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Abstract. The classical concepts of partial and total correctness iden-
tify all types of runtime errors and divergence. We argue that the as-
sociated notions of translation correctness cannot cope adequately with
practical questions like optimizations and finiteness of machines. As a
step towards a solution we propose more fine-grained correctness no-
tions, which are parameterized in sets of acceptable failure outcomes,
and study a corresponding family of predicate transformers that gener-
alize the well-known wp and wlp transformers. We also discuss the utility
of the resulting setup for answering compiler correctness questions.
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1 Introduction

Compilers are ubiquitous in today’s computing environments. Their use ranges
from the traditional translation of higher programming languages to conversions
between data formats of a large variety. The rather inconspicuous use of compil-
ers helps to get rid of architecture or system specific representations and allows
thus to handle data or algorithms in a more convenient abstract form.

There is a standard theory for the syntactic aspects of compiler construction
which is well-understood and documented in a number of text books (e.g. [1, 24–
26]). It is applied easily in practice via automated tools like scanner and parser
generators. This has made the construction of the syntactic phases of compilers,
which has been a challenge back in the sixties, to a routine task nowadays.

This is different for the semantic phases concerned with the question, which
output is to be generated for a given input. In this respect every translation task
requires rather specific considerations and, due to the wide range of applica-
tions sketched above, no general approach is available or to be expected for this
problem. Even if one restricts attention to a more narrow task, the translation
of imperative programming languages considered in this paper, there is still no
generally followed approach, although some well-studied frameworks like, e.g.,
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action semantics [19] exist. Of course much is known on efficient (and presum-
ably correct) translation schemes and runtime environments and there is also a
vast amount of literature on optimizations (a recent textbook is [20]). But these
considerations do not build on a consistent, widely accepted semantic basis. As
a consequence, subtle errors are present in generated code and it is difficult
to fully understand which properties are guaranteed to transfer from source to
target programs, in particular if aggressive optimization levels are employed in
the compiler. This is exemplified by the surprising results experienced by many
compiler users every now and then when running generated code.

In many applications errors and uncertainties, although annoying, can be tol-
erated. When compilers are used to construct software for safety-critical systems
the matter changes dramatically. The mistrust in compilers is one of the reasons
why such code often is certified on the level of machine- or assembler-code [15,
23]. Trusted and fully-understood compilers would permit a certification on the
source language level. This would be less time-consuming, cheaper, and more re-
liable. From a practical point of view, the ultimate goal of compiler verification
[4, 6, 12, 14, 16, 21, 22] should be to improve on this state of affairs.

Every compiler proof is in danger of burying the essential considerations un-
der a mountain of technicalities, which could seriously affect the credibility of
the established correctness claim. Thus a compiler proof should be based on a
semantic definition in an abstract style. On the other hand, it is important that
the semantic description is rather close to the intuition of the average program-
mer in order to avoid errors resulting from misunderstandings of or, seen from
the perspective of the programmer, errors in the formal semantics definition. As
most people have a rather concrete, operational intuition about the behavior
of (imperative) programs, the ultimate reference point should thus be a rather
concrete, operational semantics.

How can we resolve the obvious conflict between the requirements of using an
operational as well as an abstract kind of semantics? We envision the following
approach: The operational semantics is defined first and provides the ultimate
reference. In particular, the correctness property to be established for the trans-
lation is interpreted in terms of the operational semantics. From the operational
semantics, the more abstract semantics to be used in the compiler proof is de-
rived. This involves defining the objects handled by the abstract semantics in
terms of the operational semantics. Afterwards sufficiently strong properties of
the abstract semantics are established that allow to reason in the compiler proof
on the abstract level without directly recurring to its operational definition.

A particular benefit of this approach is that the abstract semantics can be
suited to the specific correctness property to be established. We shall argue later
in this paper (see Sect. 2) that there is no single universal notion of correct
translation even in the simplified setting considered here. Instead there is a
whole range of sensible notions and the abstract semantics can specifically be
constructed to accommodate reasoning w.r.t. the chosen one.

So much for the context of this paper; let us now become a bit more con-
crete about our contribution. On the one hand, we are looking for a realistic, yet



On Excusable and Inexcusable Failures 1109

tractable, notion of translation correctness and, on the other hand, for abstract
semantics suited to reasoning about it. We argue that common code-optimizing
transformations and the limitations of finite machines give rise to different ex-
pectations about the relationship of the behavior of source and target code. We
show that the notions of translation correctness that derive in a natural way
from the classic idealized notions of partial and total correctness are not able
to cope adequately with these topics. The problem results from the traditional
identification of runtime errors and divergence. As a step towards a solution
we propose relativized correctness notions that are parameterized in sets of ac-
ceptable failures. In order to facilitate compiler correctness proofs we also study
relativized versions of the well-known wp and wlp predicate transformers and
discuss the utility of the resulting setup. The aim of this line of research is to
preserve as much as possible from the elegant appeal of the traditional idealized
setting, while being able to cope with the more practical problems.

The remainder of this article is organized as follows. Section 2 discusses by
means of small examples some pitfalls in defining semantic correctness conditions
for practical compilers. The classical concepts of partial and total correctness and
the associated notions of correct translation are revisited in Sect. 3 before we
introduce the proposed relativized notions in Sect. 4. In particular we introduce
a generalization of the classic wp and wlp predicate transformers [8, 11] called
wrp (weakest relativized predicate transformer) and discuss its relationship to
the classic transformers and its basic properties. In Sect. 6 we study wrp for the
commands of a simple imperative programming language. These commands are
applied to an example in Sect. 7 in order to indicate the utility of the proposed
framework for answering translation correctness questions. We finish the paper
with a number of concluding remarks.

2 On Correctness of Translations

Let us first of all set the stage for the technical discussion. We assume given a
set Π of programs π. The reader should imagine imperative programs intended
to compute on a certain non-empty set of states Σ. Computations of π start in
a state s ∈ Σ; s represents the input to the program. There are three different
types of computations: a computation may terminate regularly in a state s′ ∈ Σ;
it may end up in an error state; or it may diverge, i.e. run forever. Programs
can be non-deterministic, i.e. there may be more than one computation from a
given initial state s.

The details of program execution are not of interest for our purpose; we are
only interested in the final outcomes of computations. Therefore, we assume that
each program π is furnished with a relation R(π) ⊆ Σ × (Σ ∪ Ω). Here Ω is a
non-empty set of failure (or irregular) outcomes disjoint from Σ. Intuitively, Ω
contains the error states mentioned above and a special symbol ∞ representing
divergence. Examples of error states are, e.g., ‘div-by-zero’, ‘arithmetic overflow’
etc. We call π deterministic if R(π) is a function, i.e. if for any s ∈ Σ there is
at most one σ such that (s, σ) ∈ R(π). As any practical program has at least
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one computation from a given initial state, we may safely assume that R(π) is
total, i.e. that there is an outcome σ with (s, σ) ∈ R(π) for any s ∈ Σ. Unless
otherwise stated this assumption is, however, not needed in this article.

We use the following conventions for the naming of variables: Σ is ranged
over by s, Ω by ω, and Σ ∪ Ω by σ. We also use the letter o to range over
Ω − {∞}.

Intuitively, (s, s′) ∈ R(π) records that s′ is a possible regular result of π from
initial state s, (s, o) ∈ R(π) means that error state o can be reached from s, and
(s,∞) ∈ R(π) that π may diverge from s. R(π) can be thought to be derived
from an operational or denotational semantics. Relational definitions for familiar
programming operators can be found in Sect. 6.

After these preparations, let us discuss what correctness properties we rea-
sonably can expect from translations. Assume for the purpose of this discussion
that π is a source program that has been translated to a target program π′. We
will freely use various features and representations of imperative programs in
the illustrating examples. For simplicity we assume that π and π′ operate on the
same state space.

If π′ is to be a correct implementation of π, we clearly expect that the com-
putations of π′ are related to the computations of π in some sense. Usually, we
are not interested in the intermediate states occurring in computations but just
in the final outcomes produced.1 Therefore, a relational semantics like the above
introduced R(π), which provides an abstraction of the possible computations of
π to possible outcomes, is appropriate for defining correctness of translation.

At first glance, we might require that π′ has the same outcomes as π for any
given initial state, i.e. that R(π′) = R(π). But this requirement is far too strong.
One of the reasons is that non-determinism in π might be resolved in a specific
way in π′. Assume, e.g., that π contains an un-initialized local variable and that
the result of π depends on the (arbitrary) initial value of this local variable, like
in the following program.

BEGIN
int y: y := 17

END;
BEGIN
int z: x := z

END

The final value of x is arbitrary, i.e. we have R(π) = {(s, s[x 7→ n]) | n ∈ Z}
where s[x 7→ n] denotes the substitution of value n for the variable x in state s.
The generated code π′, on the other hand, might well provide the deterministic
result 17, as it allocates for z the memory location used previously for y, which
still contains y’s old value. No sensible means can enforce full non-determinism in
1 Of course, for programs with input/output instructions we are also interested in

relating the communicated values. And even for strictly transformational programs,
we might occasionally want to relate intermediate states; for example when we are
interested in correctness of debuggers. But this is beyond the scope of this paper.
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the target code and we should thus expect at most R(π′) ⊆ R(π): every outcome
produced by the target code is a possible outcome of the source code. This is
the very idea of refinement.

However, reality is not that simple: for various reasons, even R(π′) ⊆ R(π) is
a too strong requirement. A realistic notion of correctness must also accommo-
date limitations of the execution mechanism and optimizations. Let us discuss
each of these in turn.

Limited abilities of the implementation might give rise to failure outcomes of
the target program that are not possible for the source program. Full implemen-
tation of recursion, e.g., requires stacks of unbounded size. Actual computers,
however, provide only a finite amount of memory; we must thus be prepared
to accept the outcome ‘stack-overflow’ or ‘out-of-memory’ every now and then
when executing programs from languages with unrestricted use of recursion. An-
other example is restricted arithmetic. If the source language provides e.g. the
full set of integers as a data type but the executing processor just uses, e.g.,
32-bit representations, the outcome ‘arithmetic overflow’ will occur occasionally.

Such limitations could be handled in various ways. Firstly, we could try
to model the limitations precisely in the source language semantics. This ap-
proach is often applied for restricted arithmetic (consider e.g. the ANSI/IEEE
754 standard for representation of the reals) but is generally impractical for e.g.
bounded stack sizes as it would require very specific knowledge on the imple-
mentation when defining semantics of the source language. Secondly, we could
simply enrich the source language semantics by the error outcomes which would
allow them as possible results of the implementation. This would amount to
considering

R(π) ∪ {(s, error) | error is an outcome reflecting a limitation}
the semantics of π. Thirdly, we could try to handle limitations as part of the
relationship between R(π) and R(π′). The latter is perhaps the most natural
approach but it leads to complicated formalizations in practice. The predicate
transformer semantics solution proposed below will somehow have the flavor of
the second approach but avoids its somewhat unhandy nature.

Optimizations can replace error outcomes by arbitrary outcomes. As a first
example consider the innocuously looking transformation pictured in Fig. 1, an
instance of what is called dead-code elimination [20]. The justification for this
transformation is that the value of e assigned to x in the initial assignment is
never needed, as any path through the program overwrites x’s value before using
it by either the assignment x := 12 or x := 42. Hence it should not be necessary
to perform the evaluation of e and the assignment x := e at all. But suppose
that e is the expression 1/0. Then the left program is guaranteed to produce the
error outcome ‘div-by-zero’ while the right program can have, depending on P ,
whatever outcomes you want! (Note, that it is not always as obvious as in this
example that evaluation of an expression at a certain point in a program might
lead to a run-time error; in general this is undecidable.)

As a second example of an optimization consider the code motion transfor-
mation [20] in Fig. 2 where b, e and f are assumed not to contain y, and g
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y > 0

x:= 12

P

x:= 42

skip

y > 0

x:= 12

P

x:= 42

yes no noyes

Optimized program

x:= e

Original program

Fig. 1. Elimination of dead code.

is assumed not to contain x. In the optimized program the assignment y := g
appearing in both branches is moved to the start of the program in order to save
code. The reasoning is that g can safely be evaluated before the branching, as
it is evaluated on each path anyhow (in traditional parlance one says g is ‘very
busy’ or ‘downward safe’ at the initial node). Assume now that evaluation of e,
f and g can lead to different error outcomes, say g to an arithmetic overflow and
e, f to a division by zero. Then the left program produces a ‘division-by-zero’
outcome while the optimized right program produces an arithmetic overflow.
The reason is that the notion of downward safety, disregards the possibility of
errors.

In summary, many common optimizing transformations can replace certain
error outcomes by different regular and irregular outcomes. Some optimizations
can even introduce new errors into regularly terminating programs because they
compute intermediate values that are not computed by the original program.
Examples are strength reduction transformations and naive code motion trans-
formations that move loop-invariant pieces of code out of loops.

Should optimizations be banned from verified compilers for these reasons?
No, this would throw out the baby with the bath water in our opinion. Optimiza-
tions play a very important role in increasing the efficiency of program execution
and in many applications effects like the above can be tolerated. But the possible
effects should be precisely understood and documented. A user should thus be
enabled to judge which optimizations are permissible for his particular applica-
tion and to select just these (e.g. by means of compiler switches).

As a curiosity, we mention that common efficiency-improving compiler op-
tions can even lead to a translation of terminating programs into non-terminating
ones in rare cases. The Modula-2 loop for i := 0 to maxcard do . . ., for instance,
obviously is terminating. A typical implementation is the following: i is initial-
ized with the value 0; each iteration starts with a check whether i is still in the
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Fig. 2. A code motion transformation.

no . . .yes

0 <= i <= maxcard

i:=0

i:=i+1

Fig. 3. Prototypical implementation of a for-loop.

range 0 ≤ i ≤ maxcard; at the end of each iteration i is incremented. This is illus-
trated in Fig 3. Now suppose an implementation disregards arithmetic overflows
in order to increase the performance. Then the incrementation of i at the end of
the iteration i = maxcard effectively sets i to 0 due to the representation of num-
bers. It also sets the carry-flag but sadly this is ignored. Now the test whether i
is still in the range 0 ≤ i ≤ maxcard succeeds! Thus, this implementation of the
loop, which is actually found in practice, will not terminate in contrast to the
original program.

It should have become clear that there is no single universal notion of correct
translation but that different applications and translation schemes preserve a
different amount from the behavior of programs. For a specific translation scheme
the set Σ ∪Ω of (regular and irregular) outcomes can be partitioned into three
sets:
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– a set PO (‘preserved outcomes ’) of outcomes that has to be preserved liter-
ally;

– a set AO (‘accepted outcomes’) of outcomes that may arise as result of target
program executions even if not present in the source program’s semantics
(e.g. ‘stack-overflow’ or ‘out-of-memory’); and

– a set CO (‘chaotic outcomes’) of outcomes of source programs that might
lead to arbitrary outcomes in the target program (e.g. arithmetic errors in
connection with dead code elimination).

Typically the regular outcomes belong to the set PO but also irregular outcomes
may, e.g. ’division-by-zero’, for debugging purposes.

Now suppose given a partition of Σ ∪ Ω as described above. We call π′ a
correct implementation of π w.r.t. preserved outcomes PO, accepted outcomes
AO, and chaotic outcomes CO if for all (s, σ) ∈ R(π′) (at least) one of the
following is valid:

(a) σ is a preserved outcome of a computation of π from s, i.e. σ ∈ PO ∧ (s, σ) ∈
R(π),

(b) σ is an accepted outcome, i.e. σ ∈ AO , or
(c) there is a chaotic outcome of a source program computation from s, i.e.

∃σ′ ∈ CO : (s, σ′) ∈ R(π).

There are various ways of characterizing this property as an inclusion between
relations derived from R(π) and R(π′). One of them is the following that we are
going to take as a definition.

Definition 1 (Correct implementation). π′ implements π w.r.t. preserved
outcomes PO, accepted outcomes AO, and chaotic outcomes CO if and only if

R(π′) ⊆ R(π) ∪ {(s, σ) | σ ∈ AO ∨ ∃σ′ ∈ CO : (s, σ′) ∈ R(π)} .

Often divergence and runtime-errors are identified in simplified semantic treat-
ments of programming languages. This has proved very helpful in establishing
a rich and useful theory of program verification [2, 7, 13] and program refine-
ment [3, 17, 18].2 However, this idealization does not lead to a realistic notion of
correct implementation: on the one hand, the single irregular outcome must be
treated as chaotic, in order to accommodate the effect of optimizations like dead
code elimination, because dead code elimination can change the single irregular
outcome (which could represent e.g. ‘div-by-zero’ in this case) to an arbitrary
outcome. On the other hand, it must be treated as acceptable, as it could also
2 We should mention that Apt and Olderog [2] do consider different irregular outcomes

of programs: divergence, failure, and deadlock. In their proof theories divergence and
failure are identified, but in Chaps. 7 and 8 they introduce a notion of weak total
correctness that reflects the distinction between divergence and deadlock. Weak total
correctness is an instance of our relative correctness notion (Sect. 4). It is introduced
in [2] in order to justify proof rules for total correctness and is said to be not of
interest in itself. In contrast, we emphasize here that relative correctness is indeed
often of independent interest.
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report on a limitation of the execution mechanisms at hand (e.g. standing for
‘out-of-memory’).

We propose more fine-grained notions of program correctness and refinement
intended to allow an adequate treatment of these more practical questions, while
preserving as much as possible from the idealized setup. Before doing so let us
have a more careful look at the classical treatment of program correctness and the
notions of translation correctness to which they give rise, because our proposal
is modeled on this.

3 The Classical Setup

3.1 Program Verification and Predicate Transformers

In Hoare-style program verification one is interested in proving programs par-
tially or totally correct w.r.t. pre- and postconditions on the set of regular states.
For the purpose of this paper a predicate is identified with the set of states for
which it is valid. Thus, the set of predicates is Pred = 2Σ; we range over Pred
by the letters φ and ψ. Pred , ordered by set-inclusion ⊆, is a standard exam-
ple of a complete Boolean lattice. The meet and join operations are ∩ and ∪;
they represent conjunction and disjunction respectively, ¬φ is the complement
of predicate φ, i.e. ¬φ = Σ − φ, the strongest (the smallest) and the weakest
(the greatest) predicate w.r.t. this order is ∅ and Σ. We denote the latter also
by false and true.

The classic literature on Hoare-style program verification and the refinement
calculus identifies, for the sake of simplicity, divergence and failure outcomes or
fully ignores failures. In our setting this amounts to assuming that Ω contains
just one symbol, ⊥, which represents any kind of irregular outcomes, divergence
and failures, R(π) is then a subset of Σ × (Σ ∪ {⊥}). For the purpose of the
later discussion it is, however, more convenient to stay with the distinction be-
tween different irregular outcomes in the relational semantics. The definitions of
total and partial correctness below treat all irregular outcomes as if they were
identified and can thus equivalently be read in both models.

Partial correctness of a program π w.r.t. a precondition φ and postcondition
ψ, denoted by {φ}π{ψ} can be defined as follows.

{φ}π{ψ} iff ∀s, σ : s ∈ φ ∧ (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪Ω .

Intuitively, π is partially correct if each regularly terminating computation from
a state in φ results in a state in ψ. Note, how the restriction to regular results
is expressed by allowing all outcomes in Ω.

Total correctness of π w.r.t. precondition φ and postcondition ψ, denoted
by [φ]π[ψ] additionally requires that there are no irregular computations from
states in φ. This can be expressed nicely by not allowing outcomes in Ω.

[φ]π[ψ] iff ∀s, σ : s ∈ φ ∧ (s, σ) ∈ R(π) ⇒ σ ∈ ψ .
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An elegant way of expressing partial and total correctness is by means of
predicate transformers, i.e. mappings on the space of predicates. Dijkstra [8,
9] considers two predicate transformers. The weakest liberal precondition trans-
former wlp is suited to partial correctness and the weakest precondition trans-
former wp to total correctness.

A few words on notation: it is convenient and customary in connection with
predicate transformers to denote function application by an infix dot, i.e. writing
f.x instead of the more familiar f(x). Moreover, we adopt the usual convention
that function application associates to the left, i.e. f.x.y means (f.x).y.

For a program π, both wlp.π and wp.π are of type 2Σ → 2Σ. As their name
suggests wlp.π.ψ (wp.π.ψ) is the weakest predicate φ satisfying the Hoare-triple
{φ}π{ψ} (resp. [φ]π[ψ]) (see (1) and (2) below).

Based on the relational semantics R(π) of a program π the predicate trans-
formers wlp.π and wp.π can be defined as follows.

wlp.π.ψ = {s ∈ Σ | ∀σ : (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪Ω}
wp.π.ψ = {s ∈ Σ | ∀σ : (s, σ) ∈ R(π) ⇒ σ ∈ ψ} .

Their relationship to partial and total correctness is captured by the following
equivalences, the proof of which is straightforward. These equivalences could also
serve as the definition of wlp and wp.

φ ⊆ wlp.π.ψ iff {φ}π{ψ} . (1)
φ ⊆ wp.π.ψ iff [φ]π[ψ] . (2)

wlp.π and wp.π provide abstractions of R(π) suited to partial and total cor-
rectness. Both carry less information than R(π). This can be seen from the fol-
lowing examples in which we use | to denote (demonic) nondeterministic choice.3

π
def.= x := e | while true do skip od

π′ def.= x := e

Here wlp.π equals wlp.π′ because the two programs yield the same result, if they
terminate. On the other hand, for

π
def.= x := 12 | while true do skip od

π′ def.= x := 42 | while true do skip od

wp.π equals wp.π′ because both programs may diverge. Obviously, in both ex-
amples R(π) and R(π′) differ.

It is interesting to note that in the traditional model where |Ω| = 1, R(π)
can be reconstructed from wp.π together with wlp.π. More specifically,

R(π) = {(s, s′) | s 6∈ wlp.π.(Σ − {s′})}
∪ {(s,⊥) | s 6∈ wp.π.true} .

This is no longer true if |Ω| > 1, as, intuitively speaking, the information about
the different causes of failures is not recorded in the predicate transformers.
3 Semantics of | is characterized by the identity R(π | π′) = R(π) ∪R(π′).
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3.2 Implementation Correctness

There are three natural ways to approach translation correctness. First, one can
focus on properties that transfer from source to target programs. This point of
view is particularly adequate if one is interested mainly in program proving.
Second, one might focus on the outcomes produced by the source and target
program, if one has a particular interest in actually interpreting results of pro-
gram execution. Finally, one might look for a formulation in terms of refinement.
The latter is of particular importance when proving correctness of translations.
Fortunately, there are natural notions of implementation correctness that ac-
commodate all three points of view as we will see in a moment.

The idea of the property-oriented point of view is to consider a program π′ a
correct implementation of a program π if validity of all properties from a certain
class of interest transfers from π to π′. Two natural notions of this kind are
preservation of partial and total correctness.

Definition 2 (Preservation of partial and total correctness).
1. A program π′ implements π w.r.t. preservation of partial correctness (PPC)

if the following holds: ∀φ, ψ : {φ}π{ψ} ⇒ {φ}π′{ψ} .
2. π′ implements π w.r.t. preservation of total correctness (PTC) if the follow-

ing holds: ∀φ, ψ : [φ]π[ψ] ⇒ [φ]π′[ψ] .

Note that, while total correctness implies partial correctness, the correspond-
ing preservation properties are unrelated. Neither does PPC imply PTC nor vice
versa.

If one concentrates on outcomes one wants to know which outcomes of the
source program can result in which outcomes of the target program. This point
of view was taken in Sect. 2 and we resort in the theorem below to the notion
of correct implementation introduced in Def. 1. The theorem shows that we can
interpret PPC and PTC also in terms of outcomes in a natural way.

Theorem 3 (Outcome interpretation of PPC and PTC).
1. π′ implements π w.r.t. PPC iff π′ implements π w.r.t. preserved outcomes

Σ, accepted outcomes Ω, and chaotic outcomes ∅.
2. π′ implements π w.r.t. PTC iff π′ implements π w.r.t. preserved outcomes

Σ, accepted outcomes ∅, and chaotic outcomes Ω.

Hence for PPC we have to choose AO = Ω and CO = ∅ and for PTC, just
to the opposite, AO = ∅ and CO = Ω; in both cases we take PO = Σ.

The goal of the refinement-oriented view is to devise a semantic model of pro-
grams that accommodates reasoning about implementation relationships. More
specifically, one is looking for an interpretation of programs in a semantic space
that is equipped with an ordering; π′ should implement π iff its interpretation
in the model is related to π’s by the order.

For PPC and PTC adequate interpretations are well-known: they are given
by wlp and wp. The semantic space is the set of monotonic predicate transformers
2Σ → 2Σ . It is ordered by the pointwise extensions ≤ of the inclusion relation
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on 2Σ, which is defined by f ≤ g iff ∀ψ : f.ψ ⊆ g.ψ: a predicate transformer g
is considered a refinement of another predicate transformer f if it establishes all
postconditions from weaker preconditions. Restricting attention to monotonic
predicate transformers (i.e. those transformers for which f.ψ ⊆ f.φ if ψ ⊆ φ)
makes functional composition monotonic.

As indicated, refinement in the space of predicate transformers corresponds
to PPC and PTC.

Theorem 4 (Refinement characterization of PPC and PTC).
1. π′ implements π w.r.t. PPC iff wlp.π ≤ wlp.π′.
2. π′ implements π w.r.t. PTC iff wp.π ≤ wp.π′.

In the traditional setup, where |Ω| = 1, the idealized notion of implementa-
tion correctness R(π′) ⊆ R(π) can be regained from wlp and wp. In this case,

R(π′) ⊆ R(π) iff wlp.π ≤ wlp.π′ ∧ wp.π ≤ wp.π′ . (3)

Again, this is no longer true if |Ω| > 1.
It follows from (3) that for the translations discussed in Sect. 2 refinement

w.r.t. either PPC or PTC does not hold, as they did not satisfy R(π′) ⊆ R(π).
Thus, many practical compilers are either incorrect in the sense of PPC or PTC.
A little further reflection unveils that the situation is as worse as it could be:
reported limitations of the execution mechanism prohibit PTC, optimizations
prohibit PPC. Consequently, most practical compilers preserve neither partial
nor total correctness!

However, not the compilers are to be blamed for this sad state of affairs
but the restricted selectivity of the notions of partial and total correctness, par-
ticularly their indiscriminate identification of any kind of run-time errors and
divergence. We, therefore, establish a finer framework in the next section.

4 The Relativized Setup

4.1 Relative Correctness and Relativized Predicate Transformers

For evaluating partial correctness assertions all irregular outcomes of programs
are disregarded; in contrast in total correctness assertions all irregular outcomes
are taken as disproof. The correctness concept we are going to elaborate now
is built around the idea of parameterizing assertions w.r.t. the set of accepted
outcomes. The irregular outcomes that are not accepted are taken as disproof.

Suppose given a set A ⊆ Ω of outcomes to be accepted. We introduce the
notion of a program π being relatively correct w.r.t. a precondition φ, a postcon-
dition ψ, and the set A of accepted outcomes, denoted by 〈φ〉π〈ψ〉A for short. It
is defined as follows:

〈φ〉π〈ψ〉A iff ∀s, σ : s ∈ φ ∧ (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪A .

Intuitively, a program π is relatively correct if the following holds.
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Whenever π is started in a state contained in φ we can be sure that
either π terminates regularly in a state contained in ψ, irregularly with
a failure in A, or, if ∞ ∈ A, diverges.

We can also define a corresponding predicate transformer along the lines of
wlp and wp. It is called the weakest relativized precondition transformer wrpA.π :
Pred → Pred . 4

wrpA.π.ψ = {s ∈ Σ | ∀σ : (s, σ) ∈ R(π) ⇒ σ ∈ ψ ∪A} .

Again, we have the following equivalence, that shows that wrpA.π indeed deserves
the name weakest relativized precondition transformer.

φ ⊆ wrpA.π.ψ iff 〈φ〉π〈ψ〉A .

These relativized notions generalize the classical ones. It is easy to see that
partial and total correctness are just the border cases of relative correctness for
the sets A = Ω and A = ∅. Similarly we have for wlp and wp:

wlp.π = wrpΩ.π and wp.π = wrp∅.π ,

so wp and wlp are just the extreme relativized predicate transformers.

4.2 Implementation Correctness

Each set A ⊆ Ω now gives rise to a notion of translation correctness relatively
to A. As in the classic case it can be characterized in terms of preservation,
refinement, and outcomes. More precisely, we have the following theorem, where
we again refer to the notion introduced in Def. 1.

Theorem 5 (Preservation of relative correctness). For all programs π,
π′ and accepted sets of outcomes A ⊆ Ω, the following three conditions are
equivalent.
1. (Preservation) ∀φ, ψ : 〈φ〉π〈ψ〉A ⇒ 〈φ〉π′〈ψ〉A.
2. (Refinement) wrpA.π ≤ wrpA.π

′.
3. (Outcomes) π′ is a correct implementation of π w.r.t. preserved outcomes

Σ, accepted outcomes A, and chaotic outcomes Ω −A.

The intuitive interpretation of these conditions is as follows. There is no
restriction for the behavior of the target program from initial states for which
the source program has a failure outcome inΩ−A; otherwise, we don’t care about
the accepted outcomes in A, and every other outcome of the target program must
also be possible for the source program.
4 If we would allow error outcomes in postconditions, we could have defined

wrpA.π.ψ = wp.π.(ψ ∪ A). But this would destroy the homogeneity of pre- and
postconditions, and lead to a more complicated definition of sequential composition
of predicate transformers.
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This looks fine, but it is not as general as the aspired notion of correct
implementation from Def. 1, where we assumed that the set of outcomes Σ ∪Ω
is partitioned into preserved, accepted and chaotic outcomes PO, AO and CO.
From the definition of wrp it is clear that each element of the set A that we
carry in wrp’s index is just accepted, not preserved; and the outcomes in Ω −A
are treated chaotically. What about those failure outcomes we really want to
preserve? A compiler user, for instance, might require that an observed outcome
‘div-by-zero’ indeed is caused by a division by zero on the source level. Roughly
speaking we have to treat those outcomes twice, firstly as accepted, and secondly
as chaotic. If we can prove refinement for each of these choices, we have proved
that it is preserved. More formally, we have the following result.

Theorem 6. π′ implements π w.r.t. preserved outcomes PO, accepted outcomes
AO, and chaotic outcomes CO iff, for all A with AO ⊆ A ⊆ AO ∪ (PO ∩ Ω),
wrpA.π ≤ wrpA.π

′.

Thus, although the notion of correct implementation from Def. 1 is not ac-
commodated by refinement reasoning w.r.t. a single fixed set A, it can still be
established by refinement arguments that are appropriately parameterized in A.

As a corollary to Theorem 6, the relational inclusion R(π′) ⊆ R(π) can also
be established with wrp-based reasoning. To see this, just choose PO = Σ∪Ω and
AO = CO = ∅ and observe that the notion of correctness of implementations
degenerates to the relational inclusion R(π′) ⊆ R(π) with this choice.

Corollary 7. R(π′) ⊆ R(π) iff wrpA.π ≤ wrpA.π
′ for all A ⊆ Ω.

Relativized refinement enables us hence to be as fine-grained w.r.t. outcomes
as on the relational level, if desired.

5 Properties of wrp

In the next lemma we collect some basic properties enjoyed by the family of
wrp-transformers. Validity of 4, 7, and 8 depends on the program relation R(π)
being total.

Lemma 8. Suppose π is a program, ψ a predicate, and A,B ⊆ Ω are sets of
irregular outcomes.
1. wrpA∩B.π = wrpA.π ∧ wrpB.π .
2. wrpA.π ≤ wrpB.π, if A ⊆ B .
3. wrpA.π.ψ = wrpB.π.ψ ∩ wrpA.π.true, if A ⊆ B .
4. wrp∅.π.false = false.
5. wrpA.π is positively conjunctive, i.e. distributes over every non-empty con-

junction of predicates.
6. wrpΩ.π is universally conjunctive, i.e. distributes over every, even the empty

conjunction of predicates.
7. wrpA.π.ψ ⊆ ¬(wrpΩ−A.π.¬ψ) .
8. wrpA.π.ψ = ¬(wrpΩ−A.π.¬ψ) iff π is deterministic.
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Dijkstra and Scholten [9] discuss so-called healthiness conditions of wp and wlp.
In our notation they look as follows.

– wp.π.ψ = wlp.π.ψ ∩ wp.π.true (Pairing condition).
– wp.π.false = false (Excluded miracle).
– wp is positively conjunctive.
– wlp is universally conjunctive.

In the sense of [9] these properties have to be satisfied by a pair of predicate
transformers to model an adequate semantics of implementable programs. The
items 3–6 of Lemma 8 show how the healthiness conditions generalize to the fam-
ily of wrp-transformers. Note that in our framework they are derived properties
and not postulates as in [9], due to our point of view that predicate transformer
semantics is derived from an underlying, more concrete operationally-based se-
mantics. Property 8 generalizes the equivalence

– wp.π.ψ = ¬wlp.π.¬ψ iff π is deterministic

that is used as the definition of deterministic programs in [9].

6 Programming Operators

In this section we discuss briefly the wrp characterizations of typical commands
of an imperative programming language. More specifically, we consider assign-
ments x := e, conditionals if b then π1 else π2, while-loops while b do π od, and
sequential composition. We would like to show that wrp enjoys similar, and only
slightly more complicated characterizations as the classic predicate transformers.
Reasoning in terms of wrp seems obviously to be more tractable than reasoning
in terms of an operational or relational semantics.

We suppose given three additional sets of syntactic objects: variables x, ex-
pressions e and Boolean expressions b. The set of variables is denoted by Var .
We assume interpretation functions for expressions and Boolean expressions
E(e) : Σ → (Val ∪ Ω) and B(b) : Σ → (B ∪ Ω). Here Val is the value set
of variables; we range over Val by the letter v. The set B = {tt,ff} represents
the truth values. For the purpose of this section, states are valuations of vari-
ables, i.e. Σ = (Var → Val). As usual s[x 7→ v] denotes the substitution of value
v for the variable x in state s. Intuitively, results E(e)(s),B(b)(s) ∈ Ω represent
failures during evaluation of (Boolean) expressions. Such failures are assumed to
propagate to the statement level.

For simplicity we identify syntax and semantics when writing concrete pred-
icates. In order to deal with partially defined expressions we assume special
types of basic predicates: def(e) and inA(e) for expressions e and A ⊆ Ω, and
def(b), inA(b), b = tt, and b = ff for Boolean expressions b. They are interpreted
as follows: def(e) def.= {s | E(e)(s) ∈ Val}, inA(e) def.= {s | E(e)(s) ∈ A},
b = tt

def.= {s | B(b)(s) = tt}. The interpretation of the remaining predicates is
obvious. Note that Boolean expressions can have ‘undefined’ failure results while
predicates cannot.
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Let us first consider assignments, conditionals, and the sequential composi-
tion operator. Their relational semantics reads as follows, where we rely on the
convention (from Sect. 2) that s ranges over Σ and ω over Ω.

R(x := e) = {(s, s[x 7→ v]) | E(e)(s) = v}
∪ {(s, ω) | E(e)(s) = ω}

R(if b then π1 else π2) = {(s, σ) | B(b)(s) = tt ∧ (s, σ) ∈ R(π1)}
∪ {(s, σ) | B(b)(s) = ff ∧ (s, σ) ∈ R(π2)}
∪ {(s, ω) | B(b)(s) = ω}

R(π1;π2) = {(s, σ) | ∃s′ ∈ Σ : (s, s′) ∈ R(π1) ∧ (s′, σ) ∈ R(π2)}
∪ {(s, ω) | (s, ω) ∈ R(π1)}

Note how the last set in the clauses for assignments and conditionals expresses
that failures propagate from the expression level to the statement level.

From these relational definitions the following characterizations for the weak-
est relativized predicate transformer can be derived. The proofs are easy but a
bit tedious and hence omitted.

wrpA.x := e.ψ = inA(e) ∨ (def(e) ∧ ψ[e/x])
wrpA.if b then π1 else π2.ψ = inA(b) ∨ (b = tt ∧ wrpA.π1.ψ) ∨ (b = ff ∧ wrpA.π2.ψ)

wrpA.π1;π2.ψ = wrpA.π1.(wrpA.π2.ψ)

Note how the disjuncts inA(e) and inA(b) handle the case of an acceptable failure.
As for wp and wlp, sequential composition corresponds to functional composition
of predicate transformers.

Loop. The situation gets more interesting for loops. The semantics of a while loop
while b do π od can be captured in an intuitive way in terms of the following
notion of a (b, π)-path [21]: A (b, π)-path is a finite or infinite sequence p =
s1, s2, . . . of states in Σ, such that the following conditions are valid.

– Progression: each state in p, except for the last one in the finite case, satisfies
b, i.e. B(b)(si) = tt for all 1 ≤ i < |p|, and

– Succession: successive state are related by R(π), i.e. (si, si+1) ∈ R(π) for all
1 ≤ i < |p|.

Here the length |p| of (b, π)-path is the number of states in p in the finite case
and ∞ in the infinite case. A finite (b, π)-path is said to go from s to s′ if s and
s′ are its first and last state respectively. Intuitively, the states in a (b, π)-path
represent the intermediate states at the beginning of the loop in a prefix of a
computation with |p| − 1 iterations of the body.

The relational semantics of a while loop while b do π od can now be defined
as follows.
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R(while b do π od) =
{(s, s′) | there is a finite (b, π)-path from s to s′ with B(b)(s′) = ff}

∪ {(s, ω) | there is a finite (b, π)-path from s to s′ with B(b)(s′) = ω}
∪ {(s, ω) | there is a finite (b, π)-path from s to s′ with B(b)(s′) = tt

and (s′, ω) ∈ R(π)}
∪ {(s,∞) | there is an infinite (b, π)-path starting in s}

The first set describes the case of regular termination; the other three sets are
concerned with the different causes for failures of loops. First, evaluation of the
guard could fail; second, the evaluation of the body could fail; and, finally, the
loop may diverge.

wrpA.while b do π can be characterized as a (semantic) fixpoint of the equation

X = if b then π;X else skip od .

Not surprisingly, the cases whether divergence is an accepted outcome or not,
differ substantially. We have to take the greatest fixpoint w.r.t. ≤, if ∞ ∈ A,
and the smallest fixpoint if ∞ /∈ A.

Alternatively, the relativized predicate transformer of a loop can be charac-
terized by a recurrence on the predicate level. This generalizes and justifies the
well-known postulates from [9].

Theorem 9. Suppose A ⊆ Ω and ψ ∈ Pred. Then wrpA.while b do π.ψ is the
greatest (weakest) solution of the predicate equation

φ = inA(b) ∨ (b = tt ∧ wrpA.π.φ) ∨ (b = ff ∧ ψ)

if ∞ ∈ A, and the smallest (strongest) solution otherwise.

Due to lack of space, we cannot give the full proof. Let us for explanation just
mention that, if we accept diverging loops, i.e. ∞ ∈ A, then there are more
initial states from which all outgoing computations either satisfy postcondition
ψ or have an outcome contained in A. Thus, the solution must have a greater
cardinality in this case. This makes it plausible that indeed the weakest solution
is the right one.

7 An Application

In order to show the utility of the relativized setup, let us recall one of our
examples from Sect. 2. We are going to study a question of the kind ‘Is a given
transformation (translation) permitted w.r.t. some set of accepted outcomes?’.
We consider a simplified version of the dead-code elimination example (Fig. 1).
Suppose π and π′ are the following programs:

π
def.= x := e ; x := f ; P π′ def.= x := f ; P
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The expression f is assumed not to contain x; intuitively, it should thus safely be
possible to remove x := e from π as the value of x is over-written immediately. Let
us see whether we can justify the transformation from π to π′ with the relativized
predicate transformers. Note that π can be written in the form x := e ; π′.

Using the identities from the previous section we obtain the following.

wrpA.π.ψ = inA(e) ∨ (def(e) ∧ (wrp.π′.ψ)[e/x])
wrpA.π

′.ψ = inA(f) ∨ (def(f) ∧ (wrp.P.ψ)[f/x])

From the assumption that f does not contain x it follows by standard logical
arguments that the substitution [e/x] has no effect when applied to wrpA.π

′.ψ.
Thus, the identity for wrpA.π.ψ can be simplified.

wrpA.π.ψ = inA(e) ∨ (def(e) ∧ (wrp.π′.ψ))

Now, deciding whether π′ implements π amounts to checking whether wrpA.π.ψ
implies wrpA.π

′.ψ for all predicates ψ. This is certainly the case if inA(e) is
equivalent to false, i.e. does not hold for any state. Indeed in the absence of
any further knowledge about e, f and P this is the only safe statement we can
make.

What does this mean intuitively? The transformation from π to π′ is per-
missible, if we can be sure that none of the failures potentially produced by e
belong to the accepted failures in A. This is in particular the case if A does
not contain any arithmetic error, i.e. none of the errors produced by arithmetic
expressions.5 For a more far-reaching conclusion we would need more specific
knowledge about e. For example, we might conclude from the fact that e does
not contain a division that A might contain the ‘div-by-zero’ failure.

It is interesting to discuss also the border cases for this example. In the PTC-
case we have A = ∅; then inA(e) is equivalent to false for trivial reasons. Thus,
π′ indeed implements π w.r.t. PTC. In the PPC-case, on the other hand we have
A = Ω. Then inA(e) might be valid for some state if evaluation of e might fail.
Thus, the transformation might be invalid in the sense of PPC, depending on
the shape of e. So, the formal framework confirms the informal reasoning from
Sect. 2.

A similar analysis might be performed for the other examples from that
section.

8 Conclusion

In this paper we suggested a semantic framework for performing compiler cor-
rectness or refinement proofs in scenarios where optimizations and finiteness of
machines are allowed for. The proposed notions of weakest relativized precon-
ditions and the corresponding predicate transformers permit to abandon the
5 Formally, we call an error ω an arithmetic error if there is an expression e and a

state s such that E(e)(s) = ω.
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irregular outcomes from the scene in which we actually are working. We have
to take them into account only when interpreting the programs in question. Af-
terwards the actual reasoning can take place in the familiar complete Boolean
lattices of predicates and predicate transformers. Nevertheless the obtained cor-
rectness results can immediately be interpreted in terms of the more concrete
objects of our operational intuition. We see our work as a step towards bridging
a gap between elegant theory and practical needs.

This paper draws its motivation partly from work performed in the Verifix
project [10] funded by the German DFG (Deutsche Forschungsgemeinschaft),
which aims at a fully verified and correctly implemented compiler. Its roots also
lie in the ProCoS project [5] in which we pursued a rather comprehensive com-
piler proof [21] for a prototypic real-time programming language to Transputer
code. In that proof monotonic predicate transformers proved to provide a very
convenient space that facilitates achieving modularity in the correct construc-
tion of the compiling mapping. Modularity is a very important requirement for
such an undertaking as otherwise things might easily become unmanageable and
untrustworthy. wrp is intended to permit an elegant treatment of runtime errors
and finiteness of machines while staying in the familiar and well-studied realm
of predicates and predicate transformers. No new theory about predicate trans-
formers is necessary; wrp just provides a different interpretation of programs
than wlp and wp, but by objects of the same kind.

For simplicity we have assumed that source and target programs act on the
same state space. Of course this is an unrealistic assumption, from a practical
point of view. It is, however, a useful idealization if one is mainly interested
in considerations concerning control flow implementation. The more realistic
situation of different state spaces can be handled with data refinement techniques
and Galois connections. For more information on this topic and corresponding
references see [21].

Future work includes a more thorough study of wrp and its utility for compiler
correctness proofs. More specifically, we are currently investigating the use of wrp
for proving the correctness of the translation of nested parameterless procedures
to machines with bounded stacks.
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W. A. Halang, and B. J. Krämer, editors, High Integrity Programmable Electronics,
pages 13–14. Dagstuhl-Sem.-Rep. 107, 1995.

24. S. Sippu and E. Soisalon-Soininen. Parsing Theory Vol. I. Springer-Verlag, 1988.
25. W. M. Waite and G. Goos. Compiler Construction. Springer-Verlag, 1984.
26. R. Wilhelm and D. Maurer. Übersetzerbau. Springer, 1992.


