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Abstract. We introduce two abstract models for multithreaded prograased

on dynamic networks of pushdown systems. We address théepralf symbolic

reachability analysis for these models. More preciselycamgsider the problem
of computing effective representations of their reacligbslets using finite-state
automata. We show that, while forward reachability setsnateregular in gen-
eral, backward reachability sets starting from regulas sétconfigurations are
always regular. We provide algorithms for computing baakir@achability sets
using word/tree automata, and show how these algorithmbeapplied for flow

analysis of multithreaded programs.

1 Introduction

Multithreaded programs are an important class of programehich parallelism is
used routinely in practice. Parallel programming in geher&nown to be difficult
and error prone, and multithreaded programs are no execepittterefore, the design
of methods and techniques for automatic analysis of sucgranas is an important
and a quite challenging issue. For that, we need to definedlommodels which are
adequate for modelling multithreaded programs, and foclhiis possible to construct
automatic analysis algorithms.

In recent related work, complete analysis algorithms fati@et classes of parallel
programs have been studied by several researchers. Mayqtablishes a number of
decidability and undecidability results for process aisss the so-called PRS (process
rewrite system) hierarchy. PRS are able to model sequeasialell as parallel phe-
nomena. In fact, they can be seen as combinations of pushsimstems and Petri nets
(defined in a term rewriting setting using prefix and multisetrite rules). Following
the automata-based approach for the symbolic verificafipuashdown systems [2, 11],
Lugiez and Schnoebelen [13] show how to use tree automatadchability analysis
of PA processes [1], a particularly well-known class in tHeSPhierarchy. Their pa-
per has inspired further work that applies tree automatanigaes to analysis of more
expressive models [6,7, 3,4, 21]. Another line of reseamhegalizes fixpoint-based
techniques as common in flow analysis to analysis of similadefs of parallel pro-
grams [20, 15, 16]. Both approaches can be used to solvecttvgroblems, a certain
type of simple but important data-flow-analysis probleros ffiow graph systems with
parallel calls of procedures, or, equivalently, parbgganénd-blocks interprocedurally
[9, 10, 20]. While [9, 10] reduce the problem to reachabititalysis of PA-processes,
[20] uses fixpoint-based techniques.

Unfortunately, these results dmt cover interprocedural analysis of multithreaded
programs because commands that start new threads canqobdelg be modelled by
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parallel calls. In a multithreaded program such a commapitdyly returns immedi-
ately (see, e.g., the JAVA or POSIX thread API). Thereforeftither of a new thread
can pursue its execution concurrently to its son and can &rarinate or return to its
caller while the son is still alive. In contrast, a parallalleeturns only when and if all
its component processes have terminated, which is a fundathedifferent behavior.
Indeed we show in Sect. 2 that in presence of proceduresitime#éided programs can
have trace languages different from that of any program pattallel calls.

The goal of this paper is to adapt the automata-based agproantioned above
to interprocedural (reachability) analysis of multitrded programs. For this purpose
we propose two models of multithreaded programs, show hgvettorm reachability
analysis for them with automata-theoretic constructi@mgl discuss their utility for
modelling and analysing multithreaded and other classpamafllel programs.

In Sect. 2 we introducBynamic Pushdown Networks (DPN=g a basic model of
multithreaded programs. Intuitively, a DPN is a network eépdown processes that run
independently in parallel. Each process can create new meobthe network as a side
effect of a pushdown transition. DPNs thus model a netwotthieifads each of which
can perform basic actions, call (recursively) proceduaedspawnnew processes. We
show that while forward reachability of DPNs does not preseegularity of configu-
ration sets in general, it still preserves context-fresii@sct. 4). Backward reachability
in contrast preserves regularity and we show how to competbackward reachability
set of a regular set of configurations by means of a saturatgorithm in polynomial
time (Sect. 4). We also show that DPN allow us to solve bitwegtoblems interproce-
durally for multithreaded programs (Sect. 3), contraryrevpusly used models in the
literature such as PA processes (Sect. 2).

We extend DPNs t€onstrained DPNs (CDPNj Sect. 5, a model that combines
(indeed even extends) the modelling power of both DPNs andalé even the so-
called PAD [14]). The new idea is that enabledness of a tiiansfor a process can
be made dependent orncanstraintwhich is a regular pattern among the sequence of
control states of its sons. We require constraints tathblein the sense that further
evolution of the sons cannot invalidate a constraint. Wewstiat otherwise we lose
the property that backward reachability preserves reguldiransition rules with sta-
ble constraints increase the expressive power consideoafel DPNs. In particular
they allow us to model, in addition to thread creation anccpdure calls, also paral-
lel calls and various types of join commands among otheigthiit also allows us to
return information back from procedures called in parabieheir caller which cannot
be handled in PA and not even in PAD. Constrained DPNs infrerit DPNs that for-
ward reachability does not preserve regularity. Therefemeconsider here backward
reachability only. We show that the set of configurations taa reach a given regular
set of configurations of a CDPN can again be computed by aaatnralgorithm. As
configurations of CDPNs are given by unbounded width tretreerahan by words as
in the DPN case—the tree structure captures the fatheredationship—we resort to
hedge automata here [8]. The construction is nontrivial i ¢lstification uses in a
subtle manner the assumption about the stability of thetcainss in the system defini-
tion. While the overall complexity of this procedure is erpatial—we indeed prove a
PSPACE lower bound—it is exponential only in the number Giédént constraints used
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in the rules of the given CDPN, and just polynomial in the othmblem parameters.
Therefore, if the number of different constraints is bouhdee obtain a polynomial-

time analysis algorithm. This in particular holds if we juspdel (in addition to spawn

operations), parallel calls, a fixed selection of join comud® or a combination of these.
Due to lack of space, proofs are omitted. They can be found]in [

2 Dynamic Pushdown Networks

A Dynamic Pushdown NetworfOPN) is a tupleM = (Act P,[,A), whereAct is a
finite set of visibleactions P is a finite set ofcontrol statesr is a finite set ofstack
symboldisjoint fromP, andA is a finite set of transition rules of the following forms:
either (a)pyi> piwi, or (b) py(i piwi > powo, Wherep, p1, p2 € P,ac Act yeT,
andwi,w, € '*. A DPN can be seen as a collection of identical sequentialgages
running in parallel, each of them being able to (1) performsilown operations and to
(2) create processes in the network. Synchronization iglfmwed between processes.

A configuration of a DPNM (also calledM-configuration) is a word over the alpha-
bet> = PUT starting with a symbol if®. An M-configuration can be seen as a sequence
of (sub)words irPl* each of them corresponding to the configuration of one of the p
cesses running in parallel in the network. Gsinfy, be the set of alM-configurations.

For everya € Act, we define-2>y to be the smallest relation i@onfy, x Confy,
s.t.Yu,v € Confy,, u-2y viff (1) there is a rulepyfi piwi in A s.t.u= uipyu and
V = U p1Wilp, or (2) there is a rulepyfi piw1 > paw2 in A s.t.u = uppyup andv =
U1 PoWa P1WiUo. We writeu — v if there existsa € Acts.t.u—2sy v.

The semantics above says that rules of the form (a) correlspatisely to push-
down operations (manipulation of the top of the stack) witiah be applied anywhere
in the configuration (i.e., by any of the processes in the adgvif a process is at
control statep and hasy as topmost stack symbol, then it can move to control giate
and replacey by wy at the top of its stack. Rules of the form (b) allow in additibe
creation of new processes: a process with control si@ed topmost stack symbwl
can (1) move to statp; and modify its stack by replacingwith wy, and moreover, (2)
create (to its left) a process which starts its executiohatritial configuratiorpaws,.

Given a configuratiore, the set of immediate predecessors (resp. successors) of
cis prey(c) = {c € C : d—mc} (resp.posty(c) = {c' € C : c—mC'}). These no-
tations can be generalized straightforwardly to sets ofigarations. Letpref; (resp.
posty,) denote the reflexive-transitive closureméy, (resp.posty). We omit the sub-
script M when it is understood from the context. GivAhC A, we useprey (resp.
post,) to denote immediate predecessors (resp. successorg)aisire inA’. Then,
pre,, andpost,, denote the corresponding reflexive-transitive closuresthérmore,

Tracesm(c) = {we Act' : 3. c %y ¢’} is the set of traces generateddy

DPN vs. PA ProcessedDPNs allow to model multithreaded programs where creation
of threads is done using spawn commands (see Sect. 3). Ting ike case for other
formalisms used in the literature for modelling paralledgrams like PA [1f

3 PA corresponds to processes definable by a set of rewrite ofillne formA — t whereA is
a process variable, arids a term built from process variables, sequential comjposiind
asynchronous parallel composition.
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Theorem 1. Let£ = J{a"(b” @ (c"d™)) :n>n' >0, m>n > 0}, where® denotes
the shuffle (or interleaving) operator defined as usual. Then

a) There is a DPN M and an M-configuration ¢ such tiiaicesy (c) = L.
b) There is no PA systefhand no process variable A such thBtcesa(A) = L.

Hence, PA processes are inadequate for capturing the lmelatunultithreaded pro-
grams with spawn-like creation of threads. It also followsni the proof that trace sets
of DPNs cannot be captured by the type of constraint systesad as semantic ref-
erence point in the constraint-based approach [20, 15Tt&refore, the methods of
[9,10, 20, 16, 15] for interprocedural analysis of flow graptith parallel calls do not
carry over immediately to multithreaded programs. Thead@guacy results are rather
strong because any interesting process equivalence waoplg equality of traces.

3 Program Analysis Based on DPN

We show hereafter how DPNs can be used to model multithreaabegams and how
our results on symbolic reachability analysis can be usdidwanalysis of these pro-
grams. This is inspired by Esparza et. al. [9, 10].

Flow Graph SystemsAs common in program analysis we assume that the program
is given by a flow graph system. LBroc be a finite set of procedure names contain-
ing Main. We assume that the program operates on &set{xs,...,xx} of global
variables. We consider the following types of basic stat@sieassignment statements,
X; ;= e, wherex; € X andeis some expression; call of a single procedusé(1T), where
1€ Proc; and spawn of a new threaghawn(11), whererte Proc. The intuitive meaning
of assignment statements and calls is obvious. The spawmeonspawn (1) models
creation of a new independent thread. Like the call(T), spawn(TT) starts an instance
of procedurert In contrast to a call, however, the spawn command returmseidi-
ately such that the newly created instancetofins as a new thread concurrently to the
statements that are executed after the spawnStrat be the set of basic statements.
The control flow of each procedurec Proc is described by a control flow graph
Gr = (N, En, e, Xn), WhereNy is a finite set of program points of procedureE, C
Nr x Stmt x Ny is a finite set of edges annotated by basic statements;Ny is the
entry point ofrt andxy € Ny is the exit point offt. We assume that the sets of program
points of different procedures are disjoiNz NN,y = 0if 11, U € Proc, t# 10, and agree
thatN = Uneproc Nr @NdE = Uneproc En

From Flow Graph Systems to DPNErom a given flow graph system as above we
constructa DPNM = (Act,P,I",A) that captures its operational semantics:

— The actions are given by the assignments that appear in thegflaph system;
a special symbot is used to signify steps in which no assignment is executed:
Act={x:=e|3u,v: (ux:=ev) e E}U{t};

— we have just one artificial control stateRt= {#};

— we work with a stack of program points; the topmost stack syingthe current
program point of the current procedure, the other stack sysrdye the return points
of its callers:” = N;
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— the transition rules ih describe computation steps of the flow graph system:
1. for every assignment edge, x := e,v) € E we put the rule < #vto A,
2. for every call edgéu, call(1),Vv) € E we put the rule H Hevto
3. for every spawn-edgel, spawn(T),V) € E we put the rule # #v Hep to A,

4. for each procedurec Proc, we put the rule %; < #1toA. This rule describes
the return from procedune

Note that it is possible to extend the semantics above inrdgodieandle local pro-
cedure variables and return values from procedure callsthad, we assume as usual
that data values are mapped into a finite abstract domaig ssindard techniques such
as predicate abstraction. Then, abstract values of locglhblas can be encoded in the
stack alphabet and abstract return values can be encodeeldontrol states.

Solving Bitvector ProblemsThe operational semantics given above can be used for
solving bitvector problems. In order to ease comparisoh Jii0] we discuss detection
of live (global) variables. Other bitvector problems cansbésed in a similar fashion.
Informally, a variablex € X is live at a program pointi € N if there is an execution
from u in which x is used before it is over-written. We restrict attentiorréachable
configurations and use a similar definition and notation gmEs and Podelski [10].
Thus, we define: program variabtds live at a program pointi € N if there is a tran-
sition sequencesiain —% €1 —2» ¢, -~ ¢z such that: (1) is activein configuration
c1, i.e., appears as the topmost stack symbol of one of thel@lggashdown processes
in the network described byj; (2) 02 is a sequence of statements that do not madify
(i.e., do not write tox); and (3)e is an expression in whickis used.

We denote the set of configurations which u is active byAt,, the set of assign-
ments in the given program that modifyby Mody C Act, and the set of assignments
in the program in whiclx is used byUsey, C Act Moreover, we writéAa for the set of
rules ofA with an action in a subsét C Act Ay = {(py(i w) € A | a€ A}. Using this
notation it is not hard to see thais live atu if and only if

#emain € pre(AtyN preZAcwodX(preAUsex (Confy)))
Then, our results concerning backward reachability amatyfSDPN given in the next

section (see Theorem 3 and Note 1) can be used to decide dipisrpy.

4 Reachability Analysis for DPN

We consider the problem of computing representations oftke andpre* images of
given sets of configurations. We are interested in the cades#ts of configurations are
effectively given using automata-based representations.

Computing post* Images: We show first thapost* does not preserve regularity in

general. Consider indeed the DRN= ({a}, {p}, {v1, Y2}, {Py1 < PYiYy1 D> pyz2}). Itis
easy to see thatosty, ({py1}) = {(py2)"py;™* : n> 0}, which is clearly nonregular.
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Proposition 1. There is a DPN M, and a configuration ¢ of M, such thatt*(c) is
not a regular set of configurations.

We prove, however, thaiost* preserves context-freeness:

Theorem 2. For every DPN M and any context-free set C of M-configuratitimes set
post*(C) is context-free and effectively constructible in polyrairtime.

Computing pre* Images: We show now thatre* preserves regularity. L& be a DPN
andA be an automaton recognizing a seMconfigurations. We define a polynomial-
time algorithm allowing to construct an automat@p.+ s.t. L(Apye+) = pref; (L(A)).
For technical reasons, we require ttfats in a special form we define below.

M-Automata: Let M = (Act,P,I",A) be a DPN. A finite automatoAd = (S,,5,s°,F)
is anM-automaton if the following conditions hold:

1. X =PuUT is the finite alphabet,

2. the set of states is partitioned into two s&s; SUS;, SNS =0,

3. foreveryse & and everyp € P, there is a (unique and distinguished) ste S,

4. thereisarelatiod C SsxT x (S\{sp : s€ &, pe P}) USx {e} x & such that
d=3U{(s,p,sp) : sS€ X, peP},

5. the initial states? € &, and

6. F C Sis the set of final states.

Foro € U {e} ands,s € S, we writes %5 S in lieu of (s,0,5) € 5. We extend
this notation in the obvious manner to sequences of sym{Igse S. 335 s, and (2)
Vs,s e SVoesuU{el. vwe s*. s- 55 iff 38’ € S 5355 ands’ S5 S.

Note that requirement (4) codes a number of conditions:qi) eachs € & has
Sp as its uniquep-successor and has Metransitions, (2)s is the only predecessor of
Sps (3) only e-moves from states i lead to states € &, (4) statess € S do not
have p-successors, for ang € P. So, every path in aM-automaton (starting from
the initial state) is the concatenation of paths of the fsm%e; Sp st ia s where
s, €&, pe P, wel* and all states in the pat X, st are inSs. Note that for every
finite automaton over the alphabe? UT" such that.(4) C Confy,, it is possible to
construct artM-automaton recognizing the same language.

Constructing the Automatof,.-: Let M be a DPN and? = (S %,8,&,F) be an
M-automaton. The construction of,.+ is in the same spirit as the ones for single
pushdown systems (see [2]). It consists in adding iterigtivew transitions to the au-
tomaton4 according tosaturationrules (reflecting the backward application of the
transition rules in the system), while the set of states nesnanchanged. Therefore,
we defined,. to be the finite-state automat¢8 =, & ,s°,F), whered is the smallest
relation which contains (i.e.,d C &') and satisfies the following conditions:

RL: If (py<> pws) € Aands-"¥,5 ¢ fors,s €S, then(sp,y,s) € &'
R2: If (py <> pawi > paws) € A ands—P22PM, o & fors,s € S then(sp,y,S) € 5.
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The relationd’ can be computed as the limit of an increasing sequence diomda
obtained by adding transitions &that are required by one of the implications above.
This procedure terminates after a polynomial number ofssséce only a polynomial
number of transitions can potentially be added.

Let us explain intuitively the role of the saturation ruRy). Consider a path in the
automaton of the form—""1, ' This means, by definition dfl-automata, thatis nec-

essarily ing; and that we have-"+ s, ... Then, the rule consists in adding to the

automaton the transitiosy Y. 5. Since by definition oM-automata we have-" Sp, We

obtain a path;ﬂ < in the automaton. Therefore, if a configuratinmw; U, is recog-
nized by a rure® 2L s P, o 22, 5 then its predecessai pyu; is also recognized

due to the new transition by the reh—L s>, ¢ %2, 5. The role of Ry) is similar.
Theorem 3. L(Ape+) = prejy (L(2)).

Note 1. For the sake of completeness, we mention that for every DIPANhd everyM-
automatord, the setsgprey, (A4) andposty (4) are regular and effectively constructible.
The constructions are quite straightforward. pag, we take two copies ofl. The first
copy provides the initial state and the second copy the fiaés. We then apply the
saturation rules to the first copy of the automaton, but latew transitions lead from
states of the first copy to states of the second copypbkig, construction is similar (it
needs adding a finite number of intermediary states).

5 Constrained DPN

We consider in this section an extension of the DPN modebihtced in Section 2. In
addition to the ability of performing spawn operation asvpyasly, processes are now
allowed to observe the control states of their children ¢psses they have created in
the past). This is relevant in particular for handling ratualues and some kinds jofin
statements between parallel processes. To achieve thatefivee a model where the
application of a transition rule by some process is conal@tbby a (regular language)
constraint on the sequence of control states of its childinneed however to impose
a stability condition (defined below) on the constraints in order to heweodel which
can be analysed by means of finite-state automata représestaNe show later that
we lose regularity of the reachability sets if we relax thabgity condition.

Stable Regular Languages:Let 2 be a finite alphabet and letC = x Z be a binary
relation overZ. Then, a set of symbolS C X is p-stableiff Ys€ S vt € X. (sit) €
p =t €S A p-stable regular language oVEiis a subset oE* which is definable by a
regular expression of the form:

e:=S ap-stable sefe+e|e-e| €
We can prove straightforwardly by induction on the struetof regular expressions:

Lemma 1. Let@ C >* be ap-stable regular language, let u € >*, and let ac > such
that uave @. Then, for every Iz Z, (a,b) € p implies that ub\e .
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Definition of the Models: A Constrained Dynamic Pushdown Netwd@&DPN) is a
tupleM = (Act,P.I",A), whereAct s a finite set of visibleactions P is a finite set of
control statesl is a finite set ofstack symbolslisjoint from P, andA is a finite set
of transition rules of the following forms: either (g): pyfi piwi, or (b) @: pyri
piwi > powWo, Wherep, p1,p2 € P, ac Act ye I, wi,we € T'*, and@ is a pa-stable
regular language ov&, withpa = {(p,p') e Px P : thereis arulap: p&i p'uory:
péfi p'us p’v in A}

A CDPN consists of a collection of identical sequential @s8®es running in paral-
lel, each of them being modeled as a pushdown system whidfidd@(1) manipulate
its own stack using pushdown rules of the form (a), (2) createw process (which
becomes its youngest son) using rules of the form (b), anal§3grve, under some
conditions, the states of its children (processes it cieatehe past): each transition
rule is constrained by the fact that the sequence of cortatds of the children (given
in the decreasing order of their age) must belong to the ipedanguagep.

Since we need to refer to the children of each process, a coafign of a CDPN
can be naturally seen as a tree where each vertex is annatdtethe configuration
of some sequential process (pushdown system), and whesé&ticéure corresponds to
the relation father-son. Notice that such a tree may havelatrary width. We define
hereafter a class of terms describing such configuratiodswandefine a transition
relation between such terms.

M-Terms: LetX = {xq,...,Xn} be a set of variables. We define the §¢X] of M-terms
overPUT UX inductively as follows:

- XCTIX],
— Ifte 7[X] andy e T, theny(t) € T[X],
— Iftg,...,th € T[X] andp € P, thenp(ty,...,tn) € T[X], forn > 0.

Note that in the last item of this definition,can be 0 (i.e.p is on a leaf). In that
case, we writg() or simply p to represent the corresponding term.

Terms in‘T[0] are calledground termsand will also be denoted by . A term
in 7[X] is linear if each variable occurs at most oncecahtext Cis a linear term. Let
t1,...,thbenground terms. TheB|ty,. . .,ty] is the ground term obtained by substituting
in C the occurrence of the varialbtewith the termtj, for 1 <i <n.

Aterm inZ[X] can be seen as a rooted labeled tree of arbitrary width, whgen
internal node is either of arity 1 (has one successor) ifldlieled with a stack symbol
y €T, orit has an arbitrary arity if it is labeled with a stgtec P, and (2) where the
leaves are labeled with either variables X, or with stateg € P.

M-Configurations: We defineM-configurations to be the grourd-terms (terms in
T [X] without variables). Givem ground termgy, ... ,t,, the termym---y1p(ts,...,tn)
represents a configuration where (1) the common ancestdr poogesses is at local
control statep and hasy; - - - ym as stack content, wheyg is the topmost stack symbol,
and (2) this process haschildren, thei!" of which is described, together with all of
its descendants, by the tetmfori = 1,...,n. A ground term of the fornyy---y1p
corresponds to the case of one single process without ehildr
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Transition Relation: Given a CDPNM, we define a transition relatiory, between
M-configurations. We introduce first a notation. Given a canfigiont of one of the
formsym---yip(ts,...,th) OF Ym---y1p, we defineS(t) to be the control state, i.e.,
S(t) is the local control state of the topmost process repredente Then,—y is the
smallest relation betwedvi-configurations such that:

- If (@: pyfi piwi) € AandS(ty)---S(tn) € @, then
C[yp(tlv ce atn)] —M C[\A,prl(tla ce 7tn)}
- If (@: pyci piw1 > pawz) € AandS(t) - S(tn) € @, then

Clyp(ta,...,tn)] —m C[WEp1(ty, ... tn,W5p2)]

wherewR denotes the reverse word (mirror image)ofThe notions opost, pre, post*,
andpre* are defined as usual.

Modelling Power: Since CDPN generalize DPN, the modelling of programs with
spawn operations given in Section 3 is still valid for CDPNorglover, stable con-
straints as preconditions of transition rules increaseéreously the modelling power
of our formalism. We discuss some applications in this secti

Parallel Calls: In the data-flow analysis scenario, we can use constraigtsjrorder
to accommodate parallel call commands as another basidtiparfor creation of par-
allelism in addition to spawn commands. A parallel cadlall(Tt, ¢) with T, 77 € Proc
starts an instance of procedumeand an instance aff and runs them in parallel. It
terminates if and when both these instances terminate.

Assume that we extend the flow-graph model of Section 3 bywailp parallel
calls as another type of basic statement. In the CDPN modebptire the operational
semantics of an edde, pcall(1,7¢), v) as follows: we start two new threads foandr’
and ensure by a transition rule with an appropriate comgtilaat we can move teonly
after both these threads have terminated. For that, baghadisrindicate termination by
moving to a special new “terminated” control stat@hen they see a special new stack
symbol $ that we put at the bottom of their stack upon threadten. Thus, we have
the following rules for modellingu, pcall(Tt, 0), v):

Pt s He$ PR iAy oy Her S PRy, o v

wherey, Yy, are two auxiliary stack symbols chosen fresh for each paredill. More-
over, the ruleP* ; #$ i allows a thread to move to the statence it has terminated.

Join Statements:Besides parallel calls we can also model different typesoot-j
commands. We use the same technique as above for making&tionivisible to the

father of threads: we now use the rule # #vi> #ep$ to describe the behavior of a
spawn edgéu, spawn(p),V) € E. Thus, we mark the bottom of the stack with the spe-

cial symbol $. We also use the rugé : H i from above to make termination visible
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in the control state. This allows us to describe the opanatisemantics of different
types of join-command such as for instancej¢i),: proceed if all threads directly cre-
ated by the current thread have terminated, ango(@)x: proceed if at least among
the threads directly created by the current thread havanated.

The behavior of an edgey, j,v) wherej is one of the join commands from above
is modelled by the rule: #u < #v whereg = 1* for j = joiny, andg = (P*§)*P* for
j =joingk. Obviously, these constraints are stable.

Return Values:We can distinguish between different termination condgiby using
more than one terminated control state and use regularpsidé such control states
in constraints in the father process. This allows us, fotaimse, to return information
back to the caller from procedures called in parallel. Tfegee the modelling power of
CDPNs exceeds that of PA and even that of PAI24]: While in a PAD process (like
in a DPN process) we can use control states to return infoomatck to a caller in
a normal procedure call, there is no such mechanism forlpacalls. The modelling
power for calls and parallel calls is thus more symmetrid3BPNs than for PAD.

Observing Execution Phaseszinally, as we allowstable constraints, a creator of a
thread can react on situations in which the created threadtlzieved some progress
already but is not necessarily terminated yet. As an exaigbles assume that a process
F (the father) creates a number of worker threads that sei@llgigo through a number
of phases, say phases 1, n, before termination. For modelling the worker threads we
use new control states from a hierard®y> P1 O ... D Py = 0 of control states such
that a worker thread is in phasi and only if its control state is i _1 \ . This means

a worker thread has finished phastand only if its control state belongs 8. Then,
the setd?, are stable and can be used as building blocks for constiaitrnsitions of
F. Hence, proceds can react on situations like “all worker threads have finigblease

i” by using the constrairi®*, “there is a worker thread that has finished pheesed all
other worker threads have finished phsby the constrainPj*PlPJf*, etc.

6 Backward reachability analysis of CDPN

Symbolic Representations:We use hedge automata (unbounded width tree automata)
[8] to represent infinite sets of CDPN configurations. Met (Act,P,I",A) be a CDPN.

An M-tree automatoris a tuple4 = (Q,d,F), whereQ is a set of stated; is the set

of final states, and is a set of rules of either the form (§)g) — ¢/, whereye I, and

9,9 € Q, or (2) p(L) — g, whereL is a regular language ov€, p € P, andq € Q.

In order to define the language recognized4ywe define amove relation—g
between terms ovétUT UQ: for every two terms andt’, we have —gt’ iff there exist
a contexC and a rule € d such that =CJg|,t' =CJs], and (1) either = y(q) — ¢,
s=y(q),ands =d, or (2)r = p(L) — d,s= p(da,---,0n), g1 -0 € L, ands’ = q.

Let 55 denote the reflexive-transitive closure-of;. A termt € 7 is accepted by
qeQift 55q. Let Lg ={teT : t55q}. Atermt is accepted by if there exists a

stateq € F such that 55 q. LetL(4) be the set of all terms accepted Ay

4 PAD extends PA by allowing rewrite rules of the fonB — t
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A straightforward adaptation of the proofs in [8] allows twsr that:

Theorem 4. The class of M-tree automata is closed under boolean operatiMore-
over, the emptiness problem of M-tree automata is decidable

Computing pre* Images: Let M = (ActP,I',A) be a CDPN and le = (Q,d,F)
be anM-tree automaton. We present hereafter an algorithm thawvalus to construct
anM-tree automatorfl,..- recognizing there*-image ofL(4). The construction pro-
ceeds (similarly to Section 4) by adding new transitionshi® ériginal automator
corresponding to the backward application of transitidasuln order to deal with the
constraints in the transition rules, we need to extend thggnal automaton.

Propagating Control StatesRemember that, by definition of CDPN terms, the con-
figuration of each process is encoded bottom-up in the tesding first the control
state, and then the stack contents starting from its topeywsbol). Since constraints
in CDPN transition rules refer to control states of the dfsild processes, and since
hedge automata can check only constraints on immediatessme in trees (which
correspond in our case to the bottom symbols in the stackseathildren processes),
we need to propagate upward the informations about the aostaites through the
stacks. Therefore, the first step of our construction ctsgisdefining a new automa-
ton 4p = (Qp,0p, Fp) such that (4p) = L(4), and where states @ are labelled by
control statep € P. This automaton is given byQp = Q x P, Fp = F x P, anddp is
the smallest set of rules such that:

— if p(L) — s€ ¥, thenp(L') — (s, p) € dp, whereL’ is obtained by substituting in
the words ofL every occurrence of a stagec Q by {(s,p) | p € P};
— if y(s) — s € &, then for everyp € P, y((s,p)) — (3, p) € Op.

Lemma 2. L(4p) = L(A), and for every &€ 7, t 55, (s, p) ifft 5 s ands(t) = p.

Note 2. To avoid confusion, we use in the sequep’, p1, pz, . .. to denote elements of
P,ss,s,%,..., o denote states of, andq, d’, g1, p, . . . to denote states ofp.

From Constraints over P to Constraints ovepQGiven a constrainip andn terms
t1,...,ty such that; i>5p gi for 1 <i < n, we need also to be able to get the information
whetherS(t) - -- S(tn) € @ from the statesy, ..., qn. For that, we associate with each
constraintp over P a constrain{@) overQp such thatS(t1)---S(tn) € @ if and only if
0i---On € (@). The definition of(@) is straightforward by induction on the structure of
regular expressions for stable languages(®l}= {(s,p) : s€ Q,p< S}, (2) (@1 - @) =
(@1) - (@), (3) (@1 + @) = (@1) + (@2), and (4)(¢") = (@)".

Closed Set of Constraintsburing the construction of the automaton, new transition
rules of the formp(L") — g are added wherg' are languages which are built from lan-
guaged. appearing in the rules of the original automatbrand constraintg appearing

in the transition rules of the CDPM, using intersection and right-quotient operations.
Intersectiond N (@) allow us to check that the guarding constraint for the ajpgilin
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of a transition rule is satisfied at the considered positiothe tree. Right-quotients
Lg~! = {w:wgec L} allow us to get immediate predecessors by a spawn operdtion o
trees where the children of the spawning process are repadjby a sequence of states
in L, and the youngest son among these children (i.e., the oa¢edréy the spawn
operation and which is the right-most one in the list of ctéld) is recognized by the
stateg. Then, let us definA to be the smallest family of languages 0@ such that:

— If (p(L) — q) € &p, thenL € A.

—IfLe A, and(o: pyci p1w1 > pawy) € A, thenL N (@) € A.
— If L€ Aandg € Qp, thenLg ! € A.

Lemma 3. The familyA is finite. Assuming that all languages and constraints appea
ing in rulesdp andA are given by backward-deterministic finite-state autontdtsize

at most K, the number of elements'ois in O(K™1) where n is the number of different
constraints appearing in the rules Af

Constructing4,..-: We define4,.- to be theM-tree automatoriQ’,d,F’) such that
1) Q@ =0puU {q';) :peP LeA}, (2)F' =Fp, and (3)¥ is the smallest set of rules
such thady =8pU{p(L) — g5 : peP, Le A} C & and:

Ru:If (@: py<> pw) €A, P(L) — g€ &), andwR(q) g o, then(y(q'f,m(p)) —q)evd.

Ro: If (@: py<> pwit> p'wo) €A, p'(L) — o’ € 8, wR(Q") S5 o, andwi(p”) S5 g,

then(y(dh” ?)
Note that the stated;,, for pe P, andL € A, are added to the automaton in order to
recognize precisely all the terms havipgat the root and such that the sequence of
children of the root is recognized by a sequence of statdsitainguagée.. Note also
that all the transitions added by the constructionateansitions, and therefore they do
not addP-transitions to the automaton.

The set of rule®’ can be computed iteratively as the limit of an increasingisage
8, € &, --- suchthad , contains at most one transition more tfadded by applying
either(Ry) or (Ry). Note that®' is necessarily finite since (by Lemma 3) the number of
triples (y, q'f,,q), foryel, peP,LeA, andge Q is finite.

—q)ed.

Lemma 4. For every ge Qp, L§ = pre*(LY).

The lemma above says that the construction ensures thgtste¢e recognizes the
set of all predecessors of its original language (i.e., éahtomaton before saturation).
Let us give some intuitive explanations about the role ofsteiration rules, and let us
consider the rul¢R;) (since the role ofR,) is similar). Consider a term?p/(ty, .. ., tn)
such that; 5y g, fori € {1,...,n}. Assume thap/(L) — qis a rule of the automaton.
This means that after recognizing each of the tetnasd labelling their roots by the
statesq;, the automaton can label the tepfts, ... ,tn) by qif the sequence - - - g, is
in L. Assume furthermore that?(q) =z ¢. This means that the automaton can pro-
ceed by reading upward the wondand label the termRp/(y,. .. ,tn) by g'. Therefore,
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if (@: pyfi p'w) is a transition rule of the system, and if the sequence ofrobstiates
S(t1)---S(ta) is in @, then we must add the tergp(ty,....tn) (which is the immedi-
ate predecessor @fp/(t1,...,tn) by the transition rule) to the language @f(to say
that this term is a predecessor of some term which was rezedibyq’ in the original
automaton). This is achieved by applying the saturatiomwhich adds to the automa-
ton the transitior(y(qbﬂ@) — (). The justification of this is in fact subtle. First, if
S(t1)---S(tn) € @, we must have); - - - g, € (@). Since states recognize predecessors of
terms in their original language, each stgtés a pair(s, p{) such thatp| = S(t/) for
somet/ such that; € pre*(t/). Now, here is the point where the stability property of
¢ plays a crucial role: it ensures that backward transiticarmot make a term satisfy
new constraints (or equivalently, that forward transii@annot falsify a constraint).
Therefore, since(ty) - S(tn) € @, we must have als(t;) --- S(t,) € @, which implies
thatqs - - - qn € (@). On the other hand, assume tisdt;) --- S(t,) € @butgy---gn € (@)
because(ty)---S(t)) € @. We can show thapp(ty, ... ,tn) is actually in thepre* image

of the original language. Indeed, it is possible in this castart by rewriting each term
tj to its successdf, which makes the transition ru(e: pyfi p'w) applicable.

Theorem 5. For every CDPN M, and for every M-tree automat@nwe can construct
an M-tree automatot,- such that [(Ay-) = pre* (L(4)).

Note 3.1t is easy to show that, given av-tree automatott, the setprey,(A4) (and in
fact also the setosty,; (A4)) is an effectivelyM-tree automata definable set.

Then, based on the modelling described in Sections 3 and Sawepply Theo-
rems 5 and 4 to check reachability properties and solve flalyais problems (such as
bitvector problems) for multithreaded programs.

Complexity IssuesBy Lemma 3, we know that the size of the automaty- is at

most exponential in the number of constraints appearingengiven CDPN. In fact,
we can prove the following PSPACE lower bound by a reductibthe satisfiability
problem for quantified Boolean formulas (QBF).

Theorem 6. It is at least PSPACE-hard to decide for a given CDPN M, a ragskt
of M-configurations R and an M-configuration ¢, whether pre* (R) or not.

Despite the hardness result above, in many interesting cagseonly need éixednum-
ber of constraints, which leads to polynomial analysis atgms. For instance, this is
the case when only trivial constraints (i.e., of the fdPf) are used, which corresponds
to the case of DPN models. Also, to model parallel calls omlg additional constraint
is needed, namelP*12, as we have seen in Section 5. Similarly, we only need one
additional constraint for each type of join statement sufoiay or joing. Note that
the automata for these constraints can easily be defineddkyaad deterministic au-
tomata of very small sizes. Also for typical properties sastbitvector problems (see
Section 3), the initial automaton is always the one recaggithe set of all configu-
rations. Therefore, for an important fragment of CDPN whsabsumes (in modelling
power) existing formalisms such as PA and PAD, and allowswueddition to model
spawn operations, our construction leads to a polynomalyars algorithm.
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However, when return values from parallel processes amntako account, our
construction becomes exponential in the number of usedesadbsiata values. This price
is unavoidable since dealing with an unfixed domain of retnies is precisely the
feature which makes our model complex (see the proof of Téra@). Such complexity
does not appear for weaker models such as PA or PAD (whichgwyromial analysis
algorithms [13, 10, 6]) since they cannot handle returnesifutom parallel processes.

Relaxing Stability:We end this section by mentioning the fact that relaxing thbikty
condition on the constraints appearing in the transitidesrof CDPN leads to a model
for whichpre* images are not regular in general.

Theorem 7. There exists a CDPN M with nonstable constraints, and a saggét T of
M-configurations such thatrey, (T) is not definable by an M-tree automaton.

Actually, we can defin# s.t. all its transition rules are of the forgx py — p'y (i.e.,
without stack manipulation and dynamic creation of proesgsand where is of the
simple formpP*, for p € P. This shows that it is hard to relax the stability conditian i
the definition of CDPN without losing the property tha¢* preserves regularity.

7 Conclusion

We have defined new formalisms (DPN and CDPN), based on wonaitewrite sys-

tems, allowing to model adequately spawn-like commandstitithreaded programs.
We have shown that (1) they are more suitable for modellimgehcommands than
previously proposed formalisms (such as PA and PAD), and(#)ahey subsume in
fact in modelling power these models (concerning CDPN),allwdv to handle features
these models cannot handle such as return values fromglgmalcesses, various join
commands, etc.

We have defined automata-based techniques for computirkgvaed reachability
sets of our models. In the case of the basic model of DPN, wai@hgata can be used
for this purpose and the construction is simple. In the cA§&&D#N where constraints
on the children are used, the problem of reachability amalgscomes much more
delicate. The condition of stability we impose in CDPN on twmstraints (guards)
appearing in the transition rules seems to be necessargién mrhave regular backward
reachability sets. Concerning complexity, our constarcis exponential in the number
of different constraints used in the model, but significdasses of parallel programs
can be modelled using a fixed number of constraints (ofteresgmtable using small
automata), and therefore they can be analysed in polynadimiel

Future work includes the extension of our models and ouraambr to handle syn-
chronisation between parallel processes. Of course, #hability analysis becomes
undecidable in general, but reasonable classes of progrmparticular synchroni-
sation policies can be considered (see e.g., [18]), andrigein@meworks for defining
abstractions (and refining them) can be developed basedramadels and our tech-
niques, e.g., following the approaches of [3, 4, 15]. Wekthafso that our techniques
could be used to handle models which extend those considete paper by allow-
ing a bounded number of context switches, in the spirit ofaigroach of [19].
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Appendix

Without further ado, we present here the proofs that weredtechilue to lack of space.
We assume the notation and definitions from the main bodyepéper.

A Proof of Theorem 1,a

Theorem 1,a.There is a DPNM with a single control state, and af-configurationc
such thafTracesy (C) = L.

Proof: Consider the DPNM = (Act,P,I",A) with

— Act={a,b,c,d},
- P={p}
- r = {A7 B7C7 D}’

— A= {pA<® pAB pA<% pBr> pC,pB<> p,pC<S pCD, pC<% pD, pD <% pl.

Ignoring the spawn in the second rule, the first three rulssrilee a push down au-
tomaton that from control staggand initial stack content accepts the languagéhb”,

n > 0 upon empty stack. This push down automaton generatesatbm&”b”’ with
n>n’ > 0. When moving from the mode in which it generadéssto the mode in which
it generated’s, i.e., when executing the second rule, it spawns a secosid gown au-
tomaton that accept&d™, m> 0, upon empty stack and which has the traze™ for
m>m > 0. These traces are arbitrarily interleaved with the sequefb’'s generated
by the first push down automaton. Hence we hdvecesy (pA) = L. m|

B Proof of Theorem 1,b

Theorem 1,b.There is no PA syster and no variablé such thafTracesa(A) = L.

In order to prove Theorem 1,b, we need to introduce some defisifirst. Let
r=a---a € Act* be a trace antl= {iy, .. .,ix} be a subset of positions insuch that
1<ii<iz <--- <ix <. Then,r|l denotes the traca;, ---&,. We write |r| for the
length ofr.

Given two traces,r’ € Act’, the shuffle languagex r’ C Act" is given byr @t =
{se€Act : I C{1,...,|9}. 5/l =rands|({1,...,|s/} \I) =r'}. This definition is lifted
to sets of traces in the obvious way.

A shuffle-constraint systemd@er a finite set of variableg—the variables irY
range over subsets 8kt —is a finite set of subset constraints of the fok@ t;, where
A is a variable fromy andt; is a term formed with the operators’ (concatenation)
and ‘®@” (shuffle) from the variables ilY and the languagels}, for a € Act and{e}.
Both concatenation and shuffle operations distribute or@trary unions and are thus
monotonic and even continuous. Thus, each shuffle-conssgstemS has a small-
est solutionuS: Y — 2A¢C" by the Knaster-Tarski fixpoint theorem. It can be seen that
shuffle-constraint systems generalize context-free graramo a parallel setting. It can
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be shown [20, 16, 15, 4] that these systems generate pretligeset of traces that can
be generated by PA processes: processes definable by a eeftitd rules of the form
A — t whereA is a process variable, artds a term built from process variables, se-
quential composition, and asynchronous parallel comioodit].

Then, part b of Theorem 1 is an immediate consequence of logvfog result:

Theorem 8. There is no shuffle-constraint system S over some set oblesid such
that (LS)(A) = L for some A€ Y.

Proof: Assume there is a shuffle-constraint syst®overY such tha{uS)(A) = L for
someAcY.

Our goal is to exhibit a pumping argument in order to deducerdradiction. We
first argue that for each word ine (LS (A) we can find gustifying treesimilar to a
derivation tree for words of a context-free language. Inréavdéon tree in a context-free
language, we just need to keep the non-terminals and thén@isnbecause only the
concatenation operator is applied. Here we need to disgh@pplications of concate-
nation from applications of shuffle. Therefore, we put theperators at inner nodes
of the tree. We also keep the variables/non-terminals irrotal get a handle for the
pumping argument. Thus, justifying trees are obtainedefoiowing way:

1. we start from a tree that consists just of a root annotated

2. then we iterate the following step until all leafs of theerrare annotated by an
action: we replace a nonterminBlat a leaf by a subtree with ro@& that has a
single successor that is the root of a tree corresponditigfdo some constraint
BDtofS

We can assign a set of action sequendds) to each justifying tred in a natural in-
ductive way: a leaf annotated withe Act is assigned the languada}; to an inner
node annotated with a concatenation or shuffle operator,ssigrathe language ob-
tained as the concatenation or shuffle, respectively ofahguages associated with the
subtrees; finally for an inner node anotated with a variatdeassociate the language of
its subtree. Clearly, the language of each justifying tsemntained ifuS)(A) because
it is the language of a finite unfolding of the constraintsn@asely, we can find for
each wordz € (US)(A) a justifying treeT: this follows from the well-known fixpoint
theorem of Kleene. All the operators used in a shuffle-cairgtsystem are continuous.
Therefore, by Kleene’s fixpoint theorem, for each actionusegew € (US(A) there
is k > 0 such that is contained in thé&-fold unfolding of the constraint system. This
k-fold unfolding gives rise to a justifying tree.

Due to the presence of shuffle operators in the tree we do messarily findz at
the frontier of a justifying tree for but the frontier is always some reorderingof
Note, however, that the word at the frontier of a justifyingetT always belongs to

L(T) because the concatenation of two languages is containbdiirstiuffle.

Consider now a justifying tre& for the wordz %' aPcPbPdP for a p > 0. If we

choosep big enough, we can find analogously to the well-known Ogdemia for
contextfree languages [12] in the tree the situation péctun Fig. 1,a such thatx
contains the letteln. Then we can “pump” the part beween the two occurencés bf

particular,wp def uwxly € L(T) C L foralln> 0. AsL(T) C £, vx must contain at
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Fig. 1. Repetition of variablé on the path to & symbol.

least as mang’s thanb's. By looking at the leftmost in the wordw, = uvvwxxye L
we infer thatv cannot contain any of the lettelosc, or d becausel contains no words
in which one of the letterb, c or d is left of ana (anda is found in eithew or x).

If xwould contain a, vx must contain & for counting reasons ag, € L for all n.
As v cannot contain a (see above), suchamust appear in. But then inw» ac would
occur to the right of @ which is not allowed by.. Hencex does not contain d.

Of course there is also rbin u because otherwise we would havd &ft of ana
already inwy which is forbidden by~.

There can also be mbin w: assume there would beddn w. In w all thed symbols
appear right of alb symbols. Therefore, there must be a shuffle operator bettirgen
two occurence oA in order to generatey with T. But then we can generate with the
tree forw, also a word in which am appear right of & in contradiction to£ (see
Fig. 1,b).

We have seen so far that all tiesymbols are contained yn By a second application

of the analog of the Ogden lemma we can find another repetitithre tree as pictured

in Fig. 2,a such that'x’ contains the letted. By pumping, we then have that, def

uv™WxMy € L(T) C £ for all n > 0. Again by a counting argumentx’ must contain
at least as mangysymbols asl symbols and by looking at the word, € £ we see that
V' contains & symbol but nad symbol andx’ ad symbol but nac symbol.

We now distinguish three cases how the two nodes annoBaiteérig. 2,a are situ-
ated in the tree relative to the nodes annotétéuFig. 1,a.

— BothB-nodes lie on the path to the upp®node (Fig. 2,b). Themwxis contained
in w andw contains ara. But asv’ contains &, this implies thatv; ¢ £. Contra-
diction!

— The uppeB-node lies on the path to the upp®mnode but the loweB-node does
not (Fig. 2,c). As ald symbols are ity the otheiB-symbol must generate a subtree
with a frontier contained iry. Thus,vwxis contained in/. But this implies that in
w, there is &b left of ana which contradicty, € L.

— None of theB-nodes lies on the path to the uppenode (Fig. 2,d). As alfl symbols
are iny, this implies thav/wx' is contained iry. As VWX contains & and all the
c symbols are between tlzeand theb symbols in the wor@PcPbPdP € L(T) there
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Fig. 2. Repetition of variabl® on the path to @ symbol.

must be a shuffle operator at the join point of the two patha® fhe uppeA and
upperB to the root of the tree. But thdr(T) also contains a word in which@is
left of ana which contradicts.(T) C L.

O

C Proof of Theorem 2
Theorem 2.For every DPNM and any context-free s€ of M-configurations, the set
post*(C) is context-free and effectively constructible in polynaftime.

Proof: LetM = (Act,P,I",A) be a DPN andC be a regular set of configurations. First,
we show that, for every paiip,y) € P x T, the setpost*({ py}) is effectively definable
by means of a context-free grammar.

We define a set of nonterminal symhéj as the smallest set such that:

— If p,p’ e Pandye T, then{p,y) € Vs and(p,y, p’) € W,
— If pyci piwa[>pawy] € A and p’ € P, then(p1,wi) € W, [(p2,w2) € W,] and
vp' € P, (p1, w1, p') € W.

The set of productions is the smallest set such that:
— If pe Pandye T, then we have the production

(p,Y) = pY
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— For every rule
a
PY — P10z~ On[>P2P1 -+ - B
we have the productions:

(p,y) — [(P2,B1---Bm)] (P21, 01"~ On)
(P.Y, P) — [(p2,B1---Bm)}(P1, 01+~ Qn, p') wherep’ € P
- Vp,p € P, Vy1---ynh €T, we have the productions

<p78> — P
(P,Y1 - Yn) — (P,Y1)Y2" Yo Wheren>1

(PsY1---Yn) — (P,Y1,01) (A1, Y2,02) - (Gi-1, i, Gi) (Chi» Yi+1)Yi+2" - Yn
wheren>2/i € {1,...,n—1}, andqy,...,q € P

and the productions

(p,&,p) — €

(PYL Y, P') — (PsY1,02) (01, Y2, G2) - -+ (On—1, Y, P')
wheren> 1, andqy,...,gn-1 € P.

Then, it can be checked that teh following holds.
Lemma5. Vp,p’ € P,Yw e I'*, we have

= L({p,w)) = post"({pw}) .

- L{p.w ') = (post*({pw}) NZ*p') (') . O
Now, we define a transducemvhich associates with every configuratioa >* the set
post*(c). The transducer has a finite set of states and transitions labeled by pairs of
the form(w, L) wherew is an input word, andl is a context-free set of output words.
The set of states afis {0o,gcopy} U{P : p € P}, the statey is the unique initial and
accepting state, and the set of transitions is as follows:

% (PY.(P:Y)) Jeopy

% (py.(PY:P') FAY

P (v:{P:¥) Geopy

=~ (v(p.y:p)) FAY

pP—

Gcopy M) Geopy

Gcopy _)(y,y) Geopy

(e)
Oeopy —— 0o
The result follows immediatly from the fact that contexédrlanguages are closed
under context-free transductions, i.e., given a contese-§et of configuratiorns (ef-
fectively defined by, e.g., a context-free grammar), the&e} is context-free and ef-
fectively constructible. ]
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D Proof of Theorem 3

Let M be a DPN,4 be anM-automaton and4,..« be the automaton obtained by the
saturation procedure described in Section 4.

Theorem 3.L(Ape+) = prejy (L(A)).

Let us first consider the easier inclusion.
Lemma 6. pref; (L(A)) C L(Aprer ).

Proof: Clearly, prey; (L(A)) = Ukso pref, (L(4)). We show by induction ork that
prefy (L(A4)) C L(Ape ) for all k > 0.

The induction base&k = 0, is obvious as the saturation procedure just adds transi-
tions such thapre®(L(4)) = L(A) C L(Apre).

Now, suppose > 0 is given and assume thattek) (L(4)) C L(Aye+) (induction
hypothesis). Consider an arbitrary configuratan preK,,“(L(ﬂ)). Then there is a con-
figurationd < pref,(L(A)) and an actiora € Act such thatc 2.d, i.e., there is a rule
pyfi p1w1 or pyfi p1wi > powe in A as well aau,v € (PUTN)* such that = upyv and
d =urvforr = piws orr = powo p1wi, respectively. By the induction hypothedisis
accepted by, i.e., there are statess', s’ such that:

SOA&SL)&SIL&SHEF.

In particular we have 5 S, which implies(sp,Y,s) € & because the two implications
(R1) and (R2) are valid upon termination of the saturatigoathm. Thus, we have

SO£>5/S—p>Spl>5/SIl>5/S”€F.

This shows that = upyv is accepted by, .. O

The crucial lemma for the remaining inclusion is this.

Lemma 7. Suppose v& Confy, t € &, p € P. The following is true for all transition
relationso that appear as intermediate values in the saturation alidponi

If s° %5tp then there is a wwith & Wt and w—p W p.

Proof: The transition relatiod of 4, is obtained by successively adding transitions
to 6. We show that the property claimed in the lemma is validd@nd remains true
under each single addition of a transition.
Firstly, we persuade ourselves that it is true §omas thep-transition fromt is the
only possible transition t,, w must be of the fromv = w*p and we must have’ £5t
as requiredw —a w* p holds trivially if w=w*p. _ _
Secondly, suppose the property is true for a relabcand assume tha is ob-
tained fromd by a single saturation step. Assume this saturation stepiders the
rule poyi> p1W; Or poyfi piw1 > pawe and the states s' with si>gs’ forr = piw
or r = pawop1wi, respectively, such th&f = dU {(sp,,Y,S)}. We show the property
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claimed in the lemma fo¥ by induction over the numberof applications of the new
transition(sp,, Y,§) in transition sequences %3 tp.

If the new transition is not used in a transition seques‘%ﬁ"ag, tp (=0, Base Case)
we also have® ﬂgtp and we are done by the assumption @haatisfies the property.

So assume for some> 0 that we are given a transition seque|$%ev—v>g, tp that
uses the new transitiofsy,,y,s) n times. Assume that a wona* with the properties
claimed in the lemma exists for all transition sequencesfdto t, that use the new
transition less tham times (Induction Hypothesis). By considering the first tithe
new transition is used in the transition sequence, we cate wrasw = w;xw, such
that

LHUsy Ly Bty

= Wi
By the assumption that satisfies the property, we can find with s° =5 sandw —
Wi po. From the transitions we have seen up to now, we can constradransition
sequence

Wi
for the wordw; rw, that uses the new transitigs,, x,s') only n— 1 times. (A3 C 5§ 5
the transition sequence really consist®dfransitions.) From the induction hypothesis
we can now infer that there i8* with s V‘—%t andwirws —a W*p. Combining theA-

. . a a
transitions we have seen so far and applying thepgye— pi1wi or py— piwi > pawo,
respectively, we get

W = W1YW2 —a W] PoYW2 —a WiFW2 —a WP

such thatwv* has all the required properties. m]

We are now well prepared for the proof of the remaining inicins
Lemma 8. L(Apre) C prefy(L(A)).

Proof: Letd; be the transition relation obtained aftéransitions have been addedXo
in the saturation procedure and latbe the automatost, = (Q, 2, &;,s°,F). We show
by induction ovei thatL(4) C preg;(L(2)).

For 4y = 4 this is trivially true, ad_(4) C pref,(L(A4)).

So suppose we are givén- 0 and assume thai(4_1) C prey; (L(A4)). Assume
that thei'th saturation step considers the rtpi¢<i p1wj or pyi piw1 > pow2 and the
statess, s’ with ngs’ for r = pywy or r = pawopiwi, respectively. Thel; = &1 U
{(sp,Y,5)}. We show that for all accepting rus%ﬂai st € F we havew € prey, (L(A4)).
We do so by induction over the numbreof applications of the new transitidisy, y, ')
in the accepting rus® 5 sf € F.

If there is no application of the new transition in a giveneming runs’ ﬂa sieF
(Base Case), this run is also an accepting rusofi. Hencew € pref, (L(4)) follows
from the assumptioh(4_1) C pres(L(A4)).
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If there aren > 0 applications of the new transition, we can writ@&sw = uyv and
the accepting run as

LUy e VsseF
by focusing on the first application of the new transition.|lBymma 7 there is* with
& L5 sandu —4 u*p. Consequently, we have

u* r v
SO —5S—§_; g —g St € F

such that the wordi*rv is accepted by with less thann applications of the new
transition. By the induction hypothesis, we have thtiy € pre*(L(A4)). On the other
hand, we can show that can evolve to this word:

W = UyV —p U Py —p U*rv € pre*(L(A2)).
Consequentlyy € pre*(L(A4)). O

E Proof of Lemma 3

Lemma 3.The familyA is finite. Assuming that all languages and constraints ajpga
in rulesdp andA are given by backward-deterministic finite-state autonoétsize at
mostK, the number of elements #fis in O(K"1) wheren is the number of different
constraints appearing in the rulestof

Proof (Sketch):

Let @u,...,@, be all the constraints that appear in the ruledofet By, ...,B, be
nword automata that recognize ), ..., (gn), respectively. Le§, ..., S, be the sets of
states oB4y, ..., B, respectively.

Suppose w.l.0.g. thalp contains a unique rule of the forp(L) — g. LetD =
(S S,S,T) be aword automaton that recognizgsvhereSis the set of state§ and
S are respectively the set of initial and final states, @rid the set of transitions.

Consider first the case whege = --- = @, = P*. In this case, it is easy to see that
the elements of are recognized by word automata of the fddn= (S5, S:, T), that
differ from D only by the final state (it is unique since the automata arévward-
deterministic). Indeed, performing the right-quotientresponds to changing the final
states. For example, F = {es}, and if T has transitions frong to e; labeled with
qfor 1 <i <k, thenLqg™?! is recognized by the automat®i = (S,S,S:,T), where
S = {ey,...,&}. Itis then easy to see that in this ca8ehas at mosO(|S|) elements
(since each automaton has a single final state due to thehiaicthe automata are
backward-deterministic).

Let us consider now the general case. Itis easy to see thiartheages of\ can be
recognized by automata having at m8st S; x - - - x §, as states. Indeed, the intersec-
tion corresponds to automata products, and the right-guoibtiorresponds to changing
the final state as explained above. Thereférepntains then at mos?(|§|S|--- |Sh|)
elements. a
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F Proof of Lemma 4

Lemma 4.For everyg € Qp, LY = pre*(L).

Proof:
C: First, we show that
t Sy q=te pre'(Ly)

For that, we show by induction drthat:
t =5 q=te pre’(Ly)

— The case where= 0 is straightforward, since any possible derivalﬁe’ﬁ% g con-
tains only rules frond. Therefore, in this case, we have that L.
—i>0. Lett 1’5{ g, and letn be the number of applications of a ruledf\ &_, in

this derivation. We writet i>§i, g. We proceed by induction am

e If n=0, this means that only the rules &f ; are used, and we get the result
by induction oni.

e Letn> 0. There are two cases depending on the rul® o&_,. Suppose that
the rule of§{ \ &_; is added by(as), the case where it is added g2) is
similar.

Therule of®\ & _, is then of the forny(q';,m(p)) — (', added t& because there
exist a rule(@: pyfi p'w) in A and a state] € Qp such thatp’(L) — q € &;
andw?(q) 46{71 q.
Letthents,...,tnh bemterms such thaf(t)) = pi 1 <i <m, andC be a context
such that

t =Clyp(ty,....tm)]

and letqy, ... ,qm be states s.t; i>§i71 g forl<i<m,qi---gmeLN{(g),and
_ + -1 LN(@)\7 *
t=Clyp(ts,---,tm)] =5 C[yp(au,---,am)] —5 Clv(@p )] —5

C(d) —y_, 9

. . x N1 . .
Since for 1<i <m, —>§i/ gi, we get by induction that € pre*(LgiP). There

exist thenmtermsty, ...t/ such that/ —*>5P gi andt; € pre*(t/). Thereforeg
is of the form(s;, p{) wheres € Q andp| = S(t/)
Then, sincey; - --gm € L, we have:

' =CWRp/(ty,...,th)] i>2i7lC[VVRD/(011,~~~,GIm)] —g CWR(Q)) =y

-1

C(d) —*’5;71 q
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et =CWwRp/(ty,....th)] i»gifl g. We get then by induction that

CWRP (..., t})] € pre’ (L)
and therefore,
t € pre’(LY)
since:
Clyplta..- tw)] € pre’ (Clvp(t ... th)])

and
Clyp(ty,....th)] € pre(C[vva/(ti,...,t,/n)D

becauses(t;)---S(tm) € @ (sinceS(t))---S(tm) = Py Pm andge---Om =

(st,p}) - (sm, Pm) € (@), and therefore, we can apply the riig: pyi p'w)
to C[yp(t;,...,t)] and obtairC[wWRp/(t], ... th)].

D: For the other direction, sind® C &, we show that it -5 g, andt’ € pre(t), then
t’ =55 . Let then such andt’. There are two cases:

1. t is obtained from’ after a rewriting step using a rule: p’yi pw). Let thenC
be a context, ant,...,t, benterms such thas(tj) = pi, p1---pn € @,

t:C[WRp(t17~~~,tn)]
and
t'=Clyp'(tz,....tn)]

Let then the stateq,...,qn,0,q,q", and the rulep(L) — o of &, be such that
gi---On € L, and:

t=C[Wip(ty,...,tn)] =5 C[WRp(dy,...,dn)] =5 CWR(T)] S5 Cld] —5 d”

Then, since) contains the rulég: p’y& pw), p(L) — d € &), andwR(q) >y ¢
the rulesa; infer thatd' contains also the rulxa(q'f,mp)) — 0.
Therefore we have the following:

t' =Clyp(t2,....tn)] S5 ClyP (a1, ....an)] & Cly(aly"”)] S5 Cld S5 o'

Indeed, the sequence of statgs- - g, is in LN (@) since we already know that it is
in L, and we show in what follows that it is iw):
Letsi,...,shn € Qandpj,...,py € P be such thaty = (s, p{) for 1 <i <n. Then

sincet; g (s, p)), it follows from the previous direction that c pre*(L?;po).

Let thenn termsty, ... t;, such that/ =5, (s, p)), ti € pre*(t/), andp| = S(t/) for
1<i<n(Lemma 2). Sincépi,p) € py andpz---pn € @, Lemma 1 infers that
Py Ph € @ and therefore that - - gn = (1, Py) -+~ (Sn, Ph) € (@)
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2. t is obtained from’ after a rewriting step using a ru{e: p’yti pw> p’ws). Let
thenC be a context, and, ...,ty benterms such tha(tj)) = pi, p1---prn € G,

t=CWp(ty,...,tn,W5p")]
and
t' =Clyp'(ts,....tn)]
Let then the statess,...,0n,0n+1,9,9,9”, and the rulep(L) — g of &, such that
01+ Onlnt1 € L, and:

t=CWRp(ts,....tn,WEp")] S5 C[WRp(as,. .., Gn, Gns1)] 5 C(WR()] S5 Cla] 5 o'
Then, sincé\ contains the rulég: p’yci pwe> p’wy), p(L) — € 8y, WR(q) =5
Lo 14N (9
p/

g, andwp” S gn.1; the rulesa; infer thatd contains also the rulgq )—
g
Therefore, we have the following:

* * L -1 * *
v =C[yp(ts,....tn)] 5 C[YP(G.....an)] 5 ClW(ay ")) S5 Cle) S5

-1
Indeed,Lq;j1 N{g) isin A and p/(Lq;jlm (@) — q;?"*ﬂ@ is in &,. Moreover,

since p1--- pn € @, we can show as previously using Lemma 1 that--q, €
-1
an+1m <q)>

G Proof of Theorem 6

Theorem 6.1t is at least PSPACE-hard to decide for a given CDRNa regular set of
M-configurationdR and anM-configuratiorc, whetherc € pre*(R) or not.

Proof: We exhibit a reduction of QBF (quantified Boolean formulas)yell-known
PSPACE-complete problem [17]. A QBF-instaride a Boolean formula of the form

IX1VX2... QXK : CLA -+ ACp,

whereQ is the quantifier 3" is nis odd and V" if kis evenX = {x,...,Xx} is a set
of k Boolean variables that are quantified alternatingly Byand “v”, and eaclt; is a
disjunction ofliterals, where each literal is a negated or non-negated variabhe Xo
QBF asks us to decide, whether a given QBF-instance is satisfinot.

Before we describe how to reduce a QBF-instance to a DPN addlitis problem

we introduce some notation. Let: X "% B be a partial truth assignment (whébe=

{tt,ff} is the set of truth values) anlbe a Boolean formula the free variables of which

are contained idom(a). We writeo = (i if o satisfiesp which is defined as usual. For

a closed formula, we writg= ) if o = U for some (and thus all) truth assignments.
From a given QBF-instandeas above we construct the following DRIN= (Act P, A):
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— Act consists of a single default actian for clarity we omitt when defining the
rules below.
— Pcontains control states, t;, andf; foralli € {1,...,k} andcj forall j € {1,...,n+
1}; all these states are distinct. For convenience we reféateq also asq. 1.
— I contains distinct symbolg for all eveni € {1,... k}.
— Finally, A consists of the following rules: For eack {1,...,k} we have the two
rules
Xi = Xiy1 D>t andx — Xiy1> fj, if i is odd and
Xi — Xit1Yi > tj andcg 1Y, — x> fj, ifiis even

For eachj € {1,...,n} and each literdl in clausec; we have the rule
¢:Cj — Cj+1,

where@p = P*tj(P\ {ti, fi})* if | =x andp= P*fi(P\ {t;, fi})* if | = —x. Itis not
hard to see that these constraints are stable.

Forw= (ps,...,p1) € P* andp € P we write p(w) for the termp(p1(),...,pi()) by a

little abuse of notation. It is easy to see tﬁ&ﬁgf{cnﬂ(w) | we P*} is a regular set of
configurations. We claim:

X1(8) S pre*(R) iff ’: IX1VX2...QuXk : CL A+ ACp. (1)

Clearly,M as well as a DPN tree automaton fcan be constructed froirin logarith-
mic space such that (1) proves Theorem 6.

Before we prove (1) we discuss the intuition of the constamct-rom initial config-
urationx; (€) the process successively chooses truth values for theblesia, . . . , X«.
The choicet (ff) for variablex; is recorded by creating a son with control stitéf;).
For oddi, i.e. for variables quantified existentially, the choice@-deterministic by
the two transition ruleg; — Xj+1 > tj andx; — X1 > fj. For even, however, i.e. for
variables quantified universally, the process must firsbskhdhe valuét as the transi-
tion x; — Xx+1Y; > tj is the only transition from statg. The transition also records by
putting; onto the stack, that is has to chodséater. Once validity of the first choice
tt has been confirmed the transitign 1Y; — X1 > fj is executed that choostss the
value forx; and initiates new choices for the more innermost varialblgis< i’ by going
to control state 1 again. In order to allow overwriting the first choise of a \&far x;
by a later choice, the current truth valuex@fis determined by the rightmost son, i.e.,
the son created last, that has either control st#éter tt) or f; (for ff). In order to prepare
for the formal proof, we capture this by defining for a wavd= P* (representing the

control states of the sons) the partial truth assignragntX part .

tt if we P*t(P\ {ti, fi})*
ow(Xi) = | ff if we P*fi(P\ {t;, fi})*
undefined otherwise

5 Ris the language of thM-tree automatori{dy,d}, {p({e}) — a1 | p € P} U {Cns1(a) —
G} {a2})-
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After truth values have been chosen for all the variablesptbcess is in statg, 1 = c;.
The transitions front; to ¢j;; are defined in such a way that they are enabled if and
only if the clausec; is satisfied by the current choice of truth values for thealslss.
Hence, there is a transition sequence bringing the prooasscf to ¢, 1 if and only if
Cc1 A\ -+ ACyis satisfied for the current choice of truth values for thealdes.

In order to prove claim (1) formally, we first show by induction j that for all
j €{0,...,n} andw € P* with dom(oy) = {X1,...,Xx} the following two properties
are valid:

a) 3w € P*:ci(w) —* cjra(w) ifand only if oy = o A -+ Ac.
b) ci(w) —* ¢j+1(W) impliesw=w forallw e P*.

We then use the cage= n as the base case in an inductive proof of the following claim
(recall that we writex1 for ci1): for all i € {1,...,k+ 1}, w € P* with dom(oyw) 2
{X1,... Xi—1}:

c) IW € P* 1 x (W) —* cor1(W) if and only if ow = QiXi ... QuXk i C1A -+ ACp.
d) X (w) —* chy1(W) impliesow(x) = oy (x) foralll € {1,...,i — 1}, W € P*.

Here we perform the induction downwards, i.e., we start wittk+ 1 as the base case
and argue inductively downwards towards the dasd. The details of these inductions
are left to the reader.

Finally, property c) reads far= 1 andw = ¢ as follows:

W € P ixa(e) =" Cra(W) iff O = Qaxa... QX1 CLA - ACh

This equivalence implies the equivalence (1). O

H Proof of Theorem 7

Theorem 7. There exists a CDPW = (Act P,I",A) with nonstable constraints, and
a regular se of M-configurations such thatrey,(T) is not definable by am-tree
automaton.

Proof: Consider the CDPW = (Act= {a},P={p,q,s,t,s,t'},[ = {$},A) whereA
consists of the following transition rules:

(1) P*: p$ <> g% ) P 1% < p$
(2) (p+)P oS o8 (8) (r+0)P" : % — o'
@) (d+U)P 'S — t$ (@) (q+H)P* : t$ < t'$
@) (d +t)P*: 5% s$ () (q+1)P* : t$ < %

Notice that the transition rules of the modi¢labove do not use (modify) the stacks,
and do not create new processes. We congditteonfigurations which are in fact 1-ary
trees. Therefore, such configurations are sequences afriine p1$*pz - - - $*pn (with
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the interpretation that the process of inddras the procedst 1 as unique son). Then,
it is easy to check that

pre*(($5)"($a)*) N ($s)" ($t)*($a)" ($r)" =
{($9)' ($t)! ($9)(3r)* : 0<i,k, and 0< j < ¢}

which is clearly a nonregular language.

Indeed, starting from a sequence of the fof$s)"($q)™, the down-most (right-
most in the word representatiog)in the tree can be rewritten (backward)pgaising
the rule (1). This information can be transmitted to the tbhe tree using constraints:
the rules (2) and (3) can be used to propagate upward (to dhé according to the
word representation)@ through they's, and then &' through the’s (if any), until the
first (down-most in the tree, or right-most in the word repreation)s is reached and
transformed into as using the rule (4).

Then, thep which is down in the tree can be rewritten toransing rule (5). Then,
using rules (6) and (7), the statg/'sare rewritten again tq and state$’ tot until ' is
reached (which is between the stasesd the state§ and transformed toa

Of course, several rewriting sequences like the one dextdbove can be running
simultaneously since the application of rule (1) can ocdwary time and not neces-
sarily at the down-mogg in the tree. However, if we restrict our view to reachable
configurations of the regular for$s)*($t)*($q)*($r)*, then we get precisely the non-
regular language given above. ]



