
Computing Interprocedurally Valid Relations in Affine Programs

Markus Müller-Olm
Universität Dortmund, FB 4, LS V

44221 Dortmund, Germany
e-mail: mmo@ls5.cs.uni-dortmund.de

Helmut Seidl
Universität Trier, FB 4 — Informatik

54286 Trier, Germany
e-mail: seidl@uni-trier.de

Abstract

We consider an abstraction of programs which preserves
affine assignments exactly while conservatively dealing with
other assignments and ignoring conditions at branches. We
present an interprocedural analysis of such abstracted pro-
grams which for every program point � determines the set
of all affine relations between program variables which are
valid when reaching � . The runtime of this algorithm is lin-
ear in the program size and polynomial in the number of
occurring variables. We extend this result to a polynomial-
time algorithm which determines for every program point
the set of all valid polynomial relations between program
variables of bounded degree.

1. Introduction

Due to fundamental undecidability reasons, it is impos-
sible to design an algorithm which, for every program de-
termines whether or not a variable has a specific value
whenever the program reaches a program point. This neg-
ative result, though, does not preclude techniques which
obtain useful information about programs in many practi-
cal cases. A key idea is to abstract the program to be an-
alyzed to a program which has a simpler semantics and
thus is amenable to an algorithmic solution. In our case,
this abstraction consists in replacing conditional branching
with non-deterministic choice, i.e., by ignoring conditions
at branches. Moreover, while preserving certain “tractable”
assignments �������	� , all others are replaced with nonde-
terministically assigning any value. One instance of this
scheme has been considered in copy-constant propagation
[5]. Here, the right-hand sides of the preserved assignments
either consist of single constants or variables. Clearly, the
necessary abstraction is severe and thus the quality of the
resulting information quite limited. Therefore, various gen-
eralizations have been considered. In 1976, Karr proposes
affine programs where arbitrary affine assignments such as
��
��
����������������� are treated exactly [7]. In generalization

of these, Müller-Olm and Seidl consider polynomial pro-
grams where assignments with polynomial right-hand sides
such as in ��
��
����������� ���!
��"� are allowed [15].

Given an abstracted program, the goal is to compute pre-
cise information about the values of variables which means
that the analysis should not introduce any further loss of
precision. Various types of information about the values
of variables are of interest. In the simplest case, we aim
at detecting variables which definitely have a fixed value
(say, 42) when reaching a program point. Related anal-
yses are known as constant propagation. Or, we want to
determine definite equalities between variables. In his sem-
inal paper [7], Karr proposes, as a generalization of both
questions, to search for arbitrary affine relations among
variables. Such detailed information has many applica-
tions. It can be used, e.g., for triggering optimizing program
transformations such as aggressive common sub-expression
elimination. It is also detailed enough to infer or test pro-
gram invariants in the context of program verification.

Karr presents an algorithm which determines for every
program point the set of all valid affine relations. His al-
gorithm is forward-propagating and uses a quite compli-
cated subroutine to deal with assignments �#�$�
�%� where
the right-hand side depends on the variable �!� from the left-
hand side. In [13], Müller-Olm et al. observe that checking
a given affine relation for validity at a program point can be
performed by a much simpler backward propagating algo-
rithm which in turn is generalized to a backward propagat-
ing algorithm for checking arbitrary polynomial relations
for polynomial programs in [15].

All these algorithms have been designed for intraproce-
dural analysis. Clearly, for copy constant propagation, the
intraprocedural approach can be generalized to programs
with procedures since the involved domain is finite [17].
Horwitz et al. also present a precise interprocedural con-
stant propagation algorithm running in polynomial time if
only assignments are treated exactly whose right-hand sides
contain at most one occurrence of a variable [6].

Here, we present an algorithm which computes the set of
all valid affine relations for arbitrary affine programs with

1

3

2

0
�������

:

4

��� �
� ���

�

��� �
� ��� � ��� � ��

7

5

6

8

9

�
:

��� �
� ��� � ���

�

�!
��
� �!
 �	�

��� �
� ����� ��� �	�

�!
��
��

Figure 1. An example program.

procedures. Our algorithm is more general than Karr’s as
we allow procedures, and it is more general than those by
Horwitz et al. since we consider arbitrary affine programs
and infer more detailed information. Also, we extend our
algorithm to compute for every program point of an affine
program the set of all valid polynomial relations of degree
bounded by some fixed � . The base algorithm as well as the
extended algorithm runs in time linear in the program size
and polynomial in the number of program variables.

The key observation onto which our algorithm is based
is that the weakest precondition of an affine relation
 along
a single run of the program can be determined by means
of a linear transformation applied to
 . The set of all lin-
ear transformations of a vector space again forms a vector
space. We succeed in describing the effect of procedure
calls by means of a finite-dimensional sub-space of linear
transformations. The affine relation
 at a program point �
then turns out to be valid iff it is transformed into 0 by the
vector space generated by the set of all linear transforma-
tions corresponding to reaching program runs. We conclude
that the set of all valid affine relations can be computed as
the set of solutions of an appropriate linear equation system.

The program in figure 1 illustrates the kind of proper-
ties our analyses can handle. It consists of two procedures�������

and
�

. After memorizing the (unknown) initial value
of variable � � in variable ��� and initializing ��
 by zero,�������

calls
�

. Procedure
�

can either terminate without
changing any variable or call itself recursively. In the latter
case, it increments ��� by ������� and ��
 by � before the
recursive call and decrements � � by ��� afterwards. There-
fore, the total effect of each instance of

�
with a recursive

call is to increment both � � and ��
 by one. Thus, upon ter-
mination of the call to

�
in
�������

(i.e., at program point
3), ��
 holds the number of recursive calls of

�
and � � the

value ��� � ��
 . Consequently, the final assignment in
�������

always assigns zero to ��� . More formally, this amounts to
saying that the affine relation � � �$��� � ��
 ��
 is valid at
program point � and that the affine relation � � ��
 is valid
at program point � .

Another interesting relationship between the variables
holds whenever

�
is called. As mentioned, variable �

counts the number of recursive calls, and, thus, how often
��� has been incremented by � � ��� . Consequently, at any
call to

�
variable ��� holds the value � � ����
�� ��� �������

��� �!
 � ��� � �!
 . This amounts to saying that the polyno-
mial relation (of degree 2) ��� ��
 � ��� � ��� � �!
 ��
 is
valid at program points � , � and � .

Our paper is organized as follows. In section 2, we for-
mally introduce the programs to be analyzed together with
their semantics. In section 3, we introduce affine relations,
their weakest preconditions along a program run and ex-
plain our algorithm for this special case. In section 4, we
generalize our approach to deal with arbitrary polynomial
relations of bounded degree. In section 5, we extend our
approach to procedures with local variables.

2. Affine Programs

We model programs by systems of non-deterministic
flow graphs that can recursively call each other as in fig-
ure 1. Let � ��� �����! � ! ����#"%$ be the set of (global) vari-
ables the program operates on. We use � to denote the col-
umn vector1 of variables � �&� � ���� ! � ����#"��(' . We assume
that the variables take values in a fixed field) . In practice,
) is the field of rational or real numbers. Then a state as-
signing values to the variables is conveniently modeled by
a * -dimensional (column) vector +$�,��+ ���� � ! ��-+."/�('102) " ;
+�3 is the value assigned to variable �43 . Note that we dis-
tinguish variables and their values by using a different font.
For a state + , a variable �43 and a value 5607) , we write
+98 �:3<;=&5-> for the state ��+����! � � ��-+�3�?��!�@5A�-+�3CB ���! � ! D�-+."/�(' .

We assume that the basic statements in the program are
either affine assignments of the form �#� ��� �FE �HG "3CI � �J3 �:3
(with �J3�0K) for L��M
N�� ! � ��D* and ���O0P�) or non-
deterministic assignments of the form �#� �
�1Q (with ���20
�). Assignments ��� ������� have no effect onto the program
state. They are also called RDSUTWV statements and omitted in
pictures. Non-deterministic assignments �!� ���XQ represent a
safe abstraction of statements in a source program our anal-
ysis cannot handle precisely, for example of assignments
� ����� � with non-affine expressions � or of read statementsY[ZA\A] � ���A� . Let ^`_bac_ be the set of basic statements.

A program comprises a finite set d Y[egf of procedure
names that contains a distinguished procedure

�������
. Ex-

ecution starts with a call to
�������

. Each procedure name
1We employ the superscript “ h ” to denote the transpose operation

which mirrors a matrix at the main diagonal and changes a row vector
into a column vector (and vice versa).

� 0�d Y[egf is associated with a control flow graph ��� �
�����N���	�N��
��N�
�
� �����`� that consists of:� a set ��� of program points;

� a set of edges ��������������� ;
� a mapping
�� ���	�	= ^`_bac_	� d Y[egf that annotates

each edge with a basic statement of the form described
above or a procedure call;

� a special entry (or start) point ��� 0���� ; and

� a special return point ��� 0���� .
We assume that the program points of different procedures
are disjoint: ��� ���"! �$# for �&%�$' . This can always be
enforced by renaming program points.

We write � for (�*),+.- /�0 ��� , � for (�*),+.- /�0 �	� , and

for (�*),+.- /�0
�� . We agree that 1 \ R Z ���2�43,
 �5���c0 ^`_bac_-$
is the set of base edges and 6 \87 7 � � �9��3:
 �5����; � $ is the
set of edges that call procedure � .

The core part of our algorithm can be understood as a
precise abstract interpretation of a constraint system charac-
terizing the program executions that reach program points.
We represent program executions or runs by sequences of
affine assignments. Formally, a run � is a finite sequence

�<;&= �?>! � ! �>�=?@
of assignments =!3 of the form ��� ��� � where ��� 0 � and
��; �FE ��G "3CI � �J3 �:3 for some �FEU�! � ! ���� "	07) . We writeACB,D R for the set of runs. The set of runs reaching program
point ��0E� can be characterized as the least solution of
a system of subset constraints on run sets (see, e.g., [18]
for a similar approach for explicitly parallel programs). We
start by defining the program executions of base edges �
in isolation. If � is annotated by an affine assignment, i.e.,
 �5���	; � � �
� � , it gives rise to a single execution: F �5�����
� � � ��� �-$. The effect of base edges � annotated by a non-
deterministic assignment �#���
�1Q is captured by all runs that
assign some value from) to �#� :

F �5������� �����
��5<3U5 0) $
Thus, we capture the effect of non-deterministic assign-
ments by collecting all constant refinements. Next, we
characterize same-level runs. Same-level runs of proce-
dures capture complete runs of procedures in isolation.
As auxiliary sets we consider same-level runs to program
nodes, i.e., those runs that reach a program point � in a pro-
cedure � from a call to � on same-level, i.e., after all proce-
dures called by � have terminated. The same-level runs of
procedures and program nodes are the smallest solution of

the constraint system S:

8 G��D>HF �I'��KJLF ���.!A�
8 G���>HF �5�M!��NJ �.O�$
8 G���>HF � � �&JLF ��� �P>QF �5��� if ���7���4� � � 0R1 \ R Z
8 G`�/>HF � � �&JLF ��� �P>QF � � � if ���7���4� � � 0S6 \87 7 �

where “ O ” denotes the empty run, and the operator “ > ” de-
notes concatenation of run sets. By 8 G.�b> , the set of same-
level runs of a procedure � comprises all same-level runs
reaching the return point of � . By 8 G �A> , the set of same-level
runs of the entry point of a procedure contains the empty
run. By 8 G���> and 8 G`�/> , a same-level run for a program point
� is obtained by considering an ingoing edge � �P���4� � � .
In both cases, we concatenate a same-level run reaching �
with a run corresponding to the edge. If � is a base edge,
we concatenate with an edge from F �5�U� . If � is a call to a
procedure � , we take a same-level run of � .

Next, we characterize the runs that reach program points.
They are the smallest solution of the constraint system R:

8 T �D>VU � ������� �WJ �2XD$
8 T ��>VU � � � JYU ��� � if ���4� � 0Z6 \87[7 �
8 T ��>VU ��� � JYU � � �P>QF ��� � if � 0����

By 8 T �D> , the procedure
������� � is reachable by the

empty path. By 8 T��A> , every procedure � is reachable by a
path reaching a call of � . By 8 T ��> , we obtain a run reaching
a program point � from some procedure � , by composing a
run reaching � with a same-level run reaching � .

So far, we have furnished procedural flow graphs with
a symbolic operational semantics only by describing the
sets of sequences of assignments possibly reaching program
points. Each of these runs, however, gives rise to a trans-
formation of the underlying program state +�0) " . Every
assignment statement �43������ induces a state transformation
8 8 �����
� � > >��/) " =�) " given by

8 8 ��� �����(> >[+ �P+98 ��� ;= �D��+ �(>��
where �D��+ � is the value of term � in state + . This definition
is inductively extended to runs: 8 8 O!> > �]\] , where \] is the
identical mapping and 8 8 �/
%> >#� 8 8
%> >:^18 8 ��> > .

The state transformation of an affine assignment �!� �
�
�FE ��G "3CI � �J3 � 3 is an affine transformation. Hence, it can
be written in the form 8 8 ��� �
���(> >[+ �_
c+ �a` with a matrix
�0) ",b " and a (column) vector `c0) " . More specifically,
 and ` have the form indicated below:

 �
cd_e
��?��

� � ! � � "

 e "�? �

fg
` �

cd

�FE

fg
(1)

Here,
e 3 is the unit matrix with L rows and columns and

denotes zero matrices and vectors of appropriate dimension.
In ` , �FE appears as h -th component.

As a composition of affine transformations, the state
transformer of a run is an affine transformation as well.
For any run � , let
 � 0�) ",b " and ` � 0�) " be such that
8 8 ��> >[+ �
 � + ��` � .
3. Affine Relations and Weakest Preconditions

An affine relation over a vector space) " is an equation

gE���
 � ��� �7 � ! -
N" �#" �
 for some
`3 0) . Geometri-
cally, it can be viewed as a hyper-plane in the * -dimensional
vector space) " . Such a relation can be represented as a
polynomial of degree at most 1 (namely, the left-hand side)
or, equivalently, as a column vector
 ����
NE/�� � ! ��-
N"��(' . In
particular, the set of all affine relations forms an) -vector
space which is isomorphic to) "�B�� . The vector � 0�) "
satisfies the affine relation
 iff
NE �
���� � �
 where

����7��
 �!�� ! � ��-
N"��(' and “ � ” denotes scalar product. We write� 3 �
 to denote this fact. Geometrically, this means that the
point � is an element of the hyper-plane
 .

The affine relation
 is valid after a single run � iff

gE ��
����.8 8 ��> >C+ ��
 for all +�0�) " . (+ represents the un-
known initial state.) Thus,
NE �
����U8 8 ��> > � �
 is the weakest
precondition for validity of the affine relation
 after run � .
We have

gE �
 � �g8 8 ��> > � �

iff 8Choice of
 � and ` � >

gE �
 � �`�I
 � ��� ` � � �

iff 8Linearity, rearrangement >
��
gE �
 � �2` � �!�
 � �M
 � � �

iff 8Law +��.
 � �
 'F+	� � >
��
gE �
 � �2` � �!���I
 '
 � �
� � �

From this characterization we see, that the weakest precon-
dition is again an affine relation. Even better: The mapping
that assigns each affine relation its weakest precondition
before run � is the linear map described by the following
�(* �	���	� �(* �	��� matrix � � :� � � � � `-' �

 ' ��
 (2)

This matrix provides us with a finite description of the
weakest precondition transformer for affine relations of a
single program execution � . Note that the only affine re-
lation which is true for all program states is the relation� �7��
N�� ! � ��-
`�(' . Thus, the affine relation
 is valid after run� iff � �
 � � .

The states that potentially occur at a program point � 0� are the states 8 8 ��> >[+ with � 0�U ��� � and + 0) " . Conse-
quently, the affine relation
 is valid at a program point � ,
iff for all + 0) " and � 0SU ��� � , 8 8 ��> >[+ 3 ��
 or, equivalently,
+R3 ��� �
 . Summarizing, we have:

Lemma 1 Let � �K��� � 3C�H0 U ��� �-$. Then the affine
relation
 0) "�B�� is valid at program point � iff ��
 � �
for all � 0�� .

Thus, the set � gives us a handle to solve the interpro-
cedural validity problem of affine relations. The problem is
that we do not know how to represent this set � in a fini-
tary way — let alone how to compute it. In this place, we
recall from linear algebra that the set of �(* � ����� �(* � ���
matrices again forms an) -vector space. The dimension of
this vector space equals �(* � �A� � . We observe:

Lemma 2 Let � denote a set of � ��� matrices.� For every � 0�� , the set ��
�3���
 � � $ forms a
sub-space of)�� ;� As an intersection of vector spaces, the set ��
�3���� 0� ����
 � � $ forms a sub-space of)�� ;� For every
�07)�� , the following two statements are
equivalent:

– ��
 � � for all � 0�� ;

– ��
 � � for all � 0ZF� ��� �!��� .
Here, F� ��� �!��� denotes the vector space generated by

the elements in � , i.e., the vector space of all linear com-
binations of elements in � . We conclude that we can work
with F� ��� �"� � , i.e., the subspace of)
"!B �%$�b # "!B �%$ gener-
ated by � without loosing interesting information. As a
sub-space of the vector space)
"!B �&$�b # "!B �&$ of dimension
�(* � ��� � , F� ��� �"� � can be described by a basis of at most
�(* �7��� � matrices. Indeed, due to the special form of the
matrices � � — in the first column all but the first entry are
zero— F� ��� �"� � can have at most dimension * � �	* ��� .
Based on this observation, we determine the set of all valid
affine relations at program point � as follows:

Theorem 1 Assume we are given a basis ' for the setF� ��� �J��� � 3.� 0�U ��� �-$U� . Then we have:

1.
 02) "�B�� is valid at program point � iff ��
 � �
for

all � 0(' ;

2. A basis for the sub-space of all affine relations valid at
program point � can be computed in time) �(*+*A� .

By statement 1 of Theorem 1, the affine relation
 is valid
at � iff
 is a solution of the equation system:

",
�@I E.- 3
� � � �

for each matrix � �7� - 3 �A� 0�' and L��
g�! � ! ��b* .

The basis ' contains at most) �(* � � matrices each of
which contributes * �7� equations. Thus, we must deter-
mine, the solution of an equation system with) �(*
 � equa-
tions over *��	� variables. This can be done, e.g., by Gaus-
sian elimination, in time) �(* *A� — giving us the complexity
stated in the theorem.

So, we are left with the task to compute, for every pro-
gram point � , F� ��� �J��� � 3P� 0LU ��� �-$/� . Our goal there-
fore is to abstract sets of program executions to subspaces
of) # "�B��%$�b # "�B��%$. Recall that the set of subspaces of a
finite-dimensional) -vector space

�
forms a complete lat-

tice (w.r.t. the ordering set inclusion) where the least ele-
ment is given by the 0-dimensional vector space consisting
of the 0-vector only. In particular, the least upper bound of
two spaces

� ��� � � is given by:� ��� � � � F� ��� � � � � � �A�
� �U5 � � ��� 5 � � � 3U5@3 0)4� � 3 0 � 3F$

The height of this complete lattice, i.e., the maximal length
of a strictly increasing chain, equals the dimension of

�
.

The desired abstraction of run sets is described by the
mapping �$� �����	��
9= F
�
� �)�# "�B��%$�b # "�B��%$ � :

� ��� ��� F� ��� �J��� � 3.� 0�� $/��
Thus, we have:

� �5#�� � F� ��� �5#%� � � � $� �J�.�`$U� � F� ��� �J��� � $/�
for a single run � . In particular by equation (2),

� �J�2XD$U� � F� ��� �J� e "!B �D$U�
because
�� � e " and `�� � � .

The mapping � is monotonic (w.r.t. subset ordering on
sets of runs and subspaces.) Moreover, it commutes with
arbitrary unions. It remains to show that the desired values
can be computed by abstracting the constraint systems for
same-level and reaching run sets. In particular, we need
an abstract version of the concatenation of run sets. For� �!� �����)�# "�B �&$�� , we define:� �N^ � � � F� ��� �J�2
 ��
�� 32
c3 0 �23F$/�
First of all, we observe:

Lemma 3 For all sets of matrices � �!� � � ,
F� ��� �!� �b� ^�F� ��� �!���!� � � � ^ ���<

Proof: Observe first that F� ��� �!�63J� J�� 3 and therefore,

F� ��� �!� �D� ^�F� ��� �!���!�	J�� � ^ ���

by monotonicity of “ ^ ”.
For the reverse inclusion, consider arbitrary elements'c3 � G ��� # 3 $� �2
 # 3 $� in F� ��� �!� 3J� for suitable
 # 3 $� 0�� 3 .

Then ' � ' � � , @ ,
�
� # �%$@ � # � $� �.
 # �&$@
 # � $�

by linearity of matrix multiplication. Since each
 # �&$@
 # � $�
is contained in � � ^ � � , ' � '�� is contained in � � ^ ��� as
well. Therefore, also the inclusion “ � ” follows. �

Accordingly, a generating system for ����^ ��� can be
computed from generating systems � ����� � for � � and ���
by multiplying each matrix in � � with each matrix in � � .

Secondly, we observe that “ ^ ” precisely abstracts the
concatenation of run sets:

Lemma 4 Let � �!������� A B8D R . Then

� ��� �b� ^�� �����A����� ��� � >�� �A�
Proof: Consider the auxiliary map � mapping run sets to
sets of matrices by:� ��� ������� � 3.� 0�� $
Then we have � ��� ��� F� ��� �"�O���X� � . We observe:

�.
 �

�� 32
c3 0(�O���c3J�-$�� �O��� � >�� �A�
This suffices as the span construction commutes with com-
position by Lemma 3. �

For the abstraction of base edges, we distinguish two
cases. Let us first consider a base edge � 0 1 \ R Z anno-
tated by an affine assignment, i.e.,
 �5�U��; + � �
� � where
� ; �FE � G �3CI � �J3 � 3 . Then F �5��� �O� ��� �
� �-$. By (1) and
(2), the corresponding transformer is given by

� � F �5�U� � � � �J� � � �����-$/�
� F� ��� c d"!#$ #%

c d e
� �FE

� � �

... � � �

 � " e "�? �

f'&g)(#*
#+
f'&g

Informally, the weakest precondition for an affine relation

 02) "!B � is computed by substituting � into �#� of the cor-
responding affine combination.

Next, consider a base edge ��0]1 \ R Z annotated with
� � �
�1Q . In this case, F �5��� ��� �#���
��5<3U5 0):$ — implying
that we have to abstract an infinite set of runs. Clearly, the
abstraction of this set again can be finitely represented. We
obtain this representation by selecting two different values
from) , e.g., 0 and 1. We find:

Lemma 5

� � F �5��� � � � �J� �����
��5�3/5c0) $/�
� � �J� �����
�
 � �����
���U$/�
� F� ��� �J� � EU� � �D$/�

where
��� � ������� I � is the matrix obtained from

e "�B � by
replacing the h�� � -th column with � 5A�@
g�! � ! D�@
`� ' .
Proof: We verify:

��� � � ��� 5!� � � E ��5 � � � . Hence,�	� 0ZF� ��� �J� � E/� � ��$/� . �
From the constraint systems F and U for run sets, we

construct constraint systems F�
 and U�
 by application of� . The variables in the new constraint systems take sub-
spaces of �(* ������� �(* ����� matrices as values. Then we
apply � to the occurring constant sets �9Xb$ and F �5��� and re-
place the concatenation operator “ > ” with “ ^ ”. For the re-
sulting constraint systems, we obtain our main theorem:

Theorem 2 For every program of size � with * variables
the following holds:

1. The values:F� ��� �J��� � 32� 0ZF ��� �-$/� , � 0�� ,F� ��� �J��� � 32� 0ZF � � �-$/� , � 02d YCe`f ,F� ��� �J��� � 32� 0�U ��� �-$/� , � 02d Y[egf , andF� ��� �J��� � 32� 0�U ��� �-$/� , � 0�� ,
are the least solutions of the constraint systems F�
 andU�
 , respectively.

2. The sets of all valid affine relations at program point
� , � 0�� , can be computed in time) � � �U*�
�� .

Proof: Since the mapping � commutes with arbitrary
unions, assertion (1) follows from lemma 4 by the funda-
mental results in [9, 10]. We already have seen in theorem 1
that, given the sets of precondition transformers for all pro-
gram points � , we can compute the sets of all valid affine re-
lations within the stated complexity bounds. So, it remains
to prove that the least solution of the abstracted constraint
systems can be computed in time) � � �N*�
�� . For that, re-
call that the lattice of all sub-spaces of)
"!B �%$ � has height
�(* � ��� � . Thus, a worklist based fixpoint algorithm will
evaluate at most) � � � * � � constraints. Each constraint eval-
uation consists of multiplying two sets of at most �(* � �A� �
matrices. The necessary �(* � ����� matrix multiplications
can be executed in time) �(* � � . Finally, we must com-
pute a basis for the span of the resulting �(* ���A��� matri-
ces. By Gaussian elimination, this can be done in time) �(*�
�� . Altogether, we obtain an upper complexity bound
of) � � � * � � *�
�� �) � � � * �JE � . A better runtime can be
obtained if we use a semi-naive fixpoint iteration strategy
[16, 1, 4]. The idea here is that when the value of a fixpoint
variable changes, we do not propagate the complete new

value to all uses of the variable in right-hand sides of con-
straints — but just the increment, i.e., in our case the new
matrices extending the current basis (instead of the com-
plete new basis). The total time spent with a constraint then
sums up to) �(*�
A� which overall results in the desired run-
time) � � �U*�
�� . �

Let us consider the example program from figure 1 for
illustration. Due to lack of space, we cannot describe the
fixpoint iteration in detail or give the full result. However,
we report and discuss some characteristic values. The fix-
point iteration for F�
 stabilizes after 3 iterations. We ob-
tain: F�
4� � � � F�
4���%� �]F� ��� �J� e � � � �D$/� and F�
4� �%� �F� ��� �J��� �!� � ��$/� , where ����� � � are the matrices

� ��� c d
 �
 �

f'&&g � � � c d �

 � �

f'&&g

Also, F�
4� ������� ��� F�
4���g��� F� ��� �J���
/� � � $/� , where

�
 � c d �

 �

f'&&g � � �
c d

 �

f'&&g

As there are no recursive calls to
�������

, reaching runs
and same-level runs coincide for the program points of�������

. Consequently, we have, U�
:� �%� � F�
4� �%� �F� ��� �J��� �!� � ��$/� . Hence, at program point � just the
affine relations
%� ��
gEU�! � ! D�@
N"/�(' with ���-
%�
 and� �D
 �
 are valid which reduces to the requirements

gE �K
 and
�� ��
�
$� �
 � . Therefore, just the affine
relations of the form
 � ��� �	
 � ��� �	
 ����
 ��
 are valid
at program point � , in particular, � ���$��� � ��
 ��
 which
confirms our informal reasoning from the introduction.

For program point � we have U�
4���g� � F�
4���`� �F� ��� �J���
/� � � $/� . Here, the requirements �
�
��
 and� �
 �
 reduce to
gE �
�� �
�
 �
 . Thus, just the affine
relations of the form
 � ��� �,
 are valid at program point
� , in particular, �����
 . Again this confirms our informal
reasoning that � � is a constant of value zero.

The computation of U�
 for the program points of
�

stabilizes again after 3 iterations. For the program point
� just before the recursive call to

�
, we obtain U�
4� ��� �F� ��� �J��� * � ���U$/� , where

� * �
c d �

 � �

f'&&g ��� � c d
 �
 �

 �

f'&&g

Here the conditions � *
 ��
 and ���!
 ��
 for valid affine
relations translate to
NE �
 � �
�� �
�
 �
 . Interest-
ingly, this implies that no non-trivial affine relation is valid
at every call to

�
.

In order to find out about validity of the polynomial re-
lation ��� ��
 � ���!� ��� � ��
 �
 at program point � , hinted
upon in the introduction, we must generalize our analysis to
polynomial relations which is the topic of the next section.

4. Polynomial Relations of Bounded Degree

Polynomial relations are much more expressive than
affine relations. For example, the relation:

� ��� � ���
�`� ��� � ���A����

represents the disjunction of affine relations:

��� �H� �
 � ��� � ��� �

Also, the property whether a variable �#� has a value in a
given finite set �U5 ���! � � !�@5 � $L�) with � elements can be
expressed by a polynomial relation:

� � � �65 �D� �� � ! �%� ��� � 5 � ���

Formally, a polynomial relation over a vector space) " is an
equation � �
 where � is a polynomial over the unknowns
� , i.e., � 0)<8 � > . The degree of the polynomial � (or the
polynomial relation � ��
) is the maximal sum h � � � ! � h�"
of exponents of a monomial
 � ���� � ! �� ���" occurring in � .
The set of all polynomials in)98 � > of degree at most � forms

an) -vector space of dimension

� * � �
� � �) � �(* � �g���/� .

The vector � 0) " satisfies the polynomial relation � �

iff � 8 �
	 �.>��
 where 8 �
	 � > denotes the substitution of the� 3 into the variables �:3 .

The polynomial relation � �
 is valid after a single
run � iff for all +�0�) " , � 8 8 8 ��> > + 	 � > ��
 or, equivalently,� 8 �I
 � + �Z` � � 	 � > ��
 where
 � , ` � are defined as in section
2. Thus, � 8 �I
 � � � ` � � 	 �.> ��
 is the weakest precondition
for validity of � �
 after run � . We observe:

Lemma 6 1. The polynomial � 8 �I
 � � �E` � � 	 �.> is again
of degree at most � .

2. The mapping � #�� $� which maps polynomials � of de-
gree at most � to � 8 �I
 � � ��` � � 	 �.> is linear.

Proof: For a proof of the first statement, it suffices to con-
sider a run � ; �:3 ��� � , � ; �FE � G "@ I � � @ � @ , of a single
assignment and a single monomial � ; � ���� � ! �� ���" . Then

� 8 �I
 � ��� ` � � 	 � > � � 8 � 	 �:3�>
� G
��� B�� ��� B � �DI ��� � h!3� EU�! � � �� � " � � � � �E ! � �� � �" �

� ���FB � �� � ! �� � ��� �FB � ��� �3�?�� �
� �3 � � ��� �FB � ��� �3CB�� � � � ���DB � �"

where the

� h!3� E/�� � ! �� � " � are the multinomial coefficients

for the h!3 -th power of a sum on * � � summands. Since in
each monomial of the result, � E�� ! � � � " � h!3 , the degree
of � 8 � 	 ���b> is bounded by h ��� � ! ��h�" , i.e., the degree of � .

The second assertion follows since substitution com-
mutes with sums and constant multiples. �

The only polynomial relation which is true for all pro-
gram states is the zero relation
 �
 . As for affine rela-
tions, we conclude that the polynomial relation � �
 is
valid after run � iff � #�� $� � � �

(where 0 denotes the zero
polynomial). Summarizing, we have:

Lemma 7 Let � #�� $ � ��� #�� $� 3���0 U ��� �-$. Then the
polynomial relation � of degree at most � is valid at program
point � iff � � � � for all � 0(� #�� $.

Now it is clear how we proceed. By applying lemma 2,
we can safely replace the set � #�� $ with its span. The result-
ing subspace of linear mappings can be described by a basis
of at most) � �(* � �g� � � � matrices. Note that the entries of
these matrices are now indexed by tuples � ��� h ���� ! � �� h�"�� ,
G "3CI � h!3�� � . Let � denote the set of all such tuples. We de-
termine the set of all valid polynomial relations at program
point � for polynomials of degree at most � as follows:

Theorem 3 Assume we are given a basis ' for the setF� ��� �J��� #�� $� 32� 0�U ��� �-$U� . Then we have:

1. the polynomial relation � �
 of degree at most � is
valid at program point � iff � � � � for all � 0(' ;

2. A basis of the subspace of all polynomial relations of
degree at most � valid at program point � can be com-
puted in time) � �(* � �g� *��U� .

By statement 1 of Theorem 3, the polynomial relation� �
 is valid at � iff � ;,G�� I # � �! � ��� ��� $5)#"
 � � ���� � � �� ���" ,
where the
 � �$�60%� � are a solution of the equation:,�)#" -'& � � � �

for every matrix � ��� -(& � � 0 ' and every

e 0)� . The
basis ' may contain at most) � �(* � �g� � �U� matrices each of
which contributes) � �(* ���g���U� equations. Thus, we have
to compute the solution of an equation system with) � �(* �
�g�
 �U� equations over) � �(* � �g���U� variables — giving the
desired complexity bounds.

By Theorem 3, it suffices to compute, for every program
point � , the span of the set of all precondition transformers� #�� $� , �20 U ��� � . We do so by abstracting the run sets to
subspaces of linear transformations now of polynomials of
degree at most � . The abstraction is thus given by:

� #�� $ ���X��� F� ��� �J� � #�� $� 3.� 0�� $/��

As in the case of affine relations, we have:

� #�� $ �5#�� � F� ��� �5#�� � � � $� #�� $ �J�.�`$/� � F� ��� �J� � #�� $� $/�
for a single run � . In particular,

� #�� $ �J�2XD$U� � F� ��� �J� e " $/�
where

e " is the diagonal matrix describing the identity. The
mapping � #�� $ is again monotonic (w.r.t. subset ordering on
sets of runs and subspaces) and commutes with arbitrary
unions. Also, lemma 4 analogously holds for � #�� $ as well.
Therefore, the desired values can be computed by abstract-
ing the constraint systems for same-level and reaching run
sets. In order to obtain an effective algorithm, it remains
to derive explicit abstractions for the effects of base edges.
For a definite assignment ��� ��� � , this is obviously possi-
ble. It remains to consider a base edge � 0�1 \ R Z annotated
by �������XQ with F �5������� ��� ����5<3U5 0):$. Here it turns out
that the abstraction can be finitely represented by picking
��� � different values from) , e.g., 0 through � . We find:

Lemma 8

� #�� $ � F �5��� � � � #�� $ �J� �����
��5<3U5 0) $/�
� � #�� $ �J� �����
� � 3 � �
N�� � ! ��@�N$

Proof: We verify that there exist � EU�! � ! D� � � 0) such that
for every polynomial � of degree at most � and every 5c0) ,

� 8 5 	 ���b>#� �,
� I:E � � � � 8 � 	 � �D>

For a proof, we note that � can be written as:

� ; �,
3CI E
� 3�� � 3�

for polynomials � 3 not containing ��� . We define:

 �

c d
�
 ! �

� � ! � �
...

... ! � ...
� � ! � �� �

f &&&g

The matrix
 is invertible where for the inverse matrix
 ?�� �7�5`@3 � � , � 3�� �,
� I E
`@3 � � � 8 � 	 ���b>

Thus,

� 8 5 	 ���b> � �,
3CI:E

�,
� I E

5 3 `@3 � � � 8 � 	 ���b>
�

�,
� I E

�,
3 I E

5 3 `@3 � � � 8 � 	 ���b>

Accordingly, we choose: � � � G �3CI:E 5 3 `-3 � independently
of � . This implies the assertion. �

Analogously to the last section, we construct constraint
systems F
������ , U
����	� which are obtained from the con-
straint systems F and U by applying � #�� $. We conclude:

Theorem 4 For every program of size � with * variables
the following holds:

1. The values:F� ��� �J� � #�� $� 3.� 0ZF ��� �-$U� , � 0�� ,F� ��� �J� � #�� $� 3.� 0ZF � � �-$/� , � 0 d Y[egf ,F� ��� �J� � #�� $� 3.� 0�U � � �-$/� , � 02d YCe`f , andF� ��� �J� � #�� $� 3.� 0�U ��� �-$/� , � 0�� ,
are the least solutions of the constraint systems F
����	�
and U
����	� , respectively.

2. The sets of all valid polynomial relations of degree at
most � at program point � , � 0 � , can be computed
in time) � � �`�(*�� �N��
��/� .

5. Local Variables

So far, we have considered programs which operate on
global variables only. In this section, we explain how our
techniques can be extended to work on procedures with
global and local variables.

For notational convenience, we assume that all proce-
dures have the same set � � � � �!�� ! � ���� @ $ of variables
where the first * are global and the remaining
	��* are
local. For describing program executions, it now no longer
suffices to consider execution paths. Instead, we have to
take the proper nesting of calls into account. Therefore,
same-level runs = and reaching runs � are now finite se-
quences of (unranked) trees ` and, possibly, Z D _ Z/Y :

` � ��� ��� ��� �L3 fA\87[7�� =�
= � ��� ` �M>� ! � ?>
` � �"���
`�` � � ��� ��� ��� �L3 fA\87[7�� =�
L3 Z D _ Z�Y� � ��� ` � � >� ! � ?>
` �� �"���
`�
Trees represent base actions or complete executions of pro-
cedures. Same-level runs represent sequences of such com-
pleted executions, while reaching runs may enter a proce-
dure — without ever leaving it again.

The set of runs reaching program point �&0 � can
again be characterized as the least solution of a system
of subset constraints on run sets. If � is annotated by an
affine assignment, i.e.,
 �5��� ; �#� �
� � , we again define:F �(�5��� ��� � � �����-$. Similarly for
 �5�U�N;���� �
�1Q ,

F � �5��� ��� ��� ��� 5<3U5 0) $

The same-level runs of procedures and program nodes are
the smallest solution of the following constraint system S’:

8 G � �D>HF �J�I'�� J F �J���.!!�
8 G � ��>HF �J�5�M!A�NJ �.O�$
8 G � ��>HF �J� � �&J F �J��� � >QF��(�5��� if � �7���4� � � 0 1 \ R Z
8 G � �/>HF �J� � �&J F �J��� � > f�\87 7�� F�� � � �
 if � �7���4� � � 0Z6 \87[7 �

Note that, for convenience, the application of the con-
structor f�\87 7 to all sequences of a set

�
is denoted by fA\87 7�� �
 .

Constraints 8 G � �D> , 8 G�� ��> and 8 G � ��> are as in section 2. The
new constraint 8 G � �U> deals with calls. If the ingoing edge� � ���4� � � is a call to a procedure � , we concatenate a
same-level run reaching � with a tree constructed from a
same-level run of � by applying the constructor fA\87[7 .

For characterizing the runs that reach program points and
procedures, we construct the constraint system R’:

8 T � �D>VU �(� ������� �NJ �9Xb$
8 T � ��>VU �(� � � J U��(��� ��� if ���4� � 0S6 \87 7 �
8 T � ��>VU �(��� � J U � � � � >.� Z D _ Z�Y $ >QF��(��� ��� if � 0����

Constraints 8 T � �D> and 8 T � ��> are as in section 3. The
only modification occurs in 8 T � �A> where an Z D _ Z/Y is inserted
between the run reaching the current procedure � and the
same-level run inside � .

Each of these runs gives rise to a transformation of the
underlying program state +�0�) @ . Here, we just explain
how the transformations of Z D _ Z/Y and f�\87 7�� =
 are obtained.
The transformation 8 8 Z D _ Z/Y > > passes the values of the globals
��� (h ���/�! � � ��D*) and sets the locals ��� , h��	* , to 0.2 Thus,

8 8 Z D _ Z/Y > >�� 8 8 �4"!B � ���
:>� ! � ?>�� @ �
�
U> >#� � e "

 �

Let us denote this matrix by � � .
The transformation 8 8 fA\87 7�� =
(> > is more complicated. Like

8 8 Z D _ Z�Y > > , it must pass the values of the globals into the execu-
tion of the called procedure and initialize its local variables.
In addition, it must return the values of the globals to the
calling context and restore the values of the local variables.
Given that 8 8 =b> >A+ �
��@+ ��`�� as in section 2, we define:

8 8 f�\87 7 � =�
(> >!+ � � � �-8 8 =D> >J�I� � + � �!� � � +
� �I� �
��
� � � � � �g+�� � � `��

where
� � � �

 e @ ? " � . In particular, 8 8 f�\87 7 � =�
(> > is an

affine transformation as well.

2This is the convention chosen in languages like Java. Other con-
ventions could easily be modeled as well. Uninitialized local variables
as in C, for instance, can be handled by adding �	��
 ��
 statements for� ������������������� at the beginning of each procedure body.

We want to determine for every (reaching or same-level)
run the transformation which produces the weakest precon-
dition. For simplicity, we construct the weakest precondi-
tion transformer only for affine relations. The weakest pre-
condition transformer for Z D _ Z/Y is given by:��� ��� � - � ��� ��� � � I E� ��� � �"! � I E � � e "�B��

 �
Let � denote this matrix. To obtain analogous results as in
section 3, we determine the weakest precondition transfor-
mation of f�\87 7�� =
 . We define an operator � �#) # @ B �&$�� =
)�# @ B �&$�� on �
 �	���	� �
 � �A� matrices by:

� � ����� � � � � - � �
where - is the element in the left upper corner of � , and

�

is the �
 � �A�	� �
 � ��� matrix

�

 e @ ?." � .

The operator � returns a linear transformation and is it-
self linear. We prove:

Lemma 9 Let �#� denote the precondition transformer for= . Then for an affine relation
 0) @ and a program state
+ 0) @ , 8 8 fA\87[7�� =
(> >[+R3 ��
 iff +R3 � � � �#�D�N
 .

Thus, � 0�$�% % &'�)(� � � �#�D� is the weakest precondition trans-
former for fA\87 7�� =
 . In order to furnish the same approach
as for global variables, we define the abstraction function �
for sets � of (same-level or reaching) runs by:

� ��� ��� F� ��� �J��� � 3.� 0�� $/�
In particular, � �J� Z D _ Z�Y $U� � F� ��� �J�.� $/� .

Analogously to lemma 4, we find:

Lemma 10 For every set
�

of same-level runs,

� � fA\87 7�� �
 ��� � �J� fA\87[7�� =
�3*=X0 � $/��� � ��� � � � �
The operator “ � ” is not only monotonic on sub-spaces,

but commutes with arbitrary least upper bounds. Finally, we
construct constraint systems F��
 and U �
 from F � and U �
by applying � where concatenation is replaced with “ ^ ” and
the constructor fA\87[7 is replaced with “ � ”. Then we obtain
our main theorem for programs with local variables:

Theorem 5 For a program of size � with
 global and lo-
cal variables the following holds:

1. The values:F� ��� �J� �*��3 =10ZF��(��� �-$/� , � 0�� ,F� ��� �J� �*��3 =10ZF��(� � �-$/� , � 02d YCe`f ,F� ��� �J� �*��3 =10�U �(� � �-$/� , � 02d Y[egf , andF� ��� �J� � � 3.� 0�U � ��� �-$/� , � 0�� ,
are the least solutions of the constraint systems F �

and U �
 , respectively.

2. The sets of all valid affine relations at program point
� , � 0�� , can be computed in time) � � �
�
�� .

Our technique can easily also handle procedures with pa-
rameters. Value parameters, for instance, can be simulated
via a scratch pad of globals through which the actual pa-
rameters are communicated from the caller to the callee.
Return values can be treated similarly.

6. Conclusion

We have presented an interprocedural analysis which de-
termines for each program point of an affine program the
set of all valid affine relations. We showed that this anal-
ysis runs in polynomial time. We generalized the algo-
rithm to infer all polynomial relations of bounded degree
and showed that our methods also work in presence of local
variables and parameter passing by value and result.

Our analyses are constructed in the spirit of “relational
analysis” of recursive procedures of Cousot [2, 3] and the
“functional approach” to interprocedural analysis, where
the effect of procedures is captured by functions on dataflow
informations [19, 8]. We succeed in capturing the effect of
procedures as weakest precondition transformers for affine
and polynomial relations by sub-spaces of linear maps. This
allows us to apply linear algebra techniques.

Our results improve both on the results obtained by Karr
[7] and Horwitz et al. [6, 17]. However, they do not general-
ize the intraprocedural analysis of Müller-Olm and Seidl in
[15] where we succeed in checking the validity of arbitrary
polynomial identities for polynomial programs. It remains
as a challenging open problem whether or not precise inter-
procedural constant propagation for these is decidable.

One might also be tempted to generalize the methods
to the interprocedural analysis of explicitly parallel pro-
grams. In case of atomic assignments (even in absence of
synchronizations), however, already copy constant propa-
gation is undecidable [14]. Amazingly enough, in case of
non-atomic assignments or, equivalently, in presence of lo-
cal variables, copy constant propagation has recently been
shown decidable [12]. It is another challenging question
whether this also holds for full affine constant propagation.

References

[1] I. Balbin and K. Ramamohanarao. A Generalization of the
Differential Approach to Recursive Query Evaluation. Jour-
nal of Logic Programming (JLP), 4(3):259–262, 1987.

[2] P. Cousot and R. Cousot. Static Determination of Dynamic
Properties of Recursive Procedures. In E. Neuhold, editor,
IFIP Conf. on Formal Description of Programming Con-
cepts, pages 237–277. North-Holland, 1977.

[3] P. Cousot and N. Halbwachs. Automatic Discovery of Lin-
ear Restraints among Variables of a Program. In 5th ACM
SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (POPL), pages 84–97, 1978.

[4] C. Fecht and H. Seidl. Propagating Differences: An Ef-
ficient New Fixpoint Algorithm for Distributive Constraint
Systems. Nordic Journal of Computing (NJC), 5(4):304–
329, 1998.

[5] C. Fischer and R. LeBlanc. Crafting a Compiler. Ben-
jamin/Cummings Publishing Co., Inc., Menlo Park, CA,
1988.

[6] S. Horwitz, T. Reps, and M. Sagiv. Precise Interprocedural
Dataflow Analysis with Applications to Constant Propaga-
tion. Theoretical Computer Science (TCS), 167(1&2):131–
170, 1996.

[7] M. Karr. Affine Relationships Among Variables of a Pro-
gram. Acta Informatica, 6:133–151, 1976.

[8] J. Knoop and B. Steffen. The Interprocedural Coincidence
Theorem. In Compiler Construction (CC), pages 125–140.
LNCS 541, Springer-Verlag, 1992.

[9] U. Möncke and R. Wilhelm. Iterative Algorithms on Gram-
mar Graphs. In H. Göttler, editor, 8th GI Conference on
Graph-Theoretical Concepts in Computer Science, pages
177–194. Hanser Verlag, 1982.

[10] U. Möncke and R. Wilhelm. Grammar Flow Analysis.
In H. Alblas and B. Melichar, editors, Attribute Gram-
mars, Applications and Systems, pages 151–186. LNCS 545,
Springer Verlag, 1991.

[11] S. S. Muchnick and N. D. Jones, editors. Program Flow
Analysis: Theory and Applications. Prentice Hall, Engel-
wood Cliffs, New Jersey, 1981.

[12] M. Müller-Olm. Precise Interprocedural Dependence Anal-
ysis of Parallel Programs. Technical Report 08, University
of Trier, 2002.

[13] M. Müller-Olm and O. Rüthing. The Complexity of Con-
stant Propagation. In 10th European Symposium on Pro-
gramming (ESOP), pages 190–205. LNCS 2028, Springer-
Verlag, 2001.

[14] M. Müller-Olm and H. Seidl. On Optimal Slicing of Paral-
lel Programs. In 33th ACM Symp. on Theory of Computing
(STOC), pages 647–656. ACM Press, 2001.

[15] M. Müller-Olm and H. Seidl. Polynomial Constants are De-
cidable. In 9th Static Analysis Symposium (SAS), pages 4–
19. LNCS 2477, Springer-Verlag, 2002.

[16] B. Paige and S. Koenig. Finite Differencing of Computable
Expressions. ACM Trans. Prog. Lang. and Syst., 4(3):402–
454, 1982.

[17] T. Reps, S. Horwitz, and M. Sagiv. Precise Interproce-
dural Dataflow Analysis via Graph Reachability. In 22nd
ACM SIGPLAN-SIGACT Symp. on Principles of Program-
ming Languages (POPL), pages 49–61. ACM Press, 1995.

[18] H. Seidl and B. Steffen. Constraint-Based Inter-Procedural
Analysis of Parallel Programs. Nordic Journal of Computing
(NJC), 7(4):375–400, 2000.

[19] M. Sharir and A. Pnueli. Two Approaches to Interprocedural
Data Flow Analysis. In [11], chapter 7, pages 189–233.

