
Regular Symbolic Analysis of
Dynamic Networks of Pushdown Systems

Ahmed Bouajjani1, Markus Müller-Olm2, and Tayssir Touili1

1 LIAFA, University of Paris 7, 2 place Jussieu, 75251 Paris cedex 5, France
2 Universität Dortmund, FB 4, LS 5, Baroper Str. 301, 44221 Dortmund, Germany

Abstract. We introduce two abstract models for multithreaded programs based
on dynamic networks of pushdown systems. We address the problem of symbolic
reachability analysis for these models. More precisely, weconsider the problem
of computing effective representations of their reachability sets using finite-state
automata. We show that, while forward reachability sets arenot regular in gen-
eral, backward reachability sets starting from regular sets of configurations are
always regular. We provide algorithms for computing backward reachability sets
using word/tree automata, and show how these algorithms canbe applied for flow
analysis of multithreaded programs.

1 Introduction
Multithreaded programs are an important class of programs,in which parallelism is
used routinely in practice. Parallel programming in general is known to be difficult
and error prone, and multithreaded programs are no exception. Therefore, the design
of methods and techniques for automatic analysis of such programs is an important
and a quite challenging issue. For that, we need to define formal models which are
adequate for modelling multithreaded programs, and for which it is possible to construct
automatic analysis algorithms.

In recent related work, complete analysis algorithms for abstract classes of parallel
programs have been studied by several researchers. Mayr [14] establishes a number of
decidability and undecidability results for process classes in the so-called PRS (process
rewrite system) hierarchy. PRS are able to model sequentialas well as parallel phe-
nomena. In fact, they can be seen as combinations of pushdownsystems and Petri nets
(defined in a term rewriting setting using prefix and multisetrewrite rules). Following
the automata-based approach for the symbolic verification of pushdown systems [2, 11],
Lugiez and Schnoebelen [13] show how to use tree automata forreachability analysis
of PA processes [1], a particularly well-known class in the PRS hierarchy. Their pa-
per has inspired further work that applies tree automata techniques to analysis of more
expressive models [6, 7, 3, 4, 21]. Another line of research generalizes fixpoint-based
techniques as common in flow analysis to analysis of similar models of parallel pro-
grams [20, 15, 16]. Both approaches can be used to solve bitvector problems, a certain
type of simple but important data-flow-analysis problems, for flow graph systems with
parallel calls of procedures, or, equivalently, parbegin/parend-blocks interprocedurally
[9, 10, 20]. While [9, 10] reduce the problem to reachabilityanalysis of PA-processes,
[20] uses fixpoint-based techniques.

Unfortunately, these results donot cover interprocedural analysis of multithreaded
programs because commands that start new threads cannot adequately be modelled by

2 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

parallel calls. In a multithreaded program such a command typically returns immedi-
ately (see, e.g., the JAVA or POSIX thread API). Therefore the father of a new thread
can pursue its execution concurrently to its son and can eventerminate or return to its
caller while the son is still alive. In contrast, a parallel call returns only when and if all
its component processes have terminated, which is a fundamentally different behavior.
Indeed we show in Sect. 2 that in presence of procedures, multithreaded programs can
have trace languages different from that of any program withparallel calls.

The goal of this paper is to adapt the automata-based approach mentioned above
to interprocedural (reachability) analysis of multithreaded programs. For this purpose
we propose two models of multithreaded programs, show how toperform reachability
analysis for them with automata-theoretic constructions,and discuss their utility for
modelling and analysing multithreaded and other classes ofparallel programs.

In Sect. 2 we introduceDynamic Pushdown Networks (DPNs)as a basic model of
multithreaded programs. Intuitively, a DPN is a network of pushdown processes that run
independently in parallel. Each process can create new members of the network as a side
effect of a pushdown transition. DPNs thus model a network ofthreads each of which
can perform basic actions, call (recursively) procedures,andspawnnew processes. We
show that while forward reachability of DPNs does not preserve regularity of configu-
ration sets in general, it still preserves context-freeness (Sect. 4). Backward reachability
in contrast preserves regularity and we show how to compute the backward reachability
set of a regular set of configurations by means of a saturationalgorithm in polynomial
time (Sect. 4). We also show that DPN allow us to solve bitvector problems interproce-
durally for multithreaded programs (Sect. 3), contrary to previously used models in the
literature such as PA processes (Sect. 2).

We extend DPNs toConstrained DPNs (CDPN)in Sect. 5, a model that combines
(indeed even extends) the modelling power of both DPNs and PA(and even the so-
called PAD [14]). The new idea is that enabledness of a transition for a process can
be made dependent on aconstraintwhich is a regular pattern among the sequence of
control states of its sons. We require constraints to bestablein the sense that further
evolution of the sons cannot invalidate a constraint. We show that otherwise we lose
the property that backward reachability preserves regularity. Transition rules with sta-
ble constraints increase the expressive power considerably over DPNs. In particular
they allow us to model, in addition to thread creation and procedure calls, also paral-
lel calls and various types of join commands among other things. It also allows us to
return information back from procedures called in parallelto their caller which cannot
be handled in PA and not even in PAD. Constrained DPNs inheritfrom DPNs that for-
ward reachability does not preserve regularity. Therefore, we consider here backward
reachability only. We show that the set of configurations that can reach a given regular
set of configurations of a CDPN can again be computed by a saturation algorithm. As
configurations of CDPNs are given by unbounded width trees rather than by words as
in the DPN case—the tree structure captures the father-son relationship—we resort to
hedge automata here [8]. The construction is nontrivial andits justification uses in a
subtle manner the assumption about the stability of the constraints in the system defini-
tion. While the overall complexity of this procedure is exponential—we indeed prove a
PSPACE lower bound—it is exponential only in the number of different constraints used

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 3

in the rules of the given CDPN, and just polynomial in the other problem parameters.
Therefore, if the number of different constraints is bounded, we obtain a polynomial-
time analysis algorithm. This in particular holds if we justmodel (in addition to spawn
operations), parallel calls, a fixed selection of join commands, or a combination of these.
Due to lack of space, proofs are omitted. They can be found in [5].

2 Dynamic Pushdown Networks
A Dynamic Pushdown Network(DPN) is a tupleM = (Act,P,Γ,∆), whereAct is a
finite set of visibleactions, P is a finite set ofcontrol states, Γ is a finite set ofstack
symbolsdisjoint fromP, and∆ is a finite set of transition rules of the following forms:

either (a)pγ
a
→֒ p1w1, or (b) pγ

a
→֒ p1w1 � p2w2, wherep, p1, p2 ∈ P, a∈ Act, γ ∈ Γ,

andw1,w2 ∈ Γ∗. A DPN can be seen as a collection of identical sequential processes
running in parallel, each of them being able to (1) perform pushdown operations and to
(2) create processes in the network. Synchronization is notallowed between processes.

A configuration of a DPNM (also calledM-configuration) is a word over the alpha-
betΣ = P∪Γ starting with a symbol inP. An M-configuration can be seen as a sequence
of (sub)words inPΓ∗ each of them corresponding to the configuration of one of the pro-
cesses running in parallel in the network. LetConfM be the set of allM-configurations.

For everya ∈ Act, we define a−→M to be the smallest relation inConfM ×ConfM
s.t.∀u,v∈ ConfM, u a

−→M v iff (1) there is a rulepγ
a
→֒ p1w1 in ∆ s.t.u = u1pγu2 and

v = u1p1w1u2, or (2) there is a rulepγ
a
→֒ p1w1 � p2w2 in ∆ s.t. u = u1pγu2 andv =

u1p2w2p1w1u2. We writeu→M v if there existsa∈ Act s.t.u a−→M v.
The semantics above says that rules of the form (a) correspond precisely to push-

down operations (manipulation of the top of the stack) whichcan be applied anywhere
in the configuration (i.e., by any of the processes in the network): if a process is at
control statep and hasγ as topmost stack symbol, then it can move to control statep1

and replaceγ by w1 at the top of its stack. Rules of the form (b) allow in additionthe
creation of new processes: a process with control statep and topmost stack symbolγ
can (1) move to statep1 and modify its stack by replacingγ with w1, and moreover, (2)
create (to its left) a process which starts its execution at the initial configurationp2w2.

Given a configurationc, the set of immediate predecessors (resp. successors) of
c is preM(c) = {c′ ∈ C : c′→Mc} (resp.postM(c) = {c′ ∈ C : c→Mc′}). These no-
tations can be generalized straightforwardly to sets of configurations. Letpre∗M (resp.
post∗M) denote the reflexive-transitive closure ofpreM (resp.postM). We omit the sub-
script M when it is understood from the context. Given∆′ ⊆ ∆, we usepre∆′ (resp.
post∆′) to denote immediate predecessors (resp. successors) using a rule in∆′. Then,
pre∗∆′ andpost∗∆′ denote the corresponding reflexive-transitive closures. Furthermore,

TracesM(c) = {w∈ Act∗ : ∃c′. c
w
→M c′} is the set of traces generated byc.

DPN vs. PA Processes:DPNs allow to model multithreaded programs where creation
of threads is done using spawn commands (see Sect. 3). This isnot the case for other
formalisms used in the literature for modelling parallel programs like PA [1]:3

3 PA corresponds to processes definable by a set of rewrite rules of the formA→ t whereA is
a process variable, andt is a term built from process variables, sequential composition, and
asynchronous parallel composition.

4 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

Theorem 1. LetL =
S

{an
(
bn′ ⊗(cmdm′

)
)

: n≥ n′ ≥ 0, m≥m′ ≥ 0}, where⊗ denotes
the shuffle (or interleaving) operator defined as usual. Then:

a) There is a DPN M and an M-configuration c such thatTracesM(c) = L.
b) There is no PA system∆ and no process variable A such thatTraces∆(A) = L.

Hence, PA processes are inadequate for capturing the behavior of multithreaded pro-
grams with spawn-like creation of threads. It also follows from the proof that trace sets
of DPNs cannot be captured by the type of constraint systems used as semantic ref-
erence point in the constraint-based approach [20, 15, 16].Therefore, the methods of
[9, 10, 20, 16, 15] for interprocedural analysis of flow graphs with parallel calls do not
carry over immediately to multithreaded programs. These inadequacy results are rather
strong because any interesting process equivalence would imply equality of traces.

3 Program Analysis Based on DPN

We show hereafter how DPNs can be used to model multithreadedprograms and how
our results on symbolic reachability analysis can be used inflow analysis of these pro-
grams. This is inspired by Esparza et. al. [9, 10].

Flow Graph Systems:As common in program analysis we assume that the program
is given by a flow graph system. LetProc be a finite set of procedure names contain-
ing Main . We assume that the program operates on a setX = {x1, . . . ,xk} of global
variables. We consider the following types of basic statements: assignment statements,
xi := e, wherexi ∈X ande is some expression; call of a single procedure,call(π), where
π∈Proc; and spawn of a new thread,spawn(π), whereπ∈Proc. The intuitive meaning
of assignment statements and calls is obvious. The spawn commandspawn(π) models
creation of a new independent thread. Like the callcall(π), spawn(π) starts an instance
of procedureπ. In contrast to a call, however, the spawn command returns immedi-
ately such that the newly created instance ofπ runs as a new thread concurrently to the
statements that are executed after the spawn. LetStmt be the set of basic statements.

The control flow of each procedureπ ∈ Proc is described by a control flow graph
Gπ = (Nπ,Eπ,eπ,xπ), whereNπ is a finite set of program points of procedureπ; Eπ ⊆
Nπ ×Stmt×Nπ is a finite set of edges annotated by basic statements;eπ ∈ Nπ is the
entry point ofπ; andxπ ∈ Nπ is the exit point ofπ. We assume that the sets of program
points of different procedures are disjoint,Nπ∩Nπ′ = /0 if π,π′ ∈Proc, π 6= π′, and agree
thatN =

S

π∈ProcNπ andE =
S

π∈ProcEπ.

From Flow Graph Systems to DPN:From a given flow graph system as above we
construct a DPNM = (Act,P,Γ,∆) that captures its operational semantics:

– The actions are given by the assignments that appear in the flow graph system;
a special symbolτ is used to signify steps in which no assignment is executed:
Act= {x := e | ∃u,v : (u,x := e,v) ∈ E}∪{τ};

– we have just one artificial control state #:P = {#};
– we work with a stack of program points; the topmost stack symbol is the current

program point of the current procedure, the other stack symbols are the return points
of its callers:Γ = N;

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 5

– the transition rules in∆ describe computation steps of the flow graph system:

1. for every assignment edge(u,x := e,v) ∈ E we put the rule #u
x:=e
→֒ #v to ∆;

2. for every call edge(u,call(π),v) ∈ E we put the rule #u
τ
→֒ #eπv to ∆;

3. for every spawn-edge(u,spawn(π),v) ∈ E we put the rule #u
τ
→֒ #v�#eπ to ∆,

4. for each procedureπ ∈ Proc, we put the rule #xπ
τ
→֒ # to∆. This rule describes

the return from procedureπ.

Note that it is possible to extend the semantics above in order to handle local pro-
cedure variables and return values from procedure calls. For that, we assume as usual
that data values are mapped into a finite abstract domain using standard techniques such
as predicate abstraction. Then, abstract values of local variables can be encoded in the
stack alphabet and abstract return values can be encoded in the control states.

Solving Bitvector Problems:The operational semantics given above can be used for
solving bitvector problems. In order to ease comparison with [10] we discuss detection
of live (global) variables. Other bitvector problems can besolved in a similar fashion.
Informally, a variablex ∈ X is live at a program pointu ∈ N if there is an execution
from u in which x is used before it is over-written. We restrict attention toreachable
configurations and use a similar definition and notation as Esparza and Podelski [10].
Thus, we define: program variablex is live at a program pointu∈ N if there is a tran-
sition sequence #eMain

σ1−−→c1
σ2−−→c2

y:=e
−−−→c3 such that: (1)u is activein configuration

c1, i.e., appears as the topmost stack symbol of one of the parallel pushdown processes
in the network described byc1; (2) σ2 is a sequence of statements that do not modifyx
(i.e., do not write tox); and (3)e is an expression in whichx is used.

We denote the set of configurationsc in which u is active byAtu, the set of assign-
ments in the given program that modifyx by Modx ⊆ Act, and the set of assignments
in the program in whichx is used byUsex ⊆ Act. Moreover, we write∆A for the set of

rules of∆ with an action in a subsetA⊆ Act: ∆A = {(pγ
a
→֒ w) ∈ ∆ | a∈ A}. Using this

notation it is not hard to see thatx is live atu if and only if

#eMain ∈ pre∗(Atu∩pre∗∆Act\Modx
(pre∆Usex

(ConfM)))

Then, our results concerning backward reachability analysis of DPN given in the next
section (see Theorem 3 and Note 1) can be used to decide this property.

4 Reachability Analysis for DPN

We consider the problem of computing representations of thepost∗ andpre∗ images of
given sets of configurations. We are interested in the case that sets of configurations are
effectively given using automata-based representations.

Computing post∗ Images: We show first thatpost∗ does not preserve regularity in

general. Consider indeed the DPNM = ({a},{p},{γ1,γ2},{pγ1
a
→֒ pγ1γ1 � pγ2}). It is

easy to see thatpost∗M({pγ1}) = {(pγ2)
npγn+1

1 : n≥ 0}, which is clearly nonregular.

6 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

Proposition 1. There is a DPN M, and a configuration c of M, such thatpost∗(c) is
not a regular set of configurations.

We prove, however, thatpost∗ preserves context-freeness:

Theorem 2. For every DPN M and any context-free set C of M-configurations, the set
post∗(C) is context-free and effectively constructible in polynomial time.

Computing pre∗ Images: We show now thatpre∗ preserves regularity. LetM be a DPN
andA be an automaton recognizing a set ofM-configurations. We define a polynomial-
time algorithm allowing to construct an automatonApre∗ s.t. L(Apre∗) = pre∗M(L(A)).
For technical reasons, we require thatA is in a special form we define below.

M-Automata: Let M = (Act,P,Γ,∆) be a DPN. A finite automatonA = (S,Σ,δ,s0,F)
is anM-automaton if the following conditions hold:

1. Σ = P∪Γ is the finite alphabet,
2. the set of states is partitioned into two sets,S= Sc∪Ss, Sc∩Ss = /0,
3. for everys∈ Sc and everyp∈ P, there is a (unique and distinguished) statesp ∈ Ss,
4. there is a relationδ′ ⊆ Ss×Γ× (Ss\{sp : s∈ Sc, p∈ P}) ∪ Ss×{ε}×Sc such that

δ = δ′∪{(s, p,sp) : s∈ Sc, p∈ P},
5. the initial states0 ∈ Sc, and
6. F ⊆ S is the set of final states.

For σ ∈ Σ∪{ε} ands,s′ ∈ S, we writes
σ
→δ s′ in lieu of (s,σ,s′) ∈ δ. We extend

this notation in the obvious manner to sequences of symbols:(1)∀s∈ S. s
ε
→δ s, and (2)

∀s,s′ ∈ S. ∀σ ∈ Σ∪{ε}. ∀w∈ Σ∗. s σw
−−→δ s′ iff ∃s′′ ∈ S. s

σ
→δ s′′ ands′′

w
→δ s′.

Note that requirement (4) codes a number of conditions onδ: (1) eachs∈ Sc has
sp as its uniquep-successor and has noΓ-transitions, (2)s is the only predecessor of
sp, (3) only ε-moves from states inSs lead to statess∈ Sc, (4) statess∈ Ss do not
have p-successors, for anyp ∈ P. So, every path in anM-automaton (starting from
the initial state) is the concatenation of paths of the forms

p
→δ sp

w−→δ t
ε
→δ s′ where

s,s′ ∈ Sc, p∈ P, w∈ Γ∗, and all states in the pathsp
w
−→δ t are inSs. Note that for every

finite automatonA over the alphabetP∪Γ such thatL(A) ⊆ ConfM, it is possible to
construct anM-automaton recognizing the same language.

Constructing the AutomatonApre∗ : Let M be a DPN andA = (S,Σ,δ,s0,F) be an
M-automaton. The construction ofApre∗ is in the same spirit as the ones for single
pushdown systems (see [2]). It consists in adding iteratively new transitions to the au-
tomatonA according tosaturationrules (reflecting the backward application of the
transition rules in the system), while the set of states remains unchanged. Therefore,
we defineApre∗ to be the finite-state automaton(S,Σ,δ′,s0,F), whereδ′ is the smallest
relation which containsδ (i.e.,δ ⊆ δ′) and satisfies the following conditions:

R1: If (pγ
a
→֒ p1w1) ∈ ∆ ands

p1w1−−−→δ′ s
′, for s,s′ ∈ S, then(sp,γ,s′) ∈ δ′.

R2: If (pγ
a
→֒ p1w1 � p2w2) ∈ ∆ ands

p2w2p1w1−−−−−−→δ′ s
′, for s,s′ ∈ S, then(sp,γ,s′) ∈ δ′.

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 7

The relationδ′ can be computed as the limit of an increasing sequence of relations
obtained by adding transitions toδ that are required by one of the implications above.
This procedure terminates after a polynomial number of steps since only a polynomial
number of transitions can potentially be added.

Let us explain intuitively the role of the saturation rule (R1). Consider a path in the
automaton of the forms p1w1−−−→s′. This means, by definition ofM-automata, thats is nec-
essarily inSc and that we haves

p1−−→sp1

w1−−→s′. Then, the rule consists in adding to the

automaton the transitionsp
γ
→ s′. Since by definition ofM-automata we haves

p
→ sp, we

obtain a paths
pγ

−−→s′ in the automaton. Therefore, if a configurationu1p1w1u2 is recog-
nized by a runs0 u1−−→s

p1w1−−−→s′
u2−−→sF , then its predecessoru1pγu2 is also recognized

due to the new transition by the runs0 u1−−→s
pγ

−−→s′
u2−−→sF . The role of (R2) is similar.

Theorem 3. L(Apre∗) = pre∗M
(
L(A)

)
.

Note 1. For the sake of completeness, we mention that for every DPNM, and everyM-
automatonA , the setspreM(A) andpostM(A) are regular and effectively constructible.
The constructions are quite straightforward. ForpreM we take two copies ofA . The first
copy provides the initial state and the second copy the final states. We then apply the
saturation rules to the first copy of the automaton, but let all new transitions lead from
states of the first copy to states of the second copy. ThepostM construction is similar (it
needs adding a finite number of intermediary states).

5 Constrained DPN

We consider in this section an extension of the DPN model introduced in Section 2. In
addition to the ability of performing spawn operation as previously, processes are now
allowed to observe the control states of their children (processes they have created in
the past). This is relevant in particular for handling return values and some kinds ofjoin
statements between parallel processes. To achieve that, wedefine a model where the
application of a transition rule by some process is conditioned by a (regular language)
constraint on the sequence of control states of its children. We need however to impose
a stability condition (defined below) on the constraints in order to havea model which
can be analysed by means of finite-state automata representations. We show later that
we lose regularity of the reachability sets if we relax the stability condition.

Stable Regular Languages:Let Σ be a finite alphabet and letρ ⊆ Σ×Σ be a binary
relation overΣ. Then, a set of symbolsS⊆ Σ is ρ-stable iff ∀s∈ S. ∀t ∈ Σ. (s,t) ∈
ρ ⇒ t ∈ S. A ρ-stable regular language overΣ is a subset ofΣ∗ which is definable by a
regular expression of the form:

e ::= S, aρ-stable set| e+e | e·e | e∗

We can prove straightforwardly by induction on the structure of regular expressions:

Lemma 1. Let φ ⊆ Σ∗ be aρ-stable regular language, let u,v∈ Σ∗, and let a∈ Σ such
that uav∈ φ. Then, for every b∈ Σ, (a,b) ∈ ρ implies that ubv∈ φ.

8 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

Definition of the Models: A Constrained Dynamic Pushdown Network(CDPN) is a
tupleM = (Act,P,Γ,∆), whereAct is a finite set of visibleactions, P is a finite set of
control states, Γ is a finite set ofstack symbolsdisjoint from P, and∆ is a finite set

of transition rules of the following forms: either (a)φ : pγ
a
→֒ p1w1, or (b) φ : pγ

a
→֒

p1w1 � p2w2, wherep, p1, p2 ∈ P, a ∈ Act, γ ∈ Γ, w1,w2 ∈ Γ∗, andφ is a ρ∆-stable

regular language overP, with ρ∆ = {(p, p′)∈P×P : there is a ruleψ : pδ
a
→֒ p′u or ψ :

pδ
a
→֒ p′u� p′′v in ∆}.
A CDPN consists of a collection of identical sequential processes running in paral-

lel, each of them being modeled as a pushdown system which is able to (1) manipulate
its own stack using pushdown rules of the form (a), (2) createa new process (which
becomes its youngest son) using rules of the form (b), and (3)observe, under some
conditions, the states of its children (processes it created in the past): each transition
rule is constrained by the fact that the sequence of control states of the children (given
in the decreasing order of their age) must belong to the specified languageφ.

Since we need to refer to the children of each process, a configuration of a CDPN
can be naturally seen as a tree where each vertex is annotatedwith the configuration
of some sequential process (pushdown system), and where thestructure corresponds to
the relation father-son. Notice that such a tree may have an arbitrary width. We define
hereafter a class of terms describing such configurations and we define a transition
relation between such terms.

M-Terms: Let X = {x1, . . . ,xn} be a set of variables. We define the setT [X] of M-terms
overP∪Γ∪X inductively as follows:

– X ⊆ T [X],
– If t ∈ T [X] andγ ∈ Γ, thenγ(t) ∈ T [X],
– If t1, . . . ,tn ∈ T [X] andp∈ P, thenp(t1, . . . ,tn) ∈ T [X], for n≥ 0.

Note that in the last item of this definition,n can be 0 (i.e.,p is on a leaf). In that
case, we writep() or simply p to represent the corresponding term.

Terms inT [/0] are calledground terms, and will also be denoted byT . A term
in T [X] is linear if each variable occurs at most once. Acontext Cis a linear term. Let
t1, . . . ,tn benground terms. ThenC[t1, . . . ,tn] is the ground term obtained by substituting
in C the occurrence of the variablexi with the termti , for 1≤ i ≤ n.

A term inT [X] can be seen as a rooted labeled tree of arbitrary width, where(1) an
internal node is either of arity 1 (has one successor) if it islabeled with a stack symbol
γ ∈ Γ, or it has an arbitrary arity if it is labeled with a statep ∈ P, and (2) where the
leaves are labeled with either variablesx∈ X, or with statesp∈ P.

M-Configurations: We defineM-configurations to be the groundM-terms (terms in
T [X] without variables). Givenn ground termst1, . . . ,tn, the termγm· · ·γ1p(t1, . . . ,tn)
represents a configuration where (1) the common ancestor to all processes is at local
control statep and hasγ1 · · ·γm as stack content, whereγ1 is the topmost stack symbol,
and (2) this process hasn children, theith of which is described, together with all of
its descendants, by the termti , for i = 1, . . . ,n. A ground term of the formγm· · ·γ1p
corresponds to the case of one single process without children.

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 9

Transition Relation: Given a CDPNM, we define a transition relation→M between
M-configurations. We introduce first a notation. Given a configurationt of one of the
forms γm· · ·γ1p(t1, . . . ,tn) or γm· · ·γ1p, we defineS(t) to be the control statep, i.e.,
S(t) is the local control state of the topmost process represented in t. Then,→M is the
smallest relation betweenM-configurations such that:

– If (φ : pγ
a
→֒ p1w1) ∈ ∆ andS(t1) · · ·S(tn) ∈ φ, then

C
[
γp(t1, . . . ,tn)

]
→M C

[
wR

1 p1(t1, . . . ,tn)
]

– If (φ : pγ
a
→֒ p1w1 � p2w2) ∈ ∆ andS(t1) · · ·S(tn) ∈ φ, then

C
[
γp(t1, . . . ,tn)

]
→M C

[
wR

1 p1(t1, . . . ,tn,w
R
2 p2)

]

wherewR denotes the reverse word (mirror image) ofw. The notions ofpost, pre, post∗,
andpre∗ are defined as usual.

Modelling Power: Since CDPN generalize DPN, the modelling of programs with
spawn operations given in Section 3 is still valid for CDPN. Moreover, stable con-
straints as preconditions of transition rules increase tremendously the modelling power
of our formalism. We discuss some applications in this section.

Parallel Calls: In the data-flow analysis scenario, we can use constraints, e.g., in order
to accommodate parallel call commands as another basic primitive for creation of par-
allelism in addition to spawn commands. A parallel call,pcall(π,π′) with π,π′ ∈ Proc
starts an instance of procedureπ and an instance ofπ′ and runs them in parallel. It
terminates if and when both these instances terminate.

Assume that we extend the flow-graph model of Section 3 by allowing parallel
calls as another type of basic statement. In the CDPN model wecapture the operational
semantics of an edge(u,pcall(π,π′),v) as follows: we start two new threads forπ andπ′

and ensure by a transition rule with an appropriate constraint that we can move tov only
after both these threads have terminated. For that, both threads indicate termination by
moving to a special new “terminated” control state♮ when they see a special new stack
symbol $ that we put at the bottom of their stack upon thread creation. Thus, we have
the following rules for modelling(u,pcall(π,π′),v):

P∗ : #u
τ
→֒ #γ1 �#eπ$ P∗ : #γ1

τ
→֒ #γ2 �#eπ′$ P∗♮2 : #γ2

τ
→֒ #v

whereγ1,γ2 are two auxiliary stack symbols chosen fresh for each parallel call. More-

over, the ruleP∗ : #$
τ
→֒ ♮ allows a thread to move to the state♮ once it has terminated.

Join Statements:Besides parallel calls we can also model different types of join-
commands. We use the same technique as above for making termination visible to the

father of threads: we now use the rule #u
τ
→֒ #v� #ep$ to describe the behavior of a

spawn edge(u,spawn(p),v) ∈ E. Thus, we mark the bottom of the stack with the spe-

cial symbol $. We also use the ruleP∗ : #$
τ
→֒ ♮ from above to make termination visible

10 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

in the control state. This allows us to describe the operational semantics of different
types of join-command such as for instance (1)join∀: proceed if all threads directly cre-
ated by the current thread have terminated, and (2)join∃k: proceed if at leastk among
the threads directly created by the current thread have terminated.

The behavior of an edge(u, j,v) where j is one of the join commands from above

is modelled by the ruleφ : #u
τ
→֒ #v whereφ = ♮∗ for j = join∀, andφ = (P∗♮)kP∗ for

j =join∃k. Obviously, these constraints are stable.

Return Values:We can distinguish between different termination conditions by using
more than one terminated control state and use regular patterns of such control states
in constraints in the father process. This allows us, for instance, to return information
back to the caller from procedures called in parallel. Therefore, the modelling power of
CDPNs exceeds that of PA and even that of PAD4 [14]: While in a PAD process (like
in a DPN process) we can use control states to return information back to a caller in
a normal procedure call, there is no such mechanism for parallel calls. The modelling
power for calls and parallel calls is thus more symmetric forCDPNs than for PAD.

Observing Execution Phases:Finally, as we allowstableconstraints, a creator of a
thread can react on situations in which the created thread has achieved some progress
already but is not necessarily terminated yet. As an example, let us assume that a process
F (the father) creates a number of worker threads that sequentially go through a number
of phases, say phases 1, . . . ,n, before termination. For modelling the worker threads we
use new control states from a hierarchyP0 ⊃ P1 ⊃ . . . ⊃ Pn = /0 of control states such
that a worker thread is in phasei if and only if its control state is inPi−1\Pi. This means
a worker thread has finished phasei if and only if its control state belongs toPi. Then,
the setsPi are stable and can be used as building blocks for constraintsin transitions of
F . Hence, processF can react on situations like “all worker threads have finished phase
i” by using the constraintP∗

i , “there is a worker thread that has finished phasei and all
other worker threads have finished phasej” by the constraintP∗

j PiP∗
j , etc.

6 Backward reachability analysis of CDPN

Symbolic Representations:We use hedge automata (unbounded width tree automata)
[8] to represent infinite sets of CDPN configurations. LetM = (Act,P,Γ,∆) be a CDPN.
An M-tree automatonis a tupleA = (Q,δ,F), whereQ is a set of states,F is the set
of final states, andδ is a set of rules of either the form (1)γ(q) → q′, whereγ ∈ Γ, and
q,q′ ∈ Q, or (2) p(L) → q, whereL is a regular language overQ, p∈ P, andq∈ Q.

In order to define the language recognized byA , we define amove relation→δ
between terms overP∪Γ∪Q: for every two termst andt ′, we havet →δ t ′ iff there exist
a contextC and a ruler ∈ δ such thatt = C[s], t ′ = C[s′], and (1) eitherr = γ(q) → q′,
s= γ(q), ands′ = q′, or (2)r = p(L) → q, s= p(q1, . . . ,qn), q1 · · ·qn ∈ L, ands′ = q.

Let
∗
→δ denote the reflexive-transitive closure of→δ. A term t ∈ T is accepted by

q∈ Q if t
∗
→δ q. Let Lδ

q = {t ∈ T : t
∗
→δ q}. A term t is accepted byA if there exists a

stateq∈ F such thatt
∗
→δ q. Let L(A) be the set of all terms accepted byA .

4 PAD extends PA by allowing rewrite rules of the formA·B→ t

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 11

A straightforward adaptation of the proofs in [8] allows to show that:

Theorem 4. The class of M-tree automata is closed under boolean operations. More-
over, the emptiness problem of M-tree automata is decidable.

Computing pre∗ Images: Let M = (Act,P,Γ,∆) be a CDPN and letA = (Q,δ,F)
be anM-tree automaton. We present hereafter an algorithm that allows us to construct
anM-tree automatonApre∗ recognizing thepre∗-image ofL(A). The construction pro-
ceeds (similarly to Section 4) by adding new transitions to the original automatonA
corresponding to the backward application of transition rules. In order to deal with the
constraints in the transition rules, we need to extend the original automaton.

Propagating Control States:Remember that, by definition of CDPN terms, the con-
figuration of each process is encoded bottom-up in the tree (reading first the control
state, and then the stack contents starting from its topmostsymbol). Since constraints
in CDPN transition rules refer to control states of the children processes, and since
hedge automata can check only constraints on immediate successors in trees (which
correspond in our case to the bottom symbols in the stacks of the children processes),
we need to propagate upward the informations about the control states through the
stacks. Therefore, the first step of our construction consists in defining a new automa-
ton AP = (QP,δP,FP) such thatL(AP) = L(A), and where states ofQ are labelled by
control statesp∈ P. This automaton is given by:QP = Q×P, FP = F ×P, andδP is
the smallest set of rules such that:

– if p(L) → s∈ δ, thenp(L′) → (s, p) ∈ δP, whereL′ is obtained by substituting in
the words ofL every occurrence of a states∈ Q by {(s, p) | p∈ P};

– if γ(s) → s′ ∈ δ, then for everyp∈ P, γ
(
(s, p)

)
→ (s′, p) ∈ δP.

Lemma 2. L(AP) = L(A), and for every t∈ T , t
∗
→δP (s, p) iff t

∗
→δ s andS(t) = p.

Note 2. To avoid confusion, we use in the sequelp, p′, p1, p2, . . . to denote elements of
P, s,s′,s1,s2, . . . , to denote states ofA , andq,q′,q1,q2, . . . to denote states ofAP.

From Constraints over P to Constraints over QP: Given a constraintφ andn terms
t1, . . . ,tn such thatti

∗
→δP

qi for 1≤ i ≤ n, we need also to be able to get the information
whetherS(t1) · · ·S(tn) ∈ φ from the statesq1, . . . ,qn. For that, we associate with each
constraintφ overP a constraint〈φ〉 overQP such thatS(t1) · · ·S(tn) ∈ φ if and only if
q1 · · ·qn ∈ 〈φ〉. The definition of〈φ〉 is straightforward by induction on the structure of
regular expressions for stable languages: (1)〈S〉= {(s, p) : s∈Q, p∈S}, (2)〈φ1 ·φ2〉=
〈φ1〉 · 〈φ2〉, (3) 〈φ1 + φ2〉 = 〈φ1〉+ 〈φ2〉, and (4)〈φ∗〉 = 〈φ〉∗.

Closed Set of Constraints:During the construction of the automaton, new transition
rules of the formp(L′) → q are added whereL′ are languages which are built from lan-
guagesL appearing in the rules of the original automatonA , and constraintsφ appearing
in the transition rules of the CDPNM, using intersection and right-quotient operations.
IntersectionsL∩〈φ〉 allow us to check that the guarding constraint for the application

12 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

of a transition rule is satisfied at the considered position in the tree. Right-quotients
Lq−1 = {w : wq∈ L} allow us to get immediate predecessors by a spawn operation of
trees where the children of the spawning process are recognized by a sequence of states
in L, and the youngest son among these children (i.e., the one created by the spawn
operation and which is the right-most one in the list of children) is recognized by the
stateq. Then, let us defineΛ to be the smallest family of languages overQP such that:

– If (p(L) → q) ∈ δP, thenL ∈ Λ.

– If L ∈ Λ, and(φ : pγ
a
→֒ p1w1 � p2w2) ∈ ∆, thenL∩〈φ〉 ∈ Λ.

– If L ∈ Λ andq∈ QP, thenLq−1 ∈ Λ.

Lemma 3. The familyΛ is finite. Assuming that all languages and constraints appear-
ing in rulesδP and∆ are given by backward-deterministic finite-state automataof size
at most K, the number of elements ofΛ is in O(Kn+1) where n is the number of different
constraints appearing in the rules of∆.

ConstructingApre∗ : We defineApre∗ to be theM-tree automaton(Q′,δ′,F ′) such that
(1) Q′ = QP∪{qL

p : p∈ P, L ∈ Λ}, (2) F ′ = FP, and (3)δ′ is the smallest set of rules
such thatδ′0 = δP∪{p(L) → qL

p : p∈ P, L ∈ Λ} ⊆ δ′ and:

R1: If (φ : pγ
a
→֒ p′w) ∈ ∆, p′(L)→ q∈ δ′0, andwR(q)

∗
→δ′ q′, then

(
γ(qL∩〈φ〉

p)→ q′
)
∈ δ′.

R2: If (φ : pγ
a
→֒ p′w1� p′′w2) ∈ ∆, p′(L) → q′′ ∈ δ′0, wR

1(q′′)
∗
→δ′ q′, andwR

2(p′′)
∗
→δ′ q,

then
(
γ(qLq−1∩〈φ〉

p) → q′
)
∈ δ′.

Note that the statesqL
p, for p ∈ P, andL ∈ Λ, are added to the automaton in order to

recognize precisely all the terms havingp at the root and such that the sequence of
children of the root is recognized by a sequence of states in the languageL. Note also
that all the transitions added by the construction areΓ-transitions, and therefore they do
not addP-transitions to the automaton.

The set of rulesδ′ can be computed iteratively as the limit of an increasing sequence
δ′0 ⊆ δ′1 · · · such thatδ′i+1 contains at most one transition more thanδ′i added by applying
either(R1) or (R2). Note thatδ′ is necessarily finite since (by Lemma 3) the number of
triples(γ,qL

p,q), for γ ∈ Γ, p∈ P, L ∈ Λ, andq∈ Q′ is finite.

Lemma 4. For every q∈ QP, Lδ′
q = pre∗(LδP

q).

The lemma above says that the construction ensures that every state recognizes the
set of all predecessors of its original language (i.e., in the automaton before saturation).
Let us give some intuitive explanations about the role of thesaturation rules, and let us
consider the rule(R1) (since the role of(R2) is similar). Consider a termwRp′(t1, . . . ,tn)
such thatti

∗
→δ′ qi , for i ∈ {1, . . . ,n}. Assume thatp′(L) → q is a rule of the automaton.

This means that after recognizing each of the termsti and labelling their roots by the
statesqi, the automaton can label the termp′(t1, . . . ,tn) by q if the sequenceq1 · · ·qn is
in L. Assume furthermore thatwR(q)

∗
→δ′ q′. This means that the automaton can pro-

ceed by reading upward the wordw and label the termwRp′(t1, . . . ,tn) by q′. Therefore,

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 13

if (φ : pγ
a
→֒ p′w) is a transition rule of the system, and if the sequence of control states

S(t1) · · ·S(tn) is in φ, then we must add the termγp(t1, . . . ,tn) (which is the immedi-
ate predecessor ofwRp′(t1, . . . ,tn) by the transition rule) to the language ofq′ (to say
that this term is a predecessor of some term which was recognized byq′ in the original
automaton). This is achieved by applying the saturation rule which adds to the automa-

ton the transition(γ(qL∩〈φ〉
p) → q′). The justification of this is in fact subtle. First, if

S(t1) · · ·S(tn) ∈ φ, we must haveq1 · · ·qn ∈ 〈φ〉. Since states recognize predecessors of
terms in their original language, each stateqi is a pair(si , p′i) such thatp′i = S(t ′i) for
somet ′i such thatti ∈ pre∗(t ′i). Now, here is the point where the stability property of
φ plays a crucial role: it ensures that backward transitions cannot make a term satisfy
new constraints (or equivalently, that forward transitions cannot falsify a constraint).
Therefore, sinceS(t1) · · ·S(tn)∈ φ, we must have alsoS(t ′1) · · ·S(t ′n)∈ φ, which implies
thatq1 · · ·qn ∈ 〈φ〉. On the other hand, assume thatS(t1) · · ·S(tn) 6∈ φ butq1 · · ·qn ∈ 〈φ〉
becauseS(t ′1) · · ·S(t ′n) ∈ φ. We can show thatγp(t1, . . . ,tn) is actually in thepre∗ image
of the original language. Indeed, it is possible in this caseto start by rewriting each term

ti to its successort ′i , which makes the transition rule(φ : pγ
a
→֒ p′w) applicable.

Theorem 5. For every CDPN M, and for every M-tree automatonA , we can construct
an M-tree automatonApre∗ such that L(Apre∗) = pre∗

(
L(A)

)
.

Note 3. It is easy to show that, given anM-tree automatonA , the setpreM(A) (and in
fact also the setpostM(A)) is an effectivelyM-tree automata definable set.

Then, based on the modelling described in Sections 3 and 5, wecan apply Theo-
rems 5 and 4 to check reachability properties and solve flow analysis problems (such as
bitvector problems) for multithreaded programs.

Complexity Issues:By Lemma 3, we know that the size of the automatonApre∗ is at
most exponential in the number of constraints appearing in the given CDPN. In fact,
we can prove the following PSPACE lower bound by a reduction of the satisfiability
problem for quantified Boolean formulas (QBF).

Theorem 6. It is at least PSPACE-hard to decide for a given CDPN M, a regular set
of M-configurations R and an M-configuration c, whether c∈ pre∗(R) or not.

Despite the hardness result above, in many interesting cases, we only need afixednum-
ber of constraints, which leads to polynomial analysis algorithms. For instance, this is
the case when only trivial constraints (i.e., of the formP∗) are used, which corresponds
to the case of DPN models. Also, to model parallel calls only one additional constraint
is needed, namelyP∗♮2, as we have seen in Section 5. Similarly, we only need one
additional constraint for each type of join statement such as join∀ or join∃k. Note that
the automata for these constraints can easily be defined by backward deterministic au-
tomata of very small sizes. Also for typical properties suchas bitvector problems (see
Section 3), the initial automaton is always the one recognizing the set of all configu-
rations. Therefore, for an important fragment of CDPN whichsubsumes (in modelling
power) existing formalisms such as PA and PAD, and allows us in addition to model
spawn operations, our construction leads to a polynomial analysis algorithm.

14 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

However, when return values from parallel processes are taken into account, our
construction becomes exponential in the number of used abstract data values. This price
is unavoidable since dealing with an unfixed domain of returnvalues is precisely the
feature which makes our model complex (see the proof of Theorem 6). Such complexity
does not appear for weaker models such as PA or PAD (which havepolynomial analysis
algorithms [13, 10, 6]) since they cannot handle return values from parallel processes.

Relaxing Stability:We end this section by mentioning the fact that relaxing the stability
condition on the constraints appearing in the transition rules of CDPN leads to a model
for whichpre∗ images are not regular in general.

Theorem 7. There exists a CDPN M with nonstable constraints, and a regular set T of
M-configurations such thatpre∗M(T) is not definable by an M-tree automaton.

Actually, we can defineM s.t. all its transition rules are of the formφ : pγ →֒ p′γ (i.e.,
without stack manipulation and dynamic creation of processes), and whereφ is of the
simple formpP∗, for p∈ P. This shows that it is hard to relax the stability condition in
the definition of CDPN without losing the property thatpre∗ preserves regularity.

7 Conclusion

We have defined new formalisms (DPN and CDPN), based on word/term rewrite sys-
tems, allowing to model adequately spawn-like commands in multithreaded programs.
We have shown that (1) they are more suitable for modelling these commands than
previously proposed formalisms (such as PA and PAD), and that (2) they subsume in
fact in modelling power these models (concerning CDPN), andallow to handle features
these models cannot handle such as return values from parallel processes, various join
commands, etc.

We have defined automata-based techniques for computing backward reachability
sets of our models. In the case of the basic model of DPN, word automata can be used
for this purpose and the construction is simple. In the case of CDPN where constraints
on the children are used, the problem of reachability analysis becomes much more
delicate. The condition of stability we impose in CDPN on theconstraints (guards)
appearing in the transition rules seems to be necessary in order to have regular backward
reachability sets. Concerning complexity, our construction is exponential in the number
of different constraints used in the model, but significant classes of parallel programs
can be modelled using a fixed number of constraints (often representable using small
automata), and therefore they can be analysed in polynomialtime.

Future work includes the extension of our models and our approach to handle syn-
chronisation between parallel processes. Of course, the reachability analysis becomes
undecidable in general, but reasonable classes of programswith particular synchroni-
sation policies can be considered (see e.g., [18]), and generic frameworks for defining
abstractions (and refining them) can be developed based on our models and our tech-
niques, e.g., following the approaches of [3, 4, 15]. We think also that our techniques
could be used to handle models which extend those consideredin this paper by allow-
ing a bounded number of context switches, in the spirit of theapproach of [19].

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 15

References

1. J. Baeten and W. Weijland. Process Algebra. InCambridge Tracts in Theoretical Computer
Science, volume 18, 1990.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata: Ap-
plication to Model Checking. InCONCUR’97. LNCS 1243, 1997.

3. A. Bouajjani, J. Esparza, and T. Touili. A Generic Approach to the Static Analysis of Con-
current Programs with Procedures. InPOPL’03. ACM, 2003.

4. A. Bouajjani, J. Esparza, and T. Touili. Reachability Analysis of Synchronised PA systems.
In INFINITY’04. to appear in ENTCS, 2004.

5. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular Symbolic Analysis of Dynamic Net-
works of Pushdown Processes. Technical report, LIAFA lab No2005-05, and University of
Dortmund No 798, June 2005.

6. A. Bouajjani and T. Touili. Reachability Analysis of Process Rewrite Systems. In
FSTTCS’03. LNCS 2914, 2003.

7. A. Bouajjani and T. Touili. On Computing Reachability Sets of Process Rewrite Systems. In
RTA’05. LNCS, 2005.

8. A. Bruggemann-Klein, M. Murata, and D. Wood. Regular Treeand Regular Hedge Lan-
guages over Unranked Alphabets. Research report, 2001.

9. J. Esparza and J. Knoop. An Automata-Theoretic Approach to Interprocedural Data-Flow
Analysis. InFoSSaCS’99, volume 1578 ofLNCS, 1999.

10. J. Esparza and A. Podelski. Efficient Algorithms for pre∗ and post∗ on Interprocedural Par-
allel Flow Graphs. InPOPL’00. ACM, 2000.

11. A. Finkel, B. Willems, and P. Wolper. A Direct Symbolic Approach to Model Checking
Pushdown Systems. InInfinity’97, ENTCS 9. Elsevier Sci. Pub., 1997.

12. J. E. Hopcroft and J. D. Ullman.Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, 1979.

13. D. Lugiez and P. Schnoebelen. The Regular Viewpoint on PA-Processes.Theoretical Com-
puter Science, 274(1-2):89–115, 2002.

14. R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State Sys-
tems. Phd. thesis, Technical University Munich, 1998.

15. M. Müller-Olm. Variations on Constants. Habilitationsschrift, Fachbereich Informatik, Uni-
versität Dortmund, 2002.

16. M. Müller-Olm. Precise Interprocedural Dependence Analysis of Parallel Programs.Theo-
retical Computer Science, 311:325–388, 2004.

17. C. H. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.
18. S. Qadeer, S. Rajamani, and J. Rehof. Procedure Summaries for Model Checking Multi-

threaded Software. InPOPL’04, 2004.
19. S. Qadeer and J. Rehof. Context-Bounded Model-Checkingof Concurrent Software. In

TACAS’05. LNCS 3440, 2005.
20. H. Seidl and B. Steffen. Constraint-based Interprocedural Analysis of Parallel Programs. In

ESOP’2000. LNCS 1782, 2000.
21. T. Touili. Dealing with Communication for Dynamic Multithreaded Recursive Programs. In

1st VISSAS workshop, March 2005. Invited Paper.

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 1

Appendix
Without further ado, we present here the proofs that were omitted due to lack of space.
We assume the notation and definitions from the main body of the paper.

A Proof of Theorem 1,a

Theorem 1,a.There is a DPNM with a single control state, and anM-configurationc
such thatTracesM(c) = L.

Proof: Consider the DPNM = (Act,P,Γ,∆) with

– Act= {a,b,c,d},
– P = {p},
– Γ = {A,B,C,D},

– ∆ = {pA
a
→֒ pAB, pA

a
→֒ pB� pC, pB

b
→֒ p, pC

c
→֒ pCD, pC

c
→֒ pD, pD

d
→֒ p}.

Ignoring the spawn in the second rule, the first three rules describe a push down au-
tomaton that from control statep and initial stack contentsA accepts the languageanbn,
n > 0 upon empty stack. This push down automaton generates the tracesanbn′ with
n≥ n′ ≥ 0. When moving from the mode in which it generatesa’s to the mode in which
it generatesb’s, i.e., when executing the second rule, it spawns a second push down au-
tomaton that acceptscmdm, m> 0, upon empty stack and which has the tracescmdm′

for
m≥ m′ ≥ 0. These traces are arbitrarily interleaved with the sequence ofb’s generated
by the first push down automaton. Hence we have:TracesM(pA) = L. 2

B Proof of Theorem 1,b

Theorem 1,b.There is no PA system∆ and no variableA such thatTraces∆(A) = L.

In order to prove Theorem 1,b, we need to introduce some definitions first. Let
r = a1 · · ·al ∈ Act∗ be a trace andI = {i1, . . . , ik} be a subset of positions inr such that
1 ≤ i1 < i2 < · · · < ik ≤ l . Then,r|I denotes the traceai1 · · ·aik. We write |r| for the
length ofr.

Given two tracesr, r ′ ∈ Act∗, the shuffle languager ⊗ r ′ ⊆ Act∗ is given by:r ⊗ r ′ =
{s∈Act∗ : ∃I ⊆{1, . . . , |s|}. s|I = r ands|({1, . . . , |s|}\ I) = r ′}. This definition is lifted
to sets of traces in the obvious way.

A shuffle-constraint system Sover a finite set of variablesY—the variables inY
range over subsets ofAct∗—is a finite set of subset constraints of the formA⊇ ti , where
A is a variable fromY andti is a term formed with the operators “·” (concatenation)
and “⊗” (shuffle) from the variables inY and the languages{a}, for a∈ Act, and{ε}.
Both concatenation and shuffle operations distribute over arbitrary unions and are thus
monotonic and even continuous. Thus, each shuffle-constraint systemS has a small-
est solutionµS: Y → 2Act∗ by the Knaster-Tarski fixpoint theorem. It can be seen that
shuffle-constraint systems generalize context-free grammars to a parallel setting. It can

2 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

be shown [20, 16, 15, 4] that these systems generate precisely the set of traces that can
be generated by PA processes: processes definable by a set of rewrite rules of the form
A → t whereA is a process variable, andt is a term built from process variables, se-
quential composition, and asynchronous parallel composition [1].

Then, part b of Theorem 1 is an immediate consequence of the following result:

Theorem 8. There is no shuffle-constraint system S over some set of variables Y such
that (µS)(A) = L for some A∈Y.

Proof: Assume there is a shuffle-constraint systemSoverY such that(µS)(A) = L for
someA∈Y.

Our goal is to exhibit a pumping argument in order to deduce a contradiction. We
first argue that for each word inz∈ (µS)(A) we can find ajustifying treesimilar to a
derivation tree for words of a context-free language. In a derivation tree in a context-free
language, we just need to keep the non-terminals and the terminals, because only the
concatenation operator is applied. Here we need to distinguish applications of concate-
nation from applications of shuffle. Therefore, we put theseoperators at inner nodes
of the tree. We also keep the variables/non-terminals in order to get a handle for the
pumping argument. Thus, justifying trees are obtained in the following way:

1. we start from a tree that consists just of a root annotatedA.
2. then we iterate the following step until all leafs of the tree are annotated by an

action: we replace a nonterminalB at a leaf by a subtree with rootB that has a
single successor that is the root of a tree corresponding tot for some constraint
B⊇ t of S.

We can assign a set of action sequencesL(T) to each justifying treeT in a natural in-
ductive way: a leaf annotated witha ∈ Act is assigned the language{a}; to an inner
node annotated with a concatenation or shuffle operator, we assign the language ob-
tained as the concatenation or shuffle, respectively of the languages associated with the
subtrees; finally for an inner node anotated with a variable,we associate the language of
its subtree. Clearly, the language of each justifying tree is contained in(µS)(A) because
it is the language of a finite unfolding of the constraints. Conversely, we can find for
each wordz∈ (µS)(A) a justifying treeT: this follows from the well-known fixpoint
theorem of Kleene. All the operators used in a shuffle-constraint system are continuous.
Therefore, by Kleene’s fixpoint theorem, for each action sequencew ∈ (µS)(A) there
is k ≥ 0 such thatz is contained in thek-fold unfolding of the constraint system. This
k-fold unfolding gives rise to a justifying tree.

Due to the presence of shuffle operators in the tree we do not necessarily findz at
the frontier of a justifying tree forz but the frontier is always some reordering ofz.
Note, however, that the word at the frontier of a justifying treeT always belongs to
L(T) because the concatenation of two languages is contained in their shuffle.

Consider now a justifying treeT for the wordz
def
= apcpbpdp for a p > 0. If we

choosep big enough, we can find analogously to the well-known Ogden lemma for
contextfree languages [12] in the tree the situation pictured in Fig. 1,a such thatvx
contains the letterb. Then we can “pump” the part beween the two occurences ofA. In

particular,wn
def
= uvnwxny ∈ L(T) ⊆ L for all n≥ 0. As L(T) ⊆ L, vx must contain at

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 3

b

b

A

A

A

A

vu

v w x

x yyxwvu

a) b)

Fig. 1. Repetition of variableA on the path to ab symbol.

least as manya’s thanb’s. By looking at the leftmostv in the wordw2 = uvvwxxy∈ L

we infer thatv cannot contain any of the lettersb, c, or d becauseL contains no words
in which one of the lettersb, c or d is left of ana (anda is found in eitherv or x).

If x would contain ad, vxmust contain ac for counting reasons aswn ∈ L for all n.
As v cannot contain ac (see above), such ac must appear inx. But then inw2 ac would
occur to the right of ad which is not allowed byL. Hencex does not contain ad.

Of course there is also nod in u because otherwise we would have ad left of ana
already inw1 which is forbidden byL.

There can also be nod in w: assume there would be ad in w. In w all thed symbols
appear right of allb symbols. Therefore, there must be a shuffle operator betweenthe
two occurence ofA in order to generatew with T. But then we can generate with the
tree forw2 also a word in which ana appear right of ab in contradiction toL (see
Fig. 1,b).

We have seen so far that all thed symbols are contained iny. By a second application
of the analog of the Ogden lemma we can find another repetitionin the tree as pictured

in Fig. 2,a such thatv′x′ contains the letterd. By pumping, we then have thatw′
n

def
=

u′v′nw′x′ny∈ L(T) ⊆ L for all n≥ 0. Again by a counting argument,v′x′ must contain
at least as manyc symbols asd symbols and by looking at the wordw′

2 ∈ L we see that
v′ contains ac symbol but nod symbol andx′ a d symbol but noc symbol.

We now distinguish three cases how the two nodes annotatedB in Fig. 2,a are situ-
ated in the tree relative to the nodes annotatedA in Fig. 1,a.

– BothB-nodes lie on the path to the upperA-node (Fig. 2,b). Thenvwx is contained
in w′ andw′ contains ana. But asv′ contains ac, this implies thatw1 /∈ L. Contra-
diction!

– The upperB-node lies on the path to the upperA-node but the lowerB-node does
not (Fig. 2,c). As alld symbols are iny the otherB-symbol must generate a subtree
with a frontier contained iny. Thus,vwx is contained inv′. But this implies that in
w′

2 there is ab left of ana which contradictw′
2 ∈ L.

– None of theB-nodes lies on the path to the upperA node (Fig. 2,d). As alld symbols
are iny, this implies thatv′w′x′ is contained iny. As v′w′x′ contains ac and all the
c symbols are between thea and theb symbols in the wordapcpbpdp ∈ L(T) there

4 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

d)

A

A

B

B

u’ v’ w’ x’ y’

a)

B

B

u’ v’ w’ x’ y’

c)

A

A

B

B

u’ v’ w’ x’ y’
v w x

b)

A

A

B

B

x’ y’w’u’ v’
wv x

Fig. 2. Repetition of variableB on the path to ad symbol.

must be a shuffle operator at the join point of the two pathes from the upperA and
upperB to the root of the tree. But thenL(T) also contains a word in which ac is
left of ana which contradictsL(T) ⊆ L.

2

C Proof of Theorem 2

Theorem 2.For every DPNM and any context-free setC of M-configurations, the set
post∗(C) is context-free and effectively constructible in polynomial time.

Proof: Let M = (Act,P,Γ,∆) be a DPN andC be a regular set of configurations. First,
we show that, for every pair(p,γ) ∈ P×Γ, the setpost∗({pγ}) is effectively definable
by means of a context-free grammar.

We define a set of nonterminal symbolVN as the smallest set such that:

– If p, p′ ∈ P andγ ∈ Γ, then〈p,γ〉 ∈VN and〈p,γ, p′〉 ∈VN,
– If pγ

a
→֒ p1w1[�p2w2] ∈ ∆ and p′ ∈ P, then〈p1,w1〉 ∈ VN, [〈p2,w2〉 ∈ VN,] and

∀p′ ∈ P, 〈p1,w1, p′〉 ∈VN.

The set of productions is the smallest set such that:

– If p∈ P andγ ∈ Γ, then we have the production

〈p,γ〉 → pγ

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 5

– For every rule

pγ
a
→֒ p1α1 · · ·αn[�p2β1 · · ·βm]

we have the productions:

〈p,γ〉 → [〈p2,β1 · · ·βm〉]〈p1,α1 · · ·αn〉

〈p,γ, p′〉 → [〈p2,β1 · · ·βm〉]〈p1,α1 · · ·αn, p′〉 wherep′ ∈ P

– ∀p, p′ ∈ P, ∀γ1 · · ·γn ∈ Γ, we have the productions

〈p,ε〉 → p

〈p,γ1 · · ·γn〉 → 〈p,γ1〉γ2 · · ·γn wheren≥ 1

〈p,γ1 · · ·γn〉 → 〈p,γ1,q1〉〈q1,γ2,q2〉 · · · 〈qi−1,γi ,qi〉〈qi ,γi+1〉γi+2 · · ·γn

wheren≥ 2, i ∈ {1, . . . ,n−1}, andq1, . . . ,qi ∈ P

and the productions

〈p,ε, p〉 → ε
〈p,γ1 · · ·γn, p′〉 → 〈p,γ1,q1〉〈q1,γ2,q2〉 · · · 〈qn−1,γn, p′〉

wheren≥ 1, andq1, . . . ,qn−1 ∈ P.

Then, it can be checked that teh following holds.

Lemma 5. ∀p, p′ ∈ P,∀w∈ Γ∗, we have

– L(〈p,w〉) = post∗({pw}) .
– L(〈p,w, p′〉) =

(
post∗({pw})∩Σ∗p′

)
(p′)−1 . ⊓⊔

Now, we define a transducerτ which associates with every configurationc∈ Σ∗ the set
post∗(c). The transducerτ has a finite set of states and transitions labeled by pairs of
the form(w,L) wherew is an input word, andL is a context-free set of output words.
The set of states ofτ is {q0,qcopy}∪{p̂ : p∈ P}, the stateq0 is the unique initial and
accepting state, and the set of transitions is as follows:

q0
(pγ,〈p,γ〉)

−−−−−−→ qcopy

q0
(pγ,〈p,γ,p′〉)

−−−−−−−→ p̂′

p̂
(γ,〈p,γ〉)
−−−−−→ qcopy

p̂
(γ,〈p,γ,p′〉)
−−−−−−−→ p̂′

qcopy
(p,p)
−−−→ qcopy

qcopy
(γ,γ)
−−−→ qcopy

qcopy
(ε,ε)

−−−→ q0

The result follows immediatly from the fact that context-free languages are closed
under context-free transductions, i.e., given a context-free set of configurationsC (ef-
fectively defined by, e.g., a context-free grammar), the setτ(C) is context-free and ef-
fectively constructible. 2

6 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

D Proof of Theorem 3

Let M be a DPN,A be anM-automaton andApre∗ be the automaton obtained by the
saturation procedure described in Section 4.

Theorem 3.L(Apre∗) = pre∗M
(
L(A)

)
.

Let us first consider the easier inclusion.

Lemma 6. pre∗M(L(A)) ⊆ L(Apre∗).

Proof: Clearly, pre∗M(L(A)) =
S

k≥0prek
M(L(A)). We show by induction onk that

prek
M(L(A)) ⊆ L(Apre∗) for all k≥ 0.
The induction base,k = 0, is obvious as the saturation procedure just adds transi-

tions such thatpre0(L(A)) = L(A) ⊆ L(Apre∗).
Now, supposek ≥ 0 is given and assume thatprek

M(L(A)) ⊆ L(Apre∗) (induction
hypothesis). Consider an arbitrary configurationc∈ prek+1

M (L(A)). Then there is a con-
figurationd ∈ prek

M(L(A)) and an actiona ∈ Act such thatc
a
→ d, i.e., there is a rule

pγ
a
→֒ p1w1 or pγ

a
→֒ p1w1� p2w2 in ∆ as well asu,v∈ (P∪Γ)∗ such thatc= upγv and

d = urv for r = p1w1 or r = p2w2p1w1, respectively. By the induction hypothesis,d is
accepted byApre∗ , i.e., there are statess,s′,s′′ such that:

s0 u
→δ′ s

r
→δ′ s′

v
→δ′ s′′ ∈ F .

In particular we haves
r
→δ′ s′, which implies(sp,γ,s′)∈ δ′ because the two implications

(R1) and (R2) are valid upon termination of the saturation algorithm. Thus, we have

s0 u
→δ′ s

p
→ sp

γ
→δ′ s′

v
→δ′ s′′ ∈ F .

This shows thatc = upγv is accepted byApre∗ . 2

The crucial lemma for the remaining inclusion is this.

Lemma 7. Suppose w∈ ConfM, t ∈ Sc, p∈ P. The following is true for all transition
relationsδ̄ that appear as intermediate values in the saturation algorithm:

If s0 w
→δ̄ tp then there is a w∗ with s0 w∗

→δ t and w→∆ w∗p.

Proof: The transition relationδ′ of Apre∗ is obtained by successively adding transitions
to δ. We show that the property claimed in the lemma is valid forδ and remains true
under each single addition of a transition.

Firstly, we persuade ourselves that it is true forδ: as thep-transition fromt is the

only possible transition totp, w must be of the fromw= w∗p and we must haves0 w∗

→δ t
as required;w→∆ w∗p holds trivially if w = w∗p.

Secondly, suppose the property is true for a relationδ̄ and assume that̄δ′ is ob-
tained fromδ̄ by a single saturation step. Assume this saturation step considers the

rule p0γ
a
→֒ p1w1 or p0γ

a
→֒ p1w1 � p2w2 and the statess,s′ with s

r
→δ̄ s′ for r = p1w1

or r = p2w2p1w1, respectively, such that̄δ′ = δ̄∪{(sp0,γ,s′)}. We show the property

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 7

claimed in the lemma for̄δ′ by induction over the numbern of applications of the new
transition(sp0,γ,s

′) in transition sequencess0 w
→δ̄′ tp.

If the new transition is not used in a transition sequences0 w
→δ̄′ tp (n= 0, Base Case)

we also haves0 w
→δ̄ tp and we are done by the assumption thatδ̄ satisfies the property.

So assume for somen > 0 that we are given a transition sequences0 w
→δ̄′ tp that

uses the new transition(sp0,γ,s′) n times. Assume that a wordw∗ with the properties
claimed in the lemma exists for all transition sequences from s0 to tp that use the new
transition less thann times (Induction Hypothesis). By considering the first timethe
new transition is used in the transition sequence, we can write w asw = w1xw2 such
that

s0 w1→δ̄ sp0

γ
→δ̄′ s′

w2→ tp .

By the assumption that̄δ satisfies the property, we can findw∗
1 with s0 w∗

1→δ s andw→∆
w∗

1p0. From the transitions we have seen up to now, we can constructthe transition
sequence

s0 w∗
1→δ s

r
→δ̄ s′

w2→δ̄′ tp

for the wordw∗
1rw2 that uses the new transition(sp,x,s′) onlyn−1 times. (Asδ⊆ δ̄⊆ δ̄′

the transition sequence really consists ofδ̄′ transitions.) From the induction hypothesis

we can now infer that there isw∗ with s0 w∗

→δ t andw∗
1rw2 →∆ w∗p. Combining the∆-

transitions we have seen so far and applying the rulep0γ
a
→֒ p1w1 or pγ

a
→֒ p1w1� p2w2,

respectively, we get

w = w1γw2 →∆ w∗
1p0γw2 →∆ w∗

1rw2 →∆ w∗p

such thatw∗ has all the required properties. 2

We are now well prepared for the proof of the remaining inclusion.

Lemma 8. L(Apre∗) ⊆ pre∗M(L(A)).

Proof: Let δi be the transition relation obtained afteri transitions have been added toδ
in the saturation procedure and letAi be the automatonAi = (Q,Σ,δi ,s0,F). We show
by induction overi thatL(Ai) ⊆ pre∗M(L(A)).

ForA0 = A this is trivially true, asL(A) ⊆ pre∗M(L(A)).
So suppose we are giveni > 0 and assume thatL(Ai−1) ⊆ pre∗M(L(A)). Assume

that thei’th saturation step considers the rulepγ
a
→֒ p1w1 or pγ

a
→֒ p1w1� p2w2 and the

statess,s′ with s
r
→δ̄ s′ for r = p1w1 or r = p2w2p1w1, respectively. Thenδi = δi−1∪

{(sp,γ,s′)}. We show that for all accepting runss0 w
→δi sf ∈F we havew∈ pre∗M(L(A)).

We do so by induction over the numbern of applications of the new transition(sp,γ,s′)
in the accepting runs0 w

→δi
sf ∈ F .

If there is no application of the new transition in a given accepting runs0 w
→δi

sf ∈ F
(Base Case), this run is also an accepting run ofAi−1. Hencew∈ pre∗M(L(A)) follows
from the assumptionL(Ai−1) ⊆ pre∗P(L(A)).

8 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

If there aren > 0 applications of the new transition, we can writew asw = uγv and
the accepting run as

s0 u
→δi−1

sp
γ
→ s′

v
→δi

sf ∈ F

by focusing on the first application of the new transition. ByLemma 7 there isu∗ with

s0 u∗
→δ sandu→∆ u∗p. Consequently, we have

s0 u∗
→δ s

r
→δi−1

s′
v
→δi sf ∈ F

such that the wordu∗rv is accepted byAi with less thann applications of the new
transition. By the induction hypothesis, we have thusu∗rv ∈ pre∗(L(A)). On the other
hand, we can show thatw can evolve to this word:

w = uγv→∆ u∗pγv→∆ u∗rv ∈ pre∗(L(A)) .

Consequently,w∈ pre∗(L(A)). 2

E Proof of Lemma 3

Lemma 3.The familyΛ is finite. Assuming that all languages and constraints appearing
in rulesδP and∆ are given by backward-deterministic finite-state automataof size at
mostK, the number of elements ofΛ is in O(Kn+1) wheren is the number of different
constraints appearing in the rules of∆.

Proof (Sketch):
Let φ1, . . . ,φn be all the constraints that appear in the rules of∆. Let B1, . . . ,Bn be

n word automata that recognize〈φ1〉, . . . ,〈φn〉, respectively. LetS1, . . . ,Sn be the sets of
states ofB1, . . . ,Bn respectively.

Suppose w.l.o.g. thatδP contains a unique rule of the formp(L) → q. Let D =
(S,SI ,SF ,T) be a word automaton that recognizesL, whereS is the set of states,SI and
SF are respectively the set of initial and final states, andT is the set of transitions.

Consider first the case whereφ1 = · · · = φn = P∗. In this case, it is easy to see that
the elements ofΛ are recognized by word automata of the formDi = (S,SI ,Si

F ,T), that
differ from D only by the final state (it is unique since the automata are backward-
deterministic). Indeed, performing the right-quotient corresponds to changing the final
states. For example, ifF = {ef }, and if T has transitions fromei to ef labeled with
q for 1 ≤ i ≤ k, thenLq−1 is recognized by the automatonD′ = (S,SI ,S′F ,T), where
S′F = {e1, . . . ,ek}. It is then easy to see that in this case,Λ has at mostO(|S|) elements
(since each automaton has a single final state due to the fact that the automata are
backward-deterministic).

Let us consider now the general case. It is easy to see that thelanguages ofΛ can be
recognized by automata having at mostS×S1×·· ·×Sn as states. Indeed, the intersec-
tion corresponds to automata products, and the right-quotient corresponds to changing
the final state as explained above. Therefore,Λ contains then at mostO(|S||S1| · · · |Sn|)
elements. 2

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 9

F Proof of Lemma 4

Lemma 4.For everyq∈ QP, Lδ′
q = pre∗(LδP

q).

Proof:
⊆: First, we show that

t
∗
→δ′ q⇒ t ∈ pre∗(LδP

q)

For that, we show by induction oni that:

t
∗
→δ′i q⇒ t ∈ pre∗(LδP

q)

– The case wherei = 0 is straightforward, since any possible derivationt
∗
→δ′0

q con-
tains only rules fromδ. Therefore, in this case, we have thatt ∈ Lq.

– i > 0. Let t
∗
→δ′i

q, and letn be the number of applications of a rule inδ′i \ δ′i−1 in

this derivation. We write:t
∗
→

n
δ′i

q. We proceed by induction onn:

• If n = 0, this means that only the rules ofδ′i−1 are used, and we get the result
by induction oni.

• Let n > 0. There are two cases depending on the rule ofδ′i \δ′i−1. Suppose that
the rule ofδ′i \ δ′i−1 is added by(α1), the case where it is added by(α2) is
similar.
The rule ofδ′i \δ′i−1 is then of the formγ(qL∩〈φ〉

p)→ q′, added toδ′ because there

exist a rule(φ : pγ
a
→֒ p′w) in ∆ and a stateq ∈ QP such thatp′(L) → q ∈ δ′0

andwR(q)
∗
→δ′i−1

q′.

Let thent1, . . . ,tm bem terms such thatS(ti) = pi 1≤ i ≤ m, andC be a context
such that

t = C
[
γp(t1, . . . ,tm)

]

and letq1, . . . ,qm be states s.t.ti
∗
→

n−1
δ′i

qi for 1≤ i ≤ m, q1 · · ·qm ∈ L∩〈φ〉, and

t = C
[
γp(t1, . . . ,tm)

] ∗
→

n−1
δ′i

C
[
γp(q1, . . . ,qm)

]
→δ′0

C
[
γ(qL∩〈φ〉

p)
] ∗
→δ′i

C(q′)
∗
→δ′i−1

q

Since for 1≤ i ≤ m, ti
∗
→

n−1
δ′i

qi, we get by induction thatti ∈ pre∗(LδP
qi). There

exist thenm termst ′1, . . . ,t
′
m such thatt ′i

∗
→δP

qi andti ∈ pre∗(t ′i). Therefore,qi

is of the form(si , p′i) wheresi ∈ Q andp′i = S(t ′i)
Then, sinceq1 · · ·qm ∈ L, we have:

t ′ = C
[
wRp′(t ′1, . . . ,t

′
m)

] ∗
→

n−1
δ′i

C
[
wRp′(q1, . . . ,qm)

]
→δ′0

C(wR(q))
∗
→δ′i−1

C(q′)
∗
→δ′i−1

q

10 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

i.e.,t ′ = C
[
wRp′(t ′1, . . . ,t

′
m)

] ∗
→

n−1
δ′i

q. We get then by induction that

C
[
wRp′(t ′1, . . . ,t

′
m)

]
∈ pre∗(LδP

q)

and therefore,
t ∈ pre∗(LδP

q)

since:
C

[
γp(t1, . . . ,tm)

]
∈ pre∗

(
C

[
γp(t ′1, . . . ,t

′
m)

])

and
C

[
γp(t ′1, . . . ,t

′
m)

]
∈ pre

(
C

[
wRp′(t ′1, . . . ,t

′
m)

])

becauseS(t ′1) · · ·S(t ′m) ∈ φ (since S(t ′1) · · ·S(t ′m) = p′1 · · · p
′
m and q1 · · ·qm =

(s1, p′1) · · · (sm, p′m) ∈ 〈φ〉), and therefore, we can apply the rule(φ : pγ
a
→֒ p′w)

to C
[
γp(t ′1, . . . ,t

′
m)

]
and obtainC

[
wRp′(t ′1, . . . ,t

′
m)

]
.

⊇: For the other direction, sinceδP ⊆ δ′, we show that ift ∗−→δ′ q, andt ′ ∈ pre(t), then
t ′ ∗
−→δ′ q. Let then sucht andt ′. There are two cases:

1. t is obtained fromt ′ after a rewriting step using a rule(φ : p′γ
a
→֒ pw). Let thenC

be a context, andt1, . . . ,tn ben terms such thatS(ti) = pi , p1 · · · pn ∈ φ,

t = C
[
wRp(t1, . . . ,tn)

]

and
t ′ = C

[
γp′(t1, . . . ,tn)

]

Let then the statesq1, . . . ,qn,q,q′,q′′, and the rulep(L) → q′ of δ′0 be such that
q1 · · ·qn ∈ L, and:

t = C
[
wRp(t1, . . . ,tn)

] ∗
→δ′ C

[
wRp(q1, . . . ,qn)

] ∗
→δ′ C

[
wR(q′)

] ∗
→δ′ C[q]

∗
→δ′ q′′

Then, since∆ contains the rule(φ : p′γ
a
→֒ pw), p(L) → q′ ∈ δ′0, andwR(q′)

∗
→δ′ q;

the rulesα1 infer thatδ′ contains also the ruleγ(qL∩〈φ〉
p) → q.

Therefore we have the following:

t ′ = C
[
γp′(t1, . . . ,tn)

] ∗
→δ′ C

[
γp′(q1, . . . ,qn)

] ∗
→δ′ C

[
γ(qL∩〈φ〉

p′)
] ∗
→δ′ C[q]

∗
→δ′ q′′

Indeed, the sequence of statesq1 · · ·qn is in L∩〈φ〉 since we already know that it is
in L, and we show in what follows that it is in〈φ〉:
Let s1, . . . ,sn ∈ Q andp′1, . . . , p′n ∈ P be such thatqi = (si , p′i) for 1≤ i ≤ n. Then

sinceti
∗
→δ′ (si , p′i), it follows from the previous direction thatti ∈ pre∗(LδP

(si ,p′i)
).

Let thenn termst ′1, . . . ,t
′
n such thatt ′i

∗
→δP

(si , p′i), ti ∈ pre∗(t ′i), andp′i = S(t ′i) for
1 ≤ i ≤ n (Lemma 2). Since(pi , p′i) ∈ ρ∗

∆ and p1 · · · pn ∈ φ, Lemma 1 infers that
p′1 · · · p

′
n ∈ φ, and therefore thatq1 · · ·qn = (s1, p′1) · · · (sn, p′n) ∈ 〈φ〉.

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 11

2. t is obtained fromt ′ after a rewriting step using a rule(φ : p′γ
a
→֒ pw� p′′w1). Let

thenC be a context, andt1, . . . ,tn ben terms such thatS(ti) = pi , p1 · · · pn ∈ φ,

t = C
[
wRp(t1, . . . ,tn,w

R
1 p′′)

]

and
t ′ = C

[
γp′(t1, . . . ,tn)

]

Let then the statesq1, . . . ,qn,qn+1,q,q′,q′′, and the rulep(L) → q′ of δ′0 such that
q1 · · ·qnqn+1 ∈ L, and:

t =C
[
wRp(t1, . . . ,tn,w

R
1 p′′)

] ∗
→δ′ C

[
wRp(q1, . . . ,qn,qn+1)

] ∗
→δ′ C

[
wR(q′)

] ∗
→δ′ C[q]

∗
→δ′ q′′

Then, since∆ contains the rule(φ : p′γ
a
→֒ pw� p′′w1), p(L)→ q′ ∈ δ′0, wR(q′)

∗
→δ′

q, andwR
1 p′′

∗
→δ′ qn+1; the rulesα2 infer thatδ′ contains also the ruleγ(q

Lq−1
n+1∩〈φ〉

p′)→
q.

Therefore, we have the following:

t ′ =C
[
γp′(t1, . . . ,tn)

] ∗
→δ′ C

[
γp′(q1, . . . ,qn)

] ∗
→δ′ C

[
γ(q

Lq−1
n+1∩〈φ〉

p′)
] ∗
→δ′ C[q]

∗
→δ′ q′′

Indeed,Lq−1
n+1∩ 〈φ〉 is in Λ and p′(Lq−1

n+1∩ 〈φ〉) → q
Lq−1

n+1∩〈φ〉
p′ is in δ′0. Moreover,

since p1 · · · pn ∈ φ, we can show as previously using Lemma 1 thatq1 · · ·qn ∈
Lq−1

n+1∩〈φ〉.

2

G Proof of Theorem 6

Theorem 6.It is at least PSPACE-hard to decide for a given CDPNM, a regular set of
M-configurationsRand anM-configurationc, whetherc∈ pre∗(R) or not.

Proof: We exhibit a reduction of QBF (quantified Boolean formulas),a well-known
PSPACE-complete problem [17]. A QBF-instanceI is a Boolean formula of the form

∃x1∀x2 . . .Qkxk : c1∧·· ·∧cn ,

whereQk is the quantifier “∃” is n is odd and “∀” if k is even,X = {x1, . . . ,xk} is a set
of k Boolean variables that are quantified alternatingly by “∃” and “∀”, and eachci is a
disjunction ofliterals, where each literal is a negated or non-negated variable from X.
QBF asks us to decide, whether a given QBF-instance is satisfied or not.

Before we describe how to reduce a QBF-instance to a DPN reachability problem

we introduce some notation. Letσ : X
part.
−→ B be a partial truth assignment (whereB =

{tt, ff} is the set of truth values) andψ be a Boolean formula the free variables of which
are contained indom(σ). We writeσ |= ψ if σ satisfiesψ which is defined as usual. For
a closed formula, we write|= ψ if σ |= ψ for some (and thus all) truth assignments.

From a given QBF-instanceI as above we construct the following DPNM = (Act,P,Γ,∆):

12 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

– Act consists of a single default actionτ; for clarity we omitτ when defining the
rules below.

– P contains control statesxi , ti , andfi for all i ∈{1, . . . ,k} andc j for all j ∈{1, . . . ,n+
1}; all these states are distinct. For convenience we refer to statec1 also asxk+1.

– Γ contains distinct symbolsYi for all eveni ∈ {1, . . . ,k}.
– Finally, ∆ consists of the following rules: For eachi ∈ {1, . . . ,k} we have the two

rules
xi →֒ xi+1 � t j andxi →֒ xi+1 � f j , if i is odd and

xi →֒ xi+1Yi � t j andck+1Yi →֒ xi+1 � f j , if i is even.

For eachj ∈ {1, . . . ,n} and each literall in clausec j we have the rule

φ : c j →֒ c j+1 ,

whereφ = P∗ti(P\ {ti , fi})∗ if l = xi andφ = P∗ fi(P\ {ti , fi})∗ if l = ¬xi . It is not
hard to see that these constraints are stable.

For w = (p1, . . . , pl) ∈ P∗ andp∈ P we write p(w) for the termp(p1(), . . . , pl ()) by a

little abuse of notation. It is easy to see thatR
def
= {cn+1(w) | w∈ P∗} is a regular set of

configurations.5 We claim:

x1(ε) ∈ pre∗(R) iff |= ∃x1∀x2 . . .Qkxk : c1∧·· ·∧cn . (1)

Clearly,M as well as a DPN tree automaton forRcan be constructed fromI in logarith-
mic space such that (1) proves Theorem 6.

Before we prove (1) we discuss the intuition of the construction. From initial config-
urationx1(ε) the process successively chooses truth values for the variablesx1, . . . ,xk.
The choicett (ff) for variablexi is recorded by creating a son with control stateti (fi).
For oddi, i.e. for variables quantified existentially, the choice isnon-deterministic by
the two transition rulesxi →֒ xi+1 � ti andxi →֒ xi+1 � fi . For eveni, however, i.e. for
variables quantified universally, the process must first choose the valuett as the transi-
tion xi →֒ xi+1Yi � ti is the only transition from statexi . The transition also records by
puttingYi onto the stack, that is has to choosefi later. Once validity of the first choice
tt has been confirmed the transitioncn+1Yi →֒ xi+1 � fi is executed that choosesff as the
value forxi and initiates new choices for the more innermost variablesxi′ , i < i′ by going
to control statexi+1 again. In order to allow overwriting the first choise of a value forxi

by a later choice, the current truth value ofxi is determined by the rightmost son, i.e.,
the son created last, that has either control stateti (for tt) or fi (for ff). In order to prepare
for the formal proof, we capture this by defining for a wordw∈ P∗ (representing the

control states of the sons) the partial truth assignmentσw : X
part.
−→ B:

σw(xi) =






tt if w∈ P∗ti(P\ {ti, fi})∗

ff if w∈ P∗ fi(P\ {ti, fi})∗

undefined otherwise

5 R is the language of theM-tree automaton({q1,q2},{p({ε}) → q1 | p∈ P}∪ {cn+1(q∗1) →
q2},{q2}).

Regular Symbolic Analysis of Dynamic Networks of Pushdown Systems 13

After truth values have been chosen for all the variables, the process is in statexk+1 = c1.
The transitions fromc j to c j+1 are defined in such a way that they are enabled if and
only if the clausec j is satisfied by the current choice of truth values for the variables.
Hence, there is a transition sequence bringing the process fromc1 to cn+1 if and only if
c1∧·· ·∧cn is satisfied for the current choice of truth values for the variables.

In order to prove claim (1) formally, we first show by induction on j that for all
j ∈ {0, . . . ,n} andw ∈ P∗ with dom(σw) = {x1, . . . ,xk} the following two properties
are valid:

a) ∃w′ ∈ P∗ : c1(w) →∗ c j+1(w′) if and only if σw |= c1∧·· ·∧c j .
b) c1(w) →∗ c j+1(w′) impliesw = w′ for all w′ ∈ P∗.

We then use the casej = n as the base case in an inductive proof of the following claim
(recall that we writexk+1 for c1): for all i ∈ {1, . . . ,k+ 1}, w ∈ P∗ with dom(σw) ⊇
{x1, . . . ,xi−1}:

c) ∃w′ ∈ P∗ : xi(w) →∗ cn+1(w′) if and only if σw |= Qixi . . .Qkxk : c1∧·· ·∧cn.
d) xi(w) →∗ cn+1(w′) impliesσw(xl) = σw′(xl) for all l ∈ {1, . . . , i −1}, w′ ∈ P∗.

Here we perform the induction downwards, i.e., we start withi = k+1 as the base case
and argue inductively downwards towards the casei = 1. The details of these inductions
are left to the reader.

Finally, property c) reads fori = 1 andw = ε as follows:

∃w′ ∈ P∗ : x1(ε) →∗ cn+1(w
′) iff σε |= Q1x1 . . .Qkxk : c1∧·· ·∧cn

This equivalence implies the equivalence (1). 2

H Proof of Theorem 7

Theorem 7. There exists a CDPNM = (Act,P,Γ,∆) with nonstable constraints, and
a regular setT of M-configurations such thatpre∗M(T) is not definable by anM-tree
automaton.

Proof: Consider the CDPNM = (Act= {a},P= {p,q,s,t,s′,t ′},Γ = {$},∆) where∆
consists of the following transition rules:

(1) P∗ : p$
a
→֒ q$ (5) P∗ : r$

a
→֒ p$

(2) (p+q′)P∗ : q′$
a
→֒ q$ (6) (r +q)P∗ : q$

a
→֒ q′$

(3) (q′ + t ′)P∗ : t ′$
a
→֒ t$ (7) (q+ t)P∗ : t$

a
→֒ t ′$

(4) (q′ + t ′)P∗ : s′$
a
→֒ s$ (8) (q+ t)P∗ : t$

a
→֒ s′$

Notice that the transition rules of the modelM above do not use (modify) the stacks,
and do not create new processes. We considerM-configurations which are in fact 1-ary
trees. Therefore, such configurations are sequences of the form $∗p1$∗p2 · · ·$∗pn (with

14 Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili

the interpretation that the process of indexi has the processi +1 as unique son). Then,
it is easy to check that

pre∗
(
($s)∗($q)∗

)
∩ ($s)∗($t)∗($q)∗($r)∗ =

{($s)i($t) j($q)k($r)ℓ : 0≤ i,k, and 0≤ j ≤ ℓ}

which is clearly a nonregular language.
Indeed, starting from a sequence of the form($s)n($q)m, the down-most (right-

most in the word representation)q in the tree can be rewritten (backward) top using
the rule (1). This information can be transmitted to the top of the tree using constraints:
the rules (2) and (3) can be used to propagate upward (to the right according to the
word representation) aq′ through theq’s, and then at ′ through thet ’s (if any), until the
first (down-most in the tree, or right-most in the word representation)s is reached and
transformed into ans′ using the rule (4).

Then, thep which is down in the tree can be rewritten to anr using rule (5). Then,
using rules (6) and (7), the statesq′ are rewritten again toq and statest ′ to t until s′ is
reached (which is between the statessand the statest) and transformed to at.

Of course, several rewriting sequences like the one described above can be running
simultaneously since the application of rule (1) can occur at any time and not neces-
sarily at the down-mostq in the tree. However, if we restrict our view to reachable
configurations of the regular form($s)∗($t)∗($q)∗($r)∗, then we get precisely the non-
regular language given above. 2

