Beyond ProCoS at Kiel:
A Synopsis of Recent Research

Martin Frinzle!, Wolfgang Goerigk?,
Burghard von Karger', and Markus Miiller-Olm?

! Carl v. Ossietzky Universitit, Department of Computer Science,
P.O. Box 2503, D-26111 Oldenburg, Germany
{Martin.Fraenzle|von.Karger}@Informatik.Uni-Oldenburg.DE
2 Christian-Albrechts-Universitét Kiel, Department of Computer Science,
Preuflerstr. 1-9, D-24105 Kiel, Germany
wg@informatik.uni-kiel.de
3 University of Dortmund, Department of Computer Science, FB 4, LS 5,
Baroper Str. 301, D-44221 Dortmund, Germany
Markus.Mueller-01m@cs.uni-dortmund.de

1 Introduction

After completion of the ProCoS projects, the ProCoS group at Kiel, headed by
Prof. Hans Langmaack, continued research on the broad scope of topics that
the ProCoS projects had sparked. These topics, involving algebraic models of
reactive systems, real-time model-checking and controller synthesis, and compiler
design and verification, may seem diverse, yet they are closely linked within
the ProCoS approach: Setting up a consistent set of formalisms and methods
for the variety of abstraction levels that arise during embedded system design
requires a firm grasp of all of them. However, the scientific subjects involved are
nevertheless diverse, and no single research group would be able to substantially
further all of them without being linked to other, particularly more specialised,
groups. Being broader in scope than the scientific contacts that a single site can
set up, the ProCoS working group proved to be an excellent basis for the required
kind of scientific exchange. Its meetings provided an indispensable forum for
presenting and discussing the work in various stages, and finally became an
important means for teaching the newly developed techniques to other personnel.

It is just now that it becomes apparent how successful these information
dissemination activities were: The compiler verification activities of the ProCoS
project led to a dedicated German compiler verification project named “Verifix”
[GDG196,Lan97¢,Lan97a] that builds upon the ProCoS techniques [MO96b].
Furthermore, ProCoS researchers from Kiel have been taken over by other univer-
sities: Markus Miiller-Olm, whose extensive case study of applying the ProCoS
compiling verification techniques onto the translation of a prototypic hard-real
time programming language to an actual processor (the Inmos Transputer) is
documented in the PhD thesis [MO96a] that appeared recently as a monograph
in the LNCS series of Springer-Verlag [MO97], moved to the University of Dort-
mund. Martin Franzle, who has been concerned with real-time model-checking

ProCoS WG workshop at FM’99, available from FM’99 CD-Rom, pp. 1-17, 1999.
© Springer-Verlag Berlin Heidelberg 1999

2 M. Franzle, W. Goerigk, B. von Karger, M. Miiller-Olm

and hardware synthesis from temporal logic and Burghard von Karger, who has
investigated algebraic models of reactive systems, are now at the University of
Oldenburg. Bettina Buth is currently at the University of Bremen.

In the following, we will summarise the contributions made by former Pro-
CoS researchers from Kiel to the aforementioned topics. We start with compiler
verification in Sect. 2, then turn to model-checking and controller synthesis in
Sect. 3, and finally review the work on algebraic models of reactive systems in
Sect. 4.

2 Compiler Verification and Compiler Implementation
Verification

At the bottom end of the ProCoS tower of abstraction levels, at the implemen-
tation level, there have been major efforts on compiler verification and on hard-
ware compilation [MO90,BBF*92, BFOR93,HHF 94 HHMO"96,HPB93]. The
ProCoS work on compiler verification concentrated, on the one hand, on lan-
guages with hard real-time constraints (cf. Sect. 2.5) and, on the other hand,
on developing a methodology for modularising code generator correctness proofs
that permits to master the complexity involved in verifying code generators for
commercially available processors (cf. Sect. 2.2). For a conscientious and math-
ematically rigorous proof of compiler correctness, however, also an implementa-
tion correctness proof for the compilers themselves is needed, in addition to the
(semantical) verification of their specification.

In 1995, as a followup of the ProCoS project, three research groups at the
universities of Karlsruhe (Prof. Dr. G. Goos), Ulm (Prof. Dr. F. W. von Henke)
and Kiel (Prof. Dr. H. Langmaack) in Germany accepted the challenge and
started on a six years joint project on Correct Compilers — Verifiz, funded by
the Deutsche Forschungsgemeinschaft (DFG), focusing on the full verification of
compilers and compiler generators for sequential imperative and object-oriented
languages on real machines. In 1997, a supplementary DFG-funded project on
“techniques for compiler implementation verification (VerComp)” started at Kiel
for two years, focusing on practically usable proof techniques for the binary
compiler implementation correctness.

2.1 The Verifix and VerComp Projects

The major goals of the Verifiz and VerComp projects [Lan97b,GDG*96,Lan97d]
are to develop methods and techniques for correct realistic compiler construction
for practically relevant source languages and concrete target machines, and to
completely verify compilers down to their binary machine code implementation.
Verifix concentrates on

— the construction of correct compilers for realistic imperative and object-
oriented languages,
— on real target and host processors with their finite resource limitations,

Beyond ProCoS at Kiel: A Synopsis of Recent Research 3

— correctly implemented down to their binary executable code,

— generating efficient code, comparable to that of unverified compilers,

— using mechanical proof support and classical compiler construction methods
as far as possible.

In that, we assume that application programs are correct w.r.t. their specifica-
tion, and that hardware works as defined in the instruction manuals. The work
closes the gap between high level program and compiler verification on the one
hand and the correctness of machine executables on the other hand. It turns
out, that a rigorous correctness requirement nevertheless allows for the use of
standard and approved compiler construction techniques and classical compiler
architectures [GGH197,GZGT98]. Program checking and checker-based program
verification [GGZ98] enable us to even use unverified tools like e.g. code genera-
tor generators [GZG99| or parser generators [HGG'99] for compiler implemen-
tation, without weakening the rigorous correctness property established for the
final compiler machine program. Implementation correctness (refinement) has to
capture the intuitive requirement for transformational programs: If a machine
program successfully returns a result, then that result is correct (preservation of
partial correctness, cf. Sect. 2.3).

The crucial work in compiler verification has been for over 30 years and will
remain the semantical correctness of the transformation. The Verifix project seri-
ously addresses the rigorous mathematical question what we additionally have to
and have to be able to prove for the complete correctness proof of compiler exe-
cutables, in order to improve on the present situation which is best characterised
by the moral of Ken Thompson’s Turing Award lecture in 1984 [Tho84]: “You
can’t trust code that you did not totally create yourself. (Especially code from
companies that employ people like me.) No amount of source-level verification or
scrutiny will protect you from using untrusted code.” We thus head for an imple-
mentation correctness proof for an initial fully verified compiler executable (cf.
Sect. 2.4), which is needed as a sound basis for further compiler bootstrapping
and system program development [Goe99] (cf. Sect. 2.4). Although in principle
cross-platform bootstrapping is possible, we nevertheless aim, for many reasons,
at an independently repeatable technique for such proofs from the scratch.

2.2 A Methodology for Verified Design of Code-Generators

One major difficulty when verifying code generators for actual processors (in
contrast to idealised toy processors) is the large number of more or less unre-
lated questions that has to be addressed in a precise manner: addressing modes,
side effects of instructions, allocation of memory and registers, representation of
data, no separation of program and data memory, to mention just a few. The
construction of a verified code generator does not start from scratch but from
a rough intuitive understanding gained from prior compiler building experience
and tradition. A useful methodology for the correct construction of code gen-
erators must allow to capture these informal ideas precisely in a stepwise and
incremental fashion.

4 M. Franzle, W. Goerigk, B. von Karger, M. Miiller-Olm

We developed a methodology that involves the stepwise derivation of in-
creasingly abstract views to the target processor’s behaviour from a base model
of its execution cycle. The abstraction steps allow to treat particular aspects of
translation or machine program execution in isolation and are performed by al-
gebraic calculations employing a program-like notation [Hoa91]. Then compiling-
correctness relations are defined that specify the intended semantic relationship
between source and target code, which is largely simplified by the availability
of the abstract views. Afterwards, concrete code patterns are studied by means
of theorems about the compiling-correctness relations. From these translation
theorems a code generator can be implemented without further semantic consid-
erations.

These ideas are elaborated in a dissertation thesis, which appeared as a mono-
graph in Springer’s LNCS series [MO97]. As a case study, the verified design
of a code generator that translates a simple prototypic real-time programming
language to the Inmos Transputer is presented. The structuring ideas are also
discussed briefly in [HHMO96].

2.3 Towards an Adequate Notion of Correct Compilation

At first thought, the question what is to be expected from the code generated by a
correct compiler is simple to answer: it should behave precisely as the source code
from which it was generated. At further scrutiny, however, the question turns out
to be amazingly subtle and one is faced with a large number of options. Should
one expect that the implementation of a diverging program diverges or that the
implementation of a regularly terminating program terminates regularly? (Often
one shouldn’t, as resource constraints of the executing machinery might in both
cases lead to irregular termination.) Should one expect that irregular outcomes
of programs are preserved? (Often one shouldn’t: common optimising program
transformations can blur the distinction between different irregular outcomes.)
Further difficulties arise from the fact that source and target program work on
different state spaces and that different styles can be used to capture semantics
of source and target language (operational, denotational, etc.).

Different application areas call for different correctness properties. In a con-
troller of an embedded system, e.g., error outcomes like ‘stack-overflow’ or ‘out-
of-memory’ are totally unacceptable. For such applications a compiler essentially
has to preserve total correctness [MO97,MOW99]. This is different for strictly
transformational programs. The crucial requirement for this program class is
that a regular results of an implementation is always a possible results of the
source program because this allows to rely on results without further scrutiny.
This property essentially amounts to preservation of partial correctness (PPC)
[M095a,M096b,GMO96,MOW99] and is vital in bootstraps of verified compil-
ers, as compilers are transformational programs.

In [MO96b] we characterise PPC (in the situation where the state sets of
source and target program may differ) in various semantic styles and prove
that these characterisations are equivalent. Immediate motivation is that in the
Verifix project different semantic styles are employed. While the Karlsruhe group

Beyond ProCoS at Kiel: A Synopsis of Recent Research 5

— based on Gurevich’s Abstract State Machines [Gur91] — uses an operational
simulation technique [ZG97,HL98], the Kiel group advocates more abstract kinds
of semantics as well as reasoning within a refinement algebra, building on the
experiences gained during the ProCoS project [MO97,HJS93].

The classical concepts of partial and total correctness identify all types of
runtime errors and divergence. In [MOW99] we argue that the associated no-
tions of translation correctness cannot cope adequately with practical questions
like optimisations and finiteness of machines. As a step towards a solution we
propose more fine-grained correctness notions, which are parameterised in sets
of acceptable failure outcomes, and study a corresponding family of predicate
transformers that generalise Dijkstra’s wp- and wlp-transformers. It is planned
to apply the resulting setup for proving the correctness of the translation of
nested parameterless procedures to machines with bounded stacks. Steps in this
directions are documented in [Wol99a,Wol99b]. The problem of acceptable fail-
ures has also been addressed in the setting of relational semantics [GMO96].

2.4 An Initial Fully Verified Compiler Implementation

The Verifix work at Kiel focuses on the construction and verification of an ini-
tial fully verified binary compiler executable from a subset ComLisp [GH96] of
Common Lisp to the Transputer machine code. In order to achieve a conscien-
tious and mathematically rigorous correctness proof, we modularise the compiler
correctness problem into the following four steps:

1. define an appropriate notion of correct compilation for sequential imper-
ative languages, which guarantees sufficient correctness properties for the
target program on concrete target processors with finite resource limitations
(preservation of partial correctness or L-simulation, cf. Sect. 2.3)

2. define a compiling specification Csr, T1, relating source to target programs,
and prove semantically, that Csy, 1, preserves partial correctness (compiling
verification, [GH98c]),

3. construct a compiler program 7 in the source language and prove, that 7¢
is a refinement (correct implementation) of Csy, 1, in the sense of preserving
partial correctness (correct compiler construction, [GH98b]), and finally,

4. use an existing (unverified) implementation of the source language to execute
e, apply 7¢ to itself and bootstrap a compiler executable m¢. Check syntac-
tically, that m¢ actually has been generated according to Csr, 1 (compiler
implementation verification, [GH98b,Hof98]).

As an integral part of the Verifix project, VerComp concentrates on compiler im-
plementation verification (steps 3 and 4), in particular on the final step, propos-
ing a practically usable proof technique of a posteriori code inspection based on
syntactical code comparison [GHI8b,Hof98].

6 M. Franzle, W. Goerigk, B. von Karger, M. Miiller-Olm

Specification and correct compiler construction In [GH98c| we define
an explicit specification of a four-phase compilation transforming ComLisp—
programs to binary machine code executables on Transputer T400 processors.
The compilation is modularised to four steps using three intermediate languages,
a stack language, a C-like abstract machine oriented language, and an assem-
bly language. Compiling specifications between each pair of source and target
languages are given as inductively defined relations. They can easily be refined
to a system of first order mutually recursive ComLisp—functions, as documented
in [GH98a], thus defining a high level compiler implementation as a ComLisp-
program which compiles ComLisp to Transputer machine code, enabling com-
piler bootstrapping and thus the proposed implementation correctness proof (see
below).

Compiling verification uses denotational techniques like in [MO90] for the
front end. For the back end (from abstract machine code to binary code) we use
predicate transformers and algebraic-denotational techniques [MO97, MOW99],
extended and enhanced to work for preservation of partial correctness (cf. Sects.
2.2 and 2.3). The compiler has been bootstrapped successfully on a Transputer
T400 single board computer with 1 MB of memory. The complete code check-
ing documents (see below) have been generated. The compiler runs sufficiently
fast. There are (unverified) code-generators for i386, DEC «a, and MC 68000
processors and for C and Forth target code available as well.

Binary compiler implementation verification Adopting the scenario from
[Tho84] of a well-known attack to Unix operating system programs due to in-
truded Trojan Horses in compiler executables, we show in [Goe99] in detail how
to construct a provably correct compiler source program mwe and an incorrect
machine implementation ¢ of it which reproduces itself when applied to the
correct source code m¢. Moreover, it generates incorrect code in one more (catas-
trophic) case. Such a compiler will pass nearly every test, it will pass state of
the art compiler validation, the compiler bootstrap test, any amount of source
code inspection and verification, but for all that, it nevertheless might eventu-
ally cause a catastrophe. Obviously, transformation verification and source level
verification of the compiler implementation are not sufficient in order to avoid
such hidden Trojan Horses.

There must be a (syntactical) mismatch between the incorrect implemen-
tation m¢ and what we would expect as the correct result me. Assuming the
correctness (preservation of partial correctness) of CSL,TL and ¢, we can prove
by transitivity (or compositionality) of the refinement relation, that if the un-
safe bootstrapping succeeded in generating me, and (m¢,me¢) € Csi, L, then
me is a correct implementation of Csr, 1, as well [Hof98]. Thus, for the binary
implementation we can reduce the semantical question of correct compilation to
a syntactical a posteriori code inspection based on code comparison between ¢
and mg, testing (checking the result of) compiler bootstrapping in a stronger
sense. m¢ might be generated by any initial unsafe implementation of 7¢.

Beyond ProCoS at Kiel: A Synopsis of Recent Research 7

It turns out that there is a technique for such proofs, which exploits modular-
isation into adequate intermediate layers, checking sufficient syntactical criteria
which together imply (7¢, m¢) € Csr, . The two programs are annotated with
compile time information, printed side by side and checked module by module
for correct annotation and correct transformation. A diagonal argument allows
for trusted machine support to generate large and in particular low level parts
without need for checking at all [Hof98]. This can be seen as an application of
the work of Goodenough and Gerhart [GG75] on software testing [Lan97a]. We
also use result-checking techniques [WB97], for verification [GGZ98], but also
for further reduction of the code inspection work load [Hof98,GHI8b]. It turns
out that the complete proof documentation compares to what is usual in certi-
fication processes. So we are able to prove the correctness of compiler machine
executables rigorously, and to give a complete proof documentation.

2.5 Timing in High-Level Programs

Traditionally, sufficiently high performance of hard real-time code is ensured by
counting machine cycles in assembler code constructed manually or generated
by a compiler. The objective of our work on hard real-time constraints is to
identify adequate constructs that allow to describe the timing requirements in the
source program. The proposed constructs must, on the one hand, be convenient
for the program design, which calls for constructs that permit specification of
rather global requirements and for an idealised view of time consumption of
basic statements. On the other hand, the timing specifications must be soundly
decidable by a compiler.

We propose a solution [FMO94,MO97], in which the program designer can
specify upper-bounds for the execution delays of basic blocks and can apply the
idealisation that only input/output statements cause execution delays but inter-
nal activity is immediate, i.e. takes no time to execute. This idealisation leads
to smooth algebraic laws (program transformation rules) and largely simplifies
the task of program construction. By exploiting that only communications are
externally observable, the idealisation can be justified by obliging the compiler
to shift the delays caused by internal activity to subsequent communications
and to settle it with the communication’s latency. These ideas have been ap-
plied in an experimental compiler implemented in Standard ML that translates
a prototypical hard-real time language into Transputer code [MO97,MO95b]; for
designing the code generator we applied the methodology described in Sect. 2.2.

3 Model-checking and Controller Synthesis

Among the good reasons industry has for being reluctant against introduction
of formal methods into their development processes, the need for extraordinarily
skilled workers and the cost of those particular activities that call for them is
a predominant one. One of the most demanding tasks in this respect certainly
is formal verification. Therefore, it has become a popular (though not-at-all

8 M. Franzle, W. Goerigk, B. von Karger, M. Miiller-Olm

universally agreed) belief in the formal methods community that availability
of “key-press” verification techniques, freeing the designer from the burden of
verification, or even automatic synthesis from specifications as means of “getting
it right first time” could be a crucial factor for industrial takeover of a certain
method. Consequently, ProCoS researchers have extensively addressed this issue.

3.1 Finite-state Verification and Characteristic Formulas

In the last two decades model-checking [CES96,QS82,MOSS99] has emerged as
a promising and powerful approach to automatic verification of finite-state sys-
tems. Roughly speaking, a model checker is a procedure that decides whether a
given finite structure M is a model of a logical formula ¢. The modal mu-calculus
[Koz83], a small, yet expressive branching-time temporal logic, has found par-
ticular interest as it provides a clean core logics for the construction of model-
checkers.

In [MO98] we show how modal mu-calculus formulas characterising finite-
state processes up to bisimulation can be derived directly from the greatest
fixpoint characterisations of the bisimulation relations. Our derivation simplifies
earlier proofs for the strong bisimulation case [GS86,5194] and, by virtue of
derivation, immediately generalises to various other bisimulation-like relations,
in particular weak bisimulation and many behavioural preorders. Characteristic
formulas allow to apply model-checkers for automatically checking equivalence or
refinement between finite-state processes w.r.t. the considered process relations.
In [MOSC99] we show how a certain bisimulation-like refinement relation could
be of use in ensuring downward compatibility of components of reactive process
libraries.

Imperative programming languages typically offer a sequential composition
operator which allows the straightforward specification of phased behaviour.
The chop-operator in interval temporal logics like Moszkowski’s ITL [Mos85]
or the Duration Calculus DC [ZHR91] serves a similar purpose. In [MO99] we
introduce a logic FLC (Fixpoint Logic with Chop) that extends the modal mu-
calculus by a chop-operator and investigate its expressiveness and decidability
properties. As far as we know FLC is the first such branching-time logic. To
enable an elegant semantic treatment, formulas are interpreted by predicate
transformers instead of predicates. FLC is strictly more expressive than the
modal mu-calculus but remains decidable for finite-state processes and can thus
be model-checked effectively. We also show that characteristic FLC-formulas
(w.r.t. simulation or bisimulation) can be constructed for context-free processes,
a certain type of finitely generated infinite-state processes. Thus an FLC-based
model-checker could be used to automatically check simulation or bisimulation
between a finite-state and a context-free process.

3.2 Deciding and Model-Checking Dense-Time Duration Calculus

Verification in general and particularly automatic verification becomes much
more intricate when the systems are no longer finite state. The latter applies

Beyond ProCoS at Kiel: A Synopsis of Recent Research 9

to e.g. embedded real-time systems interacting with their environment in dense
real-time. Therefore, the project “Models of Real-Time Systems 11”7, funded by
the German National Research Foundation DFG under contract no. La426/13-2,
was dedicated towards development of semantic models for embedded real-time
systems that soundly describe realistic hardware without overburdening verifi-
cation efforts with extraneous detail. While we share this objective with most
other projects devoted to formal methods for embedded system design, our line of
research distinguishes itself by a re-investigation of the consequences of some sim-
plifications that have been adopted in most other models. The key observation
guiding our research has been that some of the formal models can encode more
information in a timed behaviour than can actually pass the sensor/actuator-
barrier between embedded systems and their controlled environment, and that
furthermore quite some undecidability results do crucially rely on these extra
coding capabilities. Obviously, such undecidability results do not provide an in-
dication of the inherent complexity of the design task; rather, they are artifacts
of a particular formalisation of embedded system dynamics.

To avoid this problem, we have analysed more restricted models of the tem-
poral behaviour of embedded systems which do not feature these extra coding
capabilities. The particular restrictions adopted took the form of constraints on
the maximal density of state changes over time and have been deduced from obvi-
ous physical properties of embedded controllers. In order to provide an indication
that these restrictions can indeed simplify the design of embedded controllers,
decidability of the Duration Calculi — a major group of formal logics for de-
sign and analysis of embedded real-time control systems [Zho93] — has been
investigated. While the Duration Calculi are highly undecidable with respect to
the standard model [ZHS93], a bunch of positive decidability results has been
obtained on the more restricted model classes [Fra96a,Fra97].

Through a bottom-up approach, deriving abstract models of embedded con-
troller dynamics from circuit-level behavioural models of asynchronous VLSI as
well as from transfer-level models of synchronous circuits, it has been proven
that the restricted model classes are fully sufficient for modelling circuit be-
haviour [Fra95,Frd96¢,Fra97]. Based on this correspondence between certain cir-
cuit classes and the restricted model classes, new automatic model-checking
techniques for asynchronous circuits [Fra97,Fra98,Fra99b] as well as controller
synthesis techniques for synchronous circuits [Fra96b,Fra96c,Fra97] have been
derived from the decision procedures. To the best of our knowledge, these are
the first effective procedures available for a dense-time Duration Calculus with
metric time, the chop modality, and unrestricted negation. Table 1 provides an
overview over the decidability results for model-checking timed automata against
various fragments of dense-time Duration Calculus.

A particular implication of these findings is that even extremely abstract
real-time formalisms can be integrated into the design process of embedded
controllers through key-press techniques. This claim is substantiated in [Fra97,
Chapter 9], were an embedded controller for the ProCoS gas-burner [RRH93], the
major case study of the ProCoS projects, is automatically synthesised from its

10

M. Franzle, W. Goerigk, B. von Karger, M. Miiller-Olm

requirements specification, thereby obtaining a device of comparable engineering
quality as the manually developed controller of [RRH93]. However, complexity
of such an automatic controller synthesis procedure may easily become pro-
hibitive for practical, larger-scale applications such that compositional variants
are urgently needed, which is the theme of [FL98]. Beyond these contributions to
formal methods for embedded system design, a bunch of theoretical results, in-
cluding an automata-theoretic characterisation of the expressiveness of Duration
Calculus [Fra97, App. A], have been obtained.

Table 1. Decidability of the model property for timed automata with behavioural re-
strictions wrt. specifications from different fragments of Duration Calculus. The frag-
ments are named after the shapes of allowed atomic formulae.

Behaviour class of timed automaton

[ZHS93, Theo. 10]

[Frd99b, Theo. 5.1]

finitely n-bounded time-wise
variable discrete
{[P]} Decidable Decidable Decidable

[Frd99b, Theo. 6.2]

{[P],l < k,l=Fk,l >k}
with exactly one, outer-

Decidable

Decidable

Decidable

Subset most, negation* [Fréi99b, Theo. 4.2]|[Fr&99b, Theo. 5.1]|[Fr&99b, Theo. 6.2]
of {[P],l =k} Undecidable Decidable Decidable
[ZHS93, Theo. 11]|[Fra99b, Theo. 5.1]|[Frd99b, Theo. 6.2]
DC
{JP =k} Undecidable | Undecidable Decidable
[ZHS93, Theo. 11]|[Fra99b, Theo. 5.2]|[Frd99b, Theo. 6.2]
{JP=[Q} Undecidable | Undecidable | Undecidable
[ZHS93, Theo. 12] * o
asynchronous | synchronous
circuits circuits

Corresponding device classes

* Le., there are no inner negations in formulae, yet one at the outermost level. The
connectives available are conjunction, disjunction, and chop. Note that this subset
covers the so-called DC-implementables of [Rav95].

** The proof of theorem 12 of [ZHS93] does not depend on finite variability.

Beyond ProCoS at Kiel: A Synopsis of Recent Research 11

3.3 Key-Press Verification of Hybrid Systems

By the techniques discussed in the previous section, we have been able to show
that by suitable restriction of the model class used in behavioural descriptions
of system dynamics, model-checking for large subsets of Duration Calculus be-
comes feasible. The particular restrictions adopted are motivated by physical
properties of practical verification problems, namely band-limitedness of reac-
tive systems and synchronicity of clocked systems. These promising results have
motivated us to investigate the impact of physically realistic modelling on even
more expressive formalisms than Duration Calculus. In [Frd99a], we attack the
problem of automatically verifying hybrid automata.

Hybrid automata have been introduced in both control engineering and com-
puter science as a formal model for the dynamics of hybrid discrete-continuous
systems. In the case of so-called linear hybrid automata this formalisation sup-
ports semi-decision procedures for state reachability, yet no decision procedures
due to inherent undecidability [HKPV95]. Thus, unlike finite or timed automata,
already linear hybrid automata are out-of-scope of fully automatic verification.

However, it is illustrating to take a closer look at the proof technique used
in [HKPV95] for showing undecidability of state reachability in linear hybrid
automata. The core machinery is an instantiation of the following proof pattern:

Effectively encode two-counter machines by hybrid automata, represent-
ing the counter values by two continuous variables of bounded range. E.g.,
by variables of range [0, 1] through the embedding ¢ defined as (k) = 2.

Although the results thus obtained are formally correct and absolutely well-done,
their relevance to the practical design problems hybrid automata are intended
to cover is questionable. The encodings used (e.g. €) encode infinite information,
namely the set of natural numbers, within a compact interval of continuous
states, whereas the ubiquity of noise limits the information content encodable
by any bounded continuous variable encountered in real hybrid systems to a finite
value. Hence, on simple information-theoretic grounds, the undecidability results
thus obtained can be said to be artefacts of an overly idealized formalization.

Based on this insight, in [Frd99a] we devise a new semi-decision method for
safety of linear and polynomial hybrid systems which may only fail on patholog-
ical, practically uninteresting cases. These remaining cases are such that their
safety depends on the complete absence of noise, a situation unlikely to occur
in real hybrid systems. Furthermore, we show that if low probability effects of
noise are ignored akin to the way they are suppressed in digital modelling then
safety becomes fully decidable.

4 Algebraic models of reactive systems

Work in the PROCOS project included formal proofs at many different levels of
program abstraction: For reasoning at these various levels a number of models
of computations were used, including relations, time diagrams, and CSP style

12 M. Franzle, W. Goerigk, B. von Karger, M. Miiller-Olm

traces. Inspired by the desire for a theory that would provide a common frame-
work of laws for this spectrum of models Tony Hoare and Burghard von Karger
invented the Sequential Calculus [HvK95]. The Sequential Calculus is a slight
generalisation of Tarski’s calculus of relations. Most algebraic laws that hold
for binary relations have analogues in sequential calculus, but relations are only
one model among many to which the sequential calculus applies. Later work
concentrated on combining the sequential calculus with the theory of Galois
connections to produce a new, calculational approach to temporal logics. The
definitive reference at this point of time is [vK97] which is available from the
author’s homepage. Various excerpts from this thesis have been presented at
conferences [vK95,BvK95| or published in journals [BvK96,vKB98,vK98|.

References

[BBFt92] B. Buth, K.-H. Buth, M. Franzle, B. v. Karger, Y. Lakhneche, H. Lang-
maack, and M. Miiller-Olm. Provably correct compiler development and
implementation. In U. Kastens and P. Pfahler, editors, Compiler Con-
struction, volume 641 of Lecture Notes in Computer Science. Springer-
Verlag, 1992.

[BFOR93] Jonathan Bowen, Martin Frénzle, Ernst-Riidiger Olderog, and Anders P.
Ravn. Developing correct systems. In Fifth Euromicro Workshop on Real-
Time Systems, pages 176-187. IEEE Computer Society Press, June 1993.

[BvK95] Rudolf Berghammer and Burghard von Karger. Formal derivation of CSP
programs from temporal specifications. In Bernhard Méller, editor, Math-
ematics of Program Construction, LNCS 947, pages 180-196. Springer-
Verlag, 1995.

[BvK96] Rudolf Berghammer and Burghard von Karger. Towards a design calculus
for CSP. Science of Computer Programming, 26:99-115, 1996.

[CES96] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2):244—
263, April 1996.

[FL9g] Martin Frénzle and Karsten Liith. Compiling graphical real-time spec-
ifications into silicon. In A. P. Ravn and H. Rischel, editors, Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’98), vol-
ume 1486 of Lecture Notes in Computer Science, pages 272-281. Springer-
Verlag, 1998.

[FMO94] Martin Frénzle and Markus Miiller-Olm. Towards provably correct code
generation for a hard real-time programming language. In Peter A. Fritz-
son, editor, Compiler Construction 94, 5th International Conference Ed-
inburgh U.K., volume 786 of LNCS, pages 294-308. Springer, April 1994.

[Frags] Martin Franzle. A discrete model of VLSI dynamics in hybrid control ap-
plications. ProCoS Technical Report Kiel MF 17/3, Christian-Albrechts-
Universitéat Kiel, Germany, April 1995.

[Fra96a) Martin Frénzle. Decidability of duration calculi on restricted model
classes. ProCoS Technical Report Kiel MF 21/1, Christian-Albrechts-
Universitat Kiel, Germany, July 1996.

[Fr&96b)

[Frag6e]

[Frii97]

[Fri98)]

[Fra99al

[Fra99b]

[GDG™96]

[GGT5)

[GGH97]

[GGZ98]

[GHY6]

[GH98a]

[GHO8D)

Beyond ProCoS at Kiel: A Synopsis of Recent Research 13

Martin Frénzle. Hardware synthesis from temporal logic: Undecidability
need not matter. Position paper, Hardware Synthesis and Verification
Workshop, Cornell University, Ithaca, USA, August 1996.

Martin Fréanzle. Synthesizing controllers from duration calculus. In Bengt
Jonsson and Joachim Parrow, editors, Formal Techniques in Real-Time
and Fault-Tolerant Systems (FTRTFT ‘96), volume 1135 of Lecture Notes
in Computer Science, pages 168—187. Springer-Verlag, 1996.

Martin Fréanzle. Controller Design from Temporal Logic: Un-
decidability meed not matter. Dissertation, Technische Fakultat
der Universitdt Kiel, Germany, 1997. Available as Bericht Nr.
9710, Institut fir Informatik und Praktische Mathematik, Christian-
Albrechts-Universitat Kiel, June 1997, and via WWW under URL
http://ca.informatik.uni-oldenburg.de/~fraenzle/diss.ps.gz.
Martin Franzle. Model-checking dense-time duration calculus. In M. R.
Hansen, editor, Proceedings of the Duration Calculus Track of the 33rd
European Summer School on Logic, Language and Information. Universita
Saarbriicken, 1998.

Martin Frénzle. Analysis of hybrid systems: An ounce of realism can
save an infinity of states. In CSL ‘99, Lecture Notes in Computer Science.
Springer-Verlag, to appear September 1999.

Martin Franzle. Model-checking dense-time duration calculus. To appear
in a special issue on Duration Calculus of Formal Aspects of Computing,
1999.

Wolfgang Goerigk, Axel Dold, Thilo Gaul, Gerhard Goos, Andreas
Heberle, Friedrich W. von Henke, Ulrich Hoffmann, Hans Langmaack, Hol-
ger Pfeifer, Harald Ruess, and Wolf Zimmermann. Compiler Correctness
and Implementation Verification: The Verifix Approach. In P. Fritzson,
editor, Proceedings of the Poster Session of CC 96 — International Con-
ference on Compiler Construction, pages 65 — 73, IDA Technical Report
LiTH-IDA-R-96-12, Linkgping, Sweden, 1996.

J.B. Goodenough and S.L. Gerhart. Toward a Theory of Test Data Se-
lection. SIGPLAN Notices, 10(6):493-510, June 1975.

Th. Gaul, G. Goos, A. Heberle, W. Zimmermann, and W. Goerigk. An
Architecture for Verified Compiler Construction. In Joint Modular Lan-
guages Conference JMLC’97, Linz, Austria, March 1997.

Wolfgang Goerigk, Thilo Gaul, and Wolf Zimmermann. Correct Programs
without Proof? On Checker-Based Program Verification. In Proceedings
ATOOLS’98 Workshop on “Tool Support for System Specification, De-
velopment, and Verification”, Advances in Computing Science, Malente,
1998. Springer Verlag.

Wolfgang Goerigk and Ulrich Hoffmann. The Compiler Implementation
Language ComLisp. Technical Report Verifix/CAU/1.7, CAU Kiel, June
1996.

Wolfgang Goerigk and Ulrich Hoffmann. Compiling ComLisp to Exe-
cutable Machine Code: Compiler Construction. Technical Report Nr.
9812, Institut fiir Informatik, CAU, October 1998.

Wolfgang Goerigk and Ulrich Hoffmann. Rigorous Compiler Implemen-
tation Correctness: How to Prove the Real Thing Correct. In Proceedings
FM-TRENDS’98 International Workshop on Current Trends in Applied
Formal Methods, Lecture Notes in Computer Science, Boppard, 1998. To
appear.

14 M. Franzle, W. Goerigk, B. von Karger, M. Miiller-Olm

[GH98(]

[GMO96]

[Goe99]

[GSS6]

[Gur91]

[GZGT 98]

[GZG99)

[HGGT99)

[HHF+94]

Wolfgang Goerigk and Ulrich Hoffmann. The Compiling Specification
from ComLisp to Executable Machine Code. Technical Report Nr. 9713,
Institut fiir Informatik, CAU, Kiel, December 1998.

Wolfgang Goerigk and Markus Miiller-Olm. Erhaltung partieller Kor-
rektheit bei beschrankten Maschinenressourcen. — Eine Beweisskizze —.
Technical Report Verifix/CAU/2.5, CAU Kiel, 1996.

Wolfgang Goerigk. On Trojan Horses in Compiler Implementations. In
F. Saglietti and W. Goerigk, editors, Proc. des Workshops Sicherheit
und Zuverléssigkeit softwarebasierter Systeme, ISTec-Berichte, Garching,
1999. To appear.

Susanne Graf and Joseph Sifakis. A modal characterization of obser-
vational congruence on finite terms of CCS. Information and Control,
68:125-145, 1986.

Y. Gurevich. Evolving Algebras; A Tutorial Introduction. Bulletin
EATCS, 43:264-284, 1991.

Wolfgang Goerigk, Wolf Zimmermann, Thilo Gaul, Andreas Heberle, and
Ulrich Hoffmann. Praktikable Konstruktion korrekter Ubersetzer. In Pro-
ceedings Softwaretechnik ST’98, volume 18(3) of Softwaretechnik-Trends,
pages 26 — 34, Paderborn, 1998.

Thilo Gaul, Wolf Zimmermann, and Wolfgang Goerigk. Construction of
Verified Software Systems with Program-Checking: An Application To
Compiler Back-Ends. International Workshop on “Runtime Result Veri-
fication”, Trento, Italy, 1999.

A. Heberle, T. Gaul, W. Goerigk, G. Goos, and W. Zimmermann. Con-
struction of Verified Compiler Front-Ends with Program-Checking. In
Proceedings of PSI ’99: Andrei Ershov Third International Conference on
Perspectives Of System Informatics, Lecture Notes in Computer Science,
Novosibirsk, Russia, 1999. Springer Verlag. To appear.

Jifeng He, C. A. R. Hoare, Martin Franzle, Markus Miiller-Olm, Ernst-
Riidiger Olderog, Michael Schenke, Michael R. Hansen, Anders P. Ravn,
and Hans Rischel. Provably correct systems. In Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT’9/4), volume 863 of Lec-
ture Notes in Computer Science, pages 288-335. Springer, 1994.

[HHMO™96] J. He, C. A. R. Hoare, M. Miiller-Olm, E.-R. Olderog, M. Schenke, M. R.

[HIS93]

[HKPV95)

[HLOS]

[Hoa91]

Hansen, A. P. Ravn, and H. Rischel. The ProCoS approach to the design
of real-time systems: Linking different formalisms. Tutorial Material for
FME’96 (Formal Methods Europe ’96), March 1996.

C.A.R. Hoare, He Jifeng, and A. Sampaio. Normal Form Approach to
Compiler Design. Acta Informatica, 30:701-739, 1993.

Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on the Theory of Computing, pages
373-382. ACM, 1995.

Andreas Heberle and Welf Lowe. On ASM-Based Specification of Pro-
gramming Language Semantics and Reusable Correct Compilations. In
Uwe Gléasser and Peter H. Schmitt, editors, Proceedings of the 5th Inter-
national Workshop on Abstract State Machines, pages 68-90, 1998.

C. A. R. Hoare. Refinement algebra proves correctness of compiling spec-
ifications. In C.C. Morgan and J.C.P. Woodcock, editors, 3rd Refinement
Workshop, pages 33—48. Springer-Verlag, 1991.

[Hof98]

[HPB93]

[HvK95]
[Koz83]

[Lan97al

[Lan97b]

[Lan97c]

[Lan97d]

[MO90]

[MO95a]

[MOY5b)]

[MO96a]

[MOY6b)]

[MO97]

MO9S

[MO99]

[Mos85]

Beyond ProCoS at Kiel: A Synopsis of Recent Research 15

Ulrich Hoffmann. Compiler Implementation Verification through Rigor-
ous Syntactical Code Inspection. PhD thesis, Technische Fakultat der
Christian-Albrechts-Universitét zu Kiel, Kiel, 1998.

He Jifeng, 1. Page, and J. P. Bowen. Towards a provably correct hardware
implementation of Occam. In G. J. Milne and L. Pierre, editors, Correct
Hardware Design and Verification Methods (CHARME’93), volume 683
of Lecture Notes in Computer Science, pages 214-225. Springer-Verlag,
1993.

C.A.R. Hoare and Burghard von Karger. Sequential calculus. Information
Processing Letters, 53:123—-130, 1995.

D. Kozen. Results on the propositional mu-calculus. TCS, 27:333-354,
1983.

H. Langmaack. Contribution to Goodenough’s and Gerhart’s Theory of
Software Testing and Verification: Relation between Strong Compiler Test
and Compiler Implementation Verification. Foundations of Computer Sci-
ence: Potential-Theory-Cognition. LNCS, 1337:321-335, 1997.

H. Langmaack. The ProCoS Approach to Correct Systems. Real Time
Systems, 13:253-275, 1997.

Hans Langmaack. Softwareengineering zur Zertifizierung von Systemen.
it+ti — Informationstechnik und Technische Informatik, 39(3):41-47,
1997.

Hans Langmaack. Theoretische Informatik ist Grundlage fiir das sichere
Beherrschen realistischer Software und Systeme. 25 Jahre Informatik an
der Universitat Hamburg. Informatik: Stand, Trends, Visionen, pages 47—
62, 1997.

Markus Miiller-Olm. Korrektheit einer Ubersetzung der Sprache rekur-
siver Funktionsdefinitionen erster Ordnung in eine einfache imperative
Sprache. Master’s thesis, CAU Kiel, 1990.

Markus Miiller-Olm. An Exercise in Compiler Verification. Internal re-
port, CS Department, University of Kiel, 1995.

Markus Miiller-Olm. A short description of the prototype compiler. Pro-
CoS Technical Report [Kiel MMO 14/1], Christian-Albrechts-Universitét
Kiel, Germany, August 1995.

Markus Miiller-Olm. Modular Compiler Verification. Dissertation, Tech-
nische Fakultdt der Universitat Kiel, Germany, 1996.

Markus Miiller-Olm. Three Views on Preservation of Partial Correctness.
Technical Report Verifix/CAU/5.1, CAU Kiel, October 1996.

Markus Miiller-Olm. Modular Compiler Verification: A Refinement-
Algebraic Approach Advocating Stepwise Abstraction, volume 1283 of Lec-
ture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New
York, 1997. PhD Thesis.

Markus Miiller-Olm. Derivation of characteristic formulae. Electronic
Notes in Theoretical Computer Science, 18:12, August 1998. URL:
http://www.elsevier.nl/locate/entcs/volumel8.html.

Markus Miiller-Olm. A modal fixpoint logic with chop. In Christoph
Meinel and Sophie Tison, editors, STACS’99, volume 1563 of Lecture
Notes in Computer Science, pages 510-520. Springer, 1999.

Ben Moszkowski. A temporal logic for multi-level reasoning about hard-
ware. IEEE Computer, 18(2):10-19, 1985.

16 M. Franzle, W. Goerigk, B. von Karger, M. Miiller-Olm

[MOSC99]

[MOSS99]

[MOW99]

Q582

[Rav95)

[RRH93)|

[S194]

[Tho84]

[vK95]

VK97]

[VK98]

[VKB9S)

[WB97]

[Wol99a]

[Wol99b]

[ZG97)

Markus Miiller-Olm, Bernhard Steffen, and Rance Cleaveland. On the
evolution of reactive components: A process-algebraic approach. In
FASE’99, volume 1577 of Lecture Notes in Computer Science, pages 161—
175. Springer, 1999.

Markus Miiller-Olm, David Schmidt, and Bernhard Steffen. Model-
checking: A tutorial introduction. In SAS’99, Lecture Notes in Computer
Science. Springer, 1999. to appear.

Markus Miiller-Olm and Andreas Wolf. On excusable and inexcusable
failures: Towards an adequate notion of translation correctness. In F'M’99,
Lecture Notes in Computer Science. Springer, 1999. to appear.

J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors,
Proc. 5th Internat. Symp. on Programming, volume 137 of Lecture Notes
in Computer Science. Springer-Verlag, 1982.

Anders P. Ravn. Design of Embedded Real-Time Computing Systems.
Doctoral dissertation, Department of Computer Science, Danish Technical
University, Lyngby, DK, October 1995. Available as technical report ID-
TR: 1995-170.

Anders P. Ravn, Hans Rischel, and Kirsten M. Hansen. Specifying and
verifying requirements of real-time systems. IEEE Transactions on Soft-
ware Engineering, 19(1):41-55, January 1993.

Bernhard Steffen and Anna Ingdlfsdéttir. Characteristic formulae for pro-
cesses with divergence. Information and Computation, 110(1):149-163,
1994.

Ken Thompson. Reflections on Trusting Trust. Communications of the
ACM, 27(8):761-763, 1984. Also in ACM Turing Award Lectures: The
First Twenty Years 1965-1985, ACM Press, 1987, and in Computers Under
Attack: Intruders, Worms, and Viruses Copyright, ACM Press 1990.
Burghard von Karger. An algebraic approach to temporal logic. In Pe-
ter D. Mosses, Mogens Nielsen, and Michael I. Schwartzbach, editors,
Proceedings of the Sixth International Joint Conference on Theory and
Practice of Software Development, LNCS 915, pages 232-246. Springer-
Verlag, 1995.

Burghard von Karger. Temporal Algebra. Habilitationsschrift,
Christian-Albrechts-Univ. Kiel, 1997. Available from www.informatik.uni-
kiel.de/ bvk/.

Burghard von Karger. Temporal algebra. Mathematical Structures in
Computer Science, 8(3):277-320, June 1998.

B. von Karger and R. Berghammer. A relational model for temporal
logic. Logic Journal of the IGPL, 6(2):157-173, 1998. Available from
www.oup.co.uk/igpl/Volume_06/Issue_02.

Hal Wasserman and Manuel Blum. Software reliability via run-time result-
checking. Journal of the ACM, 44(6):826-849, November 1997.

Andreas Wolf. An Exercise in Compiler Verification Revisited — Preserv-
ing Partial Correctness . Technical Report Verifix/CAU/6.1, CAU Kiel,
February 1999.

Andreas Wolf. The Adequacy of a Loop’s Definition. Technical Report
Verifix/CAU/6.2, CAU Kiel, February 1999.

W. Zimmermann and T. Gaul. On the Construction of Correct Compiler
Back-Ends: An ASM Approach. Journal of Universal Computer Science,
3(5):504-567, 1997.

[Zho93)]

[ZHRO1]

[ZHS93]

Beyond ProCoS at Kiel: A Synopsis of Recent Research 17

Zhou Chaochen. Duration calculi: An overview. In D. Bjgrner, M. Broy,
and I. V. Pottosin, editors, Formal Methods in Programming and Their
Applications, volume 735 of Lecture Notes in Computer Science, pages
256—-266. Springer-Verlag, 1993.

Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of
durations. Information Processing Letters, 40(5):269-276, 1991.

Zhou Chaochen, Michael R. Hansen, and Peter Sestoft. Decidability and
undecidability results for duration calculus. In P. Enjalbert, A. Finkel, and
K. W. Wagner, editors, Symposium on Theoretical Aspects of Computer
Science (STACS 93), volume 665 of Lecture Notes in Computer Science,
pages 58-68. Springer-Verlag, 1993.

