
On the Evolution of Reactive Components

– A Process-Algebraic Approach –

Markus Müller-Olm1, Bernhard Steffen1, and Rance Cleaveland2

1 Dept. of Comp. Sci., University of Dortmund, 44221 Dortmund, Germany
{mmo,steffen}@cs.uni-dortmund.de

2 Dept. of Comp. Sci., SUNY at Stony Brook, Stony Brook, NY 11794-4400, USA
rance@cs.sunysb.edu

Abstract. A common problem in library-based programming is the
downward compatibility problem: will a program using an existing ver-
sion of a library continue to function correctly with an upgraded ver-
sion? As a step toward addressing this problem for libraries of reactive
components we develop a theory that equips components with interface
languages characterizing the interaction patterns user applications may
engage in with the component. We then show how these languages may
be used to build upgrade specifications from components and their in-
terface languages. Intuitively, upgrade specifications explicitly describe
requirements an (improved) implementation of a component must satisfy
and are intended for use by library developers. Under certain reasonable
assumptions about the contexts components are to be used in we show
that our upgrade specifications are complete in the sense that every cor-
rect upgrade of a component is related in a precise manner to its upgrade
specification. In particular, these results hold if the language being used
to develop contexts is CSP or CCS.

Keywords: action transducer, bisimulation, context, interface language,
downward compatibility, process-algebra, refinement.

1 Introduction

Practical software development relies heavily on the use of libraries of previously
implemented components. By allowing the cost of module development to be
amortized over the number of systems that use the modules, libraries contribute
to substantially cheaper software. As library components are also subjected to
more rigorous validation by virtue of their inclusion in different systems, using
them judiciously can also improve the reliability of systems. These obvious ben-
efits have led to a profusion of libraries in a variety of different application areas
in programming.

A common problem in library-based programming is the upgrade (or down-
ward compatibility) problem: given an “improved” version of an existing library,
will applications using the existing version of the library continue to function
correctly without modification? Users and implementors would clearly wish this

J.P. Finance (Ed.): FASE/ETAPS’99, LNCS 1577, pp. 161–175, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

162 Markus Müller-Olm, Bernhard Steffen, and Rance Cleaveland

in out in out

overflow

in

out

underflow

in out

{out, overflow, underflow}

{in, overflow, underflow}

in out
in

out

(a) Buffer (b) Added over/underflow (d) Upgrade specification(c) Inappropriate use

Fig. 1. A one-place buffer and its “upgrade”.

to be the case, and yet anyone who has maintained a program knows that this
rarely holds.

A partial solution in widespread use in the realm of sequential programming
relies on the use of component types as “interface specifications” (one need only
consider the myriad of .h files in existence to see the prevalence of such specifica-
tions). Clearly, preservation of types in an upgrade is far too weak to guarantee
full downward compatibility, as two procedures may behave quite differently
even though they share the same type. If, however, we focus solely on the in-
teraction pattern between components and applications, types indeed provide
“full” information: a user need only know the types of parameters and results
to interact correctly with a procedure, as a procedure’s “interaction pattern”
consists of strictly alternating sequences of calls and returns.

The situation for reactive components is different. Such components are in-
tended to maintain an ongoing interaction with the system in which they are
used, as in control software (e.g. for avionics systems) or user interfaces (e.g. win-
dow managers). In this case traditional type information is clearly inadequate,
as a component can input and output several times during its execution. Even
a component’s alphabet of input and output actions, which may be viewed as
analogous to type information, says little about allowed interaction patterns, as
the next paragraph shows.

As a small but motivating example of the subtle problems arising in upgrades
of reactive libraries, consider a library containing an implementation of a one-
place buffer as pictured in Fig. 1(a). The programmer’s system accesses this
buffer via the actions in (for input) and out (for output), with the buffer initially
being empty.

Suppose users complain that a one-place buffer reporting under- and over-
flows would be far more convenient. In order to address these complaints the
maintainer of the library might decide to enhance its functionality by providing
the innocuously looking upgrade shown in Fig. 1(b). The question now con-
fronting the programmer and the maintainer is this: can systems constructed
using the old buffer component safely use the new implementation of the buffer?
As the alphabet of the new component includes that of the old, one would be
tempted to say “yes”; however, note that the system in Fig. 1(c) can lead to
deadlock when connected with the new component but not with the old. Tradi-
tional results of process algebra are also of little use in answering this question,
since no reasonable notion of semantic equivalence or refinement would relate the

On the Evolution of Reactive Components 163

new buffer to the old one. Indeed, in the absence of any information about the
context in which the buffer is being used, the only safe answer to this question
would be “no”.

On the other hand, suppose that the developer of the original buffer module
equipped it with the regular interface language (in .out)∗.(in + ε) expressing
the (otherwise implicit) assumption that a user could assume a one-place buffer
behavior only if his system neither tries to store more than one element nor to
extract an element from an empty buffer. The system in Fig. 1(c) does not obey
this interface language and hence one would not expect to be able to use the
buffer upgrade with this system. An upgrade of a module providing additional
functionality could have an enlarged interface language in order to allow access to
the new capabilities in future systems. The new buffer, e.g., could be equipped
with the extended interface language (in + out + underflow + overflow)∗. A
smaller language might be chosen in order to preserve more potential for future
upgrades.

In this paper we study the utility of furnishing reactive components with
interface information in the form of such (prefix-closed) interface languages con-
taining the sequences of input and output actions that applications are permit-
ted to exchange with the component. Given such interface information, we define
what it means for an upgrade to be correct, and we show that from an interface
and a component, one can characterize the correct upgrades of a component via
a single labeled-transition-system-like specification. These specifications, which
we term upgrade specifications, are of particular use to library developers, as they
clearly indicate what information in a component must be preserved in order for
a component to be downward compatible.

The remainder of the paper develops along the following lines. The next sec-
tion presents the operational models of components and contexts that we use in
our technical development. Section 3 defines the space of upgrade specifications
and the next section establishes the main result of this paper, namely, that the
correct replacements of a component given a certain interface language can be
characterized by a single upgrade specification. The section following then shows
that our results hold even for restricted classes of contexts such as the parallel
contexts of CCS [9] or CSP [4], and the final section contains our conclusions
and directions for future research and discusses related work.

2 Processes and Contexts

Processes. We model processes (components) by labeled transition systems with
a designated start state. Formally, a process is a quadruple P = (S, A,→, p0),
where S is a set of states, A is an alphabet of actions that the process might
exchange with its environment in a single computation step, →⊆ S ×A×S is a
transition relation, and p0 ∈ S is the start state. We denote the set of processes
with action alphabet A by ProcA and the letters P and Q range over processes.

Given a process P , we write SP , AP ,→P and p0 to refer to its state set,
alphabet of actions, transition relation, and start state, respectively, and use

164 Markus Müller-Olm, Bernhard Steffen, and Rance Cleaveland

(possibly decorated versions of) the corresponding lower case letter – p in this
case – to range over SP . P is called finite-state if both SP and AP are finite. The
relationship (p, a, p′) ∈→, for which we write p

a→ p′ in the following, indicates
that in state p, P can evolve to state p′ under the observation of a. We generalize
the transition relation → to words w ∈ A∗ by the usual inductive definition:

p
ε→ p′ iff p = p′ and p

w·a→ p′ iff ∃p′′ : p
w→ p′′ ∧ p′′ a→ p′ ,

where ε is the empty word, w ∈ A∗, and a ∈ A. The language of a state p ∈ S
is the set L(p) = {w | ∃p′ : p

w→ p′}. The language L(P) of process P is the
language L(p0) of its initial state.

A state p ∈ S is called reachable if there is a word w ∈ A∗ such that p0
w→ p

and a process is called deterministic if for any reachable p ∈ S and a ∈ A at
most one p′ ∈ S exists such that p

a→ p′.

Contexts. We adopt the framework of Larsen and Xinxin [7, 8] and use action
transducers as basic operational model of contexts. The idea is to interpret con-
texts as special transition systems that consume actions from the inner param-
eter processes and produce actions for the environment. For the purpose of this
paper only unary contexts are needed, i.e. contexts having just one parameter
process. Formally, a context is a structure C = (S, A, B,→, c0), where S is a
set of context states, A is the action alphabet of the parameter process, B is
the action alphabet of the resulting process, →⊆ S × (A ∪ {0}) × B × S is the
transduction relation, and c0 is the start state of the context. Here 0 is assumed
to be a distinguished non-action symbol; in particular, 0 /∈ A.

The letter C ranges over contexts and we assume, as for processes, that the
constituting parts of a context C can be referenced by SC , AC etc. Moreover, c
and variables derived from c by decoration range over SC . The set of contexts for
processes with alphabet A is CtxA = {C | C is a context and AC = A}. Note
that we allow contexts with different inner and outer alphabet and assume a
designated start state in contrast to Larsen and Xinxin in [7, 8].

We often use the intuitive notation c b−→
a C c′ in favor of (c, a, b, c′) ∈→C

and call this a transduction. A transduction where a 6= 0 is interpreted as follows:
if the context is currently in state c it can “consume” an a-labeled transition
from the parameter process and evolve to its state c′, producing action b in doing
so. A transduction with a = 0 represents an autonomous step of the context, i.e.
a step without an interaction with the parameter process. Formally this intuition
is captured by the following definition.

Definition 1 (Context application). Suppose that C and P are such that
AC = AP . Then C(P) is the process (SC × SP , BC ,→, c0(p0)), where the tran-
sition relation → is the smallest relation obeying the following two rules:

p
a→P p′ , c b−→a C c′

c(p) b→ c′(p′)

c b−→
0 C

c′

c(p) b→ c′(p)

Here and in the following we use the notation c(p) for pairs (c, p) ∈ SC × SP .

On the Evolution of Reactive Components 165

It is well-known that transition systems are a rather fine-grained model of
processes. Therefore various equivalences have been studied in the literature that
identify processes on the basis of their behavior. In this paper we consider the
classic notion of (strong) bisimulation [10, 9].

Definition 2 (Bisimulations). Suppose P, Q are processes with same action
alphabet, i.e. AP = AQ. A relation R ⊆ SP × SQ is called a bisimulation if for
all (p, q) ∈ R the following two conditions hold:

– ∀a, p′ : p
a→P p′ ⇒ ∃q′ : q

a→Q q′ ∧ (p′, q′) ∈ R, and
– ∀a, q′ : q

a→Q q′ ⇒ ∃p′ : p
a→P p′ ∧ (p′, q′) ∈ R.

Define ∼ to be the union of all bisimulations R. The processes P and Q are
called bisimilar, P ∼ Q for short, if p0 ∼ q0.

It is well-known that ∼ is the largest bisimulation on SP × SQ. It is also
straightforward to prove that any context preserves bisimilarity, i.e. that P ∼ Q
implies C(P) ∼ C(Q).

Interface Languages. The language consisting of all words in A∗
C that a context

C potentially exchanges with parameter processes is called its interface language.
Its formal definition is based on the straightforward inductive extension of the
transduction relation →C to words:

c ε−→
ε C c′ iff c = c′ and c w · b−→

v · a C c′ iff ∃c′′ : c w−→
v C c′′ ∧ c′′ b−→

a C c′ ,

where v ∈ (AC ∪ {0})∗ and w ∈ B∗
C are words of equal length and a ∈ AC ,

b ∈ BC . Moreover, the word resulting from removing all occurrences of 0 from a
word v ∈ A ∪ {0} is denoted by v̂. Now, the interface language of C is IL(C) =
{v̂ | ∃w, c : c0

w−→v C c}. It is easy to see that IL(C) is prefix-closed. We say that
C respects a language L ⊆ A∗ if IL(C) ⊆ L.

3 Process Specifications and the Refinement Preorder

We may now formalize the setup indicated in the introduction. An interface for
a component (=process) P is simply a prefix-closed language L ⊆ A∗

P , and de-
scribes the protocol agreed upon for using P . Then a new component (=process)
Q is a correct upgrade of an old component P that is equipped with interface
language L, if it behaves as P in connection with any context that respects L,
i.e. if it is drawn from the following set of processes:

UP,L
def= {Q ∈ ProcA | ∀C ∈ CtxA : IL(C) ⊆ L ⇒ C(P) ∼ C(Q)} .

Note that we use strong bisimulation as notion of global behavioral coincidence.
UP,L is thus the set of correct upgrades of P w.r.t. L.

As mentioned, interface languages are quite useful for module users, since
they provide information they can check their systems against, but less useful

166 Markus Müller-Olm, Bernhard Steffen, and Rance Cleaveland

to implementors, who would likely prefer a representation that more explicitly
states the allowable implementation choices for upgrades. The remainder of this
paper is devoted to showing that any set of upgrades can be characterized by a
single element in a certain space of simple behavioral process specifications that
extends the space of processes and is equipped with a behavioral, bisimulation-
like refinement preorder.

Definition 3 (Process specifications). A process specification is a pair P =
(P, ↑) consisting of a process P and an undefinedness predicate ↑⊆ SP × AP .

In the following we write p ↑ a in lieu of (p, a) ∈↑ and call this an a-
undefinedness of state p. Moreover, we write p ↓ a as an abbreviation for
¬(p ↑ a). The intuitive interpretation of an a-undefinedness of a state p is that
a-transitions from state p are completely irrelevant and might thus arbitrarily
be removed or added. This intuition is formally captured by the notion of the
refinement preorder defined below.

We use calligraphic letters P ,Q to denote process specifications. The cor-
responding italic letters P, Q refer to the embodied processes, and we continue
to refer to their constituting parts by SP , AP , . . ., (SQ, AQ, . . .) and extend this
convention by referring to the undefinedness predicates by ↑P and ↑Q.

A process specification P = (P, ↑) is called total if no reachable state p has an
undefinednesses, i.e. if p ↓ a for all a ∈ AP and reachable p ∈ SP . Total process
specifications correspond to processes, and henceforth we will identify a process
P with the corresponding total process specification (P, ∅). The definition of the
application of contexts to processes extends in a natural way to specifications.

Definition 4 (Application of contexts to specifications). Suppose P =
(P, ↑P) is a process specification and C is a context such that AP = AC . C(P)
is the process specification (C(P), ↑), where the undefinedness predicate ↑ is the
smallest predicate obeying the rule:

p ↑P a , c b−→
a C c′

c(p) ↑ b

Note that for a process P , C((P, ∅)) equals (C(P), ∅), the total specification
corresponding to C(P).

Definition 5 (Refinement preorder). Suppose P = (P, ↑P) and Q = (Q, ↑Q)
are process specifications with the same alphabet (AP = AQ). A relation R ⊆
SP ×SQ is called a pre-bisimulation if for all (p, q) ∈ R and a ∈ AP with p ↓P a
the following three conditions hold:

– q ↓Q a,
– ∀p′ : p

a→P p′ ⇒ ∃q′ : q
a→Q q′ ∧ (p′, q′) ∈ R, and

– ∀q′ : q
a→Q q′ ⇒ ∃p′ : p

a→P p′ ∧ (p′, q′) ∈ R.

Define � to be the union of all pre-bisimulations R. Given process specifications
P and Q, we write P � Q if p0 � q0. We call Q a refinement of P in this case.

On the Evolution of Reactive Components 167

Standard arguments establish that � is itself a pre-bisimulation (viz. the
largest one) and a preorder (i.e. a reflexive and transitive relation) on process
specifications. We call it the refinement preorder and denote its kernel � ∩ �
by �. Moreover, it is easy to see that the notions of bisimulation and pre-
bisimulation coincide for processes (i.e. total specifications) because processes
possess no undefinednesses.

Contexts are monotonic w.r.t. the refinement preorder, i.e. P � Q implies
C(P) � C(Q) for process specifications P ,Q and contexts C with AP = AQ =
AC . This monotonicity result generalizes the compositionality of contexts w.r.t.
strong bisimulation, as ∼ and � coincide for total process specifications.

A process specification P can be interpreted as representing the set I(P) def=
{Q ∈ ProcA | P � Q} of all refining processes, its implementations. Note that
I(P) contains only the total refinements of P , i.e. processes, not (proper) pro-
cess specifications. Transitivity of � implies that smaller processes have more
implementations, i.e., P � Q implies I(P) ⊇ I(Q).

4 Characterizing Replacement Sets by Process
Specifications

Given a process P and an interface language L, we would like to construct a
process specification SP,L, the upgrade specification promised in the introduc-
tion. Clearly, we expect that all implementations of SP,L can replace P in any
context C that respects L. This requirement, which we call SP,L’s soundness in
the following, can be expressed by the following inclusion:

Soundness I(SP,L) ⊆ UP,L .

Preferably, SP,L should be as small as possible w.r.t. � in order to characterize
as many valid replacements for P as possible. Ideally, we would like that it even
characterizes all valid replacements for P , which can be expressed by

Completeness I(SP,L) ⊇ UP,L .

We call this property SP,L’s completeness. We will see that we can indeed con-
struct SP,L so that it is both sound and complete.

4.1 Construction of Upgrade Specifications

As L is assumed to be prefix-closed, there is a deterministic process, Q, whose
language equals L. One possible construction of such a process Q is the following:
as states we take languages over A, i.e. SQ ⊆ 2A∗

, the alphabet of Q is AQ = A,
the transition relation is defined by the rule

{w | a · w ∈ q} 6= ∅
q

a→Q {w | a · w ∈ q}

168 Markus Müller-Olm, Bernhard Steffen, and Rance Cleaveland

and the initial state is q0 = L. More precisely, we restrict SQ to the languages
reachable via →Q-transitions from q0 = L. If L is regular, Q corresponds to the
minimal deterministic automaton detecting L and, therefore, it is intuitive to
call Q also in general the minimal deterministic process for the language L.

The observation underlying the construction of SP,L now is the following: if a
component P and a process Q as above run in parallel in a synchronous fashion
inside a context C respecting L, then the fact that Q has no a-transition in a
certain state means that C cannot consume an a-action in the next step (since it
respects L). Therefore, in such a state addition or removal of a-transitions does
not change the behavior visible to the environment.

This suggest the following definition: SP,L = ((S, A,→, (p0, q0)), ↑), where
S = SP × SQ (Q is the minimal deterministic process for L from above) and
→ ⊆ S × A × S and ↑ ⊆ S × A are the smallest relations obeying the rules

p
a→P p′ , q

a→Q q′

(p, q) a→ (p′, q′)
and

¬∃q′ : q
a→Q q′

(p, q) ↑ a
.

In place of Q we could use any deterministic process with language L. We refer
to the minimal deterministic process here only for purpose of unique definition.

As an example, we present in Fig. 1(d) the upgrade specification SP,L, where
P is the one-place buffer from Fig. 1(a) and L = (in .out)∗.(in +ε) is its interface
language as discussed in the introduction. Note that in this case the minimal
deterministic process for L just looks like P itself. Note also that both the
original as well as the upgraded buffer from Fig. 1 are refinements of the upgrade
specification SP,L.

We clearly expect that P implements SP,L.

Proposition 6. SP,L � P for all P ∈ ProcA and prefix-closed L ⊆ A∗ .

An intuitive proof of this proposition is that SP,L can be thought to be
constructed from P by the following three transformations, the first and third
of which obviously preserve � and the second of which leads to a process that
is weaker w.r.t. the refinement preorder �:

1. P is unrolled appropriately;
2. a-undefinednesses are added at the states of the unrolled transition system

for which further a-evolution is prohibited by L;
3. all a-transitions are removed from states that now contain an a-undefinedness.

4.2 Soundness of Upgrade Specifications

From the intuition underlying the construction of SP,L it is clear that a context
C respecting L will never try to exchange an action a with SP,L for which SP,L

is undefined. The following lemma intuitively is a consequence of this fact.

Lemma 7. If IL(C) ⊆ L, then C(SP,L) is total.

On the Evolution of Reactive Components 169

Proof. Suppose IL(C) ⊆ L. We have to show that no reachable state in C(SP,L)
has an undefinedness. Let IL(c) = {v̂ | ∃w, c′ : c w−→

v C c′} be the interface
language of a state c ∈ SC .

Suppose that Q is the minimal deterministic process for L used in the con-
struction of SP,L. The states of C(SP,L) have the form c(p, q), where c ∈ SC ,
p ∈ SP , and q ∈ SQ. Consider the set G = {c(p, q) | IL(c) ⊆ L(q)}. It is easy to
show the following three properties of G:

a) G contains the initial state c0(p0, q0) of C(SP,L).
b) G is closed under transitions of C(SP,L).
c) No state in G has an undefinedness.

These properties suffice to prove the lemma: a) and b) together imply that G
contains all reachable states of C(SP,L); c) then yields that no reachable state
has an undefinedness. ut

It is now easy to show that a process P can be replaced in a context respecting
L by any implementation of SP,L.

Theorem 8 (Single contexts). Suppose C ∈ CtxA is a context respecting L
and P, Q ∈ ProcA are processes. Then SP,L � Q implies C(P) ∼ C(Q) .

Proof. Suppose SP,L � Q. As contexts are monotonic w.r.t. �, we can infer
that C(SP,L) � C(Q). By Lemma 7, C(SP,L) is total. As � and ∼ coincide for
total processes we thus have C(SP,L) ∼ C(Q). In the same way we can infer
C(SP,L) ∼ C(P) because SP,L � P (Proposition 6). We obtain thus C(P) ∼
C(Q) as ∼ is an equivalence. ut

The claim of the above theorem might be called ‘soundness of SP,L for single
contexts’. As a corollary, we obtain the soundness of SP,L.

Corollary 9 (Soundness). I(SP,L) ⊆ UP,L .

Proof. Suppose that Q ∈ I(SP,L). By definition of I(SP,L), SP,L � Q. By
Theorem 8 we have for any of the contexts C ∈ CtxA considered in the definition
of UP,L, C(P) ∼ C(Q). Thus Q ∈ UP,L. ut

4.3 Completeness of Upgrade Specifications

The proof of SP,L’s completeness relies on the converse of the implication

C(P) ∼ C(Q) ⇒ SP,L � Q

in Theorem 8 for certain contexts. In general, however, this implication, which
expresses ‘completeness of SP,L for single contexts’ is invalid in the situation of
Theorem 8. Note that completeness of SP,L only means validity of the weaker
implication

(∀C : IL(C) ⊆ L ⇒ C(P) ∼ C(Q)) ⇒ SP,L � Q .

170 Markus Müller-Olm, Bernhard Steffen, and Rance Cleaveland

a
b

c

P:

c
c

b
b

c

Q:

b

a

a

C(Q):

a

a
a

b

c

b

c

C(P): a
a

a

C: a

a

aa

a a

a
b

c

{a,b,c}

{a,b,c}

{a}
{b,c}

P,LS :

Fig. 2. Incompleteness for non-deterministic context.

a
P:C:

c
a

c
b

c
C(P): C(Q):

c

b
Q:

a

{} {a,b}
P,LS :

Fig. 3. Incompleteness for non-distinctive context.

The following three phenomena contribute to the incompleteness for single con-
texts.

Firstly, a context can have different transductions which consume the same
action from the parameter process and produce the same action for the en-
vironment but lead to different context states. We say then that the context is
non-deterministic. An example is shown in Fig. 2, where the undefinedness pred-
icate ↑ of SP,L is shown by annotating the states with the set of actions for which
it is undefined. The alphabets in the example of Fig. 2 are A = B = {a, b, c} and
L = IL(C) = {ε, a, ab, ac}. Clearly, C(P) ∼ C(Q) but SP,L � Q does not hold.
The problem is that due to the non-determinism of the context the branching
structure of a parameter process P need not necessarily be preserved in cor-
rect replacements Q for that context. Like bisimulation, however, the refinement
preorder � preserves branching.

Secondly, a context can exchange different actions with its parameter pro-
cess and yet produce the same observable behavior. We say that the context
is not distinctive in this case. A simple example is given in Fig. 3 where the
alphabets are A = {a, b}, B = {c} and L is chosen to be IL(C) = {ε, a, b}.
Again C(P) ∼ C(Q), although SP,L � Q does not hold. Correct replacements
in contexts that are not distinctive cannot (always) completely be described by
a process specification because � preserves the identity of actions.

A third, somewhat less severe problem is that C can have a properly smaller
interface language than L. A very simple example of this kind is presented in
Fig. 4. Here, A = {a} and B is arbitrary. We choose L = A∗ which certainly is

On the Evolution of Reactive Components 171

C: P:
a

Q: C(P) = C(Q): P,L {}S :

Fig. 4. Incompleteness for context with a strictly smaller interface language.

a superset of IL(C) = ∅. Trivially, C(P) ∼ C(Q) but SP,L � Q is invalid. The
problem is that L requires the preservation of more from the behavior of the
parameter process P than necessary for the context C.

Before we proceed, let us define the notion of deterministic and distinctive
contexts referred to above.

Definition 10 (Deterministic and distinctive contexts). A context C =
(S, A, B,→, s) is called deterministic if for all c, d, d′ ∈ S, a ∈ A∪{0}, b, b′ ∈ B
the implication

c b−→a d ∧ c b′−→
a

d′ ⇒ b = b′ ∧ d = d′

is valid and, furthermore, c b−→
a d ∧ c b′−→

0
d′ ⇒ a = 0.

It is called distinctive if for all c, d, d′ ∈ S, a, a′ ∈ A, b ∈ B the following
implication holds:

c b−→
a d ∧ c

b−→
a′ d′ ∧ (∃P, P ′ ∈ ProcA : d(P) ∼ d′(P ′)) ⇒ a = a′ .

Here we identify the context states d and d′ with the contexts D and D′ that
possess the same components as C except of the start states which are d and d′

respectively.

Determinacy is intended to capture the idea of unique transduction: the
external effect induced by an action a consumed from the parameter process is
required to be uniquely determined. Autonomous context steps might in general
prohibit to transfer this property of unique transduction required in the first
condition for single actions to whole consumed action sequences. Therefore, the
second condition requires in addition that 0-transductions (which are unique by
the first condition) do not compete with non-0 transductions.

While determinacy allows the inference of outer behavior from inner behavior,
the idea of distinctivity is to allow just the opposite: to infer inner behavior form
outer behavior. Let us, for the purpose of explanation, look first at a somewhat
simpler notion, local distinctivity, that requires the stronger implication

c b−→
a d ∧ c

b−→
a′ d′ ⇒ a = a′ .

A locally distinctive context allows to infer from a certain action b observed by
the environment immediately the action a of the component process inducing b.
The weaker notion of distinctivity does not necessarily allow immediate infer-
ence of a from the observed action b alone but from b together with the future
behavior. Thus detection of a might be delayed but is conceptually possible from
the total behavior presented to the environment.

The following lemma shows that the above list of phenomena leading to
incompleteness of SP,L for single contexts is comprehensive.

172 Markus Müller-Olm, Bernhard Steffen, and Rance Cleaveland

Theorem 11 (Completeness for single contexts). Suppose C ∈ CtxA is a
context, L ⊆ A∗ is a prefix-closed language, and P, Q ∈ ProcA are processes. If
C is deterministic and distinctive and IL(C) = L then C(P) ∼ C(Q) implies
SP,L � Q.

Proof. Suppose that C is deterministic and distinctive, that IL(C) = L, and
that C(P) ∼ C(Q). Let R be the minimal deterministic process for L used
in the construction of SP,L. Given the determinacy and distinctivity of C it is
rather straightforward (albeit tedious) to show that the relation

S
def= {((p, r), q) | ∃c : IL(c) = L(r) and c(p) ∼ c(q)}

is a pre-bisimulation between SP,L and Q. This establishes the claim of the
theorem, as ((p0, r0), q0), the pair of initial states of SP,L and Q, is contained in
R because IL(c0) = IL(C) = L = L(R) = L(r0) and C(P) ∼ C(Q). ut

Theorem 11 shows that deterministic distinctive contexts that exhaust the
agreed protocol language L (i.e. IL(C) = L) are of particular importance. We
call such contexts witness contexts for L. That witness contexts always exist is
the claim of the following lemma. As a consequence SP,L is complete.

Lemma 12. There is a witness context for any prefix-closed language L.

Proof. Suppose given a prefix-closed language L ⊆ A∗. Let – as in the construc-
tion of SP,L – Q = (SQ, A,→Q, q0) be the minimal deterministic process for L.
Consider the context C = (SQ, A, A,→C , q0), where →C is defined by c b−→

a C c′

iff c
a→Q c′ ∧ a = b. It is straightforward to check that C is deterministic and

distinctive and that its interface language equals L(Q) = L. ut
Corollary 13 (Completeness). UP,L ⊆ I(SP,L) for any prefix-closed L ⊆ A∗.

Proof. Suppose given Q ∈ UP,L. By Lemma 12 there is a witness context C for
L. As Q ∈ UP,L we have C(P) ∼ C(Q). By Lemma 11, therefore, SP,L � Q, i.e.
Q ∈ I(SP,L). ut

5 Restricted Context Classes

The results of the previous section seem to depend on the richness of the space of
contexts given by action transducers. While this richness certainly is welcome for
soundness considerations – it means that replacement in any reasonable context
is correct – it is less clear whether it should also be accepted for completeness
considerations: reasonable smaller classes of contexts, which could result e.g.
from syntactic restrictions on the way contexts are constructed, might allow
more replacements, thereby rendering SP,L incomplete.

Assume that we are interested in a certain context class K ⊆ CtxA. Then
the set of correct upgrades for a certain process P ∈ ProcA for contexts in K
respecting a certain interface language L ⊆ A∗ is given by

UK
P,L

def= {Q ∈ ProcA | ∀C ∈ K : IL(C) ⊆ L ⇒ C(P) ∼ C(Q)} .

On the Evolution of Reactive Components 173

The only difference to the definition of UP,L is the relativation of the universal
quantifier to contexts in K. It is obvious that UP,L ⊆ UK

P,L because K ⊆ CtxA.
Therefore, by Corollary 9, I(SP,L) ⊆ UK

P,L, i.e. SP,L is sound for K. The more
interesting question is, whether it is also complete for K, i.e. whether I(SP,L) ⊇
UK

P,L. In order to show completeness, however, it suffices to find a witness context
C ∈ K for L because in this case we can argue as in the proof of Corollary 13.
Summarizing we have the following.

Corollary 14. Suppose L ⊆ A∗ is prefix-closed. If K contains a witness context
for L, then SP,L is sound and complete for K, i.e. I(SP,L) = UK

P,L .

In the scenario motivating the considerations of this paper the process library
components to be replaced typically run in parallel with the using program.
Therefore, parallel contexts are of particular interest. Two prominent views of
parallel interaction studied in the realm of process algebra are multiple agree-
ment as in CSP [4] or LOTOS and handshake communication as in CCS [9].

In CSP the parallel composition operator enforces synchronization between
its components on the common parts of their alphabet. Therefore, in a parallel
CSP context of the form · ‖ Q the process Q can control occurence of actions in
components placed into such a context. Technically this means that parallel CSP
contexts have in general a non-trivial interface language and are thus interesting
from the point of view of this paper.

The parallel composition operator of CCS, on the other hand, does not en-
force synchronization of the component processes but only enables it. In par-
ticular, the component processes of a pure parallel composition can proceed
independently of each other and, therefore, the interface language of a pure
parallel CCS context · |Q (for processes of alphabet A) is just A∗. Thus pure
parallel CCS context are of little interest from the point of view of this paper.
A more interesting context class, which subsumes parallel contexts, are standard
concurrent contexts of the form (· |Q) \M . Here, the restriction operator · \M
of CCS is used to enforce synchronization on the action set M ⊆ Act. Standard
concurrent contexts are modeled on processes in standard concurrent form1 that
are often studied in the realm of CCS (see, e.g., [9]).

In the full version of this paper we recall how to capture the effect of parallel
CSP contexts and standard concurrent CCS contexts by action transducers and
demonstrate that both context classes contain witness contexts for given inter-
face languages L. Thus, SP,L is sound and complete for each of these classes.

In the CSP case, witness contexts are rather immediately induced by deter-
ministic processes for the language L in question with a certain care for treating
the internal action τ correctly. In contrast the CCS case faces us with a dif-
ficulty: standard concurrent contexts straightforwardly constructed from such
processes are non-distinctive in general. The reason is the implicit hiding of the
1 A CCS process is said to be in standard concurrent form if it has the form

(P1[f1]| . . . |Pn[fn])\M . For the purpose of this paper Q can be thought to represent
the parallel composition P2[f2]| . . . |Pn[fn] and the relabeling [f1] can be thought to
be subsumed by the component placed into the context.

174 Markus Müller-Olm, Bernhard Steffen, and Rance Cleaveland

CCS parallel operator: a synchronization of two complementary actions a and ā
yields just the internal τ -action from which we cannot infer which actions syn-
chronized. (Note that this is different in CSP where actions are not changed on
synchronization.) How can we nevertheless construct distinctive contexts? The
idea is to enrich the context to output tracing actions after each synchroniza-
tion, from which the actions that synchronized can be inferred. This is akin to
including some special output statements into a program for debugging purposes
in order to observe the path taken through the program. The resulting context
is distinctive in the sense of Definition 10, although it is not locally distinctive.
Indeed, this observation was the reason to opt for the more global notion of
distinctivity.

6 Conclusion

The motivation for this paper is to initiate a theory of downwards compatibility
for reactive components. To this end, we studied the use of interface languages as
a means for constraining the applications in which a reactive component is to be
used. Such languages describe admissible interaction patterns of applications. As
the main technical result we showed how to construct library-developer-oriented
upgrade specifications from components equipped with interface languages.

While suggestive, the results in this paper represent only a first step toward
an adequate theory of component compatibility. In particular, we deliberately
ignored value-passing in order to come to grips with the control-oriented aspects
of reactive systems. It would be an interesting topic for future research to ex-
tend the framework to a more realistic scenario where, in particular, values are
communicated between components and applications and to consider how the
results of this paper can be applied and generalized. We anticipate that inter-
face languages would then consist of sequences of actions annotated with types,
with one such sequence representing a set of admissible sequences of value ex-
changes. The consequences of this change remain to be investigated. Another
topic to be investigated would involve the consideration of more reasonable no-
tions of global behavioral equivalence, in particular weak bisimulation. Results
in [2] suggest that this extension is not problematic, so in this paper we have
opted for the simpler, if less realistic, setting of strong bisimulation.

From a more technical point of view, this paper has presented a behavioral re-
finement preorder on a space of simple process specifications and has shown that
the correct replacements of a process in context classes given by prefix-closed
interface languages can be characterized by single specifications. This expres-
siveness result for the space of process specifications draws its inspiration from
a similar result for classes of CCS contexts in [2]. That paper proposes a modi-
fication in the definition of the CCS divergence preorder studied by Walker [11];
the modification enables such a result to hold.

In this paper we simultaneously extended and simplified the underlying for-
malism of [2] to obtain more general soundness and completeness results, and
we showed how they may be applied in the setting of reactive component evo-

On the Evolution of Reactive Components 175

lution. Specifically, we considered the more general setting of action transducer
contexts proposed by Larsen and Xinxin [7, 8]; we altered the setting of [2] to
account for this richer setting; and we showed how components together with
“interaction languages” may be transformed into equivalent “partial process”
specifications. Moreover, we showed that the complete characterization property
of the resulting specifications is stable under reasonable modifications of the type
of considered contexts. In particular, we studied, besides the comprehensive class
of action transducer contexts, the less extensive classes of parallel CSP contexts
and standard concurrent CCS contexts.

The refinement preorder has a bisimulation-like definition and can – for finite-
state processes – automatically be checked by adapting known bisimulation-
checkers. The finiteness requirement imposed by straightforward automatic sup-
port, however, leads also to a restriction to regular interface languages, as non-
regular languages would give rise to infinite process specifications SP,L.

Related to the characterization of correct replacements in contexts is the con-
text decomposition problem studied by Larsen [6, 7]. His work is concerned with
characterizing the class of processes Q such that C(Q) sat S holds for a given
specification S and context C. Indeed, characterizing the correct replacements
of a process P in a single context C can be seen as the context decomposition
problem, where specifications are given by processes, sat is chosen as the global
process equivalence ∼ and S as C(P). Context decomposition amounts then to
characterizing the processes Q with C(Q) ∼ C(P), i.e. the correct replacements
of P . The replacement problem in classes of contexts, however, that was con-
sidered in this paper does not immediately reduce to a context decomposition
problem, and our results therefore are fundamentally different from Larsen’s.

References

1. J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

2. R. Cleaveland and B. Steffen. A preorder for partial process specification. In
CONCUR’90, LNCS 458, 141–151. Springer-Verlag, 1990.

3. M. C. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
4. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
5. C. B. Jones. Tentative steps toward a development method for interfering pro-

grams. ACM TOPLAS, 5(4):596–619, 1983.
6. K. G. Larsen. Context-Dependent Bisimulation Between Processes. PhD thesis,

University of Edinburgh, 1986.
7. K. G. Larsen. Ideal specification formalism = expressivity + compositionality +

decidability + testablity + · · ·. In CONCUR’90, LNCS 458. Springer-Verlag, 1990.
8. K. G. Larsen and L. Xinxin. Compositionality through an operational semantics

of contexts. In ICALP’90, LNCS 443, 526–539. Springer-Verlag, 1990.
9. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

10. D. M. R. Park. Concurrency and automata on infinite sequences. In LNCS 154,
pages 561–572. Springer-Verlag, 1981.

11. D. J. Walker. Bisimulations and divergence. In LICS’88, 186–192. IEEE Computer
Society, 1988.

