
Precise Fixpoint-Based Analysis of Programs

with Thread-Creation and Procedures

Peter Lammich and Markus Müller-Olm

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

peter.lammich@uni-muenster.de and mmo@math.uni-muenster.de

Abstract.
We present a fixpoint-based algorithm for context-sensitive interproce-
dural kill/gen-analysis of programs with thread creation. Our algorithm
is precise up to abstraction of synchronization common in this line of re-
search; it can handle forward as well as backward problems. We exploit
a structural property of kill/gen-problems that allows us to analyze the
influence of environment actions independently from the local transfer
of data flow information. While this idea has been used for programs
with parbegin/parend blocks before in work of Knoop/Steffen/Vollmer
and Seidl/Steffen, considerable refinement and modification is needed to
extend it to thread creation, in particular for backward problems. Our al-
gorithm computes annotations for all program points in time depending
linearly on the program size, thus being faster than a recently proposed
automata based algorithm by Bouajjani et. al..

1 Introduction

As programming languages with explicit support for parallelism, such as Java,
have become popular, the interest in analysis of parallel programs has increased
in recent years. Most papers on precise analysis, such as [5, 13, 10, 9, 3, 4], use
parbegin/parend blocks or their interprocedural counterpart, parallel proce-
dure calls, as a model for parallelism. However, this is not adequate for ana-
lyzing languages like Java, because in presence of procedures or methods the
thread-creation primitives used in such languages cannot be simulated by par-
begin/parend [1]. This paper presents an efficient, fixpoint-based algorithm for
precise kill/gen-analysis of programs with both thread-creation and parallel calls.

Due to known undecidability and complexity results efficient and precise
analyses can only be expected for program models that ignore certain aspects of
behavior. As common in this line of research (compare e.g. [13, 10, 9, 3, 4, 1]) we
consider flow- and context-sensitive analysis of a program model without syn-
chronization. Note that by a well-known result of Ramalingam [12], context- and
synchronization-sensitive analysis is undecidable. We focus on kill/gen problems,
a practically relevant class of dataflow problems that comprises the well-known
bitvector problems, e.g. live variables, available expressions, etc. Note that only
slightly more powerful analyses, like copy constants or truly live variables are

2 Peter Lammich and Markus Müller-Olm

intractable or even undecidable (depending on the atomicity of assignments) for
parallel programs [10, 9].

Extending previous work [5], Seidl and Steffen proposed an efficient, fixpoint-
based algorithm for precise kill/gen-analysis of programs with parallel procedure
calls [13]. Adopting their idea of using a separate analysis of possible interference,
we construct an algorithm that treats thread creation in addition to parallel
call. This extension requires considerable modification. In particular, possible
interference has a different nature in presence of thread creation because a thread
can survive the procedure that creates it. Also backwards analysis is inherently
different from forward analysis in presence of thread creation. As our algorithm
handles both thread creation and parallel procedure calls it strictly generalizes
Seidl and Steffen’s algorithm from [13]. It also treats backwards kill/gen problems
for arbitrary programs, while [13] assumes that every forward reachable program
point is also backwards reachable.

In [1], an automata based approach to reachability analysis of a slightly
stronger program model than ours is presented. In order to compute bitvec-
tor analysis information for multiple program points, which is often useful in
the context of program optimization, this automata based algorithm must be
iterated for each program point, each iteration needing at least linear time in
the program size. In contrast, our algorithm computes the analysis information
for all program points in linear time. Moreover, our algorithm can compute
with whole bitvectors, exploiting efficiently implementable bitvector operations,
whereas the automata based algorithm must be iterated for each bit. To the best
of our knowledge, there has been no precise interprocedural analysis of programs
with thread creation that computes information for all program points in linear
time.

In a preliminary and less general version of this paper [8], we already covered
forward analysis for programs without parallel calls.

This paper is organized as follows: After defining flow graphs and their opera-
tional semantics in Section 2, we define the class of kill/gen analysis problems and
their MOP-solution, using the operational semantics as a reference point (Sec-
tion 3). We then develop a fixpoint-based characterization of the MOP-solution
amenable to algorithmic treatment for both forward and backward problems
(Sections 4 and 5), thereby relying on information about the possible interfer-
ence, whose computation is deferred to Section 6. We generalize our treatment
to parallel procedure calls in Section 7. Section 8 indicates how to construct a
linear-time algorithm from our results and discusses future research.

2 Parallel Flow Graphs

A parallel flowgraph (P, (Gp)p∈P) consists of a finite set P of procedure names,
with main ∈ P . For each procedure p ∈ P , there is a directed, edge annotated fi-
nite graph Gp = (Np, Ep, ep, rp) where Np is the set of control nodes of procedure
p and Ep ⊆ Np×A×Np is the set of edges that are annotated with base, call or
spawn statements: A := {base b | b ∈ B} ∪ {call p | p ∈ P} ∪ {spawn p | p ∈ P}.

Precise Fixpoint-Based Analysis of Programs with Thread-Creation 3

The set B of base edge annotations is not specified further for the rest of this
paper. Each procedure p ∈ P has an entry node ep ∈ Np and a return node
rp ∈ Np. As usual we assume that the nodes of the procedures are disjoint, i.e.
Np ∩Np′ = ∅ for p 6= p′ and define N =

⋃
p∈P Np and E =

⋃
p∈P Ep.

We useM(X) to denote the set of multisets of elements from X . The empty
multiset is ∅, {a} is the multiset containing a once and A]B is multiset union.

We describe the operational semantics of a flowgraph by a labeled transition
system

·−→ ⊆ Conf × L × Conf over configurations Conf := M(N ∗) and labels
L := E ∪ {ret}. A configuration consists of the stacks of all threads running in
parallel. A stack is modeled as a list of control nodes, the first element being
the current control node at the top of the stack. We use [] for the empty list,
[e] for the list containing just e and write r1r2 for the concatenation of r1 and
r2. Execution starts with the initial configuration, {[emain]}. Each transition is
labeled with the corresponding edge in the flowgraph or with ret for the return
from a procedure. We use an interleaving semantics, nondeterministically picking
the thread that performs the next transition among all available threads. Thus
we define

·−→ by the following rules:

[base] ({[u]r}] c) e−→({[v]r}] c) for edges e = (u, base a, v) ∈ E
[call] ({[u]r}] c) e−→({[eq][v]r}] c) for edges e = (u, call q, v) ∈ E
[ret] ({[rq]r}] c) ret−→({r}] c) for procedures q ∈ P
[spawn] ({[u]r}] c) e−→({[v]r}] {[eq]}] c) for edges e = (u, spawn q, v) ∈ E

We extend
e−→ to finite sequences w ∈ L∗ in the obvious way. For technical

reasons, we assume that every edge e ∈ E of the flowgraph is dynamically

reachable, i.e. there is a path of the form {[emain]}w[e]−→ (we use as wildcard, i.e.
an anonymous, existentially quantified variable). This assumption is harmless,
as unreachable edges can be determined by a simple analysis and then removed
which does not affect the analysis information we are interested in.

3 Dataflow Analysis

Dataflow analysis provides a generic lattice-based framework for constructing
program analyses. A specific dataflow analysis is described by a tuple (L,v, f)
where (L,v) is a complete lattice representing analysis information and f : L →
(L

mon→L) maps a transition label e to a monotonic function fe that describes how
a transition labeled e transforms analysis information. We assume that only base-
transitions have transformers other than the identity and extend transformers
to finite paths by fe1...en := fen ◦ . . . ◦ fe1 .

In this paper we consider kill/gen-analyses, i.e. we require (L,v) to be dis-
tributive and the transformers to have the form fe(x) = (x u kille) t gene for
some kille, gene ∈ L. Note that all transformers of this form are monotonic and
that the set of these transformers is closed under composition of functions. In
order to allow effective fixpoint computation, we assume that (L,v) has finite
height. As (L,v) is distributive, this implies that the meet operation distributes

4 Peter Lammich and Markus Müller-Olm

over arbitrary joins, i.e. (
⊔
M) u x =

⊔{m u x | m ∈ M} for all x ∈ L and
M ⊆ L. Thus, all transformers are positively disjunctive which is important for
precise abstract interpretation.

Kill/gen-analyses comprise classic analyses like determination of live vari-
ables, available expressions or potentially uninitialized variables.

Depending on the analysis problem, one distinguishes forward and backward
dataflow analyses. The analysis information for forward analysis is an abstraction
of the program executions that reach a certain control node, while the backward
analysis information concerns executions that leave the control node.

The forward analysis problem is to calculate, for each control node u ∈ N ,
the least upper bound of the transformers of all paths reaching a configuration at
control node u applied to an initial value x0 describing the analysis information
valid at program start. A configuration c ∈ Conf is at control node u ∈ N (we
write atu(c)), iff it contains a stack with top node u. We call the solution of the
forward analysis problem MOPF and define

MOPF[u] := αF(Reach[u])

where Reach[u] := {w | ∃c : {[emain]} w−→c ∧ atu(c)} is the set of paths reaching
u and αF(W) :=

⊔{fw(x0) | w ∈ W} is the abstraction function from concrete
sets of reaching paths to the abstract analysis information we are interested in.1

The backward analysis problem is to calculate, for each control node u ∈ N ,
the least upper bound of the transformers of all reversed paths leaving reachable
configurations at control node u, applied to the least element of L, ⊥L. We call
the solution of the backward analysis problem MOPB and define

MOPB[u] := αB(Leave[u])

where Leave[u] := {w | ∃c : {[emain]} ∗−→c w−→ ∧atu(c)} is the set of paths leaving
u, αB(W) :=

⊔{fwR(⊥L) | w ∈ W} is the corresponding abstraction function
and wR denotes the word w in reverse order, e.g. f(e1...en)R = fe1 ◦ . . . ◦ fen .

Note that we do not use an initial value in the definition of backward analysis,
because we have no notion of termination that would give us a point where to
apply the initial value. This model is adequate for interactive programs that read
and write data while running.

4 Forward Analysis

Abstract interpretation [2, 11] is a standard and convenient tool for constructing
fixpoint-based analysis algorithms and arguing about their soundness and preci-
sion. Thus, a natural idea would be to compute the MOPF-solution as an abstract
interpretation of a system of equations or inequations (constraint system) that
characterizes the sets Reach[u].

1 MOP originally stands for meet over all paths. We use the dual lattice here, but stick
to the term MOP for historical reasons.

Precise Fixpoint-Based Analysis of Programs with Thread-Creation 5

Unfortunately, it follows from results in [1] that no such constraint system
exists in presence of thread creation and procedures (using the natural operators
“concatenation” and “interleaving” from [13]). In order to avoid this problem,
we derive an alternative characterization of the MOP-solution as the join of two
values, each of which can be captured by abstract interpretation of appropriate
constraint systems. In order to justify this alternative characterization, we argue
at the level of program paths. That is, we perform part of the abstraction already
on the path level. More specifically, we classify the transitions of a reaching path
into directly reaching transitions and interfering transitions and show that these
transitions are quite independent. We then show how to obtain the MOP-solution
from the set of directly reaching paths (consisting of directly reaching transitions
only) and the possible interference (the set of interfering transitions on reaching
paths), and how to characterize these sets as constraint systems. The idea of
calculating the MOP-solution using possible interference is used already by [13]
in a setting with parallel procedure calls. However, while in [13] this idea is used
just in order to reduce the size of the constraint system, in our case it is essential
in order to obtain a constraint-based characterization at all, due to results of [1]
mentioned above.

The classification of transitions is illustrated by
Fig. 1. The vertical lines symbolize the executions of sin-
gle threads, horizontal arrows are thread creation. The
path depicted in this figure reaches the control node
u in one thread. The directly reaching transitions are
marked with thick lines. The other transitions are in-
terfering transitions, which are executed concurrently
with the directly reaching transitions, so that the whole
path is some interleaving of directly reaching and inter-
fering transitions.
A key observation is that due to the lack of synchroniza-
tion each potentially interfering transition e can take
place at the very end of some path reaching u; thus,
the information at u cannot be stronger than gene. In

[u]r

[e]main

Fig. 1: Directly reach-
ing and interfering tran-
sitions.

order to account for this, we use the least upper bound of all this gene-values
(see Theorem 2 and the definition of αPI below). This already covers the effect
of interfering transitions completely: the kille-parts have no strengthening effect
for the information at u, because the directly reaching path reaches u without
executing any of the interfering transitions.
In order to formalize these ideas, we distinguish directly reaching from interfering
transitions in the operational semantics by marking one stack of a configuration
as executing directly reaching transitions. Transitions of unmarked stacks are
interfering ones. If the marked stack executes a spawn, the marker can either
stay with this stack or be transferred to the newly created thread. In Fig. 1 this
corresponds to pushing the marker along the thick lines.

In the actual formalization, we mark a single control node in a stack instead
of the stack as a whole. This is mainly in order to allow us a more smooth

6 Peter Lammich and Markus Müller-Olm

generalization to the case of parallel procedure calls (Section 7). In a procedure
call from a marked node we either move the marker up the stack to the level
of the newly created procedure or retain it at the level of the calling procedure.
Note that we can move the marker from the initial configuration {[emain]} to
any reachable control node u by just using transitions on control nodes above
the marker. These transitions formalize the directly reaching transitions. The
notation for a node that may be marked is um, with m ∈ {◦, •} and u ∈ N
where u◦ means that the node is not marked, and u• means that the node is
marked. We now define the following rule templates, instantiated for different
values of x below:

[base] ({[um]r}] c) e−→x({[vm]r}] c) e = (u, base a, v) ∈ E
[call] ({[um]r}] c) e−→x({[e◦q][vm]r}] c) e = (u, call q, v) ∈ E
[ret] ({[r◦q]r}] c)

ret−→x({r}] c) q ∈ P
[spawn] ({[um]r}] c) e−→x({[vm]r}] {[e◦q]}] c) e = (u, spawn q, v) ∈ E

Using these templates, we define the transition relations
·−→m and

·−→i. The
relation

·−→m is defined by adding the additional side condition that some node
in [um]r must be marked to the rules [base], [call] and [spawn]. The [ret]-rule
gets the additional condition that some node in r must be marked (in particular,

r must not be empty). The relation
·−→i is defined by adding the condition that

no node in [um]r or r respectively must be marked.

Intuitively,
·−→m describes transitions on marked stacks only, but cannot

change the position of the marker;
·−→i captures interfering transitions. To be

able to push the marker to called procedures or spawned threads, we define the
transition relation

·−→p by the following rules:

[call.push] ({[u•]r}] c) e−→p({[e•q][v◦]r}] c) e = (u, call q, v) ∈ E
[spawn.push] ({[u•]r}] c) e−→p({[v◦]r}] {[e•q]}] c) e = (u, spawn q, v) ∈ E

According to the ideas described above, we get:

Lemma 1. Given a reaching path {[emain]} w−→{[u]r}] c, there are paths w1, w2

with w ∈ w1 ⊗ w2, such that ∃ĉ : {[e•main]} w1−→mp{[u•]r}] ĉ w2−→i{[u•]r}] c.
Here, w1⊗w2 denotes the set of all interleavings of the finite sequences w1 and w2

and
·−→mp :=

·−→m ∪ ·−→p executes the directly reaching transitions, resulting
in the configuration {[u•]r}] ĉ. The interfering transitions in w2 operate on
the threads from ĉ. These threads are either freshly spawned and hence in their
initial configuration with just the thread’s entry point on the stack, or they have
been left by a transition according to rule [spawn.push] and hence are at the
target node of the spawn edge and may have some return nodes on the stack.

Now we define the set Rop[u] of directly reaching paths to u as

Rop[u] := {w | ∃r, c : {[e•main]} w−→mp{[u•]r}] c}
and the possible interference at u as

PIop[u] := {e | ∃r, c, w : {[e•main]} ∗−→mp{[u•]r}] c
w[e]−→i } .

Precise Fixpoint-Based Analysis of Programs with Thread-Creation 7

The following theorem characterizes the MOPF-solution based on Rop and PIop:

Theorem 2. MOPF[u] = αF(Rop[u]) t αPI(PIop[u])

Here, αPI(E) :=
⊔{gene | e ∈ E} abstracts sets of edges to the least upper

bound of their gene-values.

Proof. For the v-direction, we fix a reaching path w ∈ Reach[u] and show that
its abstraction fw(x0) is smaller than the right hand side. Using Lemma 1 we
split w into the directly reaching path w1 and the interfering transitions w2, such
that w ∈ w1⊗w2. Because we use kill/gen-analysis over distributive lattices, we
have the approximation fw(x0) v fw1(x0) t ⊔{gene | e ∈ w2} [13]. Obviously,
these two parts are smaller than αF(Rop[u]) and αPI(PIop[u]) respectively, and
thus the proposition follows.

For the w-direction, we first observe that any directly reaching path is also
a reaching path, hence MOPF[u] w αF(Rop[u]). Moreover, for each transition
e ∈ PIop[u] a path w[e] ∈ Reach[u] can be constructed. Its abstraction (fw(x0) u
kille) t gene is obviously greater than gene. Thus, also MOPF[u] w αPI(PIop[u]).
Altogether the proposition follows. ut

Constraint systems. In order to compute the right hand side of the equation in
Theorem 2 by abstract interpretation, we characterize the directly reaching paths
and the possible interference as the least solutions of constraint systems. We will
focus on the directly reaching paths here. The constraints for the possible inter-
ference are developed in Section 6, because we can reuse results from backward
analysis for their characterization. In order to precisely treat procedures, we use
a well-known technique from interprocedural program analysis, that first char-
acterizes so called same-level paths and then uses them to assemble the directly
reaching paths. A same-level path starts and ends at the same stack-level, and
never returns below this stack level. We are interested in the same-level paths
starting at the entry node of a procedure and ending at some node u of this proce-
dure. We define the set of these paths as Sop[u] := {w | ∃c : {[e•p]}

w−→m{[u•]}]c}
for u ∈ Np. It is straightforward to show that lfp(S) = Sop for the least solution
lfp(S) of the constraint system S over variables S[u] ∈ P(L∗), u ∈ N with the
following constraints:

[init] S[eq] ⊇ {ε} for q ∈ P
[base] S[v] ⊇ S[u]; e for e = (u, base , v) ∈ E
[call] S[v] ⊇ S[u]; e; S[rq]; ret for e = (u, call q, v) ∈ E
[spawn] S[v] ⊇ S[u]; e for e = (u, spawn q, v) ∈ E

The operator ; is list concatenation lifted to sets. The directly reaching paths
are characterized by the constraint system R over variables R[u] ∈ P(L∗), u ∈ N
with the following constraints:

[init] R[emain] ⊇ {ε}
[reach] R[u] ⊇ R[ep]; Sop[u] for u ∈ Np
[callp] R[eq] ⊇ R[u]; e for e = (u, call q,) ∈ E
[spawnp] R[eq] ⊇ R[u]; e for e = (u, spawn q,) ∈ E

8 Peter Lammich and Markus Müller-Olm

Intuitively, the constraint [reach] corresponds to the transitions that can be

performed by the
·−→m part of

·−→mp, and the [callp]- and [spawnp]-constraints

correspond to the
·−→p part. It is again straightforward to show lfp(R) = Rop.

Using standard techniques of abstract interpretation [2, 11], we can construct
an abstract version R# of R over the domain (L,v) using an abstract version

S# of S over the domain (L
mon→L,v) and show:

Theorem 3. lfp(R#) = αF(lfp(R)).

5 Backward Analysis

For backward analysis, we consider the paths leaving u. Recall that these are
the paths starting at a reachable configuration of the form {[u]r}] c. Such a
path is an interleaving of a path from [u]r and transitions originating from c.
The latter ones are covered by the possible interference PIop[u]. It turns out that
in order to come to grips with this interleaving we can use a similar technique
as for forward analysis. We define the directly leaving paths as

Lop[u] := {w | ∃r, c : {[emain]} ∗−→{[u]r}] c ∧ {[u]r} w−→ }
and show the following characterization:

Theorem 4. MOPB[u] = αB(Lop[u]) t αPI(PIop[u]).

The proof is similar to that of Theorem 2. It is deferred to the appendix of [7]
due to lack of space.

In the forward case, the set of directly reaching paths could be easily de-
scribed by a constraint system on sets of paths. The analogous set of directly
leaving paths, however, does not appear to have such a simple characterization,
because the concurrency effects caused by threads created on these paths have
to be tackled. This is hard in combination with procedures, as threads created
inside an instance of a procedure can survive termination of that instance. In or-
der to treat this effect, we have experimented with a complex constraint system
on sets of pairs of paths. It turned out that this complexity disappears in the
abstract version of this constraint system. In order to give a more transparent
justification for the resulting abstract constraint systems, we develop – again
arguing on the path level – an alternative characterization of αB(Lop[u]) through
a subset of representative paths that is easy to characterize. Thus, again we
transfer part of the abstraction to the path level.

More specifically, we only consider directly leaving paths that execute transi-
tions of a created thread immediately after the corresponding spawn transition.
From the point of view of the initial thread from which the path is leaving, the
transitions of newly created threads are executed as early as possible. Formally,
we define the relation

·
=⇒x ⊆ Conf ×L∗ × Conf by the following rules:

c
e

=⇒xc
′ if c

e−→xc
′ and e is no spawn edge

c
[e]w
=⇒xc

′ if c
e−→xc

′] {[ep]}, e = spawn p and {[ep]} w−→
c
w1w2=⇒ xc

′ if ∃ĉ : c
w1=⇒xĉ ∧ ĉ w2=⇒xc

′

Precise Fixpoint-Based Analysis of Programs with Thread-Creation 9

Here x selects some set of transition rules, i.e. x = mp means that
·−→mp is used

for
·−→x. If x is empty, the standard transition relation

·−→ is used.
The set of representative directly leaving paths is defined by

Lop
⊆ [u] := {w | ∃r, c : {[emain]} ∗−→{[u]r}] c ∧ {[u]r} w

=⇒ } .

Exploiting structural properties of kill/gen-functions, we can show:

Lemma 5. For each u ∈ N we have αB(Lop[u]) = αB(Lop
⊆ [u]).

Proof. The w-direction is trivial, because we obviously have Lop[u] ⊇ Lop
⊆ [u]

and αB is monotonic. For the v-direction we consider a directly leaving path
{[u]r} w−→ with w = e1 . . . en. Due to the distributivity of L, its abstraction can
be written as fwR(⊥L) =

⊔
1≤i≤n(genei u Ai) with Ai := kille1 u . . . u killei−1 .

We show for each edge ek that the value genek uAk is below αB(Lop
⊆ [u]). For

this, we distinguish whether transition ek was executed in the initial thread (from
stack [u]r) or in some spawned thread. To cover the case of a transition ek of the
initial thread, we consider the subpath w′ ∈ Lop

⊆ [u] of w that makes no transitions
of spawned threads at all. We can obtain w′ by discarding some transitions from
w. Moreover, w′ also contains the transition ek. If we write fw′R(⊥L) in a similar
form as above, it contains a term genek u A′, and because we discarded some
transitions, we have A′ w Ak, and hence fw′R(⊥L) w genek u A′ w genek u Ak.

To cover the case of a transition ej of a spawned thread, we consider the
subpath w′′ ∈ Lop

⊆ [u] of w that, besides directly leaving ones, only contains
transitions of the considered thread. Because ej occurs as early as possible in
w′′, the prefix of w′′ up to ej can be derived from the prefix of w up to ej by
discarding some transitions, and again we get fw′′R(⊥L) w genej u Aj . ut

We can characterize Lop
⊆ by the following constraint system:

[LS.init] LS[u] ⊇ {ε}
[LS.init2] LS[rp] ⊇ {[ret]} for p ∈ P
[LS.base] LS[u] ⊇ e; LS[v] for e = (u, base , v) ∈ E
[LS.call1] LS[u] ⊇ e; LS[ep] for (u, call p, v) ∈ E
[LS.call2] LS[u] ⊇ e; SB[ep]; ret; LS[v] for (u, call p, v) ∈ E
[LS.spawn] LS[u] ⊇ e; LS[ep]; LS[v] for (u, spawn p, v) ∈ E

[SB.init] SB[rp] ⊇ {ε}
[SB.base] SB[u] ⊇ e; SB[v] for e = (u, base , v) ∈ E
[SB.call] SB[u] ⊇ e; SB[ep]; ret; SB[v] for (u, call p, v) ∈ E
[SB.spawn] SB[u] ⊇ e; LS[ep]; SB[v] for (u, spawn p, v) ∈ E

[L.leave1] L⊆[u] ⊇ SB[u]; L⊆[rp] for u ∈ Np if u reachable
[L.leave2] L⊆[u] ⊇ LS[u] if u reachable
[L.ret] L⊆[rp] ⊇ ret; L⊆[v] for (, call p, v) ∈ E

and p can terminate

10 Peter Lammich and Markus Müller-Olm

The LS part of the constraint system characterizes paths from a single control
node: LSop[u] := {w | {[u]} w

=⇒ }. The SB-part characterizes same-level paths
from a control node to the return node of the corresponding procedure: Sop

B [u] :=

{w | ∃c′ : {[u•]} w
=⇒m{[r•p]}] c′}. It is straightforward to prove lfp(LS) = LSop,

lfp(SB) = Sop
B and lfp(L⊆) = Lop

⊆ . Using abstract interpretation one gets con-

straint systems L⊆
over (L,⊆) and LS#, SB

over (L
mon→L,v) with lfp(L⊆

#) =
αB(lfp(L⊆)).

6 Possible Interference

In order to be able to compute the forward and backward MOP-solution, it re-
mains to describe a constraint system based characterization of the possible in-
terference suitable for abstract interpretation. We use the following constraints:

[SP.edge] SP[v] ⊇ SP[u] for (u, base , v) ∈ E or (u, spawn , v) ∈ E
[SP.call] SP[v] ⊇ SP[u] ∪ SP[rq] for (u, call q, v) ∈ E if q can terminate
[SP.spawnt] SP[v] ⊇ αE(LSop[eq]) for (u, spawn q, v) ∈ E

[PI.reach] PI[u] ⊇ PI[ep] ∪ SP[u] for u ∈ Np and u reachable
[PI.trans1] PI[eq] ⊇ PI[u] for (u, call q,) ∈ E
[PI.trans2] PI[eq] ⊇ PI[u] for (u, spawn q,) ∈ E
[PI.trans3] PI[eq] ⊇ αE(Lop

⊆ [v]) for (u, spawn q, v) ∈ E

Here, αE : P(L∗) → P(L) with αE(W) = {e | ∃w, e, w′ : w[e]w′ ∈ W} ab-
stracts sets of paths to the sets of transitions contained in the paths. The con-
straint system PI follows the same-level pattern: SP characterizes the interfering
transitions that are enabled by same-level paths. It is straightforward to show

lfp(SP) = SPop, with SPop[u] := {e | ∃c, w : {[e•p]}
∗−→m{[u•]}] c

w[e]−→i }. The con-
straint [PI.reach] captures that the possible interference at a reachable node u is
greater than the possible interference at the beginning of u’s procedure and the
interference created by same-level paths to u. The [PI.trans1]- and [PI.trans2]-
constraints describe that the interference at the entry point of a called or spawned
procedure is greater than the interference at the start node of the call resp. spawn
edge. The [PI.trans3]-constraint accounts for the interference generated in the
spawned thread by the creator thread continuing its execution. Because the cre-
ator thread may be inside a procedure, we have to account not only for edges
inside the current procedure, but also for edges of procedures the creator thread
may return to. These edges are captured by αE(Lop[v]) = αE(Lop

⊆ [v]).

With the ideas described above, it is straightforward to show lfp(PI) = PIop.
Abstraction of the PI- and SP-systems is especially simple in this case, as the
constraint systems only contain variables and constants. For the abstract versions
SP# and PI#, we have lfp(SP#) = αPI(lfp(SP)) and lfp(PI#) = αPI(lfp(PI)).

Now, we have all pieces to compute the forward and backward MOP-solutions:
Combining Theorems 2, 4 and Lemma 5 with the statements about the abstract

Precise Fixpoint-Based Analysis of Programs with Thread-Creation 11

constraint systems we get

MOPF[u] = lfp(R#)[u] t lfp(PI#)[u] and MOPB[u] = lfp(L⊆
#)[u] t lfp(PI#)[u] .

The right hand sides are efficiently computable, e.g. by a worklist algorithm [11].

7 Parallel Calls

In this section we discuss the extension to parallel procedure calls. Two proce-
dures that are called in parallel are executed concurrently, but the call does not
return until both procedures have terminated.

Flowgraphs. In the flowgraph definition, we replace the call p annotation by the
pcall p1 ‖ p2 annotation, where p1, p2 ∈ P are the procedures called in parallel.
Note that there is no loss of expressiveness by assuming that all procedure calls
are parallel calls, because instead of calling a procedure p alone, one can call it
in parallel with a procedure q0, where q0 has only a single node eq0 = rq0 with
no outgoing edges. To describe a configuration, the notion of a stack is extended
from a linear list to a binary tree. While in the case without parallel calls, the
topmost node of the stack can make transitions and the other nodes are the
stored return addresses, now the leafs of the tree can make transitions and the
inner nodes are the stored return addresses. We write u for the tree consisting
just of node u, and u(t, t′) for the tree with root u with the two successor trees t
and t′. The notation r[t] denotes a tree consisting of a subtree t in some context
r. The position of t in r is assumed to be fixed, such that writing r[t] and r[t′]
in the same expression means that t and t′ are at the same position in r.

The rule templates for
·−→m,

·−→i and
·−→p are refined as follows:

[base] ({r[um]}] c) e−→x({r[vm]}] c) e = (u, base a, v) ∈ E
[pcall] ({r[um]}] c) e−→x({r[vm(e◦p, e

◦
q)]}] c) e = (u, pcall p ‖ q, v) ∈ E

[ret] ({r[vm(r◦p, r
◦
q)]}] c) ret−→x({r[vm]}] c) p, q ∈ P

[spawn] ({r[um]}] c) e−→x({r[vm]}] {e◦q}] c) e = (u, spawn q, v) ∈ E

[c.pushl] ({r[u•]}] c) e−→p({r[v◦(e•p, e
◦
q)]}] c) e = (u, pcall p ‖ q, v) ∈ E

[c.pushr] ({r[u•]}] c) e−→p({r[v◦(e◦p, e
•
q)]}] c) e = (u, pcall p ‖ q, v) ∈ E

[sp.push] ({r[u•]}] c) e−→p({r[v◦]}] {e•q}] c) e = (u, spawn q, v) ∈ E
For the

·−→m-relation, we require the position of the processed node um resp.
subtree vm(r◦p, r

◦
q) in r to be below a marked node. For the

·−→i-relation the

position must not be below a marked node. The reference semantics
·−→ on

unmarked configurations is defined by analogous rules.

Forward Analysis. Again we can use the relation
·−→mp to push an initial marker

to any reachable node. Although there is some form of synchronization at pro-
cedure return now, the

·−→m and
·−→i -relations are defined in such a way that

the interfering transitions can again be moved to the end of a reaching path and
in analogy to Lemma 1 we get:

12 Peter Lammich and Markus Müller-Olm

Lemma 6. Given a reaching path {emain} w−→{r[u]}]c, there exists paths w1, w2

with w ∈ w1 ⊗ w2 such that ∃ĉ, r̂ : {e•main}
w1−→mp{r̂[u•]}] ĉ w2−→i{r[u•]}] c.

Note that the interfering transitions may work not only on the threads in ĉ, but
also on the nodes of r̂ that are no predecessors of u•, i.e. on procedures called
in parallel that have not yet terminated.

We redefine the directly reaching paths Rop and possible interference PIop

accordingly, and get the same characterization of MOPF as in the case without
parallel calls (Theorem 2). In S and R, we replace the constraints for call edges
with the following constraints for parallel procedure calls:

[call] S[v] ⊇ S[u]; e; (S[rp]⊗ S[rq]); ret for e = (u, pcall p ‖ q, v) ∈ E
[callp1] R[ep] ⊇ R[u]; e for (u, pcall p ‖ q,) ∈ E
[callp2] R[eq] ⊇ R[u]; e for (u, pcall p ‖ q,) ∈ E

The [call]-constraint accounts for the paths through a parallel call, that are all
interleavings of same-level paths through the two procedures called in parallel.
For the abstract interpretation of this constraint, we lift the operator ⊗# :
(L

mon→L) × (L
mon→L) → (L

mon→L) defined by f ⊗# g = f ◦ g t g ◦ f to sets and
use it as precise [13] abstract interleaving operator. The redefined PI constraint
system will be described after the backward analysis.

Backward Analysis For backward analysis, the concept of directly leaving paths
has to be generalized: In the case without parallel calls, a directly leaving path is
a path from some reachable stack. It is complementary to the possible interfer-
ence, i.e. the transitions on leaving paths are either interfering or directly leaving
transitions. In the case of parallel calls, interference is not only caused by parallel
threads, but also by procedures called in parallel. Hence it is not sufficient to
just distinguish the thread that reached the node from the other threads, but we
have to look inside this thread and distinguish between the procedure reaching
the node and the procedures executed in parallel.

For instance, consider the tree s = v(ep1 , v
′(u•, ep2))

that is visualized in Fig. 2 (the ◦-annotations at the un-
marked nodes are omitted for better readability). This
tree may have been created by a directly reaching path
to u. The nodes ep1 and ep2 may execute interfering
transitions. The other transitions, that are exactly the
directly leaving ones, may either be executed from the
node u•, or from the nodes v′ and v, if p1 and p2 have
terminated. To describe the directly leaving transitions
separately, we define the function above, that trans-
forms a tree with a marked node u• by pruning all

v

v’

u

ep

ep

1

2

Fig. 2: Sample tree with
marked node u.

nodes that are not predecessors of u• and adding dummy nodes to make the
tree binary again. For a subtree that may potentially terminate, i.e. be trans-
formed to a single return node by some transition sequence, a dummy return
node ur is added. If the pruned subtree cannot terminate, a dummy non-return
node un is added. Both ur and un have no outgoing edges. Assuming, for in-

Precise Fixpoint-Based Analysis of Programs with Thread-Creation 13

stance, that procedure p1 cannot terminate and p2 can terminate, we would have
above(s) = v(un, v

′(u, ur)). For technical reasons, above deletes the marker.

With the help of the above-function, we define the directly leaving paths by

Lop[u] := {w | ∃r, c : {e•main}
∗−→mp{r[u•]}] c ∧ {above(r[u•])} w−→ }

and show similar to Theorem 4:

Theorem 7. MOPB[u] = αB(Lop[u]) t αPI(PIop[u]).

The proof formalizes the ideas discussed above. Due to lack of space it is deferred
to the appendix of [7].

As in the case without parallel calls, we can characterize the directly leaving
paths by a complex constraint system whose abstract version is less complex. So
we again perform part of the abstraction on the path level. As in the case without
parallel calls, we define the

·
=⇒ transition relation, to describe those paths that

execute transitions of spawned threads only immediately after the corresponding
spawn transition. Transitions executed in parallel due to parallel calls, however,
may be executed in any order. Formally, the definition of

·
=⇒ looks the same as

without parallel calls (we just use trees instead of lists). The definition of Lop
⊆

changes to: Lop
⊆ [u] := {w | ∃r, c : {e•main}

∗−→mp{r[u•]}] c ∧ {above(r[u•])} w
=⇒ }.

The proof of αB(Lop[u]) = αB(Lop
⊆ [u]) (Lemma 5) does not change significantly.

However, we do not know any simple constraint system that characterizes
Lop
⊆ [u]. The reason is that there must be constraints that relate the leaving paths

before a parallel call to the paths into or through the called procedures. We
cannot use sequential composition here, because Lop

⊆ contains interleavings of
procedures called in parallel. But we cannot use interleaving either, because
transitions of one parallel procedure might get interleaved arbitrarily with tran-
sitions of a thread spawned by the other parallel procedure, which is prohibited
by

·
=⇒. While it is possible to avoid this problem by working with a more com-

plex definition of
·

=⇒, there is a simpler way out. We observe that we need not
characterize Lop

⊆ [u] exactly, but only some set lfp(L⊆)[u] between Lop
⊆ [u] and Lop[u],

i.e. Lop[u] ⊇ lfp(L⊆)[u] ⊇ Lop
⊆ [u]. From these inclusions, it follows by monotonicity

of the abstraction function αB, that αB(Lop[u]) w αB(lfp(L⊆)[u]) w αB(Lop
⊆ [u]) =

αB(Lop[u]), and thus αB(lfp(L⊆)[u]) = αB(Lop[u]).
In order to obtain appropriate constraint systems, we replace in the constraint

systems L⊆, LS and SB the constraints related to call edges as follows:

[LS.init2] dropped
[LS.call1] LS[u] ⊇ e; (LS[ep1]⊗ LS[ep2]) for (u, pcall p1 ‖ p2, v) ∈ E
[LS.call2] LS[u] ⊇ e; (SB[ep1]⊗ SB[ep2]); ret; LS[v] for (u, pcall p1 ‖ p2, v) ∈ E

[SB.call] SB[u] ⊇ e; (SB[ep1]⊗ SB[ep2]); ret; SB[v] for (u, pcall p1 ‖ p2, v) ∈ E
[L.ret] L⊆[rpi] ⊇ ret; L⊆[v] for (, pcall p1 ‖ p2, v) ∈ E

p1, p2 can terminate, i = 1, 2

We have to drop the constraint [LS.init2], because in our generalization to par-
allel calls, the procedure at the root of the tree can never return, while in the

14 Peter Lammich and Markus Müller-Olm

model without parallel calls, the procedure at the bottom of the stack may
return. The constraints [LS.call1], [LS.call2] and [SB.call] account for any inter-
leaving between the paths into resp. through two procedures called in parallel,
even when thereby breaking the atomicity of the transitions of some spawned
thread. With the ideas above, it is straightforward to prove the required inclu-
sions Lop[u] ⊇ lfp(L⊆[u]) ⊇ Lop

⊆ [u]. As these constraint systems do not contain
any new operators, abstract versions can be obtained as usual.

Possible Interference. It remains to modify the constraint system for PI. This is
done by replacing the constraints for call edges with the following ones:

[SP.call] SP[v] ⊇ SP[rp1] ∪ SP[rp2] ∪ SP[u] (u, pcall p1 ‖ p2, v) ∈ E
if p1, p2 can terminate

[PI.trans1] PI[epi] ⊇ PI[u] (u, pcall p1 ‖ p2, v) ∈ E, i = 1, 2
[PI.callmi] PI[epi] ⊇ αE(LSop[ep3−i]) (u, pcall p1 ‖ p2, v) ∈ E, i = 1, 2

The [SP.call]-constraint now accounts for the interference generated by both
procedures called in parallel and [PI.trans1] forwards the interference to both
procedures. The [PI.callmi]-constraint has no correspondent in the original PI-
system. It accounts for the fact that a procedure p3−i generates interference for
pi in a parallel call pcall p1 ‖ p2. Again, the necessary soundness and precision
proofs as well as abstraction are straightforward.

8 Conclusion

From the results in this paper, we can construct an algorithm for precise kill/gen-
analysis of interprocedural flowgraphs with thread creation and parallel proce-
dure calls:

1. Generate the abstract versions of the constraint systems R,PI, L⊆ and all
dependent constraint systems from the flowgraph.

2. Compute their least solutions.
3. Return the approximation of the MOPF- and MOPB-solution respectively, as

indicated by Theorem 2, Theorem 4 and Lemma 5.

Let us briefly estimate the complexity of this algorithm: We generate O(|E|+
|P |) constraints over O(|N |) variables. If the height of (L,v) is bounded by h(L)
and a lattice operation (join, compare, assign) needs time O(op), the algorithm
needs time O((|E| ∗ h(L) + |N |) ∗ op) if a worklist algorithm [11] is used in
Step 2. A prototype implementation of our algorithm for forward problems has
been constructed in [6]. The algorithm may be extended to treat local variables
using well-known techniques; see e.g. [13].

Compared to related work, our contributions are the following: Generalizing
[13], we treat thread creation in addition to parallel procedure calls and handle
backward analysis completely. Compared to [1], our analysis computes informa-
tion for all program points in linear time, while the automata based algorithm

Precise Fixpoint-Based Analysis of Programs with Thread-Creation 15

of [1] needs at least linear time per program point. Moreover, representing pow-
ersets by bitvectors as usual, we can exploit efficient bitvector operations, while
the algorithm of [1] needs to be iterated for each bit.

Like other related work [5, 13, 3, 4, 9, 1], we do not handle synchronization
such as message passing. In presence of such synchronization, we still get a
correct (but weak) approximation. There are limiting undecidability results [12],
but further research has to be done to increase approximation quality in presence
of synchronization. Also extensions to more complex domains, e.g. analysis of
transitive dependences as studied in [9] for parallel calls, have to be investigated.

Acknowledgment. We thank Helmut Seidl and Bernhard Steffen for interesting
discussions on analysis of parallel programs and the anonymous reviewers for
their helpful comments.

References

1. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic
networks of pushdown systems. In Proc. of CONCUR’05. Springer, 2005.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
of POPL’77, pages 238–252, Los Angeles, California, 1977. ACM Press, New York.

3. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
data-flow analysis. In Proc. of FoSSaCS’99, pages 14–30. Springer, 1999.

4. J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interproce-
dural parallel flow graphs. In Proc. of POPL’00, pages 1–11. Springer, 2000.

5. J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs. TOPLAS, 18(3):268–299, May 1996.

6. P. Lammich. Fixpunkt-basierte optimale Analyse von Programmen mit Thread-
Erzeugung. Master’s thesis, University of Dortmund, May 2006.

7. P. Lammich and M. Müller-Olm. Precise fixpoint-based analysis of programs with
thread-creation. Available from http://cs.uni-muenster.de/u/mmo/pubs/. Ver-
sion with appendix.

8. P. Lammich and M. Müller-Olm. Precise fixed point based analysis of programs
with thread-creation. In Proc. of MEMICS 2006, pages 91–98. Faculty of Informa-
tion Technology, Brno University of Technology, 2006.

9. M. Müller-Olm. Precise interprocedural dependence analysis of parallel programs.
Theor. Comput. Sci., 311(1-3):325–388, 2004.

10. M. Müller-Olm and H. Seidl. On optimal slicing of parallel programs. In Proc. of
STOC’01, pages 647–656, New York, NY, USA, 2001. ACM Press.

11. F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

12. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. TOPLAS, 22(2):416–430, 2000.

13. H. Seidl and B. Steffen. Constraint-Based Inter-Procedural Analysis of Parallel
Programs. Nordic Journal of Computing (NJC), 7(4):375–400, 2000.

