
Master Thesis

Analysis of a Dynamic Cell Imaging Model in
Positron Emission Tomography

Marco Jonas Mauritz

Matr. 449734

Supervisor: Prof. Dr. Benedikt Wirth
Assisting Supervisor: Prof. Dr. Caterina Ida Zeppieri

Institut für Analysis und Numerik, University of Münster, Germany

January 17, 2020





Contents

1 Introduction and Overview 1

2 Preliminaries and Model Derivation 5
2.1 Optimal Transport and the Continuity Equation . . . . . . . . . . . . . . . 5
2.2 Poisson Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Model Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Γ-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Existence of Minimizers and Γ-Convergence 39
3.1 Existence of Minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Γ-Convergence I: Fixed Detector Sizes . . . . . . . . . . . . . . . . . . . . . 44
3.3 Γ-Convergence II: Variable Detector Sizes . . . . . . . . . . . . . . . . . . . 55

4 Conclusion and Outlook 69

List of Symbols 72

Bibliography 73

iii





CHAPTER 1

Introduction and Overview

This thesis deals with the mathematical analysis of a dynamic cell imaging model. Based
on physical considerations, we derive a reconstruction method that determines the temporal
evolution of the distribution of radioactively marked cells from measured PET (positron-
emission tomography) data. The reconstruction is obtained by minimizing a certain objec-
tive function. We show existence of minimizers of this function and consider Γ-convergence
for the case of an intensity of radiation tending to infinity.

The reconstruction method was proposed by Schmitzer, Schäfers and Wirth [1]. Its intended
use is to track single or small number of cells. Cell tracking is of special interest in the
research field of immunotherapy in order to understand the underlying biological processes
better. This kind of therapy uses modified immune cells to specifically destroy harmful cells
such as bacteria or cancer cells in the human body [2].

Determining the underlying material distribution form PET data is an ill-posed problem.
The proposed method differs from conventional PET reconstruction and is similar to the
method of [3] and [4]. It uses the information of all detected events to find the temporal
evolution of the radioactive material distribution. Additionally, this information is used to
establish temporal consistency between different time steps. This is achieved using opti-
mal transport regularization. Within this regularization approach, among all temporally
evolving material distribution being consistent with the PET measurement, the one with
least kinetic energy is chosen as the reconstruction. Moreover, the temporal evolution of
the material distributions ρ needs to satisfy the continuity equation ∂tρ+∇xω = 0 where ω
describes the material flux inducing the temporal variation of ρ. A great advantage of the
method considered in this thesis is that the reconstruction complexity is independent of the
number of cells to be tracked. Additionally, the number of tracked cells is determined [1].

We model the distribution of the radioactive material, i.e. the labeled cells, using a non-
negative Radon measure dt⊗ ρt in space-time. The decay of the material is then modeled
with a Poisson point process with intensity measure dt⊗ 1

T1/2
ρt where T1/2 is the radionu-

clid’s half-life. From physical considerations we derive a forward operator A = As +Ad de-
scribing the detection process of the emitted photons. Within the modeling we distinguish
between scattered photons (described by As) and unscattered, hence normally detected
ones (described by Ad). The forward operator transforms ρt to a new Radon measure κt
that describes the intensity of the photons at the detectors. The actual detection process
is again described by a Poisson point process with intensity measure dt ⊗ 1

T1/2
κt. We use

a maximum a posteriori (MAP) estimate to reconstruct the material distribution from a
given measurement which results in a minimization problem. Due to the stochastic charac-
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Chapter 1 Introduction and Overview

ter of our model, the objective function has a stochastic component, i.e. the measurement
is produced in a stochastic way for a given material distribution. The objective function
reads

J
E,∆t,(Γkl)kl
β,T1/2

(ρ, ω) =
∑
ikl

[
Aiklρ− Eikl log

(
pAsiklρ+Adiklρ

)]
+ βS(ρ, ω)

where Eikl is the (stochastic) number of photons during the time interval τi at detector pair
Γkl,

A
/s/d
ikl = 1

T1/2

∫
τi

κ
/s/d
t (Γkl)dt

and S is the regularization term that penalizes mass movement.

We show that this functional almost surely has a minimizer in a space of Radon measures
M. In the next step we compute two Γ-limits for half-lifes T1/2 → 0 which means that
the intensity of the radioactive material tends to infinity. For the first Γ-limit we shrink
our time intervals. We find for a true underlying material density dt⊗ ρ†t (which leads to a
measurement process with intensity measure dt⊗ 1

Tnκ
†
t) and for En = TnJ

En,∆tn,(Γkl)kl
βn,Tn +Cn

we receive the Γ-convergence

Γ− lim
n→∞

En = E∞

almost surely with

E∞(ρ, ω) =
∑
kl

∫ T

0

[
κt(Γkl)− log

(
pκst (Γkl) + κdt (Γkl)

)
κ†t(Γkl)

]
dt+ βS(ρ, ω).

For the second Γ-limit we additionally shrink the detector sizes and end up with

Γ− lim
n→∞

En = E∞

almost surely with En = TnJ
En,∆tn,(Γnkl)kl
βn,Tn + Cn and with the limit functional

E∞(ρ, ω) =
∫
∂Ωδ×∂Ωδ

∫ T

0

(
κt(x)− log

(
pκst (x) + κdt (x)

)
κ†t(x)

)
dtdφ(x) + βS(ρ, ω).

The structure of this thesis is as follows. In Chapter 2 we introduce important concepts
that will be needed in the following sections. Starting with Section 2.1 we give a short
introduction to optimal transport and the Wasserstein metric. Then we consider curves in
probability or Radon spaces and their connection to the continuity equation. This results
in the Benamou-Brenier formula which will be used for our regularization approach. In the
following section we introduce Poisson point processes which are needed for our modeling
approach. We define integrals with respect to such processes and give formulas for expecta-
tion, variance and higher moments for those integrals. Section 2.3 deals with the physical
modeling of the radioactive decay and the detection process of the emitted photons which is
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described by the forward operator. Using this forward operator, we derive the reconstruc-
tion formula for identifying the distribution of radioactive material, i.e. the labeled cells.
The final section of the preliminary chapter shortly introduces Γ-convergence which will be
the notion of convergence for our limit consideration T1/2 → 0.
Chapter 3 provides the mathematical analysis of the reconstruction formula. First, we
examine important properties of the forward operator. Then we prove existence of min-
imizers of the stochastic objective function J

E,∆t,(Γkl)kl
β,T1/2

. We continue by analyzing the

limit behavior of JE,∆t,(Γkl)klβ,T1/2
for a half-life T1/2 tending to zero. This is done by means

of Γ-convergence. Within this limit process we first only shrink the time intervals of the
detection process. In the next step we shrink the time intervals as well as the detector sizes.
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CHAPTER 2

Preliminaries and Model Derivation

2.1 Optimal Transport and the Continuity Equation

Our ill-posed inverse problem will be regularized by means of optimal transport. Within
this approach we use the continuity equation ∂tρt + ∇x(vtρt) = 0 to enforce temporal
consistency of the reconstruction between different time steps. Therefore, the relevant facts
about optimal transport and its connection to the continuity equation are considered in
this section. The depictions of this section are mostly oriented at [5] and [6].

Definition 2.1.1 (Radon measure, [7]). Let X be a locally compact and separable metric
space, B(X) its Borel σ-algebra, and consider the measure space (X,B(X)).
(a) A positive measure on (X,B(X)) is called a Borel measure. If a Borel measure is

finite on compact sets, it is called a positive Radon measure. We denote the set of
positive Radon measures on (X,B(X)) byM+(X).

(b) A measure µ : B(X)→ Rm for m ≥ 1 is said to be a finite Radon measure and the set
of finite Rm-valued Radon measures on (X,B(X)) is denoted byM(X)m.

Definition 2.1.2 (Narrow and weak-* convergence of measures, [5] and [7]). Let X be a
locally compact and separable metric space.
(a) Let µ, (µn)n ∈ M(X) be finite Radon measures. We say that (µn)n converges nar-

rowly to µ if

lim
n→∞

∫
X
ϕdµn =

∫
X
ϕdµ

for all ϕ ∈ C0
b (X), the space of all continuous and bounded functions on X.

(b) Let µ, (µn)n ∈M(X) be finite measures. We say that (µn)n weak-* converges to µ if

lim
n→∞

∫
X
ϕdµn =

∫
X
ϕdµ

for all ϕ ∈ C0(X), the space of continuous functions vanishing at infinity. We write
µn

∗−⇀ µ.

We consider the Kantorovich formulation of optimal transport. In this formulation of
optimal transport one tries to find a way to move mass from one distribution to another
while trying to minimize the cost of this mass movement.
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Chapter 2 Preliminaries and Model Derivation

Problem 2.1.3 (Kantorovich problem, [6]). Given two metric spaces X, Y , two probability
measures µ ∈ P(X), ν ∈ P(Y ) and a cost function c : X × Y → [0, ∞], we consider the
problem

inf
{
K(γ) :=

∫
X×Y

cdγ | γ ∈ Π(µ, ν)
}

where Π(µ, ν) is the set of transport plans defined as

Π(µ, ν) := {γ ∈ P(X × Y ) | (π1)#γ = µ, (π2)#γ = ν} .

Here, (π1)# and (π2)# are the push-forward measure with respect to the projections of X×Y
onto X and Y .

Remark 2.1.4 ([8]). If we deal with finite positive measures that are not normalized to
one, a natural generalization of the transport problem for finite µ, ν with equal mass, i.e.
µ(X) = ν(Y ), would be to consider

Π̂(µ, ν) = {γ ∈ P(X × Y ) | |µ|(πx)#γ = µ, |ν|(πy)#γ = ν}

and

|µ| inf
{
K(γ) | γ ∈ Π̂(µ, ν)

}
which is just a scaling of the situation above. Setting

Π(µ, ν) := {γ ∈M+(X × Y ) | (πx)#γ = µ, (πy)#γ = ν}

and noting that |µ|Π̂(µ, ν) = Π(µ, ν), we can stick to the notation of Problem 2.1.3 by
changing the definition of Π(µ, ν) and are able to work with any finite measures.

Definition 2.1.5 (Wasserstein distance, [6]). Let Ω ⊂ Rd and let d be a metric on Ω. We
set

Mp :=
{
µ ∈M+(Ω) |

∫
|x|pdµ < +∞

}
.

Then

Wp : Mp ×Mp → [0,+∞)

(µ, ν) 7→ min
{∫

Ω×Ω
|x− y|pdγ | γ ∈ Π(ν, µ)

} 1
p

is called the p-Wasserstein distance on (Ω, d). One can show that this function indeed
defines a distance onMp.
Further, we define the Wasserstein space of order p as Mp endowed with the distance Wp

and denote it by WMp
p (Ω). In the special case where all measures are normalized to one,

we denote by WPpp (Ω) the space

Pp(Ω) :=
{
µ ∈M+(Ω) | µ(Ω) = 1 and

∫
|x|pdµ < +∞

}
endowed with the distance Wp.
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2.1 Optimal Transport and the Continuity Equation

Definition 2.1.6 (Continuity equation, [6], [5]). Let Ω ⊂ Rd be either a bounded subset of
Rd or Rd itself and let I = (0, T ) ⊂ R be a time interval, let (µt)t∈I ⊂ P(Ω) be a family of
probability measures and let v : Rd × I → Rd, (x, t) 7→ vt(x) be a Borel velocity field such
that ∫ T

0

∫
Ω
|vt(x)| dµt(x)dt < +∞. (2.1)

We say that the pair (µt, vt) satisfies the continuity equation

∂tµt +∇ · (vtµt) = 0 (2.2)

on Ω× (0, T ) in the sense of distributions if for all ϕ ∈ C1
c (Ω× (0, T )) it holds∫ T

0

∫
Ω

(∂tϕ(x, t) + 〈∇xϕ(x, t), vt(x)〉) dµt(x)dt = 0. (2.3)

Remark 2.1.7. (a) The formulation includes homogeneous Neumann boundary condi-
tions on ∂Ω for vt if Ω is not Rd itself.

(b) In the case Ω = Rd it suffices that (2.3) holds for test functions ϕ ∈ C∞c (Rd). By a
regularization argument we then find that ϕ ∈ C1

c (Rd × (0, T )) is also possible. There-
fore, we need to consider ϕε = ϕ ∗ ρε ∈ C∞c (Rd × (0, T )) for a standard mollifier
(ρε)ε. In addition, the integrability condition on the velocity field v allows us to con-
sider bounded C1(Rd × (0, T )) functions with bounded gradient whose support has a
compact projection in (0, T ). This time we approximate such a test function ϕ by
ϕR = ϕχR where χR ∈ C∞c (Rd) with 0 ≤ χR ≤ 1, |∇χR| ≤ 2 and χR = 1 on BR(0)
[5, Remark 8.1.1].

The penalty term that will be used to regularize our ill-posed problem is given by the
Benamou-Brenier functional B. We are going to prove the relation of this functional to
optimal transport, i.e.

W p
p (µ, ν) = min {Bp(ρ, ω) | ∂tρ+∇x · ω = δ0 ⊗ µ− δT ⊗ ν}

= min
{∫ 1

0

∫
Ω
|vt(x)|p dρt(x)dt | ∂tρ+∇ · (vtρt) = 0, ρ0 = µ, ρ1 = ν

}
(2.4)

(under some suitable assumptions that will be stated later, see Theorem 2.1.16). The
important theorem for proving the above formula (2.4) is the following.

Theorem 2.1.8 (Absolutely continuous curves and the continuity equation [5]). Let I be
an open interval in R, let µt : I →WPpp (Rd) be an absolutely continuous curve. Then there
exists a Borel vector field v : R× I → Rd such that

vt ∈ Lp(µt;Rd) and ‖vt‖Lp(µt;Rd) ≤
∣∣µ′∣∣ (t) for L1-a.e. t ∈ I

and the continuity equation 2.2 holds in the sense of distributions. Here, |µ′| denotes the
metric derivative of the absolutely continuous curve µ.
Conversely, if a narrowly continuous curve µt : I →WPpp (Rd) satisfies the continuity equa-
tion (2.2) for some Borel field v with ‖vt‖Lp(µt;Rd) ∈ L1(I), then the curve (µt)t is absolutely
continuous and |µ′| (t) ≤ ‖vt‖Lp(µt;Rd) for L1-a.e. t ∈ I.
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Chapter 2 Preliminaries and Model Derivation

Remark 2.1.9. We stated Theorem 2.1.8 for the continuity equation on [0, T ]×Rd because
smoothing of measures, which is needed in the proof, is easier in this context compared the
case of considering the continuity equation on [0, T ] × Ω for Ω ⊂ Rd. Similar results hold
true for Ω ⊂ Rd compact, see for example [6, Theorem 5.14].

We start with proving the first statement of Theorem 2.1.8.

Proof: “AC ⇒ existence of vector field“. Using a Lipschitz reparametrization of µt
([5, Lemma 1.1.4]) and time rescaling of the continuity equation ([5, Lemma 8.1.3]) in the
end allows us to assume that |µ′| (t) ∈ L∞(I).
We start with investigating the behavior of the functions t 7→ µt(ϕ) =

∫
Rd ϕdµt for

ϕ ∈ C∞c (Rd). For s, t ∈ I and γs,t ∈ Π0(µs, µt) (the set of optimal plans with given marginals
µs and µt) we find, using the Hölder inequality,

|µt(ϕ)− µs(ϕ)| =
∣∣∣∣∫

Rd
ϕ(y)d((π2)#γs,t)(y)−

∫
Rd
ϕ(x)d((π1)#γs,t)(x)

∣∣∣∣
=
∣∣∣∣∫

Rd×Rd
(ϕ(y)− ϕ(x))dγs,t(x, y)

∣∣∣∣
≤ Lip(ϕ)Wp(µs, µt)

which shows absolute continuity of t 7→ µt(ϕ). Now that we know that this function is
absolute continuous we can investigate its derivative. Therefore, we define

H(x, y) :=

|∇ϕ(x)| if x = y,
|ϕ(x)−ϕ(y)|
|x−y| if x 6= y

which is a bounded and upper semi-continuous function. Using this function,
γs,s+h ∈ Π0(µs, µs+h) and again Hölder’s inequality, we find

|µs+h(ϕ)− µs(ϕ)|
|h|

≤ 1
|h|

∫
Rd×Rd

|x− y|H(x, y)dγs,s+h(x, y)

≤ Wp(µs, µs+h)
|h|

(∫
Rd×Rd

Hq(x, y)dγs,s+h(x, y)
) 1
q

.

Next, for any point t ∈ I for which the metric derivative of s 7→ µs(ϕ) exists, it holds

lim sup
h→0

|µt+h(ϕ)− µt(ϕ)|
|h|

≤
∣∣µ′∣∣ (t)(∫

Rd
|H|q (x, x)dµt(x)

) 1
q

=
∣∣µ′∣∣ (t) ‖∇ϕ‖Lq(µt;Rd) (2.5)

where we used the narrow convergence γs,s+h → (id, id)#µt as h→ 0. This convergence is
due to the fact that the marginals are narrowly converging and thus any limit point is an
element of Π0(µt, µt) and is concentrated on the diagonal of Rd × Rd.
Let Q = Rd × I and let µ =

∫
µtdt ∈ P(Q) be the measure having (µt)t as disintegration.

From the mean value theorem we get for any ϕ ∈ C∞c (Q) and h small enough

|ϕ(x, s)− ϕ(x, s− h)|
|h|

≤ |∂tϕ(x, ξh)| ≤ sup
(x,s)∈supp(ϕ)

|∂tϕ(x, s)| . 1.
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2.1 Optimal Transport and the Continuity Equation

This shows that
(
ϕ(x,s)−ϕ(x,s−h)

h

)
h>0

is uniformly bounded on a compact subset of Q and
thus dominated convergence yields∫

Q
∂sϕ(x, s)dµ(x, s) = lim

h↓0

∫
Q

ϕ(x, s)− ϕ(x, s− h)
h

dµ(x, s)

= lim
h↓0

∫
I

1
h

(∫
Rd
ϕ(x, s)dµs(x)−

∫
Rd
ϕ(x, s)dµs+h(x)

)
ds.

With (2.5) the last expression can be further estimated and we get with Fatou’s lemma and
Hölder’s inequality∣∣∣∣∫

Q
∂sϕ(x, s)dµ(x, s)

∣∣∣∣ ≤ lim sup
h↓0

∫
I

1
h
|µs+h(ϕ)− µs(ϕ)| ds

≤
∫
J

∣∣µ′∣∣ (s)(∫
Rd
|∇xϕ(x, s)|q dµs(x)

) 1
q

ds

≤
(∫

J

∣∣µ′∣∣p (s)ds
) 1
p
(∫

Q
|∇xϕ(x, s)|q dµ(x, s)

) 1
q

(2.6)

where J ⊂ I is an interval such that supp(ϕ) ⊂ J×Rd. Next, let us denote by V the closure
of V = {∇xϕ | ϕ ∈ C∞c (Q)} in the space Lq(µ;Rd). We define a linear functional

L : V → R, L(∇ϕ) := −
∫
Q
∂sϕ(x, s)dµ(x, s).

Due to (2.6) we can uniquely extend L to a bounded linear functional on V.
We consider now the minimization problem

min
ω∈V

{1
q

∫
Q
|ω(x, s)|q dµ(x, s)− L(ω) =: F (ω)

}
and show that it has a unique solution in V. Therefore, let (ωn)n be a minimizing sequence.
Then for any ϕ ∈ C∞c (Q) and n large enough we have

+∞ > F (∇xϕ) ≥ 1
q

∫
Q
|ωn(x, s)|q dµ(x, s)− L(ωn)

≥ 1
q
‖ωn‖qLq(µ;Rd) − C ‖ωn‖Lq(µ;Rd)

= ‖ωn‖Lq(µ;Rd)

(1
q
‖ωn‖q−1

Lq(µ;Rd) − C
)
,

showing that the minimizing sequence is uniformly bounded (for ‖ωn‖Lq(µ;Rd) > ((C +
ε)q)

1
q−1 , the uniform bound is established by the above estimate and for ‖ωn‖Lq(µ;Rd) ≤

((c + ε)q)
1
q−1 the norm is bounded anyway). This uniform bound of the norm shows the

existence of an ω ∈ V such that ωn ⇀ ω weakly in Lq(µ;Rd) along a subsequence. Due to the
weak lower semi-continuity of the objective function F we find that ω is a minimizer. Finally,
ω is the unique minimizer, since the

∫
Q |ω(x, s)|q dµ(x, s)-part of the objective function is

strictly convex. Now that we know that F admits a unique minimizer ω we have that

d

dt
F (ω + tv)|t=0 = 0

9



Chapter 2 Preliminaries and Model Derivation

for every v ∈ V. For the Gateaux differential we find

d

dt
F (ω + tv)|t=0 = d

dt

(1
q

∫
Q
|ω(x, s) + tv(x, s)|q dµ(x, s)− L(ω + tv)

)
|t=0

=
∫
Q
|ω(x, s)|q−2 〈ω(x, s), v(x, s)〉dµ(x, s)− L(v)

where the change of integration and differentiation is justified by

|ω + tv|q ≤ (|ω|+ |v|)q ∈ L1(µ) and∣∣∣|ω|q−2 〈ω, v〉
∣∣∣ ≤ |ω|q−1 |v| ∈ L1(µ)

for |t| ≤ 1. Using the function

jq : Lq(µ;Rd)→ Lp(µ;Rd), f 7→
{
|f |q−2 f if f 6= 0,
0 if f = 0

for 1
p + 1

q = 1 and choosing the vector field vt(x) = jq(ω)(x, t) we get

0 =
∫
Q
〈∇xϕ(x, t), vt(x)〉dµ(x, t)− L(∇xϕ)

=
∫
Q
〈∇xϕ(x, t), vt(x)〉dµ(x, t) +

∫
Q
∂tϕ(x, t)dµ(x, t)

for every ϕ ∈ C∞c (Q), showing that (µt, vt) satisfies the continuity equation in the sense of
distributions.
We are left to show the norm estimate

‖vt‖Lp(µt;Rd) ≤
∣∣µ′∣∣ (t).

Therefore, we take a sequence (∇xϕn)n ⊂ V that converges to ω in Lq(µ;Rd). Let η ∈
C∞c (J) for an interval J ⊂ I with 0 ≤ η ≤ 1. Then the convergence ∇xϕn → ω yields,
using Hölder’s inequality and the reversed triangle inequality,∣∣∣∣∫

Q
η〈v, ω〉dµ−

∫
Q
η〈v,∇xϕn〉dµ

∣∣∣∣ ≤ ∫
Q
|v| |∇xϕn − ω| dµ

≤‖v‖Lp(µ;Rd) ‖∇xϕn − ω‖Lq(µ;Rd)
n→∞−−−→ 0

and ∣∣∣‖ω‖Lq(µ;Rd) − ‖∇xϕn‖Lp(µ;Rd)

∣∣∣ ≤ ‖ω −∇xϕn‖Lp(µ;Rd)
n→∞−−−→ 0.

For the function jq we have the identities [5, section 8.3]

ω = jp(v) ⇐⇒ v = jq(ω) and

‖jp(v)‖q
Lq(µ;Rd) = ‖v‖p

Lp(µ;Rd) =
∫
Q
〈jp(v), v〉dµ.

10



2.1 Optimal Transport and the Continuity Equation

Taking everything together we get∫
Q
η(s) |v(x, s)|p dµ(x, s) =

∫
Q
η |v|p−2 〈v, v〉dµ

=
∫
Q
η〈v, ω〉dµ = lim

n→∞

∫
Q
η〈v,∇xϕn〉dµ

= lim
n→∞

L(∇x(ηϕn)) ≤
(∫

J

∣∣µ′∣∣p (s)ds
) 1
p

lim
n→∞

(∫
Rd×J

|∇x(ηϕn)|q dµ
) 1
q

≤
(∫

J

∣∣µ′∣∣p (s)ds
) 1
p
(∫

Rd×J
|ω|q dµ

) 1
q

≤
(∫

J

∣∣µ′∣∣p (s)ds
) 1
p
(∫

Rd×J
|v|p dµ

) 1
q

.

Finally, taking a smooth approximation (ηn)n ⊂ C∞c (J) of the characteristic function of J
yields ∫

J

∫
Rd
|vs(x)|p dµs(x)ds ≤

∫
J

∣∣µ′∣∣p (s)ds

and therefore

‖vt‖Lp(µt;Rd) ≤
∣∣µ′∣∣ (t)

for L1-a.e. t ∈ I.

The converse implication of Theorem 2.1.8 will be proven using regularization of measures
and a relation between solutions of an ordinary differential equation and distributional
solutions of the continuity equation. Therefore, we start by collecting some auxiliary results
from [5, Section 8.1] first.

Proposition 2.1.10. Let µt, t ∈ [0, T ], be a narrowly continuous family of Borel probability
measures solving the continuity equation w.r.t a Borel vector field vt satisfying∫ T

0

(
sup
B
|vt|+ Lip(vt, B)

)
dt <∞ for every compact set B ⊂ Rd

and satisfying (2.1). Then for µ0-a.e. x ∈ Rd the characteristic system

Xs(x, s) = x,
d

dt
Xt(x, s) = vt(Xt(x, s))

admits a globally defined solution Xt(x) in [0, T ] and

µt = (Xt)#µ0 ∀t ∈ [0, T ].

Lemma 2.1.11 (Approximation by regular curves, [5]). Let p ≥ 1 and let µt be a time con-
tinuous solution of the continuity equation w.r.t. a velocity field satisfying the p-integrability
condition ∫ T

0

∫
Rd
|vt(x)|p dµt(x)dt < +∞.

11
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Let (ηε)ε ⊂ C∞(Rd) be a family of strictly positive mollifiers (e.g. ρε(x) = (2πε)−d/2
exp(− |x|2 /2ε)), and set

µεt := µt ∗ ρε, Eεt := (vtµt) ∗ ρε, vεt := dEεt
dµεt

.

Then µεt is a continuous solution of the continuity equation w.r.t. vεt , which satisfy the local
regularity assumption∫ T

0

(
sup
B
|vεt |+ Lip(vεt , B)

)
dt <∞ for every compact set B ⊂ Rd

and the uniform integrability bounds∫
Rd
|vεt (x)|p dµεt (x) ≤

∫
Rd
|vt(x)|p dµt(x) ∀t ∈ (0, T ).

Moreover, Eεt → vtµt narrowly and

lim
ε↓0
‖vεt ‖Lp(µεt ;Rd) = ‖vt‖Lp(µt;Rd) ∀t ∈ (0, T ).

Lemma 2.1.12. Let p ≥ 1, µ ∈ P(Rd) and let E be an Rm-valued measure in Rd with
finite total variation and absolutely continuous w.r.t. µ. Then∫

Rd

∣∣∣∣d(E ∗ ρ)
d(µ ∗ ρ)

∣∣∣∣p µ ∗ ρdx ≤ ∫
Rd

∣∣∣∣dEdµ
∣∣∣∣p dµ

for any convolution kernel ρ.

Now we are ready to prove the second part of Theorem 2.1.8.

Proof: “Existence of vector field ⇒ µ is absolutely continuous“. We start with applying
Lemma 2.1.11 in order to get regular curves µεt , vεt satisfying the continuity equation. From
Proposition 2.1.10 we get the representation

µεt = (T εt )#µ
ε
0

where T εt is the maximal solution of the ODE d
dtT

ε
t = vεt (T εt ) with initial condition T ε0 = x

(we refer to Section 8.1 in [5] for further details). We find for t1 ≤ t2 ∈ [0, T ], using Hölder’s
inequality, Fubini and Lemma 2.1.12,∫

Rd

∣∣T εt2(x)− T εt1(x)
∣∣p dµε0(x) ≤

∫ d

R

∣∣∣∣∫ t2

t1

d

dt
T εt (x)dt

∣∣∣∣p dµε0(x)

≤ (t2 − t1)p−1
∫
Rd

∫ t2

t1

∣∣∣∣ ddtT εt (x)
∣∣∣∣p dtdµε0(x)

= (t2 − t1)p−1
∫ t2

t1

∫
Rd
|vεt (T εt (x))|p dµε0(x)dt

= (t2 − t1)p−1
∫ t2

t1

∫
Rd
|vεt (x)|p dµεt (x)dt

≤ (t2 − t1)p−1
∫ t2

t1

∫
Rd
|vt(x)|p dµt(x)dt

12



2.1 Optimal Transport and the Continuity Equation

where the use of Fubini is justified by the uniform integrability bounds on the approximation
vεt and ‖vt‖Lp(µ;Rd) ∈ L1(I), i.e. we have∫

I

∫
Rd
|vεt (x)|p dµεt (x)dt ≤

∫
I

∫
Rd
|vt(x)|p dµt(x)dt < +∞.

Consider now the transport plan γε := (T εt1 , T
ε
t2)#µ

ε
0. The above calculation shows

W p
p (µεt1 , µ

ε
t2) ≤

∫
Rd×Rd

|x− y| dγε(x, y) =
∫
Rd

∣∣T εt2(x)− T εt1(x)
∣∣p dµε0(x)

≤ (t2 − t1)p−1
∫ t2

t1

∫
Rd
|vt(x)|p dµt(x)dt.

We have that µεt converges narrowly to µt for all t ∈ I as ε → 0. Since the Wasserstein
distance is narrowly lower semi-continuous [5, Proposition 7.1.3] we find

W p
p (µt1 , µt2) ≤ (t2 − t1)p−1

∫ t2

t1

∫
Rd
|vt(x)|p dµt(x)dt.

As t1 and t2 were arbitrary, this implies the absolute continuity of (µt)t and for the metric
derivative we find for L1-a.e. t ∈ I

∣∣µ′∣∣ (t) = lim
h→0

Wp(µt+h, µt)
|h|

≤
(

lim
h→0

1
|h|

∫ t+h

t

∫
Rd
|vt(x)|p dµt(x)dt

) 1
p

= ‖vt‖Lp(µt,Rd) .

The last part of this section describes the connection between the Wasserstein distance
and the continuity equation. First, we introduce the Benamou-Brenier functional and state
some important properties.

Definition 2.1.13 (Benamou-Brenier functional). Let p > 1, Ω ⊂ Rd and

Φp : R× Rd → [0,+∞], (t, x) 7→


|x|p
tp−1 if t > 0,
0 if (t, x) = (0, 0),
+∞ if t < 0 or t = 0, x 6= 0.

We define the Benamou-Brenier functional

Bp : M([0, T ]× Ω)×M([0, T ]× Ω)d → [0,+∞], (ρ, ω) 7→
∫

[0,T ]×Ω
Φp

(
dρ

dλ
,
dω

dλ

)
dλ

where λ is any nonnegative Borel measure such that |(ρ, ω)| � λ, i.e. the total variation of
the measure (ρ, ω) is absolutely continuous w.r.t. λ [9].

Lemma 2.1.14 (Properties of Bp). Let p > 1 and Ω ⊂ Rd.
(a) The definition of Bp does not depend on the choice of λ;

13



Chapter 2 Preliminaries and Model Derivation

(b) It is Bp(ρ, ω) < +∞ only if ρ ≥ 0 and ω � ρ. In this case we can write

Bp(ρ, ω) =
∫

[0,T ]×Ω

∣∣∣∣dωdρ
∣∣∣∣p dρ;

(c) For Ω ⊂ Rd compact or Rd itself, Bp is convex and lower semi-continuous w.r.t.
weak-* convergence.

Proof. (a) Since the function Φp from the definition of Bp is 1-homogeneous, the definition
of Bp does not depend on the choice of λ [9].

(b) To see that Bp(ρ, ω) is only finite if ρ ≥ 0 [6, Proposition 5.18], suppose there would
exist a measurable set A, λ(A) > 0, such that dρ

dλ < 0 λ-a.s. on A, i.e. ρ(A) < 0.
Then

Bp(ρ, ω) ≥
∫
A

Φp

(
dρ

dλ
,
dω

dλ

)
dλ = +∞

yields a contradiction. To see that Bp(ρ, ω) is finite only if ω � ρ [6, Proposition
5.18], suppose we had a measurable set A ⊂ [0, T ]×Rd with ρ(A) = 0, λ(A) 6= 0 and
ω(A) 6= 0. If such a set does not exist then we either have ω � ρ or λ � ρ, and the
letter case implies ω � λ � ρ and hence ω � ρ as well. For such a set A we find
dρ
dλ |A = 0 λ-a.s. and

∣∣∣dωdλ |B∣∣∣ > 0 λ-a.s. for some measurable B ⊂ A. With this we find

Bp(ρ, ω) ≥
∫
B

Φp

(
dρ

dλ
,
dω

dλ

)
dλ = +∞

which contradicts our assumption Bp(ρ, ω) < +∞.
If it holds ω � ρ, then we can write

Bp(ρ, ω) =
∫

[0,T ]×Ω
Φp

(
1, dω
dρ

)
dρ =

∫
[0,T ]×Ω

∣∣∣∣dωdρ
∣∣∣∣p dρ.

(c) For 1
p + 1

q = 1 we consider the closed convex set

Kq =
{

(a, b) ∈ R× Rd | a+ 1
q
|b|q ≤ 0

}
and the indicator function

ιKq(t, x) =
{

0 if (t, x) ∈ Kq,

+∞ else.

Then we have for the function Φp from the definition of Bp [6, Lemma 5.17]

p(ιKq)∗ = Φp

where (·)∗ denotes the Fenchel-Legendre conjugate. Since the Fenchel-Legendre con-
jugate is always convex and lower semi-continuous, we have that Φp has these prop-
erties. This directly guarantees the convexity of Bp. Its lower semi-continuity w.r.t.

14



2.1 Optimal Transport and the Continuity Equation

the weak-* convergence follows from [7, Theorem 2.34] which states the lower semi-
continuity of functionals of the form

∫
f
(
dω
dρ

)
dρ. To see this, consider a sequence

(ρn, ωn) ∗−⇀ (ρ, ω). If lim infn→∞ Bp(ρn, ωn) = +∞, then there is nothing to show. We
can thus assume w.l.o.g. that B(ρn, ωn) < +∞ for all n and (B(ρn, ωn))n is bounded.
From part (b) we get that ωn � ρn. Then [7, Theorem 2.34 and Example 2.36] shows∫

[0,T ]×Ω

∣∣∣∣dωdρ
∣∣∣∣p dρ ≤ lim inf

n→∞

∫
[0,T ]×Ω

∣∣∣∣dωndρn

∣∣∣∣p dρn.
Note, that we need to extend the measures by zero to an open set A ⊃ [0, T ] × Ω in
order to be able to apply the mentioned theorem. Since [0, T ] × Ω is compact, local
weak-* convergence of (ρ̃n, ω̃n) on A follows from weak-* convergence of (ρn, ωn) on
[0, T ]× Ω. Such an extension for a measure µ is given by

µ̃ : B(A)→ [0,+∞], S 7→ µ(S ∩ [0, T ]× Ω).

Within our reconstruction method we use Bp to regularize the problem (see Section 2.3.3 and
2.3.4). We are interested in a convex regularization term in order to have a convex objective
function which makes the optimization easier. Therefore, we will consider a slightly more
general formulation of the continuity equation [10, Definition 1.1.1 without source term]
that will basically result in the previous formulation 2.3 within our modeling approach. We
consider either a compact subset Ω ⊂ Rd or Ω = Rd.
Let µ, ν ∈ M+([0, T ]× Ω) with |µ| = |ν|. We say that the pair (ρ, ω) ∈ M :=M+([0, T ]×
Ω)×M([0, T ]× Ω)d satisfies the continuity equation

∂tρ+∇xω = δ0 ⊗ µ− δT ⊗ ν

between µ and ν in the distributional sense if for all ϕ ∈ C1
c ([0, T ]× Ω) it holds∫

[0,T ]×Ω
∂tϕ(t, x)dρ(t, x) +

∫
[0,T ]×Ω

〈∇xϕ(t, x), dω(t, x)〉 =
∫

Ω
ϕ(T, ·)dν −

∫
Ω
ϕ(0, ·)dµ.

(2.7)

One can remove the time boundary constraints by testing against ϕ ∈ C1
c ((0, T )× Ω).

Lemma 2.1.15 (Conservation of mass and continuous representative, [10]). Let Ω ⊂ Rd be
either compact or Rd itself. If (ρ, ω) satisfies the continuity equation 2.7 from ρ0 to ρT and
Bp(ρ, ω) < +∞, then ρ and ω admit a disintegration with respect to the Lebesgue measure
in time, i.e. we have ρ = ρt ⊗ dt and ω = ωt ⊗ dt and the weak derivative of the function
(0, T )→ R, t 7→ ρt(Ω) is zero. Moreover, we can write

Bp(ρ, ω) =
∫ T

0

∫
Ω

∣∣∣∣dωtdρt

∣∣∣∣p dρtdt.
Additionally, there exists a narrowly continuous curve ρ̃ ∈M([0, T ]×Ω) that dt-a.e. equals
ρt such that t 7→ ρ̃t(Ω) is continuous and constant.
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Chapter 2 Preliminaries and Model Derivation

Proof. We use functions ϕ ∈ C1([0, T ]× Ω) which are constant in the space variable. This
gives us

(ϕ(T )− ϕ(0))ρ0(Ω) = ϕ(T )ρT (Ω)− ϕ(0)ρ0(Ω)

=
∫ T

0

∫
Ω
ϕ′(t)dρ(t, x) =

∫ T

0
ϕ′(t)d(πt#ρ)(t)

where πt : [0, T ]×Ω→ R, (t, x) 7→ t. The above equation implies that πt#ρ = ρ0(Ω)dt. By
the disintegration theorem [5, theorem 5.3.1] one always has ρ = ρ̃t ⊗ πt#ρ for ρ̃t ∈ M(Ω)
for all t. Thus, we end up with the decomposition ρ = ρt ⊗ dt when we set ρt = ρ0(Ω)ρ̃t.
The disintegration in time can be used to derive that the function t 7→ ρt(Ω) is constant in
time. Let ϕ ∈ C∞c ((0, T )). Then, using that ρ satisfies the continuity equation,∫ T

0
ϕ′(t)ρt(Ω)dt =

∫ T

0

∫
Ω
ϕ′(t)dρtdt = 0,

implying that the weak derivative of t 7→ ρt(Ω) is zero.
Next, using the assumption Bp(ρ, ω) < +∞, we get ω � ρ by Lemma 2.1.14 which gives us
a disintegration w.r.t. the Lebesgue measure in time of ω because of ρ = ρt ⊗ dt. Thus, it
holds

Bp(ρ, ω) =
∫ T

0

∫
Ω

∣∣∣∣dωtdρt

∣∣∣∣p dρtdt.
Finally, [5, Lemma 8.1.2] (if Ω = Rd) and [10, Proposition 1.1.3] (if Ω is compact) guarantee
the existence of a narrowly continuous representative ρ̃t for which t 7→ ρt(Ω) is continuous
and constant.

Theorem 2.1.16 ([5],[6]). Let Ω ⊂ Rd be either compact and convex or Rd itself. Then for
p ≥ 1 and µ, ν ∈M+(Ω) with equal mass it holds

W p
p (µ, ν) = T p−1 min

{∫ T

0

∫
Ω
|vt(x)|p dρt(x)dt | ∂tρt +∇x(vtρt) = 0, ρ0 = µ, ρT = ν

}
= T p−1 min {Bp(ρ, ω) | ∂tρ+∇xω = δ0 ⊗ µ− δT ⊗ ν} .

Proof. The statement follows from Theorem 2.1.8 and the fact that we have constant speed
geodesics in P(Ω) [5, Theorem 7.2.2], [6, Theorem 5.27]. We first assume µ, ν ∈ P(Ω).
For any absolutely continuous curve (ρt)t ⊂ WPpp (Ω) with ρ0 = µ and ρT = ν (note, that
ρt = t

T ν + T−t
T µ is such a curve) we have, using Theorem 2.1.8 and Hölder’s inequality,

W p
p (µ, ν) ≤

(∫ T

0

∣∣ρ′∣∣ dt)p ≤ T p−1
∫ T

0

∣∣ρ′∣∣p (t)dt ≤ T p−1
∫ T

0
‖vt‖pLp(ρt;Ω) dt.

Next, take a constant speed geodesic

γ : [0, 1]→ P(Ω) with γ(0) = µ, γ(1) = ν.

It holds Wp(γt, γs) = Wp(γ0, γ1) |t− s| and thus we have |γ′| = Wp(γ0, γ1) = const. Apply-
ing again Theorem 2.1.8 we find

W p
p (µ, ν) =

(∫ 1

0

∣∣γ′∣∣ dt)p = W p
p (γ0, γ1) =

∫ 1

0

∣∣γ′∣∣p (t)dt ≥
∫ 1

0
‖vt‖pLp(γt;Ω) dt.
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2.1 Optimal Transport and the Continuity Equation

Finally, we use rescaling in time [5, Lemma 8.1.3] to achieve a curve γ̃ : [0, T ] → P(Ω).
Therefore, consider f : [0, T ]→ [0, 1], t 7→ t

T . Then it holds∫ 1

0

∫
Ω
|vt(x)|p dγt(x)dt = 1

T

∫ T

0

∫
Ω

∣∣∣vf(t)(x)
∣∣∣p dγf(t)(x)dt

= T p−1
∫ T

0

∫
Ω

∣∣∣(f−1)′(t)vf(t)(x)
∣∣∣p dγf(t)(x)dt

and (γf(t), (f−1)′(t)vf(t)) solves the continuity equation on Ω× [0, T ]. In total, this gives us
the first desired equation

W p
p (µ, ν) = T p−1 min

{∫ T

0

∫
Ω
|vt(x)|p dρt(x)dt | ∂tρt +∇x(vtρt) = 0, ρ0 = µ, ρT = ν

}
.

Switching to the variable ωt = vtρt and taking into account Lemma 2.1.15 yields the second
equation

W p
p (µ, ν) = T p−1 min {Bp(ρ, ω) | ∂tρ+∇xω = δ0 ⊗ µ− δT ⊗ ν} .

For µ, ν ∈M+(Ω) we have with the above considerations

W p
p (µ, ν) = |µ|W p

p

(
µ

|µ|
,
ν

|ν|

)
= |µ|T p−1 min

{∫ T

0

∫
Ω
|vt(x)|p dρt(x)dt | ∂tρt +∇x(vtρt) = 0, ρ0 = µ

|µ|
, ρT = ν

|ν|

}

= T p−1 min
{∫ T

0

∫
Ω
|vt(x)|p dρt(x)dt | ∂tρt +∇x(vtρt) = 0, ρ0 = µ, ρT = ν

}
= T p−1 min {Bp(ρ, ω) | ∂tρ+∇xω = δ0 ⊗ µ− δT ⊗ ν} .

The advantage of considering the minimization problem

min {Bp(ρ, ω) | ∂tρ+∇xω = δ0 ⊗ µ− δT ⊗ ν}

instead of

min
{∫ T

0

∫
Ω
|vt(x)|p dρt(x)dt | ∂tρt +∇x(vtρt) = 0, ρ0 = µ, ρT = ν

}

is that the first problem is convex with linear constraints and the second one is non-convex
((x, t) 7→ t |x|p is not convex) with non-linear constraints (due to the term vtρt) [6, Section
6.1].
We want to use optimal transport to regularize the ill-posed problem considered in this
thesis and described in Section 2.3.4. Therefore, we introduce

S(ρ, ω) :=


∫ T

0
∫
Ω

(
dωt
dρt

)2
dρtdt if ρ ≥ 0, ω � ρ and (2.7) holds,

+∞ else

17



Chapter 2 Preliminaries and Model Derivation

The reconstruction of the material distribution will be found by minimizing an objective
function of the form (ρ, ω) 7→ f(ρ) + λS(ρ, ω). Due to the constraint that (ρ, ω) should
satisfy the continuity equation and since S(ρ, ω) needs to be finite at the minimum, Lemma
2.1.15 implies that we can write

B2(ρ, ω) = S(ρ, ω)

in this case.

18



2.2 Poisson Point Processes

2.2 Poisson Point Processes

In Section 2.3.4 we derive a reconstruction method that uses PET data to determine a
temporally evolving distribution of radioactive material. Due to the stochastic character of
radioactive decay we use a stochastic model to describe the important physical processes
that lead to the PET data. This is done using Poisson point processes (PPP). Therefore, we
introduce Poisson point processes in this section and state the most important properties
needed in this thesis. Mainly, this section is taken from [11] and [12].
We start with the definition of a point process. Point processes can be seen as a random
collection of sets in some space X. To define this rigorously, let (X,X ) be a measurable space
and let N<∞(X) =: N<∞ denote the space of all measures µ on X satisfying µ(B) ∈ N0 for
all B ∈ X . Let N := N(X) be the space of all measures that can be written as a countable
sum of measures from N<∞. Let further N := N (X) denote the σ-algebra generated by
the collection of all subsets of N having the form

{µ ∈ N | µ(B) = k} , B ∈ X , k ∈ N0.

This means that N is the smallest σ-algebra on N such that µ 7→ µ(B) is measurable for
all B ∈ X .

Definition 2.2.1 (Point process). A point process on X is a measurable map

η : (Ω,F)→ (N,N ),

i.e. an N-valued random variable.

For a point process η and B ∈ X we call η(B) the (random) number of points of η in B.
Denote by η(B) the mapping ω 7→ η(ω,B) := η(ω)(B). Then η(B) is a random variable
taking values in N0 := N0 ∪ {+∞} due to the definition of η and N , i.e. we have

{η(B) = k} = {ω ∈ Ω | η(ω,B) = k} ∈ F , B ∈ X , k ∈ N0. (2.8)

On the other hand, a mapping η : Ω→ N is a point process if (2.8) holds.
An important characteristic of a point process is its mean number of points lying in an
measurable set which is characterized by the process’ intensity measure:

Definition 2.2.2 (Intensity measure). The intensity measure of a point process η on X is
the measure λ defined by

λ(B) := E [η(B)] , B ∈ X .

Basic properties of the expectation show that the intensity measure indeed is a measure.

A Poisson point process is a point process with the number of points in a given set being
distributed according to a Poisson distribution.

Definition 2.2.3 (Poisson point process). Let λ be an s-finite measure, i.e. a countable
sum of finite measures on X. A Poisson point process with intensity measure λ is a point
process η on X with the properties:
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1. For every B ∈ X the distribution of η(B) is Poisson with parameter λ(B), i.e.
P(η(B) = k) = λ(B)k

k! exp(−λ(B)) for all k ∈ N0.
2. For every m ∈ N and all pairwise disjoint sets B1, . . . , Bm ∈ X the random variables

η(B1), . . . , η(Bm) are independent.

Poisson processes with σ-finite intensity measure (which is satisfied in our model as we are
dealing with finite measures) on complete separable metric spaces X are proper, i.e. there
exist random elements X1, X2, . . . in X and an N0-valued random variable κ such that al-
most surely η =

∑κ
n=1 δXn [11, Corollary 6.5]. This way the point process can be interpreted

as a countable random set of points in X (with possible repetitions). Moreover, a Poisson
process η on a complete separable metric space X with s-finite intensity measure λ is simple,
i.e. we have η(ω)({x}) ≤ 1 with probability one, if and only if for its intensity measure it
holds λ({x}) = 0 for all x ∈ X [11, Proposition 6.9]. As these characterizations hold for the
intensity measures in our model, we are considering simple and proper Poisson processes
and thus our considered processes fit the intuition of a point process being a random set of
points.

An interesting result on (Poisson) point processes is Campbell’s formula which relates the
expectation of an integral with respect to a (Poisson) point process to an integral with
respect to its intensity measure. We only state the version for Poisson processes here, since
this allows us to give a formula for the variance as well. Parts of the following theorem are
also valid for more general point processes (see [11], Proposition 2.7).

Theorem 2.2.4 (Campbell’s formula [11],[12]). Let η be a Poisson point process on (X,X )
with σ-finite intensity measure λ. Let u : X→ R be measurable and set
D := {z ∈ C | Re(z) < 0}. Then Su :=

∫
u(x)η(dx) =

∑
x∈η u(x) is a random variable and

the sum converges absolutely if and only if∫
X

(|u(x)| ∧ 1)λ(dx) < +∞. (2.9)

If this condition holds, then for u ≥ 0 and θ ∈ D

E
[
eθSu

]
= exp

{∫
X

(eθu(x) − 1)λ(dx)
}
. (2.10)

For measurable u the above formula holds for θ ∈ iR. Moreover, it is

E
[∫

u(x)η(dx)
]

=
∫
X
u(x)λ(dx) (2.11)

in the sense that the expectation exists if and only if the integral
∫
X u(x)λ(dx) converges. If

(2.11) converges, then

V
[∫

u(x)η(dx)
]

=
∫
X
u2(x)λ(dx), (2.12)

finite or infinite.
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Proof. We start with proving that Su is a random variable. First, let u(x) = 1B(x) for
some B ∈ X . We get ∫

u(x)η(dx) = η(B)

which is measurable (i.e. Su is a random variable) due to the definition of the σ-algebra N .
Extending this result first to measurable simple functions, then to non-negative measurable
functions and finally to arbitrary measurable functions by using standard techniques of
measure theory shows that Su is a random variable.
We now prove (2.10). We start with considering simple functions, i.e. functions taking
only finitely many different values and vanishing outside a set of finite measure. For such
a function u(x) =

∑n
i=1 ui1Ai(x) with pairwise disjoint measurable sets Ai the random

variables ηi = η(Ai) ∼ Poi(λi), λi = λ(Ai), are independent and

Su =
∑
x∈η

u(x) =
n∑
i=1

uiηi.

This gives us

E
[
eθSu

]
= E

[
eθ
∑n

i=1 uiηi
]

=
n∏
i=1

E
[
eθuiηi

]
=

n∏
i=1

∞∑
k=1

eθuik
λki
k! e
−λi =

n∏
i=1

eλi(e
θui−1)

= e
∑n

i=1 λi(e
θui−1) = e

∑n

i=1

∫
Ai

(eθu(x)−1)λ(dx) = exp
{∫

X
(eθu(x) − 1)λ(dx)

}
.

For simple functions this equation holds for all θ ∈ C. Next, we take u ≥ 0 and θ = −t for
some t ∈ (0,∞). There exists an increasing sequence of simple functions uj converging to
u. Then Suj (ω) j→∞−−−→ Su(ω) for every realization ω ∈ Ω by monotone convergence. Using
dominated and monotone convergence we find

E
[
e−tSu

]
= lim

j→∞
E
[
e−tSuj

]
= lim

j→∞
exp

{∫
X

(e−tuj(x) − 1)λ(dx)
}

= lim
j→∞

exp
{
−
∫
X

(1− e−tuj(x))λ(dx)
}

= exp
{
−
∫
X

(1− e−tu(x))λ(dx)
}
.

If (2.9) holds, we can compute the limit t → 0 for the last integral using dominated con-
vergence. From the mean value theorem we get∣∣∣e−tu(x) − 1

∣∣∣ ≤ |tu(x)|

and for u ≥ 0 it always holds ∣∣∣1− e−tu(x)
∣∣∣ ≤ 1.

Thus,
∣∣∣1− e−tu(x)

∣∣∣ ≤ |tu(x)| ∧ 1 ≤ (t ∨ 1)(|u(x)| ∧ 1). The last function is assumed to be
integrable. Hence, we get by dominated convergence

lim
t→0

E
[
e−tSu

]
= lim

t→0
exp

{
−
∫
X

(1− e−tu(x))λ(dx)
}

= 1.
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This shows that Su is a finite random variable because if we had Su =∞ on some measurable
set A with P (A) > 0 we would get

1 = lim
t→0

E
[
e−tSu

]
= lim

t→0
E
[
e−tSu1Ac

]
≤ E [1Ac ] = 1− P(A) < 1.

This contradiction shows Su < +∞ almost surely.
The next step is to show that both sides of (2.10) are analytic functions onD and continuous
on D if we take u ≥ 0. From this we can conclude by the identity theorem for analytic
functions that (2.10) holds for u ≥ 0 because we have already shown equality on the negative
real line. To show analyticity on D of the two functions

θ 7→ E
[
eθSu

]
and θ 7→ exp

{∫
X

(eθu(x) − 1)λ(dx)
}

(2.13)

in (2.10), we use Morera’s theorem. To apply this theorem, we need to show continuity of the
two functions on D as well as that the integral over each closed and piecewise continuously
differentiable curve in D vanishes. Note, that the domain of each function in (2.13) can be
extended to D because the expectation and the integral exist on D. This is established by
the following considerations that show the continuity of the functions.
We start with the left side. Let θn

n→∞−−−→ θ in D. Since Re(θn) ≤ 0, we have
∣∣∣eθnSu ∣∣∣ ≤ 1.

Dominated converges then yields

lim
n→∞

E
[
eθnSu

]
= E

[
eθSu

]
which establishes continuity. Next, let γ be a closed and piecewise C1 curve in D. Using
Fubini’s theorem and analyticity of the function z 7→ ezSu almost everywhere (Cauchy’s
integral theorem states that

∮
γ f(z)dt = 0 for γ closed and piecewise C1 and f holomorphic

and from Su < +∞ we get that z 7→ ezSu is analytic a.e.) we have∮
γ
E
[
ezSu

]
dz =

∫ 1

0
E
[
eγ(t)Su

]
γ′(t)dt = E

[∫ 1

0
eγ(t)Suγ′(t)dt

]
= E

[∮
γ
ezSudz

]
= 0.

The use of Fubini is justified by

E
[∫ 1

0

∣∣∣eγ(t)Suγ′(t)
∣∣∣ dt] ≤ ∥∥γ′∥∥∞ E

[∫ 1

0
eγ(t)Sudt

]
. 1.

A similar approach shows that the right side of (2.10) is holomorphic on D as well. Let
again θ1

n + iθ2
n = θn → θ in D. We can estimate∣∣∣eθnu(x) − 1
∣∣∣ =

∣∣∣eθ1
nu(x)eiθ

2
nu(x) − 1

∣∣∣ ≤ ∣∣∣eθ1
nu(x)(eiθ2

nu(x) − 1)
∣∣∣+ ∣∣∣eθ1

nu(x) − 1
∣∣∣

≤ 2 ∧ |θ2
n|u(x) + 1 ∧ θ1

nu(x) ≤ (2 ∨ |θ2
n|+ 1 ∨ θ1

n)(1 ∧ u(x)) . 1 ∧ u(x), (2.14)

where we used
∣∣eit − 1

∣∣ ≤ 2 ∧ |t| ([13, Lemma 4.14]) and
∣∣∣e−tu(x) − 1

∣∣∣ ≤ 1 ∧ |tu(x)| (which
we have derived above). Then, dominated convergence yields continuity

exp
{∫

X
(eθnu(x) − 1)λ(dx)

}
n→∞−−−→ exp

{∫
X

(eθu(x) − 1)λ(dx)
}
.
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To show that the function is holomorphic, it suffices to show that the function z 7→∫
X(ezu(x) − 1)λ(dx) is holomorphic on D because the composition of holomorphic func-
tions again is holomorphic. Therefore, let γ be a closed piecewise C1 curve in D. Using
Cauchy’s integral theorem applied to the holomorphic functions z 7→ (ezu(x) − 1) we have∮

γ

∫
X

(ezu(x) − 1)λ(dx)dz =
∫ 1

0

∫
X

(eγ(t)u(x) − 1)λ(dx)γ′(t)dt

=
∫
X

∫ 1

0
(eγ(t)u(x) − 1)γ′(t)dtλ(dx)

=
∫
X

∮
γ

(
ezu(x) − 1

)
dzλ(dx) = 0,

where the change of the order of integration is justified by Fubini’s theorem since we have
with (2.14)∫
X

∫ 1

0

∣∣∣(eγ(t)u(x) − 1)γ′(t)
∣∣∣ dtλ(dx) ≤

∫
X

∫ 1

0
(2 ∨ |γ2|(t) + 1 ∨ γ1(t))(1 ∧ u(x))

∣∣γ′(t)∣∣ dtλ(dx)

≤
∥∥∥γ′ (2 ∨ |γ2|+ 1 ∨ γ1

)∥∥∥
∞

∫
X

1 ∧ u(x)λ(dx) . 1.

Next, we show that (2.9) is necessary for Su to converge. If (2.9) does not hold, we have
Su = +∞ with probability one. To see this, we use the mean value theorem to deduce for
0 ≤ u(x) < 1

e−tu(x) − 1
t

= −u(x)e−t̃u(x) ⇒ e−tu(x) − 1 ≤ −tu(x)e−t ⇔ 1− e−tu(x) ≥ tu(x)e−t

where 0 < t̃ < 1. Then we find∫
X

(1− e−tu(x))λ(dx) =
∫
X
11≤u(x)(1− e−tu(x))λ(dx) +

∫
X
11>u(x)(1− e−tu(x))λ(dx)

≥
∫
X
11≤u(x)(1− e−t)λ(dx) + te−t

∫
X
11>u(x)u(x)λ(dx)

≥ (1− e−t)
∫
X
11≤u(x)λ(dx) + te−t

∫
X
11>u(x)u(x)λ(dx)

≥ (1− e−t ∧ te−t)
∫
X

(1 ∧ u(x))λ(dx) = +∞,

showing that E
[
e−tSu

]
= 0, hence Su = +∞ almost surely. Up to now the theorem is

proved for u ≥ 0.

For an arbitrary measurable function u we consider

u+ = u ∨ 0 and u− = −u ∨ 0

and the restrictions η+ and η− of η to the sets {u > 0} and {u < 0} respectively. Moreover,
let

S+
u =

∑
x∈η

u+(x) =
∑
x∈η+

u(x) and S−u =
∑
x∈η

u−(x) =
∑
x∈η−

u(x).
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The Poisson processes η+ and η− are independent since {u > 0} and {u < 0} are disjoint
and from the definition of the σ-algebra N we get that the function

f : (N,N ) 7→ (R,B(R)), ξ 7→
∫
udξ

is measurable for u ≥ 0. Thus, S+
u = f ◦ η+ and S−u = f ◦ η− are independent. We now

apply the results above. This yields convergence of the sums S+
u and S−u if and only if the

integrals ∫
X
u+(x) ∧ 1λ(dx) and

∫
X
u−(x) ∧ 1λ(dx)

and hence ∫
X
u+(x) ∧ 1λ(dx) +

∫
X
u−(x) ∧ 1 =

∫
X

(|u(x)| ∧ 1)λ(dx)

are finite. Since the sums S+
u and S−u converge if and only if

Su =
∑
x∈η

u(x)

converges absolutely, (2.9) is a necessary and sufficient condition for Su to converge ab-
solutely. Finally, if (2.9) holds and θ ∈ iR, using the independence of S+

u and S−u , we
get

E
[
eθSu

]
= E

[
eθS

+
u −θS−u

]
= E

[
eθS

+
u

]
E
[
e−θS

−
u

]
= exp

{∫
X

(eθu+(x) − 1)λ(dx)
}

exp
{∫

X
(e−θu−(x) − 1)λ(dx)

}
= exp

{∫
X

(
eθu

+(x) + e−θu
−(x) − 2

)
λ(dx)

}
= exp

{∫
X

(eθu(x) − 1)λ(dx)
}
.

Next, we prove the formulas for the expectation and the variance. Therefore, we take a
simple function u and purely imaginary θ in (2.10) and consider the formula

ϕSu(t) = E
[
eitSu

]
= exp

{∫
X

(eitu(x) − 1)λ(dx)
}
.

It is

E [Su] = 1
i

d

dt
ϕSu(0) and E

[
S2
u

]
= 1
i2
d2

dt2
ϕSu(0)

if the second derivative of the characteristic function ϕSu(t) exists [14, Theorem 15.34 and
Theorem 15.31]. We get

d

dt
E
[
eitSu

] ∣∣∣∣∣
t=0

= exp
{∫

X
(eitu(x) − 1)λ(dx)

}
d

dt

∫
X

(eitu(x) − 1)λ(dx)
∣∣∣∣∣
t=0

= i

∫
X
u(x)λ(dx),
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where the change of integration and differentiation is justified by x 7→ (eitu(x) − 1) being
dominated in a neighborhood around t = 0 by an integrable function due to u(x) taking
nonzero, finite values only in a set of finite measure. The same is true for the derivative
d
dt(e

itu(x) − 1) = u(x)eitu(x). Continuing in a similar way we compute

d2

dt2
E
[
eitSu

] ∣∣∣∣∣
t=0

= d

dt

[
exp

{∫
X

(eitu(x) − 1)λ(dx)
}
d

dt

∫
X

(eitu(x) − 1)λ(dx)
] ∣∣∣∣∣
t=0

= exp
{∫

X
(eitu(x) − 1)λ(dx)

}(
d

dt

∫
X

(eitu(x) − 1)λ(dx)
)2
∣∣∣∣∣
t=0

+ exp
{∫

X
(eitu(x) − 1)λ(dx)

}
d2

dt2

∫
X

(eitu(x) − 1)λ(dx)
∣∣∣∣∣
t=0

=
(
i

∫
X
u(x)λ(dx)

)2
+ i2

∫
X
u2(x)λ(dx),

using the same arguments as above for the change of integration and differentiation. This
gives us

V
[∫

u(x)η(dx)
]

= E
[(∫

u(x)η(dx)
)2
]
− E

[∫
u(x)η(dx)

]2
=
∫
X
u2(x)λ(dx).

Thus, we justified the formulas (2.11) and (2.12) in the case of u being a simple function.
Next, for u ≥ 0 measurable there exists a sequence of simple functions un converging mono-
tonically to u. Monotone convergence yields the formulas for expectation and variance for
nonnegative functions as long as

∫
X u(x)λ(dx) < +∞. For arbitrary measurable functions u

we split u into positive and negative part u = u+−u− both for which the two formulas hold
as u+ and u− are non-negative. Thus, E [Su] exists if and only if the integral

∫
X u(x)λ(dx)

converges, i.e. both integrals
∫
X u+(x)λ(dx) and

∫
X u−(x)λ(dx) are finite. This establishes

(2.11). In this case the variance is well-defined and formula (2.12) follows with similar
arguments.

In the theorem above we only have expressions for the expectation and the variance of the
random variable Su. Later we can improve our results by using higher order central moments
of Su instead of the variance. The expressions for those moments are more complex and we
will give a formula in the following lemma.

Lemma 2.2.5. Let η be a Poisson point process on (X,X ) with σ-finite intensity measure
λ, and let n ∈ N and u : X→ R be measurable such that∫

X
|u|j dλ < +∞

for j = 1, 2, . . . , N where N = n if n is even and N = n + 1 if n is odd. We set
Su =

∫
u(x)η(dx) =

∑
x∈η u(x). Then we have

E [(Su − E [Su])n] =
∑

k·s=n,k1=0

n!
k!(s!)k a

k
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where the sum runs over all k ∈ N∞ satisfying
∑∞
l=1 lkl = n and k1 = 0. We used the

abbreviations al =
∫
X u

l(x)λ(dx), ak =
∏∞
l=1 a

kl
l , s = (1, 2, 3, . . .) ∈ N∞, k! =

∏∞
l=1 kl! and

(s!)k =
∏∞
l=1(l!)kl.

Especially, the above formula implies that E [(Su − E [Su])n] is a polynomial of degree at
most bn2 c in the variables a1, a2, . . . , an.

Proof. To find an expression for E [(Su − E [Su])n], we need a formula for the moments of
Su. We are going to derive these moment formulas from the characteristic function of Su
that is given by

ϕSu(t) = E
[
eitSu

]
= exp

{∫
X

(eitu(x) − 1)λ(dx)
}

according to Theorem 2.2.4. The relation between the moments of a random variable Su
and its characteristic function ϕSu is as follows [14, section 15.4]: If E

[
|Su|k

]
< +∞, then

ϕSu is k times continuously differentiable and it holds

E
[
Sju

]
= 1
ij
ϕ

(j)
Su

(0) for all j = 0, 1, . . . , k.

Moreover, if ϕSu is k times differentiable for some k ∈ N even, then

E
[
Sku

]
= (−1)k/2ϕ(k)

Su
(0) < +∞.

To find the derivatives of the characteristic function, we use a general formula for finding
the derivatives of ef (x) [15]. It is(

ef(x)
)(n)

= ef(x) ∑
{k|k∈N∞,k·s=n}

bnk

(
f (s)(x)

)k
with s = (1, 2, 3, . . .) and coefficients

bnk = 1∏n
i=1 ki!

n!∏n
i=1(si!)ki

= n!
k!(s!)k .

We apply this to the function f(t) =
∫
X(eitu(x) − 1)λ(dx). For j = 1, 2, . . . , N , the j-th

derivative of f is given by

f (j)(t) =
∫
X
ijuj(x)eitu(x)λ(dx)

due to the assumed existence of the integrals aj =
∫
X u

jdλ and due to∫
X

∣∣∣eitu − 1
∣∣∣ dλ ≤ ∫

X
2 ∧ |tu| dλ ≤ |t|

∫
X
|u| dλ < +∞.

Hence, we find

E
[
Sju

]
= 1
ij
ϕ

(j)
Su

(0) =
∑

{k|k∈N∞,k·s=j}
bjk

( ∞∏
i=1

(ai)ki
)
.
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Thus, we arrive at

E [(Su − E [Su])n] =
n∑
l=0

(
n

l

)
(−1)n−lE

[
Slu

]
E [Su]n−l

=
n∑
l=0

∑
k·s=l

(−1)n−l l!
k!(s!)k

(
n

l

)
akan−l1 .

We now want to show that the coefficients of all terms akan−l1 with k1 +n− l > 0 vanish in
order to show the desired formula

E [(Su − E [Su])n] =
∑

k·s=n,k1=0

n!
k!(s!)k a

k,

because the only terms satisfying k1 + n − l = 0 are those with k1 = 0 and l = n which
leads to the above formula.
We pick any k̃ ∈ N∞ and 0 ≤ l̃ ≤ n such that k̃ · s = l̃ and k̃1 + n − l̃ > 0. The other
pairs (k, l) contributing to the coefficient of ak̃an−l̃1 can be constructed from the following
considerations. In order to result in the same term ak̃an−l̃1 it must hold

k̃i = ki for i ≥ 2 and k̃1 − l̃ + n = k1 − l + n ⇐⇒ l = k1 − k̃1 + l̃.

Thus, the smallest possible l (denoted by l0) is attained for k1 = 0 and from k̃ · s = l̃ we get

l0 = l̃ − k̃1 ≥ 0.

Moreover, it is l0 < n because if we had l0 = n, we would end up with n = l0 = l̃− k̃1 < n,
using the definition of the pair (k̃, l̃). The possible values for k1 can now be constructed
from l0 via k1 = k̃1 − l̃ + l = l − l0, leading to

kl = (l − l0, k̃2, k̃3, . . .) for l0 ≤ l ≤ n.

Therefore, the coefficients are obtained by

Coeff(ak̃an−l̃1 ) =
n∑
l=l0

(−1)n−l
(
n

l

)
l!

kl!(s!)kl
=

n∑
l=l0

(−1)n−l
(
n

l

)
l!

(l − l0)!l0!
l0!k̃1!

(s!)k̃k̃!

= (−1)n l0!k̃1!
(s!)k̃k̃!

n∑
l=l0

(−1)l
(
n

l

)(
l

l0

)
.

We proceed by showing that the above sum vanishes for 0 ≤ l0 < n using induction. With
the binomial theorem we get in the case l0 = 0 for any n

n∑
l=0

(−1)l
(
n

l

)(
l

0

)
=

n∑
l=0

(−1)l
(
n

l

)
= (−1 + 1)n = 0.

This is the induction start for n = 1 as well. Now, suppose we have shown∑n
l=l0(−1)l

(n
l

)( l
l0

)
= 0 for some n ∈ N and all 0 ≤ l0 < n. The statement then follows for
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n+ 1 and 1 ≤ l0 < n+ 1 by observing

n+1∑
l=l0

(−1)l
(
n+ 1
l

)(
l

l0

)
= −

n∑
l=l0−1

(−1)l
(
n+ 1
l + 1

)(
l + 1
l0

)

= −
n∑

l=l0−1
(−1)ln+ 1

l + 1

(
n

l

)
l + 1
l0

(
l

l0 − 1

)

= −n+ 1
l0

n∑
l=l0−1

(−1)l
(
n

l

)(
l

l0 − 1

)
= 0

as the last sum vanishes because of the induction hypothesis applied to n and l0 − 1 ≥ 0.
The case l0 = 0 was already done above.
Finally, the conditions k · s = n and k1 = 0 imply that |k| ≤ bn2 c showing that

E [(Su − E [Su])n] =
∑

k·s=n,k1=0

n!
k!(s!)k a

k

is a polynomial of degree at most bn2 c in a1, a2, . . . , an.
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2.3 Model Derivation

In this section we describe the mathematical model of the PET measurement and deduce our
reconstruction formula for the inverse problem of determining the distribution of radioactive
material from measured PET data. In essence, this data is obtained as follows. The
radioactive material randomly emits a positron. Shortly after the emission the positron
annihilates with an electron and two photons are emitted at 180 degrees to each other.
These photons are then detected. Normally, the number of detected events is low. This
means that reconstructing the underlying radioactive material distribution from measured
PET data is an underdetermined and hence ill-posed problem which needs to be regularized
by incorporating prior knowledge. Within our approach this will be done using optimal
transport. The considerations in this section are based on [1].

2.3.1 Measurements and Material Distribution

The interior of the PET scanner is modeled by a compact and convex set Ω ⊂ R3 and
the measurement takes place during a time interval [0, T ] for a time horizon T > 0. The
distribution ρ of the radioactive material is described by a nonnegative Radon measure on
[0, T ]× Ω

ρ ∈M+([0, T ]× Ω).

As we are using optimal transport regularization, the solutions to the optimization problem
necessarily satisfy the continuity equation which results in a disintegration in time (see
Section 2.1), i.e. we have

ρ = dt⊗ ρt

where dt is the Lebesgue measure on [0, T ].
The radioactive decay happens according to a Poisson point process with intensity

dt⊗ λt := dt⊗ ln 2
T1/2

ρt

with T1/2 being the radionuclid’s half-life.
To describe the detection process, let D = {1, . . . ,M} be the set of photon detectors.
Detector i covers a Borel measurable region Γi ⊂ ∂Ω. The detectors are nonoverlapping, i.e.
we have Γi∩Γj = ∅ for i 6= j and we assume each detector to have a piecewise C1-boundary.
Moreover, for each measurement we fix a temporal resolution ∆t, leading to a partition of
the time interval into N disjoint intervals τi = [(i− 1)∆t, i∆t] for i = 1, . . . , N = T

∆t . Since
we are using PET as the measurement method, each detected event comes with a photon
detection in two different detectors. The actual measurement is then a map

E : {1, . . . , N} ×D ×D → N

where, for k ≤ l, Eikl := E(i, k, l) is the number of photon pairs detected by detector pair
(k, l) within the time period τi. We set Eikl = 0 for k > l. Moreover, we choose ∆t small
enough to guarantee Eikl ∈ {0, 1}. The measurement will be described by an operator
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that is derived from physical considerations. This operator transforms the measure ρt
to another measure κt that describes the distribution of photons at the detectors. The
actual measurement is then generated by a Poisson point process on [0, T ]× ∂Ω× ∂Ω (the
measurement process is defined on ∂Ω× ∂Ω due to our definition of the forward operator,
see section 2.3.2) with intensity measure dt ⊗ ln 2

T1/2
κt, i.e. for k ≤ l the number of photons

Eikl is Poisson distributed with mean ln 2
T1/2

∫
τi
κt(Γkl)dt where Γkl describes the area covered

by the detector pair kl. The sets Γkl do not necessarily cover the whole surface of the
measurement volume. We set

⋃
kl Γkl =: Γtot ⊂ ∂Ω× ∂Ω.

Since we later want to analyze the behavior in the limit T1/2 → 0 we explicitly emphasize the
dependence of the measurement process on the half-life T1/2. The density κt ∈M+(∂Ω×∂Ω)
can be derived from the material distribution by applying the forward operator introduced
in the next section.

2.3.2 Forward operator

The forward operator transforms the intensity measure ρt of the PPP describing the decay of
the radionuclide into the intensity measure κt of the measurement PPP. The detection pro-
cess decomposes into three parts, attenuation, scattering and detection without substantial
scattering. Therefore, we split the λt and ρt into

(λat , λst , λdt ) = ln 2
T1/2

(ρat , ρst , ρdt ).

The probability of attenuation or scattering depends on the material that the photon passes.
This gives us

λat = pat λt, λ
s
t = pstλt, λ

d
t = pdtλt

for some functions pat , pst , pdt : Ω → [0, 1], t ∈ [0, T ], with pat + pst + pdt = 1. These functions
depend on the material composition at time t. For simplicity, we assume these functions
to be spatiotemporally constant, and we will write pa, ps and pd in the following. We now
model the three parts of the forward operator.

(1) Attenuation
The forward operator describing the attenuation simply sets all intensity to zero,

Aa : M+(Ω)→M+(∂Ω× ∂Ω)
λ 7→ 0.

(2) Scattering
Scattering changes the direction of the photon rays randomly in our model, meaning
that the probability of a scattered photon pair to arrive at point (x, y) ∈ ∂Ω× ∂Ω is
homogeneous. This leads to the operator

As : M+(Ω)→M+(∂Ω× ∂Ω)

λ 7→ λ(Ω)
H2(∂Ω)2H

2 ⊗H2 (∂Ω× ∂Ω)
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2.3 Model Derivation

where H2 is the two-dimensional Hausdorff measure and denotes the restriction of
a measure to a set.

(3) Detection
The operator describing the detection process without scattering is composed of three
linear operators

Ad = B3B2B1

modeling the positron range, the direction of the scattered photon pairs and the
detection.
Let Gy : Ω → [0,+∞) be a smooth convolution kernel describing the probability
density of an annihilation of a positron emitted at y. The operator

B1 : M+(Ω)→M+(Ω)

λ 7→
∫

Ω
Gyλ(dy)

then models the positron range from emission to annihilation. In general, Gy de-
pends on the surrounding material but we will only consider a spatially homogeneous
Gaussian kernel

1√
8π3ε

exp
(
−|x− y|

2

2ε

)
for some fixed ε > 0.
When the positron annihilates, two photons are emitted in opposite directions. This is
modeled by an operator transforming the intensity of photon emissions into a density
on Ω × G1,3 (a position with a direction), where G1,3 denotes the Grassmannian
manifold of one-dimensional subspaces in R3. On G1,3 we have a natural probability
measure volG1,3 [16, Chapter 3]. Since the direction of a photon pair after annihilation
is distributed uniformly, the operator reads

B2 : M+(Ω)→M+(Ω×G1,3)
λ 7→ λ⊗ volG1,3 .

Finally, the photon pair emitted at x ∈ Ω in direction v ∈ G1,3 will be detected at
positions R(x, v) with

R : Ω×G1,3 → ∂Ω× ∂Ω
(x, v) 7→ ∂Ω ∩ (x+ v)

where two-element subsets of ∂Ω are identified with a point in ∂Ω× ∂Ω with lexico-
graphic ordering. With the function R we can write the operator B3 describing the
actual detection of a photon pair as

B3 : M+(Ω×G1,3)→M+(∂Ω× ∂Ω)
λ 7→ R#λ

where R#λ is the pushforward measure of λ. In total, the intensity dt⊗ ln 2
T1/2

κt inducing
the measurement PPP is given by

κt = κat︸︷︷︸
=0

+κst + κdt = paAaρt︸ ︷︷ ︸
=0

+psAsρt + pdAdρt.
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Chapter 2 Preliminaries and Model Derivation

Remark 2.3.1 (Evaluation of the detection operator). Let Γ ⊂ ∂Ω× ∂Ω and for v ∈ G1,3

define

ZΓ
v := {x ∈ Ω | (x, v) ∈ R−1(Γ)}.

According to Cavalieri’s principle [17, Theorem 9.6.6] ZΓ
v is measurable for every v ∈ G1,3

and we have for ρt ∈M+(Ω)

Adρt(Γ) = B3B2B1ρt(Γ) = (B2B1ρt)(R−1(Γ)) =
∫
G1,3

(B1ρt)(ZΓ
v )volG1,3(dv)

=
∫
G1,3

∫
ZΓ
v

(B1ρt)(x)dxvolG1,3(dv)

=
∫
G1,3

∫
ZΓ
v

∫
Ω
Gy(x)dρt(y)dxvolG1,3(dv).

Remark 2.3.2 (Absolute continuity w.r.t. H2 ⊗ H2). The measure κt is absolutely con-
tinuous with respect to the measure H2 ⊗H2 for every t ∈ [0, T ]. For the scattering part,
this follows immediately from the definition of the respective forward operator as H2 ⊗H2

restricted to ∂Ω× ∂Ω appears.
The absolute continuity of the detection part comes from the smoothing by convolution
with the C∞ function G. To see this, let Γ ⊂ ∂Ω × ∂Ω such that H2 ⊗H2 (Γ) = 0. With
Remark 2.3.1 we get

Adρt(Γ) =
∫
G1,3

∫
ZΓ
v

∫
Ω
Gy(x)dρt(y)dxvolG1,3(dv) ≤ ‖G‖∞ ρt(Ω)

∫
G1,3

∫
ZΓ
v

dxvolG1,3(dv)

. diam(Ω)H2 ⊗H2 (Γ) volG1,3(G1,3) . H2 ⊗H2 (Γ) = 0.

2.3.3 Optimal transport regularization

To deal with the ill-posedness of our inverse problem we will apply a Bayesian approach and
use a maximum a posteriori estimate. Within this framework we need to assign each possible
material distribution a likelihood. This likelihood is obtained using optimal transport, thus
we are going to use optimal transport regularization.
We use this framework to determine the kinetic motion energy at each time for all temporally
evolving distributions and are going to assign a higher likelihood to a distribution the
less kinetic energy is associated with the temporal evolution of it. To quantify the mass
movement we introduce a vector valued Radon measure

ω ∈M([0, T ]× Ω)3

describing the time dependent material flux leading to the temporal variation of ρ. Both
measures ρ and ω need to be compatible which is expressed by the continuity equation

∂tρ+∇x · ω = 0 (2.15)

that describes mass conservation. The equation is to be understood in the distributional
sense, i.e. it holds∫

[0,T ]×Ω
∂tϕdρ+

∫
[0,T ]×Ω

〈∇xϕ, dω〉 = 0 for all ϕ ∈ C1
c ((0, T )× Ω).
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2.3 Model Derivation

Within our regularization approach ρ and ω can be disintegrated in time (see section 2.1
for details) and we can also write∫ T

0

∫
Ω
∂tϕdρtdt+

∫ T

0

∫
Ω
〈∇xϕ, dωt〉dt = 0 for all ϕ ∈ C1

c ((0, T )× Ω).

Using the continuity equation as above we assumed T � T1/2 meaning that the amount of
radioactive material approximately remains constant during the measurement time. With-
out these assumptions we could use unbalanced optimal transport to account for mass loss
by introducing a decay term in the continuity equation.
For our Bayesian approach we need to assign a likelihood to each path (ρ, ω). This is done
using a slightly modified version of the Benamou-Brenier functional B2 and that was already
introduced in Section 2.1. We choose

S(ρ, ω) =


∫ T

0
∫
Ω

(
dωt
dρt

)2
dρtdt if ρ ≥ 0, ω � ρ and (2.15) holds,

+∞ else,

where dµ
dν denotes the Radon-Nikodym derivative of the measure µ with respect to ν. As

already mentioned at the end of Section 2.1, we have S(ρ, ω) = B2(ρ, ω) as soon as S(ρ, ω) <
+∞. To finally quantify the likelihood of (ρ, ω) we assume a Boltzmann-type probability
distribution meaning that we have

P(ρ, ω) ≈ exp(−βS(ρ, ω))

where β can be seen as a an inverse temperature and will be the regularization parameter.
Physically, S(ρ, ω) is the action of the path (ρ, ω) and

∫
Ω

(
dωt
dρt

)2
dρt can be seen as the

kinetic energy of all particles in the system at a given time t. Hence, we use a kinetic
regularization. As the minimum of the Benamou-Brenier functional for a transport from
ρ0 to ρT is proportional to the squared Wasserstein-2 distance between both measures, we
assign a higher likelihood the less mass moves in total. This is another interpretation of
the regularization which only takes into account the total mass movement but ignores the
velocities that are associated to this mass movement. Note, that we make no assumptions
about the spatial distribution of ρ.

2.3.4 Reconstruction method

In this paragraph we deduce the function to be minimized in order to obtain the recon-
struction (ρ, ω) for a given measurement. We use a Bayesian approach to deal with the
ill-posedness of the inverse reconstruction problem. Using Bayes’ formula, the conditional
probability of a pair (ρ, ω) given a measurement E reads

P(ρ, ω|E) = P(E|ρ, ω)P (ρ, ω)
P (E) .

Let Pλ(k) = λke−λ/k! be the Poisson distribution with parameter λ and let

Kikl = ln 2
T1/2

∫
τi

κt(Γk × Γl ∪ Γl × Γk︸ ︷︷ ︸
=:Γkl

)dt
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Chapter 2 Preliminaries and Model Derivation

be the expected number of photons in detector pair kl during the time interval τi. Note that
we need both sets Γk × Γl and Γl × Γk to take into account the correct number of photons
detected by the detector pair kl because we modeled the measurement process on ∂Ω×∂Ω.
The measure κt is linked to the mass distribution via the forward operator described in the
previous section. The conditional probability obtaining the measurement E for a given pair
(ρ, ω) (actually only ρ is needed to apply the forward operator) is given by

P (E|ρ, ω) = P (E|ρ) =
∏
ikl

PKikl(Eikl)

where we used the independence property of PPPs on disjoint sets. Next, we determine
the maximum a posteriori (MAP) estimate of (ρ, ω). Therefore, we maximize P (ρ, ω|E) or
equivalently minimize

− log (P (ρ, ω|E)) = − log (P (E|ρ, ω))− log (P (ρ, ω)) + P (E)

≈
∑
ikl

− log
(
(Kikl)Eikle−Kikl/(Eikl)!

)
+ βS(ρ, ω)

=
∑
ikl

[Kikl − Eikl log (Kikl)] + βS(ρ, ω)

where we neglected the constant P (E) and the constants coming from the factors of the
model for P (ρ, ω) as they will not matter in the following optimization. Moreover, we
used the assumption Eikl ∈ {0, 1} in order to not having the term

∑
ikl log (Eikl!) in our

functional. To point out all dependencies on the mass distribution, we set

Aiklρ = Kikl.

This leads to the function

ĴE(ρ, ω) =
∑
ikl

[Aiklρ− Eikl log (Aiklρ)] + βS(ρ, ω)

to be minimized.
The MAP estimate resulting from the minimization of Ĵ fails to detect scattered photon
pairs properly and instead declares most of the photon pairs to be unscattered. This is due
to the part of Aiklρ resulting from psAs being very small compared to the other one coming
from pdAd. This happens because As distributes the intensity evenly across all detectors
whereas Ad concentrates intensity to a few suiting detectors only.
To reduce this problem, we split the measurement

E = Es + Ed

into scattered and normally detected photon pairs and assume that we know the number
Ks of scattered measurements. We now repeat the derivation of a MAP estimate but
reconstruct (ρ, ω,Es) this time for a fixed number Ks of scattered photon pairs. We have
now

P (ρ, ω,Es|E) = P (E,Es|ρ, ω)P (ρ, ω)
P (E) .
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2.3 Model Derivation

Assuming that scattering and normal detection happen independently, i.e. the probability
of scattering is independent of the number of already scattered photons, and using the
independence property of PPPs on disjoint sets, we find

P (E,Es|ρ, ω) =
∏
ikl

PKs
ikl

(Esikl)PKd
ikl

(Edikl)

with the definitions

K
s/d
ikl = ln 2

T1/2

∫
τi

κ
s/d
t (Γkl)dt = ln 2

T 1/2

∫
τi

ps/dAs/dρt(Γkl)dt.

Setting

A
s/d
ikl ρ = K

s/d
ikl and Aiklρ = Asiklρ+Adiklρ

to emphasize the dependence on the material distribution ρ, we arrive at the functional

J̄E(ρ, ω,Es) =
∑
ikl

[
Aiklρ− Esikl log (Asiklρ)− Edikl log

(
Adikl

)]
+ βS(ρ, ω)

by performing similar computations as in the above derivation of Ĵ . This time, the func-
tional J̄E is minimized for ρ, ω and Es taking into account the constraint

|Es|1 =
∑
ikl

Esikl = Ks.

Note, that we again assumed Eikl ∈ {0, 1} in the derivation of J̄E . Two more modifications
of our objective function are in order. First, the optimization of J̄E is computationally
costly as it involves the combinatorial optimization over all possible Es. Therefore, we
replace Es by a tuning parameter p > 0 that modulates the importance of the scattering
part of the forward operator. This yields the new functional

J̃E(ρ, ω,Es) =
∑
ikl

[
Aiklρ− Eikl log

(
max(pAsiklρ,Adiklρ)

)]
+ βS(ρ, ω).

The interpretation of this simplification is as follows: Small values of p close to 0 result
in the maximum max(pAsiklρ,Adiklρ) to be evaluated to the second term, i.e. the detection
part, meaning that all events are declared as properly detected photon pairs. For large
values of p the opposite interpretation of the detected events will be chosen. Thus, choosing
an intermediate value of p results in a reasonable amount of detected scatter events.
Finally, we convexify our functional by replacing the log-part with its convex envelope. This
leads to the final objective function

JE(ρ, ω) =
∑
ikl

[
Aiklρ− Eikl log

(
pAsiklρ+Adiklρ

)]
+ βS(ρ, ω). (2.16)

Therefore, we get the distribution of the radioactive material ρ̂ from the PET measurement
E by minimizing JE over M =M+([0, T ]× Ω)×M([0, T ]× Ω)3, leading to

(ρ̂, ω̂) ∈ argmin
(ρ,ω)∈M

JE(ρ, ω). (MIN)

By considering (ln 2ρ, ln 2ω) instead of (ρ, ω) and β
ln 2 instead of β, we can omit the constant

factor ln 2 in the definitions of Aikl and A
s/d
ikl in the following considerations.
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Chapter 2 Preliminaries and Model Derivation

Remark 2.3.3 (Time continuity of ρ). Minimizers of the objective function JE are satisfy-
ing the continuity equation due to the regularization term S. Lemma 2.1.15 then guarantees
the existence of a narrowly continuous representative ρ̃t of ρt. It holds for all open intervals
(a, b) ⊂ [0, T ] and all open subsets Z ⊂ Ω

ρ((a, b)× Z) =
∫ b

a

∫
Z
dρtdt =

∫ b

a

∫
Z
dρ̃tdt = ρ̃((a, b)× Z).

Thus, both measures coincide on the generating system of B([0, T ]×Ω) which means ρ = ρ̃
and we can assume that ρt is narrowly continuous in time.
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2.4 Γ-Convergence

2.4 Γ-Convergence

In the Sections 3.2 and 3.3 we are interested in the behavior of the reconstruction functional
JE when the half-life goes to zero, i.e. the intensity of the radioactive material goes to
infinity. We are going to use the notion of Γ-convergence to analyze this limit process as
the theory of Γ-convergence is well suited for investigating limit processes in minimization
problems. Therefore, we define Γ-convergence and give an important result related to it in
this section.

Definition 2.4.1 (Sequential Γ-convergence, [18]). Let X be a topological space. Then
the sequence (fi)i of functions from X to R ∪ {+∞} sequentially Γ-converges to f : X 7→
R ∪ {+∞} if we have
(i) for every x ∈ X and for every sequence (xi)i converging to x in X it is

f(x) ≤ lim inf
i→∞

fi(xi);

(ii) for every x ∈ X there exists sequence (xi)i converging to x in X such that

f(x) ≥ lim sup
i→∞

fi(xi).

If the Γ-converging sequence of functions (fi)i satisfies some additional properties, then we
have that minimizers of the fi converge to minimizers of the limit functional f .

Theorem 2.4.2 (Fundamental theorem of Γ-convergence, [18]). Let X be a topological
space and let (fi)i∈N be a sequence of equi-mildly coercive functions from X to R ∪ {+∞},
i.e. there exists a countably compact set K ⊂ X such that

inf
x∈X

fi(x) = inf
x∈K

fi(x) for all i ∈ N.

If (fi)i sequentially Γ-converges to a function f : X → R ∪ {+∞}, then f has a minimizer
in X and it holds

min
x∈X

f(x) = min
x∈K

f(x) = lim
i

inf
x∈X

fi(x).

Moreover, if (xi)i is a precompact sequence such that limi fi(xi) = limi infX fi, then every
cluster point of the sequence (xi)i is a minimizer of f .

Proof. Let K be a sequentially compact subset of X such that infx∈X fi(x) = infx∈K fi(x)
for all i ∈ N. We start with showing two auxiliary inequalities. Let (xi) be a sequence
in K such that lim inf i infx∈K fi(x) = lim infi fi(xi). The existence of such a sequence is
guaranteed by the following argument. Consider

lim inf
i

inf
x∈K

fi(x) = sup
i

inf
n≥i

inf
x∈K

fn(x) = sup
i

inf
n≥i,x∈K

fn(x).

There exists a sequence (nj , xj)j ⊂ {n ∈ N | n ≥ i}×K such that (fnj (xnj ))j is decreasing
with limit infn≥i,x∈K fn(x). By assigning xn an arbitrary element of K whenever n 6= nj
we get

inf
n≥i,x∈K

fn(x) = lim
j
fnj (xnj ) = inf

j
fnj (xnj ) = inf

n≥i
fn(xn)
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and thus finally lim inf i infx∈K fi(x) = lim infi fi(xi). Further, let (xij )j be a subsequence
such that limj fij (xij ) = lim infi fi(xi). We can assume (xij ) to be convergent with limit x̄
by using the sequential compactness of K. Next, define another sequence via

yi =
{
xij if i = ij for some j,
x̄ if i 6= ij for all j

that converges to x̄ as well. Using the liminf condition it holds

inf
x∈K

f(x) ≤ f(x̄) ≤ lim inf
i

fi(yi) ≤ lim inf
j

fij (xij ) = lim
j
fij (xij ) = lim inf

i
inf
x∈K

fi(x).

Thus, we get the first auxiliary inequality

inf
x∈K

f(x) ≤ lim inf
i

inf
x∈K

fi(x). (2.17)

For the second inequality fix δ > 0 and take x ∈ X with f(x) ≤ infx∈X f(x) + δ. Further,
let (xi)i be a recovery sequence. Then we get

inf
x∈X

f(x) + δ ≥ f(x) ≥ lim sup
i

fi(xi) ≥ lim sup
i

inf
x∈X

fi(x).

Since δ was arbitrary, it follows

inf
x∈X

f(x) ≥ lim sup
i

inf
x∈X

fi(x). (2.18)

With these results we get

inf
x∈X

f(x) ≤ inf
x∈K

f(x) ≤ lim inf
i

inf
x∈K

fi(x) = lim inf
i

inf
x∈X

fi(x) ≤ lim sup
i

inf
x∈X

fi(x) ≤ inf
x∈X

f(x),

implying that infx∈X f(x) = infx∈K f(x) = limi infx∈X fi(x) holds.
Next, take a precompact sequence (xi)i such that limi fi(xi) = limi infX fi and consider a
converging subsequence (xij )j of (xi)i with limit x̄. Then we define the sequence

x̃i =
{
xij if i = ij ,

x̄ if i 6= ij for all j

which converges to x̄ as well. By the liminf condition and with equations (2.17),(2.18) we
get

inf
x∈X

f(x) ≤ f(x̄) ≤ lim inf
i

fi(x̃i) ≤ lim inf
j

fij (xij ) = lim
i
fi(xi) = lim

i
inf
x∈X

fi(x) = inf
x∈X

f(x),

proving that x̄ is a minimizer of f .
Finally, we use the last result to prove that there always is a minimizer of f . As the fi are
equi-mildly coercive, there is a precompact sequence (xi)i ⊂ K with

fi(xi) ≤ inf
x∈X

fi(x) + 1
i

for all i ∈ N and such that limi fi(xi) = limi infX fi. The above result shows that (xi)i has
a cluster point that is a minimizer of f . This proves infx∈K f(x) = minx∈K f(x).
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CHAPTER 3

Existence of Minimizers and Γ-Convergence

In this chapter we analyze the minimization problem (MIN). We prove existence of mini-
mizers of the objective function JE and compute Γ-limits for the case of half-lifes going to
zero (which means that the intensity of the radioactive material goes to infinity).
First, we reformulate the functional JE in order to emphasize the stochastic character of
this functional due to the randomness of the radioactive decay and hence the randomness
of the PET measurement. We consider

JE : M→ R

(ρ, ω) 7→
∑
ikl

[
Aiklρ− Eikl log(pAsiklρ+Adiklρ)

]
+ βS(ρ, ω).

For the reformulation and for the next sections we introduce some abbreviation. We write

κpt = pκst + κdt

and

κn,pt = pκn,st + κn,dt

if the radioactive material distributions ρn depend on n. Moreover, we introduce piecewise
constant functions for the scattering part, detection part and the above defined composition
of the two parts. It is

κ̂s/d =
∑
ikl

1τi×Γkl

∫
τi

κ
s/d
t (Γkl)dt and κ̂p = pκ̂s + κ̂d.

As above, κ̂n,s/d/p indicates that the underlying material distributions ρn depend on n.
The first part of JE can be rewritten as∑

ikl

Aiklρ =
∑
kl

∑
i

∫
τi

1
T1/2

κt(Γkl)dt =
∑
kl

∫ T

0

1
T1/2

κt(Γkl)dt =
∫ T

0

1
T1/2

κt(∪klΓkl)dt

= 1
T1/2

κ([0, T ]× Γtot)

where Γtot = ∪klΓkl is the total area covered by detectors. The above expression gives us
the expected number of detected photons during the time interval [0, T ]. If we ignore the
assumption Eikl ∈ {0, 1}, the second term can be expressed as∑

ikl

Eikl log(pAsiklρ+Adiklρ) =
∑
ikl

Eikl log
( 1
T 1/2

∫
τi

κpt (Γkl)dt
)

=
∫

log
(

1
T1/2

κ̂p
)
dE
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with E now being a PPP (the measurement) with intensity measure 1
T1/2

κ†t(x)dtdφ, φ =
H2 ⊗H2, where κ† is th Radon-Nikodym derivative of the measure

B([0, T ])× B(∂Ωδ × ∂Ωδ)→ [0,+∞], τ × Γ 7→
∫
τ
κ†t(Γ)dt

w.r.t. dt ⊗ dφ (it suffices to define the measure on the intersection stable generator
{τ × Γ | τ ∈ B([0, T ]), Γ ∈ B(∂Ωδ × ∂Ωδ)} [14, Lemma 1.42]).
Thus, we arrive at

J
E,∆t,(Γkl)kl
β,T1/2

(ρ, ω) = 1
T1/2

κ([0, T ]× Γtot)−
∫

log
(

1
T1/2

κ̂p
)
dE + βS(ρ, ω)

where we explicitly emphasize the dependence of the functional on the measurement process
E, the temporal resolution ∆t, the detectors (Γk)kl, the regularization parameter β and
the half-life T1/2, because these parameters will be important when we are analyzing Γ-
convergence later. Note, that the assumption Eikl ∈ {0, 1} was only needed to derive the
objective function. The function itself is valid for all non-negative values of Eikl.

3.1 Existence of Minimizers

In this section we show that the functional JE has a minimizer, i.e. our reconstruction
method always produces a radioactive material distribution. We start by gathering some
properties about the forward operator that we will need in the following.

Lemma 3.1.1 (Properties of the forward operators). (a) The operators Asikl and Adikl are
bounded, i.e. we have for ρ ∈M+([0, T ]× Ω)

Asiklρ ≤
ps

T1/2
‖ρ‖ and Adiklρ ≤

pd

T1/2
‖ρ‖

(b) Let λn ∗−⇀ λ inM+(Ω). Then Asλn ∗−⇀ Asλ and Adλn ∗−⇀ Adλ inM+(∂Ω× ∂Ω).
(c) Let ρn ∗−⇀ ρ inM+([0, T ]× Ω) and Γ ⊂ ∂Ω× ∂Ω. Define the operators

AsΓ : M+([0, T ]× Ω)→M+([0, T ])

ρ 7→ AsΓρ, AsΓρ(S) =
∫
S

(Asρl)(Γ)dl

and

AdΓ : M+([0, T ]× Ω)→M+([0, T ])

ρ 7→ AdΓρ, AdΓρ(S) =
∫
S

(Adρl)(Γ)dl.

Then AsΓρn
∗−⇀ AsΓρ and AdΓρn

∗−⇀ AdΓρ in M([0, T ]). In particular, the operators Asikl
and Adikl are weak-* continuous.
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(d) Let (ρ, ω) ∈M with S(ρ, ω) < +∞ and let Γ ⊂ ∂Ω× ∂Ω with piecewise C1-boundary.
Then the functions

[0, T ]→ R, t 7→ Asρt(Γ) = 1
ps
κst (Γ)

and

[0, T ]→ R, t 7→ Adρt(Γ) = 1
pd
κdt (Γ)

are continuous.
(e) Let (ρ, ω) ∈ M with S(ρ, ω) < +∞ and let Γ ⊂ ∂Ω× ∂Ω. Then for every t ∈ [0, T ] it

holds
Asρt(Γ) . ‖ρ‖ and Adρt(Γ) . ‖ρ‖ .

Proof. (a) For the scattering part we find

Asiklρ = 1
T1/2

∫
τi

psρt(Ω)H
2 ⊗H2 (Γkl)
H2 (∂Ω)2 dt ≤ ps

T1/2

∫ T

0
ρt(Ω)dt = ps

T1/2
‖ρ‖ .

In the case of the detection part of the forward operator we compute, using Remark
2.3.1,

Adiklρ = 1
T1/2

∫
τi

pd
∫
G1,3

∫
ZΓ
v

∫
Ω
Gy(x)dρt(y)dxvolG1,3(dv)dt

≤ pd

T1/2

∫ T

0

∫
G1,3

∫
Ω

∫
Ω
Gy(x)dρt(y)dxvolG1,3(dv)dt

≤ pd

T1/2

∫ T

0
ρt(Ω)dt = pd

T1/2
‖ρ‖ ,

where we used
∫
G1,3 volG1,3(dv) = 1 and

∫
ΩGy(x)dx = 1 for all y ∈ Ω.

(b) Let λn ∗−⇀ λ in M(Ω) and φ ∈ C(∂Ω × ∂Ω). From the weak-* convergence and the
compactness of Ω we get

λn(Ω) =
∫

Ω
1dλn n→∞−−−→

∫
Ω

1dλ = λ(Ω).

It follows∫
∂Ω×∂Ω

φ(x)Asλn(dx) = λn(Ω)
H2(∂Ω× ∂Ω)2

∫
∂Ω×∂Ω

φ(x)H2 ⊗H2 (dx)

n→∞−−−→ λ(Ω)
H2(∂Ω× ∂Ω)2

∫
∂Ω×∂Ω

φ(x)H2 ⊗H2 (dx) =
∫
∂Ω×∂Ω

φ(x)Asλ(dx).

Moreover we have

lim
n→∞

∫
∂Ω×∂Ω

φ(x)Adλn(dx) = lim
n→∞

∫
Ω×G1,3

φ(R(x, v))
∫

Ω
Gy(x)dλn(y)dxvolG1,3(dv)

=
∫

Ω×G1,3
φ(R(x, v)) lim

n→∞

∫
Ω
Gy(x)dλn(y)dxvolG1,3(dv)

=
∫

Ω×G1,3
φ(R(x, v))

∫
Ω
Gy(x)dλ(y)dxvolG1,3(dv)

=
∫
∂Ω×∂Ω

φ(x)Adλ(dx)
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by dominated converges with |φ(R(x, v))
∫

ΩGy(x)dλn| ≤ ‖φ‖∞ ‖G‖∞ λn(Ω) . 1 be-
cause of λn ∗−⇀ λ.

(c) Let ρ, ρn ∈M+([0, T ]× Ω) such that ρ ∗−⇀ ρ and ψ ∈ C([0, T ]). Then

AsΓρ
n(ψ) = 1

T1/2

∫ T

0
ψ(t)(Asρt)(Γ)dt = 1

T1/2

H2 ⊗H2(Γ)
H2(∂Ω)2

∫ T

0
ψ(t)ρnt (Ω)dt

n→∞−−−→ 1
T1/2

H2 ⊗H2(Γ)
H2(∂Ω)2

∫ T

0
ψ(t)ρt(Ω)dt = AsΓρ(ψ),

using the weak-* convergence of the ρn applied to the function (t, x) 7→ ψ(t).
We proceed with AdΓ in a similar way. Using the definition of Ad (see Remark 2.3.1),
dominated convergence and weak-* convergence of ρn we get for ψ ∈ C([0, T ])

lim
n→∞

AdΓρ
n(ψ) = lim

n→∞

∫ T

0
ψ(t)

∫
G1,3

∫
ZΓ
v

∫
Ω
Gy(x)dρnt (y)dxvolG1,3(dv)dt

=
∫
G1,3

∫
ZΓ
v

lim
n→∞

∫ T

0

∫
Ω
ψ(t)Gy(x)dρnt (y)dxdtvolG1,3(dv)

=
∫
G1,3

∫
ZΓ
v

∫ T

0

∫
Ω
ψ(t)Gy(x)dρt(y)dxdtvolG1,3(dv) = AdΓρ(ψ).

We could use Fubini and dominated convergence because we only have finite measure
spaces and continuous functions as integrands. This shows the weak-* continuity of
AsΓ and AdΓ.
The weak-* continuity of Asikl and Adikl follows from Portemanteau theorem [14, The-
orem 13.16] as the time intervals’ boundaries ∂τi have Lebesgue measure zero and the
measures As/dΓ ρ are absolutely continuous w.r.t. the Lebesgue measure.

(d) Let tn → t. Since ρ satisfies the continuity equation, we know from Remark 2.3.3
that (ρt)t is a narrowly continuous curve in M(Ω) and hence ρtn

∗−⇀ ρt in M(Ω) as
well. Part (b) yields Asρtn

∗−⇀ Asρt and Adρtn
∗−⇀ Asρt. Using again the Portemanteau

theorem we get

Asρtn(Γ) n→∞−−−→ Asρt(Γ) and Adρtn(Γ) n→∞−−−→ Adρt(Γ).

To see that the Portemanteau theorem can be applied, we consider the following. In
remark 2.3.2 we have shown the absolute continuity of κt w.r.t. H2⊗H2. Since ∂Γ is
assumed to have C1-boundary, it is rectifiable. This means we have H1(∂Ω) < +∞
and hence H2(∂Ω) = 0 [16, Chapter 4]. This way we get As/dρt(Γ) = 0 allowing us
to apply the Portemanteau theorem.

(e) For the proof we use the continuity in time of ρt and mass conservation from Lemma
2.1.15. We find

Asρt(Γ) = H
2 ⊗H2 (Γ)
H2 (∂Ω)2 ρt(Ω) = H

2 ⊗H2 (Γ)
H2 (∂Ω)2

1
T

∫ T

0
ρs(Ω)ds . ‖ρ‖
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and

Adρt(Γ) =
∫
G1,3

∫
ZΓ
v

∫
Ω
Gy(x)dρt(y)dxvolG1,3(dv)

≤
∫
G1,3

∫
Ω

∫
Ω
Gy(x)dxdρt(y)volG1,3(dv)

.
1
T

∫ T

0
ρs(Ω)ds . ‖ρ‖ .

Theorem 3.1.2 (Existence of minimizers). The functional JE has a minimizer in M.
Moreover, the (stochastic) functional JE,∆t,(Γkl)klβ,T1/2

almost surely has a minimizer in M.

Proof. We write J for either JE or JE,∆t,(Γkl)klβ,T1/2
in the following.

Note, that our measurement E is modeled by a finite Poisson point process because it is

P (E([0, T ]× ∂Ω× ∂Ω) < +∞) = P
( ∞⋃
n=0
{E([0, T ]× ∂Ω× ∂Ω) = n}

)
=
∞∑
n=0

e−λ
λn

n! = 1

with the mean number of points λ =
∫ T

0 κ†t(∂Ω×∂Ω). This means we have
∑
iklEikl < +∞

almost surely and can thus prove existence of minimizers for both functionals simultaneously
because the proof relies on maxikl(Eikl) being finite.
We have (L, 0) ∈ M with L being the Lebesgue measure on [0, T ] × Ω. The pair (L, 0)
satisfies the continuity equation in the distributional sense. This is established by∫

[0,T ]×Ω
∂tφdL =

∫
Ω

∫ T

0
∂tφdtdx =

∫
Ω

(φ(T, ·)− φ(0, ·))dx

for all φ ∈ C1([0, T ]× Ω). Moreover, we have S(L, 0) = 0 and hence J(L, 0) < +∞.
Now let (ρn, ωn)n∈N ⊂ M be a minimizing sequence of J . By possibly extracting a subse-
quence we may assume w.l.o.g. that J(ρn, ωn) ≤ J(L, 0). Next, we find uniform bounds on
the norms of ρn and ωn. It holds with p̄ = max(p, 1) and Emax = max(1,maxikl(Eikl))

J(ρn, ωn) =
∑
ikl

[
Aiklρ

n − Eikl log(pAsiklρn +Adiklρ
n)
]

+ βS(ρn, ωn)

≥
∑
ikl

[Aiklρn − Eikl log(p̄Aiklρn)] + βS(ρn, ωn)

≥
∑
ikl

[
Aiklρ

nχ{p̄Aiklρn<1} + (Aiklρn − Emax log(p̄Aiklρn))χ{p̄Aiklρn≥1}
]

+ βS(ρn, ωn).

To continue, let f be an affine strictly increasing function such that m − Emax log(p̄m) ≥
f(m) and m ≥ f(m). We get

J(ρn, ωn) ≥
∑
ikl

f(Aiklρn) + βS(ρn, ωn)

≥
∑
ikl

f(Asiklρn) + βS(ρn, ωn)

=
∑
ikl

f(cklρn(τi × Ω)) + βS(ρn, ωn)
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for positive constants ckl which can be calculated from the definition of the scattering
operator As. The ckl read

ckl = ps

T 1/2
H2 ⊗H2 (Γkl)

H2 ⊗H2 (∂Ω× ∂Ω) .

Since f is affine and strictly increasing and J(ρn, ωn) is uniformly bounded in n, we also
have uniform boundedness of ‖ρn‖ =

∑
i ρ
n(τi×Ω). In addition, we deduce, using Hölder’s

inequality,

‖ωn‖ =
∥∥∥∥dωndρn

∥∥∥∥
L1(ρn)

≤
∥∥∥∥dωndρn

∥∥∥∥
L2(ρn)

‖1‖L2(ρn) =
∥∥∥∥dωndρn

∥∥∥∥
L2(ρn)︸ ︷︷ ︸

=S(ρn,ωn)

ρn([0, T ]× Ω)
1
2

which shows the unifrom boundedness of ‖ωn‖. By Prokhorov’s theorem there exists a
subsequence (still indexed by n) and (ρ, ω) ∈ M such that (ρn, ωn) ∗−⇀ (ρ, ω). Since the
operators Aikl, Asikl, Adikl are weak-* continuous (Lemma 3.1.1) and the functional S is
weak-* lower semi-continuous (Lemma 2.1.14), we finally arrive at

J(ρ, ω) ≤ lim inf
n→∞

J(ρn, ωn) ≤ J(ρ̄, ω̄)

for any (ρ̄, ω̄) ∈M, which shows that (ρ, ω) minimizes J .

3.2 Γ-Convergence I: Fixed Detector Sizes

In this section we prove Γ-convergence for the case of a sequence of half-lifes (Tn)n∈N tend-
ing to zero (which means we have an intensity of radiation tending to infinity). Within this
limit process, we change the size of our temporal resolution ∆tn but keep the detector sizes
fixed. In the following section we will also include changes in the detector sizes.

Lemma 3.2.1. Let (ρn, ωn) with S(ρn, ωn) < +∞. Then the function t 7→ κn,dt (Γ) is in
W 1,1((0, T )) with weak derivative

t 7→ pd
∫
G1,3

∫
ZΓ
v

∫
Ω
〈∇yGy(x), dωnt (y)〉dxvolG1,3(dv).

Proof. From S(ρn, ωn) < +∞ we get that (ρn, ωn) satisfies the continuity equation and is
disintegrable in time. Let ϕ ∈ C∞c ((0, T )). Using the definition of the forward operator
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3.2 Γ-Convergence I: Fixed Detector Sizes

(see Remark 2.3.1) and the continuity equation, we find

∫ T

0
ϕ′(t)κnt (Γ)dt = pd

∫ T

0
ϕ′(t)

∫
G1,3

∫
ZΓ
v

∫
Ω
Gy(x)dρnt (y)dxvolG1,3(dv)dt

= pd
∫
G1,3

∫
ZΓ
v

∫ T

0

∫
Ω
ϕ′(t)Gy(x)dρnt (y)dtdxvolG1,3(dv)

= −pd
∫
G1,3

∫
ZΓ
v

∫ T

0

∫
Ω
〈ϕ(t)∇yGy(x), dωnt (y)〉dtdxvolG1,3(dv)

= −pd
∫ T

0
ϕ(t)

∫
G1,3

∫
ZΓ
v

∫
Ω
〈∇yGy(x), dωnt (y)〉dxvolG1,3(dv)dt

where Fubini’s theorem is applicable due to the finiteness of all measures and the smoothness
of the involved functions. For the same reason the weak derivative is in L1((0, T )).

Lemma 3.2.2. Let (ρn, ωn) ∗−⇀ (ρ, ω) with S(ρn, ωn) ≤ M for every n and S(ρ, ω) < +∞.
Moreover, let Γ ⊂ ∂Ω× ∂Ω with piecewise C1-boundary. Then the sequence of functions

[0, T ]→ [0,+∞), t 7→ κn,pt (Γ)

converges (up to a subsequence) uniformly to the function t 7→ κpt (Γ).
Analogous results hold for the scattering and detection part of κt as well.

Proof. We start with the scattering part. Using mass conservation it is

κn,st (Γ) = ps
ρnt (Ω)
H2(∂Ω)2H

2 ⊗H2 (Γ) = ps
H2 ⊗H2 (Γ)
H2(∂Ω)2

1
T

∫ T

0
ρnl (Ω)dl.

With this we get for any ε > 0 and t ∈ [0, T ]

|κn,st (Γ)− κst (Γ)| = ps
H2 ⊗H2 (Γ)
H2(∂Ω)2

1
T

∣∣∣∣∣
∫ T

0
ρnl (Ω)dl −

∫ T

0
ρl(Ω)dl

∣∣∣∣∣ < ε

for n large enough due to ρn ∗−⇀ ρ.
For the detection part we want to apply the Arzelà-Ascoli theorem. Therefore, we need to
show uniform boundedness and equicontinuity of the family of functions (κn,dt (Γ))n.
From Lemma 3.1.1 we get the boundedness

0 ≤ κn,dt (Γ) . ‖ρn‖ =
∫ T

0
ρnl (Ω)dl

with the last term being uniformly bounded in t due to the weak-* convergence ρn ∗−⇀ ρ.
For the equicontinuity, we use Lemma 3.2.1 to apply the fundamental theoreom of calculus
which holds since the function t 7→ κn,dt (Γ) is continuous ([19, Theorem 8.2] and Lemma
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3.1.1). This yields for s < t∣∣∣κn,dt (Γ)− κn,ds (Γ)
∣∣∣ ≤ ∣∣∣∣∣pd

∫ t

s

∫
G1,3

∫
ZΓ
v

∫
Ω
〈∇yGy(x), dωl(y)〉dxvolG1,3(dv)dl

∣∣∣∣∣
≤ pdR#(dx⊗ volG1,3)(Γ) ‖∇yG‖∞

∫ t

s

∫
Ω

∣∣∣∣∣dωnldρnl

∣∣∣∣∣ dρnl dl
?
. (t− s)1/2

∫ t

s

(∫
Ω

∣∣∣∣∣dωnldρnl

∣∣∣∣∣ dρnl
)2

dl

1/2

??
≤ (t− s)1/2

∫ t

s
ρnl (Ω)2

∫
Ω

∣∣∣∣∣dωnldρnl

∣∣∣∣∣
2

dρnl /ρ
n
l (Ω)

 dl
1/2

???
. (t− s)1/2 (ρn([0, T ]× Ω))1/2

∫ T

0

∫
Ω

∣∣∣∣∣dωnldρnl

∣∣∣∣∣
2

dρnl

 dl
1/2

. (t− s)1/2M

where we used Hölder’s inequality in (?), Jensen’s inequality in (??), mass conservation
in (? ? ?) and ρn

∗−⇀ ρ in the last step to find a uniform estimate. This establishes the
equicontinuity. The Arzelà-Ascoli theorem then gives us a subsequence (again indexed by
n) such that κn,dt (Γ) → κd,∞t (Γ) uniformly. We are left to show that κd,∞t (Γ) = κdt (Γ).
This is established by the weak-* continuity of the forward operator. Indeed, we have for
E ⊂ [0, T ] ∫

E
κd,∞t (Γ)dt = lim

n→∞

∫
E
κn,dt (Γ)dt =

∫
E
κdt (Γ)dt

for all E ⊂ [0, T ], where we used dominated convergence in the first step (applied to
κn,dt (Γ) . 1

T

∫ T
0 ρnl (Ω)dl . 1) and weak-* convergence in the second step (since the Lebesgue

measure of ∂E is zero for every E and (E 7→
∫
E κ

d
t (Γ)dt)� dt, the Portemanteau theorem

[14] can be applied). This shows κ∞t (Γ) = κt(Γ) for almost all t ∈ [0, T ] ([14, Lemma 1.42])
and hence all t as the function is continuous by Lemma 3.1.1.

Remark 3.2.3 (Lp-regularization). We use some sort of L2-regularization for our regular-
ization term

S(ρ, ω) =
∫ T

0

∫
Ω

∣∣∣∣dωtdρt

∣∣∣∣2 dρtdt.
This way, we penalize mass movement or kinetic motion energy which is a realistic idea for
finding a good reconstruction.
Mathematically, Lp-regularizations of higher order are also possible without any change of
arguments because Hölder’s and Jensen’s inequality is still applicable in the above proof.
Thus, we could use as well

Sp(ρ, ω) =
∫ T

0

∫
Ω

∣∣∣∣dωtdρt

∣∣∣∣p dρtdt for p ≥ 2

as the regularization term. The assumed uniform boundedness Sp(ρn, ωn) . 1 in Lemma
3.2.2 will be fulfilled for an infimizing sequence in the framework of Γ-convergence and it is
still independent of the choice of the order p.
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Lemma 3.2.4. Let (ρn, ωn) ∗−⇀ (ρ, ω) with S(ρn, ωn) ≤ M for every n and S(ρ, ω) < +∞.
For t ∈ [0, T ] let (τn)n be a sequence of intervals τn ⊂ [0, T ] such that τn n→∞−−−→ t. Then
we have for each Γ ⊂ ∂Ω× ∂Ω with piecewise C1-boundary

lim
n→∞

1
|τn|

∫
τn
κn,pt (Γ)dt→ κpt (Γ). (3.1)

Proof. It suffices to show the result for a subsequence. Indeed, let (ρn, ωn) ∗−⇀ (ρ, ω). Then
(ρnj , ωnj ) ∗−⇀ (ρ, ω) for every subsequence indexed by nj and we get

lim
l→∞

1
|τnjl |

∫
τ
njl

κ
njl ,p
t (Γ)dt→ κpt (Γ) (3.2)

for a further subsequence njl . Thus, every subsequence has a further subsequence converging
to κpt (Γ), implying that the whole sequence converges to this value.
Now both, the scattering and the detection part are continuous in time by Lemma 3.1.1.
Thus, by the mean value theorem we get

1
|τn|

∫
τn
κn,pt (Γ)dt = κn,ptn (Γ)

for a sequence (tn)n ⊂ [0, T ] with tn ∈ τn and tn n→∞−−−→ t. According to Lemma 3.2.2, there
exists a subsequence (again indexed by n) such that t 7→ κn,pt (Γ) converges uniformly to
t 7→ κpt (Γ). Using this and the continuity of t 7→ κpt (Γ), we have

|κn,ptn (Γ)− κpt (Γ)| ≤ |κn,ptn (Γ)− κptn(Γ)|+ |κptn(Γ)− κpt (Γ)|
≤ sup

l∈[0,T ]

∣∣κn,pl (Γ)− κpl (Γ)
∣∣+ |κptn(Γ)− κpt (Γ)| n→∞−−−→ 0.

The measurement process is modeled stochastically. Therefore, we have a different func-
tional to be minimized for each possible measurement. To cope with this stochastic be-
havior, we need to analyze convergence in a stochastic framework, meaning that we only
expect to have almost sure convergence of our functionals. Let En(ρ, ω, ξ) be the stochastic
functionals that should Γ-converge to E∞(ρ, ω, ξ). By Γ-convergence of En to E∞ almost
surely we mean the following. For every (ρ, ω) ∈ M and every sequence (ρn, ωn) ∗−⇀ (ρ, ω),
it holds

P
(
ξ ∈ X | lim inf

n→∞
En(ρn, ωn, ξ) ≥ E∞(ρ, ω, ξ)

)
= 1

and there exists a sequence (ρn, ωn) ∗−⇀ (ρ, ω) such that

P
(
ξ ∈ X | lim sup

n→∞
En(ρn, ωn, ξ) ≤ E∞(ρ, ω, ξ)

)
= 1.

Next, we prove Γ-convergence for temporal resolutions ∆tn converging to zero while the in-
tensity of radiation of the radioactive material tends to infinity. The PPP En producing the
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measurement for a given half-life Tn (with Tn → 0) has the intensity measure 1
Tnκ

†
t(x)dtdφ

where κ† is the Radon-Nikodym derivative of the measure

B([0, T ])× B(∂Ω× ∂Ω)→ [0,+∞], τ × Γ 7→
∫
τ
κ†t(Γ)dt.

w.r.t. dφ⊗ dt where φ = H2 ⊗H2.

Theorem 3.2.5 (Γ-convergence). Let (Tn)n be a sequence of half-lifes with
∑
n(Tn)m <

+∞ for some m ∈ N, Tnβn → β > 0, let En be a Poisson point process with intensity mea-
sure 1

Tnκ
†
t(x)dtdφ and ∆tn → 0 for a decreasing sequence of temporal resolutions (∆tn)n.

We set

Cn = Tn log
(∆tn

Tn

)
En([0, T ]× Γtot).

Then, with respect to the weak-* convergence on M,

Γ− lim
n→∞

TnJ
En,∆tn,(Γkl)kl
βn,Tn + Cn = E∞

almost surely. The limit functional reads

E∞(ρ, ω) =
∑
kl

∫ T

0

[
κt(Γkl)− log (κpt (Γkl))κ

†
t(Γkl)

]
dt+ βS(ρ, ω)

= κ([0, T ]× Γtot)−
∑
kl

∫ T

0
log (κpt (Γkl))κ

†
t(Γkl)dt+ βS(ρ, ω).

Proof. During the proof we state different things almost surely. Since we are doing this
finitely often only, the union of all null sets on which the statements do not hold is again a
null set. This means that all statements together still hold almost surely.
For the actual proof we define

En(ρ, ω) = TnJ
En,∆tn,(Γkl)kl
βn,Tn (ρ, ω) + Cn

= κ([0, T ]× Γtot)− Tn
∫

log
( 1

∆tn κ̂
p
)
dEn + TnβnS(ρ, ω).

First, we prove the liminf condition. Let (ρn, ωn) ∗−⇀ (ρ, ω). If (ρ, ω) does not satisfy
the continuity equation, then only finitely many (ρn, ωn) do satisfy it. To see this, let
ϕ ∈ C1

c ((0, T )× Ω) such that∫ T

0

∫
Ω
∂tϕdρtdt+

∫ T

0

∫
Ω
〈∇xϕ, dωt〉dt 6= 0,

i.e. (ρ, ω) is not satisfying the continuity equation. Suppose infinitely many (ρn, ωn) do
satisfy the equation, then for those it is

0 <
∣∣∣∣∣
∫ T

0

∫
Ω
∂tϕdρtdt+

∫ T

0

∫
Ω
〈∇xϕ, dωt〉dt

∣∣∣∣∣ (3.3)

≤
∣∣∣∣∣
∫ T

0

∫
Ω
∂tϕdρtdt−

∫ T

0

∫
Ω
∂tϕdρ

n
t dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
Ω
〈∇xϕ, dωt〉dt−

∫ T

0

∫
Ω
〈∇xϕ, dωnt 〉dt

∣∣∣∣∣→ 0
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3.2 Γ-Convergence I: Fixed Detector Sizes

for n → ∞ due to the weak-* convergence of (ρn, ωn). Since the above argument shows a
contradiction, only finitely many (ρn, ωn) satisfy the continuity equation and so E∞(ρ, ω) ≤
lim infn→∞ En(ρn, ωn) is trivially fulfilled in the case where (ρ, ω) does not satisfy the con-
tinuity equation (because of S(ρ, ω) = +∞ in this case).
Furthermore, if lim infn→∞ En(ρn, ωn) = +∞, the liminf condition is again trivially fulfilled
and thus we can w.l.o.g. restrict ourselves to a subsequence of (ρn, ωn) satisfying the conti-
nuity equation (since otherwise it would be En(ρn, ωn) = +∞ for those pairs not satisfying
the continuity equation) and additionally assume lim infn→∞ En(ρn, ωn) < +∞.
In the proof of Lemma 3.2.8 we will show that

CS(ρn, ωn) + f(0) ≤ En(ρn, ωn)

almost surely for n large enough, a constant C > 0 and an affine, strictly increasing func-
tion f . This implies S(ρnk , ωnk) ≤M for all nk along the infimizing subsequence (nk)k. To
ensure this uniform bound on the regularization part, we will restrict ourselves to the in-
fimizing subsequence in the following (which will again be indexed by n) for each realization
of the random variable En. The convergence results of the stochastic part of the random
variable will be independent of the extraction of a specific subsequence which means that
we can choose a different subsequence for each realization of En. Note, that we need to
assume β > 0 in order to guarantee that the constant C is nonzero.

We start the actual proof of the liminf condition with the stochastic part of the functionals
and consider the error term∣∣∣∣∣∑

kl

∫ T

0
log (κpt (Γkl))κ

†
t(Γkl)dt−

∫
Tn log

( 1
∆tn κ̂

n,p
)
dEn

∣∣∣∣∣
=
∣∣∣∣∣∑
kl

[∫ T

0
log (κpt (Γkl))κ

†
t(Γkl)dt−

∫
Tn log

( 1
∆tn κ̂

n,p
)
1ΓkldE

n

]∣∣∣∣∣
≤
∑
kl

∣∣∣∣∣
∫ T

0
log (κpt (Γkl))κ

†
t(Γkl)dt− Tn

∫
log

( 1
∆tn κ̂

n,p
)
1ΓkldE

n

∣∣∣∣∣ .
We will show convergence for each detector pair kl separately. It is∣∣∣∣∣

∫ T

0
log (κpt (Γkl))κ

†
t(Γkl)dt− Tn

∫
log

( 1
∆tn κ̂

n,p
)
1ΓkldE

n

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0

(
log

( 1
∆tn κ̂

n,p|[0,T ]×Γkl

)
− log (κpt (Γkl))

)
κ†t(Γkl)dt

∣∣∣∣∣ (3.4)

+
∣∣∣∣∣Tn

∫
log

( 1
∆tn κ̂

n,p
)
1ΓkldE

n −
∫ T

0
log

( 1
∆tn κ̂

n,p|[0,T ]×Γkl

)
κ†t(Γkl)dt

∣∣∣∣∣ .

We would like to apply dominated convergence on the first part of (3.4). Thus, we show
that log

(
1

∆tn κ̂
n,p|[0,T ]×Γkl

)
is uniformly bounded. Using continuity of the κ functions in
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time and the mean value theorem, it is for t ∈ τni and with Lemma 3.1.1

log
( 1

∆tn κ̂
n,p|[0,T ]×Γkl

)
= log

(
pκn,stni

(Γkl) + κn,dtni
(Γkl)

)
≤ log

(
C

∫ T

0
ρnt (Ω)dt

)
.

For the lower bound we get with mass conservation

log
( 1

∆tn κ̂
n,p|[0,T ]×Γkl

)
≥ log

(
pκn,stni

(Γkl)
)

= log
(
pps

H2(Γkl)
H2(∂Ω× ∂Ω)ρ

n
tni

(Ω)
)

= log
(
pps

T

H2(Γkl)
H2(∂Ω× ∂Ω)

∫ T

0
ρnt (Ω)dt

)
.

Using the convergence
∫ T

0 ρnt (Ω)dt n→∞−−−→
∫ T

0 ρt(Ω)dt > 0 (unless ρn ∗−⇀ 0 which will be
handled separately) we get

∣∣∣log
(

1
∆tn κ̂

n,p
)∣∣∣ . 1 for n large enough. This allows us to apply

dominated convergence on the first term and thus this part converges to zero according to
Lemma 3.2.4.
For the second term in (3.4) we will apply Markov’s inequality. Therefore, we compute

E
[
Tn
∫

log
( 1

∆tn κ̂
n,p
)
1ΓkldE

n −
∫ T

0
log

( 1
∆tn κ̂

n,p|[0,T ]×Γkl

)
κ†t(Γkl)dt

]

=Tn
∫ T

0

∫
∂Ω×∂Ω

log
( 1

∆tn κ̂
n,p
) 1
Tn

κ†t(x)1Γkl(x)dφ(x)dt

−
∫ T

0
log

( 1
∆tn κ̂

n,p|[0,T ]×Γkl

)
κ†t(Γkl)dt

=0.

By Markov’s inequality and Lemma 2.2.5 we get for every ε > 0

P
(∣∣∣∣∣Tn

∫
log

( 1
∆tn κ̂

n,p
)
1ΓkldE

n −
∫ T

0
log

( 1
∆tn κ̂

n,p|[0,T ]×Γkl

)
κ†t(Γkl)dt

∣∣∣∣∣ > ε

)

≤ 1
ε2mE

[(
Tn
∫

log
( 1

∆tn κ̂
n,p
)
1ΓkldE

n − E
[
Tn
∫

log
( 1

∆tn κ̂
n,p
)
1ΓkldE

n
])2m

]

=(Tn)2m

ε2m

∑
k·s=2m, k1=0

(2m)!
k!(s!)k a

k

≤(Tn)m

ε2m

∑
k·s=2m, k1=0

(2m)!
k!(s!)k (Tna)k

with ai defined as in Lemma 2.2.5 applied to the function t 7→ log
(

1
∆tn κ̂

n,p
)
1Γkl and the

intensity measure λ = 1
Tnκ

†. Keeping in mind that

E
[(
Tn
∫

log
( 1

∆tn κ̂
n,p
)
1ΓkldE

n − E
[
Tn
∫

log
( 1

∆tn κ̂
n,p
)
1ΓkldE

n
])2m

]
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is of degree at most m in the ai, the last inequality only holds for n large enough such that
Tn < 1. As

∣∣∣log
(

1
∆tn κ̂

n,p|[0,T ]×Γkl

)∣∣∣ is uniformly bounded in n by C, we can estimate

∣∣∣(Tna)k
∣∣∣ ≤ ∞∏

i=1

(∫ T

0

∣∣∣∣log
( 1

∆tn κ̂
n,p|[0,T ]×Γkl

)∣∣∣∣i κ†t(Γkl)dt
)ki

≤ max(1, C)m max
(

1,
∫ T

0
κ†t(Γkl)dt

)m
. 1

for all k satisfying k · s = 2m, k1 = 0 and
∑∞
i=1 ki ≤ m. Thus, we have

P
(∣∣∣∣∣Tn

∫
log

( 1
∆tn κ̂

n,p
)
1ΓkldE

n −
∫ T

0
log

( 1
∆tn κ̂

n,p|[0,T ]×Γkl

)
κ†t(Γkl)dt

∣∣∣∣∣ > ε

)
.(Tn)m n→∞−−−→ 0

which establishes convergence in probability. Using the assumed convergence of the series∑
n(Tn)m < +∞, the above result implies almost sure convergence [14, Theorem 6.12]

Tn
∫

log
( 1

∆tn κ̂
n,p
)
1ΓkldE

n −
∫ T

0
log

( 1
∆tn κ̂

n,p|[0,T ]×Γkl

)
κ†t(Γkl)dt

a.s.−−−→ 0

and hence almost sure convergence of the stochastic part

∫
Tn log

( 1
∆tn κ̂

n,p
)
dEn

a.s.−−−→
∑
kl

∫ T

0
log (κpt (Γkl))κ

†
t(Γkl)dt.

For the regularization part S we have, due to the lower semi-continuity of the Benamou-
Brenier functional w.r.t. the weak-* convergence by Lemma 2.1.14,

lim inf
n→∞

TnβnS(ρn, ωn) ≥ βS(ρ, ω). (3.5)

From the convergence ρn ∗−⇀ ρ, the weak-* continuity of ρ 7→ A
s/d
Γklρ by Lemma 3.1.1 and the

Portemanteau theorem we get

κn([0, T ]× Γtot) =
∑
kl

∫ T

0
κnt (Γkl)dt

n→∞−−−→
∑
kl

∫ T

0
κt(Γkl)dt = κ([0, T ]× Γtot).

Thus, we have shown the liminf condition unless ρn ∗−⇀ 0. This case will be considered now.
Setting E∞(0, 0) = +∞, we need to show lim infn→∞ En(ρn, ωn) = +∞. The crucial part
of this computation is the estimation of the log-part. With Nn = 1

∆tn = 1
|τni |

and with
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applying the mean value theorem to get 1
∆tn κ̂

n,p|τni ×Γkl = κn,ptni
(Γkl), we deduce

− Tn
∫ T

0
log

( 1
∆tn κ̂

n,p
)
1ΓkldE

n

=− Tn
∫ T

0

Nn∑
i=1

1τni log
( 1

∆tn κ̂
n,p
)
1ΓkldE

n

=− Tn
Nn∑
i=1

log
(

1
∆tn

∫
τni

κn,pt (Γkl)dt
)
En(τni × Γkl)

=− Tn
Nn∑
i=1

log
(
κn,ptni

(Γkl)
)
En(τni × Γkl)

≥− Tn log
(

sup
t∈[0,T ]

κn,pt (Γkl)
)
Nn∑
i=1

En(τni × Γkl)

=− TnEn([0, T ]× Γkl) log
(

sup
t∈[0,T ]

κn,pt (Γkl)
)
. (3.6)

Because of

P
(∣∣∣∣∣TnEn([0, T ]× Γkl)−

∫ T

0
κ†t(Γkl)dt

∣∣∣∣∣ > ε

)
≤

E
[(
TnEn([0, T ]× Γkl)−

∫ T
0 κ†t(Γkl)dt

)2m
]

ε2m

=(Tn)2m

ε2m

∑
k·s=2m, k1=0

(2m)!
k!(s!)k (a)k . (Tn)m

ε2m max(1,
∫ T

0
κ†t(Γkl)dt)m

n→∞−−−→ 0,

the first factor of (3.6) converges in probability to some positive constant. As above, this
implies almost sure convergence because of

∑
n(Tn)m < +∞. For the second factor we use

the uniform convergence κn,pt → 0 established by Lemma 3.2.2 to get

lim inf
n→∞

−Tn
∫ T

0
log

( 1
∆tn κ̂

n,p
)
1ΓkldE

n & lim inf
n→∞

− log
(

sup
t∈[0,T ]

κn,pt (Γkl)
)

= +∞.

Thus,

lim inf
n→∞

En(ρn, ωn)

= lim inf
n→∞

(
κn([0, T ]× Γtot)− Tn

∫
log

( 1
∆tn κ̂

n,p
)
dEn + TnβnS(ρn, ωn)

)
≥ lim inf

n→∞
−Tn

∑
kl

∫
log

( 1
∆tn κ̂

n,p
)
1ΓkldE

n = +∞

almost surely for ρn ∗−⇀ 0. This finally proves the liminf condition almost surely.

For the limsup condition we can take (ρn, ωn) = (ρ, ω) for all n and do the same computa-
tions as above to get

lim sup
n→∞

En(ρn, ωn) ≤ E∞(ρ, ω)

almost surely.
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Remark 3.2.6. In Theorem 3.2.5 we assumed βnTn → β > 0, i.e. that the regularization
does not vanish in the Γ-limit. This is an important assumption as it ensures the uniform
boundedness of the sequence S(ρn, ωn) which was a crucial condition in order to prove
Lemma 3.2.4, i.e. 1

∆tn κ̂
n,p → κpt (Γkl). This convergence was a key ingredient for showing

the Γ-convergence.

Remark 3.2.7. Unlike for deterministic convergence, in the stochastic framework we do
not have that a sequence converges to a limit l if and only if every subsequence has a
further subsequence converging to l. This equivalence is replaced by the following [14,
corollary 6.13]. A sequence of random variables (Xn)n converges to the random variable X
in probability if and only if every subseqeunce of (Xn)n has a further subseqeunce converging
almost surely to X. Since in general convergence in probability does not imply convergence
almost surely (see [14, Remark 6.6]), this equivalence is not replacing the one we have for
deterministic sequences. This means that we need the additional assumption

∑
n(Tn)m <

+∞ in order to deduce almost sure convergence from convergence in probability of the
stochastic part of the functionals En.

Lemma 3.2.8. Under the assumptions of Theorem 3.2.5 we have that the sequence of
functions En is almost surely equi-mildly coercive, i.e. there exists a countably compact set
K ⊂M such that

inf
(ρ,ω)∈M

En(ρ, ω) = inf
(ρ,ω)∈K

En(ρ, ω)

for all n ∈ N.

Proof. We show that the set of minimizers of the En is uniformly bounded and thus weakly-
* precompact. Again, this needs to be done in a stochastic way and the proof will be given
as follows. We denote the minimizers of En(ξ) by (ρn(ξ), ωn(ξ)) which exist for almost every
ξ ∈ X, i.e. for almost every realization of the random variable En. Since our sequence of
functionals (En)n is countable, there exists a set A ⊂ X with probability one such that for
every ξ ∈ A the functionals En(ξ) have a minimizer (ρn(ξ), ωn(ξ)) for every n. Then, for
every ξ ∈ A, K(ξ) = (ρn(ξ), ωn(ξ))n is the desired countably compact set.
First, we show that the functions En at the respective minimum are uniformly bounded.
Indeed, for the Lebesgue measure L on [0, T ]×Ω it holds (see proof of existence, Theorem
3.1.2)

min
(ρ,ω)∈M

En(ρ, ω) ≤ En(L, 0) < +∞

and the last expression is almost surely uniformly bounded. To see this boundedness,
consider

En(L, 0) = κ([0, T ]× Γtot)− Tn
∫

log
( 1

∆tn (pκ̂s + κ̂d)
)
dEn.

We have to control the last part. As in the proof of Theorem 3.2.5 we have∣∣∣log
(

1
∆tn (pκ̂s + κ̂d)

)∣∣∣ . 1, thus∣∣∣∣Tn ∫ log
( 1

∆tn (pκ̂s + κ̂d)
)
dEn

∣∣∣∣ . Tn
∫
dEn
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and for any ε > 0

P
(∣∣∣∣∣Tn

∫
dEn −

∫ T

0
κ†t(∂Ω× ∂Ω)dt

∣∣∣∣∣ > ε

)
≤ (Tn)m

ε2m

∑
k·s=2m, k1=0

(2m)!
k!(s!)k (Tna)k n→∞−−−→ 0,

implying that Tn
∫
dEn

n→∞−−−→
∫ T
0 κ†t(∂Ω× ∂Ω)dt almost surely with the condition∑

n(Tn)m < +∞. This means that Tn
∫
dEn is almost surely bounded, which gives us

almost surely a uniform bound on En(L, 0). Next, we continue in a similar way as in the
proof of Theorem 3.1.2 but need to take into account the dependence on n this time. The
minimizers (ρn, ωn) of En satisfy S(ρn, ωn) < +∞. Hence, by Lemma 3.1.1, we have that
t 7→ Aρt(Γkl) is continuous and Aρt(Γkl) . ‖ρ‖. Using this we find with p = max(1, p)

En(ρn, ωn) ≥ Tn
∑
inkl

[
Aniklρ

n − Enikl log
(
p
Tn

∆tnA
n
iklρ

n
)]

+ TnβnS(ρn, ωn)

≥ Tn
∑
inkl

[
An,sikl ρ

n − Enikl log
(

p

∆tn
∫
τni

Aρnt (Γkl)dt
)]

+ TnβnS(ρn, ωn)

≥ Tn
∑
inkl

[
1
Tn

∫
τni

ρnt (Ω)dtH
2 ⊗H2 (Γkl)
H2 (∂Ω)2 − Enikl log

(
pAρntni

(Γkl)
)]

+ TnβnS(ρn, ωn)

≥ H
2 ⊗H2 (Γtot)
H2 (∂Ω)2 ‖ρn‖ − Tn

∑
inkl

Enikl log (C ‖ρn‖) + TnβnS(ρn, ωn)

where the n in Aniklρn stresses the fact that the half-lifes are now depending on n and the
notation in means that the sum runs from one to Nn = 1

∆tn . Next, we write

Tn
∑
inkl

Enikl = Tn
∫
1ΓtotdE

n ≤ Tn
∫
dEn.

As in the proof of Theorem 3.2.5 we have Tn
∫
dEn

n→∞−−−→
∫ T

0 κ†t(∂Ω× ∂Ω)dt almost surely,
hence (Tn

∫
dEn)n is almost surely bounded by a (probabilistic) constant C ′. Moreover,

(Tnβn)n is bounded from below by C ′′ > 0 for n large enough because of Tnβn n→∞−−−→ β > 0.
With this we can further estimate for C ‖ρn‖ > 1 (for C ‖ρn‖ ≤ 1 there is nothing to show)

En(ρn, ωn) ≥ H
2 ⊗H2 (Γtot)
H2 (∂Ω)2 ‖ρn‖ −

(
Tn
∫
dEn

)
log (C ‖ρn‖) + TnβnS(ρn, ωn)

≥ H
2 ⊗H2 (Γtot)
H2 (∂Ω)2 ‖ρn‖ − C ′ log (C ‖ρn‖) + C ′′S(ρn, ωn)

≥ f(‖ρn‖) + C ′′S(ρn, ωn)

for a strictly increasing affine function f , see proof of Theorem 3.1.2. Similar to this proof
it now follows that the set of minimizers K := (ρn, ωn)n is uniformly bounded, hence
precompact in the weak-* topology. Because of infM En = infK En for all n, the family
(En)n is equi-mildly coercive.

Remark 3.2.9 (Convergence of minimizers of En). For an equi-mildy coercive sequence of
functions that Γ-converge we have that cluster points of a minimizing sequence are minimiz-
ers of the limit functional. This is stated by Theorem 2.4.2. In our stochastic framework we
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can show that the functions En are almost surely equi-mildly coercive (see Lemma 3.2.8).
Unfortunately we cannot use this to deduce that cluster points of a minimizing sequence
of the En are minimizers of E∞. The Problem is the following. We have shown separately
for every sequence (ρn, ωn) ∗−⇀ (ρ, ω) that the liminf inequality almost surely holds, i.e. for
every (ρn, ωn) ∗−⇀ (ρ, ω) we have

P
(
ξ ∈ X | lim inf

n→∞
En(ρn, ωn, ξ) ≥ E∞(ρ, ω, ξ)

)
= 1.

To be able to apply Theorem 2.4.2 we would have needed to show

P
(
ξ ∈ X | lim inf

n→∞
En(ρn, ωn, ξ) ≥ E∞(ρ, ω, ξ) for every (ρn, ωn) ∗−⇀ (ρ, ω)

)
= 1.

In our situation we can extract for almost every realization En(ζ), ζ ∈ X, of the sequence of
random variables a precompact sequence of minimizers (ρn(ζ), ωn(ζ)) (see proof of Lemma
3.2.8) but we do not know if it holds

lim inf
n→∞

En(ρn(ζ), ωn(ζ), ζ) ≥ E∞(ρ(ζ), ω(ζ))

for this specific realization. We only know that

lim inf
n→∞

En(ρn(ζ), ωn(ζ), ξ) ≥ E∞(ρ(ζ), ω(ζ))

holds for almost every ξ ∈ X but we cannot tell from the proof of Theorem 3.2.5 for which
ξ this inequality holds. This remains to be shown.

3.3 Γ-Convergence II: Variable Detector Sizes

In the sequence of functionals in Theorem 3.2.5 we only changed the size of the time intervals
with increasing intensity of the radioactive material. One could also think about changing
the detector sizes as well. This leads to a slightly different limit functional as in this case
integrals with respect to time and space are involved. The arguments of the proof of Γ-
convergence in this scenario are similar to the ones proving Theorem 3.2.5 but we need
some additional assumptions on our mathematical model. These are going to be motivated
now.
In the proof of Theorem 3.2.5 we used dominated convergence at some point. Therefore, we
showed uniform boundedness of log

(
1

∆tn κ̂
n,p
)
(which was used later again when concluding

almost sure convergence from Markov’s inequality). Thus, to be able to follow along the
steps of the proof of Theorem 3.2.5 we now need boundedness of log

(
1

∆tn|Γnkl|
κ̂n,p

)
. Parts

of showing this can be adopted from the previous considerations but showing boundedness
of the expression

R#(dx⊗ volG)(Γnkl)∣∣Γnkl∣∣ (3.7)

that arises when estimating κntn(Γnkl) is more complicated. To be able to bound this ex-
pression, we need to make another assumption regarding the domain that the measurement
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takes place in. We assume that the detectors are located on the boundary of a convex and
compact set Ωδ and that the radioactive material is located in Ω ( Ωδ. The parameter δ
quantifies the minimal distance between Ω and ∂Ωδ, i.e. it is

δ ≤ inf
x∈Ω, y∈∂Ωδ

‖x− y‖ .

With this new configuration we must adjust our definition of the forward operator. The
scattering part now reads

As :M+(Ω)→M+(∂Ωδ × ∂Ωδ)

λ 7→ λ(Ω)
H2(∂Ωδ × ∂Ωδ)2H

2 ⊗H (∂Ωδ × ∂Ωδ).

We also need to modify the R-function from the definition of Ad. It is now given by

Rδ : Ω×G1,3 → ∂Ωδ × ∂Ωδ

(x, v) 7→ ∂Ωδ ∩ (x+ v).

This way of defining the function guarantees that the distance between two detectors being
able to detect an unscattered photon pair is sufficiently large for small enough detector
sizes. This condition will be needed to bound the expression (3.7) without making further
assumptions on the regularity of ∂Ω.
The second kind of assumptions are due to convergences of the kind

lim
(τn,Γn)→(t,x)

∫
τn κ

p
t (Γn)dt

|τn| |Γn| = κpt (x) (3.8)

for almost every (t, x) ∈ [0, T ] × ∂Ωδ × ∂Ωδ. To guarantee existence of the limit (3.8), we
need the collection of all detector pairs (Γnkl)kl,n to be a φ vitali relation and the collection
(τni )i,n × (Γnkl)kl,n to be a dt ⊗ dφ vitali relation[20, Theorem 2.9.7]. This is true if we
construct the sequence Γnkl in such a way that each Γn+1

kl is contained in exactly one Γnkl
meaning that we receive the sequence by subdividing the existent detector pairs in each
step. The same should hold for the time intervals τni , i.e. it must hold ∆tn+1 = 1

kn∆tn for
kn ∈ N. Additionally, we need the assumption ∪klΓnkl = ∂Ωδ × ∂Ωδ in order to cover the
whole surface with detectors such that the limit (3.8) can be computed almost everywhere
on ∂Ωδ × ∂Ωδ. Moreover, we need our detector sizes to converge to zero, we want the
detectors to have a comparable size in each step n and we want the area of each detector
to be proportional to its squared diameter. These demands on the shape of the detectors
are stated in the following assumption.

Assumption 3.3.1. We assume that there exists a positive function f from N to R and a
constant c > 0 satisfying

0 < cf(n) ≤ diam(Γnk) ≤ f(n)

for all n ∈ N and every detector k with f(n) n→∞−−−→ 0. Moreover, we assume that positive
constants c′ and c′′ exist such that

c′ |Γnk | ≤ diam(Γnk)2 ≤ c′′ |Γnk | .
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3.3 Γ-Convergence II: Variable Detector Sizes

Lemma 3.3.2. If we construct our sequence of detectors (Γnkl)kl,n in the way described
above and under Assumption 3.3.1, we receive a φ Vitali relation which is given by

{(x, S) | x ∈ S ∈ (Γnkl)kl,n}

and for ∆tn+1 = 1
kn∆tn, kn ∈ N, a φ⊗ dt Vitali relation

{(x, t, τ, S) | (x, t) ∈ S × τ ∈ (τni )i,n × (Γnkl)kl,n} .

Proof. The proof follows from [20, Theorem 2.8.19].

Example 3.3.3 (Explicit setup). In this example we explicitly give a setup meeting the
above assumptions, i.e. a setup for which the following considerations of this section will
hold.
Let Ω be a cube with edge length e and Ωδ a cube with edge length eδ = e + δ for some
δ > 0. We subdivide each face of Ωδ into n2 squares (the detectors Γnk) each of which has
an edge length of eδ/n. Then for every n it holds

⋃
kl Γnkl = ∂Ωδ×∂Ωδ and for each detector

Γnk we have

diam(Γnk)2 =
(√

2eδ
n

)2

= 2 |Γnk | .

One crucial point in proving Γ-convergence was Lemma 3.2.4. We now expand this result
and include a decreasing family of detector pairs.

Lemma 3.3.4. Let (ρn, ωn) ∗−⇀ (ρ, ω), let (Γnkl)kl,n be a φ Vitali relation, (τni )i,n × (Γnkl)kl,n
a dt ⊗ φ Vitali relation, let (τnt )n ⊂ (τni )i,n be a sequence of intervals with τnt → t and
let (Γnx)n ⊂ (Γnkl)kl,n such that Γnx → x. Moreover, we assume the uniform boundedness
S(ρn, ωn) ≤ M and S(ρ, ω) < +∞. Then we have for dt ⊗ φ almost every (t, x) meeting
the above conditions

lim
n→∞

1
|τn|φ(Γnx)

∫
τn
κn,pt (Γnx)dt→ κpt (x) (3.9)

where κpt (x) is the Radon-Nikodym derivative of the measure defined by

B([0, T ])× B(∂Ωδ × ∂Ωδ)→ [0,+∞], τ × Γ 7→
∫
τ
κpt (Γ)dt

with respect to the measure dt⊗ φ.
The convergence (3.9) holds for the scattering and detection part of κ separately.

Proof. We start with showing (3.9) for the scattering part of κ. It is

1
|τn|φ(Γnx)

∫
τn
κn,st (Γnx)dt = 1

|τn|φ(Γnx)

∫
τn
κst (Γnx) + [κn,st (Γnx)− κst (Γnx)] dt

= 1
|τn|φ(Γnx)

psφ(Γnx)
φ(∂Ωδ × ∂Ωδ)

∫
τn
ρt(Ω)dt+ 1

|τn|φ(Γnx)
psφ(Γnx)

φ(∂Ωδ × ∂Ωδ)

∫
τn
ρnt (Ω)− ρt(Ω)dt.
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By mass conservation the first part is the Radon-Nikodym derivative of the measure

B([0, T ])× B(∂Ωδ × ∂Ωδ)→ [0,+∞], τ × Γ 7→
∫
τ
κst (Γ)dt

w.r.t. dt⊗ dφ which is given by

(t, x) 7→ ps

φ(∂Ωδ × ∂Ωδ)
ρt(Ω).

Using the mean value theorem, mass conservation and weak-* convergence, the second part
converges to zero. We find

1
|τn|φ(Γnx)

psφ(Γnx)
φ(∂Ωδ × ∂Ωδ)

∫
τn
ρnt (Ω)− ρt(Ω)dt

= ps

φ(∂Ωδ × ∂Ωδ)
1
T

∫ T

0
ρnt (Ω)− ρt(Ω)dt n→∞−−−→ 0.

Next, we prove the result for the detection part. Just like in the proof of Lemma 3.2.4, it
suffices to show the result for a subsequence.
We write

1
|τn|φ(Γnx)

∫
τn
κn,dt (Γnx)dt = 1

|τn|φ(Γnx)

∫
τn
κdt (Γnx)dt+ 1

|τn|φ(Γnx)

∫
τn
κn,dt (Γnx)− κdt (Γnx)dt.

The first term converges to the Radon-Nikodym derivative of the measure

B([0, T ])× B(∂Ωδ × ∂Ωδ)→ [0,+∞], τ × Γ 7→
∫
τ
κdt (Γ)dt

with respect to the measure dt⊗ φ [20, Theorem 2.9.7]. The limit exists for dt⊗ φ almost
all (t, x) ∈ [0, T ] × (∂Ωδ × ∂Ωδ). Thus, we are left to show that the second term goes to
zero. We find∣∣∣∣ 1

|τn|φ(Γnx)

∫
τn
κn,dt (Γnx)− κdt (Γnx)dt

∣∣∣∣
=
∣∣∣∣∣ pd

|τn|φ(Γnx)

∫
τn

∫
G1,3

∫
Z

Γnx
v

(∫
Ω
Gy(x)dρnt (y)−Gy(x)dρt(y)

)
dxvolG1,3(dv)dt

∣∣∣∣∣
.
Rδ#(dx⊗ volG1,3)(Γnx)

φ(Γnx) sup
x

∣∣∣∣ 1
|τn|

∫
τn

(∫
Ω
Gy(x)dρnt (y)−Gy(x)dρt(y)

)
dt

∣∣∣∣
≤
Rδ#(dx⊗ volG1,3)(Γnx)

φ(Γnx) sup
x,s

∣∣∣∣(∫
Ω
Gy(x)dρns (y)−Gy(x)dρs(y)

)∣∣∣∣ .
The first part Rδ#(dx⊗volG1,3 )(Γnx)

φ(Γnx) converges to the Radon-Nikodym derivative of Rδ#(dx⊗
volG1,3) with respect to φ for φ almost all x ∈ ∂Ωδ × ∂Ωδ. The second part converges to
zero which will be shown in the following. To this end we prove uniform convergence of

(s, x) 7→
∫

Ω
Gy(x)dρns (y)

and finally show that the limit coincides with
∫

ΩGy(x)dρs(y).
We want to apply the Arzelà-Ascoli theorem to establish uniform convergence. Therefore,
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3.3 Γ-Convergence II: Variable Detector Sizes

we need a uniform bound on and equicontinuity of the family of functions
((s, x) 7→

∫
ΩGy(x)dρns (y))n. It is∣∣∣∣∫

Ω
Gy(x)dρns (y)

∣∣∣∣ . ρns (Ω) . 1,

establishing that the family of functions is uniformly bounded. Further, we find∣∣∣∣∫
Ω
Gy(x)dρns (y)−

∫
Ω
Gy(x̃)dρns̃ (y)

∣∣∣∣
≤
∣∣∣∣∫

Ω
(Gy(x)−Gy)(x̃)dρns (y)

∣∣∣∣︸ ︷︷ ︸
I

+
∣∣∣∣∫

Ω
Gy(x̃)(dρns (y)− dρns̃ (y))

∣∣∣∣︸ ︷︷ ︸
II

.

We will now show I . |x− x̃| and II . |s− s̃|1/2 which gives us the equicontinuity.
For I, consider the function

x 7→
∫

Ω
Gy(x)dρns (y)

for fixed s ∈ [0, T ]. From ρn
∗−⇀ ρ and mass conservation we get ρns (Ω) .

∫ T
0 ρnt (Ω)dt . 1.

It then holds ∣∣∣∣∫
Ω
Gy(x)dρns (y)−

∫
Ω
Gy(x̃)dρns (y)

∣∣∣∣ ≤ sup
y∈Ω
|Gy(x)−Gy(x̃)| ρns (Ω)

. sup
y∈Ω
|Gy(x)−Gy(x̃)| .

The set Ω is compact and it is G ∈ C∞(Ω2). Then, using the mean value theorem, we have
(for some c ∈ (0, 1))

|Gy(x)−Gy(x̃)| = |∇xGy((1− c)x̃− cx)(x− x̃)| . |x− x̃| ,

i.e. I . |x− x̃|. The estimate of II is derived similar to the estimation in the proof of
Lemma 3.2.2. The weak derivative of

s 7→
∫

Ω
Gy(x)dρns (y)

reads

s 7→
∫

Ω
〈∇yGy(x), dωns (y)〉

and the function is continuous which can be seen from ρn
tk
∗−⇀ ρns for tk → t (proof of Lemma

3.1.1 part (d)). Since Gy ∈ C(Ω) we get
∫

ΩGy(x)dρn
tk

(y)→
∫

ΩGy(x)dρnt (y). With this we
can derive ∣∣∣∣∫

Ω
Gy(x̃)dρns (y)−

∫
Ω
Gy(x̃)dρns̃ (y)

∣∣∣∣ ≤‖∇yGy(x̃)‖∞
∫ s̃

s

∫
Ω

∣∣∣∣dωntdρnt

∣∣∣∣ dρnt dt
. |s− s̃|1/2

∫ T

0

∥∥∥∥dωntdρnt

∥∥∥∥
L2(ρnt )

dt

. |s− s̃|1/2 .
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As we have shown uniform boundedness and equicontinuity of

(s, x) 7→
∫

Ω
Gy(x)dρns (y) =: fn(x, t),

the Arzelà-Ascoli theorem now shows that there exists a subsequence (still indexed by n)
such that the above function f converges uniformly. We need to verify that this uniform limit
f∞ coincides with

∫
ΩGy(x)dρt(y). Using dominated convergence and weak-* convergence

we find for every x ∈ Ω and every ψ ∈ C([0, T ])∫ T

0
ψ(t)f∞(x, t)dt = lim

n→∞

∫ T

0
ψ(t)fn(x, t)dt = lim

n→∞

∫ T

0

∫
Ω
ψ(t)Gy(x)dρnt (y)dt

=
∫ T

0

∫
Ω
ψ(t)Gy(x)dρtdt.

Thus, f∞(x, t) =
∫

ΩGy(x)dρt for all x and dt almost all t and continuity yields equality for
all t.

Lemma 3.3.5. It is
Rδ#(dx⊗ volG1,3)(Γnkl)∣∣Γnkl∣∣ . 1

in the given setting of this section.

Proof. To establish this estimate, we will show

Rδ#(dx⊗ volG1,3)(Γnkl) . |Γnkl| .

Therefore, we need to quantify "how many points" and "how many directions" possibly
contribute to the detections in the given detector pair Γnkl.
We start with quantifying the "number of directions". Note, that we can assume the two
considered detectors to have a minimal distance of δ from each other due to the new
definitions of the domains and forward operator. Since our detector sizes converge to zero
and by Assumption 3.3.1, their maximal size is smaller than δ/2 for all n larger than some
n0 ∈ N. Due to the assumption

δ ≤ inf
x∈Ω, y∈∂Ωδ

|x− y|

on the domains, the distance between two detection points on ∂Ωδ × ∂Ωδ is at least 2δ.
Thus, for all n ≥ n0 we have that the distance between two detectors contributing to mea-
surements is at least δ.

We are now ready to estimate the number of lines (actually the number of directions of
those lines) connecting the two detectors. To do so, it suffices to consider two detectors
shaped as circles, each with a radius of Rnkl := max(diam(Γnk), diam(Γnl )), that are directed
opposite to each other at a distance of dnkl := minx∈Γn

k
,y∈Γn

l
|x− y| ≥ δ. To see this, we

choose two points

pnk ∈ argmin
x∈Γn

k

min
y∈Γn

l

|x− y| and pnl ∈ argmin
y∈Γn

l

min
x∈Γn

k

|x− y|
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3.3 Γ-Convergence II: Variable Detector Sizes

Figure 3.1: Two dimensional depiction of how to measure the directions of lines connecting two circles
(the circles are lines in 2d). The two circles (red lines) are projected onto the sphere and
the green part of the sphere measures the number of directions of lines connecting the
two circles.

and consider the planes Pnk/l having p
n
k−pnl as normal vector and pnk/l as support vectors. We

then consider the two circles Ank/l with centers pnk/l and radius Rnkl located in the respective
plane Pnk/l. Due to the choice of the size of the circles we have that the orthogonal projection
of Γnk/l onto the planes Pnk/l results in the circles Ank/l. Since in addition the faces of both
circles are pointed to one another, any vector (i.e. direction) (a−b) with a ∈ Γnk and b ∈ Γnl
passes through both circles Ank/l. Therefore, we have the estimate

volG1,3(v ∈ G1,3 | (x+ v) ∩ Γnk 6= ∅ and (x+ v) ∩ Γnl 6= ∅ for some x ∈ Ω)
≤volG1,3(v ∈ G1,3 | (x+ v) ∩Ank 6= ∅ and (x+ v) ∩Anl 6= ∅ for some x ∈ Ω︸ ︷︷ ︸

:=V n
kl

),

proving that it suffices to consider two circles faced to one another instead of the actual
detectors. Further we can assume w.l.o.g. that the two circles are oriented symmetrically
around the origin.
Next, we quantify the number of lines (actually the number of their directions) connecting
the two circles Ank/l. The measure volG1,3 on G1,3 can be seen as a probability measure
on S2 that measures the number of lines through the origin piercing the unit sphere S2

[16, Section 3.9]. The most extreme directions that we are interested in are lines through
the origin connecting two points from the boundaries of Ank/l (the other directions can be
derived from those). These directions form a cone. This means that we are interested
in the radial projection of the Ank/l onto S

2 in order to measure the number of lines that
connect the two circles. The situation is depicted in Figure 3.1 for the two-dimensional
case. The two circles (red lines) are projected onto the sphere and the green part of the
sphere measures the number of directions of lines connecting the two circles. As both circles
are of the same shape, one detector can (after possibly reorientating the configuration) be

61



Chapter 3 Existence of Minimizers and Γ-Convergence

parametrized as {
(x, y) ∈ R2 | x2 + y2 ≤ (Rnkl)

2
}
→ R3

(x, y) 7→ (x, y, enkl)

with a distance of enkl = dnkl/2 from the origin. It suffices to consider this detector only
because of the symmetry of the configuration. The projection onto S2 then reads

Φn
kl :

{
(x, y) ∈ R2 | x2 + y2 ≤ (Rnkl)

2
}
→ R3

(x, y) 7→ (x, y, enkl)√
x2 + y2 +

(
enkl
)2

with Jacobian(
x2+y2 + (enkl)

2 )DΦn
kl =

√
x2 + y2 +

(
enkl
)2 − x2√

x2+y2+(enkl)
2

− xy√
x2+y2+(enkl)

2

− xy√
x2+y2+(enkl)

2

√
x2 + y2 +

(
enkl
)2 − y2√

x2+y2+(enkl)
2

− xenkl√
x2+y2+(enkl)

2
− yenkl√

x2+y2+(enkl)
2


.

We then have

det
(
(DΦn

kl)TDΦn
kl

)
= 1(

x2 + y2 +
(
enkl
)2)2

∣∣∣∣∣
[
y2 + (enkl)

2 −xy
−xy x2 + (enkl)

2

]∣∣∣∣∣
= y2x2 − x2y2(

x2 + y2 +
(
enkl
)2)2 + (enkl)2

x2 + y2 +
(
enkl
)2 ≤ 1

and

volG1,3(V n
kl) = 2 1

4π

∫{
(x,y)∈R2 | x2+y2≤(Rnkl)

2
}√det

(
(DΦn

kl)T (x, y)DΦn
kl(x, y)

)
d(x, y)

where the factor two comes from the fact that we have two circles. This integral can be
estimated as

volG1,3(V n
kl) ≤ max

(x,y)∈
{

(x,y)∈R2 | x2+y2≤(Rnkl)
2
}(√det

(
(DΦn

kl)T (x, y)DΦn
kl(x, y)

))
π

1
2π (Rnkl)

2

. (Rnkl)
2 .

We now estimate the number of points possibly contribute to a detection at detector pair
Γnkl. These points are described by

Nn
kl =

{
x ∈ Ω | ∃v ∈ G1,3 with (x+ v) ∩ Γnk 6= ∅ and (x+ v) ∩ Γnl 6= ∅

}
.
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The largest possible number of points in Ω that can lead to a detection of a photon pair
at Γnkl is less than or equal to πmin((Rnk )2, (Rnl )2) supx∈Γn

k
,y∈Γn

l
‖x− y‖, where Rnk/l is the

diameter of the respective detector. We can further estimate

sup
x∈Γn

k
,y∈Γn

l

|x− y| ≤ diam(Ω)

which gives us

|Nn
kl| ≤ πdiam(Ω) min((Rnk )2, (Rnl )2) . min(|Γnk |, |Γnl |).

In total, we have

Rδ#(dx⊗ volG1,3)(Γnkl)∣∣Γnkl∣∣ .
min(|Γnk |, |Γnl |) max((Rnk )2, (Rnl )2)∣∣Γnk ∣∣ ∣∣Γnl ∣∣

.
min(|Γnk |, |Γnl |) max(|Γnk |, |Γnl |)∣∣Γnk ∣∣ ∣∣Γnl ∣∣ = 1,

showing the desired estimate.

Next, we prove Γ-convergence for temporal resolutions ∆tn and detector pairs Γnkl converging
to zero while the intensity of radiation of the radioactive material tends to infinity. The
PPP En producing the measurement for a given half-life Tn (with Tn → 0) has the intensity
measure 1

Tnκ
†
t(x)dtdφ where κ† is the Radon-Nikodym derivative of the measure

B([0, T ])× B(∂Ωδ × ∂Ωδ)→ [0,+∞], τ × Γ 7→
∫
τ
κ†t(Γ)dt

w.r.t. dt⊗ dφ.

Theorem 3.3.6 (Γ-convergence general case). Let (Tn)n be a sequence of half-lifes with∑
n(Tn)m < +∞ for some m ∈ N, Tnβn → β, let En be a PPP with intensity measure

1
Tnκt(x)†dtdφ and ∆tn → 0 for a decreasing sequence of temporal resolutions (∆tn)n. More-
over, we assume (Γnkl)kl,n to be a φ Vitali relation such that

⋃
kl Γnkl = ∂Ωδ × ∂Ωδ for all n,

(τni )i,n × (Γnkl)kl,n to be a dt⊗ φ Vitali relation such that ∪iklτni × Γnkl = [0, T ]× ∂Ωδ × ∂Ωδ

for all n and Assumption 3.3.1 is satisfied. We set

Cn = Tn
∫
∂Ωδ×∂Ωδ

∫ T

0
log

(∆tn |Γn|
Tn

)
dEn.

With respect to the weak-* convergence on M we then have

Γ− lim
n→∞

TnJ
En,∆tn,(Γnkl)kl
βn,Tn + Cn = E∞

almost surely with the limit functional

E∞(ρ, ω) =
∫
∂Ωδ×∂Ωδ

∫ T

0

(
κt(x)− log (κpt (x))κ†t(x)

)
dtdφ(x) + βS(ρ, ω).
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Proof. We define

En(ρ, ω) = TnJ
E,∆tn,(Γnkl)kl
βn,Tn (ρ, ω) + Cn

= κ([0, T ]× ∂Ωδ × ∂Ωδ)− Tn
∫

log
( 1

∆tn |Γn| κ̂
p
)
dEn + TnβnS(ρ, ω),

where |Γn| =
∑

(kl)n 1Γn
kl
φ(Γnkl) is a function that is constant on every detector pair Γnkl with

value φ(Γnkl).
We start with the liminf condition. Let (ρn, ωn) ∗−⇀ (ρ, ω). As in the proof of Theorem 3.2.5
(and by considerations in the proof of the following Lemma 3.3.7), we can assume w.l.o.g.
that lim infn→∞ En(ρn, ωn) < +∞ and S(ρn, ωn) ≤M for every n as well as S(ρ, ω) < +∞.
For the regularization part we have due to the lower semi-continuity of the Benamou-Brenier
functional w.r.t. the weak-* convergence established by Lemma 2.1.14

lim inf
n→∞

TnβnS(ρn, ωn) ≥ βS(ρ, ω).

Additionally, weak-* convergence ρn ∗−⇀ ρ and continuity of the forward operator w.r.t. this
convergence yields

κn([0, T ]× ∂Ωδ × ∂Ωδ) =
∫ T

0
κnt (∂Ωδ × ∂Ωδ)dt

n→∞−−−→
∫ T

0
κt(∂Ωδ × ∂Ωδ)dt =

∫ T

0

∫
∂Ωδ×∂Ωδ

κt(x)dφ(x)dt.

Thus, we are left to prove the liminf condition for the log part. We consider the error term

Zn =
∣∣∣∣∣
∫
∂Ωδ×∂Ωδ

∫ T

0
log (κpt (x))κ†t(x)dtdφ(x)−

∫
Tn log

( 1
∆tn |Γn| κ̂

n,p
)
dEn

∣∣∣∣∣
with En being a PPP on [0, T ]× (∂Ωδ × ∂Ωδ) with intensity measure 1

Tnκ
†
t(x)dtdφ(x). We

get

Zn ≤
∣∣∣∣∣
∫
∂Ωδ×∂Ωδ

∫ T

0

[
log

( 1
∆tn |Γn| κ̂

n,p
)
− log (κpt (x))

]
κ†t(x)dtdφ(x)

∣∣∣∣∣ (3.10)

+
∣∣∣∣∣Tn

∫
log

( 1
∆tn |Γn| κ̂

n,p
)
dEn −

∫
∂Ωδ×∂Ωδ

∫ T

0
log

( 1
∆tn |Γn| κ̂

n,p
)
κ†t(x)dtdφ(x)

∣∣∣∣∣ .
We would like to use dominated convergence on the first part of (3.10). Thus, we show
that log

(
1

∆tn|Γn| κ̂
n,p
)
is uniformly bounded in n. Using mass conservation, Lemma 3.3.5
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and weak-* convergence, it is for (t, x) ∈ τni × Γnkl

log
( 1

∆tn |Γn| κ̂
n,p
)

(t, x) = log
(

1
∆tnφ(Γnkl)

(
p

∫
τni

κn,st (Γnkl)dt+
∫
τni

κn,dt (Γnkl)dt
))

≤ log
(

pps

Tφ(∂Ωδ × ∂Ωδ)

∫ T

0
ρnt (Ω)dt

+ pd

∆tnφ(Γnkl)

∫
τni

∫
G1,3

∫
Z

Γn
kl

v

∫
Ω
Gy(x)ρnt (dy)dxvolG1,3(dv)dt

)

≤ log
(

pps

Tφ(∂Ωδ × ∂Ωδ)

∫ T

0
ρnt (Ω)dt+ pd

Rδ#(dx⊗ volG)(Γnkl)
φ(Γnkl)

‖Gy(x)‖∞
T

∫ T

0
ρnt (Ω)dt

)

≤ log
(
C

∫ T

0
ρnt (Ω)dt

)
.

For the lower bound we get

log
( 1

∆tn |Γn| κ̂
n,p
)

(t, x) ≥ log
(

p

∆tnφ(Γnkl)

∫
τni

κn,st (Γnkl)
)

= log
(

pps

Tφ(∂Ωδ × ∂Ωδ)

∫ T

0
ρnt (Ω)dt

)
.

Using the convergence
∫ T

0 ρnt (Ω)dt n→∞−−−→
∫ T

0 ρt(Ω)dt > 0 (unless ρn ∗−⇀ 0 which will be

handled separately), we get with the above estimates
∣∣∣∣log

(
1

∆tn|Γnkl|
κ̂n,p

)∣∣∣∣ . 1. This allows
us to apply dominated convergence on the first term of (3.10) and thus this part converges
to zero according to Lemma 3.3.4.
For the second term in (3.10) we will apply Markov’s inequality to show convergence to
zero. We find

E
[
Tn
∫

log
( 1

∆tn |Γn| κ̂
n,p
)
dEn −

∫
∂Ωδ×∂Ωδ

∫ T

0
log

( 1
∆tn |Γn| κ̂

n,p
)
κ†t(x)dtdφ(x)

]

=Tn
∫ T

0
log

( 1
∆tn |Γn| κ̂

n,p
) 1
Tn

κ†t(x)dtdφ(x)

−
∫
∂Ωδ×∂Ωδ

∫ T

0
log

( 1
∆tn |Γn| κ̂

n,p
)
κ†t(x)dtdφ(x)

=0.
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By Markov’s inequality and Lemma 2.2.5 we get for every ε > 0

P
(∣∣∣∣∣Tn

∫
log

( 1
∆tn |Γn| κ̂

n,p
)
dEn −

∫ T

0
log

( 1
∆tn |Γn| κ̂

n,p
)
κ†t(x)dtdφ(x)

∣∣∣∣∣ > ε

)

≤ 1
ε2mE

[(
Tn
∫

log
( 1

∆tn |Γn| κ̂
n,p
)
dEn − E

[
Tn
∫

log
( 1

∆tn |Γn| κ̂
n,p
)
dEn

])2m
]

≤(Tn)2m

ε2m

∑
k·s=2m, k1=0

(2m)!
k!(s!)k a

k

≤(Tn)m

ε2m

∑
k·s=2m, k1=0

(2m)!
k!(s!)k (Tna)k

for n large enough such that Tn < 1 and with ai defined as in Lemma 2.2.5 applied
to the function t 7→ log

(
1

∆tn|Γn| κ̂
n,p
)

and the intensity measure λ = 1
Tnκ

†
t(x)dtdφ. As∣∣∣log

(
1

∆tn|Γn| κ̂
n,p
)∣∣∣ is uniformly bounded in n by C, we can estimate

∣∣∣(Tna)k
∣∣∣ =

∞∏
i=1

(∫
∂Ωδ×∂Ωδ

∫ T

0

∣∣∣∣log
( 1

∆tn |Γn| κ̂
n,p
)∣∣∣∣i κ†t(x)dtdφ(x)

)ki

≤max(1, C)m max(1,
∫
∂Ωδ×∂Ωδ

∫ T

0
κ†t(x)dtdφ(x))m . 1

for all k satisfying k · s = 2m, k1 = 0 and
∑∞
i=1 ki ≤ m. Thus we have

P
(∣∣∣∣∣Tn

∫
log

( 1
∆tn |Γn| κ̂

n,p
)
dEn −

∫
∂Ωδ×∂Ωδ

∫ T

0
log

( 1
∆tn |Γn| κ̂

n,p
)
κ†t(x)dtdφ(x)

∣∣∣∣∣ > ε

)
.(Tn)m n→∞−−−→ 0,

establishing convergence to zero in probability. Using the property
∑
n(Tn)m < +∞, the

above result implies the almost sure convergence [14, Theorem 6.12]

Tn
∫

log
( 1

∆tn |Γn| κ̂
n,p
)
dEn −

∫
∂Ωδ×∂Ωδ

∫ T

0
log

( 1
∆tn |Γn| κ̂

n,p
)
κ†t(x)dtdφ(x) a.s.−−−→ 0,

i.e. Zn a.s.−−−→ 0. This finally implies the almost sure convergence

∫
Tn log

( 1
∆tn |Γn| κ̂

n,p
)
dEn

a.s.−−−→
∫
∂Ωδ×∂Ωδ

∫ T

0
log (κpt (x))κ†t(x)dtdφ(x)

of the stochastic part of the functionals. Thus, in total we have shown the liminf condition
unless ρn ∗−⇀ ρ.
Finally, the case ρn ∗−⇀ 0 will be considered now. Setting E∞(0, 0) = +∞ we need to show
lim infn→∞ En(ρn, ωn) = +∞. The crucial part of this computation is the estimation of the
log-part. With Nn being the number of time intervals andMn being the number of detector
pairs and with applying the mean value theorem to get 1

∆tn
∫
τni
κn,pt (Γnkl)dt = κn,ptni

(Γnkl), we
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deduce

− Tn
∫

log
( 1

∆tn |Γn| κ̂
n,p
)
dEn

=− Tn
∫ Nn∑

i=1

Mn∑
kl=1

1τni 1Γn
kl

log
(

1
∆tnφ(Γnkl)

∫
τni

κn,pt (Γnkl)dt
)
dEn

=− Tn
Nn∑
i=1

Mn∑
kl=1

En(τni × Γnkl) log
(

1
φ(Γnkl)

κn,ptni
(Γnkl)

)

=− Tn
Nn∑
i=1

Mn∑
kl=1

En(τni × Γnkl) log
(

pps

φ(∂Ωδ × ∂Ωδ)
ρntni

(Ω)

+ pd

φ(Γnkl)

∫
G1,3

∫
Z

Γn
kl

v

∫
Ω
Gy(x)ρntni (dy)dxvolG1,3(dv)

)

≥− Tn
Nn∑
i=1

Mn∑
kl=1

En(τni × Γnkl) log
(

pps

φ(∂Ωδ × ∂Ωδ)
ρntni

(Ω)

+ pd
Rδ#(dx⊗ volG1,3)(Γnkl)

φ(Γnkl)︸ ︷︷ ︸
.1

‖G‖∞ ρ
n
tni

(Ω)
)

≥− Tn
Nn∑
i=1

Mn∑
kl=1

En(τni × Γnkl) log
(
C

T

∫ T

0
ρnt (Ω)dt

)

=− log
(
C

T

∫ T

0
ρnt (Ω)dt

)
︸ ︷︷ ︸

I

TnEn([0, T ]× ∂Ωδ × ∂Ωδ)︸ ︷︷ ︸
II

.

Factor I goes to infinity as we have
∫ T

0 ρnt (Ω)dt n→∞−−−→ 0 due to ρn ∗−⇀ 0. Because of

E [TnEn([0, T ]× (∂Ωδ × ∂Ωδ))] =
∫ T

0

∫
∂Ωδ×∂Ωδ

κ†t(x)dφ(x)dt

we can apply Markov’s inequality and get

P
(∣∣∣∣∣TnEn([0, T ]× (∂Ωδ × ∂Ωδ))−

∫ T

0

∫
∂Ωδ×∂Ωδ

κ†t(x)dφ(x)dt
∣∣∣∣∣ > ε

)

≤
E
[(
TnEn([0, T ]× (∂Ωδ × ∂Ωδ))−

∫ T
0 κ†t(∂Ωδ × ∂Ωδ)dt

)2m
]

ε2m

=(Tn)2m

ε2m

∑
k·s=2m, k1=0

(2m)!
k!(s!)k (a)k . (Tn)m

ε2m max(1,
∫ T

0
κ†t(∂Ωδ × ∂Ωδ)dt)m

n→∞−−−→ 0.

This shows that factor II converges in probability to some positive constant. As above, this
implies almost sure convergence because of

∑
n(Tn)m < +∞. Thus, lim infn→∞ En(ρn, ωn) =

+∞ almost surely for ρn ∗−⇀ 0 as the other parts of the functional are bounded from below
by zero.
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This finally proves the liminf condition almost surely.

For the limsup inequality we can take (ρn, ωn) = (ρ, ω) for all n and do the same computa-
tions as above to get

lim sup
n→∞

En(ρn, ωn) ≤ E∞(ρ, ω)

almost surely.

Lemma 3.3.7. Under the assumptions of Theorem 3.3.6 we have that the sequence of
functions En is almost surely equi-mildly coercive, i.e. there exists a countably compact set
K ⊂M such that

inf
(ρ,ω)∈M

En(ρ, ω) = inf
(ρ,ω)∈K

En(ρ, ω)

for all n ∈ N.

Proof. The proof is basically the same as in the case of fixed detector sizes that is covered
by Lemma 3.2.8. Therefore, we are only going to repeat the most important and different
steps.
Again, the proof relies on showing that the set of minimizers (ρn, ωn)n of the functionals
En is precompact. We have

min
(ρ,ω)∈M

En(ρ, ω) ≤ En(L, 0) < +∞

and the last expression is almost surely uniformly bounded. For this proof, the uniform
boundedness relies on the uniform boundedness of

∣∣∣log
(

1
∆tn|Γn| κ̂

p
)∣∣∣ established in the proof

of Theorem 3.3.6 when using (L, 0) ∗−⇀ (L, 0) instead of (ρn, ωn) ∗−⇀ (ρ, ω).
Further, we can use the same estimate of the proof of Theorem 3.3.6 (this time applied to
the set of minimizers (ρn, ωn)n) to conclude for (t, x) ∈ τni × Γnkl

1
∆tn|Γn| κ̂

n,p(t, x) . 1
∆tnφ(γnkl)

∫
τni

Aρnt (Γnkl)dt . ‖ρn‖ .

For p ‖ρn‖ > 1 this gives us the estimate, using ∪(kl)nΓnkl = ∂Ωδ × ∂Ωδ for all n,

En(ρn, ωn) ≥ Tn
∑

(ikl)n

[
Aniklρ

n − Enikl log
(

p

∆tnφ(Γnkl)

∫
τni

Aρnt (Γnkl)dt
)]

+ TnβnS(ρn, ωn)

≥ ‖ρn‖ − Tn
∑

(ikl)n
Enikl log (C ‖ρn‖) + TnβnS(ρn, ωn)

≥ f(‖ρn‖) + C ′′S(ρn, ωn),

showing that the set of minimizers is precompact.

Remark 3.3.8 (Convergence of minimizers). Again, we cannot deduce from the almost
sure equi-mildly coerciveness of the sequence of functions (En)n that cluster points of a
minimizing sequence of the En are minimizers of E∞. The problem is the same as described
in Remark 3.2.9.
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CHAPTER 4

Conclusion and Outlook

We introduced a dynamic image reconstruction method for PET data. The intended use
of the method is tracking single or small numbers of radioactively labeled cells. We used
a maximum a posteriori estimate to determine the temporal evolution of the radioactive
material distribution. Since the problem of determining this distribution from PET data is
ill-posed, we had to introduce a regularization in the MAP estimation. We chose optimal
transport regularization which penalizes high kinetic energies of the considered particles.
Our modeling approach leads to the minimization problem

min
(ρ,ω)

JE(ρ, ω) with JE(ρ, ω) =
∑
ikl

[
Aiklρ− Eikl log

(
pAsiklρ+Adiklρ

)]
+ βS(ρ, ω)

where Aikl = 1
T1/2

∫
τi
κt(Γkl)dt = 1

T1/2

∫
τi

(Aρt)(Γkl)dt for the forward operator A that was
derived from physical considerations of the measurement process.
The measurement E was modeled as a Poisson point process with intensity measure

1
T1/2

κ†t(x)dφ(x)dt which led to a stochastic formulation of the objective function JE which

we denoted by JE,∆t,(Γkl)klβ,T1/2
. We showed that the stochastic functional JE,∆t,(Γkl)klβ,T1/2

almost
surely has a minimizer in M =M([0, T ]× Ω)×M([0, T ]× Ω)3. This existence could only
be guaranteed almost surely since Poisson point processes are not finitely valued, but we
have P(Eikl <∞) = 1. The property maxiklEikl < +∞ was important for deriving uniform
norm bounds on a minimizing sequence of JE,∆t,(Γkl)klβ,T1/2

and thus for showing the existence
of minimizers.
The main part of the mathematical analysis of the objective function J

E,∆t,(Γkl)kl
β,T1/2

was

computing two Γ-limits. We used Γ-convergence to analyze the behavior of JE,∆t,(Γkl)klβ,T1/2
when the half-life Tn converges to zero, i.e. the intensity of radiation goes to infinity. We
examined two different scenarios. First, we only changed the size ∆tn of the time intervals
τni . This resulted in the Γ-convergence

Γ− lim
n→∞

TnJ
En,∆tn,(Γkl)kl
βn,Tn + Cn = E∞

almost surely where the Γ-limit reads

E∞(ρ, ω) =
∑
kl

∫ T

0

[
κt(Γkl)− log

(
pκst (Γkl) + κdt (Γkl)

)
κ†t(Γkl)

]
dt+ βS(ρ, ω).

The scaling of the objective function is due to the factor 1
Tn in the definition of Aiklρ and

the (stochastic) constants Cn are needed to account for a different convergence behavior of
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Tn and ∆tn. In the limit functional we see that the discrete character of the term

Eikl log
(
pAsiklρ+Adiklρ

)
has disappeared and the term was replaced by∫ T

0
log

(
pκst (Γkl) + κdt (Γkl)

)
κ†t(Γkl)dt

which shows a continuous behavior in the time variable. Summation with respect to the
measurement process E was replaced by integration w.r.t. the intensity measure of the
process.
For the second Γ-limit we additionally changed the size of the detectors. This resulted in a
similar Γ-convergence behavior

Γ− lim
n→∞

TnJ
En,∆tn,(Γnkl)kl,n
βn,Tn + Cn = E∞

almost surely with a limit functional

E∞(ρ, ω) =
∫
∂Ωδ×∂Ωδ

∫ T

0

(
κt(x)− log (κpt (x))κ†t(x)

)
dtdφ(x) + βS(ρ, ω).

This time, the constants Cn account for a different convergence behavior of ∆tn and |Γnkl|
compared to Tn and the limit functional now shows continuous behavior in the time and
space variable.
Some topics were not addressed in this thesis. One could have also considered the following
aspects.
• For the modeling of the forward operator we focused on the most important physical
aspects and neglected a more detailed consideration. One could include anatomical
information (e.g. from PET-MR or PET-CT scanners) and time of flight informa-
tion. The additional a priori knowledge helps to find a good solution of the ill-posed
problem.
• We used optimal transport regularization and penalized kinetic energy with the func-
tional

S(ρ, ω) =
∫ T

0

∫
Ω

(
dωt
dρt

)2
dρtdt.

Other regularization terms might be more realistic from a biological point of view
and thus might lead to a better reconstruction because more suitable prior knowledge
would be incorporated.
• Within our stochastic framework of Γ-convergence we were not able to deduce that
cluster points of a sequence of minimizers of the En are minimizers of the limit func-
tional E∞ (see Remark 3.2.9 and 3.3.8). This remains to be analyzed.
• For the analysis of the limit behavior Tn → 0 we used Γ-convergence. In a further step
other notions of convergence could be used. In [1] the proposed metric to compare
the reconstructed distribution from simulated PET data with the true underlying
distribution is the Wasserstein-Fisher-Rao metric. This metric accounts for mass
localization errors as well as errors in determining the correct amount of mass.
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List of Symbols

Related to Forward Operator

κ̂n,s/d/p Piecewise constant, averaged functions. It is κ̂n,s/d =
∑
ikl

∫
τi
κ
n,s/d
t (Γkl)dt1τi×Γkl

and κ̂n,p = pκ̂n,s + κ̂n,d. The Γkl and τi might as well depend on n

κ̂s/d/p Piecewise constant, averaged functions. It is κ̂s/d =
∑
ikl

∫
τi
κ
s/d
t (Γkl)dt1τi×Γkl and

κ̂p = pκ̂s + κ̂d

κt, κ
n
t Spatial part of the intensity measure of the measurement process resulting from a
material distribution ρ after applying the forward operator. It depends on n if ρ
does so

κpt Composition of the scattering and detection part of κt: κpt = pκst + κdt

κn,pt Composition of the scattering and detection part of κt: κpt = pκn,st + κn,dt

M Domain of the objective function. M =M+([0, T ]× Ω)×M([0, T ]× Ω)3

M+, M, Md Nonnegative Radon measures, Radon measutes and d dimensional vector
measures

φ φ = H2 ⊗H2

Aa, As, Ad Forward operator describing attenuation, scattering and normal detection

Eikl (Stocastic) number of detected photons in detector pair kl during i-th time interval

G1,3 Grassmannian manifold of all one dimensional subspaces in R3

R Function describing the detection process of two photons

Geometry

∆t, ∆tn Temporal resolution that may depend on n

Γtot Total area of the surface covered by the detectors Γk

Γkl, Γnkl Area covered by the detector pair kl with a possible dependence on n, i.e. with a
changing size. Subset of ∂Ω× ∂Ω or ∂Ωδ × ∂Ωδ

Γk Area covered by the k-th detector. Subset of ∂Ω with piecewise C1-boundary

Ω Interior of the PET scanner where the radioactive material is located in. Compact
and convex subset of R3

Ωδ Interior of the PET scanner whose boundary has a distance of at least δ to Ω.
Compact and convex subset of R3 with Ω ⊂ Ωδ
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List of Symbols

τi, τ
n
i i-th time interval that may depend on n

T Length of the considered time interval

T1/2, T
n Half-life of the radionuclide that may depend on n

Other Symbols

., & These symbols mean ≤ or ≥ up to a constant

∧, ∨ Minimum and maximum of two values
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