
Upper Adjoints for Fast Inter-procedural Variable
Equalities

Markus Müller-Olm1 and Helmut Seidl2

1 Westf. Wilhelms-Universität Münster, Mathematik und Informatik, 48149 Münster, Germany
mmo@math.uni-muenster.de

2 TU München, Informatik, I2, 85748 Garching, Germany
seidl@in.tum.de

Abstract. We present a polynomial-time algorithm which at the extra cost of a
factorO(k) (k the number of variables) generalizes inter-procedural copy con-
stant propagation. Our algorithm infers variable-variable equalities in addition
to equalities between variables and constants. Like copy constant propagation, it
tracks constant and copying assignments but abstracts morecomplex assignments
and guards. The algorithm is based on the observation that, for the abstract lattice
of consistent equivalence relations, the upper adjoints ofsummary functions can
be represented much more succinctly than summary functionsthemselves.

1 Introduction

The key task when realizing inter-procedural analyses along the lines of the functional
approach of Sharir/Pnueli [13, 8], is to determine thesummary functionsfor procedures
which describe their effects on the abstract program state before the call. Given a com-
plete latticeD for the abstract program states, the summary functions are taken from
the set of monotonic or (if we are lucky) distributive functionsD → D. This set is
often large (if not infinite), rendering it a nontrivial taskto identify a representation
for summary functions which is efficiently supports basic operations such as function
composition or function application to values ofD. Examples for such efficient repre-
sentations are pairs of sets in case of gen/kill bit-vector problems [6] or vector spaces
of matrices in case of affine equality analyses [11].

In this paper we present one further analysis where efficientrepresentations of sum-
mary functions exist, namely, the analysis of variable-variable together with variable-
constant equalities. This analysis is a generalization of copy constant propagation [6].
Based on the new analysis, register allocation can be enhanced to additionally remove
certain register-register assignments. The idea is to allow the allocator to assign vari-
ablesx andy to the same register, given thatx = y holds at each program point where
both variables are live. This technique is known asregister coalescing[3].

Example 1.Consider the program from Fig. 1. In this program, the variablesx2 and
x3 are both live at program point 3. Sincex2 = x3 definitively holds at this program
point, we can coalescex2,x3 into a variabley. By doing so, the assignmentx3 ← x2

becomesy← y and thus can be removed. ⊓⊔

S. Drossopoulou (Eds.): ESOP’07, LNCS 4960, pp. 178–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Upper Adjoints for Fast Inter-procedural Variable Equalities 179

2

3

1

4

2

3

1

4

2

3

1

4

M [x2]← x3

x3 ← x2

x2 ← x1 + 1 y ← x1 + 1

y ← y

y ← x1 + 1

M [x2]← y M [x2]← y

Fig. 1. A program with variable-variable assignments.

The summary functions for inter-procedural equality analysis are completely distribu-
tive, i.e., commute with arbitrary least upper bounds. Also, the complete lattice of ab-
stract values at program points is⊔-atomic(for a precise definition see below). There-
fore, summary functions can (at least in principle) be represented through tabulation
of their values for⊔-atoms. The number of these atoms, though, is exponential inthe
number of program variables — rendering this immediate ideaas not practical.

In this paper, we report that summary functions for equalityanalysis can nonetheless
be succinctly represented. The key idea is not to represent summary functions them-
selves, but theirupper adjoints— a well-known construction from the theory of Galois
connections which, for a completely⊔-distributive function, returns a completely⊓-
distributive function. This construction has also been used for demand-drivenprogram
analyses [5, 7]. It provides the solution in our applicationsince the lattice in question
has quadratically many⊓-atomic elements only, thus allowing for an efficient tabula-
tion of upper adjoints. As a result, we obtain a fast inter-procedural equality analysis
whose worst-case complexity is only one factork (k the number of variables) slower
than the fastest known algorithm for inferring copy constants [6].

Related work.Equality of variables can be considered as a particular caseof a general-
ized analysis of availability of expressions, also calledvalue numbering[1]. Originally,
this analysis tracks for basic blocks the symbolic expressions representing the values of
the variables assigned to. The key point is that operator symbols are left uninterpreted.
The inferred equalities between variables and terms therefore areHerbrandequalities.
Later, the idea of inferring Herbrand equalities was generalized to arbitrary control-flow
graphs [14]. Only recently, this problem has attracted fresh attention. In [4], Gulwani
and Necula show that the original algorithm of Steffen, Knoop and Rüthing can be
turned into a polynomial time algorithm if one is interestedin polynomially sized equal-
ities between variables and terms only. Progress in a different direction was made in [10]
and [12] where the authors generalize Herbrand equalities to deal with negative guards
or side-effect free functions, respectively. Still, it is open whether full inter-procedural
analysis of Herbrand equalities is possible.

On the other hand, when only assignments of variables and constants are tracked,
the abstract domain can be chosenfinite– thus implying computability of the analysis.
The naive approach, however, results in an exponential-time algorithm. A less naive
approach may interpret (or code) the constants asnumbers. The problem then consists

180 Markus Müller-Olm and Helmut Seidl

8

9

10

11

7
work ()

4

5

3

21

0

6

x1 ← x2

work ()

main()

x1 ← x2

work ()

x1 ← x2

x2 ← 0x1 ← 1

x2 ← 2

Fig. 2. An example program with procedures.

in inferring specificaffineequalities between variables. The latter problem is known to
be inter-procedurally decidable in polynomial time (giventhat each required arithmetic
operation counts forO(1)). The algorithm for this problem as presented in [11], how-
ever, has a factork8 in the worst-case complexity bound (k the number of variables).
In the present paper we improve on this by reducing the exponent to 4 in the worst case
— where sparse representations could be even more efficient.

This paper is organized as follows. After defining programs and their collecting seman-
tics in Section 2, we introduce in Section 3 the complete lattice of consistent equiv-
alence relations that is central for our approach. We discuss basic operations on this
lattice and their complexity. Section 4 is concerned with representing summary func-
tions as needed in our inter-procedural analysis. It turns out that in our scenario it is
advantageous to represent summary functions not directly but by their upper adjoints.
We then present in Section 5 our inter-procedural analysis.We extend our approach to
local variables in Section 6. Section 7 summarizes and concludes.

2 Programs and Their Collecting Semantics

For this paper, we view programs as a finite collection of proceduresf where eachf is
given by a finite control-flow graph as in Fig. 2. Each edge in the control-flow graphs
is either labeled with a callf() to a proceduref or with an assignments. In pictures,
we omit the label if it represents askip operationxi ← xi. Let V denote the set of
values the program uses in its computations. For technical reasons, we assume|V | ≥ 2.
Let X = {x1, . . . ,xk} be the set of global program variables. Later, we extend our
approach to deal with local variables as well. In order to concentrate on the essentials
of the analysis, we consider simplified programs only. So, weassume that conditional
branching has already been abstracted to non-deterministic branching. Since our anal-
ysis only tracks variable-to-variable assignments and constant-to-variable assignments,
we consider assignmentsxi ← xj , xi ← c or xi ←? for variablesxi,xj ∈ X and
constantsc ∈ V . Here thenon-deterministicassignmentxi ←? may assignanyvalue

Upper Adjoints for Fast Inter-procedural Variable Equalities 181

to xi. This is used to abstract read operations which change the value ofxi in an unpre-
dictable way or assignments of expressions that are not justa variable or constant. Note
that the same class of programs is considered forcopy constant propagation[6].

Thecollecting semanticsof a program assigns to each program pointv the setC[u]
of program states which occur atu in an execution of the program. In our application,
the variablesx1, . . . ,xk take values from the setV . Accordingly, an individual program
state can be represented by a vector(x1, . . . , xk) ∈ V k wherexi denotes the value of
variablexi, andC[u] is a subset ofV k. The definition of the collecting semantics of a
program is based on a specification of the effects[[s]] of assignmentss onto the set of
states in whichs is to be executed. The effects of assignments are given by:

[[xi ←?]] Y = {x′ | ∃x ∈ Y : ∀ k 6= i : x′k = xk}
[[xi ← xj]] Y = {x′ | ∃x ∈ Y : x′i = xj ∧ ∀ k 6= i : x′k = xk}
[[xi ← c]] Y = {x′ | ∃x ∈ Y : x′i = c ∧ ∀ k 6= i : x′k = xk}

A proceduref induces a transformation of the set of possible program states before the
call to the set of program states that occur after the call if the procedure is called in any
of these states. Here, we choose to collect this transformation from the rearand consider
for each program pointu of a proceduref , the transformationS[u] : 2V k

→ 2V k

induced by same-level program executions starting fromu and reaching the procedure
exit of f at the same level. Then, the transformation for proceduref is given byS[stf],
wherestf is the entry point off . The transformationsS[u] are characterized as the least
solution of the following system of in-equations:

S[rtf] ⊇ Id rtf exit point of proceduref
S[u] ⊇ S[v] ◦ S[stf] (u, f(), v) a call edge,stf entry point off
S[u] ⊇ S[v] ◦ [[s]] (u, s, v) an assignment edge

whereId X = X for every set of program statesX and “⊇” is the pointwise extension
of the superset relation to set-valued functions. Since theexpressions on right-hand
sides of all in-equations denote monotonic functions, the system of in-equations has a
unique least solution by the Knaster-Tarski fixpoint theorem.

Assume that we are given the effectsS[stf] of calls to the proceduresf . Then
these can be used to determine, for every program pointu, the set of program states
C[u] ⊆ V k which possibly are attained when reachingu. These can be determined as
the least solution of the following system of in-equations:

C[stmain] ⊇ V k

C[stf] ⊇ C[u] (u, f(),) a call edge
C[v] ⊇ S[stf] (C[u]) (u, f(), v) a call edge
C[v] ⊇ [[s]] (C[u]) k = (u, s, v) an assignment edge.

3 The Abstract Domain

We are interested in equalities between variables and variables and between variables
and constants. In order to express such properties, we introduce the complete lattice

182 Markus Müller-Olm and Helmut Seidl

E(X, V) (or E for short). Its least element⊥ describes the empty set of program states
and represents that all conceivable equalities are valid. Thus,α(∅) = ⊥ whereα :

2V k

→ E is the function which maps sets of program states to their respective best
description inE. Every elementE 6= ⊥ in the lattice is an equivalence relation onX∪V
where constants are considered as pairwise distinct, i.e.,non-equivalent. Let us call
such an equivalence relationconsistent. The consistent equivalence relation describing
a set∅ 6= X ⊆ 2V k

, is given byα(X) where(xi,xj) ∈ α(X) iff xi = xj for all
(x1, . . . , xk) ∈ X and(xi, c) ∈ α(X) for c ∈ V iff xi = c for all (x1, . . . , xk) ∈
X . Technically, we can represent a consistent equivalence relation E as an array (for
simplicity also denoted byE) whereE[i] = c iff the equivalence class ofxi contains the
constantc ∈ V andE[i] = xj for one representative variablexj from the equivalence
class ofxi if this class does not contain a constant. Then, two variables xi andxj

belong to the same equivalence class iffE[i] = E[j] and a variablexi and a constantc
belong to the same class iffE[i] = c. Logically, we can representE by the conjunction
of equalitiesxi = E[i] for thosexi with E[i] 6= xi, i.e., by a conjunction of at mostk
equalities of the formxi = xj or xi = c for distinct variablesxi,xj and constantsc.

On the setE, we define an ordering⊑ as implication, i.e.,E1 ⊑ E2 iff either
E1 = ⊥ or E1 is a consistent equivalence relation where every equality of E2 is implied
by the conjunction of equalities ofE1. Thus, the least upper bound of two consistent
equivalence relationsE1, E2 is the equivalence relation which is represented by the
conjunction of all equalities implied byE1 as well as byE2. The greatest lower bound
of two equivalence relations logically is given by their conjunction.

Not every two consistent equivalence relations have an other consistent equivalence
relation as greatest lower bound. The conjunction ofx1 = 1 andx1 = 2, e.g., equates
the distinct constants1 and2. The greatest lower bound therefore is given by⊥ which
thus logically denotesfalse. Note that the lengthh of a strictly increasing sequence:

⊥ ⊏ E1 ⊏ . . . ⊏ Eh

in E is bounded byh ≤ k + 1 wherek is the number of program variables.

Lemma 1. 1. The least upper boundE1 ⊔ E2 can be computed in timeO(k).
2. The greatest lower boundE1⊓. . .⊓En ofn equivalence relations can be computed

in timeO((n + k) · k).

Proof. W.l.o.g. assume that allEi are different from⊥. The first assertion follows since
we can determine, in linear time, for each variablexi, the pair(E1[i], E2[i]) giving us
the pair of equivalence classes w.r.t.E1 andE2, respectively, to whichxi belongs. Then
using bucket sort, the equivalence classes ofE = E1 ⊔ E2 can be computed in time
O(k). Let X denote a maximal set of variables all mapped to the same pair(t1, t2). If
t1 = t2 = c for a constantc, thenE[j] = c for all xj ∈ X . Otherwise, all variables in
X are equal, but have unknown value. Therefore, we set, for each xj ∈ X , E[j] = xi

for some (e.g., the first) variablexi ∈ X .
An algorithm establishing the complexity bound of the second assertion works as

follows. We start with one of the given equivalence relations E = E1 and then suc-
cessively add the at most(n − 1) · k equalities to represent the remaining equivalence

Upper Adjoints for Fast Inter-procedural Variable Equalities 183

(xi = c) ∧ E = if (E[i] = c′ ∈ V) if (c = c′) return E; else return ⊥;
else { // E[i] is a variable

X ← {xj | E[j] = E[i]};
forall (xj ∈ X) E[j]← c;
return E;

}
(xi = xj) ∧E = if (E[i] = E[j]) return E;

else if (E[i] = c ∈ V) if (E[j] = c′ ∈ V) return ⊥;
else { // E[j] is a variable

X ← {xj′ | E[j′] = E[j]};
forall (xj′ ∈ X) E[j′]← c;
return E;

}
else { // E[i] is a variable

X ← {xi′ | E[i′] = E[i]};
forall (xi′ ∈ X) E[i′]← E[j];
return E;

}

Fig. 3. The Implementation of conjunctionsxi = t ∧E for E 6= ⊥.

relations. An algorithm for computing(xi = t) ∧ E for (an array representation of) a
consistent equivalence relationE 6= ⊥ is presented in Fig. 3.

Every test in this algorithm takes timeO(1). If some update ofE occurs, then either
an equivalence class receives a constant value or two equivalence classes are merged.
Both events can only occurO(k) times. Since each update can be executed in time
O(k), the complexity estimation for the greatest lower bound computation follows. ⊓⊔

The mappingα is completely distributive, i.e., it commutes with arbitrary least upper
bounds. Thus, it is the lower adjoint (abstraction) of aGalois-connection [9]. The coun-
terpart toα, theconcretizationγ : E → 2V k

is given byγ(E) = {x ∈ V k | x |= E}
for E 6= ⊥ andγ(⊥) = ∅. Here, we writex |= E for a vectorx satisfying the equiva-
lence relationE. For every assignments, we define the abstract effect[[s]]

♯ by:

[[xi ←?]]
♯
E = ∃♯xi. E

[[xi ← t]]
♯
E =

{

(xi = t) ∧ ∃♯xi. E, if t 6= xi

E, if t = xi

for everyt ∈ X ∪ V . Here, the abstract existential quantification∃♯xi. E
′ is defined as

⊥ if E′ = ⊥ and otherwise as the conjunction of all equalities implied by E′ which
do not containxi. We note thatE′ 7→ ∃♯xi. E

′ is completely distributive, i.e., com-
mutes with arbitrary least upper bounds. Therefore, all abstract transformers[[s]]♯ are
completely distributive. An implementation of the transformer[[xi ←?]]

♯ for consistent
equivalence relationsE 6= ⊥ is provided in Fig. 4. According to this implementation,
the result of[[xi ←?]]

♯
E, i.e., ∃♯xi. E can be computed in timeO(k). Therefore, all

abstract transformers[[s]]♯ can be evaluated in linear time. The result of the analysis of
the program from Fig. 1 is shown in Fig. 5. Note that we have listed only the non-trivial

184 Markus Müller-Olm and Helmut Seidl

[[xi ←?]]♯ E = if (E[i] = c ∈ V) {E[i]← xi; return E; }
else { X ← {xj | j 6= i, E[j] = E[i]};

E[i]← xi;
if (X 6= ∅) {choose xj ∈ X; forall (xj′ ∈ X) E[j′]← xj ; }
return E;

}

Fig. 4. The Implementation of the transformer[[xi ←?]]♯ for E 6= ⊥.

2

3

1

4x2 = x3

x2 = x3

⊤

⊤

x3 ← x2

x2 ← x1 + 1

M [x2]← x3

Fig. 5. The equalities between the variables in the program of Fig. 1.

equalities. Also, the information is propagated in forwarddirection through the control-
flow graph where at program start only trivial equalities between variables are assumed,
i.e.,E0[i] = xi for all i.

4 Representing Summary Functions

Let g : E→ E denote a completely distributive function. As the latticeE is quite large,
a direct representation ofg, e.g., through a value table is not practical. Surprisingly,
this is different for theupper adjointg− of g. For an arbitrary complete latticeD and
g : D→ D, the functiong− : D→ D is defined by:

g−(d) =
⊔

{d′ ∈ D | g(d′) ⊑ d}

It is well-known from lattice theory that for completely distributiveg, the pair of func-
tions (g, g−) forms aGalois connection. Thus,g− ◦ g ⊒ Id and g ◦ g− ⊑ Id. In
particular, the upper adjointg− is completely distributive as well – however, for the re-
verse ordering (see, e.g., [9]), i.e., for everyX ⊆ D, g−(

⊔

X) =

⊔

{g−(d) | d ∈ X}.
For a distinction, we callg− completely⊓-distributive. For completely distributiveg,
the functiong− is just another representation of the functiong itself. In order to see
this, we define for a completely⊓-distributive functiong : D→ D the lower adjoint:

g+(d′) =

⊔

{d ∈ D | d′ ⊑ g(d)}

It is well-known that lower and upper adjoints determine each other uniquely. Thus, we
have, for every completely distributiveg, (g−)+ = g. Summarizing, we conclude that
instead of computing withg, we as well might compute with its upper adjointg−. From

Upper Adjoints for Fast Inter-procedural Variable Equalities 185

an efficiency point of view, however, the functionsg andg− need not behave identical.
Exactly this is the case for equality analysis.

An elementd 6= ⊥ of a complete lattice isatomic if d1 ⊑ d implies that either
d1 = ⊥ or d1 = d. A lattice is atomic if every elementx is the least upper bound
of all atomic elements smaller or equal tox. Indeed, the setE ordered with “⊑” is an
atomic complete lattice — the number of atomic elements, though, is huge. A consistent
equivalence relationE is atomic iff each equivalence class contains a distinct constant.
Thus, the number of atomic elements inE equalsmk wherek andm are the numbers
of variables and constants, respectively.

Interestingly, the setE ordered with the reverse ordering “⊒” is also an atomic
complete lattice. For a distinction, we call the atomic elements of(E,⊑) ⊔-atomic and
the atomic elements of the dual lattics(E,⊒) ⊓-atomic. For our lattice, the⊓-atomic
elements are given by the single equalitiesxi = xj andxi = c for variablesxi,xj and
constantsc. Thus, the number of⊓-atomic elements is onlyO(k · (k + m)).

Over an atomic lattice, a completely distributive functiong is given by its image
on the atoms. In our case, this means that this representation for g− is much more
succinct than the corresponding representation forg. More specifically, it is of size
O(k2 · (k+m)) as the image of each of theO(k · (k +m)) ⊓-atoms can be represented
by a conjunction of at mostk equalities. For computing the upper adjoints of the effects
of procedures, we need the upper adjoints of the basic computation steps of the program.
Thus, we define[[s]]− = ([[s]]

♯
)− for statementss and find:

[[xi ←?]]−E = ∀xi. E =

{

E if xi does not occur inE
⊥ otherwise

[[xi ← t]]
−

E = E[t/xi]

In case of the complete latticeE, we realize that the upper adjoints of the abstract
transformers of assignments in fact equal theweakest pre-condition transformersfor
these statements. An implementation of these abstract transformers for argumentsE 6=
⊥ (represented as an array) is given in Fig. 6. In particular, we find that each of these
transformers can be evaluated in timeO(k).

5 Inter-procedural Analysis

In the following, we present our inter-procedural analysis. For simplicity, we first con-
sider global variables only. Assume that the set of global variables is given byX =
{x1, . . . ,xk}. The effect of a single edge is represented by a completely distributive
function fromF = E → E whereE = E(X, V). Again, we collect the abstract effects
of proceduresfrom the rear:

[[rtf]]
− ⊑ Id rtf exit point of proceduref

[[u]]− ⊑ [[stf]]− ◦ [[v]]− (u, f(), v) a call edge,stf entry point off
[[u]]
− ⊑ [[s]]

− ◦ [[v]]
−

(u, s, v) an assignment edge

whereId E = E for everyE ∈ E. For a program pointu of a proceduref , [[u]]
−

describes the upper adjoint of the transformation induced by same-level program exe-
cutions starting fromu and reaching the procedure exit off at the same level.

186 Markus Müller-Olm and Helmut Seidl

[[xi ←?]]− E = if (E[i] 6= xi) return ⊥;
else if (∃ j 6= i. E[j] = E[i]) return ⊥;
else return E;

[[xi ← c]]− E = if (E[i] = c′ ∈ V) if (c 6= c′) return ⊥;
else {E[i]← xi; return E; }

else { // E[i] is a variable
X ← {xj | j 6= i, E[j] = E[i]};
E[i]← xi; forall (xj ∈ X) E[j]← c;
return E;

}
[[xi ← xj]]

− E = if (E[i] = c ∈ V) if (E[j] = c′ ∈ V) if (c 6= c′) return ⊥;
else {E[i]← xi; return E; }

else { // E[j] is a variable
X ← {xj′ | E[j′] = E[j]};
E[i]← xi; forall (xj′ ∈ X) E[j′]← c;
return E;

}
else { // E[i] is a variable

X ← {xi′ | i
′ 6= i, E[i′] = E[i]};

E[i]← xi; forall (xi′ ∈ X) E[i′]← E[j];
return E;

}

Fig. 6. The Implementation of the transformers[[s]]− for E 6= ⊥.

The crucial computation step here is the compositionh−◦g− whereg−, h− ∈ F. In
order to determineh−(g−(e)) for an equalitye, we recall thatg−(e) is represented by
at mostk equalitiese′. We can determineh−(g−(e)) by computing the greatest lower
bound of the valuesh−(e′), i.e. of at mostk equivalence relations. By Lemma 1 (2),
the latter takes timeO(k2). For determining a representation ofh− ◦ g−, the values
h−(g−(e)) need to be computed forO(k · (k + m)) equalities ifm is the number of
constants. We conclude that composition can be computed in timeO(k3 · (k + m)).

Since the expressions on right-hand sides of in-equations are monotonic, the system
of in-equations has a uniquegreatestsolution. Since the operations used in right-hand
sides of the equation system are completely⊓-distributive, we obtain:

Theorem 1. For every proceduref and every program pointu off , [[u]]
−

= (ᾱ(S[u]))−.

Here, the abstraction function̄α : (2V k

→ 2V k

) → E → E for summary functions
is defined as the best abstract transformer, i.e., byᾱ(g) = α ◦ g ◦ γ. We observe that,
during evaluation of a procedure, the values of constants will not change. Therefore,
instead of analyzing the weakest pre-condition for every equationxi = c, c ∈ V ,
separately, we can as well determine the weakest pre-condition for the single equation
xi = • for a distinguished fresh variable•. The weakest pre-conditionEc for the
specific equationxi = c then can be determined from the weakest pre-conditionE for
xi = • by substitutingc for •, i.e., asEc = E[c/•]. The advantage is that now the size
of the representation of a function is justO(k3) and thus independent of the number of

Upper Adjoints for Fast Inter-procedural Variable Equalities 187

constants occurring in the program. Also, composition of function then can be executed
in timeO(k4). Note that variables not assigned to during procedure evaluation can also
be treated as constants and therefore be captured by• — thus allowing to shrink the
representation of summary functions even further.

Example 2.Consider the program from Fig. 2. The set of variables isX = {x1,x2}.
The assignmentsx1 ← x2 andx2 ← 2 correspond to the functionsh−1 , h−2 with

h−1 h−2
x1 = x2 ⊤ x1 = 2
x1 = • x2 = • x1 = •
x2 = • x2 = • 2 = •

In a first round of Round-Robin iteration, we obtain for program points11, 10, 9, 8, 7
of the procedurework:

11 10 9 8 7

x1 = • x1 = • x1 = • ⊤ x1 = • x2 = •
x2 = • x2 = • 2 = • ⊤ 2 = • 2 = •
x1 = x2 x1 = x2 x1 = 2 ⊤ x1 = 2 x2 = 2

In this example, the fixpoint is reached already after the first iteration. ⊓⊔

From the upper adjoint[[stf]]−, we obtain the abstract effect of proceduref by:

[[f]]♯(E) = ([[stf]]−)+(E) =

⊔

{E′ | [[stf]]−(E′) ⊒ E}

where theE′ in the greatest lower bound are supposed to be⊓-atomic. The number
of these elements isO(k · (k + m)). Using the trick with the extra variable•, we can
compute the application of[[f]]

♯ to a given elementE in timeO(k3) – independent of
the number of constants occurring in the program.

The functions[[f]]
♯ can be used to determine, for every program pointu the con-

junction of all equalitiesE [u] ∈ E which definitely hold when the program pointu is
reached. For that, we put up the following system of in-equations whose unknownsE [v]
(v program point) take values inE:

E [stmain] ⊒ ⊤
E [stf] ⊒ E [u] (u, f(),) a call edge
E [v] ⊒ [[f]]

♯
(E [u]) (u, f(), v) a call edge

E [v] ⊒ [[s]]
♯
(E [u]) (u, s, v) an assignment edge

It should be noted that, during fixpoint iteration, we never must construct[[f]]♯ as a
whole. Instead, we only need to evaluate these functions on argument valuesE. Since
all right-hand sides are monotonic, this system of in-equations has a least solution.

Example 3.Consider again the program from Fig. 2. Then we obtain the following
equalities for program points 0 through 11:

1, 2, 3 4 5 6 7, 8, 9 10 11
⊤ x1 = x2 x2 = 2 x1 = x2 = 2 x1 = x2 ⊤ x2 = 2

⊓⊔

188 Markus Müller-Olm and Helmut Seidl

Also for inter-procedural reachability, a precision theorem can be proven. We have:

Theorem 2. The least solutionE [v], v a program point, can be computed in timeO(n ·
k4) wheren is the size of the program andk is the number of variables in the program.
Moreover, for every program pointv, E [v] = α(C[v]). ⊓⊔

In order to compute the least solution within the stated running time, we first compute
the values[[stf]]

− by applyingsemi-naivefixpoint iteration as in [2] to the system of
in-equations characterizing the (upper adjoints of) summary functions. The key idea
of semi-naive iteration is to propagate just the individualincrements to attained values
instead of abstract values as a whole. In our case, such an increment consists of a single
equality(xi = t) that is added as an additional conjunct to the pre-conditionof some
⊓-atomic element in the representation of some computed summary function. Thus,
distributed over the fixpoint computation, the accumulatedeffort spent on a single in-
equation is not bigger than the effort for a single complete evaluation of the right hand
side on functions with a representation of maximum size. As mentioned, the most com-
plex operation occuring in a right hand side, composition offunctions, can be computed
in timeO(k4) using the special variable•. Given the values[[stf]]

−, the fixpoint of the
system of in-equations forE can be computed by standard fixpoint iteration: as the
height of the latticeE isO(k) each right hand side is re-evaluated at mostO(k) times
and the most complex operation, application of[[f]]

♯ takes timeO(k3). The total run-
ning time estimation given in Theorem 2 follows by summing upover all in-equations
as their number is bounded by the size of the program.

The resulting bound is by a factork larger than the best known upper bound for copy
constant propagation [6] where no equalities between variables are tracked. On the other
hand, instead of relying on equivalence relations, we couldcode variable equalities as
specific linear dependences. The techniques from [11] then result in an algorithm with
worst-case complexityO(n · k8) — which is a factork4 worse than the new bound.

6 Local Variables

In the following, we extend our inter-procedural analysis to local variables.

Example 4.Consider the program from Fig. 7. The local variablea1 of procedurework

can be coalesced with the globalx1 as both are equal throughout the body ofwork . ⊓⊔

In order to simplify notation, we assume that all procedureshave the same set of local
variablesA = {a1, . . . ,al}. The set of global variables is stillX = {x1, . . . ,xk}. First
of all, we extend the collecting semantics to local variables. A state is now described
by a vector(x1, . . . , xk, a1, . . . , al) ∈ V k+l which is identified with the pair(x, a)
of vectorsx = (x1, . . . , xk) ∈ V k and a = (a1, . . . , al) ∈ V l of values for the
global and local variables, respectively. The transformationsS[u] now are taken from
the setT = V k+l → V k+l. In order to avoid confusion between the values of the local
variables of caller and callee the rules for call edges must be modified. For this purpose
we introduce two transformations: The first,enter ∈ T, captures how a set of states
propagates from the call to the start edge of the called procedure:

enter(X) = {(x, a) | ∃a′ : (x, a′) ∈ X}

Upper Adjoints for Fast Inter-procedural Variable Equalities 189

8

9

10

11

7
work ()

4

5

3

2

6

x2 ←?

1

0

x1 ← a1

work ()

a1 ← 0a1 ← 1

a1 ← x1

work ()

x2 ← a1

main()

Fig. 7. An example program with local variablea1.

Here, we assume that local variables have an arbitrary valueat the beginning of their
scope but other conventions can be described similarly. Thesecond transformationH :
T→ T adjusts the transformation computed for a called procedureto the caller:

H(g)(X) = {(x′, a) | ∃x, a′ : (x′, a′) ∈ g(enter {(x, a)})}

It ensures that local variables of the caller are left untouched by the call. The modified
rules for call edges in the systems of in-equations forS andC look as follows:

S[u] ⊇ S[v] ◦H(S[stf]) (u, f(), v) a call edge,stf entry point off
C[stf] ⊇ enter(C[u]) (u, f(),) a call edge
C[v] ⊇ H(S[stf])(C[u]) (u, f(), v) a call edge

In addition,V k is replaced byenter(V k+l) in the in-equation forC[stmain].
As for global variables alone, we first define the domain for the forward analysis

whose summary functions then are represented through theirupper adjoints. The extra
complication is that now equalities may involve local variables of the procedures on
the call stack which are not visible inside the called procedure. The solution is to allow
auxiliary variablesfrom a setY (of cardinalityk) for distinct local information of the
caller which must be tracked by the callee, but not modified. Thus, the abstract forward
semantics of procedures operates on conjunctions of equations over global variablesX,
local variablesA, and auxiliary variablesY, i.e., takes elements fromE′ = E(X ∪
A ∪Y, V). Since at procedure exit, local variables of the procedure are no longer of
interest, post-conditions are conjunctions just over global and auxiliary variables, i.e.,
summary functions should return elements fromE

′′ = E(X ∪ Y, V). Thus, forward
summary functions are completely distributive functions fromF

′ = E
′ → E

′′ whereas
their upper adjoints are completely⊓-distributive functions fromF

′′ = E
′′ → E

′. In
this setting, the abstraction functioñα : (2V k+l

→ 2V k+l

)→ F
′ takes the form:

α̃(F)(E) =

⊔

{E′ | ∀y, x′, a′ :
(x′, a′) ∈ F ({(x, a) | (x, a, y) |= E})⇒ (x′, y) |= E′} .

190 Markus Müller-Olm and Helmut Seidl

As in Section 5, we aim at avoiding to treat each constant in post-conditions separately.
Recall that auxiliary variables fromY are not modified during the execution of the call.
We conclude that, for the sake of determining weakest pre-conditions, at most one aux-
iliary variable, say•, suffices in single equality post-conditions. Since we haveat most
this single• in the post-condition, we also have at most one•-variable in pre-conditions.
Accordingly, we represent upper adjoints by completely⊓-distributive functions from:

F0 = E(X ∪ {•}, ∅)→ E(X ∪A ∪ {•}, V)

Any such functiong ∈ F0 is meant to represent the functionExt(g) ∈ F
′′ defined by:

Ext(g)(xi = xj) = g(xi = xj)

Ext(g)(e) =

{

e, if g−(x1 = •) 6= ⊤
⊤, if g−(x1 = •) = ⊤

Ext(g)(xi = t) = g(xi = •)[t/•]

where the equalitye and the termt contain only constants, local variables or•. The
first clause exploits thatg is special in that it does not introduce• for post-conditions
not containing•. The second clause deals with equalities between local variables and
constants in presence of non-termination of the called procedure (identified through
g−(x1 = •) = ⊤). In order to determine the representations fromF0 for procedures,
effects of control-flow edges are described by completely⊓-distributive functions from

F = E(X ∪ {•} ∪A, V)→ E(X ∪ {•} ∪A, V)

If g− is the (upper adjoint of the) effect of a procedure body, the (upper adjoint of the)
effect of a call to this procedure is given byH−(g−) ∈ F where

H−(g−)(xi = xj) = ∀a1 . . .al. g
−(xi = xj)

H−(g−)(e) =

{

e, if g−(x1 = •) 6= ⊤
⊤, if g−(x1 = •) = ⊤

H−(g−)(xi = t) = (∀a1 . . .al. g
−(xi = •))[t/•]

Here, the equalitye and the termt contain only constants, local variables or•. Then
summary functions can be characterized by the least solution of the constraint system:

[[rtf]]
− ⊑ Id rtf exit point of proceduref

[[u]]
− ⊑ H−([[stf]]

−
) ◦ [[v]]

−
(u, f(), v) a call edge,stf entry point off

[[u]]
− ⊑ [[s]]

− ◦ [[v]]
−

(u, s, v) an assignment edge

whereId E = E for everyE ∈ E(X ∪ {•}, ∅). For a program pointu of a procedure
f , [[u]]− ∈ F0 describes the upper adjoint of the transformation induced by program
executions that start atu and reach the procedure exit off at the same level.

The crucial computation step here is the compositionh−◦g− for g− ∈ F0 andh− ∈
F. In order to determine the valueh−(g−(e)) for an equalitye, we recall that every
equivalence relationg−(e) is represented by at mostk + l + 1 equalitiese′ for k global
andl local variables. Thus,h−(g−(e)) can be computed as the greatest lower bound of
theO(k + l) equivalence relationsh−(e′). By Lemma 1 (2), the latter can be done in
timeO((k + l)2). For determiningh− ◦ g−, the valuesh−(g−(e)) must be computed
for O(k2) equalities. Thus, composition can be computed in timeO(k2(k + l)2).

Upper Adjoints for Fast Inter-procedural Variable Equalities 191

Example 5.Consider the program from Fig. 7. The assignmentsa1 ← x1 andx2 ← a1

correspond to the following functions:

a1 = x1 a1 = x2 x1 = x2 a1 = • x1 = • x2 = •

[[a1 ← x1]]
− ⊤ x1 = x2 x1 = x2 x1 = • x1 = • x2 = •

[[x2 ← a1]]
−

a1 = x1 ⊤ a1 = x1 a1 = • x1 = • a1 = •

In a first round of Round-Robin iteration, we obtain for program points11, 10, 9, 8, 7:

11 10 9 8 7

x1 = • x1 = • x1 = • ⊤ x1 = • x1 = •
x2 = • x2 = • a1 = • a1 = • a1 = • x1 = •
x1 = x2 x1 = x2 x1 = a1 ⊤ x1 = a1 ⊤

The second iteration changes the value for the postcondition x1 = x2 at program point
9 from⊤ to x1 = a1. Here, the fixpoint is reached after the second iteration. ⊓⊔

Since the expressions on right-hand sides of in-equations are completely distributive,
the system of in-equations has a unique greatest solution, and we find:

Theorem 3. For every program pointu, Ext([[u]]
−

) = (α̃(S[u]))−.

The proof of this theorem is a generalization of the corresponding proof for Theorem 1.
From[[stf]]−, we again obtain the abstract effect of a call tof , this time by

[[f]]♯(E) = (H−([[stf]]−))+(E)

whereg+ (E) =
∧

{e | E ⊑ g (e)}. According to the special structure ofg, time
O((k + l)2 · k) is sufficient to compute all equalitiese with E ⊑ H−([[stf]]

−
)(e).

The abstract effects[[f]]♯ allow to determine for every program pointu, the conjunc-
tion of all equalities which hold when reachingu. These are characterized by:

E [stmain] ⊒ enter
♯(⊤)

E [stf] ⊒ enter
♯ (E [u]) (u, f(),) a call edge

E [v] ⊒ [[f]]
♯
(E [u]) (u, f(), v) a call edge

E [v] ⊒ [[s]]
♯
(E [u]) (u, s, v) an assignment edge

whereenter
♯ (E) is the conjunction of all equalitiese involving only globals and con-

stants implied byE. The resulting consistent equivalence relation can be constructed in
timeO(k + l). This is also the case for[[s]]♯(E), s an assignment (see Section 3).

Example 6.Consider the program from Fig. 7. We obtain the following equalities:

0, 1, 2, 3 4 5 6 7 8, 9, 10 11
⊤ x1 = a1 x1 = x2 = a1 x1 = a1 ⊤ x1 = a1 x1 = x2 = a1

We conclude that inside the procedurework, we can coalescex1 anda1 and thus avoid
to intermediately move the value of the globalx1 into the locala1. ⊓⊔

Theorem 4. The system of in-equations for reachability in presence of local variables
has a least solutionE [v], v program point, where for everyv, E [v] = α(C[v]).

Thus, the sets of valid equalities at all program points can be computed in time
O(n · k2 · (k + l)2) for programs of sizen with k global andl local variables. ⊓⊔

192 Markus Müller-Olm and Helmut Seidl

7 Conclusion

We have provided an algorithm for inter-procedurally inferring all valid variable-variable
and variable-constant equalities — after abstracting fromguards and complex assign-
ments. Based on the succinct representation of summary functions through their up-
per adjoints, we constructed a polynomial time algorithm with worst-case complexity
O(n ·k4) (wherek is the number of program variables andn is the size of the program).
We then extended our approach to programs with local variables. The key observation
is that upper adjoints allow very succinct representationsof summary functions: on the
one hand, the number of⊓-atomic elements is smaller than the number of⊔-atomic
elements, on the other hand, we can avoid tracking each constant individually. Similar
ideas may also help to speed up further inter-procedural program analyses. In future
work, we also want to apply our analysis to inter-proceduralregister coalescing.

References

1. B. Alpern, M. Wegman, and F. K. Zadeck. Detecting Equalityof Variables in Programs. In
15th ACM Symp. on Principles of Programming Languages (POPL), pages 1–11, 1988.

2. C. Fecht and H. Seidl. Propagating Differences: An Efficient New Fixpoint Algorithm for
Distributive Constraint Systems.Nordic Journal of Computing (NJC), 5(4):304–329, 1998.

3. L. George and A. W. Appel. Iterated Register Coalescing.ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 18(3):300–324, 1996.

4. S. Gulwani and G. C. Necula. A Polynomial-Time Algorithm for Global Value Numbering.
In 11th Int. Static Analysis Symposium (SAS), pages 212–227. Springer, LNCS 3148, 2004.

5. S. Horwitz, T. W. Reps, and M. Sagiv. Demand Interprocedural Dataflow Analysis. In3rd
ACM Symp. on the Foundations of Software Engineering (FSE), pages 104–115, 1995.

6. S. Horwitz, T. W. Reps, and M. Sagiv. Precise Interprocedural Dataflow Analysis via Graph
Reachability. In22nd ACM Symp. on Principles of Programming Languages (POPL), pages
49–61, 1995.

7. J. Knoop. Parallel Data-Flow Analysis of Explicitly Parallel Programs. In5th Int. Euro-Par
Conference, pages 391–400. Springer-Verlag, LNCS 1565, 1999.

8. J. Knoop and B. Steffen. The Interprocedural CoincidenceTheorem. InCompiler Construc-
tion (CC), pages 125–140. LNCS 541, Springer-Verlag, 1992.

9. A. Melton, D. A. Schmidt, and G. E. Strecker. Galois Connections and Computer Science
Applications. In D. Pitt, S. Abramsky, A. Poigné, and D. Rydeheard, editors,Category
Theory and Computer Programming, pages 299–312. Springer-Verlag, LNCS 240, 1985.

10. M. Müller-Olm, O. Rüthing, and H. Seidl. Checking Herbrand Equalities and Beyond. In
Verification, Model-Checking, and Abstract Interpretation (VMCAI), pages 79–96. Springer
Verlag, LNCS 3385, 2005.

11. M. Müller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear Algebra. In
31st ACM Symp. on Principles of Programming Languages (POPL), pages 330–341, 2004.

12. M. Müller-Olm, H. Seidl, and B. Steffen. Interprocedural Herbrand Equalities. In14th
European Symp. on Programming (ESOP), pages 31–45. Springer Verlag, LNCS 3444, 2005.

13. M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data Flow Analysis. In: S.S.
Muchnick and N.D. Jones (editors).Program Flow Analysis: Theory and Applications. Pren-
tice Hall, Engelwood Cliffs, New Jersey, 1981, chapter 7, pages 189–233.

14. B. Steffen, J. Knoop, and O. Rüthing. The Value Flow Graph: A Program Representation for
Optimal Program Transformations. In3rd European Symp. on Programming (ESOP), pages
389–405. Springer-Verlag, LNCS 432, 1990.

