| |
FACHBEREICH 10
MATHEMATIK UND
1

INFORMATIK

Master Thesis

Analysis of a Dynamic Cell Imaging Model in
Positron Emission Tomography

Marco Jonas Mauritz

Matr. 449734

Supervisor: Prof. Dr. Benedikt Wirth
Assisting Supervisor: Prof. Dr. Caterina Ida Zeppieri

Institut fiir Analysis und Numerik, University of Miinster, Germany

January 17, 2020






Contents

(l__Introduction and Overview|

0 Preliminan [ Model Derivation
2.1 Optimal Transport and the Continuity Equation| . . . . . . . ... ... ..
2.2 Poisson Point Processes . . . . . ... ..o
2.3 Model Derivationl . . . . . . . . . .o

2.4 1'-Convergence]

|3 Existence of Minimizers and I'-Convergence|

3.2 I'-Convergence I. Fixed Detector Sizes| . . . . . . . . ... ... ... ....

3.3 I'-Convergence II: Variable Detector Sizes . . . . . . . ... ... ... ...

[4__Conclusion and Outlookl

[Cist of Symbols|

39
40
44
55

69
72

73

iii






CHAPTER 1

Introduction and Overview

This thesis deals with the mathematical analysis of a dynamic cell imaging model. Based
on physical considerations, we derive a reconstruction method that determines the temporal
evolution of the distribution of radioactively marked cells from measured PET (positron-
emission tomography) data. The reconstruction is obtained by minimizing a certain objec-
tive function. We show existence of minimizers of this function and consider I'-convergence
for the case of an intensity of radiation tending to infinity.

The reconstruction method was proposed by Schmitzer, Schifers and Wirth [I]. Its intended
use is to track single or small number of cells. Cell tracking is of special interest in the
research field of immunotherapy in order to understand the underlying biological processes
better. This kind of therapy uses modified immune cells to specifically destroy harmful cells
such as bacteria or cancer cells in the human body [2].

Determining the underlying material distribution form PET data is an ill-posed problem.
The proposed method differs from conventional PET reconstruction and is similar to the
method of [3] and [4]. It uses the information of all detected events to find the temporal
evolution of the radioactive material distribution. Additionally, this information is used to
establish temporal consistency between different time steps. This is achieved using opti-
mal transport regularization. Within this regularization approach, among all temporally
evolving material distribution being consistent with the PET measurement, the one with
least kinetic energy is chosen as the reconstruction. Moreover, the temporal evolution of
the material distributions p needs to satisfy the continuity equation d;p+ Vw = 0 where w
describes the material flux inducing the temporal variation of p. A great advantage of the
method considered in this thesis is that the reconstruction complexity is independent of the
number of cells to be tracked. Additionally, the number of tracked cells is determined [I].

We model the distribution of the radioactive material, i.e. the labeled cells, using a non-
negative Radon measure dt ® p; in space-time. The decay of the material is then modeled
with a Poisson point process with intensity measure dt ® %/2 pt where T} /5 is the radionu-

clid’s half-life. From physical considerations we derive a forward operator A = A% + A9 de-
scribing the detection process of the emitted photons. Within the modeling we distinguish
between scattered photons (described by A®) and unscattered, hence normally detected
ones (described by A?). The forward operator transforms p; to a new Radon measure r;
that describes the intensity of the photons at the detectors. The actual detection process
is again described by a Poisson point process with intensity measure dt ® %/2/%. We use

a maximum a posteriori (MAP) estimate to reconstruct the material distribution from a
given measurement which results in a minimization problem. Due to the stochastic charac-
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ter of our model, the objective function has a stochastic component, i.e. the measurement
is produced in a stochastic way for a given material distribution. The objective function
reads

E,AL,(T s
Jﬁ,hf;( b (p,w) = Z [Aiklp — Eij log (pAiklp + Agmﬂ)} + BS(p;sw)
ikl

where Fjj,; is the (stochastic) number of photons during the time interval 7; at detector pair
T,

S 1 S
Az'/k:l/d = T / k) (Tp) dt

and S is the regularization term that penalizes mass movement.

We show that this functional almost surely has a minimizer in a space of Radon measures
M. In the next step we compute two I'-limits for half-lifes 77/, — 0 which means that
the intensity of the radioactive material tends to infinity. For the first I'-limit we shrink

our time intervals. We find for a true underlying material density dt ® pI (which leads to a

measurement process with intensity measure dt® %HI) and for E" =T"J %nﬁtn’(r’”)“ +Cm

we receive the ['-convergence

I' - lim E" =&

n—oo

almost surely with
T d i
E%(pw) =Y. /0 [(Tht) = og (prf (D) + #{ (Twa) ) £ (Twa) | dt + BS (p, ).
kl

For the second I'-limit we additionally shrink the detector sizes and end up with

I' = lim E" =&

n—oo
3 n __ mn EnvAtnﬂ(le)kl n . o . .
almost surely with £ =T"J gn T + C™ and with the limit functional
T d T
ex(p) = [ [ (ula) ~tog (prie) + wi(a)) 5l (@) dbd(x) + S (py).
695><8§25 0

The structure of this thesis is as follows. In Chapter [2] we introduce important concepts
that will be needed in the following sections. Starting with Section 2.I] we give a short
introduction to optimal transport and the Wasserstein metric. Then we consider curves in
probability or Radon spaces and their connection to the continuity equation. This results
in the Benamou-Brenier formula which will be used for our regularization approach. In the
following section we introduce Poisson point processes which are needed for our modeling
approach. We define integrals with respect to such processes and give formulas for expecta-
tion, variance and higher moments for those integrals. Section 2.3] deals with the physical
modeling of the radioactive decay and the detection process of the emitted photons which is



described by the forward operator. Using this forward operator, we derive the reconstruc-
tion formula for identifying the distribution of radioactive material, i.e. the labeled cells.
The final section of the preliminary chapter shortly introduces I'-convergence which will be
the notion of convergence for our limit consideration 775 — 0.

Chapter [3] provides the mathematical analysis of the reconstruction formula. First, we

examine important properties of the forward operator. Then we prove existence of min-
B, A (T k) ki

imizers of the stochastic objective function J67T1/2 . We continue by analyzing the
limit behavior of JEALTHIM g o halflife T 1/2 tending to zero. This is done by means
B:T1/2 /

of I'-convergence. Within this limit process we first only shrink the time intervals of the
detection process. In the next step we shrink the time intervals as well as the detector sizes.






CHAPTER 2

Preliminaries and Model Derivation

2.1 Optimal Transport and the Continuity Equation

Our ill-posed inverse problem will be regularized by means of optimal transport. Within
this approach we use the continuity equation 0;p; + Vi(vip) = 0 to enforce temporal
consistency of the reconstruction between different time steps. Therefore, the relevant facts
about optimal transport and its connection to the continuity equation are considered in
this section. The depictions of this section are mostly oriented at [5] and [6].

Definition 2.1.1 (Radon measure, [7]). Let X be a locally compact and separable metric
space, B(X) its Borel o-algebra, and consider the measure space (X, B(X)).

(a) A positive measure on (X,B(X)) is called a Borel measure. If a Borel measure is
finite on compact sets, it is called a positive Radon measure. We denote the set of
positive Radon measures on (X,B(X)) by My(X).

(b) A measure pi: B(X) — R™ for m > 1 is said to be a finite Radon measure and the set
of finite R™-valued Radon measures on (X, B(X)) is denoted by M(X)™.

Definition 2.1.2 (Narrow and weak-* convergence of measures, [5] and [7]). Let X be a
locally compact and separable metric space.

(a) Let p, (pn)n € M(X) be finite Radon measures. We say that (u,)n converges nar-
rowly to u if

lim od by :/ wdp
X X

n—oo
for all p € C’g(X), the space of all continuous and bounded functions on X.
(b) Let p, (pn)n € M(X) be finite measures. We say that (pn)n weak-* converges to p if

lim [ odu, = / edp
X X

n—o0

for all ¢ € Cy(X), the space of continuous functions vanishing at infinity. We write
*
Hn — b

We consider the Kantorovich formulation of optimal transport. In this formulation of
optimal transport one tries to find a way to move mass from one distribution to another
while trying to minimize the cost of this mass movement.
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Problem 2.1.3 (Kantorovich problem, [6]). Given two metric spaces X, Y, two probability
measures p € P(X), v € P(Y) and a cost function c: X xY — [0, oo], we consider the
problem

wt {K()i= [ ety |y e N
XXY
where I(u, v) is the set of transport plans defined as

M(p,v) = {y € P(X xY) | (m)gy = p, (m2)py =v}.

Here, (m1)4 and (m2)4 are the push-forward measure with respect to the projections of X xY
onto X and Y.

Remark 2.1.4 ([§]). If we deal with finite positive measures that are not normalized to
one, a natural generalization of the transport problem for finite u, v with equal mass, i.e.
w(X) =v(Y), would be to consider

A

U(p,v) ={y € P(X xY) [ [pl(me) gy = > [v|(my) 4y = v}
and
ulinf {K (v) |y € Ti(n,v) |
which is just a scaling of the situation above. Setting
(g, v) :={y € M (X XY) | () = p, (my) 7y = v}

and noting that |u|II(;,v) = II(u,v), we can stick to the notation of Problem by
changing the definition of II(u, v) and are able to work with any finite measures.

Definition 2.1.5 (Wasserstein distance, [6]). Let @ C R? and let d be a metric on Q. We
set

Myi={ne M@ | [laPdu < +oo}.
Then
Wy My x My, — [0, +00)
1
(o) min{ [ o= ylPdy |5 Mo}
QxO

is called the p-Wasserstein distance on (2,d). One can show that this function indeed
defines a distance on M,

Further, we define the Wasserstein space of order p as M, endowed with the distance W),
and denote it by WﬁAP(Q). In the special case where all measures are normalized to one,
we denote by W;Dp (Q) the space

Pp(Q) == {u EML(Q) | u(Q) =1 and /|x]pd,u < +OO}

endowed with the distance W,,.
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Definition 2.1.6 (Continuity equation, [6], [5]). Let Q C R be either a bounded subset of
R? or R? dtself and let I = (0,T) C R be a time interval, let (iu)icr C P(Q) be a family of
probability measures and let v: R? x I — R?, (z,t) — vy(x) be a Borel velocity field such
that

T
/ / (g ()| dpg () dt < +oc. (2.1)
0 JO
We say that the pair (ug,ve) satisfies the continuity equation
8t,ut + V- (’Ut,ut> =0 (22)

on Q x (0,T) in the sense of distributions if for all o € CL(Q x (0,T)) it holds

[ [ @t ) + (Va0 wla) duatayit = (2.3

Remark 2.1.7. (a) The formulation includes homogeneous Neumann boundary condi-
tions on 0N for vy if Q is not R? itself.

(b) In the case Q = R? it suffices that holds for test functions ¢ € C°(RY). By a
regularization argument we then find that ¢ € C}(R? x (0,7T)) is also possible. There-
fore, we need to consider . = ¢ * p. € C(R? x (0,T)) for a standard mollifier
(pe)e. In addition, the integrability condition on the velocity field v allows us to con-
sider bounded C*(R? x (0,7)) functions with bounded gradient whose support has a
compact projection in (0,7"). This time we approximate such a test function ¢ by
¢r = pxr where xg € C°(R?) with 0 < xg < 1, [Vxg| < 2 and xg = 1 on Bg(0)
[5, Remark 8.1.1].

The penalty term that will be used to regularize our ill-posed problem is given by the
Benamou-Brenier functional B. We are going to prove the relation of this functional to
optimal transport, i.e.

WE () =min {By(p.w) | 0ip+ V- = b0 @ = 07 9 v)
1
:min{/o /Q|vt(:1:)|pdpt(:x)dt | Oip+ V- (0upr) = 0, po = pis p1 = y} (2.4)

(under some suitable assumptions that will be stated later, see Theorem [2.1.16)). The
important theorem for proving the above formula (2.4]) is the following.

Theorem 2.1.8 (Absolutely continuous curves and the continuity equation [5]). Let I be

an open interval in R, let py: I — Wzgjp (RY) be an absolutely continuous curve. Then there
exists a Borel vector field v: R x I — R® such that

v € Lp(,LLt;Rd) and HthLP(Mt;Rd) < W) for Lloae tel

and the continuity equation holds in the sense of distributions. Here, |u'| denotes the
metric derivative of the absolutely continuous curve p.

Conversely, if a narrowly continuous curve p: I — W;)p (RY) satisfies the continuity equa-
tion for some Borel field v with ||vt|| pp(,, ma) € LY(I), then the curve (u;); is absolutely

continuous and |p'| (t) < [|vtl] 1oy, may for Ll-a.e tel.



Chapter 2 Preliminaries and Model Derivation

Remark 2.1.9. We stated Theoremfor the continuity equation on [0, 7] x R? because
smoothing of measures, which is needed in the proof, is easier in this context compared the
case of considering the continuity equation on [0,7] x Q for Q C R%. Similar results hold
true for 2 C RY compact, see for example [6, Theorem 5.14].

We start with proving the first statement of Theorem [2.1.8

Proof: “AC = ezistence of vector field“. Using a Lipschitz reparametrization of

(B, Lemma 1.1.4]) and time rescaling of the continuity equation ([5, Lemma 8.1.3]) in the
end allows us to assume that || (t) € L>(I).

We start with investigating the behavior of the functions ¢ — p(p) = [gapdp for
o € CX(RY). For s,t € I and s, € Mo(us, i) (the set of optimal plans with given marginals
ws and py) we find, using the Holder inequality,

a(p) = ps(@)l = | | e@W)d(m)ys)(y) = | @(@)d((m1)375.0)(7)

/Rded(cp(y) — () dys(z, y)‘

< Lip(@)Wp(ps, 1t)

which shows absolute continuity of ¢ — u:(¢). Now that we know that this function is
absolute continuous we can investigate its derivative. Therefore, we define

[Veo(z)] if v =y,
H<$7 y) = x)— :
{ \w(li_jl(y)l ifa Ay

which is a bounded and upper semi-continuous function. Using this function,
Vs.s+h € Ho(ts, prs+r) and again Holder’s inequality, we find

s () —ps(@)] o 1
’h‘ - |h| RdxR4

1
< Wlttetaen) ([ s i, onto)”
|h R4 xR

Next, for any point ¢ € I for which the metric derivative of s — us(p) exists, it holds

‘.7: - y‘ H((l), y)d78,8+h($7 y)

1
imsup LELELLE <y (1119 @ a)aia)) = )0 19z (25)
h—0 |h’ R4

where we used the narrow convergence s s+, — (id,id)4p; as h — 0. This convergence is
due to the fact that the marginals are narrowly converging and thus any limit point is an
element of TT(u, i) and is concentrated on the diagonal of R? x R

Let Q = R? x I and let p = [ yydt € P(Q) be the measure having (u;); as disintegration.
From the mean value theorem we get for any ¢ € C2°(Q) and h small enough

o2, 8) — (2,5 — h)|
Id

<|Op(z,8n)| < sup  |Op(w,s)| S 1.
(z,s)€supp(p)



2.1 Optimal Transport and the Continuity Equation

This shows that (W)}DO is uniformly bounded on a compact subset of () and

thus dominated convergence yields

p(x,s) — (s —h)
/ Osp(z, s)du(x, s) = l}g{& 0 . du(zx, s)
) 1
—tim [ ([ et sdunta) - [ ol dneno)) ds.

With ([2.5]) the last expression can be further estimated and we get with Fatou’s lemma and
Hoélder’s inequality

< lim sup/ . |s+n(0) — ps(0)| ds

< [l ([, Varta s)chs(x)); ds
<(/ |u’|p<s>ds)’l’( / |vmw<x,s>|qdu<x,s>)3 (2.6

where J C I is an interval such that supp(yp) C J x R%. Next, let us denote by V the closure
of V.={V.p | ¢ € CXQ)} in the space L(;;R%). We define a linear functional

‘/Qasgo(a:,s)d,u(x s

L:V =R, L(Vy): / Osp(z, s)du(zx, s).

Due to (2.6) we can uniquely extend L to a bounded linear functional on V.
We consider now the minimization problem

1
min { / (@, 8)| du(z, s) — L(w) =: F(w)}
weV L q JQ

and show that it has a unique solution in V. Therefore, let (w;,), be a minimizing sequence.
Then for any ¢ € C°(Q) and n large enough we have

1 q
too > F(Vag) > 5 /Q lwon (2, 8)|7 dp(, 5) — L{wn)

2 - H WnllZa(umay = C lwnll Lagumay

—\wnumw( Jonllr ey = C)

showing that the minimizing sequence is uniformly bounded (for [[wpl|pq(,rey > ((C +
1
g)g)a—1, the uniform bound is established by the above estimate and for ||w,|| La(uRd) <

((c+ E)q)q%l the norm is bounded anyway). This uniform bound of the norm shows the
existence of an w € V such that w,, — w weakly in L7(u; R?) along a subsequence. Due to the
weak lower semi-continuity of the objective function F' we find that w is a minimizer. Finally,
w is the unique minimizer, since the [, |w(z,s)|? du(w, s)-part of the objective function is
strictly convex. Now that we know that F' admits a unique minimizer w we have that

d

gF(w + t’U)|t:0 = 0
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for every v € V. For the Gateaux differential we find
d d (1 .
—F(w+tv)|t=0 = — f/ lw(zx, s) + tv(z, s)|Tdu(z, s) — L(w + tv) ) |i=0
dt dt \q Jg
— [ e, s) ' @l ), vl )i, 5) ~ L(0)
Q

where the change of integration and differentiation is justified by

jw +t]” < (lw| + |v])? € L'(4) and

0] (w, v)| < ] o] € LY ()
for |t| < 1. Using the function

92 f i f#0,

i L RY) — LP(u; RY),  f—
Jqr L RY) (s RY),  f {0 7= 0

for % + é =1 and choosing the vector field v;(x) = j,(w)(x,t) we get

0= / (Vap(@, t), vi(2))dp(x, ) — L(Vp)
Q

— [ (Vapla.t) v dua.t) + [ dupla. dp(a.)
Q Q

for every ¢ € C2°(Q), showing that (u,v:) satisfies the continuity equation in the sense of
distributions.
We are left to show the norm estimate

HUtHLp(Mt;]Rd) < W[ (#).

Therefore, we take a sequence (V). C V that converges to w in LI(u; R?). Let n €
C°(J) for an interval J C I with 0 < n < 1. Then the convergence V ¢, — w yields,
using Holder’s inequality and the reversed triangle inequality,

'/ n(v,w>dﬂ—/ U(U,Vzwnmp‘ g/ 0] [Vaon — w| d
Q Q 0
<0l 1o (uigay | Veen — @il pagumay > 0

and

n—0o0

S Hw - VZ‘SOHHLP('LL;Rd) I O

1991 aumay = 1Vanll 1o gy
For the function j, we have the identities [5, section 8.3]
w=7jp(v) <= v=7jy(w) and

13Nty = Wl im = [ (o), )

10
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Taking everything together we get
e ot )P e, ) = [ 1ol v, v

= [ nww)dp = Jim_ [ v, Vaga)dn
Q n—oo Q
1

— lim L(Valnpn)) < ([ 10 (s)ds) " tim ([ dwwm(nwn)wdu);

n—00 n—00
1

< (/pr (S)d8>; (/RdXJIw\qdu>q
<(fwrem) (L, mra)

Finally, taking a smooth approximation (), C C2°(J) of the characteristic function of J
yields

/J/Rd |U8($)‘pdﬂs(x)d8§/Jlu’|p(s)ds

and therefore

10| 1o (imay < [1] (2)
(pt;RY)

for Ll-a.e. t € 1. O
The converse implication of Theorem [2.1.8] will be proven using regularization of measures
and a relation between solutions of an ordinary differential equation and distributional

solutions of the continuity equation. Therefore, we start by collecting some auxiliary results
from [B, Section 8.1] first.

Proposition 2.1.10. Let pu, t € [0,T], be a narrowly continuous family of Borel probability
measures solving the continuity equation w.r.t a Borel vector field v, satisfying

T
/ (sup |vg| + Lip(vy, B)) dt < oo for every compact set B C RY
0 B
and satisfying [R.1). Then for pg-a.e. x € R the characteristic system
d
—Xi(z,8) = v(Xi(z, 9))

dt
admits a globally defined solution X(x) in [0,T] and

Xs(z,s) =z,

Mt = (Xt)#uo Vit S [O,T]

Lemma 2.1.11 (Approximation by regular curves, [5]). Let p > 1 and let pu; be a time con-
tinuous solution of the continuity equation w.r.t. a velocity field satisfying the p-integrability
condition

/oT /R [0 (2) [P dpag () dt < +o0.

11
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Let (n.). € C®(R%) be a family of strictly positive mollifiers (e.g. p.(z) = (2me)~?
exp(— |z|? /2¢)), and set

dE:
HE = pey B = (i) % pey 0 = o
1%

Then ug is a continuous solution of the continuity equation w.r.t. vy, which satisfy the local
regularity assumption

/OT (s%p lvg | + Lip(vf,B)) dt < oo for every compact set B C RY
and the uniform integrability bounds
L i@ di @) < [ @) di(a) e € 0.7),
Moreover, Ef — vty narrowly and
1 1 ety = Nl gy ¥ € (0.

Lemma 2.1.12. Let p > 1, u € P(RY) and let E be an R™-valued measure in R? with
finite total variation and absolutely continuous w.r.t. p. Then

/ d(E * p) dE
RY

arm
for any convolution kernel p.

p
dp

p
M*pdxs/
R

d(p * p)

Now we are ready to prove the second part of Theorem [2.1.8]

Proof: “Existence of vector field = p is absolutely continuous®. We start with applying
Lemma [2.T.T1in order to get regular curves uf, v; satisfying the continuity equation. From
Proposition [2.1.10] we get the representation

p = (T7) 41
where T is the maximal solution of the ODE %Tf = vf (T¥) with initial condition T§ = x
(we refer to Section 8.1 in [5] for further details). We find for ¢; < t5 € [0, T, using Holder’s
inequality, Fubini and Lemma [2.1.12]

to

d p
1 (o)t dpiy(x)

y dt

[ 155 - T @) ) < [

R

i [
(-t [ [ WEEEP di (o

(o — 0y [ [ WP duio)ar
<z [ [ @)l du(o

p
dtdps ()

12
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where the use of Fubini is justified by the uniform integrability bounds on the approximation
vi and |[vel po(re) € LY(I), i.e. we have

// 2P diis (x dt<// (g ()P dpsg () dt < +o0.

Consider now the transport plan 7 := (Ty,, T}, ) #115- The above calculation shows

W) < [ e—sldr@) = [T =T @) dijla)

<tz [ [ @l dus(od

We have that py converges narrowly to p; for all t € I as € — 0. Since the Wasserstein
distance is narrowly lower semi-continuous [5, Proposition 7.1.3] we find

to
W (15 py) < (t2 — tl)p_l/ / |ve()[” dpre () dt
t1 R4

As t; and ty were arbitrary, this implies the absolute continuity of (u); and for the metric
derivative we find for Ll'-a.e. t € I

Wi (phetns pt) t+h/
/ _ p ) < p
|| (t) = lim ) }ILIH%) |h| | ()P dp () dt

3 =

= ||Ut||Lp(m,Rd)-

O]

The last part of this section describes the connection between the Wasserstein distance
and the continuity equation. First, we introduce the Benamou-Brenier functional and state
some important properties.

Definition 2.1.13 (Benamou-Brenier functional). Let p > 1, Q C R? and

|=[?

T ift >0,
®,: R x R? = [0, +00], (t,x) {0 if (t,x) = (0,0),
400 ift<0ort=0,2#0.

We define the Benamou-Brenier functional

dp dw
. d p
By: MI0,7] x ) % M(0,T] < ) 0. 400], (o) | @, (CM dA)d)\

where A is any nonnegative Borel measure such that |(p,w)| < A, i.e. the total variation of
the measure (p,w) is absolutely continuous w.r.t. A [9].

Lemma 2.1.14 (Properties of B,). Let p > 1 and Q C R%.
(a) The definition of By, does not depend on the choice of A;

13
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(b) It is Bp(p,w) < +o0 only if p > 0 and w < p. In this case we can write

p

d
| dp;

dp

By(p,w) = /

[0,T]xQ

(c) For Q C R? compact or R? itself, B, is convex and lower semi-continuous w.r.t.
weak-* convergence.

Proof.  (a) Since the function @, from the definition of B, is 1-homogeneous, the definition
of B, does not depend on the choice of A [9].

(b) To see that B,(p,w) is only finite if p > 0 [6, Proposition 5.18], suppose there would
exist a measurable set A, A\(A) > 0, such that Z—é\’ < 0 Mas. on A, ie. p(A) < 0.
Then

dp dw
A
Bp(p"”)—/A p(d)\’d/\> oo

yields a contradiction. To see that B,(p,w) is finite only if w < p [6, Proposition
5.18], suppose we had a measurable set A C [0,T] x R? with p(A) =0, A(A) # 0 and
w(A) # 0. If such a set does not exist then we either have w < p or A < p, and the
letter case implies w <« A < p and hence w < p as well. For such a set A we find
%JA =0 Ma.s. and ‘%HB‘ > 0 A-a.s. for some measurable B C A. With this we find

> D, —, — =
Bp(p,w)_/B p<d)\’d)\>d)\ +00

which contradicts our assumption By (p,w) < +00.
If it holds w < p, then we can write

dw
B,(p, :/ o (1,>d :/
plp ) p1)xe T\ dp P [0,T]x

(c) For % + % = 1 we consider the closed convex set

dw |P

dp

1
K, :{(a,b)eRde\a+qyb|q§O}

and the indicator function

0 if (t,2) € K,

Ky (@) = {+oo else.

Then we have for the function ®, from the definition of B, [6, Lemma 5.17]

p(LKq)* =9,

where (-)* denotes the Fenchel-Legendre conjugate. Since the Fenchel-Legendre con-
jugate is always convex and lower semi-continuous, we have that ®, has these prop-
erties. This directly guarantees the convexity of B,. Its lower semi-continuity w.r.t.

14



2.1 Optimal Transport and the Continuity Equation

the weak-* convergence follows from [7, Theorem 2.34] which states the lower semi-
continuity of functionals of the form [ f (‘fi—:j) dp. To see this, consider a sequence

(p",w") = (p,w). If liminf,,_,o By(p", w™) = +00, then there is nothing to show. We
can thus assume w.l.o.g. that B(p",w") < +oo for all n and (B(p",w™))y is bounded.
From part (b) we get that w”™ < p". Then [7, Theorem 2.34 and Example 2.36] shows

/[O,T] xQ

Note, that we need to extend the measures by zero to an open set A D [0,7] x Q in
order to be able to apply the mentioned theorem. Since [0,7] x € is compact, local
weak-* convergence of (p", &™) on A follows from weak-* convergence of (p™,w™) on
[0, 7] x 2. Such an extension for a measure p is given by

P P
dw dp < liminf

dp n—=20  J[0,T]xQ

do”
dp™

7

fi: B(A) — [0,+00], S— pu(SN0,T] x Q).
O

Within our reconstruction method we use B, to regularize the problem (see Sectionand
. We are interested in a convex regularization term in order to have a convex objective
function which makes the optimization easier. Therefore, we will consider a slightly more
general formulation of the continuity equation [10, Definition 1.1.1 without source term|]
that will basically result in the previous formulation within our modeling approach. We
consider either a compact subset Q C R% or = R,

Let p,v € M4(]0,T] x Q) with |u| = |v|. We say that the pair (p,w) € M := M ([0,T] x
Q) x M([0,T] x Q)¢ satisfies the continuity equation

Op+Vw=8RQu—0rdv
between u and v in the distributional sense if for all ¢ € C1([0,T] x ) it holds

AT, )dv = [ (0, )d
(2.7)

Q

/[O,T]xﬂat@(t’ x)dp(t, x) +/[O,T}x9<vxso(t7x)7dw(t’x» :/

One can remove the time boundary constraints by testing against ¢ € C1((0,7) x Q).

Lemma 2.1.15 (Conservation of mass and continuous representative, [10]). Let Q C RY be
either compact or R itself. If (p,w) satisfies the continuity equationfrom po to pr and
By(p,w) < 400, then p and w admit a disintegration with respect to the Lebesgue measure
in time, i.e. we have p = py @ dt and w = w; ® dt and the weak derivative of the function
(0,T) = R, t— p(Q) is zero. Moreover, we can write

B =[ [

Additionally, there ezists a narrowly continuous curve p € M([0,T] x Q) that dt-a.e. equals
pt such that t — py(Q) is continuous and constant.

p

d
N dpyat.

dpy

15



Chapter 2 Preliminaries and Model Derivation

Proof. We use functions ¢ € C1([0,7] x Q) which are constant in the space variable. This
gives us

(P(T) = #(0))po(2) = #(T)pr(2) = ¢(0)po(€2)

_ / /w (t)dp(t, z) = / & (t)d(rp) (1)

where 7* : [0, 7] x Q — R, (t,2) = t. The above equation implies that 7% p = po(Q)dt. By
the disintegration theorem [5, theorem 5.3.1] one always has p = p; @ wlyp for py € M(Q)
for all ¢. Thus, we end up with the decomposition p = p; ® dt when we set p; = po(Q)p;.
The disintegration in time can be used to derive that the function ¢ — p;(2) is constant in
time. Let p € C°((0,T )) Then, using that p satisfies the continuity equation,

0

implying that the weak derivative of ¢ +— pt(Q) is zero.

Next, using the assumption B,(p,w) < 400, we get w < p by Lemma [2.1.14| which gives us
a disintegration w.r.t. the Lebesgue measure in time of w because of p = p; ® dt. Thus, it
holds

dwt p
Qldpy
Finally, [5, Lemma 8.1.2] (if Q = R%) and [I0, Proposition 1.1.3] (if 2 is compact) guarantee
the existence of a narrowly continuous representative p; for which ¢t — p,(£2) is continuous
and constant. O

Theorem 2.1.16 ([5],[6]). Let Q C RY be either compact and convex or R? itself. Then for
p>1and p,v e M(Q) with equal mass it holds

T
WP (p,v) = TP~ min {/0 /Q lue(z)|” dpi(x)dt | Orpr + Va(vip) =0, po = p, pr = I/}
=T ' min {B,(p,w) | dp + Vaow = 60 @ pp — 7 @ v} .

Proof. The statement follows from Theorem and the fact that we have constant speed
geodesics in P(Q2) [5, Theorem 7.2.2], [0, Theorem 5.27]. We first assume u,v € P(Q).

For any absolutely continuous curve (p;); C WZ,D (Q) with po = pu and pr = v (note, that
Dt TI/ +Z ,u is such a curve) we have, using Theorem and Holder’s inequality,

T p T
W;”(w)s(/o Wt> <t [P i< / o110

Next, take a constant speed geodesic
Y [0,1] = P(Q) with 1(0) = i, 7(1) = v.

It holds Wy (e, vs) = Wp(y0,71) [t — s| and thus we have |y'| = Wy(70,71) = const. Apply-
ing again Theorem m we find

D= ([ W) =wptom = [ HP @2 [Tl b
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2.1 Optimal Transport and the Continuity Equation

Finally, we use rescaling in time [5, Lemma 8.1.3] to achieve a curve 4: [0,7] — P().
Therefore, consider f : [0,7] — [0,1], ¢ — 4. Then it holds

[ [ @r it = g [ [ o @) drs e
=T 1/ /’ )’ Ay (z)dt

and (yf¢), (f 1) (t)vg()) solves the continuity equation on € x [0, T]. In total, this gives us
the first desired equation

T
W2(p,v) = TP~' min {/0 /Q [vg ()P dpe()dt | Oypr 4 Va(vipr) =0, po = p, pr = l/} :
Switching to the variable w; = vp; and taking into account Lemma [2.1.15] yields the second

equation

Wh(u,v) = TP~ min {By(p,w) | Op + Vaow = 6o @ — o7 @ v} .

For p,v € M4 () we have with the above considerations

[T
W) =l Wy (L )

lul ™ vl

T v
= |p| TP~ min {/o /Q\Ut(ﬂfﬂp dpi(z)dt | Orpr + Vaz(vepr) =0, po = |Z|, pT = ’V’}

T
= Tpil min {‘/0 /Q |Ut(.'17)|p dpt(.fﬂ)dt ‘ atpt + Vx(vtpt) = 0, pPo = W, pT = V}

= TP min {B,(p,w) | Oip + Vyw = do @ p — 67 @ v} .

The advantage of considering the minimization problem
min {By,(p,w) | Opp + Vew =0 @ pp — dr @ v}

instead of
T
min {/0 /Q o ()P dpy(@)dt | Bupe + Vu(urpr) = 0, po = i, pr = ,,}

is that the first problem is convex with linear constraints and the second one is non-convex
((z,t) = t|x[? is not convex) with non-linear constraints (due to the term wv;p;) [6, Section
6.1].

We want to use optimal transport to regularize the ill-posed problem considered in this
thesis and described in Section [2.3.4] Therefore, we introduce

S(p.0) i Iy, (g;;;) dpedt  if p>0,w < p and (7)) holds,
+00 else

17



Chapter 2 Preliminaries and Model Derivation

The reconstruction of the material distribution will be found by minimizing an objective
function of the form (p,w) — f(p) + AS(p,w). Due to the constraint that (p,w) should
satisfy the continuity equation and since S(p,w) needs to be finite at the minimum, Lemma
2.1.15|implies that we can write

Ba(p,w) = S(p,w)

in this case.

18



2.2 Poisson Point Processes

2.2 Poisson Point Processes

In Section 2.3.4] we derive a reconstruction method that uses PET data to determine a
temporally evolving distribution of radioactive material. Due to the stochastic character of
radioactive decay we use a stochastic model to describe the important physical processes
that lead to the PET data. This is done using Poisson point processes (PPP). Therefore, we
introduce Poisson point processes in this section and state the most important properties
needed in this thesis. Mainly, this section is taken from [I1] and [12].

We start with the definition of a point process. Point processes can be seen as a random
collection of sets in some space X. To define this rigorously, let (X, X') be a measurable space
and let N (X) =: N4 denote the space of all measures p on X satisfying u(B) € Ny for
all B € X. Let N := N(X) be the space of all measures that can be written as a countable
sum of measures from N_,. Let further N := N(X) denote the o-algebra generated by
the collection of all subsets of N having the form

{neN|uB)=k}, BeX,keN.

This means that N is the smallest o-algebra on N such that pu +— u(B) is measurable for
all B e X.

Definition 2.2.1 (Point process). A point process on X is a measurable map
n: (Q,F) = (N,N),
i.e. an N-valued random variable.

For a point process n and B € X we call n(B) the (random) number of points of 1 in B.
Denote by n(B) the mapping w +— n(w, B) := n(w)(B). Then n(B) is a random variable
taking values in Ny := Ny U {400} due to the definition of  and N, i.e. we have

B)=k}={weQ|nwB) =k}e€F, BecXkecN. (2.8)

On the other hand, a mapping n: Q2 — N is a point process if ([2.8)) holds.
An important characteristic of a point process is its mean number of points lying in an
measurable set which is characterized by the process’ intensity measure:

Definition 2.2.2 (Intensity measure). The intensity measure of a point process n on X is
the measure \ defined by

Basic properties of the expectation show that the intensity measure indeed is a measure.

A Poisson point process is a point process with the number of points in a given set being
distributed according to a Poisson distribution.

Definition 2.2.3 (Poisson point process). Let A\ be an s-finite measure, i.e. a countable
sum of finite measures on X. A Poisson point process with intensity measure \ is a point
process n on X with the properties:
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Chapter 2 Preliminaries and Model Derivation

1. For every B € X the distribution of n(B) is Poisson with parameter \(B), i.e.
k
P(n(B) = k) = 25 exp(—A(B)) for all k € Ny.

2. For every m € N and all pairwise disjoint sets By, ..., By € X the random variables
n(B1),...,n(Bn) are independent.

Poisson processes with o-finite intensity measure (which is satisfied in our model as we are
dealing with finite measures) on complete separable metric spaces X are proper, i.e. there
exist random elements X1, Xo,... in X and an Ny-valued random variable s such that al-
most surely n = Y % _, dx, [LI, Corollary 6.5]. This way the point process can be interpreted
as a countable random set of points in X (with possible repetitions). Moreover, a Poisson
process 1 on a complete separable metric space X with s-finite intensity measure A is simple,
i.e. we have n(w)({z}) < 1 with probability one, if and only if for its intensity measure it
holds A({z}) = 0 for all x € X [II], Proposition 6.9]. As these characterizations hold for the
intensity measures in our model, we are considering simple and proper Poisson processes
and thus our considered processes fit the intuition of a point process being a random set of
points.

An interesting result on (Poisson) point processes is Campbell’s formula which relates the
expectation of an integral with respect to a (Poisson) point process to an integral with
respect to its intensity measure. We only state the version for Poisson processes here, since
this allows us to give a formula for the variance as well. Parts of the following theorem are
also valid for more general point processes (see [L1], Proposition 2.7).

Theorem 2.2.4 (Campbell’s formula [I1],[12]). Let n be a Poisson point process on (X, X)
with o-finite intensity measure X. Let u: X — R be measurable and set
D :={z€ C | Re(z) <0}. Then Sy := [u(z)n(dz) =3 ¢, u(z) is a random variable and

the sum converges absolutely if and only if
/X(]u(a:)] A DA(dz) < +oc. (2.9)
If this condition holds, then for u >0 and € D
E {695“} = exp {/X(eeu(x) - 1)/\(dw)} . (2.10)
For measurable u the above formula holds for 8 € iR. Moreover, it is
E [ / u(:c)n(d:v)} - /X w(z)\(dz) (2.11)

in the sense that the expectation exists if and only if the integral [x u(x)A(dx) converges. If

converges, then
! [/ u(x)n(dx)} - [, (2.12)

finite or infinite.
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2.2 Poisson Point Processes

Proof. We start with proving that S, is a random variable. First, let u(x) = 1p(x) for
some B € X. We get

[ ut@ntdz) =n(B)

which is measurable (i.e. S, is a random variable) due to the definition of the o-algebra N.
Extending this result first to measurable simple functions, then to non-negative measurable
functions and finally to arbitrary measurable functions by using standard techniques of
measure theory shows that 5, is a random variable.

We now prove . We start with considering simple functions, i.e. functions taking
only finitely many different values and vanishing outside a set of finite measure. For such
a function u(x) = Y i ujla,(z) with pairwise disjoint measurable sets A; the random
variables 7; = n(A4;) ~ Poi(\;), \i = A(A;), are independent and

Sy = Zu(x) = ;umz

xren

This gives us

n n

E [695“} -E [69 Yoy uiﬂi:| — ﬁ E [et‘)umi} — H i 69Uik;\%€e—)\i — H 6)\1-(@9“1'_1)
1=1

i=1k=1 ’ i=1

n w; n 69“(2)7 T
— e i) i Ja € DME) _ exp {/ S 1)/\(daz)} .
X

For simple functions this equation holds for all # € C. Next, we take u > 0 and 6 = —t for
some t € (0,00). There exists an increasing sequence of simple functions u; converging to

u. Then Sy, (w) 7% G, (w) for every realization w € € by monotone convergence. Using
dominated and monotone convergence we find

E [efts“} = lim E [eitsuj} = lim exp {/X(et“j(x) - 1))\(dx)}

j—00 j—o0
= lim exp {—/(1 - e_t"]'(z)))\(dx)}
J—00 X

= exp {— /X(l - e_t“(x)))\(dm)} .

If (2.9) holds, we can compute the limit ¢ — 0 for the last integral using dominated con-
vergence. From the mean value theorem we get

=) — 1| < Jtu()
and for u > 0 it always holds

‘1 _etu@)| < q.

Thus, ’1 — e @] < Jtu(z)| A1 < (tV 1)(Ju(z)] A1). The last function is assumed to be
integrable. Hence, we get by dominated convergence

limE [e*tS“} = %in(l) exp {— / (1-— et“(z)))\(dx)} =1.
- X

t—0
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Chapter 2 Preliminaries and Model Derivation

This shows that S, is a finite random variable because if we had S,, = 0o on some measurable
set A with P(A4) > 0 we would get

. —tSu| — 13 —tSy _
1=limE e — limE 50| <E[lad] =1-P(4) <1,
This contradiction shows S, < +o0o almost surely.

The next step is to show that both sides of are analytic functions on D and continuous
on D if we take u > 0. From this we can conclude by the identity theorem for analytic
functions that holds for u > 0 because we have already shown equality on the negative
real line. To show analyticity on D of the two functions

00— E [693“} and 60 — exp {/X(eau(’”) - l)A(dm)} (2.13)

in , we use Morera’s theorem. To apply this theorem, we need to show continuity of the
two functions on D as well as that the integral over each closed and piecewise continuously
differentiable curve in D vanishes. Note, that the domain of each function in can be
extended to D because the expectation and the integral exist on D. This is established by
the following considerations that show the continuity of the functions.

We start with the left side. Let 6, —— @ in D. Since Re(6,) < 0, we have ‘60"5“
Dominated converges then yields

<1
Jim B[] = B[]

which establishes continuity. Next, let v be a closed and piecewise C'! curve in D. Using
Fubini’s theorem and analyticity of the function z — e*>* almost everywhere (Cauchy’s

integral theorem states that ¢ f(z)dt = 0 for v closed and piecewise C' and f holomorphic

and from S, < 400 we get that z — e«

1 1
f E [ezsu} dz = / E [ev(t)S“] ~(t)dt = E [ / 67(t)5“"yl(t)dt} —E [ f eZS“dz} = 0.
Y 0 0 Y
The use of Fubini is justified by
1 1
E [/ ‘eV(t)S“'y’(t)‘ dt} <Yl E [/ eV(t)Sudt} <L
0 0

A similar approach shows that the right side of (2.10)) is holomorphic on D as well. Let
again 0. + 62 = 6,, — 6 in D. We can estimate

is analytic a.e.) we have

leﬁnu(x) _ 1’ _ ‘eehu(m)ezﬂ%u(m) _ 1’ < ‘eeglu(z) (ewgu(x) _ 1)’ + ‘eeglu(x) _ 1‘

<2A |02 u(z) F 1A O u(z) < 2V |02 +1 VoA Au(x)) S1Au(x), (2.14)

where we used |e — 1| < 2 A |¢] ([I3| Lemma 4.14]) and ‘e—tu(x) — 1‘ < 1A [tu(z)| (which
we have derived above). Then, dominated convergence yields continuity

exp {/X(eg"“(x) - 1))\(d1‘)} I exp {/X(egu(‘”) — 1))\(dx)} :
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2.2 Poisson Point Processes

To show that the function is holomorphic, it suffices to show that the function z +—
Jx(e2®) — 1)\(dx) is holomorphic on D because the composition of holomorphic func-
tions again is holomorphic. Therefore, let v be a closed piecewise C' curve in D. Using
Cauchy’s integral theorem applied to the holomorphic functions z — (ew(z) — 1) we have

fg /X (€7®) _ 1)\(dx)dz — /0 1 /X (U@ _ 1))\ (da)y (8)dt
N / / (@0 1) (1) A ()
X JO

= /Xﬁ (ezu(z) - 1) dzA(dx) =0,

where the change of the order of integration is justified by Fubini’s theorem since we have

with
[ [ @@ <1yl an < [ [ @v0+ 192 0)0 A @) 0] d @)
X JO XJo

< ‘7/ (2 V2 41 \/VI)HOO/Xl Au(x)A(dx) < 1.

Next, we show that (2.9) is necessary for S, to converge. If (2.9) does not hold, we have
Sy = 400 with probability one. To see this, we use the mean value theorem to deduce for
0<u(z)<1

e—tu(z) -1 5

: - eftu(z) —1< —tu(x)eft o 1-— eftu(:p) > tu(x)e*t

where 0 < £ < 1. Then we find
/ (1 — e @)\ (dz) = / iy (@)(1 — e @)\ (d) + / Lisu(@)(1 — e @)\ (dx)
X X X
> /X Lica(@)(1 — e DA (da) + te /X 1o (@)u(z)A(dz)
>(1—e ) /X Licu()A(dz) + te~t /X 1o (2)u(z)A\(d2)

> (1 —e*tmat)/x(mu(x)n(dx) = to0,

showing that E {e_tsu} = 0, hence S, = +o0o almost surely. Up to now the theorem is
proved for u > 0.
For an arbitrary measurable function u we consider

um=uv0 and u = —-uVO0

and the restrictions 7 and = of 1 to the sets {u > 0} and {u < 0} respectively. Moreover,
let

St = Zu+(:n) = Z u(z) and S, = Zu_(x) = Z u(z).

TEn zent zen TENT
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Chapter 2 Preliminaries and Model Derivation

The Poisson processes 7 and 1~ are independent since {u > 0} and {u < 0} are disjoint
and from the definition of the o-algebra N we get that the function

fi (N, N) = (R,B(R)), & /ud§

is measurable for v > 0. Thus, S;7 = fon™ and S;; = fon~ are independent. We now
apply the results above. This yields convergence of the sums S, and S, if and only if the
integrals

/u+(x)/\1)\(dx) and /u_(x)/\l)\(dac)
X X
and hence
/Xw(:c)/\u(dx”/xu*(x)m :/X(]u(x)]/\l))\(dx)

are finite. Since the sums S and S;, converge if and only if

Sy = Z u(z)

xen

converges absolutely, (2.9 is a necessary and sufficient condition for S, to converge ab-
solutely. Finally, if (2.9) holds and 6 € iR, using the independence of S; and S, , we
get

E {eesu} —-F [eosj—es;} ) [6953} E [e—es;]

= exp {/X(eew(‘r) - 1))\(d:c)} exp {/X(eeu_(‘r) - 1))\(d:6)}
— exp {/X (60u+($) 4 oetu (@) _ 2) )\(d:c)}

= exp {/X(eeu(x) - 1)/\(dm)} .

Next, we prove the formulas for the expectation and the variance. Therefore, we take a
simple function u and purely imaginary 6 in (2.10)) and consider the formula

s, (t) =E [eitS“} = exp {/X(eit“(x) — 1))\(da:)} .

It is

1d 1 d?
E[S.] = E%@SU(O) and E {Sﬂ = ﬁ@%ﬁsu(o)

if the second derivative of the characteristic function ¢g, () exists [14, Theorem 15.34 and
Theorem 15.31]. We get

d ,
%E [e”‘gu}

~ exp { /X (eitule) _ 1))\(da:)} % /X () _ 1)\ (d)

t=0

— /X w(@)\(dx),

t=0

24



2.2 Poisson Point Processes

where the change of integration and differentiation is justified by z — (e*“(*) — 1) being
dominated in a neighborhood around ¢ = 0 by an integrable function due to u(x) taking
nonzero, finite values only in a set of finite measure. The same is true for the derivative
%(e"t“(m) — 1) = u(z)e™ @), Continuing in a similar way we compute

i :% [exp {/X(eit“(x) - 1)/\(da:)} Z/X(eit“(x) - 1))\(6595)]

t=0 t=0

:eXp{/X(eitu(x _ } pitu(z) )/\(dw))Z

(i ).
+exp{/x( itu(z) }d2 ¢itu(@) _ 1)\(dx)

- (z /X u(x)A(dx)) +i? /X u®(2)A\(dz),

using the same arguments as above for the change of integration and differentiation. This
gives us

v [ / u(x)n(dx)} _E l( / u(x)n(dx)ﬂ _E [ / u(x)n(dm)r _ /X w2(2)\(dz).

Thus, we justified the formulas and in the case of u being a simple function.
Next, for u > 0 measurable there exists a sequence of simple functions u, converging mono-
tonically to u. Monotone convergence yields the formulas for expectation and variance for
nonnegative functions as long as [y u(x)A(dx) < 4+occ. For arbitrary measurable functions u
we split u into positive and negative part u = vy —u_ both for which the two formulas hold
as uy and u_ are non-negative. Thus, E [S,] exists if and only if the integral [y u(x)A(dx)
converges, i.e. both integrals [y ui(xz)A\(dz) and [y u_(z)A(dz) are finite. This establishes
(2.11). In this case the variance is well-defined and formula follows with similar
arguments.

j; E {eitSu}

t=0

t=0

O

In the theorem above we only have expressions for the expectation and the variance of the
random variable S,. Later we can improve our results by using higher order central moments
of S, instead of the variance. The expressions for those moments are more complex and we
will give a formula in the following lemma.

Lemma 2.2.5. Let n be a Poisson point process on (X, X) with o-finite intensity measure
A, and let n € N and u: X — R be measurable such that

/ lu dX\ < +oo
X

for 3 = 1,2,...,N where N = n ifn is even and N = n+ 1 if n is odd. We set
Sy = [u(z)n(dz) = 3 e, u(x). Then we have

E(S.—E[S)]= 3 -1 d

1( sk
k-s=n,k1=0 ]{5(8)
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where the sum runs over all k € N* satisfying > 72 lk; = n and ki = 0. We used the
abbreviations a; = [y ul(z)A(dz), a* = [[}%, af’, s=(1,2,3,...) e N°, k! = [[}2, k! and

(sHF =TI, (1M
FEspecially, the above formula implies that E[(S, —E[S.])"] is a polynomial of degree at
most | 5| in the variables ay,az, ..., an.

Proof. To find an expression for E[(S, — E[Sy])"], we need a formula for the moments of
Su. We are going to derive these moment formulas from the characteristic function of S,
that is given by

ps.() =B ["5] = exp { [ ()~ )A(dn)}

according to Theorem [2.2.4] The relation between the moments of a random variable S,
and its characteristic function ¢g, is as follows [14], section 15.4]: If E [|Su|k} < 400, then
vs, is k times continuously differentiable and it holds

. 1 (s
B [Sﬂ = W{gg@ for all j =0,1,...,k.

Moreover, if pg, is k times differentiable for some k € N even, then
E [SE] = (~1)"/2§(0) < +o.

To find the derivatives of the characteristic function, we use a general formula for finding
the derivatives of ef (x) [I5]. It is

n k
(ef(w)>( S (9 @)
{k|keN> k-s=n}
with s = (1,2,3,...) and coefficients

E I, kil Ty (si)R — RI(sDF”

We apply this to the function f(t) = [i(e™(® —1)A\(dz). For j = 1,2,..., N, the j-th
derivative of f is given by

FO () = /X il (2)e @\ (d)

due to the assumed existence of the integrals a; = [x u/d\ and due to

J

e”“—l’d)\g/2/\|tu|d)\§|t|/ lu] dA < +oo.
X X

Hence, we find
1

sl - jedlo= 3 g(Tlwr).

{k|kEN®® k-s=j} i=1
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2.2 Poisson Point Processes

Thus, we arrive at

We now want to show that the coefficients of all terms a
order to show the desired formula

k! with ki +n —1 > 0 vanish in

|
n.
k7

E[(Su—E[S)"= > 4

Nk
k-s=n,k1=0 k(S)

because the only terms satisfying k1 +n — [ = 0 are those with k&1 = 0 and [ = n which
leads to the above formula.

We pick anylerNoo andogignsuchthat E;s:iand l;:1+n—f> 0. The other

-l

pairs (k,[) contributing to the coefficient of a’%a? can be constructed from the following

considerations. In order to result in the same term (Li“cz’f_l~ it must hold
l;:i:k:i for ¢ >2 and l%l—i—l-n:kl—l—l—n <— l:k:l—l;;l—i—f.
Thus, the smallest possible [ (denoted by ly) is attained for k1 = 0 and from k-s=1we get
lo=1—k >0.

Moreover, it is lg < n because if we ~had lo = n, we would end up with n =y =1 — k; < n,
using the definition of the pair (k,1). The possible values for k; can now be constructed
from lg via ky = k1 — 1+ 1 =1 — [y, leading to

k' = (1 —1lo, ko, ks,...) for lo<Il<n.

Therefore, the coefficients are obtained by

N A S noo o (n I k!
Coeff(aFa}™") =Y (-1) ‘<Z>W=Z<—1) l(l)(l—lo)%! (soz)f%lfa!

I=lp

o Lotk & n\ (1
=" i Y (l) (lo)'

We proceed by showing that the above sum vanishes for 0 < [y < n using induction. With
the binomial theorem we get in the case lp = 0 for any n

S g oo

This is the induction start for n = 1 as well. Now, suppose we have shown

S, (DN (llo) =0 for some n € N and all 0 < Iy < n. The statement then follows for
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Chapter 2 Preliminaries and Model Derivation
n+1and 1 <ly <n+ 1 by observing

ntl n+1\(1 " n+1\[/l+1
(")) - 2 ()
" n+1fn\l+1 [
l:lzojl(l)lzjq(z) lo (zo—1>
n+l & [ l B
o 206

as the last sum vanishes because of the induction hypothesis applied to n and Iy —1 > 0.
The case g = 0 was already done above.
Finally, the conditions k - s = n and k; = 0 imply that |k| <[5 | showing that

n!
E[(S.—E[S.)"] = pa*
k-s=n,k1=0 k'(S')
is a polynomial of degree at most |5 | in a1, as, ..., an. O
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2.3 Model Derivation

2.3 Model Derivation

In this section we describe the mathematical model of the PET measurement and deduce our
reconstruction formula for the inverse problem of determining the distribution of radioactive
material from measured PET data. In essence, this data is obtained as follows. The
radioactive material randomly emits a positron. Shortly after the emission the positron
annihilates with an electron and two photons are emitted at 180 degrees to each other.
These photons are then detected. Normally, the number of detected events is low. This
means that reconstructing the underlying radioactive material distribution from measured
PET data is an underdetermined and hence ill-posed problem which needs to be regularized
by incorporating prior knowledge. Within our approach this will be done using optimal
transport. The considerations in this section are based on [IJ.

2.3.1 Measurements and Material Distribution

The interior of the PET scanner is modeled by a compact and convex set 2 C R? and
the measurement takes place during a time interval [0,7] for a time horizon 7' > 0. The
distribution p of the radioactive material is described by a nonnegative Radon measure on
[0,T] x Q

p e Mi(0,T] x Q).

As we are using optimal transport regularization, the solutions to the optimization problem
necessarily satisfy the continuity equation which results in a disintegration in time (see
Section [2.1)), i.e. we have

p=dt® p

where dt is the Lebesgue measure on [0, T.

The radioactive decay happens according to a Poisson point process with intensity

In2
dt @ N = dt @ —Z p,
Iy

with 7' 5 being the radionuclid’s half-life.

To describe the detection process, let D = {1,...,M} be the set of photon detectors.
Detector ¢ covers a Borel measurable region I'; C 0€2. The detectors are nonoverlapping, i.e.
we have I';NT; = 0 for i # j and we assume each detector to have a piecewise C''-boundary.
Moreover, for each measurement we fix a temporal resolution At, leading to a partition of
the time interval into N disjoint intervals 7; = [(i — 1)At,iA¢] for i = 1,...,N = 4. Since
we are using PET as the measurement method, each detected event comes with a photon
detection in two different detectors. The actual measurement is then a map

E:{1,....N} xDxD—=N

where, for k <1, E;x := E(i,k,l) is the number of photon pairs detected by detector pair
(k,1) within the time period 7;. We set E;;; = 0 for k > [. Moreover, we choose At small
enough to guarantee E;i; € {0,1}. The measurement will be described by an operator
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Chapter 2 Preliminaries and Model Derivation

that is derived from physical considerations. This operator transforms the measure p;
to another measure k; that describes the distribution of photons at the detectors. The
actual measurement is then generated by a Poisson point process on [0, 7] x 09 x 99 (the
measurement process is defined on 92 x 92 due to our definition of the forward operator,

see section [2.3.2)) with intensity measure dt ® :}?—imt, i.e. for k£ <[ the number of photons
FE;; is Poisson distributed with mean r_lprll—i . kt(Tk)dt where T'y; describes the area covered

by the detector pair ki. The sets I'y; do not necessarily cover the whole surface of the
measurement volume. We set (Jy; I'; =: T'yor C 082 x O€L.

Since we later want to analyze the behavior in the limit 77, — 0 we explicitly emphasize the
dependence of the measurement process on the half-life T’ /5. The density x; € M (9Q2x0Q)
can be derived from the material distribution by applying the forward operator introduced
in the next section.

2.3.2 Forward operator

The forward operator transforms the intensity measure p; of the PPP describing the decay of
the radionuclide into the intensity measure x; of the measurement PPP. The detection pro-
cess decomposes into three parts, attenuation, scattering and detection without substantial
scattering. Therefore, we split the A\; and p; into

( ?7>‘f7)‘f) = 7

The probability of attenuation or scattering depends on the material that the photon passes.
This gives us

A= pi A, A = piA A = piy

for some functions p¢, p§,pf: Q — [0,1], t € [0,T], with p¢ 4+ pj + pf = 1. These functions
depend on the material composition at time ¢t. For simplicity, we assume these functions
to be spatiotemporally constant, and we will write p®, p* and p? in the following. We now
model the three parts of the forward operator.

(1) Attenuation
The forward operator describing the attenuation simply sets all intensity to zero,

A% M+(Q) — M+(BQ X 89)
A= 0.

(2) Scattering
Scattering changes the direction of the photon rays randomly in our model, meaning
that the probability of a scattered photon pair to arrive at point (z,y) € 9Q x 99 is
homogeneous. This leads to the operator

A5 M4 () = M4 (99 x 09)
A(Q)

2 2
Ao gt B HIL (0% < 09)
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2.3 Model Derivation

where H? is the two-dimensional Hausdorff measure and L denotes the restriction of
a measure to a set.

Detection
The operator describing the detection process without scattering is composed of three
linear operators

A% = B3ByBy

modeling the positron range, the direction of the scattered photon pairs and the
detection.

Let Gy : © — [0,+00) be a smooth convolution kernel describing the probability
density of an annihilation of a positron emitted at y. The operator

By: M4 () = M4(Q)
AHAQM@)

then models the positron range from emission to annihilation. In general, G, de-
pends on the surrounding material but we will only consider a spatially homogeneous
Gaussian kernel

1 |z — y|’
ex _——
V8m3e P 2e

for some fixed € > 0.

When the positron annihilates, two photons are emitted in opposite directions. This is
modeled by an operator transforming the intensity of photon emissions into a density
on  x G (a position with a direction), where G'3 denotes the Grassmannian
manifold of one-dimensional subspaces in R, On G!* we have a natural probability
measure volgi,s [16, Chapter 3|. Since the direction of a photon pair after annihilation
is distributed uniformly, the operator reads

By: M (Q) = M, (2 x GY3)
A= A® volgs.
Finally, the photon pair emitted at z € Q in direction v € G will be detected at
positions R(x,v) with
R: Q x GY = 90 x 09
(x,v) = 00N (z+v)
where two-element subsets of 0f) are identified with a point in 0 x 9 with lexico-

graphic ordering. With the function R we can write the operator Bs describing the
actual detection of a photon pair as

Bs: M (2 x GY?) — M (09 x 99Q)
)\HR#)\

where R4\ is the pushforward measure of A. In total, the intensity dt®71311—/22/€t inducing
the measurement PPP is given by
Kt = K{ +K; + /if = p® A%, +p° A% py + pPA%p,.
——

~—~
=0 =0
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Chapter 2 Preliminaries and Model Derivation

Remark 2.3.1 (Evaluation of the detection operator). Let I' C 9Q x 9 and for v € G3
define

7L ={z Q| (x,v) € RTYD)}.
According to Cavalieri’s principle [I7, Theorem 9.6.6] Z! is measurable for every v € G2
and we have for p, € M4 ()
A?py(T) = B3BaBipi(T') = (BaBup)(R™H(I)) = /G1 3(Blpt)(ZE)VOIGLB(dU)

=[] (Bipn)(@)dovolra (@)
:/GLB /Zg/QGy(x)dpt(y)dxvolG1,3(dv).

Remark 2.3.2 (Absolute continuity w.r.t. H? ® H?). The measure k; is absolutely con-
tinuous with respect to the measure H? @ H? for every t € [0, T]. For the scattering part,
this follows immediately from the definition of the respective forward operator as H? @ H?
restricted to €2 x 9€) appears.

The absolute continuity of the detection part comes from the smoothing by convolution
with the C* function G. To see this, let T' C 9Q x 9Q such that H? @ H? (T') = 0. With

Remark we get

Adp,(T) = / | / / G, (2)dpe(y)devolgs (dv) < |Gl pe() / | / davolgrs (dv)
c13 Jzr Jo G13 Jzr

< diam(Q)H? @ H? (T) volgrs (G13) < H2 @ HA (D) = 0.

2.3.3 Optimal transport regularization

To deal with the ill-posedness of our inverse problem we will apply a Bayesian approach and
use a maximum a posteriori estimate. Within this framework we need to assign each possible
material distribution a likelihood. This likelihood is obtained using optimal transport, thus
we are going to use optimal transport regularization.

We use this framework to determine the kinetic motion energy at each time for all temporally
evolving distributions and are going to assign a higher likelihood to a distribution the
less kinetic energy is associated with the temporal evolution of it. To quantify the mass
movement we introduce a vector valued Radon measure

w e M([0,T] x Q)3

describing the time dependent material flux leading to the temporal variation of p. Both
measures p and w need to be compatible which is expressed by the continuity equation

Oip+Vy-w=0 (2.15)

that describes mass conservation. The equation is to be understood in the distributional
sense, i.e. it holds

/ Orpdp +/ (Vep,dw)y =0 for all p € CL((0,T) x Q).
[0,T]x$2 [0,71x$2
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2.3 Model Derivation

Within our regularization approach p and w can be disintegrated in time (see section
for details) and we can also write

T T
/ / Orpdprdt +/ / (Vop,dw)dt =0 for all ¢ € CH(0,T) x Q).
0 JQ 0 JQ

Using the continuity equation as above we assumed T' < T7 /, meaning that the amount of
radioactive material approximately remains constant during the measurement time. With-
out these assumptions we could use unbalanced optimal transport to account for mass loss
by introducing a decay term in the continuity equation.

For our Bayesian approach we need to assign a likelihood to each path (p,w). This is done
using a slightly modified version of the Benamou-Brenier functional By and that was already
introduced in Section P.J1 We choose

2
S(p,w) = o Jo (%) dpedt if p > 0, w < p and (2.15) holds,
+oo else,

where % denotes the Radon-Nikodym derivative of the measure p with respect to v. As
already mentioned at the end of Section 2.1} we have S(p,w) = Ba(p,w) as soon as S(p,w) <
+oo. To finally quantify the likelihood of (p,w) we assume a Boltzmann-type probability
distribution meaning that we have

]P)(p, w) ~ exp(—/BS(p, w))

where [ can be seen as a an inverse temperature and will be the regularization parameter.

Physically, S(p,w) is the action of the path (p,w) and [, (%)det can be seen as the
kinetic energy of all particles in the system at a given time ¢. Hence, we use a kinetic
regularization. As the minimum of the Benamou-Brenier functional for a transport from
po to pr is proportional to the squared Wasserstein-2 distance between both measures, we
assign a higher likelihood the less mass moves in total. This is another interpretation of
the regularization which only takes into account the total mass movement but ignores the
velocities that are associated to this mass movement. Note, that we make no assumptions

about the spatial distribution of p.

2.3.4 Reconstruction method

In this paragraph we deduce the function to be minimized in order to obtain the recon-
struction (p,w) for a given measurement. We use a Bayesian approach to deal with the
ill-posedness of the inverse reconstruction problem. Using Bayes’ formula, the conditional
probability of a pair (p,w) given a measurement F reads

Elp,w)P (p,w)
P (E)

P(p,w|B) = 2t

Let Py (k) = AFe=*/k! be the Poisson distribution with parameter A and let

In2

Kik = 77—
’ Tyo

/ K,t(r‘k x Iy uUTy x Fk)dt

=T
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Chapter 2 Preliminaries and Model Derivation

be the expected number of photons in detector pair kI during the time interval 7;. Note that
we need both sets I'y, x I'; and I'; x I'j, to take into account the correct number of photons
detected by the detector pair kI because we modeled the measurement process on 9€2 x 9.
The measure k; is linked to the mass distribution via the forward operator described in the
previous section. The conditional probability obtaining the measurement E for a given pair
(p,w) (actually only p is needed to apply the forward operator) is given by

P (Elp,w) =P (Elp) = [ [ Py (Eira)
ikl

where we used the independence property of PPPs on disjoint sets. Next, we determine
the maximum a posteriori (MAP) estimate of (p,w). Therefore, we maximize P (p,w|E) or
equivalently minimize

—log (B (p, w|E)) = —log (P (E|p,w)) — log (B (p,w)) + P (E)

~ Z —log ((Kikl)Eikle—Kikl/(Eikl)!) + BS(p,w)
ikl

=Y [Kit — Eirg log (Ki)] + BS(p,w)
ikl

where we neglected the constant P (F) and the constants coming from the factors of the
model for P(p,w) as they will not matter in the following optimization. Moreover, we
used the assumption E;i; € {0,1} in order to not having the term ;. log (Eix!) in our
functional. To point out all dependencies on the mass distribution, we set

Aipip = Kip-
This leads to the function

JE(p,w) =" [Aip — Eirlog (Airp)] + BS(p, w)
ikl

to be minimized.

The MAP estimate resulting from the minimization of J fails to detect scattered photon
pairs properly and instead declares most of the photon pairs to be unscattered. This is due
to the part of A;p;p resulting from p® A% being very small compared to the other one coming
from p?A¢. This happens because A°® distributes the intensity evenly across all detectors
whereas A¢ concentrates intensity to a few suiting detectors only.

To reduce this problem, we split the measurement

E=E+E°

into scattered and normally detected photon pairs and assume that we know the number
K* of scattered measurements. We now repeat the derivation of a MAP estimate but
reconstruct (p,w, E£¥) this time for a fixed number K* of scattered photon pairs. We have
now

P (B, Elp,w) P (p,w)

P(p,w, E°|E) = P(E)
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2.3 Model Derivation

Assuming that scattering and normal detection happen independently, i.e. the probability
of scattering is independent of the number of already scattered photons, and using the
independence property of PPPs on disjoint sets, we find

P(E, E°|p,w) HPKS Eja)Prea ( Ef)
ikl
with the definitions

S/d_m/ s/d 1112/ s/d ps/d
Kk T T (Tha)dt = Ti/2 A py (L) d.

Setting
d d
Ao =Kl and  Agup = Ajyp+ Ayp
to emphasize the dependence on the material distribution p, we arrive at the functional
JE(p,w, E%) = [Aiklp — Ejy log (Aj,p) — Efy log (Azkz)] + BS(p,w)
ikl

by performing similar computations as in the above derivation of J. This time, the func-
tional J¥ is minimized for p, w and E* taking into account the constraint

‘ES’1 - Z zkl

ikl

Note, that we again assumed E;; € {0,1} in the derivation of JE. Two more modifications
of our objective function are in order. First, the optimization of J¥ is computationally
costly as it involves the combinatorial optimization over all possible E®. Therefore, we
replace E° by a tuning parameter p > 0 that modulates the importance of the scattering
part of the forward operator. This yields the new functional

TP (p,w, E*) = {Aiklp — Ejjy log (maX(pAszPa A?MP))} + BS(p, w).
ikl

The interpretation of this simplification is as follows: Small values of p close to 0 result
in the maximum max(pA3,p, A;ikl p) to be evaluated to the second term, i.e. the detection
part, meaning that all events are declared as properly detected photon pairs. For large
values of p the opposite interpretation of the detected events will be chosen. Thus, choosing
an intermediate value of p results in a reasonable amount of detected scatter events.
Finally, we convexify our functional by replacing the log-part with its convex envelope. This
leads to the final objective function

JE(p,w) = [Aiklp — B log (PAfklP + A?kzp)} + BS(p,w). (2.16)
ikl
Therefore, we get the distribution of the radioactive material p from the PET measurement
E by minimizing J¥ over M = M ([0, T] x Q) x M([0,T] x Q)3, leading to

(h,@) € ?rgl)"ﬂi& JE(p,w). (MIN)
pw)E

By considering (In 2p, In 2w) instead of (p,w) and % instead of 8, we can omit the constant

factor In 2 in the definitions of A;;; and A / in the following considerations.
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Chapter 2 Preliminaries and Model Derivation

Remark 2.3.3 (Time continuity of p). Minimizers of the objective function J¥ are satisfy-
ing the continuity equation due to the regularization term S. Lemma[2.1.15|then guarantees
the existence of a narrowly continuous representative g; of p;. It holds for all open intervals
(a,b) C [0,T] and all open subsets Z C 2

p((a,b) x Z) :/ab/zdptdt: /ab/Zdﬁtdt:ﬁ((a, b) x 7).

Thus, both measures coincide on the generating system of B([0, 7] x §2) which means p = p
and we can assume that p; is narrowly continuous in time.
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2.4 T'-Convergence

2.4 I'-Convergence

In the Sections 3.2l and [B.3] we are interested in the behavior of the reconstruction functional
J¥ when the half-life goes to zero, i.e. the intensity of the radioactive material goes to
infinity. We are going to use the notion of I'-convergence to analyze this limit process as
the theory of I'-convergence is well suited for investigating limit processes in minimization
problems. Therefore, we define I'-convergence and give an important result related to it in
this section.

Definition 2.4.1 (Sequential I'-convergence, [I8]). Let X be a topological space. Then
the sequence (f;); of functions from X to RU {400} sequentially I"-converges to f: X
R U {+oc} if we have

(i) for every x € X and for every sequence (x;); converging to x in X it is

flx) < lilginf filxs);

(ii) for every x € X there exists sequence (x;); converging to x in X such that

f(x) = limsup f;(;).

11— 00

If the I'-converging sequence of functions (f;); satisfies some additional properties, then we
have that minimizers of the f; converge to minimizers of the limit functional f.

Theorem 2.4.2 (Fundamental theorem of I'-convergence, [I8]). Let X be a topological
space and let (f;)ien be a sequence of equi-mildly coercive functions from X to RU {400},
i.e. there exists a countably compact set K C X such that

xlg)f( filx) = wlgf{ fi(x) for allie N.

If (fi): sequentially T'-converges to a function f: X — RU {400}, then f has a minimizer
i X and it holds
. I, i inf (),
min f(z) = min f(z) = lim inf fi(z)
Moreover, if (z;); is a precompact sequence such that lim; fi(z;) = lim; infx f;, then every
cluster point of the sequence (x;); is a minimizer of f.

Proof. Let K be a sequentially compact subset of X such that inf,cx fi(z) = inficx fi(x)
for all ¢ € N. We start with showing two auxiliary inequalities. Let (x;) be a sequence
in K such that liminf; inf,cx fi(z) = liminf; f;(z;). The existence of such a sequence is
guaranteed by the following argument. Consider

liminf inf f;(z) = inf inf = inf .

It o Fi) = o L T P ) =S e Sl
There exists a sequence (nj,z;); C {n € N |n > i} x K such that (f,,(zy,)); is decreasing
with limit inf,>; yex fn(x). By assigning z,, an arbitrary element of K whenever n # n;
we get

otese T2 =1 Ins (g ) =350 Iy () =205 )
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and thus finally lim inf; inf,cx fi(7) = liminf; f;(x;). Further, let (z;;); be a subsequence
such that lim; f; (x;;) = liminf; f;(x;). We can assume (z;;) to be convergent with limit z
by using the sequential compactness of K. Next, define another sequence via
oy if ¢+ = 4, for some j,
“"T\& i forallj
that converges to z as well. Using the liminf condition it holds

mlél}c(f(:v) < f(x) < limiinf filyi) < limjinf fi;(xi;) = lijm fi;(xi,) = limiinf l}g}f{ fi(z).

Thus, we get the first auxiliary inequality

xlg}"{f(:p) < hmilnf ;glf( fi(z) (2.17)

For the second inequality fix 6 > 0 and take x € X with f(z) < infzex f(z) + 0. Further,

let (x;); be a recovery sequence. Then we get

Inf f(z) +6 = f(z) > limsup fi(w:) = lim sup inf fi(z).

(2

Since § was arbitrary, it follows

;S)f( f(z) > hmisup l}g}f{ fi(z). (2.18)

With these results we get

: < i < Timinf i () fi e () < T : () <
Jnf f(2) < inf f(z) <liminf inf fi(z) =l inf inf fi(z) <limsup inf fi(z) < inf f(x),
implying that inf,cx f(z) = infyex f(x) = lim; inf e x fi(x) holds.

Next, take a precompact sequence (z;); such that lim; f;(z;) = lim; infx f; and consider a
converging subsequence (z;,); of (z;); with limit Z. Then we define the sequence

_— {xi]. if 1 = 15,
T =

x if 1 # 15 for all j

which converges to x as well. By the liminf condition and with equations ([2.17]),(2.18]) we
get

nf flz) < f(7) < liminf f;(Z;) < limjinf fi; (xi;) = lim fi(z;) = lim Jnf filz) = Jof f(z),

proving that r is a minimizer of f.
Finally, we use the last result to prove that there always is a minimizer of f. As the f; are
equi-mildly coercive, there is a precompact sequence (x;); C K with

file) < nf fila) + 5

for all ¢ € N and such that lim; f;(x;) = lim; infx f;. The above result shows that (z;); has
a cluster point that is a minimizer of f. This proves inf,cx f(z) = mingex f(z). O
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CHAPTER 3

Existence of Minimizers and I'-Convergence

In this chapter we analyze the minimization problem . We prove existence of mini-
mizers of the objective function J¥ and compute I'-limits for the case of half-lifes going to
zero (which means that the intensity of the radioactive material goes to infinity).

First, we reformulate the functional J¥ in order to emphasize the stochastic character of
this functional due to the randomness of the radioactive decay and hence the randomness
of the PET measurement. We consider

JE:M - R
(pow) = > [Aiklp — Eiplog(pAjyp + Agklﬂ)} + BS(p,w).
ikl
For the reformulation and for the next sections we introduce some abbreviation. We write

kY = pr§ + K§

and
np n,s n,d
Ky = DKy T+ Ky

if the radioactive material distributions p™ depend on n. Moreover, we introduce piecewise
constant functions for the scattering part, detection part and the above defined composition
of the two parts. It is

R =3"1r, / kUT)dt and  RP = pi® + i
ikl i

As above, #™%/%/P indicates that the underlying material distributions p" depend on n.
The first part of J¥ can be rewritten as

1 T 1 T 1
Ajpip = /—/{ IT'y)dt = / — k(I dt:/ —— k(U Dy ) dt
> Aip ZXZ: e Ty t(Pit) %: 0 Tis t(Lrr) T (Ui Tre)

ikl ki 1/2

1
= 71{([0,7—‘] X Ftot)
1/2
where I'tor = Uiy is the total area covered by detectors. The above expression gives us
the expected number of detected photons during the time interval [0, 7). If we ignore the
assumption F;; € {0, 1}, the second term can be expressed as

s 1
> " Eiilog(pAfyp + Aflup) = > Eixlog (Tl 7 / | Kf(Fkl)dt)
ikl ikl Ti

1
= [log | —a? | dE
/g<T1/2 )
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with £ now being a PPP (the measurement) with intensity measure %/{I(:p)dtdqﬁ, o =

Ty,
H? ® H2, where r! is th Radon-Nikodym derivative of the measure
B([0,T)) x B(0Qs x 99) — [0,400], 7 xT s / Wl (D)t

w.rt. dt ® d¢ (it suffices to define the measure on the intersection stable generator
{rxT'| 7€ B([0,T]), T € B(02s x 05)} [14, Lemma 1.42]).
Thus, we arrive at

B0, (Do) ki _ 1 T % T _ /1 1 E

where we explicitly emphasize the dependence of the functional on the measurement process
E, the temporal resolution At, the detectors (I'y)g;, the regularization parameter 5 and
the half-life 7' /5, because these parameters will be important when we are analyzing I'-
convergence later. Note, that the assumption E;; € {0,1} was only needed to derive the
objective function. The function itself is valid for all non-negative values of E;y;.

3.1 Existence of Minimizers

In this section we show that the functional J¥ has a minimizer, i.e. our reconstruction
method always produces a radioactive material distribution. We start by gathering some
properties about the forward operator that we will need in the following.

Lemma 3.1.1 (Properties of the forward operators). (a) The operators A%, and A%, are
bounded, i.e. we have for p € M4 ([0,T] x §)

S

p
Iny'

d
d p
p < ol and  Afyp < o o]l
1/2

(b) Let A" 22 X in M (Q). Then ASA™ 2 ASX and AP\™ 2 A\ in M (09Q x 99).
(c) Let p* = pin M, ([0,T] x Q) and ' C 9Q x dN. Define the operators

Af‘: M+([07T] X Q) - M+([07T])
pr Afp. Aip(8) = [ (A (D)l
and
A M ([0,T] x Q) — M(]0,T])

prs Afo. Ap(s) = [ (A'p)(T)aL

Then Afp™ = Afp and Alp™ = ALp in M([0,T]). In particular, the operators A3,
and A%, are weak-* continuous.
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3.1 Existence of Minimizers

(d) Let (p,w) € M with S(p,w) < +o00 and let T' C 9Q x OQ with piecewise C*-boundary.
Then the functions

1
0.7] > B, ¢ A1) = _#i(T)
and
[0,7] = R, t s Alp,(I') =

are continuous.

(e) Let (p,w) € M with S(p,w) < +o00 and let I' C 9 x 0. Then for every t € [0,T] it
holds

Ape(D) Sllpll - and - A%p(T) < ] -

Proof. (a) For the scattering part we find

1 H? ® H? (Ta) (T P
Alup=—=— | p’pi(Q dt < / Q)dt = .
M T ) (6 H2 (00)* Tyyo Jo p) y el
In the case of the detection part of the forward operator we compute, using Remark
231

1
d = d
A = Ti)o /Tlp /GlS/ZF/ Gy(w)dpi(y)davolg s (dv)dt
B T1/2/ /013/ / Gy(x)dp(y)davolg.s(dv)dt

<10 o= 2 upu

where we used 1.5 volgi,s(dv) =1 and fQ y(x)dx =1 for all y € .

(b) Let A» = X in M(Q) and ¢ € C(992 x 9N). From the weak-* convergence and the
compactness of {2 we get

)\"(Q):/ 1d/\”’H—°°>/ 1d\ = \(Q).
Q Q

It follows
) = o VO -
/89><89 ) AN (dw) = H2 (0 x 0N)? /89><BQ PayH” @ 1 (dr)
n—00 A(92)

H2(0Q x 00)2 /BQXaQ P(x)H? @ H? (dz) = /89><BQ d(x)A°N(dz).

Moreover we have
lim d(x) AN (dz) = lim d(R(z,v)) / Gy (z)d\" (y)dxvolg s (dv)
n=0 Joax o0 n=o0 JOoxGL3 Q
— / $(R(z,v)) lim / Gy (2)dN" () davolgns (dv)
QxGL:3 n—oo 0
— / $(R(z,v)) / G, (2)dA(y)dzvolgrs (dv)
QxGL3 Q

_ / é(x) AT\ (dx)
0N xON
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Chapter 3 Existence of Minimizers and I'-Convergence

()

42

by dominated converges with |p(R(x,v)) [ Gy(2)dA"| < [|¢]l o |G|l A (£2) S 1 be-
cause of A" =\,

Let p, p" € M, ([0,T] x ) such that p = p and ¢ € C([0,T]). Then

2 2
At (@) = g [ v = -2 H . [Ty

T1/2 T]_/Q 7‘[2 89
nooo, 1 H2@H(T
Tijp H2(00)2 / V(1) pe(2)dt = App(v),

using the weak-* convergence of the p™ applied to the function (¢, z) — ¥(t).
We proceed with Al‘i in a similar way. Using the definition of A¢ (see Remark 2.3.1)),
dominated convergence and weak-* convergence of p" we get for i) € C(]0,T])

Jm Aty =t (v [ : / Gy (2)dpp (y)divolg s (dv)it
_ /G . /Z lim / / ()G (2)dpl (y)dzdivol s (dv)
- [ /Z i / | #OG, @dp(v)dadivolgrs (dv) = Atp(w)

We could use Fubini and dominated convergence because we only have finite measure
spaces and continuous functions as integrands. This shows the weak-* continuity of
Az and A,

The weak-* continuity of A3, and A%, follows from Portemanteau theorem [14, The-
orem 13.16] as the time intervals’ boundaries 07; have Lebesgue measure zero and the

measures Af/ dp are absolutely continuous w.r.t. the Lebesgue measure.

Let t" — t. Since p satisfies the continuity equation, we know from Remark
that (p;)¢ is a narrowly continuous curve in M(Q) and hence pm — p; in M(Q) as
well. Part (b) yields A%pm = A%p; and A%ppm = A®p;. Using again the Portemanteau
theorem we get

Appn () 2= A%py(T)  and - A%ppn (T') 225 A%py(T).

To see that the Portemanteau theorem can be applied, we consider the following. In
remark [2.3.2] we have shown the absolute continuity of £; w.r.t. H2® H2. Since dI is
assumed to have C'-boundary, it is rectifiable. This means we have H!'(9Q) < +o0
and hence H2(9Q) = 0 [16, Chapter 4]. This way we get A%/%p;(I") = 0 allowing us
to apply the Portemanteau theorem.

For the proof we use the continuity in time of p; and mass conservation from Lemma

We find

2 2
Apy(T) = mmm

H? @ H? (T
- 2 T/ po(@)ds < [



3.1 Existence of Minimizers

and

o) = [ [ [ G wdvolgna @)

< [ | [ G@dadpuvolcusae)

1 T
Sp [ o @ds S ol
0

Theorem 3.1.2 (Existence of minimizers). The functional J¥ has a minimizer in M.

Moreover, the (stochastic) functional Jgﬁf;(rkl)“ almost surely has a minimizer in M.

Proof. We write J for either J¥ or ngﬁl:;(r’”)“ in the following.

Note, that our measurement F is modeled by a finite Poisson point process because it is

P(E(]0,T] x 02 x 0Q) < +o00) =P <G {E([0,T] x 092 x 0Q) = n}) = ie‘A& =1

|
n=0 n=0 n:

with the mean number of points A = f(;f Ii;r (092 x 0K2). This means we have >, Ei < +00
almost surely and can thus prove existence of minimizers for both functionals simultaneously
because the proof relies on max; (FE;x;) being finite.

We have (£,0) € M with £ being the Lebesgue measure on [0,7] x . The pair (£,0)
satisfies the continuity equation in the distributional sense. This is established by

/[O,T}xg OrpdL = /Q/OT Oy pdtdx = /gz(¢(T") — (0,"))dx

for all ¢ € C1([0,T] x ). Moreover, we have S(£,0) = 0 and hence J(£,0) < +oc.

Now let (p",w™)neny € M be a minimizing sequence of J. By possibly extracting a subse-
quence we may assume w.l.o.g. that J(p",w") < J(L,0). Next, we find uniform bounds on
the norms of p™ and w™. It holds with p = max(p, 1) and Eyax = max(1, maxx (Fix))

J(p"w") =" [Aiklpn — Ei log(pAfip™ + A?kz/)n)} + BS(p", ")
ikl
> [Aip" — Elog(pAiap™)] + BS(p", w"™)
ikl
Z Z {Aiklpnx{ﬁAiklpn<1} + (Aipp" — Emax IOg(ﬁAiklIOn))X{ﬁAiMp”ZI}}
ikl
+ BS(p",w").
To continue, let f be an affine strictly increasing function such that m — Eyax log(pm) >
f(m) and m > f(m). We get
ikl
> f(Ajp™) + BS(p", w™)
ikl

= flemp™(1i x Q) + BS(p", w")

ikl
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Chapter 3 Existence of Minimizers and I'-Convergence

for positive constants cp; which can be calculated from the definition of the scattering
operator A°. The ¢j; read

P HPOH*(Tw)
T TIRHZQH2 (00 x 09)

Ckl

Since f is affine and strictly increasing and J(p",w™) is uniformly bounded in n, we also

have uniform boundedness of ||p"| = >, p"(7; x ). In addition, we deduce, using Holder’s
inequality,
dw™ Hdw” Hdw” 1
W = || — < ||=— 1 o = || — p"(10,T] x Q)2
ot = o S 5o e ez = | ), 700,190
—_——
=S(pm,wn)

which shows the unifrom boundedness of ||w"||. By Prokhorov’s theorem there exists a
subsequence (still indexed by n) and (p,w) € M such that (p"”,w") = (p,w). Since the
operators Ajxi, A%, A;-ikl are weak-* continuous (Lemma and the functional S is
weak-* lower semi-continuous (Lemma , we finally arrive at

J(p,w) < liminf J (p", ") < J(p, @)

for any (p,w) € M, which shows that (p,w) minimizes J.

3.2 I'-Convergence |: Fixed Detector Sizes

In this section we prove I'-convergence for the case of a sequence of half-lifes (T"),en tend-
ing to zero (which means we have an intensity of radiation tending to infinity). Within this
limit process, we change the size of our temporal resolution At™ but keep the detector sizes
fixed. In the following section we will also include changes in the detector sizes.

Lemma 3.2.1. Let (p™,w") with S(p",w") < +oo. Then the function t — Ii?’d(F) is in
WLEL((0,T)) with weak derivative

t— p? /G’1’3 /Zg/Q<VyGy(x),dwf(y»dxvolgl,s(dv).

Proof. From S(p",w™) < +o0o we get that (p",w™) satisfies the continuity equation and is
disintegrable in time. Let ¢ € C2°((0,7")). Using the definition of the forward operator
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3.2 I'-Convergence I: Fixed Detector Sizes

(see Remark [2.3.1]) and the continuity equation, we find

/OTgol(t)H?(F)dt:pd/T o (t) /GIS/ZF/ Gy (2)dp (y)davolg s (dv)dt
/GIS/ZF/ /‘P x)dpi (y)dtdzvol gz (dv)

o L et
[ e L] : /ﬂ (V, Gy (), dwf (y)) ol s (dv) dt

x), dwi' (y))dtdzvolgi,s (dv)

where Fubini’s theorem is applicable due to the finiteness of all measures and the smoothness
of the involved functions. For the same reason the weak derivative is in L1((0,7T)). O

Lemma 3.2.2. Let (p",w") = (p,w) with S(p™,w™) < M for every n and S(p,w) < +oc.
Moreover, let T' C 02 x 0Q with piecewise C'-boundary. Then the sequence of functions

[0,T] = [0, +00), t— xP(T)

converges (up to a subsequence) uniformly to the function t — r%(T).
Analogous results hold for the scattering and detection part of k¢ as well.

Proof. We start with the scattering part. Using mass conservation it is

n,s S Q ,H2®,H2
) =i o) = p ST [ e

With this we get for any ¢ > 0 and ¢ € [0, 7]

n,s s 5H2®H2 (F) 1 T n r
57 (F)—Ht(F)\—pWT/O o (Q)dl—/o (@)l < &

for n large enough due to p™ = p.

For the detection part we want to apply the Arzela-Ascoli theorem. Therefore, we need to
show uniform boundedness and equicontinuity of the family of functions (ﬂ?’d(l“))n.

From Lemma [3.1.1] we get the boundedness

T
0< KD S 6" = [ o (@)

with the last term being uniformly bounded in ¢ due to the weak-* convergence p" = p.
For the equicontinuity, we use Lemma @ to apply the fundamental theoreom of calculus
which holds since the function ¢ — &, is continuous ([19, Theorem 8.2] and Lemma
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Chapter 3 Existence of Minimizers and I'-Convergence

3.1.1). This yields for s <t

pd/st /GLS /ZE/Q<VyGy(y:),dwl(y)>dmvolal,3(dv)dl|

e
dTL

[rpd(0) = k()| <

t
< p?Ry(dz @ volgis)(D) || VyG.. / / dpidl

Q
. 9\ 1/2

%(t—S)l/2 (/ </Q dp?) dl)
. 2 1/2

<(t-9)" ( | e ( | dp?/pm)) dl)

dwp
dp}

dwp

dp}

Hokk T n|? 12
< (=9 (" (0.7] x ) (/0 (/Q o dp?) cu)

l
S(t-9)'2M

where we used Holder’s inequality in (%), Jensen’s inequality in (%*), mass conservation
in (xx %) and p® = p in the last step to find a uniform estimate. This establishes the
equicontinuity. The Arzela-Ascoli theorem then gives us a subsequence (again indexed by
n) such that x"*(C) — x$°°(T) uniformly. We are left to show that k(') = x&(I).
This is established by the weak-* continuity of the forward operator. Indeed, we have for
E C[0,T]

/nf’oo(f‘)dt: lim n?’d(f‘)dt:/ k(T dt
E

n—x g E

for all E C [0,T], where we used dominated convergence in the first step (applied to
/@?’d(l“) <7 OT pi(2)dl < 1) and weak-* convergence in the second step (since the Lebesgue
measure of OF is zero for every E and (E — [ £{(I')dt) < dt, the Portemanteau theorem
[14] can be applied). This shows x°(T") = 4(T") for almost all ¢ € [0, T] ([14, Lemma 1.42])

and hence all t as the function is continuous by Lemma [3.1.1 O

2

Remark 3.2.3 (LP-regularization). We use some sort of L?-regularization for our regular-
d
P dpydt.

ization term
T
s = [ 2
(p,v) o Jaldp

This way, we penalize mass movement or kinetic motion energy which is a realistic idea for
finding a good reconstruction.
Mathematically, LP-regularizations of higher order are also possible without any change of
arguments because Holder’s and Jensen’s inequality is still applicable in the above proof.
Thus, we could use as well

dwt

S = [ [ 52

as the regularization term. The assumed uniform boundedness S,(p",w™) < 1 in Lemma
22 will be fulfilled for an infimizing sequence in the framework of I'-convergence and it is
still independent of the choice of the order p.

P
dpidt  for p > 2
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3.2 I'-Convergence I: Fixed Detector Sizes

Lemma 3.2.4. Let (p",w") = (p,w) with S(p™, w") < M for every n and S(p,w) < +00.
n—oo

For t € [0,T] let (7™)n be a sequence of intervals T C [0,T] such that 7" —— t. Then
we have for each T C 02 x 0 with piecewise C*-boundary

1
liy, o / REP(T)d > A (T). (3.1)

n—oo

Proof. Tt suffices to show the result for a subsequence. Indeed, let (p", w™) = (p,w). Then
(p",w"i) = (p,w) for every subsequence indexed by n; and we get

. 1 NjP P
Jim /T BT (T (3.2)
for a further subsequence n;,. Thus, every subsequence has a further subsequence converging
to k7 ('), implying that the whole sequence converges to this value.

Now both, the scattering and the detection part are continuous in time by Lemma [3.1.1}
Thus, by the mean value theorem we get

n‘/ kP (D)dt = kWP (T)

for a sequence (t"), C [0,T] with t* € 7" and " 225 t. According to Lemma there
exists a subsequence (again indexed by n) such that ¢t — k" (T') converges umformly to
t — xP(T). Using this and the continuity of ¢ — x(T'), we have

|k (T) = 67 (D)] < [k (T) =t (T)| 4 |K70 (T) — w7 (T)]|

< sup |&"P(T) — &I (D) + |0 (T) — &}
1€[0,T]

O

The measurement process is modeled stochastically. Therefore, we have a different func-
tional to be minimized for each possible measurement. To cope with this stochastic be-
havior, we need to analyze convergence in a stochastic framework, meaning that we only
expect to have almost sure convergence of our functionals. Let £™(p,w, £) be the stochastic
functionals that should I'-converge to £%°(p,w,§). By I'-convergence of £" to £ almost
surely we mean the following. For every (p,w) € M and every sequence (p™,w™) = (p,w),
it holds

P (&€ X | liminf €"(p", 0", €) > E%(p,w,€)) = 1
and there exists a sequence (p”,w") = (p,w) such that

P <€ € X | limsup&™(p",w",§) < 5°°(p,w,€)) =1

n—o0

Next, we prove I'-convergence for temporal resolutions At™ converging to zero while the in-
tensity of radiation of the radioactive material tends to infinity. The PPP E™ producing the
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Chapter 3 Existence of Minimizers and I'-Convergence

measurement for a given half-life 7" (with 7™ — 0) has the intensity measure T%,/i;f (z)dtdeo
where x' is the Radon-Nikodym derivative of the measure

B([0,T]) x B(OQ x 9Q) — [0, 400], 7 xT s / w] (D)t

w.r.t. d ® dt where ¢ = H? @ H2.

Theorem 3.2.5 (I'-convergence). Let (T"),, be a sequence of half-lifes with Y, (T™)™ <

400 for somem € N, T"3"™ — 3 > 0, let E™ be a Poisson point process with intensity mea-

sure %/@I(aj)dtdqﬁ and At"™ — 0 for a decreasing sequence of temporal resolutions (At™),.

We set

n

A
cr=T" log <1_;l;) En([O,T] X Ftot)-

Then, with respect to the weak-* convergence on M,

T — hm Tnjgln,ﬁtn»(rkl)kl + Cn — goo

n—o0

almost surely. The limit functional reads
g i
£%(pw) = /0 [4(Tha) = log (+F (Twa)) ] (D) | dt + BS (p, )
Kl

T
— ([0, T] X Tyor) — Z/O log (k7 (T)) & (T )dt + BS(p, w).
kl

Proof. During the proof we state different things almost surely. Since we are doing this
finitely often only, the union of all null sets on which the statements do not hold is again a
null set. This means that all statements together still hold almost surely.

For the actual proof we define

E(p,w) = Tn']lg:ﬁtn’(rkl)kl (p,w) + C™
1
= H([O’T] X Ftot) — Tn/lOg (Mll%p) dE" + TnﬁnS(p,w)
First, we prove the liminf condition. Let (p”,w") = (p,w). If (p,w) does not satisfy

the continuity equation, then only finitely many (p”,w™) do satisfy it. To see this, let
¢ € CL((0,T) x ) such that

T T
/ / 8tg0dptdt+/ /(ngo, dwy)dt # 0,
0 JQ 0 JQ

ie. (p,w) is not satisfying the continuity equation. Suppose infinitely many (p",w"™) do
satisfy the equation, then for those it is

T T
/ /BtgpdptdtJr/ /(ngo,dwt>dt
0 Q 0 Q

T T
/ /(%gpdptdt—/ /ﬁtcpdp?dt
0 Q 0 Q

0< (3.3)

< — 0

T T
+ / /(Vch,dwt)dt—/ /(ngo,dwﬁdt
0 Q 0 Q
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3.2 I'-Convergence I: Fixed Detector Sizes

for n — oo due to the weak-* convergence of (p",w™). Since the above argument shows a
contradiction, only finitely many (p",w™) satisfy the continuity equation and so £%°(p,w) <
liminf,, oo E"(p™,w™) is trivially fulfilled in the case where (p,w) does not satisfy the con-
tinuity equation (because of S(p,w) = +oc0 in this case).

Furthermore, if lim inf,,_,o £™(p", w™) = +00, the liminf condition is again trivially fulfilled
and thus we can w.l.0.g. restrict ourselves to a subsequence of (p™, w™) satisfying the conti-
nuity equation (since otherwise it would be £™(p", w™) = +oo for those pairs not satisfying
the continuity equation) and additionally assume lim inf, ., £"(p", w™) < 400.

In the proof of Lemma [3:2.8 we will show that

CS(p",w"™) + f(0) < E"(p", ")

almost surely for n large enough, a constant C' > 0 and an affine, strictly increasing func-
tion f. This implies S(p™,w™ ) < M for all ny along the infimizing subsequence (ng)x. To
ensure this uniform bound on the regularization part, we will restrict ourselves to the in-
fimizing subsequence in the following (which will again be indexed by n) for each realization
of the random variable £"*. The convergence results of the stochastic part of the random
variable will be independent of the extraction of a specific subsequence which means that
we can choose a different subsequence for each realization of £”. Note, that we need to
assume § > 0 in order to guarantee that the constant C' is nonzero.

We start the actual proof of the liminf condition with the stochastic part of the functionals
and consider the error term

’ 1
Z/ log (k¥ (Tt)) #f (D)t — /T” log (Atn%n’p) dE"
0

T 1
=3 [ | og (et @) el Tuydt — [ 705 (i) nde"]
1 0

=2

1
/ log (K sz))’ft(rkl)dt—Tn/log( INT ’p) ﬂden‘-
We will show convergence for each detector pair kl separately. It is

r 1
| 10 (Tu) el @)t 7 [10g (i) L, dE”

<

T 1
[ (108 ("o ) = los (£ (T ) (T

1 T 1
+ Tn/log (Atnﬂn’p> ]lpkldEn —/0 log (Atnlﬁ ,p’[o T]XFM> Ky (Fkl)dt

We would like to apply dominated convergence on the first part of (3.4). Thus, we show
that log (ﬁ%n’p ][O,T}kaJ is uniformly bounded. Using continuity of the x functions in
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Chapter 3 Existence of Minimizers and I'-Convergence

time and the mean value theorem, it is for ¢t € 7" and with Lemma

1 n,s n,d

<log (c /O ' p?(Q)dt) .

For the lower bound we get with mass conservation
1
log (At”ﬁ 7p’[0 T]><I‘M> > log (PHZ%S(FM))

_ s HQ (Fkl) n
=log (pp mm?(ﬁ)

_ pp®  H*(Cw) T
_log<T H2(anaQ)/o Pr(Q)dt ) .

n—oo

Using the convergence fOT pr(Q)dt —— fo pe(Q)dt > 0 (unless p” = 0 which will be

handled separately) we get ’log (MA"’I’)‘ < 1 for n large enough. This allows us to apply
dominated convergence on the first term and thus this part converges to zero according to

Lemma 3.2.4
For the second term in (3.4) we will apply Markov’s inequality. Therefore, we compute

n 1 An n r 1
N P S E .
_n / / log ( ! WD) Ll @) (2)dé()dt
B 20X 00 Atn " Pt

1
_/o log (At”n P10, T]><Fk1> K} (Dgy)dt
=0.

By Markov’s inequality and Lemma [2.2.5| we get for every £ > 0
PLT" |1 L o 1r, dE" Tl L o (F )dt
og MH | - 0 og Afn —h ’[0 T)xTy | Bt (LKL > €

1 n 1 “~n n n 1 o . 2m
Sssz[(T I R R e ) ]

GO S C0)

2m k

€ k-s=2m, k1=0 k'(S')
(rm)m > @2m)! ok
< g2m kl(s! k(T a)

|
k-s=2m, k1=0 (S)

with a; defined as in Lemma [2.2.5| applied to the function ¢ — log ( Altn /%”’p) 1r,, and the

intensity measure \ = %/{T. Keeping in mind that

1 1 2m
E [(Tn/lOg <Atn/%n7p> ]leldEn —-E |:Tn/10g <Atn’%n’p) ]leldEn:|> ‘|
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3.2 I'-Convergence I: Fixed Detector Sizes

is of degree at most m in the a;, the last inequality only holds for n large enough such that
T < 1. As ‘log (ﬁﬁn’p|[07T]XFkl)‘ is uniformly bounded in n by C', we can estimate

[e’e] T 1 o
(| <11 ( | s (A" lomyera

T m
< max(1,C)™ max (1,/ /{I(I‘kl)dt> <1
0

i ki
K (l“kl)dt>

for all k satisfying k- s = 2m, k1 = 0 and > ;2; k; < m. Thus, we have

T, . 1
P < Tn/log (Atn/{ 7p> ]leldE — /0 log (At” 7p|[O,T]><Fkl> K,I(Fkl)dt

<(Tmy™ 2220

<)

which establishes convergence in probability. Using the assumed convergence of the series
Yo, (T)™ < +00, the above result implies almost sure convergence [14, Theorem 6.12]

1 T 1
T”/log (At"ﬁn,p> 1r, dE™ — /0 log <At”’€ P10, T]XFM) Ki I(Dp)dt 22 0

and hence almost sure convergence of the stochastic part
n 1 an n  a.s. T P T
/T log (A" ) dE" 255 Y j/ log (K (Tw)) 51 (T )dt.
Atr ki 70

For the regularization part S we have, due to the lower semi-continuity of the Benamou-
Brenier functional w.r.t. the weak-* convergence by Lemma [2.1.14]

lim inf 7" 3" S (p", w") = BS(p, w). (3.5)

From the convergence p" = p, the weak-* continuity of p — A 5/d ., by Lemma 3.1.1and the
Portemanteau theorem we get

T
K"([0, T] X Teor) Z/ K1 (Tgy)dt 2222 Z/O tt(Tr)dt = K([0, T] X Tor).
kl

Thus, we have shown the liminf condition unless p” = 0. This case will be considered now.
Setting £°°(0,0) = +o00, we need to show liminf,_,, E"(p",w™) = 4+o00. The crucial part

of this computation is the estimation of the log-part. With N" = ﬁ = \TI"] and with
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Chapter 3 Existence of Minimizers and I'-Convergence

applying the mean value theorem to get <= AP nsry, = kgl (D), we deduce

T 1
— TnA log <Atnl%n’p> ]ll"kldEn

T N" 1
n AN, n
=-T /0 ,Zl]lﬂ'” log (Mn p) Ir, dE
1=
N 1
=— TnZlog <Atn /n ’{/?’p(rkl)dt> E"™(7]* x T'x)
=-T" Zlog (th Fkl ) En(Tzn X Fkl)

NTL
> —T"log < sup n?’p(f‘kl)> > EM1] x Tiy)

tG[O,T] i=1
=—T"E"([0,T] x I';) log < sup n?’p(f‘kl)> . (3.6)
te[0,T]
Because of
ngn Tt 2m
, E [(T ([0, 7] x Tur) — J7 #] (D)) }
P < T”E”([O,T] X Fkl) —/ KI(FM)dt > 6) —om
0
Tmny)2m 2m)! Tnym T m 00
o Y @t s T e, [ g 220
k-s=2m, k1=0

the first factor of (3.6)) converges in probability to some positive constant. As above, this
implies almost sure convergence because of Y, (7T")™ < +oo. For the second factor we use
the uniform convergence r;"? — 0 established by Lemma to get

T 1
lim i f—Tn/ 1 ——R™P ) 1p,, dE™ 2 liminf —1 P(T = .
gt =" o A" ) rd” 2 ipjar g (éﬁé%]“t ““”) e

Thus,
lin nf £”(p", ")

1
= lim inf (Kn([O,T] x Tgot) — T”/log <At A”J’) dE" + T”B”S(p",w"))

n—oo

1
> liminf —7" Z/log (M/%”’p) 1p,dE™ = +00
kl t

n—oo

almost surely for p™ = 0. This finally proves the liminf condition almost surely.

For the limsup condition we can take (p",w™) = (p,w) for all n and do the same computa-
tions as above to get

limsup £"(p",w") < £%(p,w)

n—0o0

almost surely. O
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3.2 I'-Convergence I: Fixed Detector Sizes

Remark 3.2.6. In Theorem [3.2.5| we assumed "1™ — 3 > 0, i.e. that the regularization
does not vanish in the I-limit. This is an important assumption as it ensures the uniform
boundedness of the sequence S(p™,w™) which was a crucial condition in order to prove
Lemma ie. ﬁ/%"’p — k}(T'y;). This convergence was a key ingredient for showing
the I'-convergence.

Remark 3.2.7. Unlike for deterministic convergence, in the stochastic framework we do
not have that a sequence converges to a limit [ if and only if every subsequence has a
further subsequence converging to [. This equivalence is replaced by the following [14]
corollary 6.13]. A sequence of random variables (X,,),, converges to the random variable X
in probability if and only if every subseqeunce of (X,,),, has a further subseqeunce converging
almost surely to X. Since in general convergence in probability does not imply convergence
almost surely (see [14, Remark 6.6]), this equivalence is not replacing the one we have for
deterministic sequences. This means that we need the additional assumption Y, (7)™ <
400 in order to deduce almost sure convergence from convergence in probability of the
stochastic part of the functionals £™.

Lemma 3.2.8. Under the assumptions of Theorem |3.2.5 we have that the sequence of
functions E™ is almost surely equi-mildly coercive, i.e. there exists a countably compact set
K C M such that

inf E&" = inf €&"
(psw)eM ( ) (pw)eK ( )

for alln € N.

Proof. We show that the set of minimizers of the £ is uniformly bounded and thus weakly-
* precompact. Again, this needs to be done in a stochastic way and the proof will be given
as follows. We denote the minimizers of £™(§) by (p™(§),w™(§)) which exist for almost every
£ € X, i.e. for almost every realization of the random variable £". Since our sequence of
functionals (£™),, is countable, there exists a set A C X with probability one such that for
every & € A the functionals £"(§) have a minimizer (p"(&),w"(&)) for every n. Then, for
every £ € A, K(&) = (p™(€),w™(§))n is the desired countably compact set.

First, we show that the functions £" at the respective minimum are uniformly bounded.
Indeed, for the Lebesgue measure £ on [0,7] x €2 it holds (see proof of existence, Theorem
3.1.2))

min &"(p,w) < E"(L,0) < 400
(pw)eM

and the last expression is almost surely uniformly bounded. To see this boundedness,
consider

EM(L,0) = k([0,T] X T'yor) T”/log <A1t" (pR° + R )> dE™.

We have to control the last part. As in the proof of Theorem [3.2.5] we have
‘log (ﬁ(pﬁss + /%d))‘ < 1, thus

‘T"/log( (pR® + & )) dE™

gT"/dE”
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Chapter 3 Existence of Minimizers and I'-Convergence

and for any € > 0

g

implying that 7" [ dE™ “=%% [/ Tl (89 x 09)dt almost surely with the condition

S (T™)™ < 4o00. This means that 7" [ dE™ is almost surely bounded, which gives us
almost surely a uniform bound on £"(L,0). Next, we continue in a similar way as in the
proof of Theorem [3.1.2] but need to take into account the dependence on n this time. The
minimizers (p",w"™) of £" satisfy S(p”,w") < +oo. Hence, by Lemma we have that
t — Api(Tyy) is continuous and Ap(T'x;) < ||pl|- Using this we find with 7 = max(1, p)

(Tn)m m)! k n—00
Sel < 3 (T"a)F "2 ),
) g2m st ity kl(s!)k

" / dE" — / w1 (09 x 0Q)dt

) n
EMp W) > Ty | Afup” — Eijjy log (pA?kanﬂ +T"B"S(p", w™)

A Agn
>y Ajkfp" B log (A’;n / ) Ap?(rkl)dt> + TS (", W™
ikl L Ti

1 H? @ H? ()
>7T" 7/ "Q)dt————F _ E" o Anr
2 ankl T o Py (£2) 2 (89)2 ki 108 P Pt kl

+ T S (p", w"

H2 @ H? (Ttor)
> 1™ = T™ Y Ejlog (Cllp™) + T"B"S(p", w™)
H?2 (89) el

where the n in AJj;p" stresses the fact that the half-lifes are now depending on n and the

notation 7" means that the sum runs from one to N" = At” Next, we write

™Y Ejjy = T”/]lpde“ < T"/dE".
ikl
As in the proof of Theorem we have T [ dE™ “2%% [T g [(0Q x 09)dt almost surely,
hence (T" [ dE™), is almost surely bounded by a (probabilistic) constant C’. Moreover,
(T™B"),, is bounded from below by C” > 0 for n large enough because of T" 5" %% B> 0.
With this we can further estimate for C ||p"™| > 1 (for C'||p"|| < 1 there is nothing to show)

ni.n o n H2®H2 (PtOt) n n n n n Qn n o n
£ ) 2 T I = (1 4B tow (C ")+ 78S o )
7‘[2®7‘l (Tgot) ’ "
| — C'log (C ||p"]]) + C"S(p"™, w"™
7 (09)° 10" og (C'[lp"[l) (p",w™)

> f(llp"[D) + C"S(p",w™)

for a strictly increasing affine function f, see proof of Theorem [3.1.2} Similar to this proof

it now follows that the set of minimizers K := (p",w"), is uniformly bounded, hence
precompact in the weak-* topology. Because of infy E™ = infg £™ for all n, the family
(E™),, is equi-mildly coercive. O

Remark 3.2.9 (Convergence of minimizers of £"). For an equi-mildy coercive sequence of
functions that I'-converge we have that cluster points of a minimizing sequence are minimiz-
ers of the limit functional. This is stated by Theorem[2.4.2] In our stochastic framework we
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3.3 I'-Convergence II: Variable Detector Sizes

can show that the functions £" are almost surely equi-mildly coercive (see Lemma .
Unfortunately we cannot use this to deduce that cluster points of a minimizing sequence
of the £™ are minimizers of £%°. The Problem is the following. We have shown separately
for every sequence (p",w™) = (p,w) that the liminf inequality almost surely holds, i.e. for
every (p",w") = (p,w) we have

P (&€ X | liminf " (p", 0", &) > £%(p,w,€)) = 1.
To be able to apply Theorem [2.4.2| we would have needed to show
P (€€ X | liminf £"(p",w",€) > €%(p,w,€) for every (p",w") = (p,w)) =1.

In our situation we can extract for almost every realization £"((), ¢ € X, of the sequence of
random variables a precompact sequence of minimizers (p"(¢),w™(¢)) (see proof of Lemma
3.2.8]) but we do not know if it holds

lim inf £"(p"(¢), w"(¢), ¢) = €= (p(C), w(C))

n—oo

for this specific realization. We only know that

lim inf £ (p" (), w"(¢),€) = € (p((), w(C))

n—oo

holds for almost every £ € X but we cannot tell from the proof of Theorem for which
£ this inequality holds. This remains to be shown.

3.3 I'-Convergence ll: Variable Detector Sizes

In the sequence of functionals in Theorem[3.2.5] we only changed the size of the time intervals
with increasing intensity of the radioactive material. One could also think about changing
the detector sizes as well. This leads to a slightly different limit functional as in this case
integrals with respect to time and space are involved. The arguments of the proof of I'-
convergence in this scenario are similar to the ones proving Theorem but we need
some additional assumptions on our mathematical model. These are going to be motivated
now.

In the proof of Theorem [3.2.5 we used dominated convergence at some point. Therefore, we
showed uniform boundedness of log (ﬁf@”’p) (which was used later again when concluding

almost sure convergence from Markov’s inequality). Thus, to be able to follow along the

steps of the proof of Theorem [3.2.5( we now need boundedness of log (W%n’p) Parts
kl

of showing this can be adopted from the previous considerations but showing boundedness
of the expression

Ry (dx @ volg)(I'})
T

(3.7)

that arises when estimating 7 (I'};) is more complicated. To be able to bound this ex-
pression, we need to make another assumption regarding the domain that the measurement
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Chapter 3 Existence of Minimizers and I'-Convergence

takes place in. We assume that the detectors are located on the boundary of a convex and
compact set s and that the radioactive material is located in 2 C Q5. The parameter ¢
quantifies the minimal distance between Q and 0€s, i.e. it is

0 < inf —ql.
< cen®on, |z —yl|

With this new configuration we must adjust our definition of the forward operator. The
scattering part now reads

AS M+(Q) — M+(8Q5 X 8Q5)

AQ)
H? (an X 895)2

A H2 @ HL (095 x 00s).

We also need to modify the R-function from the definition of A%. It is now given by

Rs: Q x GY3 = 05 x 09
(z,v) = 005 N (x +v).

This way of defining the function guarantees that the distance between two detectors being
able to detect an unscattered photon pair is sufficiently large for small enough detector
sizes. This condition will be needed to bound the expression without making further
assumptions on the regularity of 0.

The second kind of assumptions are due to convergences of the kind

Jon KRt

= kP (x 3.8
(rn )= (tz) || T ¢ (7) 35

for almost every (t,z) € [0,T] x 95 x 0. To guarantee existence of the limit (3.8)), we
need the collection of all detector pairs (I'};)x,n to be a ¢ vitali relation and the collection
(t7)in % (PF)kin to be a dt @ d¢ vitali relation[20, Theorem 2.9.7]. This is true if we
construct the sequence I';; in such a way that each FZﬁ Lis contained in exactly one ry
meaning that we receive the sequence by subdividing the existent detector pairs in each
step. The same should hold for the time intervals 7%, i.e. it must hold At"T! = k%At” for
E™ € N. Additionally, we need the assumption UyI'}, = 0€2s x 9 in order to cover the
whole surface with detectors such that the limit can be computed almost everywhere
on 0N x 0fs. Moreover, we need our detector sizes to converge to zero, we want the
detectors to have a comparable size in each step n and we want the area of each detector
to be proportional to its squared diameter. These demands on the shape of the detectors

are stated in the following assumption.

Assumption 3.3.1. We assume that there exists a positive function f from N to R and a
constant ¢ > 0 satisfying

0 < cf(n) < diam(I'y) < f(n)

n—o0

for all n € N and every detector k with f(n)
constants ¢ and ¢’ exist such that

0. Moreover, we assume that positive

d TP < diam(T})? < ¢ |[T'7.
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3.3 I'-Convergence II: Variable Detector Sizes

Lemma 3.3.2. If we construct our sequence of detectors (I'}))iin in the way described
above and under Assumption|3.5.1), we receive a ¢ Vitali relation which is given by

{(,9) |z€S e unt
and for At"T = LA, k" €N, a ¢ ® dt Vitali relation
{(z,t,7,8) | (z,t) € S x T € (1T])im X (T)kin}-

Proof. The proof follows from [20, Theorem 2.8.19]. O

Example 3.3.3 (Explicit setup). In this example we explicitly give a setup meeting the
above assumptions, i.e. a setup for which the following considerations of this section will
hold.

Let 2 be a cube with edge length e and €25 a cube with edge length es = ¢ + § for some
§ > 0. We subdivide each face of Qs into n? squares (the detectors I'}') each of which has
an edge length of es/n. Then for every n it holds U, ['}; = 0€Qs x 0€5 and for each detector
I’y we have

2
2
diam(T})? = <‘f€5> — 2|17
n

One crucial point in proving ['-convergence was Lemma We now expand this result
and include a decreasing family of detector pairs.

Lemma 3.3.4. Let (p",w") = (p,w), let (T%)kn be a ¢ Vitali relation, (77)in x (T%)k1n

(2
a dt @ ¢ Vitali relation, let (7"), C (7")in be a sequence of intervals with 7' — t and
let (T72)n C (I'Y)kin such that T — x. Moreover, we assume the uniform boundedness
S(p™,w™) < M and S(p,w) < +00. Then we have for dt @ ¢ almost every (t,x) meeting

the above conditions

1

n00 [77[(T2)

/T Rt — R () (3.9)

where k% () is the Radon-Nikodym derivative of the measure defined by

B([0,T]) x B(0Qs x 995) — [0,+00], 7 x T e / WP (T)dt

with respect to the measure dt ® ¢.
The convergence (3.9) holds for the scattering and detection part of Kk separately.
Proof. We start with showing (3.9) for the scattering part of x. It is

1 1
T O = s [ R ) — s ar

1 p (I 1 p*¢(I) n(Q) _
=T o0TT) 5000 % 955) Jon P Ty 0 9] L P )~ (0

o7



Chapter 3 Existence of Minimizers and I'-Convergence

By mass conservation the first part is the Radon-Nikodym derivative of the measure
B([0,T]) x B@Qs x 99) — [0,400], 7xT s / w5 (T)dt

w.r.t. dt ® d¢ which is given by

S

p

P(0Q5 x 0;) plfD)

(t,z) —

Using the mean value theorem, mass conservation and weak-* convergence, the second part
converges to zero. We find

1 p°o(I'y)
|7 p(I'R) $(0Qs x 0s)

[ @ = (@

p° 1T .
GG T, ) (@ 2

Next, we prove the result for the detection part. Just like in the proof of Lemma [3.2.4] it
suffices to show the result for a subsequence.
We write

W /Tn Ky ’d(Fm)dt = W Ln ﬁf(Fm)dt + W [—n Ky 7d(l—‘x) - :‘Qtd(rx)dt

The first term converges to the Radon-Nikodym derivative of the measure

B([0,T]) x B x 9Qs) — [0, 400], 7 xT / K0T dt

with respect to the measure dt ® ¢ [20, Theorem 2.9.7]. The limit exists for dt ® ¢ almost
all (t,x) € [0,T] x (0025 x 0Qs). Thus, we are left to show that the second term goes to
zero. We find

1 n,d n n
|7-n| (b(rn) /n Ky (FCL‘) - H?(Fz‘)dt‘

i [ o Lo ([ G = Gy ari(s)) dvolgsai

P2 ee B8 | 1 [ ([ Gt ) - Gyt ) a
<Pl e ST s ([ Gutalant) - Gofaldon)|

R(g# (dZ@VOlGlyg)(Fg)
The first part P

volgi,3) with respect to ¢ for ¢ almost all © € 9Qs x 9Qs. The second part converges to
zero which will be shown in the following. To this end we prove uniform convergence of

converges to the Radon-Nikodym derivative of R (dx ®

(s2) = [ Gyl@)ipt )

and finally show that the limit coincides with [, Gy (z)dps(y).
We want to apply the Arzela-Ascoli theorem to establish uniform convergence. Therefore,
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3.3 I'-Convergence II: Variable Detector Sizes

we need a uniform bound on and equicontinuity of the family of functions
((s,2) = [ Gy(x)dpg(y)),,- 1t is

[ G| <@ <1
establishing that the family of functions is uniformly bounded. Further, we find
[ Gu@ani) - [ Gu@ieiiw)

/Q(Gy(x)—G T)dpy (y ‘ ‘/G Z)(dpg (y) — dps (y))| -

I

We will now show I < |x — 2| and I < |s — §|1/ 2 which gives us the equicontinuity.
For I, consider the function

v [ Gyladpt )

for fixed s € [0,7]. From p” = p and mass conservation we get p?(Q) < fOT pr(Q)dt < 1.
It then holds

[ Guaanio) - [ Gy@deiiw)| <sup|Gy(o) - G, (@)] (@)

ye

Ssup |Gy (x) — Gy(2)] .-
yeN

The set € is compact and it is G € C°°(9?). Then, using the mean value theorem, we have
(for some ¢ € (0,1))

|Gy(x) = Gy(B)] = [VoGy((1 = 0)F — ca)(z — )| < |z — 2],

ie. I < |x—z|. The estimate of I is derived similar to the estimation in the proof of
Lemma [3.2.21 The weak derivative of

s [ Gyayipi)
reads

R /Q (V,yGy(2), dwl (1))

and the function is continuous which can be seen from pj; X pn for tF — t (proof of Lemma
3.1.1] part (d)). Since G, € C(Q) we get [ Gy(x)dpli(y) — [q Gy(z)dp} (y). With this we

can derive

dpydt

D) - [ Gu@dpii)] <IV,6,(@)]

dw

~11/2

sws—s\//o Hdp;
t

<Sls— 32,

dt
L2(p})
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Chapter 3 Existence of Minimizers and I'-Convergence

As we have shown uniform boundedness and equicontinuity of
(s,2) = [ Gyl@)dplly) = (.1,

the Arzela-Ascoli theorem now shows that there exists a subsequence (still indexed by n)
such that the above function f converges uniformly. We need to verify that this uniform limit
[ coincides with [, Gy(z)dp:(y). Using dominated convergence and weak-* convergence
we find for every z € Q and every ¢ € C([0,7])

/OT ()foo(:vt)dt—hm/ V() f(x, t)d hm/ /w x)dpy (y)dt

- / | 4Gy (@) dput.

Thus, f*(z,t) = o Gy(x)dp; for all x and dt almost all ¢ and continuity yields equality for
all £. O

Lemma 3.3.5. It is

R(s# (d:E & UOZGL?’)(FZI) <
Tl ~

in the given setting of this section.

Proof. To establish this estimate, we will show
Rs,, (dx @ volgis ) (I'y) < [Tl -

Therefore, we need to quantify "how many points" and "how many directions" possibly
contribute to the detections in the given detector pair I'};.
We start with quantifying the "number of directions". Note, that we can assume the two
considered detectors to have a minimal distance of § from each other due to the new
definitions of the domains and forward operator. Since our detector sizes converge to zero
and by Assumption their maximal size is smaller than §/2 for all n larger than some
ng € N. Due to the assumption

0= veq, yean [z =]
on the domains, the distance between two detection points on 9€s x 05 is at least 24.
Thus, for all n > ng we have that the distance between two detectors contributing to mea-
surements is at least §.

We are now ready to estimate the number of lines (actually the number of directions of
those lines) connecting the two detectors. To do so, it suffices to consider two detectors
shaped as circles, each with a radius of R}, := max(diam(I'}), diam(I'?)), that are directed
opposite to each other at a distance of df; := minmeﬁ,yeﬁ |x —y| > 6. To see this, we

choose two points

pi € argmin min |z —y| and p; € argmin min |z — y|
2Ty yel} yeT7 wel]
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3.3 I'-Convergence II: Variable Detector Sizes

Figure 3.1: Two dimensional depiction of how to measure the directions of lines connecting two circles
(the circles are lines in 2d). The two circles (red lines) are projected onto the sphere and
the green part of the sphere measures the number of directions of lines connecting the
two circles.

and consider the planes P,?/l having p;! —p;' as normal vector and p;’ ES support vectors. We
then consider the two circles A}, with centers p} Il and radius RJ; located in the respective
plane P;,. Due to the choice of the size of the circles we have that the orthogonal projection
of I'} 1, onto the planes ,?/l results in the circles A} ;. Since in addition the faces of both
circles are pointed to one another, any vector (i.e. direction) (a—b) with a € I'} and b € I'}
passes through both circles A} it Therefore, we have the estimate

volgra(v € GY | (x 4+ v)NTE # 0 and (x +v) NTY # @ for some = € Q)
<volgis(v € G | (z4+v) N AL # 0 and (z 4+ v) N A} # 0 for some z € Q),

—yn
'_Vkl

proving that it suffices to consider two circles faced to one another instead of the actual
detectors. Further we can assume w.l.o.g. that the two circles are oriented symmetrically
around the origin.

Next, we quantify the number of lines (actually the number of their directions) connecting
the two circles A} i The measure volgis on G52 can be seen as a probability measure
on S? that measures the number of lines through the origin piercing the unit sphere S?
[16, Section 3.9]. The most extreme directions that we are interested in are lines through
the origin connecting two points from the boundaries of A} 1 (the other directions can be
derived from those). These directions form a cone. This means that we are interested
in the radial projection of the Ay s, onto S? in order to measure the number of lines that
connect the two circles. The situation is depicted in Figure [3.1] for the two-dimensional
case. The two circles (red lines) are projected onto the sphere and the green part of the
sphere measures the number of directions of lines connecting the two circles. As both circles
are of the same shape, one detector can (after possibly reorientating the configuration) be
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Chapter 3 Existence of Minimizers and I'-Convergence

parametrized as
{(2.9) eR? | 22+ 4 < (Rp)’} = R
(lC, y) = (1’, Y, eZl)

with a distance of e}; = d}};/2 from the origin. It suffices to consider this detector only
because of the symmetry of the configuration. The projection onto S? then reads

o: {(@y) € R? |2 + 97 < (Rfy)°} — RS

n
e g—_ L
\/xQ + 42+ (e}y)
with Jacobian
(249 + (er)? ) DOy, =
_ 5 ) -
\/x2+y2_|_(€zl) _75—2 _#
22 +y2+(ey) \ @ ty+(ef)
S - a7 -
2 2
Vet () ot (ep)
_ wep) _ Ye
I V(o) 2?4y +(ep,) J

We then have

1 2 n \2 -
det ((D(PZZ)TD(PZI) — S Yy + (ekl) ) xyn 5
ML
_ y2$2 o :c2y2 N (621)2 < )

2 2
(2 +92+ (ep)?) 27y ()

and

1

vol1,3 (VD :27/
G ( kl) 47 {(m,y)ERQ | z2+y2§(Rzl

o Jdet (D)7 (x,y) DO, (. y)) d(z, )

where the factor two comes from the fact that we have two circles. This integral can be
estimated as

1
volgi,3(Vi)) < max ) <\/det (DY) (x,y) DRV (=, y))) o (RY)?
(w,y)e{(w,y)ERQ | #2+y2<(R}) }

2
S (Ri)”

We now estimate the number of points possibly contribute to a detection at detector pair
I'};. These points are described by

N,?l:{xGQ | 3v € G13 with (z +v) NT} # @ and (ac—}—v)ﬂf?#@}.
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3.3 I'-Convergence II: Variable Detector Sizes

The largest possible number of points in 2 that can lead to a detection of a photon pair
at 'Y is less than or equal to mmin((R})?, (R}')?) SUD ern yery |z — yl|, where R}, is the
diameter of the respective detector. We can further estimate

sup |z —y| < diam(9)
xEFg,yEFl”

which gives us
| Nig| < mwdiam(Q) min((R})?, (R}')?) S min(|TE], [TF))-
In total, we have

Rs, (dx @ volgs)(I'y) < min (|7, |T7]) max((RY)?, (R})?)

T ~ Indainy
< min(|T3], |[T7']) max(JTE] [T7) _
~ Iadaiad
showing the desired estimate. O

Next, we prove I'-convergence for temporal resolutions At™ and detector pairs I'}; converging
to zero while the intensity of radiation of the radioactive material tends to infinity. The
PPP E" producing the measurement for a given half-life 7" (with 7" — 0) has the intensity

measure T—lnkaz(:):)dtd¢ where &' is the Radon-Nikodym derivative of the measure

B([0,T]) x BOQs x 99) — [0,400], 7 xT / wf(T)dt

w.r.t. dt ® do.

Theorem 3.3.6 (I'-convergence general case). Let (T"), be a sequence of half-lifes with
Yo (TM)™ < 400 for some m € N, T"5" — 3, let E"™ be a PPP with intensity measure
%ﬁt(xﬂdtdqb and At" — 0 for a decreasing sequence of temporal resolutions (At™),,. More-
over, we assume (I'})) i n to be a ¢ Vitali relation such that Uy, I'}; = 0Qs x 05 for all n,
(17 )im X (L)) kin to be a dt @ ¢ Vitali relation such that Ugt]* x T = [0,T] x 0Qs x 0
for all m and Assumption|3.3.1] is satisfied. We set

T n |mn
R T C P
a0sx9s Jo n

With respect to the weak-* convergence on M we then have

T — lim T"Jh o R om — g2

n—oo

almost surely with the limit functional

)= [ [ (sue)  low (@) (@) didote) + B o).

895 XBQ§
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Chapter 3 Existence of Minimizers and I'-Convergence

Proof. We define

n E,At" 7(F
5 (pa ) Jﬁ"T” ) ( P

— 1([0,T] x 09 x Q) — T"/log (

w)+C"

1
AP\ dE™ T g"

where [I"] = 37 )» Lrr, #(I;) is a function that is constant on every detector pair I'y; with
value ¢(I'}).

We start with the liminf condition. Let (p™,w™) = (p,w). As in the proof of Theorem
(and by considerations in the proof of the following Lemma , we can assume w.l.o.g.
that lim inf,, . E™(p", w™) < 400 and S(p™,w™) < M for every n as well as S(p,w) < +00.
For the regularization part we have due to the lower semi-continuity of the Benamou-Brenier
functional w.r.t. the weak-* convergence established by Lemma

hnniio%f TS (p", w™) > BS(p,w).

Additionally, weak-* convergence p" — p and continuity of the forward operator w.r.t. this
convergence yields

T
([0, T x 8 x ) = / K09 x 00 dt
0
N T T
oo, / ke (09 x OQ)dt = / / o (2)do () dt
0 0 0Nsx O

Thus, we are left to prove the liminf condition for the log part. We consider the error term

7" =

T 1
1 b dtde( /T”l ( A”’p> dE"
Lo ) Tom (@) M 2)atdoa ot ( xg

with E™ being a PPP on [0,T7] x (0Qs x 0€s) with intensity measure = Ll (z)dtde(z). We
get

ARS k) (x)dtde(x) (3.10)

T 1
/asz(;xagzé/o (Atnyrn‘ g (k¢ ()

1 T 1
+ T”/lo (ﬁ"P> dE™ —/ / o <&"7P> k! (2)dtdo(z)| .
g At"|1“"\ 905 x99 Jo g At”\F"| t( ) (b( )

We would like to use dominated convergence on the first part of (3.10). Thus, we show

that log ( At”|I‘"|’€ 71’) is uniformly bounded in n. Using mass conservation, Lemma |3.3.5
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3.3 I'-Convergence II: Variable Detector Sizes

and weak-* convergence, it is for (¢,z) € 77" x I'};

1 1 .
= anp _ L n.s T " .

pp° T
<
log (qu(am x 005) / pr()dt

At"gb ) / /Glg /Z /QGy(fﬂ)ﬂ?(dy)dwvolcm(dv)dt>

pp 1 Roy(dz @ volg)(T'y)) HG oo
=log (Tqa(am < 00;) [} ey o) e [

<log (C /OT p?(Q)dt) .

S

For the lower bound we get

1 ; p n,s
log <Atn |I‘n| p) (t,z) >log (W(le)/ K ( kl))

B pp° T
=log <T¢(395 I (Q)‘”) '

n—oo

Using the convergence fOT pr(Q)dt —— fo pe(Q)dt > 0 (unless p” = 0 which will be

handled separately), we get with the above estimates |log WRR?Z))' < 1. This allows
kl

us to apply dominated convergence on the first term of (3.10) and thus this part converges
to zero according to Lemma

For the second term in we will apply Markov’s inequality to show convergence to
zero. We find

1 T 1
E (7" [log (——— &P dE™ — log (L anp)
[ /Og(AtHF”\/{ )d /895><89,5/0 og (At"\l“”ﬁ )nt(a:)dtd(ﬁ(x)l
=1 [ tog (s ) s @hdedo(z)
R A VNI TR A

T 1
- lo (,%n,p) wd () dtdod(
/895><6§25/0 &\ A g ¢ (x)dtde(x)
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Chapter 3 Existence of Minimizers and I'-Convergence

By Markov’s inequality and Lemma we get for every £ > 0

1 T 1

1 1 1 2m
<7 mn Y £ 2 n __ n Y £2Y % mn
—52mE l(T /log <At"|F"|K )dE E[T /log(Athn’ﬁ )dE }) ]
(Tm)*m 2m)! 4
e2m 2 Kl(sh)F"

k-s=2m, k1=0

2 (K
e k-s=2m, k1=0 k(s)

<

for n large enough such that 7" < 1 and with a; defined as in Lemma [2.2.5] applied

to the function ¢ — log (At%m/%"’p) and the intensity measure A\ = %Ht (x)dtdep. As

’log (ﬁmf%"’p)’ is uniformly bounded in n by C', we can estimate

it =TT ( [, o [

<max(1,C)™ max(1, /
8Q§><8Q5

)

ki
i <x>dtd¢<x>>

1
A/]’L’p
log (At” | R >
T
| d@atdsa)m <1

for all k satisfying k- s =2m, k1 =0 and > ;2 k; < m. Thus we have

1 T 1
P Tn/IO (/%n’p> dE" —/ / lo <,%n’p> k) (z)dtdo(z
( g Atn“._‘n‘ 005 %095 Jo g At"\I’"| t( ) (b( )

<(Tmym 222,

<)

establishing convergence to zero in probability. Using the property >, (T™)™ < +o0, the
above result implies the almost sure convergence [14, Theorem 6.12]

1 T 1
T |1 —— pmP)dE™ — 1 _—amyp T dtd a.s.
/ ©8 <At” 7| " ) /amwm /o o8 (At” IF”!ﬁ > i (@)didg(e) 0

ie. Z" 225 0. This finally implies the almost sure convergence

1 a.s T
/ T log (Hw’> dEm 5 / / log (¥ (2)) k] () dtdé(x)
At |F | 0N x0Ns JO

of the stochastic part of the functionals. Thus, in total we have shown the liminf condition
unless p" = p.

Finally, the case p" = 0 will be considered now. Setting £ (0,0) = +o00 we need to show
lim inf,, o0 E"(p",w™) = 400. The crucial part of this computation is the estimation of the
log-part. With N" being the number of time intervals and M™ being the number of detector
pairs and with applying the mean value theorem to get xbr fTin ke P (D) dt = H%{p (T'Y), we

66



3.3 I'-Convergence II: Variable Detector Sizes

deduce
—T”/lo (1 AW’) dE"
S\ am "

zlk’ll

anZZE ' x ) log<¢( )Ktn( Zz))

=1 kl=1

S

N™ M™
_ _qm n( . _n n pp n
— Y 3 BN T o e @

i=1 kl=1
e
+ o /Gl,S /ZUFZI/QGy(az)pt?(dy)dxvolgl,g(dv)>

N7 M™ R
bp
> 3 Eet T o (g ©)
dRé#(dx(@VZlGLS)(FZLl) Gl (9 )>
(T%)
<1

Nn M
> — T"ZZE 7' x IT') log< /pt dt)

=1 kl=1

11

T

=—log (g/ p?(Q)dt) TE"([0,T] x 095 x 9s) .
0
I

n—oo

Factor I goes to infinity as we have fOT PP (Q)dt “=>% 0 due to p™ = 0. Because of

T
E [T E™([0,T] x (9% x 095))] = /O /8 . vl (2)dé(x)dt

<)

we can apply Markov’s inequality and get

g
(T E([0,]) x (9925 x 09)) — J K](0925 x 095)dt)
S €2m
Tm)>m 2m)! )™ r m n—oo
_(527)”k sz ) ]i!(s!;k(a)k < (523‘ max(l,/O K] (095 x 9Qy)dt)™ 22 0.
o e

TE([0,T] x (9% x 99%)) — /OT /mmm k] (2)d(x)dt

This shows that factor I1 converges in probability to some positive constant. As above, this
implies almost sure convergence because of >, (T™)™ < +o00. Thus, liminf,_, E"(p",w™) =
+00 almost surely for p™ = 0 as the other parts of the functional are bounded from below
by zero.
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Chapter 3 Existence of Minimizers and I'-Convergence

This finally proves the liminf condition almost surely.

For the limsup inequality we can take (p",w™) = (p,w) for all n and do the same computa-
tions as above to get

limsup £ (p",w") < E%¥(p,w)

n—o0

almost surely. O

Lemma 3.3.7. Under the assumptions of Theorem [3.3.6] we have that the sequence of

functions E™ is almost surely equi-mildly coercive, i.e. there exists a countably compact set
K C M such that

inf &" = inf &"(p,w
(pyw)eM ( ) (pw)eK (P )

for all n € N.

Proof. The proof is basically the same as in the case of fixed detector sizes that is covered
by Lemma [3.2.8 Therefore, we are only going to repeat the most important and different
steps.
Again, the proof relies on showing that the set of minimizers (p",w™), of the functionals
E™ is precompact. We have
min " (p,w) < E™(L,0) < +o00

(pw)eM
and the last expression is almost surely uniformly bounded. For this proof, the uniform
i) | established in the proof
of Theorem [3.3.6 m when using (£,0) = (£,0) instead of (p",w™) = (p,w).

Further, we can use the same estimate of the proof of Theorem m (this time applied to
the set of minimizers (p",w™),) to conclude for (t,z) € 7" x I'}

boundedness relies on the uniform boundedness of ‘log (

1
——R"P(t Ap(Ty)dt <
N LUE RS Ve I o™

For p||p™|| > 1 this gives us the estimate, using Un Iy = 025 x 982 for all n,

n mn n n n n mn p n n
EMp" W) =T Y [Aiklp — Ejjy log (At”¢(F”) /n Ap( kl)dt>
k1) J7]

(ikl)n
> [|p" =T Y Efalog (Cllp"]) +T"8"S(p", w")
(k)™
> f(llp"D) + C"S(p",w™),

showing that the set of minimizers is precompact. ]

Remark 3.3.8 (Convergence of minimizers). Again, we cannot deduce from the almost
sure equi-mildly coerciveness of the sequence of functions (€™), that cluster points of a
minimizing sequence of the £ are minimizers of £%°. The problem is the same as described

in Remark [3.2.9
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CHAPTER 4

Conclusion and Outlook

We introduced a dynamic image reconstruction method for PET data. The intended use
of the method is tracking single or small numbers of radioactively labeled cells. We used
a maximum a posteriori estimate to determine the temporal evolution of the radioactive
material distribution. Since the problem of determining this distribution from PET data is
ill-posed, we had to introduce a regularization in the MAP estimation. We chose optimal
transport regularization which penalizes high kinetic energies of the considered particles.
Our modeling approach leads to the minimization problem

min J5(p,0) - with  J%(p,w) = 3 [Aiwip — Baalog (pAiup + Aiap) | + 55 (p. )
“ ikl

where A;p; = %/2 fT kt(Try)dt = T1/2 I (Apt)(Fkl)dt for the forward operator A that was

derived from physical considerations of the measurement process.
The measurement FE was modeled as a Poisson point process with intensity measure
( Yd¢(z)dt which led to a stochastic formulation of the objective function J¥ which

we denoted by JﬂE TAlfz(Fkl)“ We showed that the stochastic functional JgTA tQ(F’“l)“

surely has a minimizer in M = M([0,T] x Q) x M([0,T] x Q)3. This existence could only
be guaranteed almost surely since Poisson point processes are not finitely valued, but we

have P(E;;; < oo) = 1. The property max;x; E;x; < +00 was important for deriving uniform

EAL,(T
norm bounds on a minimizing sequence of J5 'y ( kL)l

T1 /2
almost

and thus for showing the existence

of minimizers.

The main part of the mathematical analysis of the objective function JZ;ETA Z(F“)“ was

E A (i)
NEPP
when the half-life T" converges to zero, i.e. the intensity of radiation goes to infinity. We

examined two different scenarios. First, we only changed the size At™ of the time intervals
7;*. This resulted in the I'-convergence

computing two I'-limits. We used I'-convergence to analyze the behavior of J

T lim 775 Tk on = g

n— o0

almost surely where the I'-limit reads
g d i
E¥(p,w) = Z/o [Ht(sz) — log (p/‘@f(Fkl) + Ky (sz)) Ky (sz)} dt + BS(p,w).
kl

The scaling of the objective function is due to the factor % in the definition of A;i;p and
the (stochastic) constants C™ are needed to account for a different convergence behavior of
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Chapter 4 Conclusion and Outlook

T™ and At™. In the limit functional we see that the discrete character of the term

Eix log (pAfklP + Agklﬁ)

has disappeared and the term was replaced by

T d ;
/o log (Pﬂf(rkz) + Ky (sz)) ki (D)t

which shows a continuous behavior in the time variable. Summation with respect to the
measurement process FE was replaced by integration w.r.t. the intensity measure of the

process.
For the second I'-limit we additionally changed the size of the detectors. This resulted in a
similar I'-convergence behavior

T~ lim T" T B0 om = g2
n—00 pmT

almost surely with a limit functional

)= [ [ (sule)  low (@) (@) dido(e) + B (o).

8Q5 X@Qg

This time, the constants C™ account for a different convergence behavior of At™ and |I'}|
compared to 7" and the limit functional now shows continuous behavior in the time and
space variable.

Some topics were not addressed in this thesis. One could have also considered the following
aspects.
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e For the modeling of the forward operator we focused on the most important physical

aspects and neglected a more detailed consideration. One could include anatomical
information (e.g. from PET-MR or PET-CT scanners) and time of flight informa-
tion. The additional a priori knowledge helps to find a good solution of the ill-posed
problem.

We used optimal transport regularization and penalized kinetic energy with the func-

tional
T dwt 2
(p,w) o Jo \dp; Pt

Other regularization terms might be more realistic from a biological point of view
and thus might lead to a better reconstruction because more suitable prior knowledge
would be incorporated.

Within our stochastic framework of I'-convergence we were not able to deduce that
cluster points of a sequence of minimizers of the £™ are minimizers of the limit func-

tional £%° (see Remark and [3.3.8). This remains to be analyzed.

For the analysis of the limit behavior 7™ — 0 we used I'-convergence. In a further step
other notions of convergence could be used. In [I] the proposed metric to compare
the reconstructed distribution from simulated PET data with the true underlying
distribution is the Wasserstein-Fisher-Rao metric. This metric accounts for mass
localization errors as well as errors in determining the correct amount of mass.



List of Symbols

Related to Forward Operator

£ms/4/P Piecewise constant, averaged functions. It is A™%/% = 3., fn- ﬁ?’s/d(Fkl)dt]lTikal
and AP = pi™° 4+ #™?. The I'y; and 7; might as well depend on n

#°/4/P Piecewise constant, averaged functions. It is A%/¢ = 3, I, nf/d(Fkl)dt]lTikal and
AP = pi® + /4

ke, Ky Spatial part of the intensity measure of the measurement process resulting from a
material distribution p after applying the forward operator. It depends on n if p

does so
Ky Composition of the scattering and detection part of ks: kY = prf + K
k7P Composition of the scattering and detection part of ry: k7 = pri™® + ki

M Domain of the objective function. M = M ([0, T] x Q) x M([0,T] x Q)3

My, M, M Nonnegative Radon measures, Radon measutes and d dimensional vector
measures

) ¢ =H>®H?

A®, A% A% Forward operator describing attenuation, scattering and normal detection
E;i;  (Stocastic) number of detected photons in detector pair kl during i-th time interval
G'3  Grassmannian manifold of all one dimensional subspaces in R3

R Function describing the detection process of two photons

Geometry

At, At"™ Temporal resolution that may depend on n

it  Total area of the surface covered by the detectors I'g

', T}y Area covered by the detector pair kl with a possible dependence on n, i.e. with a
changing size. Subset of 02 x 0 or 025 x 08

I Area covered by the k-th detector. Subset of 9§ with piecewise C'-boundary

Q Interior of the PET scanner where the radioactive material is located in. Compact
and convex subset of R3

Qs Interior of the PET scanner whose boundary has a distance of at least § to €.
Compact and convex subset of R3 with Q C Q;
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List of Symbols

Ti, T;' 4-th time interval that may depend on n

T Length of the considered time interval

T2, T" Half-life of the radionuclide that may depend on n
Other Symbols

<, 2 These symbols mean < or > up to a constant

~) o~

A, V  Minimum and maximum of two values
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