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"There are three kinds of lies: lies, 
damned lies, and statistics."

- Samuel Clemens (a.k.a Mark Twain) who attributed it to Benjamin Disraeli

“Lies, Damned Lies, and Medical Science”

- Title of a 2010 article in The Atlantic magazine



• Does it exist?

• It certainly does (or did) in genetics!

Reproducibility crisis?



Statistics (A Brief Overview)



• Free and open source

• Vast array of statistical tests available in the base 
package

• Huge number of specialized packages 

• Scriptable – automate complicated pipelines 

A word about R



• Formalizes a framework for the analysis and 
interpretation of scientific data

• Enhances the reproducibility of studies

• Establishes standards for reporting results

• (Helps) free researchers from personal biases

Why do we have to do statistics? (Sigh…)



• Classical (“frequentist”) analysis

- Evaluate the likelihood that a finding in a study 
occurs by chance

• Bayesian analysis

- Evaluate the likelihood that a particular hypothesis is 
correct given data collected in the study

Classical or Bayesian?



Decisions, decisions, decisions…

Collect data and formulate 
question

Descriptive

Continuous

Compare means

Correlation

Discrete

Compare proportions

Correlation

Predictive

Continuous

Linear regression

GEE, Linear mixed-effects, 
etc.

Discrete

Logistic regression

GEE, Cox models, Poisson 
regression

ETC.!!!



• Descriptive – describe the data collected

- Measures of central tendency (mean, median), 
variance, correlation, distribution

• Predictive – make inferences based on the 
observations in the data

- Regression (linear, logistic), survival (Cox) 

Descriptive or predictive?



• Continuous – range of real numbers (such as 
cholesterol levels, QT interval on the ECG, age, etc.)

• Discrete 
- Dichotomous – two values (yes/no, high/low, 

diseased/healthy, etc.)
- Categorical – multiple (unordered) values 

(USA/Netherlands/Germany, aspirin/vitamin K 
agonist/coumarin) 

- Ordinal – ordered (first/second/third, 
never/former/current smoker)

What kind of numbers?



• Clinical cut-off separating “diseased” and “healthy”

• Prior knowledge demonstrating that different strata 
face different risk (i.e. “high/medium/low”)

• Take “tails of the distribution” – may increase power

Categorize continuous traits?



• Parametric – depends on validity of assumptions (such 
as normality, equal variances, etc.)

• Non-parametric – free from assumptions

• Parametric is typically more powerful if assumptions 
hold, whereas you can’t go wrong with non-parametric

Parametric or non-parametric?



• A key assumption is often normality

• Normality can be somewhat assessed visually (the 
“bell” curve)

• Statistical test for normality (generally very sensitive in 
the case of large samples)
- Shapiro-Wilk test
- One sample Kolmogorov-Smirnov test

Is it normally distributed?



• Parametric - one-sample t-test

• Non-parametric - one-sample Wilcoxon signed rank 
test

- “According to the Centraal Bureau van Statistiek, 
middle-aged Dutch have an average HDL level of 53 
mg/dL.”

- “In our previous study of diabetes, the sample had a 
mean HDL level of 49 mg/dL.”

Comparing a group mean to a known value



One sample t-test



One-sample Wilcoxon signed rank test



Normality of HDL?

Shapiro-Wilk normality test

data:  diabetes$hdl
W = 0.92357, p-value = 1.918e-13



• Parametric – two sample t-test: to compare means 
between two groups

• Non-parametric – Mann-Whitney u-test

- “Are total cholesterol levels higher in diabetic 
patients?”

Comparing two group means



Comparing two group means



Normality of cholesterol?

Shapiro-Wilk normality test

data:  diabetes$chol
W = 0.95939, p-value = 4.296e-09



• Measurements from the same individuals at two time 
points 

• Parametric – paired sample t-test

• Non-parametric – Wilcoxson signed-rank test

- “Did blood pressure values change between 
measurements?”

Comparing paired means



Look at normality first this time…



Comparing paired means



• Parametric – analysis of variance (ANOVA)

- Not particularly well implemented in R
- Doesn’t identify which group is different; need 

pairwise tests for that (multiple comparisons)

• Non-parametric – Kruskal-Wallis test

- Doesn’t identify which group is different; need 
pairwise tests for that (multiple comparisons)

Comparing  > two group means



• χ2 test – 2 x 2 contingency table (note: this is identical 
to the test comparing two proportions)

• Fisher’s exact test

- Particularly useful for tables with small cell counts 
(typically meant as ≤ 5)

• 2 x k tables (and larger)

Comparing  frequencies



Comparing  frequencies



• Confounding – “a variable that influences both the 
dependent variable and independent variable causing 
a spurious association”

• Genetics – population stratification: an allele frequency 
and disease frequency differ in two comingled 
populations

Confounding



Population stratification
Population 1 Population 2

28



χ2 test 

29



• Parametric – Pearson’s correlation

• Non-parametric – Spearman’s correlation

Correlation



Correlation



• Fits linear trends to individual variables and combines 
them 

• Y ~ β0 + β1X1 + β2X2 + … + βnXn

Linear regression



Linear regression



• Uses a link function to enable linear regression 
methods to be applied to dichotomous outcomes

• ln(P/(1-P)) ~ β0 + β1X1 + β2X2 + … + βnXn

• Exponentiate both sides:

- P/(1-P) ~ exp (β0 + β1X1 + β2X2 + … + βnXn)
- P/(1-P) ~ exp(β0) * exp(β1X1) * exp(β2X2) * … * 

exp(βnXn) 

Logistic regression



Logistic regression



• Poisson regression – count data

• GLM – generalized linear models

• GEE – generalized estimating equations

• Linear mixed effects models – random effects

• Cox proportional hazards models – survival analysis

Other extensions of regression



• One-sided P-values should only be used when any 
possible effect can only go in a single direction

• In practice, this is extremely rare!

• Most arguments for one-sided P-values are not 
particularly valid

• One example: weight at one year versus weight at 
birth!

One-sided or two?



Study Designs



• Random sampling of base population should be 
representative of that population (the validity of that 
assumption increases with sample size)

• Cross-sectional: assessment at one moment in time

• Prospective: follow participants over time
- Incidence over time; “survival”

Cohort study



• Generalizable

• Incorporate observation over time

• Expensive to ascertain and follow-up

• Rare conditions or exposures difficult to study

Cohort study properties



• Sample a case population and (appropriate) controls

• Cheaper than cohort

• Assess less frequent diseases/exposures

• May not be easily generalizeable

Case-control study



• Case only designs
- Cohort of cases
- Case-control – “case cases” and “case controls”

• Case-cohort

• Sampling of extremes

Others



Sampling extremes



Genetic studies – frequency vs. effect



• Population-based
- Embedded in other study designs
- Standard analytical methods

• Family-based studies
- Twin studies
- Small pedigrees (such as trios & nuclear families)
- Extended pedigrees
- Require special analysis methods to account for 

relatedness

Genetic studies



Some advantages of family studies

• Reduced genetic complexity

• Reduced environmental heterogeneity

• Enriched for rare alleles

• Enriched for rare phenotypes

• Robust to population stratification



Statistical Power and Power Calculation



Statistical errors



“In plain English, statistical power is the likelihood that a 
study will detect an effect when there is an effect there 

to be detected. If statistical power is high, the probability 
of making a Type II error, or concluding there is no effect 

when, in fact, there is one, goes down.”

What is (statistical) power?



• Is it reasonable to proceed with a study?
- Can differences be detected?
- Is the necessary sample size achievable?

• Is it ethical to proceed with a study?
- Will potentially deleterious sampling or intervention 

(or animal use) have the potential to yield useful 
results?  

Why is power important?



• Four parameters in typical power calculation:

- Effect size
- Sample size (n)
- Significance level (α) [P(Type I error)]
- Statistical power (β) [1 – P(Type II error)]

• These parameters are related! If you know 3, you can 
calculate the fourth!

Power calculation



• Since the significance level is (usually) pre-defined, that 
means power is crucially dependent on:

- The effect size you hope to find and

- The sample size (n)!

Power depends on…



Note that different statistical tests require different 
power calculations!

• By hand

• R packages (base package, pwr, powerSurvEpi)

• Stand-alone software

• Online calculators

Power calculators



• http://powerandsamplesize.com/Calculators/

• http://www.sample-size.net/

• A huge list: http://statpages.info/

• And many others…

Online power calculators

http://powerandsamplesize.com/Calculators/
http://www.sample-size.net/
http://statpages.info/


• Student’s t-test
> pwr.t.test(n = , d = , sig.level = , power = , type = c("two.sample", 

"one.sample", "paired")) 
> pwr.t2n.test(n1 = , n2= , d = , sig.level =, power = )

• ANOVA
> pwr.anova.test(k = , n = , f = , sig.level = , power = ) 

• Correlation
> pwr.r.test(n = , r = , sig.level = , power = ) 

• χ2 test 
> pwr.chisq.test(w =, N = , df = , sig.level =, power = ) 

R package pwr (a few examples)



• Allele frequencies can effectively reduce sample size, 
so power calculations need to account for this 
additional parameter

• Make sure to account for adjusted P-value threshold!

Power calculation in genetics



• Sham and Purcell
- Online tool
- http://zzz.bwh.harvard.edu/gpc/

• Quanto
- Stand-alone software
- http://biostats.usc.edu/Quanto.html

Genetic power calculators

http://zzz.bwh.harvard.edu/gpc/


• Power is dependent on frequency of transcription for a 
given transcript

• Sequencing depth is a related factor (very deep 
sequencing increases frequency of rare transcripts)

• RNAseq generates count data, which requires different 
distributional assumption (negative binomial or 
Poisson)   

Power calculation for RNAseq



• Several available tools in R

• RNASeqPower is one option:
- Uses negative binomial distribution appropriate for 

count data
- Allows a range of transcript counts and effect sizes
- Allows different sized case and control groups   

Power calculation for RNAseq



> library(RNASeqPower)
> a<-rnapower(depth=c(1:200),cv=0.5,effect=c(1.75,2,2.25),alpha=2e-6,n=50,n2=50)
> png("power_rna_seq2019-07-03.png")
> plot(a[,1],type="l",lwd=3,xlab="Transcript Count",ylab="Power",main="Power by 

Effect Size and Number of Reads",ylim=c(0,1))
> points(a[,2],type="l",lwd=3,col="blue")
> points(a[,3],type="l",lwd=3,col="red")
> legend("bottomright",pch=15,col=c("black","blue","red"),legend=c("1.75","2.00","2.2

5"),title="Fold Change")
> mtext(expression("(P " <= " 2e-6, n"["controls"]*" = 50, n"["cases"]*" = 50)"),cex=0.8)
> abline(h=0.8,lty="dotted")
> dev.off()

RNASeqPower



RNASeqPower



RNASeqPower



Multiple Comparisons and Corrections



• More tests = more Type I errors

• More Type I errors leads to:
- Erroneous interpretation of results
- Expenditure of money/time/effort chasing down 

false positives with follow-up experiments

The problem of multiple comparisons



Is ”multiple testing” really a concern?

Repeated 1000 
iterations: P ≤ 0.05
608 times and P ≤ 0.10
871 times!  



Multiple testing in a genetics study

Repeated 1000 
iterations: P ≤ 0.05
608 times and P ≤ 0.10
871 times!  

A P-value of 0.05 corresponds to 1.3 on the y-axis!!!



• How strict should the corrections for multiple testing 
be?
- For each predictor?
- For each outcome?
- For previous studies on the same topic?
- For all studies in a cohort?
- For all studies, ever, in the history of the world?

• Be “strict enough” and be able to motivate the choices 
made!

Corrections: science or art?



• Reduce false positive findings (perhaps at the expense 
of increasing false negatives)

• Enhance reproducibility of the results

• Increase believability and impact

Adjustments for multiple comparisons



• Simple to implement (Padjusted = 0.05/ntests)

• Rigorous: one expected Type I error

• Crucially, assumes independence between tests (both 
predictors and outcomes)

• Increases Type II error rate (decreases power)

Bonferroni correction



• Limits expected proportion of Type I errors

• Less stringent than Bonferroni

• Suitable for many tests

• Increased Type I error compared to Bonferroni

Benjamini and Hochberg (False Discovery 
Rate)



• Accounts for correlation between predictors 

• Calculates an “effective” number of independent tests, 
which is then used in a Bonferroni correction

• Can also be applied to correlated outcomes

• Webtools and downloadable software 
(https://sites.google.com/site/qutsgel/software)

Matrix spectral decomposition



• Perform analysis 

• “Shuffle” outcomes or predictors and re-perform 
analysis – note lowest P-value

• Do this many times!

• Proportion of P-values less than original is permuted P

Permutation (the “gold standard”?)



• Carefully performed, it can preserve structure inherent 
to the data (linkage disequilibrium, relationship 
between outcome and covariates, etc.)

• Provides excellent estimate of how likely it is to 
observe a more extreme results in the actual data

• However: computationally intensive, particularly as the 
dataset grows

Permutation



• Tukey’s range test

• Benjamini and Yekutieli

• Holm

• Sudak

• Etc.

Other corrections



• Think about the statistics BEFORE you start your study

• Calculate power

• Keep a stats book handy

• Seek out an expert if necessary!

The bottom line?


