Upper Adjoints for Fast Inter-procedural Variable
Equalities

Markus Muller-Olm and Helmut Seidl

! Westf. Wilhelms-Universitat Munster, Mathematik unddrmatik, 48149 Miinster, Germany
mo@rat h. uni - nuenst er. de
2 TU Miinchen, Informatik, 12, 85748 Garching, Germany
seidl @n.tum de

Abstract. We present a polynomial-time algorithm which at the extrst @ a
factor O(k) (k the number of variables) generalizes inter-proceduray com-
stant propagation. Our algorithm infers variable-vagabtjualities in addition
to equalities between variables and constants. Like copgtaat propagation, it
tracks constant and copying assignments but abstractsaoamglex assignments
and guards. The algorithm is based on the observation tivahd abstract lattice
of consistent equivalence relations, the upper adjoinsiofmary functions can
be represented much more succinctly than summary fundiiwmselves.

1 Introduction

The key task when realizing inter-procedural analysesgatba lines of the functional
approach of Sharir/Pnueli[13, 8], is to determinesbenmary functionfor procedures
which describe their effects on the abstract program sefteré the call. Given a com-
plete latticeD for the abstract program states, the summary functionsaentfrom
the set of monotonic or (if we are lucky) distributive furists D — . This set is
often large (if not infinite), rendering it a nontrivial tasi identify a representation
for summary functions which is efficiently supports basieigtions such as function
composition or function application to valuesiof Examples for such efficient repre-
sentations are pairs of sets in case of gen/kill bit-vectobfems [6] or vector spaces
of matrices in case of affine equality analyses [11].

In this paper we present one further analysis where efficepresentations of sum-
mary functions exist, namely, the analysis of variabldalae together with variable-
constant equalities. This analysis is a generalizatioropfyconstant propagation [6].
Based on the new analysis, register allocation can be ertldanadditionally remove
certain register-register assignments. The idea is tovahe allocator to assign vari-
ablesx andy to the same register, given that= y holds at each program point where
both variables are live. This technique is knownreggister coalescing].

Example 1.Consider the program from Fig. 1. In this program, the vdesik, and
x5 are both live at program point 3. Singg = x3 definitively holds at this program
point, we can coalesce,, x3 into a variabley. By doing so, the assignmert «— x»
becomes «— y and thus can be removed. a

S. Drossopoulou (Eds.): ESOP’07, LNCS 4960, pp. 178-192320
© Springer-Verlag Berlin Heidelberg 2008

Upper Adjoints for Fast Inter-procedural Variable Equeasit 179

€ ®

xo — x1 + 1 y«— x1 + 1 y<«—x +1
@ @

T3 «— T q Yy—y q
® ® ®

Mzs] «+ x3 Mzo] — y Mlzs] — y

® ®

Fig. 1. A program with variable-variable assignments.

The summary functions for inter-procedural equality asislyare completely distribu-
tive, i.e., commute with arbitrary least upper bounds. Atee complete lattice of ab-
stract values at program pointsLisatomic(for a precise definition see below). There-
fore, summary functions can (at least in principle) be repnéed through tabulation
of their values for-atoms. The number of these atoms, though, is exponentiagin
number of program variables — rendering this immediate aieaot practical.

In this paper, we report that summary functions for equalitglysis can nonetheless
be succinctly represented. The key idea is not to represemingary functions them-
selves, but theiupper adjoints— a well-known construction from the theory of Galois
connections which, for a completely-distributive function, returns a completely
distributive function. This construction has also beerduse demand-driveprogram
analyses [5, 7]. It provides the solution in our applicatsamce the lattice in question
has quadratically many-atomic elements only, thus allowing for an efficient tabula
tion of upper adjoints. As a result, we obtain a fast intexgedural equality analysis
whose worst-case complexity is only one factofk the number of variables) slower
than the fastest known algorithm for inferring copy contdf].

Related work.Equality of variables can be considered as a particularctsgeneral-
ized analysis of availability of expressions, also callatlie numberingl]. Originally,
this analysis tracks for basic blocks the symbolic expogssiepresenting the values of
the variables assigned to. The key point is that operatobsysrare left uninterpreted.
The inferred equalities between variables and terms tbexefreHerbrandequalities.
Later, the idea of inferring Herbrand equalities was gdimdto arbitrary control-flow
graphs [14]. Only recently, this problem has attractedfrasention. In [4], Gulwani
and Necula show that the original algorithm of Steffen, Km@mnd Riithing can be
turned into a polynomial time algorithm if one is interesie@olynomially sized equal-
ities between variables and terms only. Progress in a diitetirection was made in [10]
and [12] where the authors generalize Herbrand equaldidsal with negative guards
or side-effect free functions, respectively. Still, it igem whether full inter-procedural
analysis of Herbrand equalities is possible.

On the other hand, when only assignments of variables anstaxuts are tracked,
the abstract domain can be chodimite — thus implying computability of the analysis.
The naive approach, however, results in an exponentia-tigorithm. A less naive
approach may interpret (or code) the constantsuesbers The problem then consists

180 Markus Muller-Olm and Helmut Seidl

work () \\

ixq%mz

/<®’w ork ()

@

To — 2

Fig. 2. An example program with procedures.

in inferring specificaffineequalities between variables. The latter problem is knawn t
be inter-procedurally decidable in polynomial time (gitkat each required arithmetic
operation counts fo©(1)). The algorithm for this problem as presented in [11], how-
ever, has a factok® in the worst-case complexity bound the number of variables).
In the present paper we improve on this by reducing the exgdael in the worst case
— where sparse representations could be even more efficient.

This paper is organized as follows. After defining prograncstheir collecting seman-
tics in Section 2, we introduce in Section 3 the completéckatbf consistent equiv-
alence relations that is central for our approach. We dssbasic operations on this
lattice and their complexity. Section 4 is concerned withresenting summary func-
tions as needed in our inter-procedural analysis. It tuttgthoat in our scenario it is
advantageous to represent summary functions not direatlpytheir upper adjoints.
We then present in Section 5 our inter-procedural analygésextend our approach to
local variables in Section 6. Section 7 summarizes and adesl.

2 Programsand Their Collecting Semantics

For this paper, we view programs as a finite collection of pdacesf where eacly is
given by a finite control-flow graph as in Fig. 2. Each edge mc¢bntrol-flow graphs
is either labeled with a calf () to a procedurg or with an assignment. In pictures,
we omit the label if it representsskip operationx; < x;. Let VV denote the set of
values the program uses in its computations. For techréealms, we assunig| > 2.
Let X = {xi,...,xi} be the set of global program variables. Later, we extend our
approach to deal with local variables as well. In order tocemtrate on the essentials
of the analysis, we consider simplified programs only. Soassime that conditional
branching has already been abstracted to non-deterroibisthching. Since our anal-
ysis only tracks variable-to-variable assignments andtzon-to-variable assignments,
we consider assignments «— x;, x; < c or x; <7 for variablesx;,x; € X and
constants: € V. Here thenon-deterministi@ssignmenk; <7 may assigranyvalue

Upper Adjoints for Fast Inter-procedural Variable Equeasit 181

to x;. This is used to abstract read operations which change the w&x; in an unpre-
dictable way or assignments of expressions that are noa juestiable or constant. Note
that the same class of programs is considereddpy constant propagatidi].
Thecollecting semanticsf a program assigns to each program poittie setC[u]
of program states which occur atin an execution of the program. In our application,
the variablex, . . ., x; take values from the sé&t. Accordingly, an individual program
state can be represented by a ve¢tar, . .., z;) € V* wherex; denotes the value of
variablex;, andC[u] is a subset of/*. The definition of the collecting semantics of a
program is based on a specification of the effdgjsof assignments onto the set of
states in whicls is to be executed. The effects of assignments are given by:

[x; =?71Y ={a'|3xe€Y: VEk#i: x| =i}

[xi —x,]Y ={2' |Fx €Y : z,=x; A\VE#1i: x|, =21}

[xi —c]Y ={2'|FxeY: zf=cAVEk#i: x| =z}
A proceduref induces a transformation of the set of possible prograrestagfore the
call to the set of program states that occur after the cdiifdrocedure is called in any
of these states. Here, we choose to collect this transfanfadm the rearand consider
for each program point of a proceduref, the transformatiorS|u| : oV oV*
induced by same-level program executions starting froamd reaching the procedure
exit of f at the same level. Then, the transformation for procedusegiven byS|st],
wherest is the entry point off . The transformationS|u] are characterized as the least
solution of the following system of in-equations:

Slrty] O Id rt; exit point of procedurg
S[u] D S[v] o S[sty] (u, f(),v) acall edgest; entry point of f
Slu] 2 S[v]o[s] (u, s,v) an assignment edge

whereld X = X for every set of program statés and “2” is the pointwise extension
of the superset relation to set-valued functions. Sinceettpressions on right-hand
sides of all in-equations denote monotonic functions, tretesn of in-equations has a
unique least solution by the Knaster-Tarski fixpoint themore

Assume that we are given the effed®t] of calls to the procedureg. Then
these can be used to determine, for every program poitite set of program states
Clu] C V* which possibly are attained when reachingThese can be determined as
the least solution of the following system of in-equations:

Clstmain 2 V

Clsty] D Clu] (u, f(),-) acall edge

Clo] 2 S[sty] (Clu]) (u, f(),v) acalledge

C[v] 2 [s] (Clu)) k = (u, s,v) an assignment edge

3 TheAbstract Domain

We are interested in equalities between variables andblasand between variables
and constants. In order to express such properties, wedinteothe complete lattice

182 Markus Muller-Olm and Helmut Seidl

E(X, V) (or E for short). Its least element describes the empty set of program states
and represents that all conceivable equalities are validsJo(f)) = 1| wherex :
2V* _ E is the function which maps sets of program states to thepewt/e best
descriptioninE. Every element’ #£ L in the lattice is an equivalence relation ¥V
where constants are considered as pairwise distinct,niog-equivalent. Let us call
such an equivalence relaticonsistentThe consistent equivalence relation describing
aset) # X C 2V", is given bya(X) where(x;,x;) € a(X) iff z; = x; for all
(x1,...,2) € X and(x;,¢) € a(X) for ¢ € Viff x; = cforall (z1,...,21) €

X. Technically, we can represent a consistent equivaleriagae £ as an array (for
simplicity also denoted bf') whereE[i] = ciff the equivalence class of; contains the
constant € V andE[i] = x; for one representative variabte from the equivalence
class ofx; if this class does not contain a constant. Then, two vargabjeand x;
belong to the same equivalence clasiff] = E[j] and a variable; and a constant
belong to the same class i[i] = c. Logically, we can represerit by the conjunction

of equalitiesx; = E[i] for thosex; with E[i] # x;, i.e., by a conjunction of at moét
equalities of the fornx; = x; orx; = c for distinct variables;, x; and constants.

On the setE, we define an ordering as implication, i.e..k; T FEs iff either
E; = 1 or F is aconsistent equivalence relation where every equdliBas implied
by the conjunction of equalities df;. Thus, the least upper bound of two consistent
equivalence relation&’;, F» is the equivalence relation which is represented by the
conjunction of all equalities implied b, as well as byFs. The greatest lower bound
of two equivalence relations logically is given by their gamction.

Not every two consistent equivalence relations have arr othesistent equivalence
relation as greatest lower bound. The conjunctiorpof= 1 andx; = 2, e.g., equates
the distinct constants and2. The greatest lower bound therefore is givenlbyhich
thus logically denotefalse. Note that the length of a strictly increasing sequence:

lCcEC...C By
in E is bounded byh < k + 1 wherek is the number of program variables.

Lemmal. 1. The leastupperbounfl; LI E> can be computed in tim@(k).
2. The greatest lower bourtg, M. ..M E,, of n equivalence relations can be computed
intimeO((n+ k) - k).

Proof. W.l.0.g. assume that all; are different fromL. The first assertion follows since
we can determine, in linear time, for each variakjethe pair(E, [i], E»[i]) giving us
the pair of equivalence classes w.E§. and F», respectively, to whiclk; belongs. Then
using bucket sort, the equivalence classe&of EF; U E5 can be computed in time
O(k). Let X denote a maximal set of variables all mapped to the saméair). If
t1 = to = ¢ for a constant, thenE[j] = ¢ for all x; € X. Otherwise, all variables in
X are equal, but have unknown value. Therefore, we set, fdreae X, E[j] = x;
for some (e.g., the first) variable € X.

An algorithm establishing the complexity bound of the setassertion works as
follows. We start with one of the given equivalence relagiéh = F;, and then suc-
cessively add the at mo&t — 1) - k equalities to represent the remaining equivalence

Upper Adjoints for Fast Inter-procedural Variable Equeasit 183

(xi=c)NE =if(Elil]=c €V) if (¢c=() return E; else return 1;
else { // Eli]is avariable
X < {x, | Blj] = B}
forall (x; € X) E[j] < ¢
return F;

(xs =x5) N E = if (E[i] = E[j]) return E;
else if (Efi|=ce V) if (E[j]=¢ € V) return L;
else { // E[j] is avariable
X < {0 | Blj) = Bl
forall (x;; € X) E[j'] < ¢
return F;

else { // Eli]is avariable
X — {xy | E[i'] = E[i]};
forall (x; € X) E[i'] — E[j];
return F;

}

Fig. 3. The Implementation of conjunctions =t A E for E # L.

relations. An algorithm for computingk; = t) A E for (an array representation of) a
consistent equivalence relatidh= 1 is presented in Fig. 3.

Every test in this algorithm takes tin@@(1). If some update oF occurs, then either
an equivalence class receives a constant value or two deupdeclasses are merged.
Both events can only occu?(k) times. Since each update can be executed in time
O(k), the complexity estimation for the greatest lower bound potation follows. O

The mappingx is completely distributive, i.e., it commutes with arbifrdeast upper
bounds. Thus, it is the lower adjoirglfstractior) of a Galoisconnection [9]. The coun-
terpart to, theconcretizationy : E — 2V" is given byy(E)={z € VF |z | E}
for E # 1 and~(L) = 0. Here, we writer = F for a vectorx satisfying the equiva-
lence relationZ. For every assignment we define the abstract ef'fdﬁ:sl]]lj by:

X; =1 /\Huxi.E, if t #x;
[[xi*t]]ﬁE:{SE, ! it ¢ = x,
for everyt € X U V. Here, the abstract existential quantificatitix;. £ is defined as
L if £/ = L and otherwise as the conjunction of all equalities impligd/ which
do not containk;. We note that?’ — 3fx;. E’ is completely distributive, i.e., com-
mutes with arbitrary least upper bounds. Therefore, altrablstransformerﬁs]]’i are
completely distributive. An implementation of the tranmsier [x; <—?]]ﬁ for consistent
equivalence relationg # L is provided in Fig. 4. According to this implementation,
the result of[x; «?]* E, i.e., 3'x;. E can be computed in timé(k). Therefore, all
abstract transformelﬂs]]li can be evaluated in linear time. The result of the analysis of
the program from Fig. 1 is shown in Fig. 5. Note that we havedi®nly the non-trivial

184 Markus Muller-Olm and Helmut Seidl

[xi <?]*E = if (E[i] = ¢ € V) {E[i] — x;; return E;}
else { X — {x; | j %4, Eljl = Elil};
Efi] «— x;;
if (X #0) {choose x; € X; forall (x;; € X) E[j'] —x;;}
return FE;

}

Fig. 4. The Implementation of the transformpx; «—?]° for E # L.

T
C?xz —x1 + 1
T
C?w:s — T2

Fig.5. The equalities between the variables in the program of Fig. 1

equalities. Also, the information is propagated in forwdiréction through the control-
flow graph where at program start only trivial equalitiesAmstn variables are assumed,
i.e., Epli] = x; forall 7.

4 Representing Summary Functions

Letg : E — E denote a completely distributive function. As the latfites quite large,

a direct representation @f, e.g., through a value table is not practical. Surprisingly
this is different for theupper adjointg— of ¢g. For an arbitrary complete lattide and

g : D — D, the functiong™ : D — D is defined by:

9@ =| J{? eD|g(d) Ca}

It is well-known from lattice theory that for completely tlibutive g, the pair of func-
tions (¢, ¢~) forms aGalois connectionThus,g~ o g J Id andgo g~ C Id. In
particular, the upper adjoigt™ is completely distributive as well — however, for the re-
verse ordering (see, e.g., [9]), i.e., forevefyC D, g~ ([1X) =[{g~(d) | d € X}.
For a distinction, we calf~ completelyr-distributive. For completely distributive,
the functiong ™~ is just another representation of the functipitself. In order to see
this, we define for a completely-distributive functiory : D — D thelower adjoint

g7 (d)=[NdeD]|d Cyg(d)}

It is well-known that lower and upper adjoints determineteather uniquely. Thus, we
have, for every completely distributive (¢7)* = ¢g. Summarizing, we conclude that
instead of computing with, we as well might compute with its upper adjoint. From

Upper Adjoints for Fast Inter-procedural Variable Equeasit 185

an efficiency point of view, however, the functiopsindg— need not behave identical.
Exactly this is the case for equality analysis.

An elementd # L of a complete lattice iqtomicif d; T d implies that either
dy = L ord; = d. A lattice isatomicif every elementz is the least upper bound
of all atomic elements smaller or equalitolndeed, the sef ordered with £” is an
atomic complete lattice — the number of atomic elementsjghoeis huge. A consistent
equivalence relatiof is atomic iff each equivalence class contains a distincstzon.
Thus, the number of atomic elementsirequalsn»* wherek andm are the numbers
of variables and constants, respectively.

Interestingly, the sel ordered with the reverse orderin@® is also an atomic
complete lattice. For a distinction, we call the atomic edaits of(E, C) LI-atomic and
the atomic elements of the dual lattid8, J) M-atomic. For our lattice, thel-atomic
elements are given by the single equalities= x; andx; = c for variablesx;, x; and
constantg. Thus, the number dfi-atomic elements is onl@ (% - (k + m)).

Over an atomic lattice, a completely distributive functipiis given by its image
on the atoms. In our case, this means that this represemfatiq;— is much more
succinct than the corresponding representationgfavlore specifically, it is of size
O(k?- (k+m)) as the image of each of ti@(k - (k +m)) M-atoms can be represented
by a conjunction of at mogt equalities. For computing the upper adjoints of the effects
of procedures, we need the upper adjoints of the basic catipnsteps of the program.
Thus, we definds]~ = ([s]*)~ for statements and find:

_ E if x; does not occur it
; ? = : = 4
[xi =7]" E =Vxi. E { 1 otherwise

In case of the complete lattide, we realize that the upper adjoints of the abstract
transformers of assignments in fact equal Weskest pre-condition transformeir
these statements. An implementation of these abstracfftnamers for arguments #

L (represented as an array) is given in Fig. 6. In particularfind that each of these
transformers can be evaluated in tiQék).

5 Inter-procedural Analysis

In the following, we present our inter-procedural analyBisr simplicity, we first con-
sider global variables only. Assume that the set of globabtées is given byX =
{x1,...,xx}. The effect of a single edge is represented by a completstyilaitive
function fromF = E — E whereE = E(X, V). Again, we collect the abstract effects
of procedure$rom the rear

[rt;] Cld rt; exit point of procedur¢
[u] C[stf] o[v]™ (u, f(),v) acall edgest; entry point of f
[u]” C[s] ofv] (u, s,v) an assignment edge

whereld E = FE for everyE € E. For a program point. of a proceduref, [u] ™~
describes the upper adjoint of the transformation indugesiame-level program exe-
cutions starting from, and reaching the procedure exitoht the same level.

186 Markus Muller-Olm and Helmut Seidl

[xi 7] E = if (E[i] # x;) return L;
elseif (3j # 4. E[j] = E[i]) return L;
else return FE;
[xi—c] " E =if (E[ij=c €V) if (c#) return 1;
else {E[i] — x;;return E;}
else { // FEJi]isavariable
X — {x; | j # 14, Bl = Elil}
E[i] «— x4; forall (x; € X) E[j] < ¢
return FE;

}
[xi —x;] E=if (E[i]=ce V) if (E[j]=¢ €V) if (c#) return L;
else {E[i] < x;;return E;}
else { // EJ[j]isavariable
X — x| Blf'] = Bl
Eli] < x;; forall (x;; € X) E[j'] < ¢
return F;

else { // Eli]isavariable
X — {xu | i #1, B[] = Eli]};
E[i] « x;; forall (x4 € X) E[i'] — E[j];
return F;

}
Fig. 6. The Implementation of the transformdrg ~ for £ # L.

The crucial computation step here is the compositior g~ whereg—,h~ € F. In
order to determiné— (¢~ (e)) for an equalitye, we recall thay~ (e) is represented by
at mostk equalitiese’. We can determing~ (¢~ (¢)) by computing the greatest lower
bound of the valued~(¢’), i.e. of at mostk equivalence relations. By Lemma 1 (2),
the latter takes timé(k?). For determining a representation/of o g, the values
h~(g~ (e)) need to be computed fd(k - (k + m)) equalities ifm is the number of
constants. We conclude that composition can be computén@ (k> - (k +m)).

Since the expressions on right-hand sides of in-equati@m®manotonic, the system
of in-equations has a uniqueeatestsolution. Since the operations used in right-hand
sides of the equation system are completelgistributive, we obtain:

Theorem 1. For every procedurg and every program point of f, [u] ~ = (a(S[u]))~.

Here, the abstraction function : (2V"° — 2V") — E — E for summary functions
is defined as the best abstract transformer, i.eq(gy = « o g o 7. We observe that,
during evaluation of a procedure, the values of constaritsnei change. Therefore,
instead of analyzing the weakest pre-condition for evenyationx; = ¢, ¢ € V,
separately, we can as well determine the weakest pre-coméir the single equation
x; = e for a distinguished fresh variable The weakest pre-conditioR,. for the
specific equatiox; = ¢ then can be determined from the weakest pre-conditidar

x; = e by substituting: for e, i.e., ask. = E[c/e|. The advantage is that now the size
of the representation of a function is ju8t%?*) and thus independent of the number of

Upper Adjoints for Fast Inter-procedural Variable Equeasit 187

constants occurring in the program. Also, composition attion then can be executed
in time O(k*). Note that variables not assigned to during procedure atialucan also
be treated as constants and therefore be captured-bythus allowing to shrink the
representation of summary functions even further.

Example 2.Consider the program from Fig. 2. The set of variableXis- {x;,x2}.
The assignments; — x; andx, < 2 correspond to the functiorts , h; with

| [A [hy]
X1 = X9 T X1=2
X1 = @ (|Xo —@X] — @
Xog = 0[|Xo — 0|2 — e

In a first round of Round-Robin iteration, we obtain for pragrpointsi1, 10,9, 8,7
of the proceduravork:

| I 1t [109] 8] 7]
X]=90|x;=o0|x; = T |X] =0Xg=2o
Xo= o([Xo= 0|2 —=e| T |2 =02 e
X1 =Xol|X1 =Xo|xX1 =2| T |X1 =2|x9=2
In this example, the fixpoint is reached already after théifesation. a

From the upper adjoirfst /] ~, we obtain the abstract effect of procedyirby:
[FIF(E) = ([stf))" (B) = THE" | [st;]” (E") 2 E}

where theE’ in the greatest lower bound are supposed tolkomic. The number
of these elements ©(k - (k + m)). Using the trick with the extra variabke we can
compute the application cﬁff]]’i to a given elemenk in time O(k3) — independent of
the number of constants occurring in the program.

The 1‘unctions[[f]]n can be used to determine, for every program paithie con-
junction of all equalitie€[u] € E which definitely hold when the program poiatis
reached. For that, we put up the following system of in-eignatwhose unknowng[v]
(v program point) take values if:

Elstmainl 2 T

Elsty] &Y (u, f(),-) acall edge

] U Em) (uf().v) acalledge

Ev] | [[s]]ﬁ(é'[u]) (u, s,v) an assignment edge

It should be noted that, during fixpoint iteration, we neveusmconstrucl{[f]]jj as a
whole. Instead, we only need to evaluate these functionsgumeent valueds. Since
all right-hand sides are monotonic, this system of in-eignathas a least solution.

Example 3.Consider again the program from Fig. 2. Then we obtain thieviahg
equalities for program points 0 through 11:

1,2,3] 4) 6 7,8,9 10 11

T X1=X2X2:2X1=X2:2X1=X2 T X2:2

188 Markus Muller-Olm and Helmut Seidl

Also for inter-procedural reachability, a precision thesorcan be proven. We have:

Theorem 2. The least solutiod[v], v @ program point, can be computed in tirg¥n -
k*) wheren is the size of the program aridis the number of variables in the program.
Moreover, for every program point E[v] = a(C[v]). O

In order to compute the least solution within the stated imgtime, we first compute
the valuegst;]~ by applyingsemi-naiveixpoint iteration as in [2] to the system of
in-equations characterizing the (upper adjoints of) sumgnfianctions. The key idea
of semi-naive iteration is to propagate just the individnatements to attained values
instead of abstract values as a whole. In our case, such@meat consists of a single
equality(x; = t) that is added as an additional conjunct to the pre-conditfsome
rM-atomic element in the representation of some computed suynfanction. Thus,
distributed over the fixpoint computation, the accumula#drt spent on a single in-
equation is not bigger than the effort for a single completdweation of the right hand
side on functions with a representation of maximum size. &stioned, the most com-
plex operation occuring in a right hand side, compositiofuattions, can be computed
in time O(k*) using the special variabke Given the valuegst;] ~, the fixpoint of the
system of in-equations faf can be computed by standard fixpoint iteration: as the
height of the latticéE is O(k) each right hand side is re-evaluated at m@ét) times
and the most complex operation, applicatiorﬂf)]fﬁ takes timeO(k?). The total run-
ning time estimation given in Theorem 2 follows by summingower all in-equations
as their number is bounded by the size of the program.

The resulting bound is by a factbiarger than the best known upper bound for copy
constant propagation [6] where no equalities betweenbisare tracked. On the other
hand, instead of relying on equivalence relations, we coalte variable equalities as
specific linear dependences. The techniques from [11] teeutrin an algorithm with
worst-case complexit§?(n - k*) — which is a factok* worse than the new bound.

6 Local Variables

In the following, we extend our inter-procedural analysisacal variables.

Example 4.Consider the program from Fig. 7. The local variabjef procedurevork
can be coalesced with the glohalas both are equal throughout the bodywef%. O

In order to simplify notation, we assume that all procedinage the same set of local
variablesA = {ay,...,a;}. The set of global variables is st = {x;, ..., x;}. First

of all, we extend the collecting semantics to local variabke state is now described
by a vector(zy, ..., 7k, a1,...,a;) € V¥ which is identified with the paifz,a)

of vectorsz = (z1,...,7;) € V¥ anda = (ai1,...,a;) € V' of values for the
global and local variables, respectively. The transforomstS|u] now are taken from
the sefl = V**+! — V*+! In order to avoid confusion between the values of the local
variables of caller and callee the rules for call edges meaishbdified. For this purpose
we introduce two transformations: The firstiter € T, captures how a set of states
propagates from the call to the start edge of the called plwee

enter(X) = {(z,a) | 3’ : (z,d’) € X}

Upper Adjoints for Fast Inter-procedural Variable Equeasit 189

work () \\

iaq%xq

/<®’wor1s: 0

@

To — aj

@)

Fig. 7. An example program with local variabdg .

Here, we assume that local variables have an arbitrary \altiee beginning of their
scope but other conventions can be described similarlys€bend transformatioH :
T — T adjusts the transformation computed for a called proceiduitee caller:

H(g)(X) ={(2",a) | Fz,a" : (¢, d’) € g(enter {(z,a)})}

It ensures that local variables of the caller are left unb@acby the call. The modified
rules for call edges in the systems of in-equationsSf@ndC look as follows:

Slu] 2 S[v] o H(S]sty]) (u, f(),v) acall edgest; entry point of f
Clsts] D enter(Clu]) (u, f(),.) acall edge
Clv] 2 H(S[sts])(Clu]) (u, f(),v) acall edge

In addition,V* is replaced bgnter(V*+!) in the in-equation fo€[styn i -

As for global variables alone, we first define the domain fer ibrward analysis
whose summary functions then are represented throughuppéer adjoints. The extra
complication is that now equalities may involve local vates of the procedures on
the call stack which are not visible inside the called praredThe solution is to allow
auxiliary variablesfrom a setY (of cardinalityk) for distinct local information of the
caller which must be tracked by the callee, but not modifidulisT the abstract forward
semantics of procedures operates on conjunctions of eqsaiver global variableX,
local variablesA, and auxiliary variabled, i.e., takes elements frof = E(X U
A UY,V). Since at procedure exit, local variables of the procedteena longer of
interest, post-conditions are conjunctions just over gl@mnd auxiliary variables, i.e.,
summary functions should return elements fristh= E(X U Y, V). Thus, forward
summary functions are completely distributive functiormiF’ = E’ — E” whereas
their upper adjoints are completetydistributive functions fron” = E” — E’. In
this setting, the abstraction functien: (2" — 2V""") — F’ takes the form:

a(F)(E) = T[THE|VYya'd:
(2',a") € F({(x,a) | (z,a,y) = E}) = («/,y) = E'}.

190 Markus Muller-Olm and Helmut Seidl

As in Section 5, we aim at avoiding to treat each constant gt-ponditions separately.
Recall that auxiliary variables frofd are not modified during the execution of the call.
We conclude that, for the sake of determining weakest preltions, at most one aux-
iliary variable, saye, suffices in single equality post-conditions. Since we retv@ost
this singlee in the post-condition, we also have at most enariable in pre-conditions.
Accordingly, we represent upper adjoints by completelgistributive functions from:

Fo=E(XU{e},0) = E(XUAU{e},V)
Any such functiory € F is meant to represent the functiért(g) € F” defined by:

Ext(g)(x; = x;) = g(x; = ij
Bag)e) —{5 k0T
Ext(g)(xi =t) = g(x; = e)[t/e]

where the equality and the termt contain only constants, local variableserThe

first clause exploits thaj is special in that it does not introdueefor post-conditions
not containinge. The second clause deals with equalities between locablas and
constants in presence of non-termination of the called guore (identified through
g~ (x1 = e) = T). In order to determine the representations fiBgrfor procedures,
effects of control-flow edges are described by compléetetlistributive functions from

IE‘:E(XU{.}UA,V)HE(XU{O}UA,V)

If ¢~ is the (upper adjoint of the) effect of a procedure body, tigpér adjoint of the)
effect of a call to this procedure is given b~ (¢~) € F where

H™(g7)(xi = Xj) =Vaj.. ..al.igf(xi = Xj)
N e
H_(g_)(xz:t) =(Val...al.g—(xi:.))[t/.]

Here, the equality and the termt contain only constants, local variableserThen
summary functions can be characterized by the least solofithe constraint system:

[rt;]” Cld rt; exit point of procedur¢
[u]” T H ([sty])o[v]™ (u, f(),v) a call edgest entry point of f
[u] - S [s] ofv]” (u, s,v) an assignment edge

whereld E = F for everyE € E(X U {e}, (). For a program point of a procedure
I, [u]~ € Fy describes the upper adjoint of the transformation indugegdrbgram
executions that start atand reach the procedure exit bt the same level.

The crucial computation step here is the compositiong~ for g~ € Foandh™ €
F. In order to determine the valde (¢~ (e)) for an equalitye, we recall that every
equivalence relation~ (e) is represented by at mostt [+ 1 equalitiese’ for & global
and! local variables. Thud;~ (¢~ (e¢)) can be computed as the greatest lower bound of
the O(k + 1) equivalence relations~ (¢’). By Lemma 1 (2), the latter can be done in
time O((k + 1)2). For determiningi~ o g—, the valuesh~ (g~ (e)) must be computed
for O(k?) equalities. Thus, composition can be computed in e (k + 1)?).

Upper Adjoints for Fast Inter-procedural Variable Equeasit 191

Example 5.Consider the program from Fig. 7. The assignments— x; andxs < a;
correspond to the following functions:

| ||a1 = x1|a1 = X2|X1 = x2|a1 = 0|X1 = .|X2 = .|

[ar < x1]~ T X1 =Xg|X] =Xa|X] =0|X] =e|Xp =
[x2 «ai] Jla1 = x1 T a; =Xjla; = e|X] =—ejla; = e

In a first round of Round-Robin iteration, we obtain for pragrpointsi1, 10,9, 8, 7:
| [1t [10]9 [8 [7 |

X = @0||X] = @|X] = @ T X1 = ®|X] = @

Xo = @ (|Xo= @[] — @ Q] —@a] — 6 |X] = @

X] =Xo|lX1 =Xso|x1=a1| T |xg=a1| T

The second iteration changes the value for the postconditic= x- at program point
9 from T tox; = a;. Here, the fixpoint is reached after the second iteration. O

Since the expressions on right-hand sides of in-equatiesa@mpletely distributive,
the system of in-equations has a unique greatest solutiahya find:
Theorem 3. For every program point, Ext([u]) = (a(Su])) .

The proof of this theorem is a generalization of the corresjptg proof for Theorem 1.
From[st;]~, we again obtain the abstract effect of a calftahis time by

AIH(E) = (H™([sts])" (E)

whereg™ (E) = A{e | E C g(e)}. According to the special structure of time
O((k +1)* - k) is sufficient to compute all equalitieswith E = H~ ([sts] ") (e).

The abstract effect[gf]]n allow to determine for every program pointthe conjunc-
tion of all equalities which hold when reaching These are characterized by:

Elstmain = enter’(T)

Elsty] Denterf (E[u]) (u, f(),-) acall edge
El] DT (El) (uf().v) acalledge
Elv] 3 [s)*(E[u)) (u, s,v) an assignment edge
whereenter? (E) is the conjunction of all equalitiesinvolving only globals and con-
stants implied byF. The resulting consistent equivalence relation can betaated in
time O(k + 1). This is also the case fds]*(E), s an assignment (see Section 3).

Example 6.Consider the program from Fig. 7. We obtain the following&gies:

0,1,2,3 4 5 6 7 18,9,10 11
T xj=aj|lxi=xe=ai|x1=a1| [|X1=a1|x;1 =X9=a;

v
v

We conclude that inside the procedwerk, we can coalesce; anda; and thus avoid
to intermediately move the value of the globalinto the locala; . O

Theorem 4. The system of in-equations for reachability in presencedcillvariables
has a least solutio&[v], v program point, where for every, £[v] = a(C[v]).

Thus, the sets of valid equalities at all program points cancomputed in time
O(n - k? - (k + 1)?) for programs of size: with k global and! local variables. O

192 Markus Muller-Olm and Helmut Seidl

7 Conclusion

We have provided an algorithm for inter-procedurally imifieg all valid variable-variable
and variable-constant equalities — after abstracting fgprards and complex assign-
ments. Based on the succinct representation of summaryidaschrough their up-
per adjoints, we constructed a polynomial time algorithrthwiorst-case complexity
O(n-k*) (wherek is the number of program variables amd the size of the program).
We then extended our approach to programs with local vasaflhe key observation
is that upper adjoints allow very succinct representatadrssimmary functions: on the
one hand, the number of-atomic elements is smaller than the number leditomic
elements, on the other hand, we can avoid tracking eachardrietlividually. Similar
ideas may also help to speed up further inter-procedurgrpro analyses. In future
work, we also want to apply our analysis to inter-procedragister coalescing.

References

1. B. Alpern, M. Wegman, and F. K. Zadeck. Detecting Equalityariables in Programs. In
15th ACM Symp. on Principles of Programming Languages (POfdges 1-11, 1988.

2. C. Fecht and H. Seidl. Propagating Differences: An Efficldew Fixpoint Algorithm for
Distributive Constraint System#lordic Journal of Computing (NJC%5(4):304-329, 1998.

3. L. George and A. W. Appel. Iterated Register Coalesc&@M Transactions on Program-
ming Languages and Systems (TOPLAS8J3):300—-324, 1996.

4. S. Gulwani and G. C. Necula. A Polynomial-Time Algorithar f5lobal Value Numbering.
In 11th Int. Static Analysis Symposium (SA®ges 212-227. Springer, LNCS 3148, 2004.

5. S. Horwitz, T. W. Reps, and M. Sagiv. Demand InterprocaidDataflow Analysis. Ir8rd
ACM Symp. on the Foundations of Software Engineering (F&i)es 104-115, 1995.

6. S. Horwitz, T. W. Reps, and M. Sagiv. Precise Interprocaiddataflow Analysis via Graph
Reachability. Ir22nd ACM Symp. on Principles of Programming Languages (PQRlges
49-61, 1995.

7. J. Knoop. Parallel Data-Flow Analysis of Explicitly PBedPrograms. Irbth Int. Euro-Par
Conferencepages 391-400. Springer-Verlag, LNCS 1565, 1999.

8. J. Knoop and B. Steffen. The Interprocedural Coincidét@orem. InCompiler Construc-
tion (CC), pages 125-140. LNCS 541, Springer-Verlag, 1992.

9. A. Melton, D. A. Schmidt, and G. E. Strecker. Galois Corimgrs and Computer Science
Applications. In D. Pitt, S. Abramsky, A. Poigné, and D. Ryeéard, editorsCategory
Theory and Computer Programmingages 299-312. Springer-Verlag, LNCS 240, 1985.

10. M. Muller-OIm, O. Riithing, and H. Seidl. Checking Hexhd Equalities and Beyond. In
Verification, Model-Checking, and Abstract Interpretatid/MCAI), pages 79-96. Springer
Verlag, LNCS 3385, 2005.

11. M. Muller-Olm and H. Seidl. Precise Interproceduralafysis through Linear Algebra. In
31st ACM Symp. on Principles of Programming Languages (PQilges 330-341, 2004.

12. M. Muller-Olm, H. Seidl, and B. Steffen. InterproceduHerbrand Equalities. 1d4th
European Symp. on Programming (ESO#yges 31-45. Springer Verlag, LNCS 3444, 2005.

13. M. Sharir and A. Pnueli. Two Approaches to Interprocatibrata Flow Analysis. In: S.S.
Muchnick and N.D. Jones (editor®rogram Flow Analysis: Theory and Applicatioi&ren-
tice Hall, Engelwood Cliffs, New Jersey, 1981, chapter ggsal89-233.

14. B. Steffen, J. Knoop, and O. Rithing. The Value Flow @rapProgram Representation for
Optimal Program Transformations. &nd European Symp. on Programming (ESQO#ges
389-405. Springer-Verlag, LNCS 432, 1990.

