
Predecessor Sets of Dynamic Pushdown
Networks with Tree-Regular Constraints

Peter Lammich, Markus Müller-Olm, and Alexander Wenner

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

{peter.lammich,markus.mueller-olm,alexander.wenner}@uni-muenster.de

Abstract. Dynamic Pushdown Networks (DPNs) are a model for paral-
lel programs with (recursive) procedures and process creation. The goal
of this paper is to develop generic techniques for more expressive reach-
ability analysis of DPNs.

In the first part of the paper we introduce a new tree-based view on ex-
ecutions. Traditional interleaving semantics model executions by totally
ordered sequences. Instead, we model an execution by a partially ordered
set of rule applications, that only specifies the per-process ordering and
the causality due to process creation, but no ordering between rule ap-
plications on processes that run in parallel. Tree-based executions allow
us to compute predecessor sets of regular sets of DPN configurations
relative to (tree-) regular constraints on executions. The corresponding
problem for interleaved executions is not effective.

In the second part of the paper, we extend DPNs with (well-nested) locks.
We generalize Kahlon and Gupta’s technique of acquisition histories to
DPNs, and apply the results of the first part of this paper to compute
lock-sensitive predecessor sets.

1 Introduction

Writing parallel programs is notoriously difficult, as concurrency-related bugs
are hard to find and hard to reproduce due to the nondeterministic behavior of
the scheduler. Hence there is a real need for automated methods for verifying
parallel programs. The goal of this paper is to develop stronger techniques for
reachability analysis of Dynamic Pushdown Networks (DPNs) [2], a formal model
of parallel programs with (recursive) procedures and process creation.

DPNs generalize pushdown systems by rules that have the additional side
effect of creating a new process that is then executed in parallel. The key concept
for analyzing DPNs is computation of predecessor sets. Configurations of a DPN
are represented as words over control and stack symbols, and for a regular set
of configurations, the set of predecessor configurations is regular as well and can
be computed efficiently [2]. Predecessor computations can be used for various
interesting analyses, like kill/gen analysis on bitvectors, context-bounded model
checking [1], and data race detection.

2 Peter Lammich, Markus Müller-Olm, and Alexander Wenner

Usually, DPNs are analyzed w.r.t. an interleaving semantics, where an exe-
cution is a sequence of rule applications. Interleaving semantics models the ex-
ecution on a single processor, that performs one step at a time and may switch
the currently executing process after every step. However, the set of interleaved
executions does not have nice properties, which makes them difficult to reason
about. For example, it is undecidable whether there exists an execution with a
given regular property. Moreover, a step of the interleaving semantics does not
contain the information which process executed the step, making interleaving
semantics inappropriate to track properties of specific processes, e.g. acquired
locks.

In the first part of this paper, we introduce an alternative view on executions
of DPNs. An execution is modeled as a partially ordered set of steps, rather
than a (totally ordered) sequence. The new semantics only reflects the ordering
between steps of the same process and the causality due to process creation, i.e.
that steps of a created process must be executed after the step that created the
process. However, it does not enforce any ordering between steps of processes
running in parallel. The new semantics does not lead to any loss of information
as the interleaved executions can be recovered as topological sorts of the partial
ordering. The partial ordering of an execution has a tree shape, where thread
creation steps have at most two successors and all other steps have at most
one successor. Hence, we model an execution as a list of trees (called execution
hedge), that contains one tree for each process in the start configuration of the
execution.

Taking advantage of our new, tree-based view on executions, we increase the
expressivity of predecessor computations. Specifically, we show that for a regular
set of configurations C and a (tree-) regular set of execution hedges H, the set
of configurations from which a configuration in C is reachable via an execution
in H is, again, regular and can be computed efficiently. We call this set the
H-constrained predecessor set of C. Note that the corresponding problem for
the interleaving semantics, i.e. predecessor computation with a (word-)regular
constraint on the interleaved execution, is not effective1.

In the second part of this paper, we extend DPNs by adding mutual exclusion
via well-nested locks. Locks are a commonly used synchronization primitive to
manage shared resources between processes. A process may acquire and release
a lock, and a lock may be owned by at most one process at the same time.
If a process wants to acquire a lock that is already owned by another process,
it has to wait until the lock is released. We assume that locks are used in a
well-nested fashion, i.e. a process has to release locks in the opposite order of
acquisition, an assumption that is often satisfied in practice. For instance, the

1 We can use the regular constraint (aā+ bb̄)∗ to synchronize two pushdown systems,
thus reducing the emptiness check of the intersection of two context free languages,
which is well-known to be undecidable, to this problem. We should mention that,
nevertheless, predecessor sets w.r.t. a special class of regular constraints, called al-
phabetic path constraints, can be computed. Alphabetic path constraints have the
form Sm1

1 . . . Smn
n with S1, . . . , Sn ⊆ L and m1, . . . ,mi ∈ {1, ∗}.

pre∗ for DPNs with Tree-Regular Constraints 3

synchronized-blocks of Java guarantee well-nested lock usage syntactically. Note
that for non-well-nested locks even simple reachability problems are undecid-
able [5]. We can describe lock-sensitive executions by a tree-regular constraint,
thus obtaining an algorithm for precise computation of lock-sensitive predecessor
sets of regular sets of computations (lock-sensitive pre∗). For this purpose, we
generalize acquisition histories [5, 4] to DPNs.

Summarizing, the contributions of this paper are:

– We present a tree-based view on DPN executions, and an efficient predecessor
computation procedure that takes tree-regular constraints on the executions
into account.

– We generalize the concept of acquisition histories to programs with poten-
tially recursive procedures and process creation.

– We characterize lock-sensitive executions by a tree-regular constraint. Ap-
plying the predecessor computation procedure, this leads to an algorithm for
computing lock-sensitive pre∗.

Related Work. The results presented in this paper have been formalized and ver-
ified with the interactive theorem prover Isabelle/HOL [11]. The proof document
is available as a technical report [9]. The theorems in this paper are annotated
with the section and name of the corresponding theorem in the technical report.

Acquisition histories have been introduced for the analysis of parallel push-
down systems without process creation [5, 4], in a setting where it is sufficient to
regard only two parallel processes. They have been applied for conflict analysis
of DPNs [10], where it is also sufficient to regard just two parallel processes at
a time. Our generalization of acquisition histories is non-trivial, as we have to
consider unboundedly many parallel processes and process creation.

An efficient implementation of acquisition history based techniques for a
model without process creation is currently studied in a joint work of one of
the authors [7]. However, the focus of that work lies on exploiting symbolic
techniques to get an efficient implementation, while the focus of this paper is the
generalization to DPNs. The use of symbolic techniques for getting an efficient
implementation is briefly discussed in the conclusion section.

Locks can be simulated by shared memory, and thus context bounded model-
checking techniques for DPNs [1] can also handle locks. However, the number of
lock operations is also limited by the context bound, while our technique handles
unboundedly many lock operations. Moreover, the technique presented in [1] is
based on predecessor computations, hence it is straightforward to extend it with
our results, getting a model-checking algorithm that can handle boundedly many
accesses to shared memory and unboundedly many lock operations.

2 Dynamic Pushdown Networks

Dynamic pushdown networks (DPNs) [2] are a model for parallel processes
with potentially recursive procedures and process creation. They extend push-
down processes by the ability to create new processes. A DPN is a tuple M =

4 Peter Lammich, Markus Müller-Olm, and Alexander Wenner

(P, Γ, L,∆), where P is a finite set of control states, Γ is a finite stack alpha-
bet with P ∩ Γ = ∅, L is a finite set of rule labels, and ∆ = ∆N ∪ ∆S is a
finite set of non-spawning (∆N) and spawning rules (∆S). A non-spawing rule

pγ
l
↪→ p′w ∈ ∆N ⊆ PΓ × L × PΓ ∗ enables a transition on a single pushdown

process with state p and top of stack γ to new state p′ and new top of stack

w ∈ Γ ∗. A spawning rule pγ
l
↪→ p′w B psws ∈ ∆S ⊆ PΓ × L × PΓ ∗ × PΓ ∗ is

a pushdown rule with the additional side-effect of creating a new process with
initial state ps and initial stack ws. For the rest of this paper, we assume that
we have a fixed DPN M = (P, Γ, L,∆).

Interleaving Semantics. We briefly recall the interleaving semantics of a DPN as
presented in [2]: Configurations ConfM := (PΓ ∗)∗ are sequences of words from
PΓ ∗, each word containing the control state and stack of one of the processes
running in parallel. The step relation →M⊆ ConfM × L × ConfM is the least
solution of the following constraints:

[nospawn] c1(pγr)c2
l→M c1(p′wr)c2 if pγ

l
↪→ p′w ∈ ∆N

[spawn] c1(pγr)c2
l→M c1(psws)(p′wr)c2 if pγ

l
↪→ p′w B psws ∈ ∆S

A [nospawn]-step corresponds precisely to a pushdown operation (manipulating
the control state and the top of the stack), a [spawn]-step additionally creates
a new process that is inserted to the left of the creating process. We define
→∗M ⊆ ConfM × L∗ × ConfM to be the reflexive, transitive closure of →M . This
semantics is an interleaving semantics, because steps of processes running in
parallel are interleaved. It models the possible executions on a single processor,
where preemption may occur after any step.

Example 1 (DPN-Execution). Consider a DPN with non-spawning rules ∆N =

{p1γ
l1
↪→ p1γ1γ2, p1γ3

l3
↪→ p1, p2γ

l4
↪→ p2γ2γ3} and spawning rules ∆S = {p1γ1

l2
↪→

p1γ3 B p2γ}. It has the execution: p1γ
l1→ p1γ1γ2

l2→ p2γp1γ3γ2
l4→ p2γ2γ3p1γ3γ2

l3→ p2γ2γ3p1γ2.

Tree Semantics. The interleaving semantics involves two types of nondeterminis-
tic choice: First, there may be more than one rule with a left-hand side matching
the state of a process. Second, there may be more than one process that can make
a step. In each step, the interleaving semantics nondeterministically chooses a
process and a matching rule. We now separate these two types of nondeter-
ministic choice: In a first step, we just fix the choice of the applied rules. The
interleaving is then chosen in a second step.

The interleaving semantics models an execution as a sequence of steps, i.e.
a total ordering of steps. We now model an execution as a partial ordering of
steps, that totally orders steps of the same process, and additionally orders steps
of a created process to come after the step that created the process. However,
it does not order steps running in parallel. This ordering has a tree shape (cf.

pre∗ for DPNs with Tree-Regular Constraints 5

Fig. 1, showing the partial ordering of steps corresponding to the execution in
Example 1). Formally, we model an execution starting at a single process as an
execution tree of type TM ::= N L TM | S L TM TM | L PΓ ∗. A tree of the
form N l t models an execution that performs the non-spawning step l first,
followed by the execution described by t. A tree of the form S l ts t models
an execution that performs the spawning step l first, followed
by the execution of the spawned process described by ts and
the remaining execution of the spawning process described by t.
A node of the form L pw indicates that the process makes no
more steps and that its final configuration is pw. The annotation
of the reached configuration at the leafs of the execution tree
increases expressiveness of regular sets of execution trees, e.g.
one can characterize execution trees that reach certain control
states. The distinction between spawned and spawning tree at

l1

l2

l3l4

Fig. 1: Partial
Ordering of
Steps

S-nodes allows for keeping track of which steps belong to which process, e.g.
when tracking the acquired locks of a process.

The relation =⇒M⊆ PΓ ∗ × TM × ConfM characterizes the execution trees
starting at a single process. It is defined as the least solution of the following
constraints:

[leaf] qw
L qw
=⇒M qw

[nospawn] qγr N l t=⇒M c′ if qγ
l
↪→ q′w ∈ ∆N ∧ q′wr

t=⇒M c′

[spawn] qγr
S l ts t=⇒ M csc

′ if qγ
l
↪→ q′w B qsws ∈ ∆S

∧ qsws
ts=⇒M cs ∧ q′wr

t=⇒M c′

An execution that starts at a configuration with multiple processes is modeled
as a list of execution trees (called an execution hedge), with one tree per process.
These executions are defined by overloading =⇒M with:

c
t1...tn=⇒ M c′ :⇔ ∃c′1 . . . c′n ∈ ConfM , p1 . . . pn ∈ P, w1 . . . wn ∈ Γ ∗.

c = p1w1 . . . pnwn ∧ c′ = c′1 . . . c
′
n

∧ p1w1
t1=⇒M c′1 ∧ . . . ∧ pnwn

tn=⇒M c′n

Intuitively, c h=⇒M c′ means that there is an execution from configuration c to
configuration c′ with execution hedge h. Figure 2 shows an execution tree t satis-
fying p1γ

t=⇒M p2γ2γ3p1γ2 for the DPN from Example 1.
The execution tree of the spawned process is always drawn
as the left successor of the S-node, and the corresponding
edge is labeled with ,,spawn”. Hence, the rightmost steps
in an execution tree corresponds to the execution of the
process at the root of the tree.
In order to relate the tree semantics to the interleaving se-
mantics, we define a scheduler that maps execution hedges
to compatible sequences of rules. From the ordering point
of view, the scheduler maps the steps ordered by the execu-

N l1

S l2

N l3N l4

L p2γ2γ3 L p1γ2

spawn

Fig. 2: Execution
Tree

6 Peter Lammich, Markus Müller-Olm, and Alexander Wenner

tion hedge to the set of its topological sorts. As hedges are acyclic, there always
exists a topological sort. The scheduler is modeled as a labeled transition system
over execution hedges. A step replaces a root node in the hedge by its successors.
Formally, the scheduler ///o/o ⊆ T ∗M × L × T ∗M is the least relation satisfying the
following constraints:

[nospawn] h1(N l t)h2
l ///o/o h1th2

[spawn] h1(S l ts t)h2
l ///o/o h1tsth2

We call sched(h) := {l̄ ∈ L∗ | ∃h′ ∈ (L PΓ ∗)∗. h l̄ ///o/o ∗h′} the set of schedules of
a hedge h ∈ T ∗M , where (L PΓ ∗)∗ is the set of all hedges that solely consist of
L-nodes (i.e. have no more rules to execute), and ///o/o ∗ is the reflexive, transitive
closure of the scheduler ///o/o . It can be shown by straightforward induction that
every execution of the interleaving semantics is a schedule of an execution of the
tree semantics and vice versa:

Theorem 2 (Thm. sched-correct in Sec. 4 of [9]). Let c, c′ ∈ ConfM and

l̄ ∈ L∗, then c
l̄→∗Mc′ if and only if there is an execution hedge h ∈ T ∗M with

c
h=⇒M c′ and l̄ ∈ sched(h).

Predecessor Sets. Given a set C ′ ⊆ ConfM of configurations, the set preM (C ′) :=
{c | ∃c′ ∈ C ′, l ∈ L. c l→M c′} is the set of immediate predecessors of C ′, i.e. the
set of configurations that can make a transition to a c′ ∈ C ′ in exactly one step.

Similarly, pre∗M (C ′) := {c | ∃c′ ∈ C ′, l̄ ∈ L∗. c l̄→∗Mc′} is the set of predecessors
of C ′, i.e. the set of configurations that can make a transition to a c′ ∈ C ′ by
executing an arbitrary number of steps.

An important result on DPNs is that preM and pre∗M preserve regularity,
i.e. if C ′ is a regular set then preM (C ′) and pre∗M (C ′) are regular as well, and
given an automaton accepting C ′, automata accepting preM (C ′) and pre∗M (C ′),
respectively, can be computed in polynomial time [2]. This result is the key
to analysis of DPNs, because it allows to cascade preM and pre∗M computa-
tions and pose regular constraints on the intermediate configurations. For ex-
ample, liveness of a global variable x at a control location u can be decided
[2]: Let M be the DPN that models the program, M |read be the DPN M re-
stricted to those rules that correspond to program statements that read x, and
M |nowrite be the DPN M restricted to those rules that do not write x. More-
over, let at(u) ⊆ ConfM be the (regular) set of configurations where some
process is at control location2 u. Finally, let c0 ∈ ConfM be the initial con-
figuration of the system. The variable x is live at control node u if and only
if: c0 ∈ pre∗M (at(u) ∩ pre∗M |nowrite

(preM |read(ConfM))). In this fashion, all forward
and backward kill/gen-bitvector problems can be decided in polynomial time.
Other important analyses that can be done by predecessor computations are

2 Usually, a control location is identified with the symbol at the top of the stack, such
that at(u) = (PΓ ∗)∗PuΓ ∗(PΓ ∗)∗.

pre∗ for DPNs with Tree-Regular Constraints 7

context-bounded model-checking of DPNs with shared memory [1], and check-
ing of reachability properties (e.g. data races).

Hedge-Constrained Predecessor Sets. In the introduction we indicated that reach-
ability w.r.t. regular constraints on the interleaved executions is undecidable.
Now, we constrain the execution hedges: For a set of configurations C ′ ⊆ ConfM

and a set of execution hedges H ⊆ T ∗M , we define the H-constrained predecessor

set of C ′ as: preM [H](C ′) := {c ∈ ConfM | ∃c′ ∈ C ′, h ∈ H. c
h=⇒M c′}, i.e.

those configurations that can make a transition with an execution hedge h ∈ H
to a configuration c′ ∈ C ′. We show that if H is (tree-)regular and C ′ is reg-
ular, then preM [H](C ′) is regular as well, and given a hedge automaton for H
and an automaton for C ′, an automaton for preM [H](C ′) can be computed in
polynomial time.

Hedge Automata. In order to characterize regular sets of execution hedges, we
define a type of hedge automata [3] adjusted to acceptance of execution hedges:
A hedge automaton H = (S,A0, D) consists of a finite set of states S, an initial
automaton A0 with L(A0) ⊆ S∗, and a set D = DL ∪ DN ∪ DS of transition
rules. Rules s ↪→ A ∈ DL consist of a state s ∈ S and an automaton A that
accepts process configurations, i.e. L(A) ⊆ PΓ ∗. These rules are used to label

L-nodes with a state. Rules s
l
↪→ s′ ∈ DN with s, s′ ∈ S and l ∈ L are used to

label N-nodes and rules s
l
↪→ s′ B ss ∈ DS with s, ss, s

′ ∈ S and l ∈ L are used
to label S-nodes3.

A hedge h = t1 . . . tn ∈ T ∗M is accepted iff the trees t1, . . . , tn can be labeled
bottom-up according to the rules in D such that the sequence of states s1, . . . , sn

that label the roots of t1, . . . , tn is accepted by the initial automaton A0. For-
mally, we define the relation labH ⊆ S × TM as the least relation satisfying the
following rules:

[leaf] labH(s, L pw) if s ↪→ A ∈ DL ∧ pw ∈ L(A)

[nospawn] labH(s,N l t) if s
l
↪→ s′ ∈ DN ∧ labH(s′, t)

[spawn] labH(s,S l ts t) if s
l
↪→ s′ B ss ∈ DS ∧ labH(ss, ts) ∧ labH(s′, t)

labH(s, t) means that the root of the tree t can be labeled by the state s.
We overload labH ⊆

⋃
n∈N S

n × Tn
M for hedges by: labH(s1 . . . sn, t1 . . . tn) :⇔

labH(s1, t1)∧ . . .∧ labH(sn, tn) and define the language of the hedge automaton
H by L(H) := {h | ∃s̄ ∈ L(A0). labH(s̄, h)}.

Assume we have a DPN M = (P, Γ, L,∆), a regular set of configurations C ′ ⊆
ConfM , and a hedge automatonH that accepts a set of hedges L(H) ⊆ T ∗M . In or-
der to compute preM [L(H)](C ′), we define a new DPN M×H = (P×S, Γ, L,∆′),
a new regular set of configurations C ′×H ⊆ ConfM×H, and an operator projH :
2ConfM×H → 2ConfM , such that preM [L(H)](C ′) = projH(pre∗M×H(C ′ ×H)). The

3 A more standard notation of the rules would beA() ↪→ s, l(s′) ↪→ s, and l(ss, s
′) ↪→ s.

However, our notation emphasizes the relation to DPN-rules.

8 Peter Lammich, Markus Müller-Olm, and Alexander Wenner

constructions of M ×H and C ′×H, as well as the operator projH, are effective,
such that we can compute preM [L(H)](C ′) (for a given automaton for C ′) using
the saturation algorithm for pre∗ presented in [2]. The idea of this construction
is to encode the states of the hedge automaton into the states of the DPN, and
simulate the transitions of the hedge automaton within the transitions of the
DPN. The new set of configurations C ′ ×H reflects the application of the DL-
rules of the hedge automaton, and the projH-operation removes configurations
not compatible with the initial automaton A0, and projects the control states of
M ×H back to states of M . The rules ∆′ = ∆′N ∪∆′S of the DPN M ×H are
defined as follows:

[nospawn] (p, s)γ
l
↪→ (p′, s′)w ∈ ∆′N iff pγ

l
↪→ p′w ∈ ∆N

∧ s
l
↪→ s′ ∈ DN

[spawn] (p, s)γ
l
↪→ (p′, s′)w B (ps, ss)ws ∈ ∆′S iff pγ

l
↪→ p′w B psws ∈ ∆S

∧ s
l
↪→ s′ B ss ∈ DS

Notice that this definition generates O(|∆|D) rules and can be implemented in
time O(|∆|D). The new set of configurations C ′ ×H is defined as:

C ′ ×H := {(p1, s1)w1 . . . (pn, sn)wn | p1w1 . . . pnwn ∈ C ′
∧ ∀1 ≤ i ≤ n. ∃A. si ↪→ A ∈ DL ∧ piwi ∈ L(A)}

Finally, we define the projection operator as:

projH(C×) := {p1w1 . . . pnwn | ∃s1, . . . , sn ∈ S. s1 . . . sn ∈ L(A0)
∧ (p1, s1)w1 . . . (pn, sn)wn ∈ C×}

We can show that preM [L(H)](C ′) = projH(pre∗M×H(C ′×H)) (Theorem xdpn-
correct in Section 8 of [9]). Moreover, we can write C ′ ×H and projH(C×) using
only operations that preserve regularity and are computable in polynomial time
for given automata (Theorem projH-effective in Section 8 of [9]). With the poly-
nomial time algorithm for computing pre∗M [2] we get the following theorem:

Theorem 3 (Thm. prehc-effective4 in Sec. 8 of [9]). Given a DPN M , a
hedge automaton H and a regular set of configurations C ′, the set preM [L(H)](C ′)
is regular and given an automaton for C ′, an automaton for preM [L(H)](C ′) can
be computed in polynomial time.

3 Lock-Sensitive DPNs

Locks are an important synchronization mechanism to guarantee mutual exclu-
sion, e.g. to protect accesses to shared resources. Processes may acquire and
4 This Theorem follows from Theorem prehc-effective in [9], some well-known results

about tree-automata and the results from [2]. However, the tree-automata results
and the results from [2] are not formally proven in [9].

pre∗ for DPNs with Tree-Regular Constraints 9

release locks, but, at any time, each lock may be owned by at most one process.
If a process wants to acquire a lock currently owned by another process, it blocks
until the lock is released. We now extend DPNs by a finite number of locks and
assume that they are acquired and released in a well-nested fashion, i.e. a pro-
cess must release locks in the opposite order of acquisition. We assume locks to
be non-reentrant, that is a process must not re-acquire a lock that it already
owns. Note that we can simulate re-entrant locks with non-reentrant ones if the
acquisition and release of locks is aligned with procedure calls [6] (like monitors
and Java synchronized blocks).

Model Definition. Let L be a finite set of locks. We label the rules by their
actions w.r.t. the locks in L, i.e. the labels5 are L ::= none | acq L | rel L. As
mentioned, we assume that locks are accessed in a well-nested and non-reentrant
fashion. In general there may exist executions from (unreachable) configurations
that violate the well-nestedness or non-reentrance assumptions. Hence, we fix
a start configuration p0γ0 ∈ PΓ , and make these assumptions only for execu-
tions from the start configuration. Moreover, we assume that, initially, a process
does not own any locks, i.e. no execution from the start configuration or of a
spawned process releases a lock that it has not acquired before. Note that it is
straightforward to decide whether a given DPN satisfies our assumptions.

In order to simplify the presentation, we assume that the set of currently
acquired locks is visible in the control state of a process, i.e. we assume that
there is a function locks : P → 2L that maps control states to the set of allocated
locks. This function must satisfy the constraints locks(p0) = ∅ and

pγ
l
↪→ p′w[B psws] ∈ ∆ ⇒ locks(p) l � ,2 locks(p′) [∧ locks(ps) = ∅]

where � ,2⊆ 2L × L× 2L describes valid transitions on the set of acquired locks:

[none] X none � ,2X ′ :⇔ X = X ′

[acquire] X acq x � ,2X ′ :⇔ x /∈ X ∧X ′ = {x} ∪X
[release] X rel x � ,2X ′ :⇔ x /∈ X ′ ∧X = {x} ∪X ′

Note that DPNs where locks are not visible in the control state can be trans-
formed to DPNs with a locks-function, involving a blowup that is, in the worst
case, exponential in the maximum nesting depth of locks, which is typically small.
We overload the locks-function to configurations by: locks(p1w1 . . . pnwn) :=
locks(p1) ∪ . . . ∪ locks(pn). Also note that for an execution hedge h, all con-
figurations c where h can start (i.e. ∃c′. c h=⇒M c′) hold the same set of locks.
This set can be derived from the annotation of the final configurations at the
leafs and the lock operations at the inner nodes. For an execution hedge h, we
overload locks(h) to be the set of locks held by any configuration where h starts,
i.e. we have c h=⇒M c′ ⇒ locks(c) = locks(h).
5 Usually, one wants to make visible additional information in the labels. This could

be done by using pairs of lock-actions and additional information as labels. However,
we omit such a definition here for clarity.

10 Peter Lammich, Markus Müller-Olm, and Alexander Wenner

The lock-sensitive step relation is defined as c l→ls,M c′ :⇔ c
l→M c′ ∧

locks(c) l � ,2 locks(c′). As usual, we write→∗ls,M for its reflexive, transitive closure.
The extension of the tree-based semantics to locks can be described as a

restriction of the scheduler. The =⇒M -relation, that relates configurations to
execution hedges, does not change. The original scheduler maps an execution
hedge to all its topological sorts. However, we cannot model the set of lock-
sensitive schedules as topological sorts. For example, Consider two processes
that execute the steps 1:acq x, 2:rel x and 3: acq x, 4 : rel x for some lock
x. When they are executed in parallel, the possible schedules are 1, 2, 3, 4 and
3, 4, 1, 2. However, if these would be topological sorts of some ordering, so would
be the schedule 1, 3, 2, 4, which is invalid.

The lock-sensitive scheduler ///o/o
ls⊆ T ∗M × L × T ∗M is a restriction of the

original scheduler to those schedules that respect the semantics of locks:

h l ///o/o
ls h
′ :⇔ h l ///o/o h′ ∧ locks(h) l � ,2 locks(h′)

The set of lock-sensitive schedules of a hedge h ∈ T ∗M is defined as: schedls(h) :=
{l̄ | ∃h′ ∈ (L PΓ ∗)∗. h l̄ ///o/o ∗

lsh
′}, where ///o/o ∗

ls is the reflexive, transitive closure of
the lock-sensitive scheduler ///o/o

ls. It is again straightforward to show that the
lock-sensitive scheduler matches the interleaving semantics:

Theorem 4 (Thm. lsched-correct in Sec. 9 of [9]). Let c, c′ ∈ ConfM and

l̄ ∈ L∗, then c
l̄→∗ls,Mc′ if and only if there exists an execution hedge h ∈ T ∗M with

c
h=⇒M c′ and l̄ ∈ schedls(h).

Acquisition Structures. As shown above, the lock-sensitive schedules cannot be
characterized as the set of topological sorts of some order. However, in order to
compute lock-sensitive predecessor sets, we do not need to consider every single
schedule of an execution hedge, but just the existence of a schedule. We now
introduce a finite state abstraction of execution hedges from which we can de-
cide whether a lock sensitive schedule exists or not. Our approach generalizes
acquisition histories [5, 4].
In order to sketch the basic idea,
we have to introduce some word-
ing: An execution hedge that
starts at a reachable configu-
ration is called reachable. Note
that, due to the well-nestedness
and non-reentrance assumptions,
reachable execution hedges also
use locks in a well-nested and
non-reentrant fashion. Given a
(reachable) execution hedge, an
acquisition of a lock x without a
matching release is called a final
acquisition of x. A matching re-

1: N rel x

2: S acq x

3: N acq x

4: N rel x

L pγ

L p′γ′
spawn

(a)

1: N acq x

2: N acq y

3: N rel y

L pγ

4: N acq y

5: N acq x

6: N rel x

L p′γ′

(b)

Fig. 3: Executions With Locks

pre∗ for DPNs with Tree-Regular Constraints 11

lease means, that the same process releases the lock, i.e. that there is a release
of x on the rightmost path starting at the acquisition node. Symmetrically, a
release of x without a matching acquisition is called an initial release. Acqui-
sitions and releases that are not final acquisitions or initial releases are called
usages. For example consider the execution tree from Figure 3a: Node 1 is an
initial release of the lock x, Node 2 is a final acquisition of x, and Nodes 3 and
4 are usages of x.

Given a reachable execution hedge h, we define its release graph gr(h) ⊆ L×L
and its acquisition graph ga(h) ⊆ L × L: gr(h) contains an edge x → x′, iff h
contains an initial release of x′ and the ordering induced by h enforces a usage of
x to be scheduled before the initial release of x′. Symmetrically, ga(h) contains
an edge x → x′ iff h contains a final acquisition of x that has to be scheduled
before a usage of x′. We now identify some necessary criteria for a reachable
execution hedge h to have a lock-sensitive schedule:

1. All locks that are used or finally acquired in h are either also initially released
in h or are not contained in the initial set of locks locks(h).

2. h does not contain multiple final acquisitions of the same lock.
3. The acquisition graph and the release graph of h are acyclic.

To justify Criterion 1, we observe that all locks in locks(h) that are not
initially released remain allocated throughout the entire execution. Hence, no
acquisition (neither a usage nor a final acquisition) of such a lock can be sched-
uled. The intuition behind Criterion 2 is, that a finally acquired lock will not be
freed for the rest of the execution. Hence, if there are multiple final acquisitions
of the same lock, only one of them can be scheduled. Note that we do not check
the symmetric condition for initial releases, as reachable execution hedges can-
not contain multiple initial releases of the same lock. To illustrate Criterion 3,
assume that the acquisition graph ga(h) has a cycle x1 → x2 → . . . → xn = x1

with n > 1. Then, h has no lock sensitive schedule: From the definition of the
acquisition graph, we see that, first, each lock xi, i < n has a final acquisition
in h (because it has an outgoing edge in ga(h)) and, second, that this final ac-
quisition of xi precedes a usage of xi+1 in each schedule of h. In a lock sensitive
schedule, this usage of xi+1 must preceed the final acquisition of xi+1. Because
of the cycle x1 → . . . → xn = x1 this would imply that the final acquisition of
x1 precedes itself, which is a contradiction. The argumentation for a cycle in the
release graph is similar. For example, the execution tree depicted in Figure 3a
has no schedule, as the usage of x (Nodes 3 and 4) cannot be scheduled before
the final acquisition of x (Node 2). Its acquisition graph {x → x} is trivially
cyclic. The execution hedge from Figure 3b also has no schedule: We have to
schedule the final acquisition of x (Node 1) or y (Node 4) as first step. How-
ever, if we schedule Node 1 first, we will not be able to schedule the usage of
x (Nodes 5 and 6) and, symmetrically, if we schedule Node 4 first, we will not
be able to schedule the usage of y (Nodes 2 and 3). The acquisition graph is
{x→ y, y → x}, which has the cycle x→ y → x.

An acquisition structure is a finite domain abstraction of an execution hedge
that can be computed inductively over the execution hedge and contains enough

12 Peter Lammich, Markus Müller-Olm, and Alexander Wenner

information to decide the criteria 1-3 depicted above. An acquisition structure
is either the special symbol ⊥ or a five-tuple (r, u, a, gr, ga), where r ⊆ L is the
set of initially released locks, u ⊆ L is the set of used locks, and a ⊆ L is the set
of finally acquired locks. gr, ga ⊆ L × L are the acquisition and release graphs.

as(L pw) := (∅, ∅, ∅, ∅, ∅)
as(N l t) := upd(l, as(t))

as(S l ts t) := upd(l, as(ts) ‖ as(t))

as(t1 . . . tn) := as(t1) ‖ . . . ‖ as(tn)

upd(none, s) := s

upd(n,⊥) := ⊥
upd(acq x, (r, u, a, gr, ga)) := if x ∈ r then

(r \ {x}, u ∪ {x}, a,
(gr \ (L× {x})) ∪ ({x} × r \ {x}), ga)

else if x /∈ a then

(r, u, a ∪ {x}, gr, ga ∪ ({x} × u))

else ⊥
upd(rel x, (r, u, a, gr, ga)) := (r ∪ {x}, u, a, gr, ga)

‖ ⊥ := ⊥
⊥ ‖ := ⊥
(r, u, a, gr, ga) ‖ (r′, u′, a′, g′r, g

′
a) :=

if r ∩ r′ = ∅ ∧ a ∩ a′ = ∅ then

(r ∪ r′, u ∪ u′, a ∪ a′, gr ∪ g′r, ga ∪ g′a)

else ⊥

Fig. 4: Definition of acquisition structures

We define AS to be the set of all
acquisition structures.
Acquisition structures can be
computed bottom-up along the
structure of an execution hedge.
Figure 4 shows the computation
in a pseudo-functional language.
The upd(l,)-function describes
the effect of prepending a node
labeled with l to the acquisition
structure. The ‖-operator com-
poses the acquisition structures
of two processes that are exe-
cuted in parallel. An acquisition
structure (r, u, a, gr, ga) ∈ AS is
called consistent w.r.t. a set of
initial locks X ⊆ L, if and only
if (X \r)∩ (u∪a) = ∅ and both,
gr and ga, are acyclic. This mod-
els Criteria 1 and 3. The acqui-
sition structure ⊥ is not consis-
tent w.r.t. any set of locks. This
models Criterion 2, as the acqui-

sition structure becomes ⊥ if it is violated. We define cons(X) to be the set of
all acquisition histories that are consistent w.r.t. X. We can show the following
theorem:

Theorem 5 (Thm. acqh-correct in Sec. 11 of [9]). For any reachable exe-
cution hedge h, we have schedls(h) 6= ∅ if and only if as(h) ∈ cons(locks(h)).

The proof of the⇒-direction follows the intuition described above. For the proof
of the ⇐-direction, a valid schedule of an execution hedge with a consistent
acquisition history is constructed inductively. For the details we refer to [9].
Note that Theorem 5 implies that the criteria 1-3 are not only necessary, but
also sufficient for existence of a lock-sensitive schedule of an execution hedge.

Encoding Acquisition Structures into Hedge Automata. In this section, we show
that the set of all execution hedges that have a lock-sensitive schedule is regular.
For this purpose, we design a hedge automaton Hls that computes locks(h) and
as(h) within its states, and checks consistency by its initial automaton. The
Definition ofHls is shown in Figure 5. The rules label each tree t with locks(t) and
as(t). The initial automaton A0 computes the locks and the acquisition structure
of the hedge. A hedge h is accepted iff as(h) is consistent w.r.t. locks(h). The

pre∗ for DPNs with Tree-Regular Constraints 13

rules of the hedge-automaton use the function eff−1 : L×2L → 2L for bottom-up
computation of locks(h). It describes the reverse effect of a lock operation. With
the definitions above and Theorem 5 we get the following theorem:

Theorem 6 (Thm. reachable-hls-char in Sec. 14 of [9]). For any reachable
configuration c and execution hedge h that starts at c (i.e. ∃c′. c h=⇒M c′), we
have schedls(h) 6= ∅ if and only if h ∈ L(Hls).

Cascaded, lock-sensitive predecessor sets can now be computed using the
lock-insensitive, hedge-constrained predecessor computation presented in the
first part of this paper: A lock-sensitive predecessor set is computed by preM [Hls∩
Haddc], where Haddc may contain additional constraints on the execution hedge,
like restrictions of the rule labels or the number of applied rules (e.g. to compute
immediate predecessor sets). Note that Theorem 6 is only applicable for reach-
able configurations. Hence, we have to ensure that we only derive information

Hls := (2L × AS,A0, DL ∪DN ∪DS)

A0 := (2L × AS, q0, F0, δ0)

q0 := (∅, (∅, ∅, ∅, ∅, ∅))
F0 := {(X, s) | s ∈ cons(X)}

δ0 := {(X, s) (X′,s′)−→ (X ∪X ′, s ‖ s′) |
X,X ′ ⊆ L ∧ s, s′ ∈ AS}

DL := {(locks(p), (∅, ∅, ∅, ∅, ∅)) ↪→ {p}Γ ∗ | p ∈ P}
DN := {(X, upd(l, s))

l
↪→ (eff−1(l,X), s) |

X ⊆ L, s ∈ AS, l ∈ L}
DS := {(X, upd(l, ss ‖ s))

l
↪→ (eff−1(l,X), s) B (∅, ss) |

X ⊆ L, s, ss ∈ AS, l ∈ L}

eff−1(none, X) := X

eff−1(acq x,X) := X ∪ {x}
eff−1(rel x,X) := X \ {x}

Fig. 5: Definition of Hls.

from reachable configura-
tions during cascaded pre-
decessor set computations.
However, we observe that
most applications of cas-
caded predecessor compu-
tations are used to query
whether the start config-
uration p0γ0 is contained
in the outermost predeces-
sor set, i.e. they have the
shape p0γ0 ∈ preM [Hls ∩
](. . . preM [Hls ∩]() . . .).

By definition, only reach-
able configurations can be
reached from the start con-
figuration. Thus, the result
of such a query depends

only on reachable configurations in the intermediate predecessor sets, and, using
Theorem 6, we can show that the result is sound and precise w.r.t. the lock-
sensitive semantics.

Complexity. The problem of deciding whether the initial configuration is con-
tained in the lock-sensitive predecessor set of some regular set of configurations
is NP-hard, even if we store the set of allocated locks in the control states of
the processes and have no procedures at all. This can be shown by a reduction
from the boolean satisfiability problem (SAT). The reduction uses the same idea
as [10], but uses multiple processes instead of recursive procedures. Hence, we
cannot expect a polynomial time algorithm. And indeed, the number of states
of the automaton Hls is exponential in the number of locks.

14 Peter Lammich, Markus Müller-Olm, and Alexander Wenner

4 Conclusion

We have presented a tree-based semantics for DPNs, where executions are mod-
eled as hedges, which reflect the ordering of steps of a single process and the
causality due to process creation, but enforce no ordering between steps of pro-
cesses running in parallel. We have shown how to efficiently compute predecessor
sets of regular sets of configurations with tree-regular constraints on the exe-
cution hedges. Our algorithm encodes a hedge-automaton into the DPN, thus
reducing the problem to unconstrained predecessor set computation, for which
a polynomial time algorithm exists. In the second part of this paper, we have
presented a generalization of acquisition histories to DPNs, and used it to con-
struct tree-regular constraints for lock-sensitive executions. With the techniques
from the first part of this paper, we obtained an algorithm to precisely compute
cascaded, lock-sensitive predecessor sets.

As many analyses of DPNs are based on the computation of predecessor sets,
it is now straightforward to make them lock-sensitive by substituting the origi-
nal, lock-insensitive predecessor computation by our new, lock-sensitive one. For
example, we can construct lock-sensitive bitvector analyses, and extend context-
bounded analysis of DPNs with shared memory [1], as discussed in the intro-
duction.

Future Research. A main direction of future research is implementation and ex-
perimental evaluation of the techniques presented in this paper. Possible starting
points may be [8] and [7]. In [8], Java programs are abstracted to an intermediate
model based on pushdown systems without process creation, and then analyzed
using a semi-decision procedure. The techniques in this paper provide a decision
procedure for an intermediate model that is more suited to the abstraction of
Java programs, as thread creation can be abstracted more precisely. In a joint
work of one of the authors [7], an acquisition history based decision procedure
for the original intermediate model of [8], that does not support process creation,
has been constructed. It uses many optimizations to increase the efficiency of
the implementation. The most notable optimization is that the consistency check
is not performed after each intermediate computation of a cascaded computa-
tion (which is likely to exponentially blow up the size of the automaton), but
is delayed until all intermediate computations are completed. For this purpose,
the analysis works with vectors of so called extended acquisition histories. More-
over, instead of encoding information into the control states, weighted pushdown
systems [12] are used. Similar optimizations may apply to our technique, using
vectors of acquisition structures and weighted DPNs [13], such that there is
hope that an implementation might be practical despite of the NP-hardness of
the problem.

Acknowledgment. We thank Ahmed Bouajjani, Nicholas Kidd, Thomas Reps,
and Tayssir Touili for helpful and inspiring discussions on analysis of concurrent
pushdown systems with and without process creation.

pre∗ for DPNs with Tree-Regular Constraints 15

References

1. A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of mul-
tithreaded software with asynchronous communication. In Proc. of FSTTCS’05,
volume 3821 of LNCS, pages 348–359. Springer, 2005.

2. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic
networks of pushdown systems. In Proc. of CONCUR’05, volume 3653 of LNCS.
Springer, 2005.

3. A. Bruggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets. Research report, 2001.

4. V. Kahlon and A. Gupta. An automata-theoretic approach for model checking
threads for LTL properties. In Proc. of LICS 2006, pages 101–110. IEEE Computer
Society, 2006.

5. V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating
via locks. In Proc. of CAV 2005, volume 3576 of LNCS. Springer, 2005.

6. N. Kidd, A. Lal, and T. Reps. Language strength reduction. In Proc. of SAS’08,
volume 5079 of LNCS. Springer, 2008.

7. N. Kidd, P. Lammich, T. Touili, and T. Reps. A decision procedure for detect-
ing atomicity violations for communicating processes with locks. Submitted for
publication.

8. N. Kidd, T. Reps, J. Dolby, and M. Vaziri. Finding concurrency-related bugs using
random isolation. In Proc. of VMCAI’09, volume 5403 of LNCS, 2009.

9. P. Lammich. Isabelle formalization of hedge-constrained pre* and DPNs with locks.
Available from http://cs.uni-muenster.de/sev/publications/. Technical Re-
port.

10. P. Lammich and M. Müller-Olm. Conflict analysis of programs with procedures,
dynamic thread creation, and monitors. In Proc. of SAS’08, volume 5079 of LNCS.
Springer, 2008.

11. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

12. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program.,
58(1-2):206–263, 2005.

13. A. Wenner. Optimale Analyse gewichteter dynamischer Push-Down Netzwerke.
Master’s thesis, University of Münster, August 2008.

