
On the Translation of Procedures

to Finite Machines

Abstraction Allows a Clean Proof

Markus Müller-Olm1 and Andreas Wolf 2 ?

1 Universität Dortmund, Fachbereich Informatik, LS V, 44221 Dortmund, Germany
mmo@ls5.cs.uni-dortmund.de

2 Christian-Albrechts-Universität, Institut für Informatik und Praktische
Mathematik, Olshausenstraße 40, 24098 Kiel, Germany

awo@informatik.uni-kiel.de

Abstract. We prove the correctness of the translation of a prototypic
While-language with nested, parameterless procedures to an abstract as-
sembler language with finite stacks. A variant of the well-known wp and
wlp predicate transformers, the weakest relative precondition transformer
wrp, together with a symbolic approach for describing semantics of as-
sembler code allows us to explore assembler programs in a manageable
way and to ban finiteness from the scene early.

Keywords: compiler, correctness, refinement, resource-limitation, pred-
icate transformer, procedure, verification

1 Introduction

The construction of compilers is one of the oldest and best studied topics in
computer science and neither the interest in this subject nor its importance
has declined. Though the range of application of compiler technology has grown,
there is still a great need for further understanding the classical setup of program
translation. Even if we trust a source program or prove it correct, we cannot rely
on the executed object code, if compilation may be erroneous. This motivates
us to study the question of how to construct verified compilers.

Trusted compilers would permit to certify safety-critical code on the source
code level, which promises to be less time-consuming, cheaper, and more re-
liable than the current practice to inspect the generated machine code [7, 13].
The ultimate goal of compiler verification [1, 2, 4, 6, 8, 9, 11, 12] is to justify such
confidence into compilers.

In [10] we studied the question what semantic relationship we can expect
to hold between a target program and the source program from which is was
generated. Two natural candidate properties from the point of view of program
verification are preservation of total correctness (PTC) and preservation of par-
tial correctness (PPC). They require that all total or partial correctness asser-
tions valid for the source program remain valid for the target program. Another
? The work of the second author is supported by DFG grant La 426/15-2.

G. Smolka (Ed.): ESOP 2000, LNCS 1782, pp. 290–304, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

On the Translation of Procedures to Finite Machines 291

characterization is as refinement of the wp and wlp transformers [3] associated to
the source and target program. We argued, however, that neither PTC nor PPC
is guaranteed by practical compilers. Limited resources on the target processor
prohibit the former: PTC implies that the target program terminates regularly,
i.e. without a run-time error, whenever regular termination is guaranteed for
the source program. But when we implement a source language with full recur-
sion on a finite machine, “StackOverflow” errors will be observed every now and
then. On the other hand, optimizing compilers generally do not preserve partial
correctness because common transformations, like dead-code elimination, may
eliminate code from the program that causes a run-time error. Thus, run-time
errors may be replaced by arbitrary results.

As a remedy we proposed in [10] the more general notion of preservation of
relative correctness (PRC) (recalled in Sect. 3). Relative correctness is param-
eterized in a set A of accepted failures and allows thus – in contrast to partial
or total correctness – to treat runtime errors and divergence differently. We also
studied a corresponding family of predicate transformers wrpA. It is convenient
to refer to predicate transformer (PT) semantics in compiler proofs because there
is a powerful data refinement theory for PTs and refinement proofs can be pre-
sented in a calculational style by using algebraic laws [5, 6, 9]. PTs also interface
directly to correctness proofs for source programs. wrp is meant to permit an
elegant treatment of runtime errors and finiteness of machines while staying in
the familiar and well-studied realm of predicates and predicate transformers.

The main purpose of the current paper is to show that wrp keeps this promise.
More specifically, we employ wrp-based reasoning to prove correct the transla-
tion of a prototypic While-language with nested, parameterless procedures to
an abstract assembler language with finite stacks, a proof that is also of inde-
pendent interest. We focus on the control flow implementation by jumps and a
return address stack. Due to finiteness of stacks, regular termination of target
programs generated from terminating source programs cannot be guaranteed.
Nevertheless, wrp allows to establish a variant of PTC in which “StackOverflow”
is treated as an accepted failure. As intended, finiteness of stacks vanishes from
the scene very early: by taking into account that “StackOverflow” is an accepted
error, the laws about wrp derived from the operational semantics are akin to
the ones of an idealized assembler with unbounded stacks. Thus, wrp allows to
reason about implementations on finite machines without burdening the verifi-
cation. Another interesting aspect of our proof is that we employ symbolic ways
of reasoning about assembler language semantics instead of referring to more
conventional descriptions by means of an instruction pointer.

The remainder of this paper is organized as follows. Sect. 2 recalls the basics
of predicates and predicate transformers. Preservation of relative correctness is
discussed briefly in Sect. 3. The abstract assembler language which will serve as
the target language is presented in Sect. 4 before the source language, a more
common high-level language, is introduced in Sect. 5. The translation scheme is
defined in Sect. 6 and the actual correctness proof is given in Sections 7 and 8.
We conclude with some remarks in Sect. 9.

292 Markus Müller-Olm and Andreas Wolf

2 Preliminaries

Predicates. Assume given a set Σ of states s; typically a state is a mapping
from variables to values. We identify predicates with the set of satisfying states,
so predicates are of type Pred = 2Σ ranged over by φ and ψ. Pred , ordered by
set inclusion, forms a complete Boolean lattice with top-element true = Σ and
bottom-element false = ∅.
Predicate transformers. A predicate transformer (PT) is a mapping f : Pred →
Pred . Sequential composition of two predicate transformers f and g is defined by
(f ; g)(φ) = f(g(φ)) and, hence, is associative and has the identity Id , Id(ψ) = ψ,
as unit. We restrict the set of PTs to the monotonic ones because this makes
sequential composition monotonic. PTrans def= (Pred mon.−→ Pred) together with
the lifted order ≤ defined by f ≤ g ⇐⇒ ∀φ ∈ Pred : f(φ) ⊆ g(φ) for
f, g ∈ PTrans , is also a complete lattice with top-element >, >(ψ) = true, and
bottom-element ⊥, ⊥(ψ) = false.

Fixpoints in complete lattices. The famous theorem of Knaster and Tarski en-
sures that every monotonic function f on a complete lattice (L,≤) has a least
fixpoint µf and a greatest fixpoint νf . A well-known means for proving proper-
ties concerning fixpoints is the following.

Theorem 1 (Fixpoint induction). For P ⊆ L one has µf ∈ P provided that:
1. ∀C ⊆ P : C is totally ordered :

∨
C ∈ P . (Admissibility)

2. ⊥ ∈ P . (Base Case)
3. ∀x ∈ P : x ≤ f(x) =⇒ f(x) ∈ P . (Induction Step)

3 Relativized Predicate Transformers

In this section we recall relative correctness and relativized predicate transform-
ers, which were introduced and discussed at length in [10], focusing on what’s
important for our purposes.

We consider imperative programs π intended to compute on a certain non-
empty set of states Σ. For the moment, the details of program execution are not
of interest; we are only interested in the final outcomes of computations. We thus
assume that each program π is furnished with a relation R(π) ⊆ Σ × (Σ ∪ Ω),
where Ω is a non-empty set of failure (or irregular) outcomes1 disjoint from Σ.
Typically, Ω contains error states like “DivByZero” and “StackOverflow” and a
special symbol ∞ representing divergence.

We use the following conventions for the naming of variables: Σ is ranged
over by s, Ω by ω, and Σ ∪Ω by σ. Intuitively, (s, s′) ∈ R(π) records that s′ is
a possible regular result of π from initial state s, (s, o) ∈ R(π) means that error
state o ∈ Ω \ {∞} can be reached from s, and (s,∞) ∈ R(π) that π may diverge
from s, i.e., run forever. R(π) can be thought to be derived from an operational
or denotational semantics. An example is discussed in Sect. 4.
1 We use the more neutral word ‘outcome’ instead of ‘result’ because some people

object to the idea that divergence is a result of a program.

On the Translation of Procedures to Finite Machines 293

Relative correctness. When evaluating partial correctness assertions all irregular
outcomes of programs are accepted; in contrast in total correctness assertions
all irregular outcomes are taken as disproof. Relative correctness is built around
the idea of parameterizing assertions w.r.t. the set of accepted outcomes. The
irregular outcomes that are not accepted are taken as disproof.

Assume given a set A ⊆ Ω of accepted outcomes; this set may contain di-
vergence as in partial correctness. For a given precondition φ and postcondition
ψ we call program π relatively correct w.r.t. φ, ψ and A if each π-computation
starting in a state satisfying φ terminates regularly in a state satisfying ψ or has
an accepted outcome in A (e.g. π may diverge if ∞ ∈ A). More formally:

〈φ〉π〈ψ〉A iff ∀s, σ : s ∈ φ ∧ (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪A .

The classical notions of partial and total correctness are special cases: partial
correctness amounts to 〈φ〉π〈ψ〉Ω and total correctness to 〈φ〉π〈ψ〉∅.

Weakest relative preconditions. Relative correctness gives rise to a corresponding
predicate transformer semantics of programs. The weakest relative precondition
of π w.r.t. ψ and A is the set of regular states from which all π-computations
either terminate regularly in a state satisfying ψ or have an outcome in A:

wrpA(π)(ψ) = {s ∈ Σ | ∀σ : (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪A} .

Note that wrpA(π) ∈ PTrans . Dijkstra’s wlp and wp transformers [3] are just
the border cases of wrp: wrpΩ = wlp and wrp∅ = wp. There is a fundamental
difference between wlp and wp regarding the fixpoint definition of repetitive
and recursive construct which generalizes as follows to the wrpA transformers: if
∞ ∈ A we must refer to greatest fixpoints, otherwise to least ones.

The following equivalence generalizes the well-known characterization of par-
tial and total correctness in terms of wlp and wp:

φ ⊆ wrpA(π)(ψ) ⇐⇒ 〈φ〉π〈ψ〉A .

Preserving relative correctness. A natural way to approach translation correct-
ness is to focus on properties that transfer from source to target programs.
Suppose, for instance, that π is a source program and π′ is its translation. We
say that the translation preserves relative correctness w.r.t. A if

∀φ, ψ : 〈φ〉π〈ψ〉A ⇒ 〈φ〉π′〈ψ〉A , (1)

i.e., if all relative correctness assertions transfer from π to π′. It is straightforward
to show that (1) is equivalent to the refinement inequality wrpA(π) ≤ wrpA(π′).
Refinement between predicate transformers can be established by algebraic cal-
culations. We can thus take advantage from such algebraic calculations in seman-
tic compiler proofs. The remaining part of this section is devoted to providing
suitable notations that enable this in the scenario studied in this paper.

294 Markus Müller-Olm and Andreas Wolf

Concrete predicate transformers. Suppose given three basic sets of syntactic
objects: a set Var of variables x, a set Expr of expressions e, and a set BExpr of
Boolean expressions b. We assume interpretation functions for expressions and
Boolean expressions E(e) : Σ → (Val∪Ω) and B(b) : Σ → (B∪Ω); here Val is the
value set of variables and the set B = {tt,ff} represents the truth values. For the
remainder of this paper, states are valuations of variables, i.e. Σ = (Var → Val).
Intuitively, results E(e)(s),B(b)(s) ∈ Ω represent failures (including divergence)
arising during evaluation of (Boolean) expressions.

In order to deal with partially defined expressions we assume special types of
basic predicates: def(e) def= {s | E(e)(s) ∈ Val} and inA(e) def= {s | E(e)(s) ∈ A}
for expressions e and A ⊆ Ω. Analogously, we have the predicates def(b), inA(b)
and also b = tt

def= {s | B(b)(s) = tt} and b = ff for Boolean expressions b.
We consider an assignment x := e. The expression e is evaluated in some

given state, and if evaluation delivers a regular result it is assigned to x. But
evaluation of e might also fail with an outcome ω. It depends on whether ω ∈ A
or not if we consider this acceptable. Hence, the weakest relative precondition
of this assignment w.r.t. A and postcondition ψ is given by

(x :=A e)(ψ) def= inA(e) ∪ (def(e) ∩ ψ[e/x]) .

Another example is a conditional with branches P and Q guarded by b,
where the PTs P and Q are wrpA-transformers. Obviously the weakest relative
precondition w.r.t. A and ψ of this construct is P (ψ) resp. Q(ψ) if b evaluates to
tt resp. ff. Since evaluation of b can also fail, the weakest relative precondition
PT w.r.t. A and postcondition ψ is given by

(P � b/A�Q)(ψ) def= inA(b) ∪ (b = tt ∩ P (ψ)) ∪ (b = ff ∩Q(ψ)) .

4 An Abstract Assembler Language

Syntax. The language defined in this section is intended to capture the essence
of flat, unstructured assembler code. In this, our main interest is a realistic treat-
ment of control structures. Therefore, labels l taken from a set Lab are used to
mark the destination of jump instructions as common in assembler languages.
In order to keeps things manageable, the language works on a state space with
named variables and we provide instructions embodying entire (Boolean) expres-
sions: asg(x, e) and cj(b, l). Such instructions should be thought to be ‘macros’
representing a sequence of more concrete assembler instructions. A language of
this kind might be used as a stepping stone on the way down to actual binary
machine code.

The set Instr consists of instructions of the following form.

– asg(x, e): an assignment instruction,
– cj(b, l): a conditional jump (on false) to label l,
– jsr(l): a subroutine jump to label l, and

On the Translation of Procedures to Finite Machines 295

– ret: a return jump.

We write goto(l) for cj(false, l). It represents an unconditional jump.
An assembler (or machine) program m is a finite sequence consisting of in-

structions and labels where we assume unique labeling, formally

m ∈ MP def= {m ∈ (Instr ∪ Lab)∗ | ∀i, j : mi = mj ∈ Lab ⇒ i = j} .

Concatenation of programs is denoted by an infix dot “·”. A program m is called
closed if every label that has an applied occurrence in m also has a defining
occurrence. The set of closed programs is denoted by CMP. Here is an example
of a closed program computing the factorial of x leaving the result in variable y:

asg(y, 1) · Loop · cj(x 6= 0,End) · asg(y, x ∗ y) · asg(x, x − 1) · goto(Loop) · End

Basic operational semantics. A processor executing a machine program will
typically use an instruction pointer that points to the next instruction to be
executed at any given moment. For reasoning about assembler code, however,
it is more convenient to represent the current control point in a more symbolic
manner: we partition the executed program m into two parts u, v such that
m = u ·v and that the next instruction to be executed is just the first instruction
of v. Progress of execution can nicely be expressed by partitioning the same
code sequence differently. PMP (partitioned machine programs) denotes the set
of pairs 〈u, v〉 such that u · v ∈ CMP.

Similarly, we prefer to work with a symbolic representation of the stack of
return addresses; such a stack is necessary to execute jump-subroutine and return
instructions. The idea is to use a stack of partitioned code sequences (modeled
by a member of PMP∗) instead of a stack of addresses.

The basic semantics of the abstract assembler language is an operational
semantics built around the ideas just described. It works on configurations of
the form 〈u, v, a, s〉, where 〈u, v〉 ∈ PMP models the current control point (u · v
is the executed program), a ∈ PMP∗ is the symbolic representation of the return
stack, and s ∈ Σ is the current state. Thus,

Γ
def= {〈u, v, a, s〉 | 〈u, v〉 ∈ PMP ∧ a ∈ PMP∗ ∧ s ∈ Σ}

is the set of regular configurations. In order to treat error situations, we use the
members of Ω as irregular configurations. Table 1 defines the transition relation
→⊆ Γ × (Γ ∪Ω) of an abstract machine executing assembler programs.

Let us consider the rules in more detail. [Asg1] applies if expression e evalu-
ates without error to a value in the current state s: the machine changes the value
of x accordingly – the new state is s[x 7→ E(e)(s)] – and transfers control to the
subsequent instruction by moving asg(x, e) to the end of the u-component. [Asg2]
is used if evaluation of e fails in the current state: the failure value E(e)(s) is just
propagated. [Cj1] describes that a conditional jump cj(b, l) is not taken if b eval-
uates to tt in the current state: control is simply transferred to the subsequent
instruction. If b evaluates to ff, rule [Cj2] applies and the control is transferred to

296 Markus Müller-Olm and Andreas Wolf

[Asg1]
E(e)(s) ∈ Σ

〈u, asg(x, e) · v, a, s〉 → 〈u · asg(x, e), v, a, s[x 7→ E(e)(s)]〉

[Asg2]
E(e)(s) ∈ Ω

〈u, asg(x, e) · v, a, s〉 → E(e)(s)

[Cj1]
B(b)(s) = tt

〈u, cj(b, l) · v, a, s〉 → 〈u · cj(b, l), v, a, s〉

[Cj2]
B(b)(s) = ff , u · cj(b, l) · v = x · l · y
〈u, cj(b, l) · v, a, s〉 → 〈x, l · y, a, s〉

[Cj3]
B(b)(s) ∈ Ω

〈u, cj(b, l) · v, a, s〉 → B(b)(s)

[Jsr1]
u · jsr(l) · v = x · l · y

〈u, jsr(l) · v, a, s〉 → 〈x, l · y, a · 〈u · jsr(l), v〉, s〉
[Jsr2] 〈u, jsr(l) · v, a, s〉 → “StackOverflow”

[Ret1] 〈u, ret · v, a · 〈x, y〉, s〉 → 〈x, y, a, s〉
[Ret2] 〈u, ret · v, ε, s〉 → “EmptyStack”

[Label] 〈u, l · v, a, s〉 → 〈u · l, v, a, s〉

Table 1. Operational semantics of the assembler language

label l, the position of which is determined by the premise u · cj(b, l) · v = x · l · y.
[CJ3] propagates errors resulting from evaluation of b. [Jsr1] is concerned with a
subroutine jump to label l. Similarly to rule [Cj2], control is transferred to label
l. Additionally, the machine stores the return address by pushing 〈u · jsr(l), v〉
onto the symbolically modeled return stack a. If execution subsequently reaches
a ret instruction, execution of 〈u · jsr(l), v〉 is resumed as specified by [Ret1].
A processor with finite memory will not always be able to stack a return ad-
dress when executing a jsr instruction. We model this by rule [Jsr2] that allows
the machine to report “StackOverflow” spontaneously. Of course, in an actual
processor the choice between regular stacking and overflow will be mutually ex-
clusive and not just non-deterministic as in our model. This could be modeled
by furnishing [Jsr2] by a premise StackFull and [Jsr1] by a premise ¬StackFull,
where StackFull is a (complicated) condition depending on the current state of
the machine. Finally, [Ret2] reports an error if a ret instruction is executed on
an empty return stack, and [Label] allows to skip labels.

The evaluation ofm in state s starts in the initial configuration 〈ε,m, ε, s〉, i.e.
with the first instruction of m and with an empty stack. Execution terminates
regularly if a configuration of the form 〈u, ε, a, s′〉 is reached; other possible
outcomes are reachable error configurations ω, and ∞, if there is an infinite
sequence of transitions from 〈ε,m, ε, s〉. Based on this intuition, we could now
define a relational semantics R(m) for a given program m ∈ CMP following
the lines of the definition below. R(m) would give rise to a family of predicate

On the Translation of Procedures to Finite Machines 297

transformers wrpA(m). Up to this point wrpA(m) would be known only with
reference to the operational semantics. In order to allow a reasoning on a more
abstract level we would like to derive sufficiently strong laws about wrpA(m)
from the operational semantics first; afterwards we would use just these laws in
our reasoning without referring directly to the operational semantics.

Unfortunately, this approach fails for wrpA(m): only very weak laws can be
established. The main problem is that the behavior of jump and jump-subroutine
instructions cannot adequately be described without having context information
available. We, therefore, work with a semantics of machine programs that takes
the sequential context as well as the stack context into account.

For 〈u, v〉 ∈ PMP and a ∈ PMP∗ we define

R(u, v, a) def= {(s, s′) | ∃u′, a′ : 〈u, v, a, s〉 →∗ 〈u′, ε, a′, s′〉}
∪ {(s, ω) | 〈u, v, a, s〉 →∗ ω}
∪ {(s,∞) | 〈u, v, a, s〉 →∞} ,

where →∗ denotes the reflexive and transitive closure of →, and →∞ the exis-
tence of an infinite path. This definition induces a family of predicate transform-
ers wrpA(u, v, a) and it is this family that we are using in our reasoning. We can
define R(m) and wrpA(m) by R(m) = R(ε,m, ε) and wrpA(m) = wrpA(ε,m, ε).

The laws in Table 2 can now be proved from the operational semantics.
Technically these laws are just derived properties but they can also be read as
axioms about the total behavior of a machine. Law [Asg-wrp], e.g., tells us about
a machine started in a situation where it executes an asg-instruction first: its total
behavior can safely be assumed to be composed of the respective assignment to x
and the total behavior of a machine started just after the assignment instruction.
The other laws have a similar interpretation. Together the laws allow a kind
of symbolic execution of assembler programs. But we do not have to refer to
low-level concepts like execution sequences; instead we can use more abstract
properties, e.g., that ≥ is an ordering.

All these laws can be strengthened to equalities. We state them as inequali-
ties in order to stress that just one direction is needed in the following. Refine-
ment allows to use safe approximations on the right hand side instead of fully
accurate descriptions. This allows to reason safely about instructions whose ef-
fect is either difficult to capture or not fully specified by the manufacturer of
the processor [9]. If, for example, [Jsr1] and [Jsr2] are furnished with a con-
dition StackFull as discussed above, the refinement inequality stated in [Jsr-
wrp] becomes proper, because jsr would definitely lead to the acceptable error
“StackOverflow” if StackFull holds. Therefore, the PT on the left hand side would
succeed for all states satisfying StackFull irrespective of the post-condition, while
the right hand side may fail.

Note that the premise “StackOverflow” ∈ A of the law [Jsr-wrp] is essential.
If “StackOverflow” is considered unacceptable (“StackOverflow” /∈ A), we have
wrpA(u, jsr(l) · v, a) = ⊥ as a consequence of [Jsr2]. This means that jsr cannot
be used to implement any non-trivial statement. If the more precise operational
model with a StackFull predicate is used, wrpA(u, jsr(l)·v, a) is better than ⊥ but

298 Markus Müller-Olm and Andreas Wolf

[Asg-wrp] wrpA(u, asg(x, e) · v, a) ≥ (x :=A e) ; wrpA(u · asg(x, e), v, a)

[Cj-wrp] wrpA(u, cj(b, l) · v, a) ≥ wrpA(u · cj(b, l), v, a)� b/A� wrpA(x, l · y, a) ,
if u · cj(b, l) · v = x · l · y

[Goto-wrp] wrpA(u, goto(l) · v, a) ≥ wrpA(x, l · y, a) ,
if u · goto(l) · v = x · l · y

[Jsr-wrp] wrpA(u, jsr(l) · v, a) ≥ wrpA(x, l · y, a · 〈u · jsr(l), v〉) ,
if u · jsr(l) · v = x · l · y and “StackOverflow” ∈ A

[Ret-wrp] wrpA(u, ret · v, a · 〈x, y〉) ≥ wrpA(x, y, a)

[Label-wrp] wrpA(u, l · v, a) ≥ wrpA(u · l, v, a)

[Term-wrp] wrpA(u, ε, a) ≥ Id

Table 2. wrp-laws for the assembler language

any non-trivial approximation will involve the StackFull predicate. This would
force us to keep track of the storage requirements when we head for a verified
compilation. As the recursion depth of programs is in general not computable,
we could not justify translation of arbitrary recursive procedures.

5 A Simple High-Level Language

As a prototypic instance of a high-level language we consider a While-language
with parameterless, nested procedures. Such a language is adequate for studying
the control-flow aspects of translation of ALGOL-like programming languages.

Syntax. We define the set of programs, Prog, by the following grammar. In
order to distinguish programs clearly from the corresponding semantic predicate
transformers from Sect. 3 we use an abstract kind of syntax.

π ::= assign(x, e) | seq(π1, π2) | if(b, π1, π2) | while(b, π) | call(p) | blk(p, πp, πb)

In this grammar, x ranges over the variables in Var , b and e over BExpr and
Expr, and p over a set ProcName of procedure identifiers.

blk(p, πp, πb) is a block in which a (possibly recursive) local procedure p with
body πp is declared. πb is the body of the block; it might call p as well as more
globally defined procedures. The semantics below ensures static scoping and so
the translation of the next section has to guarantee static scoping as well. Note
that nesting of procedure declarations and even re-declaration is allowed. Our
exposition generalizes straightforwardly to blocks in which a system of mutually
recursive procedures can be declared instead of just a single procedure. We re-
frained from treating this more general case only, as it burdens the notation a
bit without bringing more insight. The intuitive semantics of the other syntactic
operators should be clear from their name.

On the Translation of Procedures to Finite Machines 299

Semantics. Now we furnish the While-language with a predicate transformer
semantics. Due to lack of space, we cannot follow the lines from the last section;
instead we postulate the resulting predicate transformer semantics directly. Nev-
ertheless the oncoming definitions should be read as laws derived from a more
concrete semantics. In [10] we justified such definitions briefly for a language
without procedures.

In order to give a compositional semantics, we refer as usual to environments
η ∈ Env def= (ProcName → PTrans), mapping procedure identifiers to the weak-
est relative precondition transformer of their body. The environment is taken by
wrp as an additional argument written as a superscript.

wrpη
A(assign(x, e)) = (x :=A e)

wrpη
A(seq(π1, π2)) = wrpη

A(π1) ; wrpη
A(π2)

wrpη
A(if(b, π1, π2)) = wrpη

A(π1)� b/A� wrpη
A(π2)

wrpη
A(while(b, π)) = λW
wrpη

A(call(p)) = η(p)

wrpη
A(blk(p, πp, πb)) = wrp

η[p7→λP]
A (πb)

In the clauses for while and blk, λ = ν if ∞ ∈ A, and λ = µ otherwise, i.e.
we have to take the greatest fixpoint if divergence is accepted (like in partial
correctness semantics) and the least fixpoint otherwise (see [10]).

Let us discuss briefly each of the clauses in turn. The assignment law takes
advantage from the assignment combinator defined in Sect. 3. The weakest pre-
condition of a sequential composition is the weakest precondition of the first
statement establishing the weakest precondition of the second statement. A
conditional’s weakest precondition depends on the validity of the guard. Op-
erationally a loop is unrolled as long as the guard holds, hence the weakest
precondition PT of a loop is a fixpoint of the well known semantical function
W : PTrans → PTrans , where W(X) = (π;X)� b/A� Id . Application of the
environment in question captures the call-case. A block’s weakest precondition
in some given environment is the weakest precondition of the body in a varied
environment that contains a new binding for the local procedure declared in that
block. The weakest precondition of that procedure is a fixpoint of the function
P : PTrans → PTrans , where P(X) = wrp

η[p7→X]
A (πp).

Complete programs are interpreted in the environment ⊥Env that bind all
procedures to the ⊥ predicate transformer, because otherwise the call of an
undeclared procedure would miraculously have a non-trivial meaning. Hence,
when comparing a complete program π to its translation, we refer to wrp⊥Env

A (π).

6 Specification of Compilation

In Table 3 we inductively define a compiling relation C ⊆ Prog × MP × Dict .
Here Dict = (ProcName fin→ Lab) is the set of dictionaries that intuitively map
procedure names to labels where code for the corresponding body can be found.

300 Markus Müller-Olm and Andreas Wolf

[Assign] C(assign(x, e), asg(x, e), δ)

[Seq]
C(π1, m1, δ), C(π2, m2, δ)

C(seq(π1, π2), m1 · m2, δ)

[If]
C(π1, m1, δ), C(π2, m2, δ)

C(if(b, π1, π2), cj(b, l1) · m1 · goto(l2) · l1 · m2 · l2, δ)

[While]
C(π,m, δ)

C(while(b, π), l0 · cj(b, l1) · m · goto(l0) · l1, δ)

[Call]
p ∈ dom(δ)

C(call(p), jsr(δ(p)), δ)

[Blk]
C(πp, mp, δ[p 7→ lp]), C(πb, mb, δ[p 7→ lp])

C(blk(p, πp, πb), goto(lb) · lp · mp · ret · lb · mb, δ)

Table 3. Compiling relation

We have C(π,m, δ) if machine program m is a possible compiling result of source
program π assuming that dictionary δ assigns appropriate labels to free proce-
dure names. The program

seq(assign(y, 1),while(x > 0, seq(assign(y, x ∗ y), assign(x, x − 1)))) ,

for instance, may be compiled to the assembler program computing the factorial
function in Sect. 4 irrespective of the dictionary δ.

Note that the typing constraint m ∈ MP guarantees that target programs
are labeled uniquely. An advantage of a relational specification over a functional
compiling-function is that certain aspects, like choice of labels here, can be left
open for a later design stage of the compiler.

7 Correctness of Compilation

This section is concerned with proving correctness of the translation specified
in the previous section. As discussed in the introduction, the translation can-
not be correct in the sense of preservation of total correctness (PTC), as our
assembler language might report “StackOverflow” on executing a jsr instruction
and thus regularly terminating source programs might be compiled to target
programs that do not terminate regularly. Nevertheless source programs that do
not diverge are never compiled to diverging target programs. But PTC identi-
fies divergence and runtime-errors and, therefore, it cannot treat this scenario
appropriately. A main purpose of this paper is to show how the greater selectiv-
ity of wrpA-based reasoning allows a more adequate treatment by appropriate
choice of A. We treat “StackOverflow” as an acceptable outcome but ∞ as an
unacceptable one. This gives rise to a relativized version of PTC. We comment
on the proof for relativized versions of PPC in the conclusion.

On the Translation of Procedures to Finite Machines 301

Theorem 2. Suppose ∞ /∈ A and “StackOverflow” ∈ A. Then for all π, m:

C(π,m, ∅) ⇒ wrpA(m) ≥ wrp⊥Env

A (π) .

Thus, if a program π is compiled to an assembler program m in an empty
dictionary, relative correctness is preserved. Note that the premise of the com-
piling rule [Call] guarantees, that non-closed programs cannot be compiled with
an empty dictionary.

When we try to prove Theorem 2 by a structural induction we encounter
two problems. Firstly, when machine programs are put together to implement
composed programs, like in the [Seq] or [If] rule, the induction hypothesis cannot
directly be applied because it is concerned with code for the components in
isolation while, in the composed code, the code runs in the context of other
code. Our approach to deal with this problem is to establish a stronger claim
that involves a universal quantification over all contexts. More specifically, we
show wrpA(u,m · v, a) ≥ wrpη

A(π) ; wrpA(u · m, v, a) for all surrounding code
sequences u, v and stack contexts a. Note how the sequential composition with
wrpA(u · m, v, a) on the right hand side beautifully expresses that m transfers
control to the subsequent code and that the stack is left unchanged.

Secondly, when considering the call-case, some knowledge about the bindings
in the dictionary δ is needed. To solve this problem we use the following predicate.

fit(η, δ, u) def⇐⇒ ∀q ∈ dom(δ) : ∃x, y :
x · δ(q) · y = u ∧
∀e, f, g : wrpA(x, δ(q) · y, g · 〈e, f〉) ≥ η(q) ; wrpA(e, f, g) .

It expresses that the bindings in δ together with the assembler code u ‘fit’ to the
bindings in the semantic environment η. The first conjunct says that the context
provides a corresponding label for each procedure q bound by δ; the second
conjunct tells us that the code following this label implements q’s binding in
η and proceeds with the code on top of the return stack. This is just what is
needed in the call-case of the induction. The code generated for blocks has to
ensure that this property remains valid for newly declared procedures.

Putting the pieces together we are going to prove the following.

Lemma 3. Suppose ∞ /∈ A and “StackOverflow” ∈ A. For all π,m, u, v, a, η, δ:

C(π,m, δ)∧ fit(η, δ, u ·m · v) ⇒ wrpA(u,m · v, a) ≥ wrpη
A(π) ; wrpA(u ·m, v, a) .

Theorem 2 follows by the instantiation u = v = ε, a = ε, η = ⊥Env , δ = ∅
using the [Term-wrp] law and the fact that wrpA(m) = wrpA(ε,m, ε).

8 Proof of Lemma 3

The proof is by structural induction on π. So consider some arbitrarily chosen
π,m, u, v, a, η, δ such that C(π,m, δ) and fit(η, δ, u ·m · v), and assume that for

302 Markus Müller-Olm and Andreas Wolf

all component programs the claim of Lemma 3 holds. As usual, we proceed by a
case analysis on the structure of π. In each case we perform a kind of ‘symbolic
execution’ of the corresponding assembler code using the wrp-laws from Sect. 4.
The assumptions about fit will solve the call-case elegantly, the while- and blk-
case moreover involve some fixpoint reasoning.

Due to lack of space we can discuss here only the cases concerned with
procedures: call and blk.

Case a.) π = call(p). By the [Call] rule, m = jsr(δ(p)) and p ∈ dom(δ). As
a consequence of fit(η, δ, u · m · v) there exist x and y such that x · δ(p) · y =
u · jsr(δ(p)) · v. Now,

wrpA(u, jsr(δ(p)) · v, a)
≥ {Law [Jsr-wrp], “StackOverflow” ∈ A, existence of x and y}

wrpA(x, δ(p) · y, a · 〈u · jsr(δ(p)), v〉)
≥ {Second conjunct of fit(η, δ, u ·m · v)}
η(p) ; wrpA(u · jsr(δ(p)), v, a)

= {Definition of call semantics}
wrpη

A(π) ; wrpA(u · jsr(δ(p)), v, a) .

Case b.) π = blk(p, πp, πb). By the [Blk] rule, there are assembler programs
mp,mb and labels lp, lb such that m = goto(lb) · lp · mp · ret · lb · mb and
C(πp,mp, δ[p 7→ lp]) and C(πb,mb, δ[p 7→ lp]) hold.

We would like to calculate as follows:

wrpA(u, goto(lb) · lp ·mp · ret · lb ·mb · v, a)
≥ {Laws [Goto-wrp] and [Label-wrp]}

wrpA(u · goto(lb) · lp ·mp · ret · lb,mb · v, a)
≥ {Induction hypothesis: C(πb,mb, δ[p 7→ lp]) holds}

wrp
η[p7→µP]
A (πb) ; wrpA(u · goto(lb) · lp ·mp · ret · lb ·mb, v, a)

= {Definition of block semantics}
wrpη

A(blk(p, πp, πb)) ; wrpA(u · goto(lb) · lp ·mp · ret · lb ·mb, v, a) .

In order to apply the induction hypothesis in the second step, however, we have
to check fit(η[p 7→ µP], δ[p 7→ lp], u ·m · v), i.e. that for all q ∈ dom(δ[p 7→ lp])

∃x, y : (2)
x · δ[p 7→ lp](q) · y = u ·m · v ∧
∀e, f, g : wrpA(x, δ[p 7→ lp](q) · y, g · 〈e, f〉) ≥ η[p 7→ µP](q) ; wrpA(e, f, g) .

So suppose given q ∈ dom(δ[p 7→ lp]). If q 6= p, (2) reduces to

∃x, y : x · δ(q) · y = u ·m · v ∧
∀e, f, g : wrpA(x, δ(q) · y, g · 〈e, f〉) ≥ η(q) ; wrpA(e, f, g) ,

On the Translation of Procedures to Finite Machines 303

which follows directly from fit(η, δ, u ·m · v). For q = p, on the other hand, we
must prove

∃x, y : x · lp · y = u ·m · v ∧
∀e, f, g : wrpA(x, lp · y, g · 〈e, f〉) ≥ µP ; wrpA(e, f, g) .

Choosing x = u · goto(lb) and y = mp · ret · lb ·mb · v makes the first conjunct
true. The second conjunct is established by a fixpoint induction for µP :

Admissibility is straightforward and the base case follows easily from the fact
that ⊥ ; wrpA(e, f, g) = ⊥. For the induction step assume that X is given such
that for all e, f, g

wrpA(x, lp · y, g · 〈e, f〉) ≥ X ; wrpA(e, f, g) . (3)

Now, fit(η[p 7→ X], δ[p 7→ lp], u ·m · v) holds: for q 6= p we can argue as above
and for q = p this follows from (3). Thus, by using the induction hypothesis of
the structural induction applied to πp we can calculate as follows for arbitrarily
given e, f, g:

wrpA(x, lp · y, g · 〈e, f〉)
≥ {Law [Label-wrp] and unfolding of y}

wrpA(x · lp,mp · ret · lb ·mb · v, g · 〈e, f〉)
≥ {Induction hypothesis applied to πp}

wrp
η[p7→X]
A (πp) ; wrpA(x · lp ·mp, ret · lb ·mb · v, g · 〈e, f〉)

≥ {Definition of P and law [Ret-wrp]}
P(X) ; wrpA(e, f, g) .

This completes the fixpoint induction. 2

9 Conclusion

Two interweaved aspects motivated us to write the present paper. First of all we
wanted to prove correct translation of a language with procedures to abstract
assembler code; not just somehow or other but in an elegant and comprehensible
manner. Algebraic calculations with predicate transformers turned out to be an
adequate means for languages without procedures (see, e.g., [9]), so we decided to
apply this technique in the extended scenario, too. The second stimulus is due
to [10], where we proposed to employ wrp-semantics in compiler proofs. Real
processors are always limited by their finite memory and a realistic notion of
translation correctness must be prepared to deal with errors resulting from this
limitation. We hope that the current paper demonstrates convincingly that wrp-
based reasoning can cope with finite machines without burdening the verification.

The target language studied in this paper provides an adequate level of ab-
straction for further refinement down to actual binary machine code. The instruc-
tions may be considered as ‘macros’ for instructions of a more concrete assembler

304 Markus Müller-Olm and Andreas Wolf

or machine language. Labels facilitate this, as they allow to describe destination
of jumps independently from the length of code. An interesting aspect of our
proof is that it shows how to handle the transition from tree-structured source
programs to ‘flat’ target code. For this purpose we established a stronger claim
that involves a universal quantification over syntactic target program contexts.
This should be contrasted to the use of a tree-structured assembler language in
[11] where translation correctness for a While-language without procedures is
investigated. The proof in [11] does not immediately generalize to flat code.

Future work includes studying the relativized version of preservation of par-
tial correctness (∞ ∈ A). In this case, semantics of recursive constructs is given
by greatest rather than least fixpoints. As a consequence, fixpoint reasoning
based on the fixpoints in the source language does not seem to work. We intend
to use a fixpoint characterization of the target language’s semantics instead. We
also are working on concretizing from the abstract assembler language towards
a realistic processor.

References

1. E. Börger and I. Durdanović. Correctness of compiling Occam to transputer code.
The Computer Journal, 39(1), 1996.

2. L. M. Chirica and D. F. Martin. Towards compiler implementation correctness
proofs. ACM TOPLAS, 8(2):185–214, April 1986.

3. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Texts and Monographs in Computer Science. Springer-Verlag, 1990.

4. J. D. Guttman, J. D. Ramsdell, and M. Wand. VLISP: A verified implementation
of Scheme. Lisp and Symbolic Computation, 8:5–32, 1995.

5. C. A. R. Hoare, I. J. Hayes, H. Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sorenson, J. M. Spivey, and B. A. Sufrin. Laws of programming. Communi-
cations of the ACM, 30(8):672–687, August 1987.

6. C. A. R. Hoare, H. Jifeng, and A. Sampaio. Normal form approach to compiler
design. Acta Informatica, 30:701–739, 1993.

7. H. Langmaack. Software engineering for certification of systems: specification,
implementation, and compiler correctness (in German). Informationstechnik und
Technische Informatik, 39(3):41–47, 1997.

8. J. S. Moore. Piton, A Mechanically Verified Assembly-Level Language. Kluwer
Academic Publishers, 1996.

9. M. Müller-Olm. Modular Compiler Verification: A Refinement-Algebraic Approach
Advocating Stepwise Abstraction, LNCS 1283. Springer-Verlag, 1997.

10. M. Müller-Olm and A. Wolf. On excusable and inexcusable failures: towards an
adequate notion of translation correctness. In FM ’99, LNCS 1709, pp. 1107–1127.
Springer-Verlag, 1999.

11. H. R. Nielson and F. Nielson. Semantics with Applications: A Formal Introduction.
Wiley, 1992.

12. T. S. Norvell. Machine code programs are predicates too. In 6th Refinement
Workshop, Workshops in Computing. Springer-Verlag and British Computer Soci-
ety, 1994.

13. E. Pofahl. Methods used for inspecting safety relevant software. In High Integrity
Programmable Electronics, pages 13–14. Dagstuhl-Sem.-Rep. 107, 1995.

