷ)⇐⇒ ψijk = max(−1
2 ,min(1

2 , ψ̂ijk))

ϕijk = ϕ̂ijk.

where with T u and T a we mean the sub-matrix of T that corresponds to u or a respectively.
The proximity operator proxT u,G depends on the data term of the specific image problem.

The matrix associated with measuring the primal-feasibility error is defined as

Ep =
(
−D A

)
and no explicit dual constrains are required.

40

5.1.2 TVX1-PD

To rewrite TVX1 in the standard form of the primal-dual algorithm we define in analogy to the
previous section

m = 2M̄N̄K + 2MN, n = 2M̄N̄K +MN

and set x = (a, v, u) ∈ Rn, y = (ψ, ζ, ϕ) ∈ Rm. From (4.11) the objective functions follow as

G(x) = α
∑
ijk

akij |νk|+ 1∞[0,∞)MNK (a) +G(u),

F∗(y) = 1∞{
ψ̂ |
∑

k
ψ̂ijk=0

}(ψ) + 1∞[−1,1]MNK (ζ)

and the linear operator K ∈ Rm×n as

K =


βB CT 0
0 − Id 0
−D 0 A


where Id ∈ RM̄N̄K×M̄N̄K denotes the identity matrix. The associated proximal maps are

x = proxT ,G(x̂)⇐⇒ akij = max(0, âkij − αT aijk |νk|),

vijk = v̂ijk,

u = proxT u,G(u),

y = proxS,F∗(ŷ),⇐⇒ ψijk = ψ̂ijk −
1
K

∑
k

ψ̂ijk

ζijk = max(−1,min(1, ζ̂ijk)),

ϕijk = ϕ̂ijk,

where as before T u and T a denote the sub-matrix of the preconditioning matrix T that belongs
to u or a respectively. And again proxT u,G depends on the specific data term G(u).

The matrices associated with measuring the primal and dual feasibility error from the Lagrange
constraints are defined as

Ep =
(
−D 0 A

)
, Ed =

(
C − Id 0

)
.

41

5.2 Linear programming

In the following we will utilize the minimization formulations of TVX0 and TVX1 to rewrite op-
timization problem (3.24) as a linear program (LP), i.e. a minimization problem of the standard
form

min
x

1
2c

Tx

subject to Aeqx = beq,

Aiqx ≤ biq,

where c ∈ Rn, Aeq ∈ Rp×n together with beq ∈ Rp define the equality constraints and Aiq ∈ Rq×n

with biq ∈ Rq the (component-wise) inequality constraints.
Of course this is only possible for linear data terms, which is why we add the requirement

that the discrete data term G can be equivalently written in terms of a linear function

w 7→ (cG)Tw

and constraints

AGeqw = bGeq, AGiqw ≤ bGiq,

where w = (v, u)T ∈ RV+MN is a vector containing a set of (optional) auxiliary variables v and
the image u, and cG ∈ RV+MN the linear coefficients for the objective function.

5.2.1 Generalization for quadratic data terms

Many of the example regularization problems from Section 3.7 provide non-linear data terms
and hence the linear programming formulation is not sufficient. While many generalizations of
an LP are available it is sufficient to consider convex quadratic programming (QP) to cover all
example problems. The standard form of a QP is the minimization problem

min
x

1
2x

TQx+ c · x

subject to Aeqx = beq

Aiqx ≤ biq

where Q ∈ Rn×n is positive semidefinite and symmetric, and as with the LP formulation c ∈ Rn,
Aeq ∈ Rp×n together with beq ∈ Rp define the equality constraints and Aiq ∈ Rq×n with biq ∈
Rq the (component-wise) inequality constraints. Strictly speaking the requirement of Q being
positive semidefinite is unnecessary, but it ensures convexity of the problem.

Using this extension any image-problem of the form (3.24) can be solved if the discrete data

42

term G can be equivalently written in terms of a quadratic function

w 7→ 1
2w

TQGw + cG · w

and constraints

AGeqw = bGeq,

AGiqw ≤ bGiq

where with n = V +MN

• w = (v, u)T ∈ Rn is a vector containing a set of (optional) auxiliary variables v and the
image u,

• QG ∈ Rn×n is a positive semidefinite and symmetric matrix,

• cG ∈ Rn the linear coefficients for the objective functions.

To generalize optimization problems TVX0-LP and TVX1-LP from the previous section to
accept a quadratic data-term all we have to do is to define the matrix Q ∈ Rn×n as

Q =
(

0 0
0 QG

)
.

These modified functionals are then called TVX0-QP and TVX1-QP respectively.

5.2.2 Transformation of norm minimization problems

During the numerical implementation it became apparent that the choosen method for trans-
forming norm minimization problems into linear or quadratic programs had a strong impact
on computation time and memory consumption. While on their own they could be solved in
almost no time, there was a notable difference between the formulations when used in combi-
nation with other constraints and a more complex objective function. This section will present
different choices for the transformation, as no single most efficient variant could be determined
through experiments with different solvers.

For A ∈ Rm×n, b ∈ Rm and p ∈ {1, 2} consider the minimization problem

min
x∈Rn

‖Ax− b‖pp .

If p = 1 then the problem is equivalent to the LP

min
x∈Rn, t∈Rm

m∑
i=1

ti

subject to + (Ax− b) ≤ t,

− (Ax− b) ≤ t.

43

Alternatively, by introducing slack variables this can be transformed to the equivalent problem

min
x∈Rn, t,s∈Rm

m∑
i=1

ti

subject to + (Ax− b)− t+ s = 0,

− (Ax− b) ≤ t,

s ≥ 0,

⇔

min
x∈Rn,s∈Rm

m∑
i=1

(Ax− b)i + si

subject to − 2(Ax− b)− s ≤ 0,

s ≥ 0,

which has half the number of general inequality constraints and a set of simple non-negativity
constraints. The constant −∑m

i=1 bi in the objective can further be omitted.
As expected, if A is sparse with only very few non-zero elements, such as an identity matrix,

there was no significant difference. However with growing complexity the memory requirement
for the first formulation was notably higher. And since memory turned out to be one of the
major bottlenecks during the numerical computations the latter approach was implemented.

For p = 2 we can utilize the following transformations.

min
x∈Rn, s∈Rm

sT s

subject to Ax− b = s

hence the matrix Q ∈ Rn+m×n+m of the quadratic function is a simple sparse block matrix

Q =
(

0 0
0 Idn

)

which is of course positive semidefinite. Another way to restate this problem is

min
x∈Rn

xTATAx− 2xTAT b+ bT b

where bT b is constant and thus can be omitted. Therefore we can rewrite the problem as

min
x∈Rn

xTQx+ 2cTx

with c = −AT b and Q = ATA, which is again positive and semidefinite. Up until rescaling this
coincides with the standard form of a quadratic program. Interestingly in many cases the first
formulation performed notably better in numerical experiments.

If the available solver supports (second-order) cone constraints then exploring the following
might also be of interest. In particular this is the form that was implemented for the examples,
as the more general second-order cone programming outperformed the quadratic programming
by length. This is only a technical restriction on the solver that might be resolved at any time.
Therefore we will not go into too much detail at this point and refer to literature on second-order
cone programming (SOCP) such as [1] or [6]. The standard form of the SOCP in consideration

44

is

min
x

cTx

subject to Aeqx = beq,

Aiqx ≤ biq,

(xi1 , . . . , xini) ∈ Ci for i = 1, . . . , c

(5.4)

where c ∈ N0 is the number of cones, (xi1 , ..., xini) a subsequence of x belonging to cone Ci of
length ni ∈ N. Although this is not the most concise form, as inequality constraints can easily
be written in terms of conic constraints, it ensures compatibility to the LP form whenever c = 0.

Now, first notice that the epigraph of the 2-norm can be written as

epi ‖·‖2 =
{

(x, λ) ∈ Rn+1
∣∣∣ λ ≥ ‖x‖2} =

{
(x, λ) ∈ Rn+1

∣∣∣ λ2 ≥ ‖x‖22 , λ ≥ 0
}

= Cn+1

which is of course convex and is called the quadratic or second-order cone for the Euclidean
norm. Using a linear transformation the cone Cn+2 can be transformed into

Cn+2
r =

{
(x, λ1, λ2) ∈ Rn+2

∣∣∣ 2λ1λ2 ≥ ‖x‖2 , λ1, λ2 ≥ 0
}

see for example [1, Section 2.3]. For x ∈ Rn and t ≥ 0 the squared 2-norm may be described by

‖x‖22 ≤ t⇔ (x, 1
2 , t) ∈ C

n+2
r

and the squared-2 norm minimization problem as SOCP is

min
(x,f,t)∈Rn+m+1

t

subject to Ax− b = f,

(f, 1/2, t) ∈ Cm+2
r .

Remark 5.1. As already pointed out before, choosing the equivalent formulation that performs
best highly depends on the solver being used. This is especially the case for the reformulation
into the more general SOCP, which mathematically speaking, is unnecessary. And while the re-
striction is purely technical, selecting the appropriate formulation determined whether a problem
was computable within a few minutes or a few days at best.

In light of the last section we will also provide implementations for second-order cone pro-
gramming of the standard form (5.4) and name the optimization problems TVX0-CP and
TVX1-CP whenever they are subject to cone constraints.

5.2.3 TVX0-LP

Together with the last section, recasting the minimization formulation (4.10) of TVX0 into the
standard form of a linear program is straightforward. Let n = 2M̄N̄K + V + MN and set

45

x = (a, s, v, u) ∈ Rn. Then the linear objective is determined by c ∈ Rn

c =
(
α(|νk|)ijk + β

2

M̄N̄K∑
i=1

(Bi,1, . . . , Bi,M̄N̄K), β2 1, cG
)

where 1 = (1, . . . , 1) ∈ RM̄N̄K is a vector of ones. The equality constraints are defined by

Aeq =
(
−D 0 0 A

0 0 AGeq

)
, beq =

(
0
bGeq

)

and the inequality constraints by

Aiq =


− Id 0 0

0 − Id 0
−2B − Id 0

0 0 AGiq

 , biq =


0
0
0
bGiq


where Id ∈ RM̄N̄K×M̄N̄K denotes the identity matrix.

5.2.4 TVX1-LP

Using the minimization formulation (4.12) of TVX1 the transformation to a linear program is
similar to the previous section. Let n = 3M̄N̄K + V +MN and define x = (a, s, p, v, u) ∈ Rn.
The objective is defined by c ∈ Rn

c =
(
α(|νk|)ijk, β1, cG

)
where 1 = (1, . . . , 1) ∈ R2M̄N̄K again denotes a vector of ones. Moreover, the equality constraints
are identified by

Aeq =


−D 0 0 0 A

B 0 CT 0 0
0 0 0 AGeq

 , beq =


0
0
bGeq


and the inequality constraints by

Aiq =


− Id 0 0 0

0 − Id −2 Id 0
0 0 − Id 0
0 0 0 AGiq

 , biq =


0
0
0
bGiq


where as before Id ∈ RM̄N̄K×M̄N̄K denotes the identity matrix.

46

6 Applications and Evaluation

This chapter will discuss numerical results of the new discretization for TVX0 and TVX1 using
the examples from Section 3.7. Aside from presenting differences between the two regularization
functionals, a comparison between the new discretization and the original one proposed in [7]
will be made. The last section then focuses on differences between the implementation using
linear or quadratic programming and the primal-dual algorithm, by comparing performances
and evaluating practical considerations.

6.1 Numerical results

6.1.1 Noise removal

The first example is the task of noise removal as proposed in Section 3.7.1. For Gaussian noise
we consider an `2 data fidelity term

G(u) = λ

2 ‖u− f‖
2
2

where, as before, f ∈ RMN denotes the noisy image and λ > 0 is a tuning parameter. To apply
the primal-dual algorithm we need to specify the problem-specific proximal-map, which is given
by

u = proxT u,G(û)⇔ uij =
ûij + λT uij fij

1 + λT uij
.

For QP we need to specify the quadratic function. We set w = u ∈ RMN and following
Section 5.2.2 the data term is fully determined by

cG = −λf, QG = λ Id

To apply SOCP we set w = (s, t, v, u) ∈ R2+2MN and then the objective is determined by

cG = (0, 1, 0, . . . , 0)

subject to constraints

AGeq =
(

1 0 0 0
0 0 − Id Id

)
, bGeq =

(1
2
f

)
, (v, s, t) ∈ CMN+2

r .

47

For impulse noise an `1 data fidelity term has proven to perform better. Hence we consider

G(u) = λ ‖u− f‖1 .

The proximity operator is given by the shrinkage formula

u = proxT u,G(û)⇐⇒ ui,j =


ûi,j − λT ui,j if ûi,j − fi,j > λT ui,j ,

ûi,j + λT ui,j if ûi,j − fi,j < −λT ui,j ,

fi,j if |ûi,j − fi,j | ≤ λT ui,j .

This problem can of course be solved using a linear program. With w = (v, u) ∈ R2MN the
constraints are defined by

AGiq =
(
− Id −2 Id
− Id 0

)
, bGiq

(
−2f

0

)

and the linear objective is determined by

cG = λ(1, . . . , 1).

(a) Original image (b) Gaussian noise
σ = 0.1

(c) TV-LP
PSNR = 21.375

(d) TVX0-CP
PSNR = 22.55

(e) TVX1-CP
PSNR = 23.09

Figure 6.1: Results of noise removal using an `2 data fidelity measure. Parameters for TVX-CP
are K = 16, α = 0.1, β = 1.0, λ = 5. For the TV regularization the weighting
parameter was set to λ = 1.

48

Figure 6.1 exhibits the results of Gaussian noise removal using the different functionals. While
TV-regularization works well for restoring homogeneous regions such as the sky, the line struc-
tures of the sails are mostly discontinuous or blurred. As expected TVX0 and TVX1 are much
better in preserving these line structures. However both functionals tend to generate directional
artifacts in homogeneous regions.

(a) Original image (b) Salt and pepper noise
25%

(c) TV-LP
PSNR = 21.02

(d) TVX0-LP
PSNR = 24.25

(e) TVX1-LP
PSNR = 24.72

Figure 6.2: Results of noise removal using an `1 data fidelity measure. Parameters for TVX-LP
are K = 16, α = 0.1, β = 1.0, λ = 0.75. For the TV regularization the weighting
parameter was set to λ = 0.125.

Figure 6.2 displays the results of noise removal for salt and pepper noise. The images computed
using curvature regularization show a very successful reconstruction of the zebra’s contours,
while using TV-regularization leads to shrinkage at the ears and legs. Also the striping patterns
are much sharper for TVX0 and TVX1. At a close look for TVX0 one can observe a few
rectangular patches that may have been introduced by a disadvantageous local constellation of
noise and zebra pattern forming line-like structures.

6.1.2 Binary segmentation

Next we consider the task of binary segmentation as in Section 3.7.2. The corresponding data
term is given by

G(u) = λ
∑
i,j

fijuij + 1∞[0,1]MN (u)

49

with tuning parameter λ > 0 and an external segmentation field f . The problem-specific prox-
imity operator required for the primal-dual algorithm can be identified as

u = proxT u,G(û)⇐⇒ ui,j = max(0,min(1, ûi,j − λT ui,jfi,j)).

A linear program is sufficient to solve this problem. We set w = u ∈ RMN , i.e. no additional
auxiliary variables are required. The objective function is determined by cG = f , and the
optimization is subject to inequality constraints

AGiq =
(
− Id
Id

)
, bGiq =

(
0
1

)
.

In the first example the segmentation field was computed as follows. For a discrete input image
I ∈ RMN and µf , µb denoting the mean foreground and mean background value respectively, f
is computed as

fij = (Iij − µf)2 − (Iij − µb)2.

(a) Input image (b) K=16 directions

(c) TVX0-LP, K = 4 (d) TVX0-LP, K = 8 (e) TVX0-LP, K = 16 (f) TVX0-PD, K = 32

(g) TVX1-LP, K = 4 (h) TVX1-LP, K = 8 (i) TVX1-LP, K = 16 (j) TVX1-LP, K = 32

Figure 6.3: Comparison of results for TVX0 and TVX1 for different numbers of discrete orienta-
tions. In all images parameters were chosen as α = 0.1, β = 1, λ = 1 and the mean
foreground and background values were set to µf = 0, µb = 0.5.

50

Figure 6.3 exhibits the results of the TVX regularization for a varying number of discrete orien-
tations K. At first glance both functionals TVX0 and TVX1 produce similar results. For K = 4
the strong directional preference is clearly visible. By increasing the number of directions to
K = 8 this effect is slightly attenuated although still very prominent along the tripod.

Because the selected directions by design have to be aligned to the discrete grid, the regular-
ization introduces a minor directional bias as the orientations are not uniformly distributed for
K = 16. Image (b) demonstrates that neither the camera man’s jacket nor the camera stand are
perfectly aligned to the any of the 16 directions, which results in a ’stair-casing’ approximation.
To compute the images for K = 32 directions we had to utilize the primal-dual approach due
to memory restrictions. Although the number of discrete orientations is very high the results
still resemble directional artifacts. These findings are different than the results using the origi-
nal discretization, which at a higher number of discrete orientations smoothly approximated all
boundaries without directional artifacts. While, as expected, TVX0 in general prefers polygonal
shapes with sharp edges, TVX1 yields smoother edges, which can for example be observed at
the neck and head area of the camera man.

(a) Input image (b) TVX0-LP (c) TVX1-LP

Figure 6.4: Comparison of TVX0 and TVX1 for strong curvature regularization. Parameters:
α = 0.0, β = 2, λ = 0.25 and K = 16.

Figure 6.4 further demonstrates that the two regularization functionals work as expected. While
TVX0 approximates the shape through a simplified polygon, thus minimizes the number of
vertices, TVX1 tends to preserve round areas, and eliminates concave parts that would increase
the total curvature.

In a later section we will further explore the effects of varying the weighting between regular-
ization and the data term. These results will then be used to compare the initial discretization
from [7] to the one proposed in this thesis.

6.1.3 Inpainting

As a third example we consider inpainting as in Section 3.7.3. Consider I ∈ RMN to be an
incomplete image, where the pixel values are only known on a non-empty indexing set Ω′ ⊂
{0, . . . ,M − 1} × {0, . . . , N − 1}. Then the data term is given by

G(u) =
∑

(i,j)∈Ω′

0 if uij = Iij ,

∞ otherwise.

51

To apply the primal-dual algorithm we again need to specify the problem-specific proximity
operator, which is determined by

u = proxT u,G(û)⇐⇒ ui,j =

Ii,j if (i, j) ∈ Ω′,

ûi,j otherwise.

This problem can easily be transformed into a linear program. We define P ∈ RMN as

Pij =

1 (i, j) ∈ Ω′,

0 otherwise,

and w = u ∈ RMN . The equality constraints are then given by

AGeq = diag(P), bGeq = diag(P)I

and the objective function cG = 0.

(a) Original image (b) 95% missing pixels

(c) TV-LP
PSNR = 19.9655

(d) TVX0-PD
PSNR = 22.1855

(e) TVX1-PD
PSNR = 21.9835

(f) Differences TVX0
TVX1 larger than 5%.

Figure 6.5: Results of inpainting using different regularization functionals. Parameters
for TVX-PD regularization are K = 16, α = 0.1, β = 1.0.

Following the inpainting example from [7] we removed 95% of all pixels and then applied the
different regularization functionals to restore the missing information. The first image displays
the result of a total variation regularization, which was computed by setting the regularization
parameter β = 0 and then applying linear programming.

Computing TVX0-LP and TVX1-LP was unsuccessful due to memory limitations. Thus both
result images were computed using the primal-dual algorithm.

The curvature regularization functionals are much better at completing the object boundaries
and reconstruction of thin, elongated structures. The length-based regularization on the other

52

hand eliminated almost all details in favor of uniformly colored patches. TVX1 yields notably
smoother boundaries than TVX0 and Figure (f) further illustrates that the major differences
between the two functionals are located along the objects boundaries.

6.1.4 Deconvolution

As a last example of general image problems we consider deconvolution as in Section 3.7.4. Let
I ∈ RMN be a blurry and noisy image. We assume that the point spread function PSF ∈
RMN×MN is known. If I is subject to Gaussian noise we consider the data term

G(u) = λ

2 ‖PSFu− I‖22

where λ > 0 is a tuning parameter. We only implemented this system using quadratic program-
ming, but the proximal maps can be found in [8, Section 4.2.3]. The transformation into a QP is
similar to the classical Gaussian noise removal case. Hence with w = (v, u) ∈ R2MN the equality
constraints and quadratic function are defined by

AGeq =
(
Id PSF

)
, bGeq = I, cG = 0, QG = λ

(
Id 0
0 0

)
.

Similarly for impulse noise we consider G(u) = λ ‖PSFu− I‖. Again with w = (m1,m2, u) ∈
R3MN we have constraints

AGeq =
(
0 Id PSF

)
, bGeq = I, AGiq =

(
− Id Id 0
− Id − Id 0

)
, bGiq =

(
0
0

)
.

(a) Original image (b) Blurry and noise
input

(c) TV-LP
PSNR = 31.79

(d) TVX1-LP
PSNR = 31.37

Figure 6.6: Results of deconvolution using different regularization functionals. The input image
was degraded using a Gaussian blur kernel of size 4×4 with standard deviation σ = 3
and Gaussian noise with σ2 = 0.01. Parameters for TVX1-LP regularization are
K = 16, α = 0.1, β = 1.0, λ = 5.

Figure 6.6 shows the results of the proposed deconvolution with length-based and curvature
regularization. Both functionals are unable to condense the contours back to the original thin
form. However, while the length-based regularization produces pixelated lines and non-smooth
gradients with a similar effect as quantizing the gray levels, the result of curvature regularization
in general is much smoother. The downside of the image’s smoothness is a loss of perceptive
sharpness. The result of TVX0 regularization was omitted as it showed no visible difference to

53

the TVX1 regularization.

6.1.5 Thin structures preserving noise removal

The final application in consideration is the specialized noise removal for thin, line-structure
images with balanced flow as described in Section 3.7.5. We will only provide an implementation
using linear or quadratic programming.

Modified regularization functionals

To apply TVX0 or TVX1 regularization to the specialized noise removal problems we have to
slightly adjust the discrete formulations of TVX by replacing the compatibility condition with
the flow-balancing condition. With the remarks from Section 5.2.2 about norm minimization
problems the transformation into the appropriate standard form of the solver is straightforward.

For a quadratic data term G : RMN → [0,∞) according to Theorem 3.26 the discrete TVX0-
regularization of G is defined as

min
a,s

α
∑
ijk

akij |νk|+
β

2 ‖Ba‖1 +G(Pa)

subject to akij ≥ 0, Fa = 0.

and the discrete TVX1-regularization of G as

min
a,s

α
∑
ijk

akij |νk|+ β ‖p‖1 +G(Pa)

subject to akij ≥ 0, Fa = 0, CT p+Ba = 0.

The next step is to formulate the discrete data terms for the Wasserstein and the H−1 distances.

Discrete Wasserstein-1 metric

In this section measures v ∈M(Ω) are approximated by a sum of delta peaks, i.e.

v ≈
∑
ij

vijδxij (6.1)

where as usual δxij denotes the delta distribution at xij = (ih, jh) ∈ Ωh and vij are linear
coefficients. For two probability measures µ1, µ2 ∈ P(Ω) the Wasserstein-1 metric, according to
2.9, can be computed as

distW 1(µ1, µ2) = sup
{∫

Ω
ϕ d(µ1 − µ)2

∣∣∣∣ ϕ : Ω→ R, 1-Lipschitz
}
.

Hence for µ1, µ2 discretized according to (6.1) and with Proposition 2.26

distW 1(µ1, µ2) ≈ sup
ϕ∈Rn
‖Aϕ‖∞≤1

∑
ij

ϕij(µ1
ij − µ2

ij) = min
ϕ∈R2n

(ATϕ)ij+(µ1
ij−µ

2
ij)=0

‖ϕ‖1 .

54

Observe that the definition of the W1-metric expects two probability measures. We want
to use it to compute distances to given real-valued, positive finite measures that represent the
density of the special line-structure. These measures are not necessarily probability measures,
but the only property in question is the normalization. Instead of rescaling the measures to
be normalized, we choose to ensure that we only compute the W1 distance between (positive)
measures of the same total mass, which results in an additional constraint. In summary the
data term for W1-noise removal reads as follows.

Given an input density I ∈ RMN , defined by its linear coefficients according to (6.1), the
associated discrete data term GW1 : RMN → [0,∞) is

GW1(Pa) = min
ϕ∈R2MN

‖ϕ‖1 + 1∞{‖Pa‖1=‖I‖1}

subject to ATϕ+ (Pa− I) = 0.

Discrete H−1 metric

According to Definition 2.14 the squared H−1 distance between two measures µ1, µ2 ∈M(Ω) ∩
H−1(Ω) can be computed by

dist2
H−1(µ1, µ2) =

∥∥∥∇(−∆)−1(µ1 − µ2)
∥∥∥2

L2
.

Because the operator ∇(−∆)−1 is difficult to characterize and acts non-locally we compute the
norm in two steps. First we solve −∆ f = µ1 − µ2 in Ω,

f = 0 on ∂Ω
(i)

and then compute
∥∥∇(−∆)−1(µ1 − µ2)

∥∥2
L2 = ‖∇f‖2L2 . Discrete approximations of µ1 and µ2

have to be contained in M(Ω) ∩H−1(Ω) hence we select the following discretization

µm ≈ µmh =
∑
ij

µmij
1

L2(Uij)
L2 Uij = 1

h2

∑
ij

µmijL2 Uij (6.2)

for m = 1, 2, where L2 Uij denotes the restriction of the two-dimensional Lebesgue measure
to pixel cell Uij = (ih+ h, jh+ h) for 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1. This choice conveniently
satisfies that µmh ∈ L∞(Ω) since it can be expressed as

µmh = 1
h2

∑
ij

µmij1Uij .

We solve (i) on a cell-centered grid Ω�
h =

{
(ih+ 1

2h, jh+ 1
2h)

∣∣∣ 0 ≤ i ≤M − 1, 0 ≤ j ≤ N − 1
}

using a standard finite differences approximation of the Laplacian defined as

(−∆h f)ij = − 1
h2 (fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fij)

55

where fij = f(ih + 1
2h, jh + 1

2h) is computed at cell centers, and due to boundary conditions
f−1,j = fM,j = fi,−1 = fi,N = 0 for all 0 ≤ i ≤M −1, 0 ≤ j ≤ N −1. Hence the discrete Poisson
equation reads

(−∆h f)ij = 1
h2

∑
mn

(µ1
mn − µ2

mn)1Umn(ih+ 1
2h, jh+ 1

2h) = 1
h2 (µ1

ij − µ2
ij).

The last step is to discretize the gradient operator, which is again done using forward differences
with Neumann boundary conditions. Although f is defined on Ω�

h the discrete gradient coincides
with operator A as defined in (4.8). In summary the data term for H−1 noise removal reads as
follows.

Given an input density I ∈ RMN , defined by its linear coefficients according to (6.2), the
associated discrete data term GH−1 : RMN → [0,∞) is

GH−1(Pa) = ‖A(−∆h)−1(I − Pa)‖22,

which can informally also be written as

GH−1(Pa) = min
f,g

‖g‖22

subject to −∆h f = Pa− I,

g = Af,

to reflect that the operator A(−∆h)−1 applied in two steps using auxiliary variables, f ∈ RMN

and g ∈ R2MN .

56

(a) Corrupted density (b) H−1 (c) W1

(d) σ2 = 0.05 (e) H−1 (f) W1 (g) `2

(h) S&P 15% (i) H−1 (j) W1 (k) `1

Figure 6.7: Restoration of corrupted and noisy densities with strong curvature regularization using
different data fidelity measures. For H−1 and W1 parameters were set to α = 0.1,
β = 5, λ = 0.25 and for `p noise removal as in section 3.7.1 the tuning parameter
was set to λ = 0.75.

Both the H−1 and the W1 data fidelity terms reduced noise reasonably well and ’fused’ the
disconnected parts together. Due to the strong regularization both functionals tend to ’hallu-
cinate’ structures in the background. As speculated in the first chapter, salt and pepper noise
introduces even stronger background noise.

While `2 based Gaussian noise removal from example 3.7.1 does completely eliminate the noise
it also produces blurry line segments and tends to remove the thin segments at the bottom. The
`1-data fidelity measure on the other hand is clearly better suited for removing salt and pepper
noise than both new functionals. The H−1 data term can possibly be further refined by applying
different boundary conditions.

(a) Original density (b) Deformed (c) H−1 (d) W1

Figure 6.8: Straightening of deformed density. Parameters K = 8, α = 0.1, β = 50, λ = 0.5.

When comparing the noise removal examples the differences between the Wasserstein-based
and the H−1 data fidelity measures are not as obvious. Figure 6.8 shows a geometrically de-
formed density and the results of applying very strong regularization to recover the original
density. The result using the H−1 distance is blurry and fails to compress the density back to

57

the original thin lines. The Wasserstein distance on the other hand manages to recover the den-
sity almost perfectly. Since the W1 fidelity measure corresponds to the minimal transportation
costs and is conserving mass it might be better suited for recovering geometric transformations
than for noise removal.

6.2 Comparison of discretizations

This section will focus on differences between the discretization using line measures and the one
initially proposed in [7], which uses finite difference approximations. As said before the most
critical part is the discretization of the directional derivative of the lifted quantity. In the initial
article, the authors selected K uniformly distributed points on the S1 and rescaled them as
in Figure 6.9. Then to obtain the directional derivative of the lifted quantity µ they simply
computed the difference between the measure ’values’ at the centering node and the node with
the direction in question, compare[7, Section 5.1] for further details.

Figure 6.9: Non-local finite difference scheme used to approximate the direc-
tional derivative.

As the illustration already shows, not all nodes are aligned to the grid and hence to obtain
their value a linear interpolation is necessary. To compare the two discretizations we selected
one particular example from the original paper that showed the effects of varying the tuning
parameter λ, which controls the weighting between regularization and the data term.

(a) Original image for the
examples.

(b) TV, λ = 0.5 (c) TV, λ = 0.25

Figure 6.10: Results of TV-regularization for varying λ

Because this example contains many thin, elongated structures, applying pure length-based
regularization leads to undesirable object shrinkage. Especially for strong regularization all lines
are eliminated. While this example is well suited for studying the effects of varying the regular-
ization weights, it also accurately shows the differences between the discretization approaches.

58

Due to the simple black and white image a simple linear segmentation force was used

fij = 0.5− Iij .

(a) TVXFD
0 , λ = 0.5 (b) TVXFD

0 , λ = 0.25

(c) TVX0-PD, λ = 0.5 (d) TVX0-PD, λ = 0.25

(e) TVX1-PD, λ = 0.5 (f) TVX1-PD, λ = 0.25

(g) TVXFD
1 , λ = 0.5 (h) TVXFD

1 , λ = 0.25

Figure 6.11: Comparison of discretization using a fi-
nite differences approximation and discretization us-
ing line measures. All images were computed using
K = 32 discrete orientations, α = 0.1 and β = 1.

We denote by TVXFD
p the regularization us-

ing the finite differences approximation as pro-
posed in [7]. Figure 6.11 displays the result of
binary-segmentation as in Section 3.7.2 using
different data term weights λ.

The first notable thing is that the pro-
posed discretization results in sharper images
and is, with only a few exceptions, indeed
binary. Even for strong regularization the
solution preserves elongated structures well
while effectively simplifying the results ac-
cording to the prescribed functionals. The
original discretization on the other hand yields
non-binary and blurry results. The authors
claimed that this behavior occurs due to non-
uniqueness of the minimizer and less tight-
ness of the relaxation. It could also be the
case that this effect is amplified through the
interpolation in the numerical discretization.
Moreover to stop the iterations of the primal-
dual algorithm the authors used a simple cri-
terion based on the quantities

∥∥∥xl − xl−1
∥∥∥ and∥∥∥yl − yl−1

∥∥∥ as in (5.2). While computing the
results we modified the algorithm to save in-
termediate solutions, which for many itera-
tions contained gray-shaded non-binary areas.
And although the described quantities were
notably small the shaded areas were eventu-
ally resolved after a very high number of itera-
tions. Possibly the solutions of TVXFD could
be further refined with more iterations.

Again as noticed before TVX0 leads to
simplified polygonal shapes and TVX1 to
smoother shapes with fewer concave areas. In
comparison to simple length-based regulariza-
tion, both functionals return superior results
that preserve the general structures well, while
simultaneously simplifying the geometry with
stronger regularization.

59

6.3 Performance evaluations

One topic of particular interest was to evaluate differences between the first-order primal-dual
algorithm from [9] and a generic solver for linear and quadratic programming from the point of
practical usability and performance.

While the primal-dual algorithm is very attractive because of its simple structure and easy
implementation we were interested in finding out how such a naive implementation compares to
a commercial solver.

6.3.1 Implementation details

Before we can begin with the performance comparisons and evaluations we will briefly summa-
rize the setup used to compute the numerical results.

As a standard solver we chose MOSEK, which can among others solve large-scale linear, quadratic
and second-order conic constrained optimization problems [4]. It provides a Matlab interface
with replacements for common optimization toolbox functions, which made the integration into
the Matlab source code very unobtrusive. The optimization model is built entirely inside Matlab
and then passed on to MOSEK for solving.

The implementation of the first-order primal-dual algorithm is done in Julia [5], a relatively
young high-level dynamic language that was designed for numerical and scientific computing. It
provides access to many standard libraries, including good support for sparse matrix operations,
and has a very similar syntax and semantic to Matlab.

The leading thought behind choosing a different environment than Matlab, was that the
primal-dual algorithm approximates solutions through many iterations. And while Matlab per-
forms well for vectorized expressions and provides many high-performing routines, we expect
to gain a speed up by selecting a language that more efficiently handles control flows, such as
loops, and provides better control over memory allocations. The first idea was to write a C++
program, which would have required to completely rewrite the existing Matlab code with very
little resemblance. Additionally such an implementation introduces a lot of technical complexity
we preferably wanted to avoid. While searching for alternatives we noticed that the developers
of Julia claim through different benchmarks, that the language performs very similar to native
C++ applications. Since porting the existing code to Julia required only little work and the
results were promising we continued using it for this thesis.

For comparison and to support the choice of another environment, running time measurements
for a Matlab implementation are also included.

If not otherwise stated, all computations in the following sections were run on a system with
12 GB physical memory and an Intel i5-4210U processor.

6.3.2 Memory consumption

The first factor of interest is memory consumption. We ran tests for different image sizes
and numbers of discrete orientations to solve a binary-segmentation problem using TVX0-LP,
TVX1-LP, TVX0-PD and TVX1-PD, and recorded the memory requirements while solving the

60

optimization problems. While this is not an extensive study it provides a general view on the
requirements and limitations of the different algorithms.

In all cases the memory required to build the models is not included. To achieve this all
optimization models were generated in advance and stored using a compatible file format. For
each of these files TVX-LP in MOSEK was then executed through a command line utility and
the maximum required memory was measured. The same method was applied for TVX-PD in
Julia. In that sense the data reflects the memory requirement to solve a given model, and does
not contain any overhead introduced through Matlab. In all computations using MOSEK we
applied the interior-point solver.

K=4 K=8
128x128

K=16 K=4 K=8
256x256

K=16 K=4 K=8
512x512

K=16

0.00

5.00

10.00

15.00

×× ×0.
40

0.
44 0.
62

0.
58

0.
60 0.
88

0.
80 1.
21 2.

37

0.
43 0.
57 0.
69

0.
58

0.
60 0.
88 1.
10 1.

93 3.
60

0.
23 0.
54 1.

81

0.
96 2.

32

8.
74

3.
97

10
.0

2

0.
42 0.
89 2.

66

1.
68

3.
87

12
.5

3

6.
88

M
ax

.
m

em
or

y
re

qu
ire

d
in

gi
ga

by
te

TVX0-PD TVX1-PD TVX0-LP TVX1-LP

Figure 6.12: Memory consumption measured for different image sizes and numbers of discrete
orientations.

The recorded data clearly shows that solving linear programs with MOSEK requires far more
memory than the primal-dual counterpart. While the requirements for images of size 128× 128
and K = 4 or K = 8 for the two methods are almost identical, increasing the number of discrete
orientations to K = 16 results in a strong increase for TVX-LP using MOSEK. For images of
size 512× 512 we were unable to test K = 8 for TVX1-LP, and for K = 16 both TVX0-LP and
TVX1-LP failed due to memory limitations.

Since our test system only had 12 GB of physical memory available computing problems
using TVX1-LP is restricted to small images or few directions. With enough time we were still
able to obtain results with TVX1-LP for an image size of 256 × 256 and K = 16 directions,
however, while evaluating timings these settings cannot provide accurate results as much of the
computational time is spent on swapping memory.

In general it can be observed that increasing the number of discrete orientations leads to a
high jump in memory requirements for the LP. Results from the previous section have shown
that for K ≤ 8 strong directional preferences are still clearly visible and hence reducing the
number of orientations is not a favorable option.

In conclusion, to apply TVX-LP using MOSEK a large amount of physical memory is required
even for medium sized images. Although results in general become better with a larger number

61

of discrete orientations, testing TVX-LP with K = 32 directions is challenging at best. In
all tests TVX-PD required far less memory and scaled predictably with increasing image sizes
and numbers of discrete directions, making it a favorable choice when only limited memory is
available.

6.3.3 Running times

The following will focus on running times for the two different algorithms. As pointed out in
the last section, evaluating running times for larger images is not possible with our test system,
because MOSEK required more than the available physical memory and hence the results would
be biased due to memory paging. It is however of interest how the two methods scale with
different image sizes. On the test system we computed the problems for two different sizes,
64 × 64 and 128 × 128. Further we measured results for both regularization functionals TVX0

and TVX1 with the number of discrete orientations set to K = 16. Additionally we included
results for images of size 256×256, which were partially computed on a high-performance cluster
(ZIVHPC) with 32 GB of physical memory and two Quad Core AMD Opteron 2352 CPUs. These
results have been marked, since they are not entirely comparable due to the different setup.

The running times can only be compared fairly if the solutions are computed to a similar
accuracy. As in general the solutions to the optimization problems are non-unique, a simple
comparison of the results from TVX-LP/QP/CP and the primal-dual algorithm is not possible.
We selected the following optimality criteria.

TVX-LP/QP/CP For MOSEK three parameters control if a solution is optimal.

1. The primal feasibility error (PFEAS) needs to be below a threshold set to 10−8.

2. The dual feasibility error needs to be below a threshold set to 10−8.

3. The relative duality gap needs to be below a threshold set to 10−7.

For further details, compare [4, 10.2.2.1 Interior-point termination criterion]. With these
settings the results in general have a very high accuracy.

TVX-PD In the primal-dual algorithm an error-estimator is applied to decide if a solution is
optimal. To make a fair comparison between the two algorithms it is necessary to choose an
estimator that is based on the quality of the solution rather than the speed of convergence
measured as change in the primal or dual variable. The second termination criterion from
(5.3) measures both the convergence speed and the primal and dual feasibility error. The
error tolerances were set to

• tol1 = 10−7 for errp, the estimated error in the primal variable,

• tol2 = 10−6 for errd, the estimated error in the dual variable ,

• tol3 = 10−6 for errpf , the primal feasibility error,

• tol4 = 10−6 for errdf , the dual feasibility error.

62

To obtain a broader overview of different problems we selected the following examples.

1. Binary segmentation Provides a linear objective function.

2. Gaussian noise removal Provides a quadratic objective function.

3. Inpainting Consists of a set of equality constraints.

In all examples the regularization parameters were set to α = 0.1, β = 1, λ = 1. As for
the memory consumption the time for generating the optimization model is excluded and the
results only show times required for solving a given model. Although in practice this step never
required more than a few seconds, it could easily be eliminated by caching models for different
image sizes and problems.

Problem Size Reg. Running time (s)
MOSEK PD-Julia PD-Matlab

sec sec QM sec QM QJ

Binary
segmentation

64 TVX0 24 27 1.13 36 1.50 1.33
TVX1 49 39 0.80 62 1.27 1.59

128 TVX0 188 90 0.48 158 0.84 1.76
TVX1 347 304 0.88 547 1.58 1.80

256 TVX0 *1602 965 *0.60 1772 *1.11 1.84
TVX1 *3310 1690 *0.51 2902 *0.88 1.72

Inpainting

64 TVX0 35 475 13.57 535 15.29 1.13
TVX1 89 526 5.91 756 8.49 1.44

128 TVX0 441 1408 3.19 2211 5.01 1.57
TVX1 991 2836 2.86 4078 4.12 1.44

256 TVX0 *7751 5470 *0.71 9365 *1.21 1.71
TVX1 **25877 9853 – 18197 – 1.85

Gaussian noise
removal

64 TVX0 47 62 1.32 80 1.70 1.29
TVX1 149 305 2.05 497 3.34 1.63

128 TVX0 551 381 0.69 560 1.02 1.47
TVX1 1736 1554 0.90 2489 1.43 1.60

256 TVX0 *11114 2293 *0.21 3792 *0.34 1.65
TVX1 *17241 4488 *0.26 7953 *0.46 1.77

Table 6.1: Measured running times in seconds. The values in column QM correspond to quotient
(PD-∗ sec)/(MOSEK sec) and hence are greater than one if MOSEK was faster and
less than one if the primal-dual algorithm was faster. Similarly the values in column
QJ correspond to the quotient (PD-Matlab sec)/(PD-Julia sec) thus indicating for val-
ues greater than one that the implementation using Matlab was slower. Values marked
with * have been obtained or computed from measurements on the high-performance
cluster. Values marked with ** did not convergence within the maximum number of
iterations.

The first notable thing is that choosing a different environment than Matlab to implement
the primal-dual algorithm is beneficial. Although we did not utilize parallelism or any special
optimizations the approach using Julia is faster than the Matlab implementation in all of the
example problems.

63

When comparing the running times of PD-Julia to the MOSEK implementation the results are
not as clear and due to the small samples not very representative. For small and medium sized
inpainting problems MOSEK required far less time for solving, presumably because many of the
variables can be eliminated prior to running the actual minimization. In the other examples
MOSEK returned the results quickly for the small image size, for the larger sizes PD-Julia was
faster. As expected the running times clearly depend on the image problem in consideration.

In many samples the Matlab implementation of the primal-dual algorithm is the slowest ap-
proach. So when only PD-Matlab and MOSEK are available, MOSEK might be the better
choice, keeping in mind that MOSEK possibly loses its performance advantage for larger prob-
lems. Moreover the computations with MOSEK on the high-performance cluster were not as
successful as expected. Gaussian noise removal required a very long time and inpainting with
TVX1 failed to achieve the prescribed accuracy after more than seven hours. By looking at
the output of the algorithm we observed that the convergence speed was extremely low. This
could potentially be improved by instead solving an equivalent problem, for example by applying
duality. But we did not further investigate these options.

102 10310−9

10−6

10−3

100

Running Time (s)

Er
ro

r

MOSEK PFEAS errp errpf

Figure 6.13: Primal errors for MOSEK and PD-Julia measured over time for the inpainting
problem using TVX0 and an image size of 128× 128. The horizontal lines indicate
the different error tolerances.

Figure 6.13 shows the different primal errors recorded while gathering the measurements for
inpainting with TVX0-regularization. The running times clearly show that MOSEK was signifi-
cantly faster then the primal-dual approach. But the illustration of the errors shows a few more
details. Firstly, obtaining a solution with medium accuracy can be achieved very quickly with
the primal-dual algorithm, but the refinement to high accuracy takes many iterations. Secondly,
before MOSEK starts the actual minimization it has a pre-solve and pre-optimization phase
that already requires a long time and explains the gap at the beginning. Furthermore until the
solution reaches medium accuracy already a large portion of the total solving time has passed.

In this example one can observe that bounding the primal-feasibility error below a threshold
indeed serves as a restriction that can be stronger than bounding the root-mean squared error
in the primal variable.

64

6.3.4 Performance conclusions

While writing this thesis we spent a large amount of time computing the different example
problems for different test images and parameters. During these tests we mostly used smaller
images with fewer discrete directions. For these types of problems MOSEK as solver was a good
choice since it returned solutions with very high accuracy in a reasonable amount of time. With
growing image sizes and more discrete directions MOSEK became slower and has two particular
disadvantages over the primal-dual algorithm.

1. Reducing the required accuracy does not result in a strong speed-up. Before MOSEK
starts the actual minimization it has a pre-solve and pre-optimization phase that requires
a fixed amount of time for similar parameters, which strongly grows with the image size.

2. MOSEK’s interior-point solver is unable to warm-start and hence refining a low-accuracy
solution is not possible without entirely recomputing it.

The primal-dual algorithm on the other hand requires almost no preparation time and can
compute approximate solutions that already after a few iterations reflect the selected parameters
well enough to decide if refining the solution to high accuracy is worthwhile. Additionally it can
be warm-started from a low-accuracy solution.

With both methods computing solutions to high accuracy can take a few hours depending
on the problem structure and size. When the optimal parameters for the regularization are
unknown and need to be tested, obtaining intermediate solutions can be helpful.

(a) λ = 2 (b) λ = 1 (c) λ = 0.5 (d) λ = 0.25 (e) λ = 0.125

Figure 6.14: Low accuracy results of TVX1-PD binary segmentation after 1000 iterations for
different regularization parameters. Running times for each image was 35 seconds
with an image size of 128× 128 and parameters α = 0.1, β = 1.

While the results in Figure 6.14 still contain low accuracy artifacts the effect of changing the
regularization weight is already clearly visible. When computing the same problem using TVX1-
LP with MOSEK, the pre-optimization phase already took roughly 70 seconds and the results
from the first few iterations are practically unusable. Notice that computing the high-accuracy
solution with TVX1-PD required almost 9-times as long, compare Table 6.1. For testing purposes
we additionally increased the image size for the same problem to 256 × 256. MOSEK’s pre-
optimization phase then took 400 seconds, while running 1000 iterations to obtain a low-accuracy
solution required only 107 seconds with TVX1-PD.

Moreover MOSEK does not provide a method for obtaining intermediate solutions, for example
after every iteration, and thus the only way to test different parameters is essentially to each
compute the full optimal solution.

65

In summary, for applications where the regularization parameters need to be adjusted before
computing high accuracy results, using the primal-dual algorithm is a favorable choice.

In the previous sections we already pointed out that we experienced difficulties when using
MOSEK to solve problems with higher numbers of discrete directions and larger image sizes
such as 256× 256 which from practical considerations is still very small. The main issue seems
to be the large set of additional constraints introduced with increasing numbers of discrete
orientations, as solving a similar sized problem with simple TV-regularization can be done
very efficiently. We only applied MOSEK’s interior-point solver, although a simplex solver is
also available. While in preliminary tests the simplex solver required much less memory, it
also showed significantly higher running times. Additionally it is restricted to linear programs
limiting the possible applications.

66

7 Conclusions

In this thesis we first summarized the main concepts for a regularization framework based
on curvature as proposed in [7]. The essential idea of that article was to consider a class
of functionals acting on polygons that, depending on a metric on S1, are able to compute a
penalty by summing over all vertices and measuring the distances between incoming and outgoing
directions. As first exemplary metric on S1 they considered the discrete metric, which results in
a functional that counts the number of vertices with distinct incoming and outgoing directions.
Secondly they utilized the geodesic metric, resulting in a functional that measures the sum of
the absolute external angles, which in some cases corresponds to the total absolute curvature.
The authors showed that these functionals can be represented as a sum of line integrals along
the polygon edges. In a first step this concept was then generalized to characteristic functions
of polygons by introducing the concept of functional lifting of the gradient, and then afterwards
applied to the sublevel sets of general images. To enable global optimization the authors then
introduced a convex relaxation.

Starting from the observation that the functional lifting is essentially composed of line mea-
sures with support on only one-dimensional subsets, a new discretization has been proposed.
This new discretization represents the lifted quantity by a sum of line measures with support on
short line segments. By inserting these discrete measures into the regularization framework the
functionals reduce to linearly constrained convex optimization problems that enable global op-
timization through a wide range of algorithms. Two possible methods have then been proposed.
Firstly a preconditioned first-order primal-dual algorithm, and secondly a standard linear or
quadratic programming approach.

Through different applications we were able to verify that the new discretization yields accu-
rate results with sharp object boundaries. A comparison with the initial discretization, which
is based on a finite differences approximation, showed that our approach is much better suited,
most visibly when applying strong regularization. Especially for binary segmentation it can
be observed that the initial method produces blurry non-binary regions that are presumably
introduced by interpolation, a step that is not required by our approach.

Additional to the basic imaging problems we studied a specialized type of noise removal.
While the results showed that the applied method indeed removes noise and preserves thin line-
structures well, it can potentially be further enhanced by experimenting with different distance
measures. Especially for impulse noise it was necessary to use very strong regularization to
remove the particles, which had the side-effect that the functionals generated new structures in
the background.

Finally we focused on the different methods for numerically solving the optimization prob-
lems. The approach using the primal-dual algorithm was implemented in a relatively young
programming language named Julia and for comparison in Matlab. The linear or quadratic pro-

67

grams were solved using a commercial solver named MOSEK, which we were able to use freely
through an academic license. While MOSEK computes solutions to a very high accuracy and
was well suited for optimizing small problems, the high accuracy comes at a price of long running
times for larger images. The implementations with the primal-dual algorithm on the other hand
were fast in computing solutions with reduced accuracy, but required many iterations to reach
a similar precision as MOSEK. But aside from the mathematical error, the optical differences
between medium and high accuracy solution were usually almost imperceptible. In general the
implementations demonstrate that curvature regularization with the proposed method can be
applied very efficiently.

Since this thesis and the original article have demonstrated that the curvature regularization
framework is well suited for many low vision problem, a next step could be to study more complex
tasks. The example of binary segmentation for instance could be generalized to multi-label
segmentation. Another possible direction of future study is to further utilize the special structure
of the discretization using line-measures. One strategy for object recognition in computer vision
is to apply some form of edge detection and then use this boundary description to determine
similarity to objects from a set of templates. Hence it is crucial to accurately capture boundaries
in a way that they are continuous and condensed to thin lines, which the curvature framework
with the proposed discretization can naturally describe.

68

List of Figures

2.1 Comparison of different noise profiles . 5
2.2 Relative interior for two-dimensional unit disk in three-dimensional space 6

3.1 Lifting of a smooth curve . 10
3.2 Example of gradient and normal orientations for the 1-norm. 11
3.3 Lifting applied on a simple polygonal binary image 12
3.4 Single vertex polygon . 13
3.5 Geodesic distance on S1. 15
3.6 Admissible and non-admissible polygons . 16
3.7 Illustration of vertex-counting functional . 17
3.8 Illustration of total absolute exterior angle measuring functional 18
3.9 Polygon with piecewise smooth boundary . 18
3.10 Image with balanced flows, its associated graph and its level set representation. . 23
3.11 Illustration of a video sequence of cells . 25
3.12 Video of moving cells as three-dimensional image 25

4.1 Utilized directions for discrete line measures . 27
4.2 Comparison of image and measure grid . 28
4.3 Illustration of hat-functions . 28
4.4 Precomputed offsets and coefficients . 30
4.5 Illustration of flows for the directional derivative 31
4.6 Illustration of flow-balancing condition . 32
4.7 Distribution of mass along different directions . 32
4.8 Linearized indexing scheme . 33
4.9 Sparse pattern of Operator D . 34

6.1 Results of Gaussian noise removal . 48
6.2 Results of salt and pepper noise removal . 49
6.3 Results of binary segmentation . 50
6.4 Comparison of TVX0 and TVX1 for binary segmentation and strong regularization 51
6.5 Results of inpainting . 52
6.6 Results of deconvolution . 53
6.7 Results of noise removal for special thin line-structure 57
6.8 Comparison between Wasserstein and H-1 data terms 57
6.9 Original discretization scheme using non-local finite differences 58
6.10 Results of TV-regularization for comparison with old discretization 58

69

6.11 Results of comparison to original discretization 59
6.12 Memory consumption for MOSEK and primal-dual implementation 61
6.13 Primal errors measured for MOSEK and PD-Julia over running time 64
6.14 Low accuracy results of primal-dual algorithm . 65

List of Tables

6.1 Measured running times for utilized algorithms 63

70

References

[1] F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathematical Programming
95 (2003), no. 1, 3–51.

[2] Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free
discontinuity problems, vol. 254, Clarendon Press Oxford, 2000.

[3] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows: In metric spaces and in
the space of probability measures (lectures in mathematics eth zurich), 2nd ed., Birkhaeuser
Basel, 2005.

[4] MOSEK ApS, The mosek optimization toolbox for matlab manual. version 7.1 (revision
36)., 2015.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A Fresh Approach to
Numerical Computing, ArXiv e-prints (2014).

[6] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge University Press,
2004.

[7] Kristian Bredies, Thomas Pock, and Benedikt Wirth, Convex relaxation of a class of vertex
penalizing functionals, Journal of Mathematical Imaging and Vision 47 (2013), no. 3, 278–
302.

[8] Kristian Bredies, Thomas Pock, and Benedikt Wirth, A convex, lower semicontinuous ap-
proximation of euler's elastica energy, SIAM Journal on Mathematical Analysis 47 (2015),
no. 1, 566–613.

[9] Antonin Chambolle and Thomas Pock, A first-order primal-dual algorithm for convex prob-
lems with applications to imaging, Journal of Mathematical Imaging and Vision 40 (2011),
no. 1, 120–145.

[10] Lawrence C. Evans, Partial differential equations (graduate studies in mathematics, vol.
19), 4th, reprinted with corrections(2008) ed., American Mathematical Society, 1998.

[11] Thomas Pock and Antonin Chambolle, Diagonal preconditioning for first order primal-
dual algorithms in convex optimization, Computer Vision (ICCV), 2011 IEEE International
Conference on, IEEE, 2011, pp. 1762–1769.

[12] Ralph Tyrrell Rockafellar, Convex analysis, 2. printing ed., Princeton Univ. Press, Prince-
ton, NJ, 1972.

71

	Introduction
	Prerequisites
	Measure theory
	Radon-measures and functions of bounded variation
	Distance functions on measures

	Convex optimization

	Image Regularization Framework
	Functional lifting
	Functionals acting on polygons
	Generalization to admissible polygons
	Generalization to imaging problems

	Convex Relaxation
	Functionals TVX0 and TVX1
	Applications for image problems with L2 data term
	Data terms
	Noise removal
	Binary segmentation
	Inpainting
	Deconvolution
	Thin structures preserving noise removal

	Discretization via Line Measures
	Discrete setting
	Discrete compatibility condition
	Discrete directional derivative
	Discrete partial derivative in label direction
	Discrete flow balancing condition
	Discrete projection

	Matrix representation of discrete operators
	Discrete formulations of TVX
	Discrete TVX0
	Discrete TVX1

	Numerical algorithms
	Primal-Dual algorithm
	TVX0-PD
	TVX1-PD

	Linear programming
	Generalization for quadratic data terms
	Transformation of norm minimization problems
	TVX0-LP
	TVX1-LP

	Applications and Evaluation
	Numerical results
	Noise removal
	Binary segmentation
	Inpainting
	Deconvolution
	Thin structures preserving noise removal

	Comparison of discretizations
	Performance evaluations
	Implementation details
	Memory consumption
	Running times
	Performance conclusions

	Conclusions
	List of Figures
	References

