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Chapter 1

Motivation

Computer science is concerned with design of programs for a wide range of pur-
poses. We are, however, not done once a program is constructed. For various
reasons, programs need to be analyzed and processed after their construction.
First of all, we usually write programs in high-level languages and before we can
execute them on a computer they must be translated into machine code. In order
to speed up computation or save memory, optimizing compilers perform program
transformations relying heavily on the results of program analysis routines. Sec-
ondly, due to their ever increasing complexity, programs must be validated or
verified in order to ensure that they serve their intended purpose. Program anal-
ysis (in a broad sense) is concerned with techniques that automatically determine
run-time properties of given programs prior to run-time. This includes flow anal-
ysis, type checking, abstract interpretation, model checking, and similar areas.

By Rice’s theorem [68, 27|, every non-trivial semantic question about pro-
grams is undecidable in a universal programming language. At first glance, this
seems to imply that automatic analysis of programs is impossible. However, com-
puter scientists have found at least two ways out of this problem. Firstly, we can
use weaker formalisms than universal programming languages for modeling sys-
tems such that interesting questions become decidable. Important examples are
the many types of automata studied in automata theory and Kripke structures
(or labeled transition systems) considered in model checking. Secondly, we can
work with approximate analyses that do not always give a definite answer but
may have weaker (but sound) outcomes. Approximate analyses are widely used
in optimizing compilers.

It is an interesting problem to assess the precision of an approximate analysis,
i.e., how exact the delivered answers are. One approach is to define an abstraction
of programs or program behavior that gives rise to weaker but sound informa-
tion and to prove that the analysis is exact with respect to this abstraction (cf.
Fig. 1.1). The loss of precision can then be attributed to and measured by the
employed abstraction. This scheme has been used in the literature in a number
of scenarios, e.g., [36, 72, 39, 73, 74, 22|.
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Original Abstraction | Weakened
problem “| problem
Approximate results Exact results

Figure 1.1: Using an abstraction to assess the precision of an approximate anal-
ysis.

The scheme of Fig. 1.1 allows us to make meaningful statements on approx-
imate analyses independently of specific algorithms: by devising abstractions of
programs, we obtain well-defined weakened analysis problems and we can classify
these problems with the techniques of complexity and recursion theory. The pur-
pose of such research is twofold: on the theoretical side, we get insights on the
trade-off between efficiency and precision in the design of approximate analyses;
on the practical side, we hope to uncover potential for the construction of more
precise (efficient) analysis algorithms.

In this thesis we study weakened versions of constant propagation. The mo-
tivation for this choice is threefold. Firstly, the constant-propagation problem is
easy to understand and of obvious practical relevance. Hence, uncovering poten-
tial for more precise constant-propagation routines is of intrinsic interest. Sec-
ondly, there is a rich spectrum of natural weakened constant-propagation prob-
lems. On the one hand, we can vary the set of algebraic operators that are to
be interpreted by the analysis. On the other hand, we can study the resulting
problems in different classes of programs (sequential or parallel programs, with or
without procedures, with or without loops etc.). Finally, results for the constant-
propagation problem can often be generalized to other analysis questions. For
instance, if as part of the abstraction we decide not to interpret algebraic op-
erators at all, which leads to a problem known as copy-constant detection, we
are essentially faced with analyzing transitive dependences in programs. Hence,
results for copy-constant detection can straightforwardly be adapted to other
problems concerned with transitive dependences, like faint-code elimination or
program slicing.

In this thesis we combine techniques from different areas like linear algebra,
computable ring theory, abstract interpretation, program verification, complexity
theory, etc. in order to come to grips with the considered variants of the constant-
propagation problem. More generally, we believe that combination of techniques
is the key to further progress in automatic analysis and constant-propagation
allows us to illustrate this point in a theoretical study.



Let us briefly outline the main contributions of this thesis:

A hierarchy of constants in sequential programs. We explore the com-
plexity of constant propagation for a three-dimensional taxonomy of constants
in sequential imperative programs that work on integer variables. The first di-
mension is given by means of restrictions on the set of interpreted integer op-
erators. The second dimension distinguishes between must- and may-constants;
may-constants appear in two variations: single- and multiple-valued. In the third
dimension we distinguish between programs with or without loops. We succeed in
classifying the complexity of the problems almost completely (Chapter 3). More-
over, we develop (must-)constant propagation algorithms that interpret com-
pletely all integer operators except of the division operators by using results from
linear algebra and computational ring theory (Chapter 4). These algorithms are
far more precise than existing constant-propagation algorithms.

Limits for the analysis of parallel programs. We study propagation of
copy constants in parallel programs. Assuming that base statements execute
atomically, a standard assumption in the program verification and analysis liter-
ature, we show that exact copy-constant propagation is undecidable, PSPACE-
complete, and NP-complete if we consider programs with procedures, without
procedures, and without loops, respectively (Chapter 5). These results indicate
that it is very unlikely that recent results on efficient exact analysis of parallel
programs can be generalized to richer classes of dataflow problems.

Abandoning the atomic execution assumption. We then explore the con-
sequences of abandoning the atomic execution assumption for base statements
in parallel programs, which is the more realistic setup in practice (Chapters 6 to
10). Surprisingly, it turns out that this makes exact copy-constant propagation,
exact faint-code elimination and, more generally, exact dependence analysis de-
cidable for programs with procedures (Chapter 9) although it remains intractable
(NP-hard) (Chapter 10). In order to show decidability we develop a precise ab-
stract interpretation of sets of runs (program executions) (Chapter 8). While the
worst-case running time of the developed algorithms is exponential in the number
of global variables, it is polynomial in the other parameters describing the pro-
gram size. As well-designed parallel programs communicate on a small number of
global variables only, there is thus the prospect of developing practically relevant
algorithms by refining our techniques.

These three contributions constitute self-contained parts of this thesis that
can be read independently of each other. Figure 1.2 shows the assignment of
the chapters to these three contributions and indicates dependences between the
chapters. For clarity transitive relationships are omitted. Before we turn to
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Figure 1.2: Dependence between the chapters of this thesis.

the technical presentation we motivate and describe these contributions in more
detail in the next chapter.

Throughout this thesis we assume that the reader is familiar with the basic
techniques and results from the theory of computational complexity [60, 32],
program analysis [58, 2, 26, 51], and abstract interpretation [12, 13]. A brief
introduction to constraint-based program analysis is provided by Appendix A.
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Chapter 2

Introduction

Constant propagation is one of the most widely used optimizations in practice
(cf. [2, 26, 51]). Its goal is to replace expressions that always yield a unique
constant value at run-time by this value. This transformation can both speed up
execution and reduce code size by replacing a computation or memory access by
a load-constant instruction. Often constant propagation enables powerful further
program transformations. An example is branch elimination: if the condition
guarding a branch of a conditional can be identified as being constantly false, the
whole code in this branch is dynamically unreachable and can be removed.

The term constant propagation is somewhat reminiscent of the technique used
in early compilers: copying the value of constants in programs (like in z := 42)
to the places where they are used. The associated analysis problem, to identify
expressions in the programs that are constant at run-time, is more adequately
called constant detection. However, in the literature the term constant propa-
gation is also used to denote the detection problem. We use the term constant
propagation in informal discussions but prefer the term constant detection in
more formal contexts.

Constant propagation is an instance of an automatic program analysis. There
are fundamental limitations to program analysis deriving from undecidability. In
particular, constant detection in full generality is undecidable. Here is a simple
reduction for a prototypic imperative programming language. Suppose we are
given a program P and assume that new is a variable not appearing in P. Consider
the little program:

read(new) ; P; write(new) .
If P does not terminate, new can be replaced by any constant in the write state-
ment for trivial reasons, otherwise this transformation is unsound because the
read-statement can read an arbitrary value. Thus, in order to solve the constant
detection problem in its most general form, we have to solve the halting problem.

Similar games can be played in every universal programming language and for
almost any interesting analysis question. Hence, the best we can hope for is ap-
proximate algorithms. An approximate analysis algorithm does not always give a
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Figure 2.1: A constant not detected by standard constant propagation.

definite answer. An approximate constant-detection algorithm, for instance, de-
tects some but in general not all constants in a program. The standard approach
to constant propagation called simple constant propagation, for instance, does
not detect that z is a constant of value 5 at node 7 in the flow graph in Fig. 2.1;
cf. Appendix A. It is important that an approximate analysis algorithm only errs
on one side and that this is taken into account when the computed information
is exploited. This is called the soundness of the algorithm. We take soundness
for granted in the discussion that follows.

Undecidability of the halting problem implies that it is undecidable whether
a given program point can be reached in an execution of the program or not. We
have seen above by the example of constant detection that this infects almost
every analysis question. It is therefore common to abstract guarded branching
to non-deterministic branching in order to ban this fundamental cause of un-
decidability. This abstraction is built into the use of the MOP-solution (see
Appendix A) as the semantic reference point in dataflow analysis. This is: in-
stead of the ‘real’ executions, we take all executions into account that at each
branching point choose an arbitrary branch irrespective of the guard. Clearly,
this abstraction makes reachability of program points decidable. Most analysis
questions encountered in practice (and all the ones we are interested in in this
thesis) ask for determining a property valid in all executions of the programs.
For such questions information that is determined after guarded branching is
abstracted to non-deterministic branching is valid, because more executions are
considered. Adopting this abstraction, we work with non-deterministic programs
in this thesis. Non-deterministic programs represent deterministic programs in
which guarded branching has been abstracted to non-deterministic branching.
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Figure 2.2: Undecidability of constant detection; the reduction of Reif and Lewis
[67].

A Hierarchy of Integer Constants in Sequential Programs

The abstraction to non-deterministic branching does not solve all the problems
with undecidability. Constant detection, for instance, remains undecidable for
programs working on integer variables and a full signature of integer operators.
Independent proofs of this fact have been given by Hecht [26] and by Reif and
Lewis [67]. We briefly recall the construction of Reif and Lewis. It is based
on a reduction from Hilbert’s famous tenth problem, whether a multi-variate
polynomial has a zero in the natural numbers. This is known to be an unde-
cidable problem [45]. Assume given a polynomial p(zi,...,z,) in n variables
Z1, ..., T, with natural coefficients different from the zero polynomial and con-
sider the (non-deterministic) program in Figure 2.2. The initialization and the
loop choose an arbitrary natural value for the x;. If the chosen values constitute

a zero of p(z1,...,x,), then p(xy,...,2,)> +1 =1 and r is set to 1. Otherwise,
p(x1,...,2,)% + 1> 2 such that r is set to 0. Therefore, r is a constant of value
0 at the end of the program if and only if p(z;,...,x,) does not have a natural

zero. This result shows us that we cannot even hope for algorithms that detect
all constants in non-deterministic programs.

On the other hand there are well-known and well-defined classes of constants
that can be detected, even efficiently. A simple example are copy constants [18].
Roughly speaking, a variable x is a copy constant either if it is assigned a constant
value (e.g., through = := 42) or if it is assigned the value of another copy constant
(e.g., in y := 42;x := y). All other forms of assignments (e.g. z := y + 1)
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are (conservatively) assumed to make z non-constant [70]. Copy constants can
efficiently be detected by a standard dataflow analysis; cf. Appendix A. Also if
we restrict attention to programs without loops, even general constant detection
is clearly decidable because there are only finitely many execution paths reaching
any given program point and we can inspect all paths in succession. But even in
this setting the problem is intractable; recently it has been shown to be co-NP-
hard [38]. Another decidable class of constants are finite constants [75].

These results motivate our considerations in Chapter 3 and 4 where we ex-
amine the borderline of intractability and undecidability more closely. To this
end, we investigate the constant propagation problem for integers with respect
to a three-dimensional taxonomy. The first dimension is given by the distinction
between arbitrary and loop-free flow graphs.

The second dimension introduces a hierarchy of weakened versions of the
constant-propagation problem. In copy-constant propagation only non-composite
expressions are interpreted on the right hand side of assignments; all other ex-
pressions are assumed to produce non-constant values. We are interested in the
question how far we can go in posing less drastic restrictions on the expressions
that are interpreted exactly. A natural way of posing a restriction is to fix a sub-
signature of integer operators and to interpret just the expressions built from
operators of this sub-signature. All but one of the classes studied in Chapter 3
are given in this way. More specifically, we investigate the following natural
sub-signatures of the full integer signature and use the following names for the
corresponding classes of constants:

1. the empty signature gives rise to copy constants;
2. the signature {+, —} gives rise to Presburger constants.
3. the signature {4, —, x} gives rise to polynomial constants; and

4. the full integer signature {4, —, %, div, mod} gives rise to full integer con-
stants.!

The one remaining class is the class of linear constants which is added because
it has previously been studied in the literature [70]. It lies between the classes
of copy constants and Presburger constants. In linear-constant detection all ex-
pressions of the form a * x 4+ b, where a and b are integers and z is a program
variable, are interpreted in addition to non-composite expressions.

Finally, in the third dimension we vary the general nature of the constant-
propagation problem. Besides the standard must-constancy problem we consider
the less frequently addressed problem of may-constancy. Essentially, this problem
asks if a variable may evaluate to a given constant ¢ at a given program point

! The results remain valid if we abandon the mod operator. Note that mod can be expressed
by the other operators by means of the identity x mody =z — x * (zdivy) for z > 0, y > 0.



in some program execution. Inspired by the work of Muth and Debray [57] we
further distinguish between a single-value and a multiple-value variant, where
in the latter case the values of multiple variables are checked simultaneously.
While the most prominent application of must-constant propagation is compile-
time simplification of expressions, both must- and may-variants are equally well
suited for eliminating unnecessary branches in programs. Furthermore, the may-
variant leads to insight in the complexity of (may-)aliasing of array elements.

Combination of the second and third dimension of the taxonomy gives rise
to 15 different classes of constants. We succeed in almost completely charac-
terizing the complexity of detecting these classes of constants in general (non-
deterministic) flow graphs as well as in loop-free flow graphs. Only two questions
remain open, both concern general flow graphs: (1) we miss an upper bound for
linear may-constants and (2) the upper and lower bound for polynomial must-
constants do not coincide.

Constant Propagation via Effective Weakest Preconditions

There are two motivations for research that classifies the complexity for sub-
classes of analysis problems. On the theoretical side, we hope to increase our
understanding of the tradeoff between efficiency and precision for analysis prob-
lems that can be solved only approximately. On the practical side, we hope to
uncover potential for construction of more powerful analysis algorithms. Indeed,
perhaps the most interesting results of our study of the constant taxonomy are
the following two findings that uncover algorithmic potential (Chapter 4).

The first finding is that the detection of Presburger constants is tractable,
i.e. can be done in polynomial time; the second that polynomial constants are
decidable. The latter result is particularly interesting because full constants are
undecidable as we have seen above. So the division operator is identified as the
source of non-decidability. For showing decidability of polynomial constants we
apply results from computable ring theory.

Both detection algorithms for Presburger and polynomial constants use an
indirect three phase approach. In the first phase a candidate value is com-
puted that is verified in the second and third phase by means of a symbolic
weakest-precondition computation. The algorithms are obtained by instantiating
a generic algorithm for the construction of approximate constant-propagation al-
gorithms that are complete with respect to evaluation of a subset of expressions.
We describe the general algorithmic idea of constant propagation via symbolic
weakest-precondition computation and analyze the demands for making this gen-
eral algorithmic idea effective. Assertions are represented by affine subspaces of
Q" for Presburger constants and by ideals in the polynomial ring Z[zy,. .., z,]
for polynomial constants.



10 CHAPTER 2. INTRODUCTION

Limits for the Analysis of Parallel Programs

While the first part is concerned with analysis of sequential programs, the bulk
of this thesis is concerned with analysis of parallel programs. Automatic analysis
of parallel programs is known as a notoriously hard problem. A well-known ob-
stacle is the so-called state-explosion problem: the number of (control) states of
a parallel program grows exponentially with the number of parallel components.
Some results that are rather surprising in view of the state-explosion problem
have been the starting point for the considerations in this thesis: certain basic
but important dataflow-analysis problems can still be solved completely and ef-
ficiently for programs with a fork/join kind of parallelism. Let us briefly report
on these results before we describe our contribution.

Knoop, Steffen, and Vollmer [40] show that bitvector analyses, which comprise,
e.g., live/dead variables, available expressions, and reaching definitions [51], can
efficiently be performed on such programs. Knoop shows in [37] that a simple
variant of constant detection, that of so-called strong constants, is tractable as
well. These papers restrict attention to the intraprocedural problem, in which
each procedure body is analyzed separately with worst case assumption on called
procedures. Seidl and Steffen [71] generalize these results to the interprocedural
case in which the interplay between procedures is taken into account and to a
slightly more extensive class of dataflow problems called gen/kill problems. These
papers extend the fixpoint computation technique common in data flow analysis
to parallel programs.

Another line of research applies automata-theoretic techniques that origi-
nally have been developed for the verification of so-called PA-processes (Process-
Algebra Processes) [5, 46, 7, 43], a certain class of infinite-state processes com-
bining sequentiality and parallelism. Specifically, Esparza and Knoop [16], and
Esparza and Podelski [17] demonstrate how live variables analysis can be done
and indicate that other bitvector analyses can be approached in a similar fashion.

Can these results be generalized further to considerably richer classes of
dataflow problems? For answering this question we investigate the complexity of
exact copy-constant detection in parallel programs. Intuitively, copy-constant de-
tection which is closely related to static-dependence analysis represents the next
level of difficulty of dataflow problems beyond gen/kill problems. In the sequen-
tial setting copy-constant detection gives rise to a distributive dataflow framework
on a lattice with chain height two and can thus—by the classic result of Kildall
[36, 51]—completely and efficiently be solved by a fixpoint computation.

We show in Chapter 5 by means of a reduction from the halting problem
for two-counter machines that copy-constant detection is undecidable in paral-
lel programs with procedures (parallel interprocedural analysis). Moreover, we
show PSPACE-completeness in case that there are no procedure calls (parallel
intraprocedural analysis), and co-NP-completeness if also loops are abandoned
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(parallel acyclic analysis). The latter results rely on reductions from the inter-
section problem for regular and star-free regular expressions, respectively. These
results render the possibility of complete and efficient dataflow algorithms for par-
allel programs for more extensive classes of analyses unlikely even for loop-free
programs, as it is generally believed that the inclusions P C (co-)NP C PSPACE
are proper.

Let us be a bit more specific about the setting in which these results are ob-
tained. We consider a prototypic language of explictly parallel programs. The
threads operate on a shared memory via assignment statements of a very re-
stricted form:? constant assignments x := 0 and z := 1 for two distinct constants
0 and 1, and copying assignments z := y. Any sensible concurrent programming
language that allows threads to access a shared memory provides such state-
ments and therefore our hardness results are applicable to many scenarios. The
language allows to form composed statements by means of sequential composition
;, parallel composition ||, and non-deterministic branching M. Moreover, there is
a loop construct loop 7 end, that executes the loop body 7 an indefinite num-
ber of times. The non-deterministic branching and indefinite loop constructs
are chosen in accordance with the abstraction of guarded to non-deterministic
branching mentioned above. Parallelism is understood in an interleaving fashion;
assignment statements are assumed to execute atomically.

In the intraprocedural setting we consider analysis in statements of the form
described above; in the loop-free case we abandon the loop statement. In the
interprocedural setting we consider programs consisting of procedures, the body
of which consist of statements of the form outlined above. Of course, procedures
may also (recursively) call each other. A terminological remark is in order here.
Whenever we speak of interprocedural analysis, we implicitly imply that the
analysis takes properly into account the call and return structure of procedures,
i.e., we always assume that a dynamic instance of a procedure that is entered at a
certain call site, returns to that same call sites. In the traditional parlance of the
flow-analysis literature one says that only realizable paths are considered and that
the analysis is context-sensitive. In the literature also so-called context-insensitive
interprocedural analyses are considered. Such analyses do not properly mirror the
call and return structure but pessimistically assume that a procedure called at
a certain call site may return to any other call site. Clearly, this leads to sound
but in general less precise analysis results. In this thesis we always imply that
interprocedural problems only involve realizable paths. Thus, we reserve the term
interprocedural analysis or problem for context-sensitive interprodural analysis or
problem, respectively.

The results of Chapter 5 should be contrasted with complexity and undecid-
ability results of Taylor [77] and Ramalingam [65] who consider synchronization-

2Two other basic statements are added only for presentational convenience and clarity: the
do-nothing statement skip and write-statements write(e).
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dependent dataflow analyses of parallel programs, i.e. analyses that are precise
with respect to the synchronization structure of programs. Taylor and Rama-
lingam largely exploit the strength of rendezvous-style synchronization, while we
exploit interference only here and no kind of synchronization. Our results thus
point to a much more fundamental limitation in dataflow analysis of parallel
programs.

In order to perform our reductions without relying on synchronization we
use a subtle technique involving re-initialization of variables. In all reductions
programs are constructed in such a way that certain well-behaved runs simulate
some intended behavior, e.g., the execution sequences of the given two-counter
machine in the undecidability proof. But we cannot avoid that the constructed
programs have also certain runs that bear no correspondence to the behavior
to be simulated. One would use synchronization to exclude such spurious runs
but in the absence of synchronization primitives this is not possible. In order to
solve this problem, we ensure by well-directed re-initialization of variables that
the spurious runs do not contribute to propagation of the information that is to
be determined by the analysis. Intuitively, one may interpret this as a kind of
“internal synchronization”.

The prototypic framework poses only rather weak requirement such the re-
sults apply to many concurrent programming languages. One additional remark
concerning the parallel composition operator is in order here. It is inherent in
the definition of parallel composition that 7 || 7, terminates if and when both
threads m and 7y terminate (like, for instance, in OCCAM [29]). This means
that there is an implicit synchronization between 7; and w9 at the termination
point. However, as explained in Section 5.6, the hardness results remain valid
without this assumption. Therefore, they also apply to languages like JAVA in
which spawned threads run and terminate independently of the spawning thread.

Abandoning the Atomic Execution Assumption

Another standard assumption turns out to be more critical: atomic execution
of assignments. The idealization that assignments execute atomically is quite
common in the literature on program verification as well as in the theoretical
literature on flow analysis of parallel programs. However, in a multi-processor
environment where a number of concurrently executing processes access a shared
memory, this is often an unrealistic assumption. The reason is that assignments
are broken into smaller instructions before execution. This is explained in more
detail in Chapter 7.

Surprisingly, the reductions of Chapter 5 break down when the atomic execu-
tion assumption for assignment statements is abandoned. Without this assump-
tion the subtle game of re-initialization of variables that is crucial for putting the
reductions to work can no longer be played. This is illustrated by means of an
example program in Section 7.2. Of course, this does not imply that the hardness
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results are no longer valid: there could be reductions employing other techniques.
But we can indeed show, that interprocedural detection of copy constants and
faint-code elimination becomes decidable. Specifically, we develop EXPTIME-
algorithms for these problems. Recall that these problems are undecidable under
the assumption that assignments execute atomically. So, the (unrealistic) ideal-
ization from program verification “atomic execution of assignment statements”
that presumably simplifies matters actually increases the difficulty of these prob-
lems from the program analysis point of view: amazingly, these problems become
more tractable if we adopt a less idealized, more realistic view of execution!

The presentation of these results is spread over Chapters 6 to 9 as it is tech-
nically somewhat involved. In the following we give a high-level overview and
introduction to these chapters.

Our algorithms apply the constraint-based approach to program analysis.
Constraint-based program analysis provides a framework to develop analyses and
argue about their correctness and completeness. Put in a nutshell, the idea is to
set up constraint systems that characterize sets of program executions in parallel
programs and to perform the analysis by solving these constraint systems over a
lattice of abstract values. Appendix A explains this in more detail.

Constraint-based analysis of parallel programs has been pioneered by Seidl and
Steffen [71]. In order to come to grips with parallel composition, new operators
on run sets are used that are not needed in systems for sequential programs. The
new operators are an interleaving operator ® and prefix and postfix operators
pre and post. In general, it is not possible to give adequate interpretations of
these new operations for arbitrary dataflow frameworks. Seidl and Steffen show,
however, that for gen/kill dataflow problems this can be done. Note that the
copy-constant framework does not belong to this class.

In Chapter 6 we define parallel flow graphs, furnish them with an opera-
tional semantics, and define constraint systems characterizing various sets of runs:
same-level and inverse-same-level runs, reaching and terminating runs, and bridg-
ing runs. For the moment, we still assume atomic execution of base statements.
While same-level and reaching runs are already found in Seidl and Steffen’s ex-
position, and they indicate that inverse-same-level and terminating runs can be
obtained by duality, bridging runs are new. Moreover, in contrast to Seidl and
Steffen we relate the constraint systems to the underlying operational semantics
instead of postulating them. In our opinion this clarifies what exactly is specified
by the constraint systems. It also helped to uncover and correct a subtle error in
their treatment of non-reachable program points. While an understanding of the
other sets of runs is not needed in the remainder of this introduction, we must
explain bridging runs.

In a bridging run we are given two program points v and v. A bridging run
from a program point u to another program point v is a sequence of atomic
actions that can bring us from a configuration in which control is at program
point u to a configuration in which control is at program point v. Why are
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we interested in bridging runs? We call a pair of program variables (z,y) a
dependence and say that a given run mediates the dependence (zx,y) if the value
of y after the run depends on the value of x before the run, where we judge
dependences syntactically. If we are able to determine the dependences mediated
by bridging runs then we can use this information to indirectly answer certain
program analysis questions. In particular, this information suffices to detect copy
constants and faint code.

In Chapter 7 we explain why atomic execution is not a realistic assumption on
program execution and motivate and define a non-standard interpretation for the
operators and constants used in the constraint systems for parallel programs. This
non-standard interpretation captures non-atomic execution of base statements.
The idea is to break base statements into atomic actions of smaller granularity
and to use an interleaving semantics on these atomic actions. By interpreting
the constraint systems from Chapter 6 with the new interpretation, we get run
sets that capture non-atomic execution of base statements. These run sets are
taken as the reference semantics for judging the precision of our algorithms for
copy-constant detection and faint-code elimination.

Unfortunately, we cannot obtain the dependences of the interleaving i1 ® R,
of two (non-atomic) run sets from the dependences of the two run sets Ry and Ry:
we can invent run sets that have the same dependences but behave differently
when interleaved with other run sets. Therefore, we need a more informative
abstract domain that allows to record more information than just dependences.
This domain is the topic of Chapter 8. Here we give a rough description of the
ideas underlying this domain. A more extensive explanation and motivation is
provided by the introduction to Chapter 8 and the body of that chapter gives a
full technical account with many examples.

The basic idea is to collect not just dependences but dependence sequences.
A dependence sequence of a run is a sequence of dependences that can suc-
cessively be mediated by the run. For example, the run 7 = {(c:=b,e = d)
has ((b, c), (d,e)) as one of its dependence sequences. This dependence sequence
plays a dual role: it captures, on the one hand, the potential of r; to mediate
the dependence (b, e) if its environment can fill the ‘gap’ between ¢ and d (e.g.,
if the environment can perform the run 7o = (d := ¢)) and, on the other hand,
its potential to successively fill the ‘gaps’ (b, c) and (d, e) in a run of the environ-
ment (e.g., in r3 = (b:=a,d := ¢, f := e)). This idea needs to be refined further
in order to allow a proper propagation through all the operators: we must also
collect information about transparency of runs. This leads to the notion of de-
pendence traces. Moreover, we need to ensure finiteness of the domain in order to
ensure that fixpoint computation becomes effective. The latter problem is solved
by introducing first, a subsumption order on dependence traces and, secondly, a
notion of shortness of dependence traces. We then work with antichains (with
respect to the subsumption order) of short dependence traces. In Chapter 8 we
show that one can define on this abstract domain operations that are both sound
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and precise abstractions of the corresponding operations on non-atomic run sets.

By solving the constraint system for bridging runs over the abstract domain
introduced in Chapter 6, we can determine in particular the dependences me-
diated by bridging runs. As mentioned, this information can be used to detect
copy constants and eliminate faint code. Algorithms based on this idea that solve
these problems are developed in Chapter 9 and their run-time is analyzed. These
algorithms prove that we can detect copy constants and eliminate faint code in
parallel programs completely, if we abandon the assumption that base statements
execute atomically.

The algorithms run in exponential time, which raises the question whether
there are also efficient algorithms for these problems. In Chapter 10 we show
by means of a reduction from the well-known SAT-problem that the answer
is ‘no’, unless P=NP. Unlike the reductions in Chapter 5, this reduction relies
only on active propagation along copying assignments but not on well-directed
re-initialization. It applies independently of the atomicity assumption for base
statements. In the conclusions, Chapter 11, we sketch possible remedies and dis-
cuss directions for future research that may still lead to algorithms of practical
interest.

It follows from our reductions that copy-constant detection and faint-code
elimination are NP-complete for loop-free programs. We have not yet been able
to characterize the complexity for the other classes completely: the general in-
traprocedural problem and the interprocedural problem. Up to now we have the
EXPTIME upper bound provided by the algorithms of Chapter 9 and the NP
lower bound of Chapter 10. A natural idea for an NP-easiness proof would be to
show that shortest witnessing runs of polynomial length are sufficient. We show
in Section 10.2 that this idea does not work: we exhibit a family of programs in
which the length of shortest witnessing runs is exponential in the program size.
This justifies the conjecture that the general intra- and interprocedural problems
do not belong to NP, i.e., cannot be solved by a non-deterministic algorithms
that runs in polynomial time.
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Chapter 3

A Hierarchy of Constants!

Constant propagation (CP) aims at detecting expressions in programs that always
yield a unique constant value at run-time. Replacing constant expressions by
their value is one of the most widely used optimizations in practice (cf. [2, 26,
51]). Unfortunately, the constant propagation problem is undecidable even if the
interpretation of branches is completely ignored, like in the common model of
non-deterministic flow graphs where every program path is considered executable.
This has been proved independently by Hecht [26] and by Reif and Lewis [67].
We discussed Reif and Lewis’ proof in the introduction. Here we briefly recall
Hecht’s proof because we will encounter variants of his construction later in this
chapter. It is based on the Post correspondence problem.

A Post correspondence system consists of a set of pairs (u1,v1), ..., (uk, vk)
with wu;,v; € {0,1}*. The correspondence system has a solution, if and only if
there is a sequence iy, ...,14, such that u;, -...-u;, = v; -...-v;,. Figure 3.1
illustrates Hecht’s reduction. The variables x and y are used as decimal numbers
representing strings in {0,1}*. For each pair of the correspondence system a
distinct branch of the loop appends the strings u; and v; to  and y, respectively.
This is achieved by shifting the digits of = and y by |u;| and |v;| places first by
multiplying them with 10/%! and 10"/, where |u;| and |v;| are the length of u; and
v;. Afterwards, we add u; and v; where we identify u; and v; with the decimal
number they represent. It is easy to see that z — y always evaluates to a value
different from 0, if the Post correspondence problem has no solution.? In this
case the expression 1 div ((z — y)? + 1) always evaluates to 0. But if the Post
correspondence system is solvable, the expression z — y can have the value 0 such
that 1 div ((z —y)? + 1) can evaluate to 1. Thus, r is constant, (with value 0), if
and only if the Post correspondence problem is not solvable. To exclude r from
being constantly 1 in the case that the Post correspondence system is universally
solvable, r is set to 0 by a bypassing assignment statement.

On the other hand, constant detection is certainly decidable for acyclic, i.e.,

IThis chapter is based on material from [54]
2Note that the initialization of 2 and y with 1 avoids a problem with leading zeros.
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z = 101 % 7 +
Y 1= 1000+ « Y+ vg

x = 10l * T+ Uy
Y= 1001/ *y+ v

Figure 3.1: Undecidability of CP: reduction of the Post correspondence problem
due to Hecht [26].

loop-free, programs. But even in this setting the problem is intractable; it has
been shown to be co-NP-hard [38] recently. This result is based on a polynomial-
time reduction of the co-problem of 3-SAT, the satisfiability problem for clauses
which are conjunctions consisting of three negated or unnegated Boolean variables
(cf. [20, 60]). An instance of 3-SAT is solvable if there is a variable assignment
such that every clause is satisfied.

The reduction is illustrated in Figure 3.2 for a 3-SAT instance over the Boolean
variables {b1, ..., b }:

(by Vb5 Vbg)A...NA (by Vb3V bs).
— ——

C1 Cn

For each Boolean variable b; two integer variables z; and 7; are introduced that
are initialized by 0. The idea underlying the reduction is the following: each
path of the program chooses a witnessing literal in each clause by setting the
corresponding variable to 1. If this can be done without setting both x; and ;
for some 7 then we have found a satisfying truth assignment, and vice versa. On
such a path the expression z,77 + ... + 4T evaluates to 0 and, consequently,
both 1 and ry are set to 0. On all other paths the value of x1Z71+. ..+ x,7}, differs
from 0 but stays in the range {1, ..., k} which implies that variable ry is set to 1.
Similarly to the undecidability reduction of Figure 3.1 the bypassing assignment
r1:= 1 avoids that r; is constantly 0 in the case that all runs induce satisfying
truth assignments. Summarizing, r5 is a constant (of value 1), i.e., evaluates to
1 on every program path if and only if the underlying instance of 3-SAT has no
solution.

Note that both reductions presented so far crucially depend on an operator
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Coding
zg =1 of ¢1

Coding
x5 :=1 of ¢,

=171+ ...+ TT

= (r +k—1) div k

Figure 3.2: Co-NP-hardness of CP for acyclic programs: reduction of co-3-SAT.

like integer division (or modulo) which is capable of projecting many different
values onto a single one.

The purpose of this and the following chapter is to examine the borderline
of intractability and undecidability more closely. To this end, we investigate the
constant detection problem for non-deterministic flow graphs working on integers
with respect to a three-dimensional taxonomy. The first dimension is given by
the distinction between arbitrary and loop-free flow graphs.

The second dimension introduces a hierarchy of weakened versions of the con-
stant propagation problem. In these variants only assignment statements whose
right hand side belong to a given subset S of expressions are interpreted ex-
actly. Assignment statements of other form are conservatively interpreted as
non-deterministic assignments. We consider expression sets S that are given by
restricting the set of integer operators that are allowed in expression building.
We consider signatures without operators (copy constants), with operators re-
stricted to the set {+, —} (Presburger constants), operators restricted to {4, —, *}
(polynomial constants), and the standard signature, i.e., the one with operators
+, —, %, div, mod (full constants). Moreover, we consider linear expressions in one
variable, i.e., expressions of the form x:= ay + b because the associated class of
constants, linear constants, has previously been studied in the literature [70]. Ob-
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viously, the class of linear constants lies between copy constants and Presburger
constants.

Finally, in the third dimension we vary the general nature of the constant
detection problem. Besides the standard must-constancy problem we also con-
sider the less frequently addressed problem of may-constancy here. Essentially,
this problem asks if a variable may evaluate to a given constant d at some given
program point. Inspired by work of Muth and Debray [57] we further distinguish
between a single value and a multiple value variant, where in the latter case the
values of multiple variables are questioned simultaneously. Muth and Debray
introduced the single and multiple value variants as models for independent-
attribute and relational-attribute dataflow analyses [33].

While the most prominent application of must-CP is the compile-time sim-
plification of expressions, the must- and may-variants are equally well suited for
eliminating unnecessary branches in programs. Furthermore, the may-variant
has some interesting consequences for the complexity of (may-)aliasing of array
elements.

In this chapter we introduce this taxonomy of constants formally, discuss the
results that are known or obvious and present a number of new intractability
and undecidability results that sharpen previous results. In the next chapter we
show decidability of polynomial must-constants and polynomial-time decidability
of Presburger must-constants.

3.1 A Taxonomy of Constants

3.1.1 Flow Graphs

Let X = {x1,...,2,} be a finite set of variables and Expr a set of expressions
over X; the precise nature of expressions is immaterial at the moment. A (deter-
ministic) assignment is a pair consisting of a variable and an expression written
in the form x := ¢; the set of assignment statements is denoted by Asg. A non-
deterministic assignment statement consists of a variable and is written x :=7;
the set of non-deterministic assignment statements is denoted by NAsg.

A (non-deterministic) flow graph is a structure G = (N, E, A, s, e) with finite
node set IV, edge set £ C N x N, a unique start node s € N, and a unique end
node e € N. We assume that each program point v € N lies on a path from s
to e. The mapping A : E — Asg U NAsg U {skip} associates each edge with a
deterministic or non-deterministic assignment statement or with the statement
skip. Edges represent the branching structure and the statements of a program,
while nodes represent program points. The set of successors of program point
u € N is denoted by Succlu] = {v | (u,v) € E}.

A path reaching a given program point v € N is a non-empty sequence of
edges p = (ey,...,ex) with e; = (u;,v;) € E such that u; = s, vy = u, and
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v; = uiq1 for 1 < ¢ < k. In addition p = €, the empty sequence, is a path
reaching the start node s. We write R[u| for the set of paths reaching u.

Let Val be a set of values. A mapping o : X — Val that assigns a value to
each variable is called a state; we write ¥ = {o | 0 : X — Val} for the set of
states. For x € X, d € Val and o € X, we write o[z — d] for the state that
maps = to d and coincides for the other variables with 0. We assume a fixed
interpretation for the operators used in terms and we assume that the value of
term ¢ in state o, which we denote by t7, is defined in the standard way.

In order to accommodate non-deterministic assignments we interpret state-

ments by relations on Y rather than functions. The relation associated with

assignment statement z := ¢ is [z := ] o {(o,0") | o' = o[z — t7]}; the rela-

tion associated with non-deterministic assignment z :=7 is [z :=7] o {(o,0") |
3d € Val : ¢/ = o[z — d]}; and the relation associated with skip is the identity:

[skip] =4 {(0,0") | 0 = ¢'}. This local interpretation of statements is straight-
forwardly extended to paths p = (e1,...,ex) € E*: [p] = [A(e1)] ;- -;[Aler)],
where ; denotes relational composition. We obtain the set of states S[u], which
are possible at a program point u € N as follows: S[u] o {o|3Jop € Z,p € Rlu] :
(00,0) € [p]}. The state oy represents the unknown initial state—the state in
which the program is started—which models the input to the program.

3.1.2 May- and Must-Constants

In this section we define when a variable x is a constant at a program point u in a
given flow graph. We distinguish between must-constants and the less frequently
considered class of may-constants. May-constants come in two variants: as single
and multiple value may-constants. We provide formal definitions as well as some
typical application scenarios. For simplicity, we restrict attention to constancy
of variables in our formal framework. In practice also constancy of expressions
is of interest. Our definitions can straightforwardly be extended to this more
general case and in discussing applications we assume that this has been done.
All our results apply also to this more general setting as constancy of expressions
is easily reduced to constancy of variables: if we are interested in constancy of
an expression e at a program point u we can add an assignment v := e to a new
variable v at u and question for constancy of v.

Must-Constants

A variable z € X is a must-constant at a program point u € N if
dd € Val Vo € S[u] : o(z) =d.

The problem of must-constant detection is to determine for a given variable x
and program point u, whether x is a must-constant, and, if so, what the value of
the constant is.
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Must-constancy information can be used in various ways. The most impor-
tant application is the compile-time simplification of expressions. Furthermore,
information on must-constancy can be exploited in order to eliminate conditional
branches. For instance, if there is a condition e # d situated at an edge leaving
node n and e is determined a must-constant of value d at node n, then this branch
is unexecutable (cf. Figure 3.3(a)) and may be removed. Since (must-)constant
detection and the elimination of unexecutable branches mutually benefit from
each other, approaches for conditional constant propagation were developed tak-
ing this effect into account [79, 9].

a) b) é

Figure 3.3: Constancy information used for branch elimination.

May-Constants

Complementary to must-constancy, a variable x € X is a may-constant of value
d € Z at a program point u € N if

do € S[u]: o(z) =d.

Note that opposed to the must-constancy definition here the value of the constant
is given as an additional input parameter. There is a natural multiple value

extension of the notion of may-constancy. Given variables z1,...,z; and values
dy,...,d; € Zthe corresponding multiple value may-constancy problem is defined
by:

doeS[u]: o(x)=di N ... N o(xg) =dy.

While may-constancy information cannot be used for expression simplifica-
tion, it has also some valuable applications. Most obvious is a complementary
branch elimination transformation. If an expression e is not a may-constant of
value d at node n then any branch that is guarded by the condition e = d is
unexcecutable (cf. Figure 3.3(b)).

May-constancy information is also valuable for reasoning about aliasing of
array elements. This can be used, for instance, for parallelization of code or for
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improving the precision of other analyses by excluding a worst-case treatment of
assignments to elements in an array. Figure 3.4 gives such an example in the con-
text of constant propagation. Here the assignment to x can be simplified towards
x:= 6, only if the assignment to a[i] does not influence a[0]. This, however, can
be guaranteed if 7 is not a may-constant of value 0 at the corresponding program
node.

a[0] :=5

afi] = ..

x:=a0]+1

Figure 3.4: Using array alias information from may-constant detection in the
context of must-constant propagation.

3.1.3 Weakened Constant Detection Problems

We can weaken the demands for a constant detection algorithm as follows: we
select a certain subset of expressions S C Expr that are interpreted precisely and
assume conservatively that assignments whose right hand side does not belong to
S assign an arbitrary value to their respective target variable. This can be made
formal as follows.

For a given flow graph G = (N, E, A, s, e) and subset of expressions S C Expr,
let Gs = (N, E, Ag, s, e) be the flow graph with the same underlying graph but
with the following weakened edge annotation:

x:=?, if Ale) =(z:=t)and t ¢ S
As(e) = { A(e), otherwise.

A variable z € X is called an S-must-constant (S-may-constant) at program point
u € N in flow graph G if it is a must-constant (may-constant) at u in the weakened
flow graph Gg. The detection problem for S-must-constants (S-may-constants)
is the problem of deciding for a given set of variables X, flow graph G, variable
x, and program point u whether z is an S-must-constant (S-may-constant) at u
in G. Clearly, if x is an S-must-constant at v it is also a must-constant at u.
Similarly, if z is not an S-may-constant at u it is not a may-constant at u. In
both cases the reverse implication does not hold in general. Thus, an analysis
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that solves a weakened constant-detection problem yields sound information for
must-constancy and non-may-constancy in the original flow graph.

We should emphasize two points about the above framework that make the
construction of S-constant-detection algorithms more challenging. Firstly, in
contrast to the setup in [54], we allow assignment statements, the right hand
side of which do not belong to S. They are interpreted as non-deterministic
assignments. Forbidding them is adequate for studying lower complexity bounds
for analysis questions, which is the main concern of [54]. It is less adequate when
we are interested in algorithms because in practice we want to detect S-constants
in the context of other code.

Secondly, a variable can be an S-constant although its value statically depends
on an expression that is not in S. As a simple example consider the flow graph
in Fig. 3.5 and assume that the expressions 0 and y — y belong to S but e does
not.

Figure 3.5: Static dependences and S-constancy: variable z is an S-constant at
program point 3 although it statically depends on the uninterpreted expression e.

Because y — y equals 0 for any value y € Z, an S-must-constant detection
algorithm must identify = as a must-constant (of value 0) at program point 3, al-
though the value of x at program point 3 statically depends on the uninterpreted
expression e. Besides cancellation through subtraction such effects arise through
multiplication with terms evaluating to zero. Hence, S-constant detection algo-
rithms must handle arithmetic properties of the expressions in S. Of course, in
real programs cancellation through arithmetic properties may not be as obvious
as in this example.

There are at least two other natural definitions for a notion of S-constant
propagation:

1. We can study constant propagation in flow graphs whose edge annotation
is restricted to assignments from S U {skip}; this is the setup in [54].

2. We can treat the effect of assignments whose right hand side does not belong
to S more pessimistically: if the value of z at u statically depends on an
uninterpreted assignment, we may define that
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e r is not a must-constant at v and that

e 1 is a may-constant at u for any value d.

This definition also leads to a conservative approximation of must- and
non-may constancy, but is weaker than our definition as demonstrated by
the above example.

From all the potential definitions our definition requires most from an S-
constant-propagation algorithm. Firstly, it must handle more inputs than with
Definition 1. Secondly, an S-constant-propagation algorithm in the sense of 2
can easily be obtained from an algorithm in our sense. We only need to combine
it in a straightforward way with a static dependence analysis. The latter can be
performed by a cheap bitvector analysis [26, 51]. On the other hand, Definition
1 poses in principle the strongest requirements for hardness considerations. For-
tunately, all our reductions use only statements from S U {skip}. Therefore, all
our results apply to all three definitions.

3.1.4 Classes of Integer Constants

To study weakened versions of constant-detection problems is particularly inter-
esting for programs computing on the integers, i.e., if Expr is the set of integer
expressions formed from integer constants and variables with the standard oper-
ators +, —, x,div, mod: we have seen above that the general constant-detection
problem is undecidable in this case.

We introduce now weakened classes of integer constants. Except for linear
constants these classes are induced by considering only a fragment of the standard
signature. While the first two classes are well-known in the field of (must-)
constant propagation and the class of Presburger constants is closely related to
the class of constants considered in [35], we are not aware of any work devoted
to the fragment of polynomial constants.

Copy Constants. S-constants with respect to the set S = X U Z, i.e., the
set of non-composite expressions, are known as copy constants [18]. This is due
to the fact that constants can only be produced by assignments = := ¢ and be
propagated by assignments of the form z := y.

Linear Constants. S-constants with respect to the set S={a*z+b|a,b€
Z,x € X} U X UZ are known as linear constants [70].

Presburger Constants. A Presburger constant is an S-constant for the set
S of integer expressions that can be built from the operators + and —. We de-
cided for this term because in Presburger arithmetics integer operations are also
restricted to addition and subtraction. Note, however, that the complexity issues
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in deciding Presburger formulas and Presburger constants are of a completely
different nature, since in the context of constant detection the problem is mainly
induced by paths in flow graphs and not by a given logical formula. We call
S-constants with respect to the set S = {co + Zle ci*xw; | c; € L,z € X} affine
constants. As far as expressiveness is concerned Presburger expressions and affine
expressions coincide because multiplication with constants can be simulated by
iterated addition. Affine expressions can, however, be more succinct. Neverthe-
less, all our results on Presburger constants equally apply to affine constants and
from now on we do not distinguish these two classes of constants.

Polynomial Constants. If all expressions built from the operators +, —,
are interpreted, the resulting constants are called polynomial constants as this
signature allows just to write multi-variate polynomials. Formally, polynomial
constants are S-constants with respect to the set S = Z[xzy,...,z,], the set of
multi-variate polynomials in the variables x4, ..., z, with coefficients in Z.

3.2 Known Results

Table 3.1 summarizes the complexity results that are known or obvious. Problems
that have a polynomial-time algorithm are emphasized in a light shade of grey,
those that are decidable though intractable in a dark shade of grey, and the
undecidable fields are filled black. White fields represent problems where the
complexity and decidability is unknown or at least, to the best of our knowledge,
undocumented. In the following we briefly comment on these results.

For an unrestricted signature we already presented Hecht’s undecidability
proof for must-constants and the co-NP-hardness result for the acyclic coun-
terpart. It is also well-known that the must-constant detection problem is dis-
tributive [26], if all right-hand side expressions are either constant or represent
a one-to-one function in Z — Z depending on a single variable (see the remark
on page 206 in [72] for a similar observation). Hence the class of linear constants
defines a distributive dataflow problem, which guarantees that the standard max-
imum fixed-point iteration strategy over ZU{L, T} computes the exact solution
in polynomial time.?

The may-constancy problem for copy constants has recently been examined
by Muth and Debray [57]. It is easy to see that the single value case can be
dealt with in polynomial-time: the number of constant values that a variable
may possess at a program point (via copy assignments) is bound to the number
of assignments to constants in the program. Hence one can essentially keep track

3Sagiv, Reps and Horwitz [70] give an alternative procedure for detecting linear constants
by solving a graph reachability problem on the exploded supergraph of a program. They addi-
tionally show that with this method linear constant detection can be solved precisely even for
interprocedural control flow.
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May-Constants
Must-Constants - -
single value multiple value

Copy Constants
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= | Linear Constants
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§ Presburger Constants
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% +,-* Constants

Full Constants
> Copy Constants
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IS Linear Constants
g
© | Preshburger Constants
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2
Jg—; +,-,* Constants
= .
= | Full Constants undecidable

Hecht [24]

Table 3.1: Complexity classification of a taxonomy of CP: the known results.

of any possible constant value at a program point by collecting the set of possible
values of variables. Formally, this can be achieved by computing the union-
over-all-path solution in a union-distributive dataflow framework over the lattice
{o | o : Var — 2%¢}, where Zg denotes the set of constant right-hand sides in
the flow graph G under consideration and the order on functions is the pointwise
lift of subset inclusion on 2%¢.

The multiple value problem has been shown NP-complete in the acyclic case
and PSPACE-complete in the presence of unrestricted control flow by Muth and
Debray [57]. For proving NP-hardness and PSPACE-hardness they use reductions
from 3-SAT and the acceptance problem for polynomial-space-bounded Turing
machines, respectively. It is worth mentioning that the number of variables ques-
tioned simultaneously for constancy in these reductions is not bounded by a fixed
constant. Finally, since Muth and Debray do not consider any kind of arithmetics,
all other fields in the may-constancy column remain open.

In the following we aim at successively filling the white parts in Table 3.1.
To this end, we start with providing new undecidability results and then prove a
number of new intractability results. Positive results for the classes of Presburger
and polynomial must-constants are presented in Chapter 4.
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3.3 New Undecidability Results

Hecht’s construction sketched in Fig. 3.1 can easily be adapted for proving un-
decidability of Presburger may-constants. The only modification is to replace
the two assignment to r in Figure 3.1 by a single assignment r := x — y. As
argued before, z may equal y immediately after leaving the loop, if and only if
the instance of the Post correspondence problem has a solution. Hence, in this
case r — y may evaluate to 0.

Theorem 3.1 Deciding single valued may-constancy at a program point is un-
decidable for the class of Presburger constants.

This construction can be further modified to obtain a stronger undecidability
result for the class of multiple value may-constants. Here we have:

Theorem 3.2 Deciding multiple valued may-constancy at a program point is un-
decidable for the class of linear constants. This even holds if only two values are
questioned.

The idea is to substitute the difference z — y in the assignment to r by a loop
which simultaneously decrements x and y. It is easy to see that t =0 A y =0
may hold at the end of the resulting program if and only if  may equal y at the
end of the main loop.

Complexity of Array Aliasing.

The previous two undecidability results have immediate implications for array
aliasing, which complements similar results known in the field of pointer induced
aliasing [42]. As a consequence of Theorem 3.1 we have:

Corollary 3.3 Deciding whether Ali| may alias Alc] for a one-dimensional array
A, integer variable i and integer constant c is undecidable, even if 1 is computed
only using the operators + and —.

Theorem 3.2 provides a negative result for array accesses with linear index
calculations.

Corollary 3.4 Let cq,co be integer constants and 1,7 integer variables. Deter-
mining whether Ali, j| may alias Alcy, co] for a two-dimensional array A is an
undecidable problem even if i, are computed only with linear assignments of the
form x:=ay+0.
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Clearly, x may equal y at the end of the loop in Hecht’s construction if and
only if the given Post correspondence system has a solution. Thus, the problem
to decide whether an array access A[x] may alias another access A[y| just after the
loop is also undecidable. This gives us the following result for one-dimensional
arrays.

Theorem 3.5 Let i,j be integer variables. Determining whether Ali] may alias
Alj] for a one-dimensional array A is an undecidable problem even if i,j are
computed only with linear assignments of the form x:= ay + b.

It should be noted that traditional work on array dependences like the omega
test [62, 64] is restricted to scenarios where array elements are addressed by affine
functions depending on some index variables of possibly nested for-loops. In
this setting the aliasing problem can be stated as an integer linear programming
problem which can be solved effectively. In contrast, our results address the more
fundamental issue of aliasing in the presence of arbitrary loops.

3.4 New Intractability Results

After having marked off the range of undecidability we prove in this section some
intractability results.

We start by strengthening the result on the co-NP-hardness of must-constant
detection for acyclic control flow. Here the construction of Figure 3.2 can be
modified such that the usage of integer division is no longer necessary. Basically,
the trick is to use multiplication by 0 as the projective operation, i.e. as the
operation with the power to map many different values onto a single one. In the
construction of Figure 3.2 this requires the following modifications (cf. Fig. 3.6).

All variables are now initialized by 1 and the part reflecting the clauses sets the
corresponding variables to 0. Finally, the assignments to r; and r, are substituted
by a single assignment 7:= (z; +T1) -...- (zx + Tx) that is bypassed by another
assignment r:= (. It is easy to see that the instance of 3-SAT has no solution
if and only if on every path both z; and Z; are set to 0 for some i € {1,...,k}.
This, however, guarantees that at least one factor of the right-hand side expression
defining r is 0 which then ensures that r is a must-constant of value 0. Finally,
the branch performing the assignment r:= 0 assures that r cannot be a must-
constant of any other value. Thus, we have:

Theorem 3.6 Deciding polynomial must-constants in acyclic programs is co-NP-
hard.

On the other hand, it is not hard to see that the problem of must-constant
propagation is in co-NP for acyclic control flow. To this end, one has to prove
that the co-problem, i.e., checking non-constancy at a program point, is in NP,
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Coding
g :— O of 1

Coding
75 =0 of ¢,

Figure 3.6: Co-NP-hardness of polynomial constants for acyclic programs.

which is easy to see: a non-deterministic Turing machine can guess two paths
through the program witnessing two different values. Since each path is of linear
length in the program size and the integer operations can be performed in linear
time with respect to the sum of the lengths of the decimal representation of their
inputs, this can be done in polynomial time. Hence we have:

Theorem 3.7 Must-constant propagation is in co-NP when restricted to acyclic
control flow.

Next we are going to show that the problem addressed by Theorem 3.6 gets
presumably harder without the restriction to acyclic control flow.

Theorem 3.8 Detecting polynomial must-constants in arbitrary flow graphs is
PSPACE-hard.

Theorem 3.8 is proved by means of a polynomial time reduction from the
language-universality problem of non-deterministic finite automata (NDFA) (cf.
remark to Problem AL1 in [20]). This is the question whether an NDFA A over
an alphabet X accepts the universal language, i.e., whether L(A) = X*. Without
loss of generality, let us consider an NDFA A= (X, S, 0, s, F'), where X ={0, 1}
is the underlying alphabet, S={1,...,k} the set of states, § C S x X x S the
transition relation, s; the start state, and F' C S the set of accepting states.
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Figure 3.7: PSPACE-hardness of must-constant propagation for polynomial con-
stants.

The polynomial time reduction to a constant propagation problem is depicted in
Figure 3.7.

For every state ¢ € {1,...,k} a variable s; is introduced. The idea of the
construction is to guess an arbitrary input word letter by letter. While this is
done, it is ensured by appropriate assignments that each variable s; holds 0 if
and only if the automaton can be in state ¢ after reading the word guessed so far.
This implies that [], s; is 0 for all words if and only if A accepts the universal
language.

Initially, only the start state variable s; is set to 0 as 1 is the only state which
is reachable under the empty word. The central part of the program is a loop
which guesses a next alphabet symbol. If we decide, for instance, for 0, then, for
each 7, an auxiliary state variable ¢; is set to 0 by the assignment ¢; := H( 7.0)es Si>
if and only if one of its 0-predecessors is recognized reachable by the word guessed
so far.* After all the variables ¢; have been set in this way their values are copied
to the variables s;. When the loop is exited which can happen after an arbitrary
word has been guessed, it is checked whether the guessed word is accepted. Like
before, the direct assignment f:= 0 has the purpose to ensure that constant
values different from 0 are impossible. Therefore, f is a must-constant (of value
0) at the end of the program, if and only if the underlying automaton accepts
the universal language {0, 1}*.

The final reduction in this section addresses the complexity of linear may-
constants. Here we have:

4The auxiliary state variables ¢; are introduced in order to avoid overwriting state variables
which are still used in consecutive assignments.
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Theorem 3.9 Deciding linear may-constants is NP-hard.

Again we employ a polynomial time reduction from 3-SAT which however
differs from the ones seen before. The main idea here is to code a set of satisfied
clauses by a number interpreted as a bit-string. For example, in an instance
with three clauses the number 100 would indicate that clause two is satisfied,
while clauses zero and one are not. To avoid problems with carry-over effects, we
employ a (k + 1)-adic number representation where k is the number of variables
in the 3-SAT instance. With this coding we can use linear assignments to set the
single “bits” corresponding to satisfied clauses.

ri= (k + 1)3 +r T = (k + 1)2 +7r Choice gadget
for variable b;

ri=(k+1)5+r

y y

Figure 3.8: NP-hardness of linear may-CP.

To illustrate our reduction let us assume an instance of 3-SAT with Boolean
variables {by, ..., b} and clauses co, ..., c, 1, where the literal b; is contained in
cs and cs5, and the negated literal —b, is contained in ¢, only. Then this is coded in
a program as depicted in Figure 3.8. We have a non-deterministic choice part for
each Boolean variable b;. The left branch sets the bits for the clauses that contain
b; and the right branch those for the clauses that contain b;. Every assignment
can be bypassed by an empty edge in case that the clause is also made true by
another literal. It is now easy to see that r is a may-constant of value 1...1

n times
(in (k + 1)-adic number representation) if and only if the underlying instance of

3-SAT is satisfiable.

On the other hand, it is easy to see that detecting may-constancy is in NP
for acyclic control flow, since a non-deterministic Turing machine can guess a
witnessing path for a given constant in polynomial time. Thus, we have:
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May-Constants
Must-Constants

single value multiple value

Copy Constants

Linear Constants

Presburger Constants

+,-,* Constants

acyclic control flow

Full Constants

Copy Constants

Linear Constants

Presburger Constants

+,-,* Constants

unrestricted control flow

Full Constants

Table 3.2: Complexity classification of a taxonomy of CP: preliminary summary.

Theorem 3.10 May-constant propagation is in NP when restricted to acyclic
control flow.

3.5 Summary

The decidability and complexity results of this chapter are summarized in Ta-
ble 3.2. Note that hardness results propagate from a class of constants to more
comprehensive classes of constants, i.e., downwards in the table, and vice versa
for easiness results. Moreover, hardness results for acyclic control flow propa-
gate to unrestricted control flow which explains the NP-hardness entry for linear
constants and unrestricted control flow.

The table shows that we have already gone a good deal on the way towards
classifying the complexity of the problems in our taxonomy of constant propaga-
tion. In the next chapters we complement the negative results of this chapter by
positive results. Specifically, we attack Presburger and polynomial must-constant
propagation.
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Chapter 4

Deciding Constants by
Effective Weakest Preconditions!

One goal of classifying the complexity of weakened versions of program-analysis
problems is to uncover potential for more precise analysis algorithms. As wit-
nessed by the white space in Table 3.2, three questions remained open in the
complexity classification of the previous chapter: there is no result for Presburger
must-constants and there are no upper bounds for polynomial must-constants
and Presburger may-constants. In this chapter we provide answers for two of
these questions that uncover algorithmic potential. We show that Presburger
must-constants can be detected in polynomial time and that polynomial must-
constants are decidable by developing corresponding algorithms. These classes
are interesting from a practical point of view because the operators +, —, x are
very frequently used, e.g., for computing memory addresses of array components.
As we consider must-constant propagation throughout this chapter, we omit the
qualifying prefix ‘must’ in the following.

The two algorithms share the same basic algorithmic idea. The main ingredi-
ent is effective computation of the weakest precondition of a certain assertion. In
this computation, assertions are represented by appropriate mathematical struc-
tures. In order to emphasize similarity of the algorithms and to enable application
to other scenarios, we develop a generic framework for development of S-constant
detection algorithms in Section 4.3. Afterwards, we show how to apply it to de-
tection of Presburger and polynomial constants. In the algorithm for Presburger
constants, which is discussed in Section 4.4, assertions are represented by affine
subspaces of Q", where n is the number of variables in the underlying flow graph
and well-known results from linear algebra are exploited. In the algorithm for
polynomial constants presented in Section 4.7, assertions are represented by the
set of zeros of ideals of Z[x, . .., z,], the ring of multi-variate polynomials in the
variables z1,...,xz, with coefficients in Z. Here we rely on results from com-

1 This chapter is based on material from [56] and [54]

35
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putable ring theory in order to compute with ideals. We recall these less known
results in Section 4.5 and describe some additional observations in Section 4.6.

In order to allow the reader to develop some intuition for the algorithms be-
fore following the technical generic description in Section 4.3, we provide a more
illustrative and informal description of the Presburger constant- propagation al-
gorithm beforehand (Section 4.2). Before that we illustrate the power of the
algorithms by discussing some examples of Presburger and polynomial constants
(Section 4.1).

4.1 Presburger and Polynomial Constants

Presburger constants are already beyond the scope of standard algorithms. Con-
sider, for instance, the two example flow graphs in Figure 4.1.

a) b)

< oo

Figure 4.1: Presburger constants beyond the scope of standard algorithms.

Part (a) extends the classic example that the standard CP algorithm, so-called
simple constant propagation, is non-distributive (cf. [26]). In this flow graph, z is
a constant of value 14 at the end of the program. However, none of its operands
is constant, although both are defined outside of any conditional branch. Simple
constant propagation works by a forward propagation of variable assignments
of the form 6 : X — Val U {L, T} where X is the set of program variables
and Val is the value domain. It takes the meet of variable assignments at join
points. Already at the join point of the first diamond this algorithm computes
a variable assignment with 6(a) = §(b) = L because the variables are assigned
different values in the two branches and there is no way to recover from this loss
of precision.

Part (b) shows a small loop that simultaneously decrements = and increments
y. Obviously, z is a (Presburger) constant of value 0 at the end of the program.
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However, this example is also outside the scope of any standard algorithm and
even outside the scope of Knoop and Steffen’s EXPTIME algorithm for finite
constants [75] because no finite unfolding of the loop suffices to identify z as a
constant. We should mention that Karr’s algorithm [35], which is briefly discussed
in the conclusions of this chapter, is able to identify z as a constant.

Figure 4.2: A polynomial constant not detected by standard algorithms.

In Fig. 4.2, variable z is a (polynomial) constant of value 0 at node 4. For
similar reasons as above, no standard algorithms can handle this example. Be-
cause constancy depends on the multiplications in the terms zy — 6 and z? + zy
neither our Presburger constant-detection algorithm nor Karr’s algorithm can
handle this example, in contrast to our algorithm for polynomial constants.

4.2 Presburger-Constant Detection at a Glance

For Presburger-Constant Detection we employ techniques known from linear al-
gebra. We use a backward analysis propagating sets of linear equations describing
affine vector spaces (over Q).

The Dataflow Framework. Given a set of program variables X = {x1,...,2,} a
linear equation is of the following form: ), a; x; =0, where a;,b € Q, i =1,...,n.
Since at most n of these linear equations are linearly independent, an affine vector
space can always be described by means of a linear equation system Az = b where
Ais a k x n-matrix over Q, 1 < k < n, and b € QF. The affine vector sub-spaces
of Q" are partially ordered by set inclusion. This results in a (complete) lattice
where the length of chains is bounded by n as any affine space strictly contained
in another affine space has a smaller dimension.
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The Meet Operation. The meet of two affine vector spaces represented by the
equations A;x = b; and Asx = by can be computed by normalizing the equation

A1 = b1
Ay) 7 \by
which can be done efficiently using Gauss-elimination [60].

Local Transfer Functions. 'The local transfer functions of affine assignments per-
form a backward substitution on the linear equations. For instance, the equation
3z +y =10 is backward-substituted along an assignment z := 2u— 3v + 5 towards
3(2u—3v+5)+y=10 which then can be “normalized” towards y+6u—9v = 5.
Clearly, this can be done in polynomial time. After this normalization, the re-
sulting equation system is again simplified using Gauss-elimination.

A linear equation that depends on z like 3z 4y = 10 cannot be generally valid
after a non-deterministic assignment z :=7. Such equations are thus transformed
along x :=7 to unsatisfiable equations like 0 x = 1. Equations that are indepen-
dent of z are propagated unchanged. Non-affine assignments are treated in the
same way.

The Qwverall Procedure. Our backward dataflow analysis can be regarded as a
demand-driven analysis which works separately for each variable z and program
point u. Conceptually, it is organized in three phases:

Phase 1: Guess an arbitrary cycle-free path from the startnode to u, for instance
using depth-first search, and compute the value c of z on this path.

Phase 2: Solve the backward dataflow analysis where initially the program point
u is annotated by the affine vector space described by the linear equation
x = ¢ and all other program points by the universal affine space, i.e., the
one given by >, 0z; = 0.

Phase 3: The guess generated in phase 1 is proved, if and only if the start node
is still associated with the universal affine vector space.?

The completeness of the algorithm is a consequence of the distributivity of
the analysis. Obviously, the guessed equation x = c is true iff the backward
substitution along every path originating at the start node yields a universally
valid constraint at the start node. Since this defines the meet-over-all-paths
solution of our dataflow framework the algorithmic solution is guaranteed to
coincide if the transfer functions are distributive, which is immediate from the
definition.

2In practice, one may already terminate with the result of non-constancy of z whenever a
linear equation system encountered during the analysis is unsolvable.



4.2. PRESBURGER-CONSTANT DETECTION 39

The algorithm can also be understood from a program verification point of
view. By Phase 1, cis the only candidate value for x being constant at u. Phase 2
effectively computes the weakest (liberal) precondition of the assertion z = ¢ at
program point n. Clearly, = is a constant at u if and only if the weakest liberal
precondition of x = ¢ is universally valid. This point of view is elaborated in the
remainder of this chapter.

As mentioned, the length of chains in the analysis is bounded by the number
of variables n. Any change at a node can trigger a re-evaluation at its predeces-
sor nodes. Therefore, we have at most O(en) Gauss-elimination steps, where e
denotes the number of edges in the flow graph. Each Gauss-elimination step is
of order O(n?) [60]. Thus, the complexity for the complete dataflow analysis for
a single occurrence of a program variable is O(en?*). For an exhaustive analysis
that computes constancy information for any left-hand side occurrence of a vari-
able the estimation becomes O(pen?), where p denotes the number of program
points in the flow graph. Summarizing, we have:

Theorem 4.1 Presburger (must-)constants can be detected in polynomial time.

We now illustrate our algorithm by means of the example of Figure 4.1.

Figure 4.3: Deciding Presburger constants by backward propagation of linear
equations.

The emphasized annotation of Figure 4.3 contains the linear equations result-
ing from the initial guess z =14 (in Figure 4.3(a)) and z=0 (in Figure 4.3(b)),
respectively. It should be noted that for the sake of presentation we did not
display the equations for every program point. The particular power of this tech-
nique results from the normalization performed on the linear equations which
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provides a handle to cope with arithmetic properties like commutativity and as-
sociativity to a certain extent. For instance, the equation a + b=>5 in Figure
4.3(a) is the uniform result of two different intermediate equations.

Let us briefly discuss the modifications for polynomial constant propaga-

tion. We use more expressive equations of the form p(zy,...,z,) = 0, where
p(z1,...,x,) is a multi-variate polynomial with coefficients in Z. A collection of
such equations represents the set of zeros of an ideal in Z|[z, ..., z,]. Exploiting

results from computable ring theory we can effectively compute with such equa-
tions. In particular, we use Grobner bases as canonic representation of ideals and
the Buchberger algorithm for simplification. While polynomial assignments are
handled analogously to affine assignments by backward substitution, the treat-
ment of non-deterministic assignments needs a refinement. The reason is that
an equations that depends on x can still be generally valid for all values of z for
certain values of other variables. The equation z y = 0, for instance, is valid after
z :=7 if y = 0 is valid before.

After this informal presentation of the algorithms we are now ready for the
more formal generic description.

4.3 A Generic Algorithm

We assume the formal framework of Section 3.1. Suppose we are given a variable
r € X and a program point w € N. In this chapter we describe a generic
algorithm for deciding whether z is an S-constant at w or not. While standard
constant propagation works by forward propagation of variable assignments, we
use a three phase algorithm that employs a backwards propagation of assertions,
as we have seen in Section 4.2. For the moment we can think of assertions as
predicates on states as in program verification.

Phase 1: In the first phase we follow an arbitrary cycle-free path from s to w,
for instance using depth-first search, and compute the value c, referred to as
the candidate value, that x holds after this path is executed. This implies
that, if x is a constant at w, it must be a constant of value c.

Phase 2: In the second phase we compute the weakest precondition for the as-
sertion x = ¢ at program point w in G's by means of a backwards dataflow
analysis.

Phase 3: Finally, we check whether the computed weakest precondition for z = ¢
at w is true, i.e., is valid for all states.

It is obvious that this algorithm is correct. The problem is that Phase 2 and
3 are in general not effective. However, as only assignments of a restricted form
appear in Gg, the algorithm becomes effective for certain sets S, if assertions
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are represented appropriately. In the remainder of this section we analyze the
requirements for adequate representations. For this purpose, we first characterize
weakest preconditions in flow graphs.

Semantically, an assertion is a subset of states ¢ C ¥. Given an assertion ¢
and a statement s, the weakest precondition of s for ¢, wp(s)(¢), is the largest
assertion ¢’ such that execution of s from all states in ¢’ is guaranteed to terminate
only in states in ¢.®> The following identities for the weakest precondition of
assignment and skip statements are well-known:

wp(z :=e)(¢) & gle/a] € {o|olz— e € 6}
wp(z :=7)(¢) & Va(¢) ¥ {o|VdeZ: oz d €}

wp(skip)(¢) = ¢

These identities characterize weakest preconditions of basic statements. Let us
now consider the following more general situation in a given flow graph G' =
(N,E,A,s,e): we are given an assertion ¢ C 3 as well as a program point
w € N and we are interested in the weakest precondition that guarantees validity
of ¢ whenever execution reaches w. The latter can be characterized as follows.

Let Wylw] = ¢ and Wylu| = ¥ and consider the following equation system
consisting of one equation for each program point u € N:

Wlu] = Woluln (] wp(A(,v))(W[o]). (4.1)

vESucclu]

By the Knaster-Tarski fixpoint theorem, this equation system has a largest solu-
tion (w.r.t. subset inclusion) because wp(s) is well-known to be monotonic. By
abuse of notation, we denote the largest solution by the same letter W{u]. For
each program point u € N, W]u| is the weakest assertion such that execution
starting from u with any state in W[u] guarantees that ¢ holds whenever execu-
tion reaches w. In particular, W(s] is the weakest precondition for validity of ¢
at w. The intuition underlying equation (4.1) is the following: firstly, Wy[u] must
be implied by W{u] and, secondly, for all successors v, we must guarantee that
their associated condition W{u| is valid after execution of the statement A(u,v)
associated with the edge (u,v); hence wp(A(u,v))(W]v]) must be valid at utoo.

For two reasons, the above equation system cannot be solved directly in gen-
eral: firstly, because assertions may be infinite sets of states they cannot be repre-
sented explicitly; secondly, there are infinitely long descending chains of assertions
such that we cannot guarantee that standard fixpoint iteration terminates.

In order to construct an algorithm that detects S-constants we represent asser-
tions by the members of a lattice (D, C). For Presburger constants D is the set of

3In the sense of Dijkstra [15] this is the weakest liberal precondition as it does not guarantee
termination. For simplicity we omit the qualifying prefix “liberal” in this chapter.
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Figure 4.4: Situation in the transfer lemma.

affine spaces of Q" and for polynomial constants the set of ideals in Z[xy, ..., z,].
We then simulate the iterative fixpoint computation for W on the members of
lattice D. In order to ensure termination, we require that ID has no infinite ascend-
ing chains. In order to ensure that the computed result represents W precisely,
we make sure (1) that the start value Wj is represented precisely and (2) that the
operations on D mirror the operations on assertions precisely. These requirement
are detailed below. Note that it is a non-trivial fact that we can find such a lattice
D for a certain set S of expressions: if, for instance, S is the set of all integer
expressions, such a lattice cannot exist, because this would imply decidability of
must-constancy.

Let us assume that v : D — 2* captures how the lattice element represent
assertions. First of all, we require

(a) D has no infinite decreasing chains, i.e., there is no infinite chain d; J dy J
ds 3 ...

This guarantees that maximal fixpoints of monotonic functions can effectively be
computed by standard fixpoint iteration. Secondly, we suppose

(b) ~y is universally conjunctive, i.e., v(NX) = ({v(d) | d € X} for all X C D.

The most important reason for making this assumption is that it ensures that we
can validly compute on representations without loosing precision: if we precisely
mirror the equations characterizing weakest preconditions on representations, the
largest solution of the resulting equation system on representations character-
izes the representation of the weakest precondition by the following well-known
lemma. It appears in the literature (for the dual situation of least fixpoints)
under the name Transfer Lemma [4] or p-Fusion Rule [44].

Lemma 4.2 Suppose L, L' are complete lattices, f : L — L and g : L' — L' are
monotonic functions and v: L — L' (cf. Fig. 4.4).

If v is universally conjunctive and yo f = g o~y then yv(vf) = vg, where vf
and vg are the largest fizpoints of f and g, respectively.

We must mirror the elements comprising the equation system characterizing
weakest preconditions on representations precisely. Firstly, we must represent
the start value, Wy. Universal conjunctivity of  implies that y(T) = X, i.e., the
top value of D is a precise representation of 3. In addition, we require:
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(c) Assertion z = ¢ can be represented precisely: for each z € X, ¢ € Val we
can effectively determine d,—, € D with y(dy=.) = {0 € £ | o(z) = ¢}.

Secondly, we need effective representations for the operators appearing in
equations. Requirement (b) implies that the meet operation of D precisely ab-
stracts intersection of assertions. In order to enable effective computation of
intersections, we require in addition:

(d) for given d,d’ € D, we can effectively compute d 1 d'.

By induction this implies that we can compute finite meets d; 1. ..Mdy effectively.

The only remaining operations on assertions are the weakest precondition
transformers of basic statements. We must represent wp(z := t) for expressions
t € S, which is the substitution operator (-)[t/x] on assertions. As the S-constant
detection algorithm computes the weakest precondition in weakened flow graph
G, assignments = := t with ¢ ¢ S do not occur.

(e) There is a computable substitution operation (-)[t/z] : D — D for each
x € X, t €S, which satisfies y(d[t/z]) = v(d)[t/x] for all d € D.

Obviously, wp(skip), the identity, is precisely represented by the identity on R.
Thus, it remains to represent wp(x :=7):

(f) There is a computable projection operation proj, : D — D for each variable
x; € X such that v(proj,(d)) = Va;(v(d)) for all d € D.

Finally, we need the following in order to make Phase 3 of the algorithm effective.

(g) Assertion true is decidable, i.e., there is a decision procedure that decides
for a given d € D, whether y(d) = ¥ or not.

If, for a given set S C Expr, we can find a lattice satisfying requirements (a)—
(g), we can effectively execute the three phase algorithm from the beginning of
this section by representing assertions by elements from this lattice. This results
in a detection algorithm for S-constants.

In this chapter we are interested in detection of Presburger and polynomial
constants. Thus, from now on, let Val = Z.

4.4 Detection of Presburger Constants

Before we turn attention to detection of polynomial constants let us explain
that the detection algorithm for Presburger constants that has informally been
presented in Section 4.2 is an instance of the generic algorithm described in
Section 4.3. Let S = {co + Y, % | co,-..,¢, € Z}. In the algorithm of
Section 4.2 assertions are represented by affine vector spaces in Q". In addition
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we need the empty set for representing the assertion false = (). Thus, D =
{z+U | z€ Q", U is a subspace of Q"}U{@}. For the remainder of this section,
we adopt the convention to consider the empty set an affine space. We write 0
for a matrix or vector with zero entries and rely on the context to resolve the
ambiguity inherent in this convention.

The order on D is set union: C = C. From linear algebra we know that the
intersection of arbitrary affine spaces is again an affine space. Thus, (ID,C) is a
complete lattice with intersection as its meet operation. Note, however, that the
join operation of this lattice, LI, is different from set union U because the union of
affine spaces is in general not an affine space. The join of a family A C I is the
smallest affine space that contains all members of A: | |A =(){B €D |VA €
A:AC B}

The representation mapping 7 : D — 2% is defined by

v(d) = {o€2”| (o(z1),...,0(x,)) € d}.

As we are using affine subspaces of Q" to represent assertions for integer variables,
the representation mapping v does two things. Firstly, it transfers the tuple repre-
sentation to a state representation which is merely an isomorphic transformation.
Secondly, it selects the integer tuples from the given affine space d C Q".

From linear algebra we know that all affine spaces z+U € D can be represented
by a matrix A € Q¥*" with k¥ < n and a (column) vector b € QF, such that
z4+U ={x € Q" | Az = b}. The empty set can also be represented by a matrix
and a vector, e.g., by A = (0,...,0) and b = (1). In the concrete algorithm the
elements of D are represented in this way by a matrix A and a vector b but this
further representation step is suppressed in this section. We show, however, that
all the needed operations on affine spaces can efficiently be performed on their
representation by a matrix and a vector. Conceptually, it is simpler to consider
the affine spaces themselves as representations because they are ordered. On
pairs (A,b) we have only the pre-order induced by their interpretation as affine
spaces:

(A,0) < (ALY) & {z|Az=b} C{z|Az=1V}.

Thus, in order to cover this further representation step also, we would need
a more general description of the generic algorithm that permits pre-orders as
representations. While it is not hard to develop this more general framework it
would obscure the presentation.

Let us now show that the requirements of the generic algorithm are satisfied:

(a) For dimension reasons a properly decreasing chain of affine spaces can have
at most length n + 1.

(b) That the representation mapping 7 is universally conjunctive is obvious
from the definition.
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(©)

For z; € X and ¢ € Z, define dj,—. o {(c1,...,¢n) € Q" | ¢; = c}.

Obviously, this set can be represented by the matrix A = (a;;) € Q"
defined by a;; = 1 and a1; = 0 if j # 7 and the vector b = (¢): dy,— = {z €
Q" | Az = b}. This also shows that d,,_. is indeed an affine space.

If we are given two affine spaces d;y = {x € Q" | Ayz = b1} € D and dy =
{r € Q" | Asx = by} € D we can effectively determine a representation of
d1Mdy = diNdy by normalizing the following equation via Gauss elimination:

A _ (]
<A2) v (52) '
Suppose we are given z; € X and e = cp+Y ., c;z; € S. Forz = (z;) € Q",
let us write z[e/z;] for the vector y = (y;) € Q" with y;, = ¢o + > i, i
and y; = z; for i # s. We define the substitution operator (-)[e/zs] : D — D
by dle/zs] = {x € Q" | zle/xs] € d}. This definition directly reflects the

definition of substitution on assertions. Therefore, the following lemma is
obvious.

Lemma 4.3 (Adequacy) v(d)[e/xs] = y(d[e/z;]).

The following lemma shows that and how the substitution operator can
(efficiently) be computed on representations of affine spaces via matrices
and vectors. It also implies that d[e/z;] is indeed an affine space and thus
ensures well-definedness of (-)[e/zs]. The lemma formalizes the backwards
substitution and subsequent normalization on linear equations in the in-
formal explanation of the local transfer functions of affine assignments in
Section 4.2.

Suppose we are given A = (a;) € Q" and b = (b;) € QF such that
d={z € Q" | Az = b}.

Lemma 4.4 (Computation) Let A' = (aj;) € Q™ with al, := aic, and
i = Qg + a;sc; for j # s, and b' = (b)) € QF with b, := b; — a;sco.
Then: dle/zs| = {x € Q" | Az =V'}.

Proof. Let z € Q" and y = z[e/z;]. By the definitions, x € d[e/z,] if and
only if Ay = b. By the definition of matrix multiplication this is the case if
and only if for all 4, 1 <1 <k,

Z QY5 = bz . (42)
7j=1
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As the sum on the left hand side can be rewritten as follows

n n n n
a;Y; = Q35T 5 + ais(C() + Cjﬂ?j) = az-j:vj + a;5Co y
j=1 j=1 j=1 j=1

i
Equation (4.2) holds if and only if Z;’:l aj;x; = by — aico = b;. Conse-
quently, z € d[e/x4] if and only if A’z =¥'. O

Suppose we are given x, € X. We define the projection operator proj,_ :
D — D on representations of affine spaces as follows: ifd = {x € Q" | Az =
b} € D then

. d ifa;;, =0forallie{l,...,k
proj,, (d) = { () otherwise. { }
This definition is motivated by the following intuition: a vector x = (z;) €
Z" (or z € Q", this doesn’t make any difference) satisfies all the linear
equations described by Az = b for arbitrary variation of z, (in Z or Q)
if and only if all equations are independent of z,. A formalization of this
intuition yields:

Lemma 4.5 (Adequacy) Vz,(y(d)) = v(proj,, (d)).

We leave the formal proof, which is similar to the proof of Lemma 4.7 below,
to the reader.

It is also not hard to show that the above definition is independent of the
representation by a matrix A and vector b. The crucial lemma, the proof
of which is also left to the reader, is this:

Lemma 4.6 (Well-definedness) Let A = (a;;) € Q"", b € QF, A' =
(a;;) € Q™ and ¥ € Q. Suppose {z | Az = b} = {x | Alz = '} # 0.
Then: a;s =0 for alli=1,...,k if and only ifaj, =0 for alli=1,... k.

It is immediate from its definition that and how the projection operator
can efficiently be computed on the representation of an affine space via a
matrix A and a vector b. We only need to check whether the s’th row of A
is constantly 0; if this is the case, d is left unchanged by the projection such
that proj, (d) is again represented by A and b; otherwise the projection of
d is empty and we can use, e.g., A = (0,...,0) and b = (1) for representing
proj,, (d) because ) = {x € Q" | (0,...,0)z = 1}.
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(g) In order to check whether an affine space d = {z € Q" | Az = b} € D
given by matrix A and column vector b represents ¥ we need only check
whether all entries of A and b are zero as witnessed by the following lemma.
Obviously this condition can efficiently be decided from A and b.

Lemma 4.7 (Test for true) y({z € Q" | Az = b}) = X if and only if
A=0andb=0.

Proof. By definition of v, we have y({z | Az = b}) = X if and only if
Ad = b for all d € Z™. We show that the latter condition holds if and only
if A=0and b=0.

If, on the one hand, A = 0 and b = 0, then we clearly have Ad =0 = b for
all d € Z™. 1If, on the other hand, Ad = b holds for all d € Z™, we have,
first of all, b = A0 = 0. Moreover, all entries of A must be zero: If A has
a non-zero entry, say a; j, then the j'th component of its application to the
vector d = (di) with d; =1 and dy = 0 for k£ # ¢ would be a;; # 0 =b;. O

4.5 A Primer on Computable Ideal Theory

They key idea for the detection of polynomial constants is to represent assertions
by the zeros of ideals in the polynomial ring Z[z1, . .., x,] and to apply techniques
from computable ideal theory. While a full introduction to this area is beyond
the scope of this thesis, in this section we recall the facts needed and make some
additional observations in Section 4.6. Accessible introductions can be found
in standard textbooks on computer algebra. The case of polynomial rings over
fields is covered, e.g., by [14, 21, 81], while [50] treats the more general case of
polynomial rings over rings, that is of relevance here, as Z is an integral domain
but not a field.

Recall that Z together with addition and multiplication forms a commutative
ring, i.e., a structure (R, +,-) with a non-empty set R and two inner operations
+ and - such that (R, +) is an Abelian group, - is associative and commutative,
and the distributive law a - (b+¢) = a-b+ a - c is valid for all a,b,¢ € R. On

the set of polynomials, Z[z1, ..., z,], we can define addition and multiplication
operations in the standard way; this makes Z[zy,...,z,| a commutative ring as
well.

A non-empty subset I C R of a ring R is called an ideal if a + b € I and
r-a € I forall a,b € I, r € R. The ideal generated by a subset B C R is

(B):{rl-b1+...+rk-bk\Tl,...,rkeR,bl,...,kaB},

and B is called a basis or generating system of I if I = (B). An ideal is called
finitely generated if it has a finite basis B = {by, ..., b, }. Hilbert’s famous basis
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theorem tells us that Z[z1, ..., z,| is Noetherian, since Z is Noetherian, i.e., that
there are no infinitely long strictly increasing chains I; C Iy C I3 C ... of ideals in
Z[x1,...,x,]. This implies that every ideal of Z[x1, ..., z,] is finitely generated.

It is crucial for our algorithm that we can compute effectively with ide-
als. While Hilbert’s basis theorem ensures that we can represent every ideal
of Z[xy,...,x,] by a finite basis, it does not give effective procedures for basic
questions like membership tests or equality tests of ideals represented in this way.
Indeed, Hilbert’s proof of the basis theorem was famous (and controversial) at
its time for its non-constructive nature.

Fortunately, the theory of Grobner bases and the Buchberger algorithm pro-
vide a solution for some of these problems. While a complete presentation of this
theory is way beyond the scope of this thesis—the interested reader is pointed to
the books mentioned above—a few sentences are in order here. A Grobner basis
is a basis for an ideal that has particularly nice properties. From any given finite
basis of an ideal the Buchberger algorithm effectively computes a Grobner basis.
There is a natural notion of reduction of a polynomial with respect to a set of
polynomials. Reduction of a polynomial p with respect to a Grobner basis always
terminates and yields a unique result. This result is the zero polynomial if and
only if p belongs to the ideal represented by the Grobner basis. Hence reduction
with respect to a Grobner basis yields an effective membership test, that in turn
can be used to check equality and inclusion of ideals.

In the terminology of [50], Z[z1, . . ., x,] is a strongly computable ring. This im-
plies that the following operations are computable for ideals I, I' C Z[zy, ..., ]
given by finite bases B, B and polynomials p € Z[z1, .. ., x|, cf. [50]:

Ideal membership: Given an ideal I and a polynomial p. Is p € I?
Ideal inclusion: Given two ideals I, I'. Is I C I'?

Ideal equality: Given two ideals I, I'. Is [ = I'?

Sum of ideals: Given two ideals I, I'. Compute a basis for I + I' & {p+7p|
p € I,p € I'}. As a matter of fact, I +I' = (BU B').

Intersection of ideals: Given two ideals I, I'. Compute a basis for I N I'.

It is straightforward (and well-known) that I + I’ and I NI’ are again ideals if 1
and I" are. We can use the above operations as basic operations in our algorithms.

4.6 More About Z[z,,...,,)

4.6.1 Z[z1,...,z,] as a Complete Lattice

Interestingly, the ideals in Z[z1, . .., z,] form also a complete lattice under subset
inclusion C. Suppose we are given a set Z of ideals in Z[xy,...,z,]. Then the
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largest ideal contained in all ideals in Z obviously is () Z, and the smallest ideal
that contains all ideals in Z is Y. Z = {ri - a1+ ... + 1 -ax | r,...,7% €
Zlxq,...,x5],01,...,ar € [JZ}. The least element of the lattice is the zero
ideal {0} that consists only of the zero polynomial and the largest element is
Z[x1,...,x,]. While this lattice does not have finite height it is Noetherian by
Hilbert’s basis theorem such that we can effectively compute least fixpoints of
monotonic functions on ideals of Z[zy, ..., z,]| by standard fixpoint iteration.

4.6.2 Zeros

As mentioned, we represent assertions by the zeros of ideals in our algorithm. A
state o is called a zero of polynomial p if p” = 0; we denote the set of zeros of
polynomial p by Z(p). More generally, for a subset B C Z[z,...,x,], Z(B) =
{o | Vp € B : p° = 0}. For later use some facts concerning zeros are collected
in the following lemma, in particular of the relationship of ideal operations with
operations on their zeros.

Lemma 4.8 Suppose B, B' are sets of polynomials, q is a polynomial, I,1' are
ideals, and T is a set of ideals in Z[xq, ..., %]

1. If BC B' then 2(B) D Z(B').
2. Z(B) = 2((B)) = ﬂpeB Z(p). In particular, Z(q) = Z((q)).

3. Z(0_T)=(W{2U) | I € Z}. In particular, Z(I1 +1') = Z(I) N Z(I').

4. Z(NZ) = W{20) | I € I}, if T is finite. In particular, Z(IN1I") =
Z(I)u Z(I').

5. Z({0}) = X and Z(Z[zy,...,z,)) =0

6. Z(I) =X if and only if I = {0} = (0).

Proof. We only prove property 4; the proof of the other properties is simpler
and is left to the reader. So suppose Z = {I3,..., I} C Z[x1,...,x,] is a finite
set, of ideals.

‘D% Suppose 0 € |J{Z() | I € Z}. Then there is j € {1,...,k} with 0 €
Z(I;). Then, by 1., we have 0 € Z(I;) C Z(()Z) because I; D ﬂI

‘C’: We use contraposition. So suppose o ¢ |J{Z(I) | I € T}. Then we can
choose for each j =1,...,k a polynomial p; € I; with p7 # 0. For the product of

these polynomials we have Hle p; € (T and (Hlepj)" = H§:1 pf # 0. Hence,
o ¢ Z(N1). O
Note that the assumption that Z is finite is essential in property 4: if we

choose, for instance, Z = {(z') | 4+ > 1} we have Z((Z) = Z({0}) = Z but
WH{Z() | T€eI}= {O} because Z((z*)) = Z(z*) = {0} for all 7 > 0.
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4.6.3 Substitution

Suppose we are given a polynomial p € Z[z1,...,z,] and a variable z € X. We
can define a substitution operation on ideals I as follows: I[p/z] = ({q[p/x] |
g € I}), where the substitution of polynomial p for z in ¢, ¢[p/z], is defined as
usual. By definition, I[p/z| is the smallest ideal that contains all polynomials
q[p/z] with ¢ € I. From a basis for I, a basis for I[p/z] is obtained in the
expected way: if I = (B), then I[p/z] = ({b[p/x] | b € B}). Thus, we can
easily obtain a finite basis for I[p/x] from a finite basis for I: if I = (by,...,bx)
then I[p/x] = (b1[p/x], ..., bk[p/x]). Hence we can add substitution to our list of
computable operations.

The substitution operation on ideals defined in the previous paragraph mirrors
precisely semantic substitution in assertions which has been defined in connection
with wp(z := e).

Lemma 4.9 Z(I)[p/x] = Z(I[p/z]).

We leave the proof of this equation that involves the substitution lemma
known from logic to the reader.

4.6.4 Projection

In this section we define projection operators proj,, ¢ = 1,...,n, such that for
each ideal I, Z(proj;(I)) = Vx;(Z(I)). Semantic universal quantification over
assertions has been defined in connection with wp(z :=?).

A polynomial p € Z[z,. .., z,] can uniquely be written as a polynomial in z;
with coefficients in Z[z1, ..., Z; 1, Tiy1, Ty, i-€., in the form p = cpxf + ...+ co?,
where ¢y, ...,cx € Z[T1,...,Ti 1,Tit1,Ty), and ¢, # 0if £ > 0. We call ¢g, ..., ¢

the coefficients of p with respect to x; and let C;(p) = {co, - .-, cx}-
Lemma 4.10 Vz;(Z(p)) = Z(C;i(p)).

Proof. Let p=czf + ...+ cozd with Ci(p) = {co, ..., cx}-

‘D% Let 0 € Z(Ci(p)). We have c?[win] =cf=0foralldeZ,j=0,...,k,

because ¢; is independent of z;. Hence, polzi>d = cg[xﬁd]dk +...+ cg[w“_)d]do =

0df +...40d° =0 for all d € Z, i.e. 0 € Vz;(Z(p))-
‘C* Let o € Vz;(Z(p)). Again, we have c;[mi'_)d] =cjforalld€Z,j=0,...,k,

because ¢ is independent of z;. Therefore, cgd* + ...+ c§d® = cg[m“_"]l]ci’c +.. 4+
Slemdlgo — polemd —  for all d € Z because of o € Va;(Z(p)). This means that
the polynomial cfz¥ + ...+ c§x? vanishes for all values of z;. Hence, it has more
than k zeros which implies that it is the zero polynomial. Consequently, ¢7 = 0

forall j =0,...,k, ie, 0 € Z(Ci(p)). O

Suppose I C Z|zy,...,2,] is an ideal with basis B.
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Lemma 4.11 Vz;(2(1)) = Z(U;ep Ci(f)).

Proof. Vz;(Z(I)) = Vzi(2(B)) = Vzi(,es 2(p)) = NpepVzi(Z(p)) =
MNpes(Z(Ci(p)) = Z(U,ep Cilp))- m

In view of this formula, it is natural to define proj;(I) = (U,ep Ci(p)) where
B is a basis of I. It is not hard but tedious to show that this definition is
independent of the basis; we leave this proof to the reader. Obviously, proj; is
effective: if I is given by a finite basis {b, ..., b;} then proj,(I) is given by the
finite basis U?:l Ci(b;).

Corollary 4.12 Vz,;(Z(I)) = Z(proj;(1)).

Proof. Vzi(Z(1)) = Z2(U,epCi(p)) = Z((U,e5 Cip)) = Z(proji(1))- O

4.7 Detection of Polynomial Constants

We represent assertions by ideals of the polynomial ring Z[zy,...,z,] in the
detection algorithm for polynomial constants. Thus, let D be the set of ideals of
Z[zy,...,z,]) and C be D. The representation mapping is y(I) = Z(I). Note
that the order is reverse inclusion of ideals. This is because larger ideals have
smaller sets of zeros. Thus, the meet operation is the sum operation of ideals
and the top element is the ideal {0} = (0).

In a practical algorithm, ideals are represented by finite bases. For trans-
parency, we suppress this further representation step but ensure that only oper-
ations that can effectively be computed on bases are used.

The lattice (D, D) satisfies requirements (a)—(g) of Section 4.3:

(a) Z[x1,...,x,] is Noetherian.
(b) By the identity Z(>°7) = ({Z2(I) | I € T}, Z is universally conjunctive.

(¢) Suppose z € X and ¢ € Z. Certainly, a state is a zero of the ideal generated
by the polynomial x — ¢ if and only if it maps = to c. Hence, we choose d,—.
as the ideal (z — ¢) generated by z — c.

(d) In Section 4.5 we have seen that the sum of two ideals can effectively be
computed on bases.

(e) By Section 4.6.3, (-)[p/z] is an adequate, computable substitution opera-
tion.

(f) Again by Section 4.6.4, proj, is an adequate, computable projection opera-
tion.
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(g) We know that Z(I) = X if and only if I = {0}. Moreover, the only basis
of the ideal {0} is {0} itself. Hence, in order to decide whether an ideal I
given by a basis B represents ¥, we only need to check whether B = {0}.

We can thus apply the generic algorithm from Section 4.3 for the detection of
polynomial constants. In order to make this more specific, we put the pieces
together, and describe the resulting algorithm in more detail.

Suppose we are given a variable x € X and a program point w € N in a flow
graph G = (N, E, A,s,e). Then the following algorithm decides whether z is a
polynomial constant at w or not:

Phase 1: Determine a candidate value ¢ € Z for x at w by executing an arbitrary
(cycle-free) path from s to w.

Phase 2: Associate with each edge (u,v) € E a transfer function fr, ) : D — D
that represents wp(Ags(u,v)):

I if A(u,v) = Skip
fom (D) = Ilp/x]  if A(u,v) = (z := p) with p € Z[zy,. .., z,]
(u,v) proj (1) if A(u,v) = t) with t & Zxy, ..., z,]
(u,v) =

proj,(I) if A

AA/—\

Set Ag[w] = (x — ¢) and Ap[u] = (0) for all u € N\{w} and compute the
largest solution (w.r.t. = =D) of the equation system

Alu| = Aglu] + Z fuw) (Afv]) for each u € N.

ve Succ[u]

We can do this as follows. Starting from Ag[u] we iteratively compute,
simultaneously for all program points u € N, the following sequences of

ideals
Aalu] = Aful + D fuw(A

vE Succ|u]

We stop upon stabilization, i.e., when we encounter an index i3 such that
Aj1u] = A [u] for all u € N. Obviously, Aglu] C Aj[u] C Asfu] C ...
such that computation must terminate eventually because Z[z1, ..., z,] is
Noetherian. In this computation we represent ideals by finite bases and
perform Grobner-basis computations in order to check whether A, [u] =

Az' [U] .4

Phase 3: Check if the ideal computed for the start node, A; [s], is (0). If so, z
is a polynomial constant of value v at w; otherwise, z is not a polynomial
constant at w.

4As A;;1[u] D A;[u] by construction, it suffices to check A;y1[u] C A;[u].
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Phase 2 can be seen as a backwards dataflow analysis in a framework in
which ideals of Z[z1, ..., z,| constitute dataflow facts, the transfer functions are
the functions f(, . specified above, and the start value is Ay. Of course, we can
use any evaluation strategy instead of naive iteration.

These considerations prove:

Theorem 4.13 Polynomial constants are decidable. O

We do not know any complexity bound for our algorithm. Our termination
proof relies on Hilbert’s basis theorem and its standard proof is non-constructive
and does not provide an upper bound for the maximal length of strictly increasing
chains of ideals. Therefore, we cannot bound the number of iterations performed
by our algorithm.

4.8 Conclusion

In this chapter we have shown that Presburger constants can be detected in
polynomial time and that polynomial constants are decidable. These classes are
interesting from a practical point of view because the sets of operators +, —
and +, —, *, respectively, are very frequently used, e.g., for computing memory
addresses of array components.

The polynomial-constant detection algorithm can easily be extended to handle
conditions of the form p # 0 with p € Z|[x1,...,x,]. The weakest precondition
iswp(p # 0)(¢) = (p# 0= ¢) = (p =0V ¢) and if ¢ is represented by an
ideal I, the assertion p = 0V ¢ is represented by the ideal I N (p) according
to Lemma 4.8. This observation can be used to handle such conditions in our
algorithm. We can extend this easily to an arbitrary mixture of disjunctions and
conjunctions of conditions of the form p # 0. Of course, we cannot handle the
dual form of conditions, p = 0: with both types of conditions we can obviously
simulate two-counter machines. In contrast, the Presburger constant detection
algorithm cannot easily be extended to conditions as affine spaces are not closed
under union.

The detection algorithms of this chapter use an indirect three phase approach;
the main work is done in the second phase. In the first phase a candidate value is
computed that is verified in the second and third phase by means of a symbolic
weakest precondition computation. We have analyzed the demands for making
this general algorithmic idea effective which results in a generic framework for the
construction of S-constant-propagation algorithms. Assertions are represented by
affine subspaces of Q" for Presburger constants and by ideals in the polynomial
ring Z[x1, - . ., x,] for polynomial constants.

Standard constant propagation relies on forward propagation while we use
backwards propagation of assertions. Interestingly, Presburger constants can also
be detected by forward propagation of affine spaces. Karr [35] describes such an
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algorithm but does not address completeness issues. In forward propagation of
assertions we effectively compute strongest postconditions rather than weakest
precondition and this computation involves union of assertions rather than inter-
section. Because affine spaces are not closed under union, Karr defines a (compli-
cated) union operator of affine spaces that over-approximates their actual union
by an affine space. One is tempted to consider forward propagation of ideals of
Z|xq, ..., x,]. At first glance, this idea looks promising, because ideals are closed
under intersection and intersection of ideals corresponds to union of their sets of
zeros, such that we can even precisely represent the union of assertions. There
is, however, another problem: Z[z1, ..., z,] is not ‘co-Noetherian’, i.e., there are
infinitely long strictly decreasing chains of ideals, e.g., (z) D (z?) D (23) D ....
Therefore, strongest postcondition computations with ideals cannot be guaran-
teed to terminate in general.

Our approach to compute weakest preconditions symbolically with effective
representations is closely related to abstract interpretation [12, 13]. Requirement
(b) of the generic algorithm, universal conjunctivity of the representation map-
ping v : D — 2%, implies that  has a lower adjoint, i.e., that there is a monotonic
mapping « : 2% — D such that («,7) is a Galois connection [47]. In the stan-
dard abstract interpretation framework, we are interested in computation of least
fixpoints and the lower adjoint, «, is the abstraction mapping. Here, we are in
the dual situation: we are interested in computation of greatest fixpoints. Thus,
the role of the abstraction is played by the upper adjoint, v : D — 2*. Funnily,
this means that in a technical sense the members of D provide more concrete
information than the members of 2* and that we compute on the concrete side of
the abstract interpretation. Thus, we interpret the lattice D as an ezact partial
representation rather than an abstract interpretation. The representation via D
is partial because it does not represent all assertions exactly; this is indispensable
due to countability reasons because we cannot represent all assertions effectively.
It is an exact representation because it allows us to infer the weakest precondi-
tions arising in the S-constant algorithms precisely, which is achieved by ensuring
that the initial value of the fixpoint computation is represented exactly and that
the occurring operations on representations mirror the corresponding operations
on assertions precisely.

By the very nature of Galois connections, the representation mapping v and
its lower adjoint « satisfy the two inequalities oy C Idp and Idys C v o, where
Idp and ldys are the identities on I and 2%, respectively. Interestingly, none
of these inequalities degenerates to an equality when we represent assertions by
ideals of Z[z1, ..., z,] as in our algorithm for detection of polynomial constants.
On the one hand, yoa # Idys because the representation is necessarily partial. On
the other hand, oy # ldp because the representation of assertions is not unique.
For example, if p € Z[xy,...,x,] does not have a zero in the integers, we have
Z((p)) = 0 such that Z((p)) = Z((1)) = Z(Z[zy,. .., x,]). But by undecidability
of Hilbert’s tenth problem, we cannot decide whether we are faced with such a
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May-Constants
Must-Constants - -
single value multiple value

Copy Constants
3
= | Linear Constants
°
§ Presburger Constants
L
% +-* Constants

Full Constants
> Copy Constants
o
IS Linear Constants
g
© | Presburger Constants
3
B
g +,-,* Constants
<
= | Full Constants

Table 4.1: Complexity classification of a taxonomy of CP: summary of results.

polynomial p and thus cannot effectively identify (p) and (1). This forces us to
work with a non-unique representation. While we cannot decide whether the set
of zeros of an ideal I given by a basis B is empty, we can decide whether it equals
Y. because this only holds for I = (0). Fortunately, this is the only question that
needs to be answered for the weakest precondition.

As a consequence of non-uniqueness, the weakest precondition computation
on ideals does not necessarily stop once it has found a collection of ideals that
represents the largest fixpoint on assertions but may proceed to larger ideals that
represent the same assertions. Fortunately, we can still prove termination by
arguing on ideals directly.

The decidability and complexity results of this and the previous chapter are
summarized in Table 4.1. We almost completely succeeded in filling the white
fields of Table 3.1. As apparent, only two questions are unsolved so far. Firstly,
there is a gap between the lower bound (PSPACE-hardness) and the upper bound
(decidability) for polynomial must-constants. Secondly, we miss an upper bound
for linear may-constants. To attack these problems opens up opportunities for
future research. An observation which is immediately obvious from the table is
that the detection of may-constants is significantly harder than detecting their
must-counterparts.
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Chapter 5

Limits of Parallel Flow Analysis!

Automatic analysis of parallel programs is known as a notoriously hard problem.
A well-known obstacle is the so-called state-explosion problem: the number of
(control) states of a parallel program grows exponentially with the number of
parallel components. Therefore, most practical flow analysis algorithms of con-
current programs conservatively approximate the effects arising from interference
of different threads in order to achieve efficiency. An excellent survey on practical
research towards analysis of concurrent programs with many references is pro-
vided by Rinard [69]. In contrast to this research, we are interested in analyses of
parallel programs that are ezact (or precise) except for the common abstraction
of guarded branching to non-deterministic branching that is well-known from
analysis of sequential programs.

Surprisingly, certain basic but important dataflow analysis problems can still
be solved precisely and efficiently for programs with a fork/join kind of paral-
lelism. Results of this kind have been achieved in recent years by extending
fixpoint computation techniques common in classic dataflow analysis to parallel
programs [40, 37, 71] and by automata-theoretic techniques [16, 17]. The most
general result shown by Seidl and Steffen [71] is that all gen/kill problems?® can be
solved interprocedurally in fork/join parallel programs efficiently and precisely.
This comprises the important class of bitvector analyses, e.g., live/dead variable
analysis, available expression analysis, and reaching definitions analysis [51]

In this chapter, we consider the question whether these results can be gen-
eralized to richer classes of dataflow problems. For this purpose we investigate
the complexity of copy-constant detection [18]. Copy-constant detection may be
seen as a canonic representative of the next level of difficulty beyond gen/kill
problems. In the sequential setting it gives rise to a distributive dataflow frame-
work on a lattices with a small chain height and can thus—Dby the classic result of
Kildall [36, 51]—completely and efficiently be solved by a fixpoint computation.

IThis chapter is based on [55]
2Gen/kill problems are characterized by the fact that all transfer functions are of the form
(Ax : (x Aa) VD), where a,b are constants from the underlying lattice of dataflow facts.

o7
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Specifically, we show by means of a reduction from the halting problem for
two-counter machines that copy-constant detection is undecidable in parallel pro-
grams with procedures (parallel interprocedural analysis). We refine this result
by proving copy-constant detection to be PSPACE-complete in case that there
are no procedure calls (parallel intraprocedural analysis), and co-NP-complete if
also loops are abandoned (parallel acyclic analysis). The latter results are shown
by means of reductions from the intersection problem for regular and star-free
regular expressions, respectively. These findings render the possibility of com-
plete and efficient dataflow algorithms for parallel programs for more extensive
classes of analyses unlikely even for loop-free programs, as it is generally believed
that the inclusions P C co-NP C PSPACE are proper.

The prototypic framework in which these results are obtained poses only
rather weak requirement such that the results apply to many concurrent program-
ming languages. In particular the results are independent of synchronization op-
erations which distinguishes them from previous intractability and undecidability
results for synchronization-sensitive flow analysis in parallel languages [77, 65].
They should also be compared to undecidability of LTL model-checking for par-
allel languages as proved by Bouajjani and Habermehl [6]. While Bouajjani
and Habermehl also consider a parallel language without explicit synchroniza-
tion operations, they use the LTL formula to synchronize the runs of two parallel
threads that simulate a two-counter machine. Thus, our results point to a more
fundamental limitation for flow analysis of parallel programs as they exploit no
synchronization properties.

One remark concerning the parallel composition operator is in order here. It
is inherent in the definition of parallel composition that 7 || 7 terminates if
and when both threads 7 and 7 terminate (like, for instance, in OCCAM [29]).
This means that there is an implicit synchronization between m; and s at the
termination point. However, as explained in Section 5.6, the hardness results
remain valid without this assumption. Therefore, they also apply to languages
like JAVA in which spawned threads run and terminate independently of the
spawning thread.

In order to perform our reductions without relying on synchronization we use
a subtle technique involving re-initialization of variables. In all reductions pro-
grams are constructed in such a way that certain well-behaved runs simulate some
intended behavior, e.g., the execution sequences of the given two-counter machine
in the undecidability proof. But we cannot avoid that the constructed programs
have also certain runs that bear no correspondence to the behavior to be simu-
lated. Let us call such runs spurious runs for the moment. One would typically
use synchronization to exclude spurious runs but in the absence of synchroniza-
tion primitives this is not possible. In order to solve this problem, we ensure by
well-directed re-initialization of variables that the spurious runs do not contribute
to the information that is to be determined by the analysis. In order to verify
this crucial property in the reductions, we present formal program proofs in the
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(8) CFG-like representation (b) Def/use relationships

Figure 5.1: An illustrative example.

style of Owicki and Gries [59, 19, 3] for the programs constructed in the reduc-
tions. Intuitively, one may interpret the well-directed re-initialization of variables
as a kind of “internal synchronization”. However, in contrast to synchronization
well-directed re-initialization does not prohibit execution of spurious runs from
happening; it only ensures that spurious runs do not influence the analysis result.

In this chapter we assume that each basic statement executes as an atomic
step, a standard assumption in verification and analysis of concurrent programs.
Although we use only basic statements of a very simple form, we will see in
the remaining chapters that this assumption is not as innocent as it may seem:
interprocedural copy-constant detection becomes indeed decidable in parallel pro-
grams if this assumption is abandoned as we will see in Chapter 9.

5.1 A Motivating Example

Before we turn to the technical results, let us discuss a small example that illus-
trates the subtlety of copy-constant detection in parallel programs and the crucial
re-initialization technique in our reductions. Consider the program

a:=1;[(b:=a;b:= 0;c:= 0; write(c)) || ¢ := b].

In Fig. 5.1 (a) a control flow graph-like representation of the program is shown
and in (b) the def/use relationships between the basic statements. There is a
def/use relationship from a statement S to a statement 7" if there is a program
execution in which S updates a variable that is later referenced by T without
another update of this variable in between.
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Although there is a path in the graph of def/use edges from the initialization
a := 1 to the instruction write(c), ¢ is a (copy) constant of value 0 at the write
instruction. In order to see this, consider the following. In any execution, ¢ := 0
must be executed either after or before ¢ := b in the parallel thread. If it is
executed after ¢ := b then ¢ certainly holds 0 at the write statement because 0
is assigned to c in the last executed assignment, ¢ := 0. On the other hand, if
¢ := 0 is executed before ¢ := b then also the initialization of b, b := 0, must have
been executed before ¢ := b such that ¢ := b also loads the value 0 to ¢. This
reasoning exploits the causality inherent in sequential composition.

From this example we learn two things. Firstly, a thread can prohibit a
parallel thread from propagating an ‘interesting’ value via a copying assignment
c := b by re-initializing first b and then ¢ with an ‘uninteresting’ value. This
is exploited in the reductions. Secondly, transitive relationships in the graph of
def/use edges do not necessarily correspond to indirect dependences that can be
realized in executions, in contrast to the (intraprocedural) sequential case. Fol-
lowing transitive relationships in the def/use graph is thus an incomplete (albeit
sound) approach for dependency analysis in parallel program. Thus, while we
can efficiently determine the def/use relationships in a parallel program—this is
a bitvector problem—this information is not as useful as in a sequential program.

5.2 Parallel Programs

We consider a prototypic language with shared memory, atomic assignments and
fork/join parallelism. A procedural parallel program comprises a finite set Proc of
procedure names containing a distinguished name Main. Each procedure name P
is associated with a statement mp, the corresponding procedure body, constructed
according to the following grammar, in which @ ranges over Proc \ {Main} and
x over some given finite set of variables:

e = cl|z
7 u= x:=e|write(e) |skip | Q | m ;72 |

m || mo | T M7 | loop 7 end.

We use the syntax procedure P; 7p end to indicate the association of procedure
bodies to procedure names. Note that procedures do not have parameters.

The specific nature of constants and the domain in which they are interpreted
is immaterial; we only need that 0 and 1 are two constants representing differ-
ent values, which—by abuse of notation—are denoted by 0 and 1, too. In other
words we only need Boolean variables. The atomic statements of the language
are assignment statements x := e that assign the current value of e to variable z,
the do-nothing statement skip, and write statements. We use write statements
in order to indicate where in the program we are interested in constancy of which
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variable; this is the only purpose of write instructions here. A statement of the
form () denotes a call of procedure (). The operator ; denotes sequential compo-
sition and || parallel composition. The operator I represents non-deterministic
branching and loop 7 end stands for a loop that iterates 7 an indefinite num-
ber of times. Such constructs are chosen in accordance with the abstraction of
guarded branching to non-deterministic branching discussed in the introduction.
We apply the non-deterministic choice operator also to finite sets of statements;
M{m,...,m,} denotes m; M---Mm,. The ambiguity inherent in this notation is
harmless because M is commutative, associative, and idempotent semantically.

Note that there are no synchronization operations in the language. The syn-
chronization of start and termination inherent in fork- and join-parallelism is also
not essential for our results; see Section 5.6.

Parallelism is understood in an interleaving fashion; assignments and write
statements are assumed to be atomic. A run of a program is a maximal sequence
of atomic statements that may be executed in this order in an execution of the
program. The program (z := 1;z :=vy) || y := z, for example, has the three runs
(x =1lLz:=y,y:=x), (x:=1Ly:=z,2:=y), and (y :=z,x:= 1,2 :=y). We
denote the set of runs of program 7 by Runs(r).

Note that the prototypic language has only assignments of a very simple
form: z := k where k is either a constant or a variable. These are just the
assignments that are interpreted in copy-constant detection. Consequently, for
the prototypic language, constants and copy constants coincide. Hardness results
for constant detection in programs of this prototypic language can immediately
be interpreted as hardness results for copy-constant detection in more general
parallel languages. This justifies to identify for the purpose of this chapter the
copy-constant detection problem in parallel programs with the detection problem
of constants in programs of the prototypic language.

5.3 Interprocedural Copy-Constant Detection

The goal of this section is to prove the following theorem.

Theorem 5.1 Parallel interprocedural copy-constant detection is undecidable.
It is well-known that the termination problem for two-counter machines is

undecidable [49]. In the remainder of this section, we reduce this problem to an
interprocedural copy-constant detection problem thereby proving Theorem 5.1.

5.3.1 Two-Counter Machines

A two-counter machine has two counter variables ¢y and ¢; that can be incre-
mented, decremented, and tested against zero. It is common to use a combined
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decrement- and test-instruction in order to avoid complications with decrement-
ing a zero counter. The basic idea of our reduction is to represent the values of
the counters by the stack height of two threads of procedures running in parallel.
Incrementing a counter is represented by calling another procedure in the corre-
sponding thread, decrementing by returning from the current procedure, and the
test against zero by using different procedures at the first and the other stack
levels that represent the possible moves for zero and non-zero counters, respec-
tively. It simplifies the argumentation if computation steps involving the two
counters alternate. This can always be enforced by adding skip-instructions that
do nothing except of transferring control.

Formally, we use the following model. A two-counter machine M comprises a
finite set of (control) states S. S is partitioned into two sets P = {p1,...,p,} and
Q ={q,-..,qn}; moves involving counter ¢y start from P and moves involving
counter ¢; from (). Execution commences at a distinguished start state which,
without loss of generality, is p;. There is also a distinguished final state, without
loss of generality p,, at which execution terminates. Each state s € S except of
the final state p,, is associated with an instruction I(s) taken from the following
selection:

e ¢, :=c¢; + 1;goto s’ (increment),
e if ¢; = 0 then goto s else ¢; := ¢; — 1; goto s” (test-decrement), or
e goto s’ (skip),

wherei=0and s',s" € Qif se P,and =1 and s',s" € P if s € Q. Note that
this condition captures that moves alternate.

Execution of a two-counter machine M is represented by a transition relation
— s on configurations (s, zg, 1) that consist of a current state s € S and current
values o > 0 and z; > 0 of the counters. Configurations with s = p,, are called
final configurations. We have (s, zq,z1) —um (', 2, 2}) if and only if one of the
following conditions is valid for ¢z = 0, 1:

o I(s)=c:=c;+1;goto s, 2, =x;+1,and 2|, = ;.

e I(s) =if ¢; = 0 then goto s’ else ¢; :=¢; — 1; goto ", z; =0, z} = x;,
and z{_;, = x1_;.

e I(s) =if ¢; = 0 then goto s” else ¢; := ¢; — 1; goto s, z; # 0, 2}, = z;—1,
and x| ; = x1_;.

e I(s)=goto ¢, z} =x;, and 2 _, = x1_,.

Thus, each non-final configuration has a unique successor configuration. We
denote the reflexive transitive closure of —,; by —3, and omit the subscript M
if it is clear from the context.
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Execution of a two-counter machine commences at the start state with the
counters initialized by zero, i.e. in the configuration (p;,0,0). The two-counter
machine terminates if it ever reaches the final state, i.e. if (p;, 0,0) —=* (p,, To, 1)
for some xg,z;,. As far as the halting behavior is concerned, we can assume with-
out loss of generality that both counters are zero upon termination. This can be
ensured by adding two loops at the final state that iteratively decrement the coun-
ters until they become zero. Obviously, this modification preserves the termina-
tion behavior of the two-counter machine. Note that for the modified machine the
conditions “(py,0,0) —=* (p,, zo, 1) for some zy, z;” and “(p1,0,0) —=* (p,,0,0)”
are equivalent. We assume in the following that such loops have been added to
the given machine.

5.3.2 Constructing a Program

From a two-counter machine we construct a parallel program, ;. For each state
pr € P the program uses a variable x and for each state ¢, € ) a variable ;.
Intuitively, x; holds the value 1 in an execution of the program iff this execution
corresponds to a run of the two-counter machine reaching state py, and similarly
for the y;.

The main procedure of 7, reads as follows:

rocedure Main; .
p ’ procedure Init;

xy :=1; Init;

To:=0;...52,:=0;
(Po [| Qo) y2'=0- B
(z, := 0N skip) ; write(z,,) =05 Ym -
end end

The threads Py and () are constructed such that M terminates if and only if x,,
is not a constant at the write instruction. Note that this implies Theorem 5.1.

The initialization z; := 1 is the only occurrence of the constant 1 in the
program; all other variables are initialized by 0. Moreover, all other assignment
statements only copy values or re-initialize variables by 0. Thus, x, can hold
only the values 0 or 1 at the write statement. Clearly, x,, may hold 0 due to the
statement (z, := 0Mskip) immediately before the write statement. Thus z, can
only be a constant of value 0, and, obviously, this is the case if and only if x,
cannot hold value 1 at the write instruction. Thus, we can reformulate the goal
of the construction as follows:

M terminates if and only if z,, may hold 1 at the write statement. (5.1)

The initialization of all variables except x; by 0 reflects that p; is the initial state.
For each of the two counters the program uses two procedures, Py and P for
counter ¢y and )y and 4o for counter c¢;. They are defined in Fig. 5.2 and 5.3.
We describe Py and P in detail in the following, )y and @)y are completely
analogous.
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procedure Fy;
loop
M{p =z ; KillAllp ;4 :=p; Py |
I(pr) = co:=co+ 1;80t0 ¢}
N{p := zx; KillAllp 5y, :=p |
I(px) = if ¢o = 0 then goto ¢ else...} N
N{p := zx;KillAllp 5y, :=p | I(px) = goto ¢}
end
end

procedure P;
loop
M{p =z ; KillAllp ;4 :=p; Py |
I(px) = ¢o :=cy+ 1;g0to ¢} M
N{p = zy;KillAllp;y, == p | I(py) = goto ¢}
end ;
M{p =z ; KillAllp 5y, :=p |
I(px) = if ¢g = 0 then...else...goto ¢}
end

procedure KillAllp;
Y1:=0;.. Y :=0;¢:=0;2,:=0;...52,:=0
end

Figure 5.2: Definition of Py and Pl.

Intuitively, Py, and Po mirror transitions of M induced by counter ¢y being
=0 and #0, respectively, hence their name. Each procedure non-deterministically
guesses the next transition. Such a transition involves two things: firstly, a state
change and, secondly, an effect on the counter value. The state change from some
Pr to some ¢ is represented by copying z, to y; via an auxiliary variable p and
re-initializing =, by zero as part of KillAllp. The effect on the counter value is
represented by how we proceed:

e For transitions that do not change the counter we jump back to the be-
ginning of the procedure such that other transitions with the same counter
value can be simulated subsequently. This applies to skip-transitions and
test-decrement transitions for a zero counter, i.e. test-decrement transitions
simulated in P;.

e For incrementing transitions we call another instance of Py, that simulates
the transitions induced by the incremented counter. A return from this
new instance of P,y means that the counter is decremented, i.e. has the old
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procedure Qp;
loop
M{q := ye; KillAllg ; 2 == q; Qo |
I(g) = c1:=c1+ 1;80t0 pr} I
M{q :=ye;KillAllg ; 2, :==q |
I(gy) = if ¢; = 0 then goto p; else...} M
M{q := ye;KillAllg ; 2, :== ¢ | I(qx) = goto p;}
end
end

procedure () ;
loop
M{q = ye; KillAllg ; 2 == q; Qo |
I(gy) = ¢1 :=c¢1 + 1;g0to p} M
M{q := ye;KillAllg ; 2, :==¢q | I(gx) = goto p;}
end ;
M{q := y; KillAllg ; 2, := ¢ |
I(gx) = if ¢ =0 then...else...goto p;}
end

procedure KillAllg;
1:=0;..52, =0;p:=0;y1:=0;...;Yn =0
end

Figure 5.3: Definition of ¢y and ().

value. We therefore jump back to the beginning of the procedure after the
return from P.

e For test-decrement transitions simulated in P, we leave the current pro-
cedure.

This behavior is described in a structured way by means of loops and sequential
and non-deterministic composition and is consistent with the representation of
the counter value by the number of instances of P, on the stack.

The problem with achieving (5.1) is that a procedure may try to ‘cheat’: it
may execute the code representing a transition from p; to g; although z; does
not hold the value 1. If this is a decrementing or incrementing transition the
coincidence between counter values and stack heights may then be destroyed and
the value 1 may subsequently be propagated erroneously. Cheating may thus
invalidate the ‘if’ direction.

This problem is solved as follows. We ensure by appropriate re-initialization
that all variables are set to 0 if a procedure tries to cheat. Thus, such executions
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cannot contribute to the propagation of the value 1. But re-initializing a set of
variables safely is not trivial in a concurrent environment. We have only atomic
assignments to single variables available; a variable just set to 0 may well be set
to another value by instructions executed by instances of the procedures )y and
(o0 running in parallel while we are initializing the other variables. Here our
assumption that moves involving the counters alternate comes into play. Due to
this assumption all copying assignments in ¢y and ()¢ are of the form ¢ := y; or
z; := ¢ (q is the analog of the auxiliary variable p). Thus, we can safely assign
0 to the y; in Py and Py, as they are not the target of a copy instruction in @
or Q9. After we have done so, we can safely assign 0 to ¢; a copy instruction
q = y; executed by the parallel thread cannot destroy the value 0 as all y; contain
0 already. After that we can safely assign 0 to the x; by a similar argument. This
explains the definition of KillAllp.

5.3.3 Correctness of the Reduction

From the intuition underlying the definition of 7, the ‘only if” direction of (5.1)
is rather obvious: If M terminates, i.e., if it has transitions leading from (p, 0, 0)
to (pn,0,0), we can simulate these transitions by a propagating run of 7. By
explaining the definition of KillAllp, we justified the ‘if’ direction as well. A formal
proof can be given along the lines of the classic Owicki/Gries method for proving
partial correctness of parallel programs [59, 19, 3]. Although this method is
usually presented for programs without procedures it is sound also for procedural
programs. In the Owicki/Gries method, programs are annotated with assertions
that represent properties valid for any execution reaching the program point at
which the assertion is written down. This annotation is subject to certain rules
that guarantee soundness of the method.

Specifically, we prove that just before the write instruction in 7, the following
assertion is valid:

Tn =1 = (p1,0,0) = (pn,0,0).

Validity of this assertion implies the ‘if’ direction of (5.1). The details of this
proof are deferred to Section 5.8 in order to increase readability of this chapter.

Our proof should be compared to undecidability of reachability in presence
of synchronization as proved by Ramalingam [66], and undecidability of LTL
model-checking for parallel languages (even without synchronization) as proved
by Bouajjani and Habermehl [6]. Both proofs employ two sequential threads
running in parallel. Ramalingam uses the two recursion stacks of the threads to
simulate context-free grammar derivations of two words whose equality is enforced
by the synchronization facilities of the programming language. Bouajjani and
Habermehl use the two recursion stacks to simulate two counters (as we do) whose
joint operation then is synchronized through the LTL formula. Thus, both proofs
rely on some kind of “external synchronization” of the two threads — which is not
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available in our scenario. Instead, our undecidability proof works with “internal
synchronization” which is provided implicitly by killing of the circulating value
1 as soon as one thread deviates from the intended synchronous behavior.

5.4 Intraprocedural Copy-Constant Detection

The undecidability result just presented means that we cannot expect to detect all
copy constants in parallel programs. Therefore, we must lower our expectation.
In dataflow analysis one often investigates also intraprocedural problems. These
can be viewed as problems for programs without procedure calls. Here, we find:

Theorem 5.2 Intraprocedural copy-constant detection is PSPACE-complete for
parallel programs.

We can construct a non-deterministic algorithm that determines non-constancy
by guessing two runs witnessing different values for the variable in question at
the program point of interest. This algorithm can be implemented in polynomial
space: In a fork/join parallel program without procedures, the number of threads
potentially running in parallel is bounded by the size of the program. Therefore,
every run of the program can be simulated by a Turing machine using just a
polynomial amount of space. Moreover, as no arithmetic is involved, only values
present in the program have to be represented during the computation of the
runs. We conclude that the intraprocedural copy-constant detection problem is
in NPSPACE=PSPACE.

It remains to show that PSPACE is also a lower bound on the complexity of
copy-constant detection, i.e. PSPACE-hardness. This is done by a reduction from
the REGULAR EXPRESSION INTERSECTION problem. This problem is chosen in
favor of the better known intersection problem for finite automata as we are
heading for structured programs and not for flow graphs.

An instance of REGULAR EXPRESSION INTERSECTION is given by a sequence
ri,...,r, of regular expressions over some finite alphabet A. The problem is to
decide whether L(r;) N...N L(r,) is non-empty.

Lemma 5.3 The REGULAR EXPRESSION INTERSECTION problem is PSPACE-
complete. O

PSPACE-hardness of the REGULAR EXPRESSION INTERSECTION problem
follows by a reduction from the acceptance problem for linear space bounded
Turing machines along the same lines as in the corresponding proof for finite au-
tomata [41]. The problem remains PSPACE-complete if we consider expressions
without (0.

Suppose now that A = {ay,...,ax}, and we are given n regular expressions
T1,...,Tp. In our reduction we construct a parallel program that starts n + 1
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threads 7y, ..., m, after some initialization of the variables used in the program:

procedure Main;
KillXYq 5. KilIXY 5 2 4, := 15

[mo [ o |l -+ |l 7al 5
(0,4, := 0 M skip) ; write(zg,, )
end

The threads refer to variables z;, and y; (i € {0,...,n}, a € A). Thread 7o is
defined as follows.

7o = loop
M{yo := Tna; KillAllg; 204 :=yo | a,b € A}
end

The statement KillAlly that is defined below ensures that all variables except g
are re-initialized by 0 irrespective of the behavior of the other threads as shown
below.

For ¢+ = 1,...,n, the thread =; is induced by the regular expression r;. It is
given by m; = m;(r;), where 7;(r) is defined by induction on r as follows.

skip

= Y= Ti_1,q; KAl 525 4 == y;
mi(r1) s mi(r2)

mi(r1) M mi(ro)

loop 7;(r) end

3
—
3
=
3
N
~— N N S N
I

The statement KillAll; re-initializes all variables except 7;. This statement as well
as statements KillX; and KillXY; on which its definition is based, are defined as
follows.

KillX; = x4, :=0;...;%j4, :=0
KillXY,; = y;:= 0;KillX;
KillAll; = KillX;; KillXY ;415 . . . KilIXY ;
KillXYy; . . .; KilIXY;_4

Again it is not obvious that thread 7; can safely re-initialize the variables because
the other threads may arbitrarily interleave. But by exploiting that only copy
instructions of the form y; := x;_;, and z;, := y; with j # ¢ are present in the
other threads this can be done by performing the re-initializations in the order
specified above.> Two crucial properties are exploited for this. First, whenever

3Here and in the following, addition and subtraction in subscripts of variables and processes
is understood modulo n + 1.
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a := b is a copying assignments in a parallel thread, variable b is re-initialized
before a. Therefore, execution of a := b after the re-initialization of b just copies
the initialization value 0 from b to a but cannot destroy the initialization of a.
Secondly, in all constant assignments ¢ := k in parallel threads £ equals 0 such
that no other values can be generated.

Altogether, the threads are constructed in such a way that the following is
valid.

L(r)N...N L(r,) # 0 if and only if

. . 2
%o, 1S DOt a constant (of value 0) at the write statement. (5.2)

Again, the latter is the case if and only if there is a run that propagates the
value 1 by which z,, 4, is initialized to the write-instruction. In the following,
we describe the intuition underlying the construction and at the same time prove
(5.2).

The threads can be considered to form a ring of processes in which process
m; has processes m; 1 as left neighbor and m;,; as right neighbor. Each thread =;
(1=1,...,n) guesses a word in L(r;); thread my guesses some word in A*. The
special form of the threads ensures that they can propagate the initialization value
1 for z, 4, if and only if all of them agree on the guessed word and interleave the
corresponding runs in a disciplined fashion. Obviously, the latter is possible iff
L(ri)N...NL(r,) # 0.

Let w = ¢ -...-¢ be a word in L(ry) N...N L(r,) and let ¢g = ay, the
first letter in alphabet A. In the run induced by w that successfully propagates
the value 1, the threads circulate the value 1 around the ring of processes in the
variables z; ., for each letter ¢; of w. We call this the propagation game in the
following. At the beginning of the j-th round, j =1,...,[, process my ‘proposes’
the letter ¢; by copying the value 1 from the variable z, ., , to zo., in which it
was left by the previous round or by the initialization, respectively. For technical
reasons this copying is done via the ‘local’ variable* yy. Afterwards the processes
m; (i = 1,...,n) successively copy the value from x;_i; to z;., via their ‘local’
variables y;. From z,.; it is copied by 7o in the next round to zo.,,, and so on.
After the last round (j = [) 7 finally copies the value 1 from z,, ., to zo,, and all
processes terminate. Writing—by a little abuse of notation—;(a) for the single
run of m;(a) and my(a,b) for the single run of yy := x, 4 ; KillAlly; zgp := yo, we
can summarize above discussion by saying that

mo(ay, 1) - mi(er) - ... - mp(er)-
mo(c1, o) - mi(ca) - . - my(e2)-
7r0(cl'_1, ¢) - mi(e) - ... ma(e)-
mo(cy, ar)

4Variable y; is not local to 7; in a strict sense. But the other threads do not use it as target
or source of a copying assignment; they only re-initialize it.
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isarunof 7y || ... || m, that witnesses that z,, may hold the value 1 finally, and
is thus not a constant at the write statement. This implies the ’only if” direction
of (5.2).

Next we show that the construction of the threads ensures that runs not
following the propagation game cannot propagate value 1 to the write instruction.
In particular, if L(r1)N...N L(r,) = 0, no propagating run exists, which implies
the ‘if’ direction of (5.2).

Note first that all runs of 7; are composed of pieces of the form ;(a) and all
runs of 7y of pieces of the form my(a,b) which is easily shown by induction. A
run can now deviate from the propagation game in two ways. First, it can follow
the rules but terminate in the middle of a round:

mo(ai,c1) -mi(er) - ..o mi(er) - .o mpler):
mo(cr, o) - mi(co) - oo mi(ea) - ..o - ma(ca):
To(Cm—1,Cm) - T1(Cm) - - . - Ti(Cm)

Such a run does not propagate the value 1 to the write instruction as KillAll; in
7i(Cp) Te-initializes g, .

Secondly, a run might cease following the rules of the propagation game after
some initial (possibly empty) part. Consider then the first code piece m;(a) or
mo(a, b) that is started in negligence of the propagation game rules. It is not
hard to see that the first statement in this code piece, y; := Z;_1,4 O Yo := Tpq,
respectively, then sets the local variable y; or 39 to zero. The reason is that
the propagation game ensures that variable z;_; , or z, , holds 0 unless the next
statement to be executed according to the rules of the propagation game comes
from 7;(a) or some my(a,b), respectively. The subsequent statement KillAll; or
KillAlly then irrevocably re-initializes all the other variables irrespective of the
behavior of the other threads as we have shown above. Thus, such a run also
cannot propagate the value 1 to the write instruction.

An Owicki/Gries style proof that confirms the crucial ‘if’ direction of (5.2)
can be found in Section 5.9.

5.5 Copy-Constant Detection in Loop-Free Pro-
grams
We may lower our expectation even more, and ban not only procedures but

also loops from the programs. But even then, copy-constant detection remains
intractable, unless P=NP.

Theorem 5.4 The parallel intraprocedural copy-constant detection problem in
loop-free programs is co-NP-complete.
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That the problem is in co-NP is easy to see. If a variable x is not a constant
at a certain program point p, we can guess two runs of the program that witness
different values for x at p. Each of these runs can involve each statement in the
program at most once as the program is loop-free. Hence its length is linear
in the size of the given program. As no arithmetic is involved in copy-constant
detection, only values present in the input program have to be represented such
that the time necessary for guessing the runs is polynomial in the size of the
input program.

Co-NP-hardness can be proved by specializing the construction from Sec-
tion 5.4 to star-free regular expressions. The intersection problem for such ex-
pressions is NP-complete.

An alternative reduction from the well-known SAT problem is presented in
Chapter 10. In contrast to the construction of the current chapter, the reduction
there relies only on propagation along copying assignments but not on “quasi-
synchronization” through well-directed re-initialization of variables. However,
this technique does not seem to generalize to the general intraprocedural and the
interprocedural case.

5.6 Beyond Fork/Join Parallelism

A weak form of synchronization is inherent in the fork/join parallelism assumed
in this chapter, as start and termination of threads is synchronized. The hardness
results of this chapter, however, are not restricted to such settings but can also
be shown without assuming synchronous start and termination. Therefore, they
also apply to languages like JAVA.

The PSPACE-hardness proof in Section 5.4, for instance, can be modified as
follows. Let ¢, d be two new distinct letters and B = AU{c, d}. Now m; is defined
as m;(c - r; - d) and the initialization and the final write instruction is moved to
thread my. More specifically, 7y is redefined as follows:

mo = KillAllg ; 2o, :=1;
loop
M {yo := Tna; KillAllg; oy := yo | a,b € B}
end;
(g := 0 M skip) ; write(z, q)

(Of course the statements KillX; have to re-initialize also the new variables z; .
and z;4.) Essentially this modification amounts to requiring that the prop-
agation game is played with a first round for letter ¢—this ensures a quasi-
synchronous start of the threads—and a final round for letter d—this ensures
a quasi-synchronous termination. Thus,

L(ry)N...N L(r,) # 0 if and only if
Znq is not a constant (of value 0) at the write statement.
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Similar modifications work for the reductions in Section 5.3 and 5.5.

5.7 Owicki/Gries-style Program Proofs

Reasoning about parallel programs is known as a notoriously error-prone activ-
ity. The actions of different threads can interleave in many different ways and far
too easily certain interleavings are overlooked that invalidate an informal argu-
ment for subtle reasons. In order to safeguard against error in our reasoning, we
perform formal program proofs in the style of Owicki and Gries’ classic method
[59, 19, 3] that confirm the critical parts of the reasoning in the reductions. In the
remainder of this section we briefly recall the Owicki/Gries method and in the
following two sections we present the proofs for the critical directions in the un-
decidability proof of Section 5.3 and the PSPACE-hardness proof of Section 5.4.
These sections may safely be skipped on first reading.

The Owicki/Gries method relies on proof outlines which are programs an-
notated with assertions. Assertions are formulas that represent properties valid
for any execution that reaches the program point where the assertion is written
down. As usual we write assertions in braces. The annotation is subject to the
rules well-known from sequential program proofs. For example if an assignment
statement z := e is preceded by an assertion {¢} and followed by an assertion
{1}, then ¢ must imply [e/z], where ¢[e/z] denotes the assertion obtained by
substituting e for x in 1. We assume that the reader is familiar with this style
of program proofs (for details see e.g. [59, 19, 3]).

The rule for parallel programs looks as follows [3, Rule 19]:

The standard proof outlines {p; }S;{q;},
i € {1,...,n}, are interference free

{AZip S S AL 6}

In this rule S} stands for an annotated version of parallel component S; and the
requirement that the proof outlines for the component programs are ‘standard’
means in our context that every atomic statement is surrounded by assertions.

The crucial additional premise for parallel programs is interference freedom.
The following must be true in an interference-free proof outline for a parallel
program: Suppose {¢} is an assertion in one parallel component and S is an
atomic statement in another parallel component that is preceded by the assertion
pre(S). Then {¢ A pre(S)}S{¢} must be valid in the usual sense of partial
correctness. Intuitively, inference freedom guarantees that validity of an assertion
is not destroyed by a thread running in parallel.
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5.8 Correctness of the Reduction in Section 5.3

Let us now formally prove the ‘if’ direction of (5.1). We assume all notations
and definitions of Section 5.3. As mentioned, we prove that just before the write
instruction in 7, the following assertion is valid in the sense of partial correctness,
i.e., that any execution reaching this program point satisfies the property:

Tn=1 = (po,0,0) =" (pn,0,0). (5.3)

Validity of this assertion corresponds directly to the ‘if’ direction of (5.1).

5.8.1 Enriching the Program

Before we discuss proof outlines, we enrich the program m,; by two variables ¢
and c; that reflect the values of the counters. Initialization statements ¢y :=
0 and ¢; := 0 are added to the Init procedure. Furthermore, ¢, and c; are
incremented and decremented at appropriate places in Py, P, Qo, and Q.
(For the purpose of performing the proof we allow more general expressions in
assignment statements.) Specifically, the code pieces of the form

p = xp; KillAllp 5y := p; Py
that represent incrementing transitions in Py and P, are replaced by
p:=xk; KillAllp;co == co + 1y :=p; Py

and the code pieces after the loop in P, that represent decrementing transitions
are replaced by
p:=xk; KillAllp ;¢ :=co — 15y, :=p.

Analogous modifications are made in )y and Q)¢ for counter ¢;. It is obvious
that Assertion (5.3) holds in the modified program if and only if it holds in the
original program as ¢y and ¢; are only used in assignments to themselves. (cp
and c¢; are auzxiliary variables in the formal sense of the term used in connection
with the Owicki/Gries method. It is well-known that the Owicki/Gries method
is incomplete without auxiliary variables [19].)

5.8.2 The Proof Outlines

The assertions in the proof ensure that certain configurations are reachable in M
if a certain variable in 7, holds value 1. We introduce an abbreviation for the
formula expressing this fact:

OK(z,s,co,c1) &= x=1= (p1,0,0) =" (s,co,c1)
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Here x is a variable of the constructed program, s is a state of the two-counter
machine and cy, c; are expressions involving the auxiliary variables from above.
Note that Assertion (5.3) is simply OK(z,, p,, 0, 0).

The proof outline for the body of procedure Main looks as follows. For clarity,
we use a comma to denote conjunction in assertions.

[1] {true}

[2] =z :=1;

[3] {zm=1}

[4] Init

[6] {z1=1,¢=0,c=0 Al ozi=0, A;”,vi =0}

]
]
]
]
]
[6] {co=0, c1 =0, AiL; OK(zi, pi,co,c1), NiZi OK(wi,qi,co,¢1)}
]
]
]
]
]

(7] (Poll Qo);

[8 {co =0, c1 =0, /\?:1 OK(zi, pi, co, 1), /\;11 OK(yi, gi,co,c1)}
[9 (zpn :=0Mskip);

[11]  write(zy,)

The obvious proof outline for Init is omitted. It is easy to see that line [5] implies
the assertion in line [6] as OK(z,s,0,0) trivially holds if z holds 0 or if s is p;.
Also statement [9] is partially correct with respect to the surrounding assertions:
xp, := 0 establishes Assertion [10] for trivial reasons; and validity for skip follows
from the fact that the Assertion [8] implies the Assertion [10] which is obvious.

It remains to show that the statement in line [7], Py || Qo, is partially correct
with respect to the surrounding assertions. For this purpose we show—by inter-
ference free proof outlines—that Py and @ satisfy the following specifications
and apply the parallel rule of the Owicki/Gries method:

{CO = 07 /\?:1 OK(xiapiacmCl)} {Cl = 07 /\:il OK(yi;Qi,CO,Cl)}
Py Qo
{co = 0, Ai=; OK(z4, pi, co, 1)} {er =0, A2, OK(yi, pi, o, 1)}

Simultaneously, we prove similar specifications for P,y and ()4 that are param-
eterized by a constant £ > 0:

{CO = ka /\?:1 OK(wiapiacmcl)} {Cl = ka /\;11 OK(yi,qi,co,cl)}
P Q0
{co =k — 1, A} OK(zi,pi, co, 1)} {er =k =1, A2 OK(yi, 45, co,¢1)}

As we are concerned with partial correctness, it suffices to show that the body
of the procedures satisfy these specification, under the assumption that recursive
calls do.

In the following we present the proof outlines for Py and Py, in detail; the
proofs for )y and @)y are completely analogous. Afterwards we show interference
freedom, a proof that reflects crucial properties of our construction.
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The first goal is to show that the precondition of each procedure is an invariant
of the loop in the body of that procedure. This amounts to proving that each
path through the loop preserves the precondition. Let £ = 0 for the proof in P,
and k > 0 for the proof in P,.

This is the proof for the paths induced by skip-transitions in both procedures
or test-decrement transitions in P :

[11] {CO = k‘, /\?:1 OK(.’Ei,pi,Co,Cl)}

[12]  p:=my;

[13]  {co =k, OK(p,pk,co,c1)}

[14] KillAllp

[15]  {co =k, OK(p,pk,co,c1); NiZivi =0, ¢=0, Ai_; =i =0}
[16] wyi:=p

17 {co =k, /\?:1 OK (=4, pi,co,c1)}

Instruction [16] leaves all variables z; untouched. Hence, it establishes its post-
condition [17], because all z; are ensured to be zero in [15] and OK(z;, p;, co, ¢1)
holds trivially if z; = 0. It may be surprising that the conjunct OK(p, py, co, ¢1)
is not needed in this proof because, intuitively, it captures a crucial property of
the construction. The reason is that the proofs of Py and P,y establish only a
property about the x;. The conjunct OK(p, py, co, ¢1) is, however, important to
ensure interference freedom of [16] with the proof outlines for )y and Qo that
concern the variables y;.

The specification of KillAllp, viz. {[13]} KillAllp {[15]}, is again parameterized
by a constant £ > 0 and is also used in the proof outlines that follow. It is
straightforward to construct a proof outline witnessing this specification: the
variables that have already been re-initialized are collected in an increasingly
larger conjunction.

The proof outline for the paths through the loop bodies induced by incre-

menting transitions is similar but has to reflect the change of the counter. It also

applies the assumption about recursive calls of Py (for kney © +1):

18] {CO = k’ /\?:1 OK(wi’pia007cl)}

19] p:i=xg;
20]  {co =k, OK(p,pk,co,c1)}
21]  KillAllp

[

[

[

[

22]  {co =k, OK(p,pk,co,c1), NiZ1 % =0, ¢=0, AL, zi =0}

23] c:=c+1

24] {co=k+1, OK(p,pr,co —1,c1), Aityvi =0, ¢=0, A;", z; =0}
[
[
[
[

25] y:=p
26] {CO =k+ 1’ /\?:1 OK(wiapiaCO’cl)}
27 Py

28] {co =k, Aj=; OK(zi,pi,co,c1)}
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This completes the proof that the preconditions of F and Py, are loop invariants
and also finishes the proof outline for F,, as its pre- and postcondition coincide
and its body just consists of the loop.

It remains to show that the paths from the loop exit to the procedure exit
in P,y induced by decrementing transitions establish the postcondition from the
loop invariant, i.e. the precondition of P:

[29]  {co =k, ALy OK(zi,pi,co,c1)}

[30]  pi=xp;

(31]  {co =k, OK(p,px,co,c1)}

[32] KillAllp

[33] {CO = k, OK@,pk,Co,Cl), /\;11 Yi = Oa q= 07 /\?:1 Ty = O}

[34] cpi=cp—1;

[35] {co=k—1, OK(p,pk,co+1,c1), Ai19i =0, ¢=0, Ay z; = 0}
[36] yi:=p

37 {co=Fk—1, AiL; OK(zs,pi,co,c1)}

5.8.3 Interference Freedom

Let us now check interference freedom. We look at each type of assignment found
in Qo and (Qx. It is clear that an assignment to a variable z cannot invalidate
conjuncts in assertions that do not mention z. Therefore, we only need to consider
conjuncts in assertions mentioning the variable to which the statement in question
assigns.

e z;, :=0, y; := 0, p:= 0: these re-initializing assignment statements cannot
invalidate any assertion in the proof outlines because all conjuncts that
mention the left-hand-side variable trivially hold if the variable is zero.
This holds in particular for conjuncts of the form OK(z, s, ¢g, ¢1).

e ¢; :==c¢; +1 and ¢; ;= ¢g — 1: all conjuncts of the form OK(p, p, co, ¢1)
or OK(z;, ps, co, c1) could potentially be invalidated by these statements.
All incrementations and decrementations of ¢; are however—in analogy to
[22] and [33]—guarded by a precondition that ensures that p as well as all
variables z; hold zero, which make OK(p, p, co, ¢1) or OK(z;, p;, co, ¢1) true
for trivial reasons.

Note that this argument exploits that the variables are re-initialized in order
to avoid ‘cheating’.

e ¢ := y,: such a statement could potentially invalidate a conjunct of the form
g = 0. However, the conjunct ¢ = 0 appears in assertions only together
with the conjunct A", ;i = 0. In particular this holds in the (omitted)
proof outline for KillAll, because the variables y; are re-initialized before q.
Therefore, q := y;, cannot destroy validity of the assertion.
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Note that it is essential for this argument that the re-initializations in
KillAllp are done in the correct order as discussed in Section 5.3.2.

e 1; := ¢: such a statement could potentially invalidate conjuncts of the form
x; = 0 or OK(zy, py, co, C1)-

All assertions that contain x; = 0 also contain a conjunct ¢ = 0. Thus, we
can argue as for instructions of the form ¢ := y.

For conjuncts of the form OK(zy,p;, co,c1) the argument is more subtle.
Similarly to [15], [24], and [35], z; := ¢ is preceded by an assertion that
ensures in particular that OK(g, gk, co, ¢1 + ¢) holds, where ¢ € {—1,0,1}.
By the construction of m,,, ¢t = —1, 1, or 0 iff there is a transition from
qr to p; that increments, decrements, or leaves the counter ¢; unchanged,
respectively. Now suppose that z; is assigned the value 1 by z; := g,
otherwise OK(z;, py, co, 1) holds trivially. Then clearly ¢ = 1 which im-
plies (p1,0,0) —* (g, co, c1 + z) by OK(q, gk, o, ¢c1 + ). By the transition
from g to p;, this transition sequence can now be extended to a sequence
(p1,0,0) —=* (p;, co, c1). Hence, OK(zy, py, co, ¢1) holds.

It is interesting to observe that the crucial properties of the construction are
reflected in the interference freedom proof rather than the local proofs. Note,
however, that the interference freedom proof exploits the preconditions of the
interleaving statements that are established by the local proofs.

5.9 Correctness of the Reduction in Section 5.4

In this section we provide a formal proof of the ‘if’ direction of (5.2). As in
Section 5.8 we present an Owicki/Gries-style program proof. Specifically, we
show that the assertion

Toa, =1 = L(r)N...NL(ry,) #0 (5.4)

is valid in the sense of partial correctness just before the write instruction in
Main. This suffices to establish the ‘if’ direction of (5.2): if the initialization
Tnq, = 1 belongs to the optimal slice, then there is a run that propagates the
value 1 from the initialization to the write statement; together with validity of
(5.4) at this program point, this implies that L(r{) N...N L(r,) # 0.

5.9.1 Enriching the Program

In order to perform the proof of (5.4), the threads are enriched by auxiliary
variables w;, ¢ = 0,...,n, that take values in A* and record the words guessed
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by the threads m;. For this purpose the definition of 7y and 7;(a) is modified as
follows:

o = loop
M {yo := Znq; KillAllg ;
wo == wo - b;Top :=yo | a,b € A}
end

mila) = vy, =z, 14, :KlAI, ;w; ;=w; -a:2;, = ;.
bl bl
z( ) Yi 1—1,a 5 129 Wi % y Li,a Y;

The other clauses for 7; are left unchanged. The auxiliary variables w; are ini-
tialized with the empty word ¢ in the Main procedure:

procedure Main;

KillXYg ;... ;KillXY, ; Zp4, =13
Wy '=E}...;Wy =€}

[mo || o [ -+ [ 7ma] 5

(20,4, := 0 M skip);

write(zgq, )

end

It is obvious that the addition of the variables w; does not affect validity of
Assertion (5.4).

5.9.2 An Auxiliary Predicate

A crucial property of the constructed program is the following: the fact that a
certain variable holds the value 1 at a certain point in the program means that
the propagation game has been played correctly up to this point in the execution
and is in a certain stage. In the formal proof we try to capture the essence of
this by an assertion on the words w; guessed by the parallel threads so far. To
allow a concise statement of the corresponding assertions in the proof of thread
m;, we introduce a predicate OK(z, i, c) as an abbreviation, where z is a variable,
i€ {l,...,n+ 1} is a thread number (n + 1 stands for thread 7)) and c € A is a
letter.

Intuitively, OK(z, 7, ¢) expresses the following: if variable x holds value 1 then
all threads 57 < ¢ have guessed the same word—as a reference we use word wy—
and all threads 7 > ¢ have guessed the word obtained from wy by removing the
last letter; moreover, c is this last letter. Formally, we define:

OK(./I/', 7:, C) = r = ]. = (/\OS]<Z w() = w] /\ /\i§j<n+1 w() = w] ' C) °

Note that the OK-predicate refers to all the variables w; but does not list them
explicitly in the argument list.
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In the following we discuss first the specification of thread my and then a
generic specification for the threads 7;, 2 = 1,...,n, and give corresponding proof
outlines. Afterwards we present the proof outline for the Main procedure and
discuss interference freedom. Only validity of non-trivial local proof obligations
is discussed in detail.

5.9.3 Proof Outline for 7
The specification for 7y reads as follows:

{/\cEA OK(xn,C’n+ 1’6)} To {/\ceAOK(xn,can+ 1,0)}

Note that pre- and postcondition coincide. The specification is shown to be valid
by proving that the precondition is an invariant of the loop that constitutes my:

[1]  {Acca OK(zn,e,n +1,¢)}

[2] Yo = Tna s

3] {OK(yo,n+1,a)}

4]  KillAlly;

[5] {OK(yO’ n+1, a)’ /\;’L:O /\ceA Tje =0, /\;L:I Yji = 0}
6] wo:=wp-b;

(71 {OK(%0,0,0), Aj_o Aceaic =0, Nj_1y; =0}

8] op =10

9] {Awca OK(Zne,n+1,c)}

In the step from Assertion [5] to [7], only the OK-predicates are of interest. To
see the validity of this step note that OK(yp, n + 1, a) simplifies to

Yo=1 = /\0§j<n—|—1 Wy = Wy

and OK(yj,0,b) to

y0=1 = /\0§j<n+1w0:wj'b'

The step from Assertion [7] to [9] exploits that OK(z,i,c) holds trivially if
z = 0. Interestingly, the conjunct OK(yy,0,b) is not needed for proving the
postcondition [9]. But it is crucial for showing interference freedom of zg; := yo
with the assertion OK(zg4,1,b) that occurs in the proof outline for 7. To be
complete, we should also state a proof outline for KillAlly. But this proof outline
is straightforward: we simply collect the variables that have already been set to
0 in an increasingly larger conjunction.
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5.9.4 Proof Outline for 7;(r)

The specification of thread m;, for i =0, ..., n, reads as follows.
{wi =g, /\CeA OK(xi—l,c: ia C)}
T (5.5)

{w; € L(r), Noea OK(zi—1,c,%,0)}

Thread 7; = m;(r;) is defined by induction on the structure of the regular expres-
sion r;. In order to show validity of (5.5) we show a generalized specification for
m;(r) also by induction on 7:

{wi € L, /\CEA OK(xi—l,Ca i? C)}
mi(T)
{wi € L-L(r), Noea OK(Zi—1,c,7,¢)}

for any language L C A* and regular expression r. Specification (5.5) then follows
by instantiating L by {¢} and r by r;.

Now we discuss the proof outlines in the structural induction on r. The
proof outline for m;(a) is similar to the one of my. We therefore omit a detailed
justification of the local steps.

[10] {’U)Z € L, /\CEA OK(xi—l,ca i, C)}

[11] g =i 10;

12] {w; € L, OK(y;,%,a)}

[13]  KillAll; ;

[14] {wz € La OK(yZa Iia (1,), /\;’L:O /\CEA xj,c = 07 /\jqéz y] = 0}

[15]  w;:=w;-a;

[16]  {w; € L~ L(a), OK(yi,i +1,a), Ai_gAceaTic =0, A, y; =0}
[17] Tia = Yi

(18]  {w; € L-L(a), NcaOK(ziz1,c,i,0)}

Again we should carry out a proof for KillAll; for the sake of completeness, but
this proof is just as straightforward as the proof for KillAlly mentioned above.

The proof outline for m;(r; - 73) is very simple, given that we can apply the
induction hypothesis for m;(r1) and m;(rs):

19]  {w; € L, Nocs OK(Zi—1c,7,¢)}

[20]  m(rq)

[21] {wl eL- L(’I‘l), /\CEA OK(xi_l,c, 1, C)}

[22]  mi(r2)

23]  {ws; € L-L(ry) - L(r2), Neea OK(mi—1,c,%,0)}
[24] {’U)Z eL- L(’I‘l . 7'2), /\cEA OK(-Ti—l,c, 1, C)}
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In the proof for m;(r; + re), we have to show that every component in the
non-deterministic choice comprising m;(r; + r2) satisfies the specification. Using
the induction hypothesis this is again quite easy. Suppose [ € {1,2}. Then

25] {w; € L, N\.csOK(Ziz1,,¢)}

[26]  mi(r)

27]  {w; € L-L(r;), Noea OK(ziz1,c,,0)}

(28] {w; € L-L(ri+72), Neca OK(Zi—1,,%,¢)}

Assertion [27] implies [28], as L(r;) C L(ry + ra).
For 7;(r*) we have to show validity of

{wi €L, /\ceA OK(.’CZ'_LC, 1, C)}
loop 7;(r) end

{wi el - L(T)*, /\ceA OK(-Ti—l,c; i, C)}

We prove that the postcondition is a loop invariant. First of all, it follows from the
precondition because € € L(r)*. Secondly, it is preserved by the loop body, which
follows easily from the induction hypothesis and the inclusion L(r)*-L(r) C L(r)*:

| {wie L-L(r)*, Neea OK(ziz1,,%,0)}

[30]  mi(r)
| {wie L-L(r)*- L(r), NeaOK(zi—1,1,0)}
| A{wi€L-L(r)"; Nea OK(@iz1,,7,0)}

5.9.5 Proof Outline for Main

Now we are ready to give the proof for the Main procedure that relies on the
specifications for the m; proved above. Note that this proof yields that (5.4) is
indeed valid just before the write instruction.

[33]  {true}

34]  KillXYq5...;KillXY,, ;2 g, := 1}

[35] Wy :=€;...,Wyp =€

36]  {Zna =1L AGorma) Tie = 0 Njzo ¥ =0, Njoow; = ¢}
37 [mo [l my |l -+ [l ]

[38] {OK(‘TO,GU L, al)’ /\?:1 w; € L(TJ)}

[39] (%04, := 0Mskip);

[40] {l‘o,al =1 = L(T‘l) Nn...N L(T‘n) 75 @}
[41]  write(zo,, )

It is obvious that Assertion [36] is established by the initialization. It is also easy
to see that [36] implies all the preconditions of the parallel threads: the conjuncts
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w; = € in the preconditions of the m;, i = 1,...,n, are also present in [36]. All
the other conjuncts found in the preconditions have the form OK(z;_1 ., j,c) for
some j =1,...,n+1 and ¢ € A. Of these, the predicate OK(z,4,,n + 1, a1),
which is present in the precondition of 7, holds, because all the variables w;
are guaranteed by [36] to hold the same word ¢; and all the other OK(z;_1, j, ¢)-
predicates are trivially valid as the corresponding variable z;_; . is guaranteed by
[36] to hold the value 0.

All the conjuncts in Assertion [38] are found in the postconditions of the
parallel threads: OK(zg,,,1,a;) is a conjunct in the postcondition of 7 and, for
j=1,...,n, w; € L(r;) is a conjunct in the postcondition of 7;. In the following
section we show that the proof outlines for the threads m; are interference-free.
We can thus conclude by the parallel rule of the Owicki/Gries method that the
step from Assertion [36] to [38] is valid.

Let us now consider the step from Assertion [38] to [40]. First of all, zg,, =1
establishes Assertion [40] for trivial reasons. Correctness of this step for skip
holds, because Assertion [40] is implied by Assertion [38]: as a consequence of
OK(20,,,1,a1), To,e, = 1 implies wy = wj-ay for j = 1,...,n which in turn implies
that all the variables w,, . .. ,w, contain the same word. By AJ_, w; € L(r;), this
word lies in L(r) N...N L(r,), which consequently is non-empty.

5.9.6 Interference Freedom

We now check interference freedom of the local proof outlines for the threads ;,
1=0,...,n. As in Section 5.8 we look at each type of assignment found in one of
the threads and check that it cannot invalidate conjuncts in assertions in other
threads that refer to the left hand side variable of that assignment. Throughout
this discussion, we suppose i,j € {0,...,n} and use i as the subscript of the
thread in which the assignment in question appears. Subscripts of variables and
threads are understood modulo n + 1.

e w; := w; - a in 7;: none of the assertions in a thread different from ;
mentions the variable w;.

® y; == Tj 1, in m;: in other threads m;, j # ¢, variable y; is mentioned
only in conjuncts of the form y; = 0. However, these conjuncts always
appear together with a conjunct z;_; , = 0, which ensures that y; := z;, 1,
does not destroy validity of the assertion. This in particular holds in the
omitted straightforward proofs for KillAll due to the order in which the
re-initializations are performed. The re-initialization order ensures that
variable z;_, , is re-initialized before y;.

® 7;,:=1; in m;: there are two different conjuncts in other threads in which
variable z; , is mentioned. Firstly, it is mentioned in conjuncts of the form
Zio = 0. These, however, appear only together with the assertion y; = 0.
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We can thus argue similar to the case of assignment statements of the form
Yi = Ti—1,a-

Secondly, variable z; , appears in conjuncts of the form OK(z; 4,7+ 1,a) in
assertions in ;1. Here the precondition of z;, = y;, viz OK(y;,7 + 1, a),
ensures that OK(z; 4,7 + 1, a) remains valid.

o y; := 0, or zj. := 0 in KillAll;: the left hand side variable of these re-
initialization statements appears only in conjuncts of the form z = 0 or
OK(z, k,c). Both of them are made true by the re-initialization statement
for trivial reasons.

5.10 Conclusion

In this chapter we have studied the complexity of copy-constant detection in par-
allel programs, in order to pinpoint limitations of synchronization-independent
program analysis. By means of a reduction from the halting problem for two-
counter machines, we have shown that the interprocedural problem is undecid-
able. If we consider programs without procedure calls (intraprocedural problem)
copy-constant detection becomes decidable but is still intractable. More specif-
ically, we have shown it to be PSPACE-hard by means of a reduction from the
intersection problem for regular expressions. Finally, even if we restrict attention
to parallel programs without loops, the problem remains NP-hard. These lower
bounds are tight because matching upper bounds are easy to establish.

It is interesting to contrast the results of this chapter to the detection problem
for strong copy constants. Strong copy constants differ from (full) copy constants
in that only constant assignments are taken into account by the analysis. In
particular, each variable that is a strong copy constant at a program point p is
also a copy constant but not vice versa. The detection of strong copy constants
turns out to be a much simpler problem as it can be solved in polynomial time
(37, 71].

Previous complexity and undecidability results for dataflow problems for con-
current languages [77, 66] exploit in an essential way synchronization primitives of
the considered languages. In contrast our results hold independently of any syn-
chronization. They only exploit interleaving of atomic statements and are thus
applicable to a much wider class of concurrent languages. Our results rely, how-
ever, on the assumption that basic statements execute atomically. We can show
that this assumption is indeed crucial for the undecidability result: in Chapter 9
we show that the interprocedural copy-constants detection problem in parallel
programs can indeed be solved (in exponential time) if this assumption is aban-
doned.

The techniques used here can be used to obtain similar results also for other
optimal program analysis problems, in particular, the detection of truly live vari-
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ables and the computation of optimal slices. In fact, the reductions have been
presented for slicing originally [55]. True liveness of variables is a refinement of
the more well-known notion of live variables that gives rise to a stronger form
of dead code elimination known as faint-code elimination [23]. Program slicing
[80] is an established program-reduction technique that has applications in pro-
gram understanding, debugging, and testing [78]. It has also been proposed as a
technique for ameliorating the state-explosion problem when formally verifying
software or hardware [31, 25, 8, 48].



Chapter 6

Parallel Flow Graphs

In Chapter 5 we have seen that exact copy-constant detection is undecidable for
parallel programs with procedures if we assume that assignments execute atom-
ically, a quite common idealization. However, in many execution scenarios for
concurrent programs this assumption is hardly realistic (see Chapter 7). Thus, it
is interesting to investigate whether these results still hold without the assump-
tion of atomic execution.

Surprisingly, exact copy-constant detection turns out to become decidable,
if assignments execute non-atomically. Specifically, we develop an EXPTIME-
algorithm for this problem as well as for the elimination of faint code. The crucial
new idea is to abstract sets of runs to antichains of short dependence traces, an
abstraction that turns out to be precise relative to a semantics capturing non-
atomic execution of assignments. Based on the information in these antichains
that can effectively be computed in exponential time, the two program analysis
problems mentioned above can then be answered easily. As it is somewhat in-
volved to set up the technical framework for these results, they are spread over
a number of chapters. In the following we briefly outline the contents of these
chapter.

In the current chapter we introduce a flow graph model for parallel programs
(cf. [71, 40, 24]). Edges in the flow graph are annotated with a base statement, a
call of a single procedure, or a parallel call of two procedures. As base statements
we allow assignment statements and the do-nothing statement skip. We assume
that branching is non-deterministic, a common abstraction in flow analysis. We
define a symbolic operational semantics for parallel flow graphs that captures
possible sequences of atomic actions. A sequence of atomic actions is called a
run. The symbolic operational semantics is taken as a basis for defining a number
of run sets of interest, reaching runs, terminating runs, and bridging runs. We
then develop constraint systems that characterize these run sets as the smallest
solution of systems of subset constraints. Setting up these constraint systems
correctly is easier if we assume atomic execution of base statements. Therefore,
in this chapter we still adopt this idealization.

85
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By redefining the operators used in the constraint systems appropriately, we
can capture non-atomic execution of base statements. In Chapter 7 we discuss
why non-atomic execution is a more realistic assumption and develop a corre-
sponding interpretation of the operators in the constraint systems. This results
in a reference semantics that can be used to measure the precision of flow ana-
lyzers relative to non-atomic execution of base statements.

We can perform program analysis by solving the constraint systems over an
abstract lattice with finite chain height by fixpoint iteration (Appendix A). In
Chapter 8 we develop such a lattice, the most important component of which is
given by the antichains of dependence traces mentioned above. We define abstract
interpretations for the operators in the constraint systems on this lattice and show
that these abstract operations are precise abstractions of the operations in the
non-atomic execution semantics. By solving the constraint systems developed in
the current chapter over this abstract lattice, we can thus do ezxact interprocedural
dependence analysis in parallel programs relative to non-atomic execution. This
in turn can be used for exact interprocedural copy-constant propagation and
complete faint-code elimination in parallel programs. Corresponding EXPTIME-
algorithms are developed in Chapter 9.

Although we have not yet been able to fully characterize the complexity of
these two problems in the non-atomic execution scenario, we have made some
progress into that direction (Chapter 10). We show that—as in the atomic execu-
tion scenario—the loop-free intraprocedural problem is NP-complete. While this
implies that also the general intra- and interprocedural problem are intractable it
gives no upper bound for their complexity. As a step into that direction we indi-
cate that the general interprocedural problem is unlikely to be in NP, by showing
that there are dependences that are mediated only by exponentially long runs.
We conjecture that these problems are PSPACE-complete.

6.1 Parallel Flow Graphs

There are two reasons for using a flow graph model instead of syntactic programs
as in Chapter 5. First of all, it is technically more convenient. The nodes of a flow
graph directly correspond to program points. Thus, they provide a natural entity
to associate dataflow information with. In contrast, in a syntactic program model
there is no entity that directly corresponds to a program point and some way to
work around this deficiency has to be found. Nielson, Nielson, and Hankin, for
instance, require in their book [58] that each basic statement and condition in
a program is annotated with a unique label. In the analyses covered in their
book [58] these labels are associated with dataflow information. Using unique
labels identifying base-statement instances as a substitute for program points is
an elegant albeit non-standard approach.

The second reason for using a flow-graph model in this part of the thesis
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is that such a model is slightly more general than a syntactic program model.
It also covers programs with unstructured control flow. This makes the positive
results shown in this part (decidability of various analysis problems) slightly more
general.

It is not hard to describe a translation of syntactic parallel programs as used
in Chapter 5 to parallel flow graphs. Because such a translation is tedious to
specify and does not give any new insight it is omitted from this thesis.

Let X be a finite set of program variables and Expr a set of expressions (or
terms) over X. The precise nature of expressions is immaterial for the moment;
we only need that each variable x € X is also an expression: X C Expr, and that
we can determine for an expression ¢t € Expr the set of variables occurring in ¢,
var(t) C X. Let Stmt := {z :=1¢ |z € X,t € Expr} U {skip} be the set of base
statements. We use stmt to range over base statements.

Formally, a parallel flow graph comprises a finite set Proc of procedure names
that contains a distinguished procedure Main. Intuitively, Main is the procedure
with which execution starts. Each procedure name p € Proc is associated with a
control flow graph G, = (N, E,, Ay, €,,1,) that consists of:

e a set N, of program points;
e a set of edges £, C N, X Ny;

e a mapping A, : B, — Stmt U Proc U Proc? that annotates each edge with
a base statement, a call of a single procedure, or a parallel call of two
procedures; and

e a special entry (or start) point e, € N, and a special return point r, € N,,.

We assume that the program points of different procedures are disjoint: N,NN, =
() for p # ¢. This can always be enforced by renaming program points.

We write N for U epoc Np» E for U eproc Eps and A for (J,cpoc 4p- We also
agree that Base = {e | A(e) € Stmt} is the set of base edges, Call, = {e | A(e) =
p} is the set of edges that call procedure p, and Pcall,, = {e | A(e) = (p,q)} is
the set of edges that call procedure p and ¢ in parallel. Moreover, we write Call
for U, eproc Callp and Pcall for | Pcall, ,.

'p,qEProc

Example 6.1 Figure 6.1 shows an example parallel flow graph with three proce-
dures, Main, p, and q. The entry state of each procedure is marked by an arrow
and the return state is indicated by a doubly circled state. The edge annotation
skip is suppressed for clarity.

The main procedure of the example flow graph sequentially starts procedures
p and q. Procedure p sets variable y to an arbitrary non-negative value and
initializes x by 0. Procedure q has a choice: it can execute either the upper path,
where it starts two new instances of q in parallel, or the lower path, where it
increments x by 2. Note that arbitrarily many instances of q¢ can run in parallel.
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Main: \bD
e

y:=0 z:=0

y=y+1

Figure 6.1: An example of a parallel flow graph.

Upon termination y can hold an arbitrary non-negative number and x can hold
an arbitrary even positive number. O

The purpose of the remainder of this chapter is to set up a number of con-
straint systems, the solutions of which capture certain run sets. In the next
section we define an operational semantics that is useful as a reference point for
setting up these constraint systems correctly.

6.2 Operational Semantics

We define a symbolic operational semantics of parallel flow graphs that specifies
possible sequences of atomic actions. The evaluation of base statements is not
described in this semantics. Thus, the configurations of the operational semantic
represent control information only. In a sequential flow graph control informa-
tion is simply given by a single flow-graph node. In a sequential program with
procedures configurations would consist of sequences of flow-graph nodes. Such
a sequence would model a stack of return addresses (or rather return nodes).
In parallel flow graphs procedures can also be called in parallel. We model this
by generalizing configurations from sequences to trees. Each node of the tree
is labeled by a flow-graph node. Each inner node of the tree has either degree
one—such nodes correspond to return addresses from simple calls or to return
addresses from parallel calls where one of the parallel threads has terminated
already—or degree two—such nodes correspond to return addresses from parallel
calls. The active control points are given by the leaves of the tree. Correspond-
ingly, transitions are induced by the leaves. Transitions are labeled by base edges
e, procedure names p, pairs of procedure names py||p;, or the symbol ret. There
are four transition rules:

Base Step Rule: ¢ — ¢, if e = (u,v) € Base and ¢ results from c by replacing
a leaf labeled u by a leaf annotated with v.
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e
Q E— Q if e = (u,v) € Base

Simple Call Rule: ¢ = ¢, if there is an edge e = (u,v) € Call, such that
¢’ results from ¢ by replacing a leaf labeled u by a tree consisting of two
nodes, a root labeled v and a successor node of the root labeled e,.

Q P . @ if e = (u,v) € Call,
€p1

Parallel Call Rule: ¢ "% ¢, if there is an edge e = (u,v) € Call,, ,, such that
c’ results from ¢ by replacing a leaf labeled u by a tree consisting of three
nodes, a root labeled v with two successor nodes labeled e, and e, .

pollp1
Q — % if e = (u,v) € Pcally, p,
€po €ps

Return Rule: ¢ =5 ¢, if ¢ results from ¢ by removing a leaf labeled by rp for

some p € Proc.
ret &
—»

Note that the father of the node labeled r, may become a leaf after appli-
cation of this rule and may thus become active again. This models a return
to the stacked return address. Just as well, however, the father of the node
labeled 7, may still have a child if it has degree two in ¢ as indicated by
the dotted line in the picture. In this case the father becomes active only
after the second leaf also vanishes. This models synchronized termination
of threads started by a parallel call.

Tp

Note also that the application of this rule to a tree consisting of just a root
results in the empty tree. Such a step models overall termination.
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Let Conf be the set of configurations, i.e., trees the degree of which is bounded
by two and in which each node is annotated by a program point u € N. We
identify each program point v € N with the tree consisting of just a root labeled
with u. We also write nil for the empty tree. A program point v € N is active in
a configuration c, if it labels one of the leaves of c¢. The predicate At,(c) is true
if v is active in ¢ and false otherwise.

Let Label = N U Proc U Proc® U {ret} be the set of transition labels and
——C Conf x Label x Conf be the transition relation defined by the rules above.
We define the transitive generalization = C Conf x Label® x Conf of —, by

£

1 !
= = Id = = =;—3,

. .« . . T
where ;’ denotes relational composition. We write = for U, ¢ apex =.

6.3 Atomic Runs

A sequence of base edges is called an (atomic) run. Correspondingly, the set of
atomic runs is Runs = Base®. The classification ‘atomic’ refers to the fact that
flow-graph edges constitute atomic entities of execution; in Chapter 7 we shall
consider non-atomic runs at length. We define for a label sequence [, [ to be the
run obtained from [ by retaining just the base edges and removing everything
else:

7l if | € Base

A~

i for r € Label*, | € Label.
7  otherwise

d=c¢ and rl= {
In the following we are going to set up constraint systems for a variety of run
sets. These constraint systems use the following small number of operators and
constants on run sets.

Semantics of base edges: [e] = {(e)} for e € Base. This characterizes the run
induced by a base edge in isolation.

Sequential composition operator: R;S = {rs|r € R,s € S}. This charac-
terizes the sequential composition of run sets.

Interleaving operator: In order to define the interleaving (or parallel compo-
sition) operator some notation is needed. Let r = (ey, ..., e,) be a sequence
and I = {i1,...,1;} a subset of positions in 7 such that 1 < i; <iy < --- <
ir < n. Then r|I is the sequence (e;,,...,e; ). We write |r| for the length
of r, viz. n.

Then the interleaving of R and S is defined by

R®S = {r|3lg,Is: IgUIlg={1,...,|r|},IgNIs =10,
rlIr € R,r|Is € S, }.
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Prefix operator: pre(R) = {r | 3s : rs € R}. This captures prefixes of the
runs of R.

Postfix operator: post(R) = {r | 3s : sr € R}. This captures postfixes of the
runs in R.

Alternatively, atomic runs may be defined as sequences of base statements
instead of base edges. The only thing that needs to be changed is to re-define
Runs as Stmt* instead of Base™ and to re-define [e] by [e] = {(A(e))}. The other
operators are not affected by this change. In this setting we should also re-define
the hat-operator to incorporate the transition from base edges to base statements:

7-A(l) ifl € Base

) . for r € Label, [ € Label.
7 otherwise

€ = ¢ and ﬁ:{

The remainder of this chapter can be read with both interpretations.

By re-defining the operators on run sets, we can obtain non-standard seman-
tics. On the one hand, this is used in Chapter 7 for defining a semantics for
parallel flow graphs in which execution of base edges is no longer assumed to
be atomic. On the other hand, we can re-define these operators on an abstract
domain with a finite chain height. Over such a domain we can effectively solve
the constraint systems to be introduced soon. If we can show that all operators
are correct or even precise abstractions of the concrete operators on atomic or
non-atomic run sets, standard abstraction theorems from abstract interpretation
ensure that the solution we get is a correct or even precise abstraction of the run
sets characterized by the constraint systems. This is the idea of constraint-based
program analysis.

6.4 The Run Sets of Ultimate Interest

We are ultimately interested in setting up constraint systems that characterize
for each u € N the following sets of runs:

Reaching runs: R(u) = {# | exyin = ¢, At,(c)}.
Terminating runs: T(u) = {7 | epain = ¢ == nil, At,(c)}.

In dataflow analysis one considers forward- and backward-analyses. Forward-
analyses calculate abstractions of the reaching runs and backward-analyses ab-
stractions of the terminating runs.

We are also interested for all program points u,v € N in the set of those runs
that potentially transfer information from u to v. We call these the bridging runs
from u to v, or u-v-runs for short.

Bridging runs: B,(u) = {7 | epain = cu = c,, Aty (cy), Aty(cy)}
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In the sections that follow, we present constraint systems that characterize
the above run sets. That is: the smallest solution of these constraint systems
consists of the run sets defined above. In addition to the above run sets, auxiliary
run sets are necessary in order to formulate these constraint systems. These
auxiliary run sets are stepwise introduced. We always explain the underlying
intuition and outline the correctness proof but leave the details of the proof
to the reader. The constraint systems for same-level, reaching and terminating
runs are essentially taken from [71] where, however, they are not justified with
reference to an explicitly given underlying operational semantics. The constraint
system for bridging runs is new.

6.5 The Constraint Systems

6.5.1 Same-Level Runs

First of all, we characterize so-called same-level runs. Same-level runs of proce-
dures capture complete runs of procedures in isolation.

Same-level runs of procedures: S(q) = {# | e, = nil} for ¢ € Proc.
As auxiliary sets we consider same-level runs to program nodes.

Same-level runs to program nodes: S(u) = {7 | e, = u} for u € N, q €
Proc.

Same-level runs of procedures form an important building block for the other
constraint systems. They play a similar role to summary edges in interprocedural
program analysis:' the same-level runs of procedure ¢ summarize the complete
effect of call edges e € Call,. Also the complete effect of a parallel call edge
e € Pcall,, ,, is obtained easily from the same-level runs of procedures p, and p;:
it is given by S(pg) ® S(p1)-

The same-level runs of procedures and program nodes are the smallest solution
of the following constraint system:

[S1] - S(q) 2 S(ry)

[52] S(eq) 2 {e}

[S3]  S(v) D S(u);|e], if e = (u,v) € Base
[S4]  S(v) D S(u);S(p), if e = (u,v) € Call,
[S5]  S(v) D S(u);[S(pe) @ S(p1)], if e=(u,v) € Pcall, ,,

It is easy to see that the same-level runs satisfy all constraints:

Indeed, the information associated with a summary edge for p usually is an abstraction of
the same-level runs of p.
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[S1]: A same-level run of the return point of procedure ¢ gives rise to a same-level
run of ¢ by the Return Rule.

[S2]: It follows trivially from the definition that ¢ is a same-level run of the entry
point of a procedure.

[S3]: If e = (u,v) is a base edge, we get a same-level run to v by extending a
same-level run to u with e by the Base Steps Rule.

[S4]: If e = (u,v) is an edge that calls p, we get a same-level run to v if we extend
a same-level run to u by a same-level run of p: we follow the execution
underlying the same-level run to v and apply then call p according to the
Simple Call Rule; we then follow the execution underlying the same-level
run of p (with v waiting on the stack to become active) and return to v
according to the Return Rule.

[S5]: Similarly, if e = (u,v) is an edge that calls py and p; in parallel, we can—
after seeing a same-level run to u—follow this edge; then py and p; are
performed to completion in parallel, which results in an interleaving of a
same-level run of py and p;; after that, execution returns to v. We thus
obtain a same-level run to v by extending a same-level run of u with an
interleaving of same-level runs of py and p;.

On the other hand, we can easily prove by induction on the length of the
transition sequences inducing same-level runs, that each same-level run lies in
any solution of the constraint system, in particular in the smallest one: in the
base case we consider the empty execution €. It can only give rise to the same-
level run € to e, for some procedure ¢. But ¢ is enforced to lie in any solution of
S(rp) explicitly by constraint [S2].

In the induction step, we consider longer executions leading to same-level
runs. The execution underlying a same-level run of a procedure ¢ necessarily
involves a final return from r, after an execution that gives rise to a same-level
run of r,. The latter execution is one step shorter and thus the same-level run
of r, is contained in any solution of S(r,) by the induction hypothesis. Now, the
constraint [S1] ensures that it is also contained in the set assigned to S(¢) in a
solution.

The last step of a non-empty execution r inducing a same-level run 7 to a
program point v must be induced either by the Base Rule or the Return Rule
because the Simple and Parallel Call Rule never lead to a configuration which
consists of just a single state. If the last step is induced by the Base Rule, the
previous configuration is a program point u. Then 7 is composed of a same-level
run to v and the base edge e = (u,v). The same-level run to u is induced by
a shorter execution and hence contained in the set associated with S(u) in any
solution by the induction hypothesis. Thus, 7 is in S(v) by the constraint [S3].
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If the last step is induced by the Return Rule, then there must be a simple or
parallel call from which this step returns. The constraints for simple and parallel
call edges ([S4] and [S5]) together with the induction hypothesis then ensure that
7 is contained in S(v).

6.5.2 Inverse Same-Level Runs

We also consider a kind of dual to same-level runs of program points: runs from a
program point to the return point of the corresponding procedure. We call these
inverse same-level runs of program point. They are needed in order to capture
terminating runs.

Inverse same-level runs of program points:
Si(u) = {# | u == nil} for u € N.

Inverse same-level runs of procedures and program nodes are obtained by back-
wards accumulation as the smallest solution of the following system of con-
straints:

[SH] S'(rg) 2 {e}

[SI2]  Si(u) D [e]; Si(v), if e = (u,v) € Base
[SI3]  Si(u) D S(p);Si(v), if e = (u,v) € Call,
[SI4]  S'(u) D [S(po) ® S(p1)];S'(v), ife= (u,v) € Pcally, ,,

The last two constraints refer to same-level runs of procedures. Therefore, it
appears that we need to calculate same-level runs before we can calculate inverse
same-level runs by the above constraint system. However, by adding for each
procedure g € Proc the constraint

[ST5] S(q) 2 S'(eq)

we can calculate same-level runs of procedures simultaneously with inverse same-
level runs. Thus, we can also calculate inverse same-level runs in isolation if we
wish to do so.

It is easy to see that the sets of inverse same-level runs satisfy all constraints:

[SI1]: By the Return rule, ¢ clearly is an inverse same-level run of the return point
rq of a procedure.

[SI2]: If e = (u,v) is a base edge, we get an inverse same-level run of u by prefixing
a same-level run of v with e.

[SI3]: If e = (u,v) is an edge that calls p, we can follow this edge in an execution
from wu; then first p is performed until termination, which results in a same-
level run of p; after that execution proceeds at v. We thus obtain an inverse
same-level run of u by prefixing an inverse same-level run of v by a same-
level run of p.
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[SI4]: Similarly, if e = (u,v) is an edge that calls py and p; in parallel, we can
follow this edge in an execution from u; then first py and p; are performed
to completion in parallel, which results in an interleaving of a same-level
run of pg and p;; after that execution returns to v. We thus obtain an
inverse same-level run of u by prefixing an inverse same-level run of v with
an interleaving of same-level runs of py and p;.

On the other hand, we can easily prove by induction on the length of the
transition sequences inducing inverse same-level runs, i.e. those that lead to nil,
that each inverse same-level run is in the smallest solution of the constraint
system: in the base case we consider the shortest executions that lead to same-
level runs. These are executions of the form 7, " nil for some procedure p. They
witness that ¢ € S(r,). But ¢ is enforced to be in a solution of S(r,) explicitly
by constraint [SI1].

In the induction step, we consider longer executions leading to same-level
runs. These necessarily start with a transition induced by a base edge, a simple,
or a parallel call edge. The resulting run is then composed from shorter runs as
specified in the constraints for base edges ([SI2]), simple calls ([SI3]), and parallel
calls ([SI4]), respectively.

6.5.3 Two Assumptions and a Simple Analysis

The following two assumptions simplify the constraint systems that follow:

ASS1: every program point u € IV, in a procedure g can be reached by a same-
level run from the entry point e, of ¢:

Vg € Proc,u € N, : S(u) # 0.

ASS2: from every program point v € N, the return point r, can be reached by
a same-level run:

Vq € Proc,u € N, : S'(u) # 0.

These assumptions are not as innocent as it may seem at first glance. In particular
it does not suffice to require that there are paths from e, to u and from u to r,
in the flow graph G, for ¢. This is just a necessary but not a sufficient condition.
The paradigmatic counter-example is a procedure that calls itself and has no
bypassing terminating branch:

Although there is a path from e, to r, in the flow graph, no execution can reach
rq from e,, as there is no terminating bypass of the recursive call of g. Hence
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both S(r,) and S'(e,) are empty. Examples like this show that we cannot assume
without loss of generality that practical flow graphs satisfy ASS1 and ASS2.

While assumptions ASS1 and ASS2 simplify the presentation and justification
of the constraint systems in the remainder of this chapter, they are not strictly
necessary. We can well design constraint systems that work in the general case,
but they are more complex and therefore harder to explain. In order to avoid
overloading the presentation we decided for a two-phase presentation, where we
first present and justify the simpler constraint systems that work if ASS1 and
ASS2 are satisfied. Afterwards we explain the changes for the general case, cf.
Section 6.5.7.

In order to compute the information needed to decide ASS1 and ASS2, we
design a simple analysis procedure based on an abstract interpretation of the op-
erators and constants used in the constraint systems. The information computed
by this analysis is also used for setting up the constraint systems for the general
case. We work with a two point domain (D = {L, T}, <) ordered as L < T. The
idea is that L represents emptiness of a run set and T non-emptiness. This is for-
mally captured by the abstraction mapping « : 28" — D, defined by a(0) = L
and a(R) = T for R # (). Obviously, « is universally disjunctive. We define the
abstract interpretation of the operators by

vfy=ac@y=any, pref(z)=post¥(z) ==z, [e]f ={}¥=T

for x,y € D, e € E. It is easy to see that the abstract operators are precise
abstractions of the corresponding operators on run sets: a sequential or parallel
composition of two run sets is non-empty iff both arguments are non-empty; the
set of prefixes and the set of postfixes of a run set R are non-empty iff R is;
and each base edge gives rise to a non-empty run set. In other words, a is a
strong homomorphism in the sense of Appendix A. Therefore, by solving the
constraint systems for same-level and inverse same-level runs over the abstract
interpretation we get precise information about the emptiness of the sets of same-
level and inverse same-level runs of program points.

This analysis is cheap: as (D, <) has chain height two, the information for each
constraint variable can change at most once in the fixpoint iteration. By standard
demand-driven fixpoint evaluation, we can organize the fixpoint computation such
that each operator in the constraint system is evaluated at most once. Thus, the
computation can be done in time O(|E| + |Proc|), the number of operators in
the constraint systems. As in all practical flow graphs out-degrees of program
nodes are bounded, typically by 2 and |Proc| is trivially bounded by |N| as each
procedure has a distinguished entry node, this is O(|N|). In the following we
assume that this analysis has been done such that for each program node v and
procedure g the information whether S(u), S'(u), S(q), or S'(¢) is empty or not is
readily available.

Another analysis that can determine information about reachability of pro-
gram points in parallel flow graphs has been described by Seidl and Steffen [71]
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as an instance of their generic analysis framework for solving gen/kill dataflow
problems for parallel programs.

6.5.4 Reaching Runs

As auxiliary sets for characterizing the runs that reach a program point u, we
consider the runs that reach u from a call to procedure gq.

Reaching runs from procedures: R(u,q) = {# | e, = ¢, At,(c)} for u € N,
q € Proc.

With this definition, we obviously have R(u) = R(u, Main). Hence we are done
with characterizing reaching runs if we succeed in characterizing reaching runs
from procedures. The latter can be done by the following constraint system:

[R1] R(u,q) 2 S(u), if u € N,
[R2] R(u,q) O S(v);R(u,p), if (v,.) € E,NCall,
[R3] R(u,q) 2 S(v);[R(u,p:) ® pre(S(pi-i))], if (v,-) € E;NPcally, p,

The last clause is meant to specify two constraint for s = 0 and ¢ = 1.
The reaching runs satisfy the constraints:

[R1]: Firstly, each same-level run of u clearly is also a reaching run of w.

[R2]: Secondly, if we have a program point v in ¢ that has an outgoing edge calling
p—the situation described in the second constraint—we obtain a run that
reaches u from ¢ when we extend a same-level run # to v with a run 7/
that reaches u from p (where r and r' are the underlying executions). The
corresponding execution is this: first we follow r; this brings us to v where
we call p; we then follow r' (with the target node of the edge (v, ) € Call,
on the stack).

[R3]: Thirdly, consider a program point v in ¢ that has an outgoing edge calling
po and p; in parallel, the situation described in the third constraint. Similar
to the second case, we get a run reaching u by extending a same-level run
of v with a run that reaches u in the parallel call. The latter can happen
either in pg or p; hence the two cases with 7 = 0, 1. Now until p; has reached
u in p; the other procedure p;_; can perform a prefix of a same-level run.

On the other hand, the constraint system captures all the ways how u may be
reached from e,. There are just three possibilities: either u is on the same-level,
in a simple call, or in a parallel call. These case are completely covered by the
constraints.

Note that assumption ASS2 is crucial for making the constraint for parallel
calls sufficiently rich. If it is violated, the partial run exhibited by p;_; while p; is



98 CHAPTER 6. PARALLEL FLOW GRAPHS

in the process of reaching u must not be a prefix of a same-level run. For example,
the following procedure g might execute z := e arbitrarily often, although S(q)
and hence pre(S(q)) is empty.

A possible remedy is described in Section 6.5.7.

6.5.5 Terminating Runs

The approach for capturing terminating runs is dual to the one for reaching runs.
As auxiliary sets we consider terminating runs of « in a call to procedure gq.

Terminating runs in procedures: T(u,q) = {7 | e, = ¢ = nil, At,(c)} for
u € N, q € Proc.

Obviously we have T(u) = T(u, Main) such that it suffices to capture terminating
runs in procedure calls in the constraint system. The constraint system is dual
to the one for reaching runs:

[T1] T(u,q) D Si(u), ifu e N,
[T2] T(u,q) 2 T(u,p);S (w), if (L, w) € E,N Call,
[T3] T(u,q) 2 [T(u,p;) ® post(S(pi—i))]; S (w), if (,,w) € E,N Pcally,p,

Again, ¢ = 0,1 in the last constraint. The justification of this constraint system
is similar to reaching runs; therefore, the details are left to the reader. We
should mention, however, that assumption ASS1 is crucial here, like ASS2 in
the case of reaching runs, but for a quite different reason. The fundamental
difference is the requirement that the configuration ¢ with At,(c) is reachable
(e, = ¢) in terminating runs, a requirement that has no analogue for reaching
runs. As a consequence, post(S(p1_;)) is now sufficient to capture the interleaving
potential in the constraint for parallel calls even in the general case, in contrast
to pre(R(pi1_;)) in the corresponding constraint for reaching runs.

However, the reachability requirement for configuration ¢, implies that some
of the constraints are not satisfied by the sets T(u,q) in the general case. For
example, an inverse same-level run r from a program point u € IV, is not always a
terminating run. Being an inverse same-level run just means that u == nil holds,
but for a terminating run we additionally need e, = u. This is automatically
true if ASS1 is valid but can be wrong in the general case. Similarly, we need that
the start node of the edge e in the second and third constraint can be reached
for making the constraints valid for the operationally defined sets. A possible
remedy is to remove the constraints induced by non-reachable program points.
This is detailed in Section 6.5.7.
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6.5.6 Bridging Runs

Let v € N be a fixed program point. We want to determine the bridging runs
B,(u) for each u € N as defined in Section 6.4. As a first step we capture for
each program points u the runs that reach v, when execution is started directly
with u. We call these the simple bridging runs of u w.r.t. v.

Simple bridging runs: B (u) = {# | u = ¢, At,(c)} for u € N.

The simple bridging runs can be characterized as the smallest solution of the
following constraint system:

BS1 B(v) 2 {2}

[BS2] B%(u) 2 [e]; B¥(w), if e = (u,w) € Base
[BS3] B%(u) 2 S(p); B*(w), if e = (u,w) € Call,
[BS4] B%(u) 2 B'(ep), if e = (u,-) € Call,
[BS5] B*(u) 2 [S(po) @ S(p1)]; B*(w), if e = (u,w) € Pcally, ,,
[BS6] B*(u) 2 B®(ep,) @ pre(S(p1-i)), ife=(u,_) € Pcally, ,,

The last constraint is again included for z = 0, 1.

Let us explain why these constraints cover all the ways how v can be reached
from u. If u = v then there is the trivial way to reach v from wu: by the empty
execution; this is covered by Constraint [BS1]. Otherwise, we must proceed via
an outgoing edge (u,w) of u. If this is a base edge e = (u,w), we first see e and
then a run that reaches v from wj this is covered by Constraint [BS2]. If e is an
edge that calls a procedure p, we distinguish two cases: either v is reached after p
has terminated—this case is covered by Constraint [BS3]—or v is reached during
the execution of p—this case is covered by [BS4]. Similarly, if e is a parallel call
of two procedures py and p;, we can reach v either after both procedures have
terminated, which is covered by [BS5]. Or we can reach v in one of the called
procedures p;. In this case we see a run from e,, that reaches v interleaved with
a prefix of a same-level run of procedure p; ;. If assumption ASS2 is violated
we must again reckon with procedure p; ; providing runs that are not prefixes of
same-level runs, as was the case for reaching runs. We can solve this problem as
for reaching runs, cf. Section 6.5.7.

The reader should face no difficulties in persuading himself, that the B®(u)
sets indeed solve all constraints.

As a second step we determine the bridging runs in a call to a procedure:

Bridging runs in procedure calls:
B,(u,q) = {7 | e => cu == ¢,, Aty(c), At,(c)} for u € N.

Clearly, we have B,(u) = B,(u, Main) such that we are done, when we have
successfully captured B, (u, ) for all u, q.
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Basically, there are two ways how a bridging run may occur in a call to gq.
One possibility is that both u and v are reached in the same simple or parallel
call in q. This case is captured by the following three types of constraints:

[B1] B(u,q) 2 B(u,p), if e € E, N Call,
[B2] B(u,q) 2 B(u,p;) @ post(pre(S(pi1—:))), ife€ E;NPcally,,,
B3] B(u,q) D pre(T(u,p;)) ® post(R(v,p1—i)), if e € E,;NPcally,p,

[B2] and [B3] apply for i = 0, 1.

Constraint [B1] captures the case that u and v are reached in the same simple
call. Constraint [B2] is concerned with the case that u and v are reached in the
same procedure p; of a parallel call. Before u is reached in p; the other procedure
can already perform certain actions and it need not run to completion until v is
reached. Therefore, p;_; contributes a middle piece of a same-level run. Potential
middle pieces can be characterized by pre(post(S(p;_;)) as captured by the second
constraint. Constraint [B3] captures the case that u is reached in procedure p;
and v in procedure p; ;. After p; has reached u it can further proceed; specifically
p; contributes a prefix of a run from T(u) until v is reached in p; ;. In order to
reach v, p;_; must execute a run from R(v,p; ;). It can execute a prefix of this
run before p; leaves u. Therefore, we see a postfix of a run from R(v, p;_;) as part
of the bridging run.

The second possibility is that v and v are not reached in the same simple or
parallel call. This gives rise to the following constraints:

[B4] B(u,q) 2 B%(u), if u € N,
[B5] B(u,q) 2 T(u,p); B*(w), if (L,w) € E,NCall,
[B6] B(u,q) 2 [T(u,p;) ® post(S(pi-i))]; BS(w), if (,,w) € E, NPcally, ,,

where 7 = 0,1 in the last constraint.

The first subcase is that u is reached on same-level, i.e. in the current instance
of g. Then we see a simple bridging run of u (Constraint [B4]). The second
subcase is that u is reached in a procedure p called by a simple call edge e =
(L, v) € E;. Then we see a run from T'(u,p) followed by a simple bridging run
from w (Constraint [B5]). The third subcase is that u is reached in a procedure
p; called by a parallel call edge e = (_,v) € E,. Then we see a run from T'(u, p;) ®
post(S(p1_;)) followed by a simple bridging run from w (Constraint [B6]).

6.5.7 The General Case

In this section we describe the changes that are necessary in the general case, i.e.,
if assumptions ASS1 and ASS2 are potentially violated.

As explained in connection with constraint [R3] one of the problems is that
in the general case pre(S(q)) does not capture all partial runs of procedure q.



6.5. THE CONSTRAINT SYSTEMS 101

[P1] P(q) 2 P(e,)

[P2] P(u) 2 {c}

[P3] P(u) D [e]; P(v), if e = (u,v) € Base
[P4] P(u) D P(p), if (u,_) € Call,
[P5] P(u) D S(p); P(v), if (u,v) € Call,
[P6] P(u) 2 [P(po) ® P(p1)], if (u, v) € Peallyy p,
[P7] P(u) 2 [S(po) ® S(p1)]; S'(v), if (u,v) € Peallyp,

Figure 6.2: A constraint system characterizing finite prefixes.

Thus, interleaving R(u,p;) with pre(S(pi—;)) does not capture all possible run
that reach uw in a parallel call. This problem also arises in constraints [BS6|
and [B2]. A possible remedy is to introduce new variables P(q), ¢ € Proc, that
characterize finite prefixes of (finite or infinite) runs, i.e. P(q) = {# | e, = ¢},
and to use P(p;_;) instead of pre(S(p1—;)) in [R3], [BS6], and [B2]. A simple way
to calculate P(g) is to add a constraint of the following form for each procedure
g and program point u to the constraint system for reaching runs:?

[P] P(q) 2 R(u,q).

While this way of calculating P(q) is easy to specify it has the disadvantage of
introducing |N| - |Proc| new constraints, i.e. quadratically many. Although this
does not spoil the overall asymptotic complexity—already the constraint system
for reaching runs has O (| N|-|Proc|) constraints—we should mention that P(q) can
be calculated also by O(|N|) constraints. A corresponding constraint system is
given in Fig. 6.2. It determines as auxiliary information finite prefixes of (finite or
infinite) runs from program points, defined by P(u) = {# | u == ¢} by backwards
accumulation and is similar to the constraint system for simple bridging runs.
A similar problem arises in constraint [B3]: if assumption ASS2 is violated,
pre(T (u,p;)) does not necessarily capture all partial runs exhibited by p; after
reaching u because u could be reached at a configuration from which termination

21f we are working with a non-atomic interpretation of assignments we must use the following
constraint instead of [P]:

[P'] P(q) 2 pre(R(u,q))-

In the atomic interpretation, any configuration c¢ satisfies At, (c) for at least one program point
u. Therefore, the simpler constraint [P] without the pre-operator is sufficient. In the non-
atomic interpretation, however, there are (implicitly) transient configurations that correspond
to intermediate stages of executions in which no program point is active. Fortunately, from
all transient configurations ¢ a configuration ¢’ with some active program point is reachable.
Therefore, we can capture the runs to transient configurations by means of the pre-operator.
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Q1] Q(u,q) 2 P(u), if u € S,

Q2] Q(u,q) 2 Q(u,p), if (v,.) € E, N Call,
Q3] Q(u,q) 2 T(u,p); P(w), (v, w) € E,N Call,
[Q4] Q(u,q) 2 Q(u,pi) ® post(P(p1-i)), if (v,) € Eq N Cally, p,
[Q5] Q(u,q) 2 [T'(u, pi) ® post(S(pi1-i))]; P(w) , if (v,w) € Eq N Cally,p,

Figure 6.3: A constraint system for partial runs that can be exhibited in a pro-
cedure after a given program point has been reached. All constraints [Q1]-[Q5]
are only for program points v with S(v) # 0. In [Q4] and [Q5], 1

is impossible. The information needed in place of pre(T'(u,p;)) is Q(u, p;) where
Q(u,q) = {# | e, = ¢ = ¢, At,(c)} for u € N, ¢ € Proc. These sets can be
characterized by the constraint system in Fig. 6.3

The above changes ensure that the run sets characterized by the constraint
systems are sufficiently large. They are necessary to make flow analysis based on
abstract interpretation of the constraint systems sound. The changes described
now ensure that the run sets do not become too large. Thus, they are necessary
to make analyses based on a precise abstract interpretation complete.

As explained in connection with terminating runs, constraints induced by
unreachable program points are not satisfied by the run sets (defined from the
operational semantics) that we intend to characterize. As these constraints pose
unnecessary additional requirements they make the solutions larger than neces-
sary. Fortunately, such constraints are also unnecessary for soundness and can
simply be removed. Specifically, we must include the constraints [T1], [B1], and
[B4] only for program points u with S(u) # @, and the constraints [T2], [T3],
[B2], [B3], [B5], and [B6] only for edges e = (v, w) with S(v) # (). We have seen
in Section 6.5.3, that we can determine this information with a very simple and
cheap analysis.

With the changes described in this section we obtain constraint systems that
are both sound and complete in the general case.

6.6 Discussion

In this chapter we have introduced parallel flow graphs. After that we defined
a symbolic operational semantics. It works on configurations that take the form
of a tree, the nodes of which are annotated by program points. Intuitively, such
a tree models a generalization of a run time stack that may branch to parallel
stacks in addition to the common stack operations. Branching is crucial to model
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parallel calls. We have described the transitions of the operational semantics by
rules that work directly on configurations of this form.

There are obvious alternatives to this way of describing the operational se-
mantics: in particular, we could have used the approach chosen by Esparza,
Knoop, and Podelski in their work on flow analysis of parallel programs [16, 17].
They map a parallel flow graph to a so-called PA-processes; PA is a process alge-
bra which has both a sequential and a concurrent composition operator [5, 43].
Execution of PA-processes in turn is described by a structured operational se-
mantics (SOS) [61]. In this way they could apply results about model-checking
of PA-processes to flow analysis. For our purposes the approach chosen here is
sufficient and produces less notational overhead.

Based on the operational semantics we have defined a number of run sets of
particular interest and have then developed constraint systems that characterize
these run sets. The constraint systems for same-level runs and reaching runs are
essentially the ones used by Seidl and Steffen [71]. Also the constraint systems
for inverse same-level runs and terminating runs are indicated in their work.
The constraint system for bridging runs, however, is completely new. A further
difference is that Seidl and Steffen postulate their constraint systems, while we
use an operational semantics as a reference point. While this might be considered
a minor or even trivial difference, in our opinion an operational justification of
the constraint systems largely increases our understanding of what exactly is
specified by the constraint systems.

Many reasonable variants of the run sets in question may be considered. For
example, one could define reaching runs by

R'(u) = {7 | emain = ¢ => ¢, Aty (0)}.

This definition deviates from the standard definition in that it considers only
configurations ¢ from which termination is possible, i.e., it characterizes the runs
that both reach v and can be completed to a terminating run. In general, if
assumption ASS2 is violated, this definition gives rise to smaller run sets than the
standard definition. It might be preferable, if one is interested in terminating runs
of programs only, like in total correctness reasoning. Similarly, many reasonable
variants of the other run sets are conceivable and by techniques similar to the
ones of Section 6.5.7 sound and complete constraint systems for these variants
can be constructed. Operational specifications of the run sets in question allows
to distinguish these variants much more clearly than implicit specifications by
means of constraint systems.

Validating constraint systems with respect to an operational semantics has
another advantage: it helps to uncover subtle bugs. In the absence of an oper-
ational semantics, Seidl and Steffen, for instance, fail to notice that constraint
[R3] in the constraint system for reaching runs is not rich enough to characterize
all reaching runs in a parallel composition if assumption ASS2 does not hold. We
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detected this error while trying to justify the soundness of the constraint system.
As a consequence their constraint system for reaching runs is unsound in the
general case. To be fair, we should note that this does not affect the soundness
of their analysis procedure that is not directly based on the constraint system for
reaching runs. We should also say that they solve the problems that arise when
assumption ASS1 is violated correctly. Here they validly propose to remove edges
leaving unreachable program points before the analysis. This has essentially the
same effect as the side conditions of the form S(u) # () added to the various
constraints in Section 6.5.7.



Chapter 7

Non-Atomic Execution

The idealization that assignments execute atomically is quite common in the
literature on program verification as well as in the theoretical literature on flow
analysis of parallel programs. However, in a multi-processor environment where
a number of concurrently executing processors share a common memory this
assumption is hardly realistic. In such an environment two threads of control may
well interfere while each of them is in the process of executing an assignment. The
reason is that assignments are broken into smaller instructions before execution.

As a simple example, consider a program consisting of two parallel assign-
ments both incrementing a shared variable z:

z=zx+1||z:=2+1.

Let us assume that x holds 0 initially. If assignments execute atomically, this
program clearly will increment = twice and so terminate in a state in which
variable = holds 2. However, in a multi-processor environment this program may
well set z to 1. For example, the following execution may happen: first, one of
the processors accesses the memory in order to get the value of z. While it is in
the process of incrementing this value, but before it has written back the result,
the second processors may access the memory, too, in order to get the value of z.
In such a run, both processors read the initial value 0 for x, both will increment
just this value, and both will write back 1 for x. Consequently, the program will
terminate in a state where x holds 1 instead of 2.

In order to be more specific and, at the same time, keep the discussion simple,
let us assume that the processors are stack machines. Then a compiler might
generate the following piece of code for the assignment z := x + 1:

PUSH x
PUSH 1
ADD

POP x

DB W N -
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Using unprimed numbers for the statements of the first processor and primed
numbers for the statements of the second one, the two processors may then, e.g.,
execute their instructions in the following order:

1,2,1,2/,3 4'.3,4.

We leave it to the reader to check that this execution indeed increments = just
by 1.

The morale of this discussion is that, in the real world of multi-processor
execution, we cannot assume atomic execution of assignments. What we typically
may safely assume, however, is that single reads of variables and single writes of
variables are atomic, because the access to the memory is usually synchronized,
e.g., through a common bus.

This said, we should mention that there are indeed execution scenarios for
concurrent programs that guarantee atomic execution of assignments. In par-
ticular in a time-shared multi-tasking environment, where concurrent execution
of threads is simulated by a single processor that switches between execution
of code pieces implementing the different threads, assuming atomic execution of
assignments may be safe, if context switches happen only between assignments,
but not in the process of executing the code implementing a single assignment.
The built-in scheduler of the Transputer, for instance, performs context switches
only after certain types of instructions that typically end execution of assignment
code [30].!

Note how non-atomic execution of assignments was modeled in the above
example: first each assignment was broken into the smaller instructions of the
stack machine; each of these instructions may be considered as an atomic unit
of execution. Then the two threads 1,2,3,4 and 1’,2',3',4" of more fine-grained
stack machine instructions was interleaved. This example tells us that we can
develop an interleaving semantics for parallel programs that adequately models
non-atomic execution of assignments by means of breaking assignments into more
fine-grained atomic actions, an observation that is exploited in a moment.

The purpose of this chapter is to provide parallel flow graphs with an inter-
leaving semantics that models non-atomic execution of assignments adequately.
For this purpose we define a domain NR of sets of (non-atomic) runs and pro-
vide adequate definitions for the constants and operators used in the constraint
systems in Section 6.5. Specifically, we provide

e an interpretation [e] € NR for the non-atomic runs of a base edge; and

!The Transputer designers have chosen this strategy in order to make context switches
cheap and fast. In typical code, the contents of certain registers used for expression evaluation
is no longer needed after such instructions. Therefore, these registers are not stored during
context switches, which makes context switches fast. Actually, it is the compiler writer’s task
to ensure that the generated code does not rely on the registers keeping their contents after
such instructions. Atomic execution of assignments in typical code is a neat side-effect of this
design.
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e interpretations for the operators ;, ®, pre, and post used in the constraint
systems.

Solving the constraint systems from Section 6.5 over this new interpretation im-
mediately gives us adequate definitions for the reaching, terminating, and bridg-
ing runs of a parallel flow graph when assignments execute non-atomically.

7.1 Modeling Non-Atomic Execution by Virtual
Variables

Suppose given a parallel low graph and let X be the set of program wvariables
which the statements of the flow graph refer to. In order to explain the meaning
of non-atomic statements appropriately suppose furthermore given an infinite set
V of virtual (or internal) variables disjoint from X. Intuitively, virtual variables
are used to store intermediate results that are private to the threads. The parallel
composition (or interleaving) operator defined later ensures that parallel threads
do not interfere on virtual variables. We use the letters z,y to range over X, u, v
to range over V', and the letters a, b to range over X U V.

For the purpose of the semantics, assignments are split into atomic opera-
tions. As an example consider an assignment statement x := e(yy, ..., yx) in the
program; x, ¥, - .., Y, are program variables. There are many sensible atomicity
assumptions. For example, we could work with the rather pessimistic assump-
tion that just reads and writes of variables are atomic, then = := e(y1, ..., yx) is
replaced by a sequence of assignments

Un(1) 3= Y(1) ;- - - Un(k) °= Yu(k) ; T = €(V1, ..., V) ,
where vy, ..., v are arbitrary distinct virtual variables and 7 is a permutation
of {1,...,k}. The idea is that the other threads can execute atomic operations

between these assignments.

More coarse-granular atomicity assumptions can be captured in a similar way.
If we assume, for instance, that the evaluation of the right-hand-side expressions
is atomic then we would replace = := e(yi, ..., yx) by

vi=e(Yr, ..., Uk) ;T = 0.

The important observation is the following: whatever the specific atomicity as-
sumption may be, if we assume that the execution of all assignments is non-
atomic, then all assignments in a run that refer to a program variable on the left
hand side have only virtual variables on the right hand side. Thus, all assignments
belong to the set

Asg = {a:=e(b,....b) |aeX = b,....bye L}.
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pliq p
Main: \‘Oi>@ Main: \Dﬂ»@
r=x+1 w=x+1 x=u
b: H:) p: \)—»()—»(:)
r=x+1 v=x+1 x=v
q: H:) q: \)—»()—»(:)

a) Original program. b) Transformed Program.

Figure 7.1: Introduction of virtual variables.

pllp pllp
Main: \‘O—>@ Main: \Oi>@
ni=x+1 w=z+1 x=u
b: H:) p: \)—»()—»(:)

a) Original program. b) Transformed Program.

Figure 7.2: Confusion of virtual variables.

One way of obtaining a semantics for non-atomically executing assignments
is to transform the assignments in the program prior to semantic interpretation.
As an example consider the program in Fig. 7.1(a) which corresponds to the
example discussed in the introduction. We could transform it to the program in
Fig. 7.1(b) and then apply the standard interpretation.

The problem with this approach is that we must be careful not to confuse
virtual variables of different threads. This is simple if only instances of differ-
ent procedures run in parallel: then we can simply use different names for the
virtual variables in different procedures. However, it becomes problematic if dif-
ferent instances of the same procedure may run in parallel like in the program
in Fig. 7.2. Then we must model the virtual variables by local variables of the
procedures which is not supported by the flow-graph model developed up to now.
Therefore, we are using a different approach. We do not transform flow graphs
but incorporate the transformation implicitly into the semantic interpretation of
assignments.

Before we turn to the technical details of the new semantic interpretation we
revisit the example from Section 5.1 in order to show that it makes a difference for
constant detection whether base statements are assumed to execute atomically
or not. This example illustrates that the main mechanism underlying the un-
decidability proof of interprocedural parallel constant detection from Chapter 5
does not carry over to the non-atomic case.
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(& Original program (b) A virtua variable has been introduced

Figure 7.3: Introduction of a virtual variable.

7.2 A Motivating Example

Consider again the following program for which a control flow graph-like repre-
sentation is shown in Figure 7.3 (a):

a:=1;[(b:=a;b:= 0;c:= 0; write(c)) || ¢ :=b].

Assume first that assignment statements execute atomically. From Section 5.1
we know that under this assumption variable ¢ is a (copy) constant of value 0
at the write instruction. Let us briefly recall the underlying reasoning. In any
execution ¢ := 0 must be executed either after or before ¢ := b in the parallel
thread. If it is executed after ¢ := b then c holds 0 at the write statement because
0 is assigned to c in the last executed assignment, ¢ := 0. On the other hand, if
¢ := 0 is executed before ¢ := b then also the initialization of b, b := 0, must have
been executed before ¢ := b such that ¢ := b also loads the value 0 to c.

The situation is dramatically different if assignment statements may execute
non-atomically. In particular, if the assignment ¢ := b in the second thread is
executed non-atomically, the first thread may execute the two statements b := 0
and ¢ := 0 that kill b and c after b is loaded from the shared memory but before the
loaded value is stored to c. This results in a run of the program that propagates
the value 1 from the initialization ¢ := 1 to the final write-statement.

As explained in the previous section, we may model the two stage non-atomic
execution of ¢ := b by splitting it into two assignments v := b and ¢ := v, where v
is a new virtual variable that cannot be accessed by the first thread (cf. Figure 7.3
(b)). We can think of virtual variable v as representing the register in which the
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value loaded from the common memory is stored. This register is private to the
second thread and therefore there can be no interference on this variable. As
there is no interference on virtual variable v, we can consider each of the virtual
assignments v := b and ¢ := v to be atomic. The resulting program has the run

r={a:=1b:=a,v:=b,b:=0,c:=0,c:=v,write(c)) .

which—as the reader can easily verify—propagates the value 1 from the initial-
ization a := 1 to the write-statement. Thus, run r witnesses that c is not a copy
constant at the write statement, in sharp contrast to the state of affairs under
the assumption that assignments execute atomically.

7.3 The Domain of Non-Atomic Run Sets

A (non-atomic) run r is a sequence of assignments from the set Asg defined above:
Runs = Asg®. We write virtual(r) for the set of virtual variables appearing in run
r and denote the empty run by ¢ and the concatenation operator by an infix dot
or just by juxtaposition.

As the specific choice of virtual variables is immaterial, we assume that all
considered sets of runs are closed under bounded renaming of virtual variables.
This allows a simple and adequate definition of the composition operators. In
order to allow a technically clean treatment of this assumption, let = C Runs x
Runs be the equality of runs up to bounded renaming of virtual variables, i.e.
r = r' hold if and only if 7’ can be obtained from r by bounded renaming of
virtual variables.

Proposition 7.1 = is an equivalence. O

For a set of runs R C Runs we write R= for the closure of R w.r.t. =:
R=={re€Runs |3 €eR:r=r"}.

Obviously, this defines a closure operator.

Proposition 7.2

1. RC R=.
2. (R)==R=.
3. RC S implies R= C S=. O

The domain NR is given by the sets of runs that are closed under =:
NR={RCRuns| R=R7}.

The members of NR model sets of runs in a scenario where assignments execute
non-atomically.

Lemma 7.3 (NR,C) is a complete lattice with least element Lyg = and great-
est element Tyr = Runs.
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Proof. (NR,C) is a sub-lattice of the power set lattice (28", C). To show this,
we have to check, that NR is closed under arbitrary intersections and unions.

Here is the proof for intersection. Suppose R C NR and r,7' € Runs with
r = r’. We have to show that » € (R if and only if 7 € (R which is sim-
ple:

T e ﬂR
iff  [Definition of (R]
VRER:r€R

iff [R CNR, hence all R € R are closed under =]
VReR:1"€eR

iff  [Definition of (R]
r' e ﬂR

The proof for unions is just as simple and, therefore, omitted.

The least and greatest element of (Runs, C) are () and Runs, respectively. It
is obvious that both of them are closed under = and hence are also the least and
greatest elements, respectively, of (NR, C). O

In the sections that follow we provide definitions for the operators and constants
appearing in the constraint systems and show their well-definedness.

7.3.1 Base Statements

We can work with various atomicity assumptions as discussed above. The most
natural and conservative one is that just single reads and writes of variables are
atomic. This is captured by defining the semantics of an assignment statement,
[z :=e] € NR, where yi,...,y; are the variables appearing in e, as the set of
runs of the form

<U7r(1) = Yr)s - - -5 Un(k) = Yn(k), T 1= 6(’[)1, R Uk)> )

where 7 is a permutation of {1,..., k} and vy, ..., vy are arbitrary distinct virtual
variables. It is readily verified that [z := e] is well-defined, i.e., that [z := €] €
NR. We have to show that [z := €] is closed under = which is obvious as we
admitted an arbitrary choice of virtual variables.

We may also work with a more coarse-grained semantics of assignments. For
our purposes the choice is arbitrary, as the dependence trace abstraction of an
assignment will be precise with respect to any of these definitions.

Obviously, the only non-atomic run of statement skip is the empty run.
Hence, [skip] = {¢}. Obviously, [skip] € NR.
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The non-atomic runs induced by a base edge e € Base are the non-atomic
runs of the statement associated with e: [e] = [A(e)], where A(e) is the base
statement associated with base edge e in the underlying flow graph.

7.3.2 Sequential Composition

The sequential composition operator, - ;- : NR x NR — NR, which is written as an
infix operator, is defined by

R;S={r-s|r € R,se S virtual(r) Nvirtual(s) = 0}~

Recall that - denotes concatenation of sequences. The condition about the lo-
cal variables ensures that runs composed sequentially do not interact on local
variables. It could be replaced by a condition that in a run all local variables
are initialized before they are used. However, the latter condition would not be
preserved by the pre-operator and, therefore, we prefer the chosen solution. The
outer closure operator ensures that ; is well-defined

7.3.3 Interleaving Operator

In order to define the interleaving (or parallel composition) operator some nota-
tion is needed. Let r = (ey,...,e,) be a sequence and I = {iy,...,ix} a subset
of positions in r such that 1 < iy < iy < -+ < i < n. Then r|I is the sequence
(€iyy---,€i,). We write |r| for the length of r, viz. n. The interleaving operator,
® : NR x NR — NR, which we write in an infix form, is defined by

R®S = {r|3IgIs: IxUls={1,...,|r|}, Iz N Is =0,
r|Ig € R,r|Is € S,virtual(r|Ig) Nvirtual(r|Is) = 0}=.

The condition about the local variables in r|Ir and r|Is ensures that parallel
threads do not exchange values via local variables. The application of the closure
operator (-)= guarantees well-definedness: R® S € NR for R, S € NR.

Suppose 7, s,t € Runs with virtual(r) Nvirtual(s) = (). We call ¢ an interleaving
of r and s if

AL, 1, LUl ={1,... ||}, L0 L, =0,t|I, =rtl,=s

and denote the set of interleavings of r and s by r ® s.

7.3.4 Pre-Operator
The pre-operator, pre : NR — NR is defined as follows:

pre(R) = {r€Runs|3r' € Runs:r-r' € R}.

Lemma 7.4 pre is well-defined.
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Proof. We have to show that, for any R € NR, pre(R) is closed under =. So
suppose given 7,$ € Runs with s = r € pre(R). Then there is ' € Runs with
r-r" € R. By bounded renaming of local variables in 7’ we can construct a run s’
such that s-s' =r-r'. As R is closed under =, s-s' € R and hence s € pre(R).0

7.3.5 Post-Operator

Analogously to the pre-operator, the post operator post : NR — NR is defined as
follows:

post(R) = {r €Runs|3r' €Runs:r'-re R}.

Lemma 7.5 post is well-defined. O

7.4 Conclusion

We have defined a complete lattice (NR,C) the members of which model sets
of runs in a scenario in which assignment statements execute non-atomically.
In order to enable an interleaving semantics to adequately capture the effect of
non-atomic execution of assignments, we resorted to virtual variables that model
storage locations that are private to threads.

The members of NR are those sets of runs that are bounded under renaming
of virtual variables. We have provided definitions for the operators and con-
stants appearing in the constraint systems that capture reaching, terminating,
and bridging runs in a parallel flow graph. The (smallest) solution of these con-
straint systems over this new interpretation induces a new semantics of parallel
flow graphs that captures non-atomic execution of assignments. The new seman-
tics provides a reference point for assessing flow analyses that are performed by
means of an abstract interpretation of the constraint systems. We will put this
idea to advantage in Chapter 8 where we show that the dependence trace inter-
pretation developed there is a precise abstraction of the non-atomic interpretation
of parallel flow graphs.
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Chapter 8

Dependence Traces

We can indirectly detect copy constants and eliminate faint code on the basis of
the following information: given a program point u and a variable = of interest;
when control is at another program point v, which variables ¥y may influence
the value of z at u? This information is the abstraction of u-v-runs (bridging
runs) to the set of dependences mediated by these runs. Here we mean by a
dependence mediated by a run r a pair of variables (z,y) such that the value of
y after execution of r depends on the initial value of x (cf. Section 8.1 for the
formal definition).

In Section 6.5 a constraint system characterizing the set of bridging runs of
a given parallel flow graph was given. We would like to perform the analysis by
evaluating this constraint system over an abstract interpretation. Unfortunately,
we cannot use dependences themselves as abstract domain because, in general,
we cannot obtain the dependences of a parallel composition of run sets from
the dependences of the components (cf. Section 8.2). Therefore, an abstraction
employing just dependences cannot be sound and complete at the same time. We
need to collect more information in the abstract domain.

In this chapter, we introduce an adequate abstract domain from which on
the one hand dependences can be inferred easily and for which on the other
hand abstract operation can be defined that mirror precisely the corresponding
operations on sets of (non-atomic) runs.

The basic idea is to collect not only dependences but sequences of dependences
(dependence sequences) that can successively be mediated by a run. For example,
the run 7y = (¢ := b, e := d) has ((b, ¢), (d, e)) as one of its dependence sequences.
This dependence sequence plays a dual role: on the one hand, it captures the
potential of r; to mediate the dependence (b,e) if a parallel run fills the gap
between ¢ and d (like, e.g., 7o = (d := ¢)) and, on the other hand, its potential
to successively fill the gaps (b,c) and (d,e) in a parallel run (like, e.g., in r3 =
(b:=a,d:=c, f:=e¢).

Further information must be collected. To see why, compare the run r, =
(b:=0,c:=b,e:=d,e:=0) to r;. Unlike 71, 74 does not have the potential to
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mediate the dependence (b, e) if a parallel run fills the gap between ¢ and d, but
it is still able to successively fill the gaps (b, ¢) and (d, e) in a parallel run. The
difference is that in r4, unlike in r;, the part of the run before b is read and
after e is written is not transparent for b and e, respectively. Therefore, we refine
dependence sequences to dependence traces in which we record in addition to a
dependence trace by two Boolean values, whether the parts of the run before the
source variable of the first dependence is read and after the target variable of the
final dependence is written are transparent for these variables. Run r; for instance
has the dependence trace (1,{(b,c),(d,e)),1) which r, has not, but both share
the dependence trace (0, {(b, c), (d,e)),0). In order to allow a proper propagation
of transparency information in sequential composition, we furthermore collect in
the abstraction the set of variables for which a transparent run exists.

According to these ideas, we can abstract a set of (non-atomic) runs R to a
pair (T, Dg) consisting of the set of variables

Tg = {x | 3Ir € R:ris transparent for z}
and the set of dependence traces
Dgr={7|3r € R: 7 is a dependence trace of r}.

On this abstraction of run sets, we can indeed define abstract operators that
precisely mirror the operators on sets of non-atomic runs that are used in the
constraint systems of Section 6.5. However, we are not yet done. The problem is,
that this abstract domain is not effective, because Dy can be infinite. In order
to obtain an effective domain, we have to go one step further.

For this purpose, we define a subsumption order, written C, on transition
traces. The intuition is that a transition trace 7 is subsumed by another transition
trace 7' if 7' has fewer gaps than 7—we write this as 7 C 7' (cf. Section 8.4).
Intuitively, 7' is more useful than 7 in forming dependences. We then collect
for a run set only the transition traces that are maximal with respect to the
order C. This set forms an antichain with respect to C. It is not hard to show
that all C-maximal dependence traces of a run set are short in a certain sense
made precise in Section 8.6. As there are only finitely many short dependence
traces this makes the abstract domain finite, such that we can effectively perform
fixpoint calculations.

Summarizing, the abstract domain consists of pairs (D, T) where D is an C-
antichain of short dependence traces and 7T is a set of variables. It is not hard to
define on this domain abstract counterparts to the sequential composition opera-
tor and to the pre- and post-operator on run sets and to show that these abstract
operators are precise abstractions of the concrete ones. It is also straightforward
to abstract the run sets associated with base edges precisely.

The interleaving operator, however, poses some complication. The natural
way to compose two transition traces 7 and 7' concurrently is to use 7 to fill gaps
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in 7" and vice versa. This was our motivation for considering transition traces in
the first place; a precise formalization of this idea is given through the relation C
in Section 8.11.1. However, if 7" is a transition trace obtained in this way from a
transition trace 7 of a run r and a transition trace 7’ of a run 7', it is not obvious
that there is always a run constructed by interleaving r and 7’ that has 7"’ as one
of its transition traces. Otherwise the abstraction would be imprecise. Indeed this
would fail for run sets deriving from an atomic interpretation of base statements
but we can show this for run sets deriving from a non-atomic interpretation of
base statements.

On the other hand, short transition traces can be obtained from non-short
ones in this way. There is thus some reason to suspect that we cannot obtain all
C-maximal dependence traces of the interleaving R; ® Ry of two run sets from the
C-maximal dependence traces of the components. This would make the abstract
operator unsound. Fortunately, we can show that this is not the case. The main
insight is covered by a shortening lemma, Lemma 8.38.

As an auxiliary notion we introduce a further order on dependence traces,
called the implication order which is written as <. Its name is justified by the
fact that any run r that has 7 as a dependence trace also has 7' as a dependence
trace, if 7 < 7'. Therefore, the implication order captures implied knowledge
about dependence traces of runs, hence its name. The implication order is crucial
in particular for a concise formulation of the shortening lemma mentioned above.

In the remainder of this chapter we elaborate these topics in detail.

8.1 Transparency and Dependences

A run r is called transparent for a variables a if it does not contain an assignment
with a as left hand side variable. Thus, a run is transparent for « if its execution
is guaranteed not to change the value held by a.

Example 8.1 The run {a:=0,b:=c) is transparent for all variables except of
a and b, in particular for c. O

A dependence is a pair d = (z,y) of program variables z,y € X. We call z the
source variable and y the destination variable of d. A run r is said to mediate the

dependence (x,y), if there are variables aq, ..., a;, | > 0, expressions ey, ..., e,
and (sub-) runs rq, ..., r; such that
l.r=rg-{a;:=e1) -1 -{ay:=ey)-T9-...-{(a:=e) -1y

2. a0 =2, q =y;
3. e; contains a;,_1 for i =1,...,1; and

4. r; is transparent for a; for : =0, ..., L.
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Example 8.2 The run (b:=0,b:=a,c:=b,e:=0, f := e) mediates the depen-
dences (a,b), (a,c), and (b,c) but not the dependence (e, f) because e is killed by
the assignment e := 0 before it is read. O

8.2 Dependence Traces

In general, the dependences of the interleaving R ® Ry of two sets of runs cannot
directly be inferred from the dependences of the component run sets R; and Rs.
As an example, consider the two sets of runs R; := {(b:=a,d := ¢)} and R, :=
{(b:=a),(d := c¢)}. Both mediate just the dependences (a, b) and (c,d). But the
interleaving of R; with Rz := {(c:=b)} contains the run (b:=a,c:=b,d := ¢)
that mediates the dependence (a,d) while there is no run in the interleaving of
Ry and Rj3 that mediates this dependence.

Thus, an abstraction of sets of runs that faithfully mirrors dependences must
collect more information than just dependences. We propose to employ depen-
dence traces that are defined in the remainder of this section.

The basic idea is to collect not just dependences but sequences of dependences
that can successively be mediated by a run. For example, we would record the
sequences ¢ = ((a,b), (¢, d)) for the run r; = (b := a,d := ¢) from R; but not for
R,. Intuitively, ¢ shows us that r; could mediate a dependence from a to d if a
parallel component fills the gap from b to c¢. Dually, it also indicates that r; can
successively fill the gaps (a, b) and (c, d).

A dependence sequence is a sequence ¢ = {((z1,Y1),---, Tk, Yx)), & > 0, of
dependences. We also allow the empty dependence sequence . This mostly
smoothens the exposition that follows but sometimes requires a special treatment.
We write ZE for x; and 5 for yg, if @ # &; if ¢ = ¢, (SE and 5 are undefined. We
denote the set of transfer sequences by DS.

Example 8.3 ¢ = ((a,b), (z,y)) is a dependence sequence with 0= a and p= Y.
O

As explained in the introduction to this chapter, we must distinguish between
runs like r; above and runs like 7| := (a := 0,b := a,d := ¢,d := 0) by means of
initial and final transparency bits. Unlike 71, 7} does not have the potential to
mediate the dependence (a, d) if the gap (b, ¢) is filled by a parallel run but like
r1 it can successively fill the gaps (a,b) and (c, d).

A dependence trace is a triple 7 = (¢, ¢, k) consisting of Boolean values ¢, k €
B = {0,1} coding initial and final transparency and a dependence sequence ¢.
We assume that ¢« = 0 and Kk = 0 if ¢ = . The set of dependence traces is
denoted by DT:

DT ={(t,¢,k) e BXDSxB|p=c=(t=0Ak=0)}.
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The dependence trace 7 = (¢, ((x1,%1), - - -, (Tk, Yx)), &) is called compatible with
a run r, r - 7 for short, if there are sub-runs %y, ..., %, r1,..., 7, such that

1. 7 =toritire -« - Tity;

2. r; mediates the dependence (x;,y;) fori=1,... k;
3. + =1 implies that %, is transparent for x;; and

4. k =1 implies that ¢ is transparent for y.

In this case, we call tgritiry - - - 7xt; a decomposition of r that witnesses r F 7.
Note that r - (0,¢,0) holds for all runs r as witnessed by the trivial decompo-
sition = ¢y. The trivial dependence trace (0,¢,0) allows us to distinguish the
dependence trace abstraction of an empty run set from the abstraction of a run
sets without interesting dependence traces.

Instead of saying “7 is compatible with r” we often use the phrase “7 is a
dependence trace of r”.

Example 8.4 Consider the runr = {(a:=0,b:=a,c:=b,c:=0, f :=e,e:=0).
One of the dependence traces of r is T = (0,{(a,c), (e, f)),1) as witnessed by the
decomposition r = toritiroty where

a:=0b:=a,c:=bc:=0,f:=e,e:=0.
e~ —— Y

to r1 t1 ro to
Another decomposition witnessing T is

a:=0,b:=a,c:=b , g:zO,f:je,e::Q )

to r1 ti=¢ T2 la=e

The run r has also many other dependence traces, e.g., (1,{(b,c), (e, f)),1) and
(1,{(e; ), 1) 0

Ultimately, we are interested in dependence traces without gaps that code com-
plete transfers from one variable to another one, where a gap can either be a lack
of initial or final transparency or a hole from y; to x;.;. The other dependence
traces are needed only to compute these perfect dependence traces in a composi-
tional fashion. Thus, the dependence traces of ultimate interest are those of the
form (1, (x,y),1). They correspond to dependences.

Proposition 8.5 7+ (1, (z,y),1) if and only if r mediates the dependence (z,y).
O



120 CHAPTER 8. DEPENDENCE TRACES

We can abstract a set R of runs to the set Dg := {7 | 3r € R : r - 7} of com-
patible dependence traces and it is possible to define precise abstract operators
on this abstraction.! However, this abstraction is not effective, because Dy, is in
general infinite.

Fortunately, it is not necessary to collect all compatible dependence traces in
the abstraction, in order to describe the potential for forming dependences with
a parallel context. It suffices to retain only certain short dependence traces in
the abstraction that subsume the potential of all the other ones. A number of
definitions and observations are necessary to make this precise. However, before
we turn to the technical development, let us illustrate this kind of subsumption
by a small example.

Consider the two dependence traces 71 = (1, (a,b) - (¢,d) - (e, f),1) and 7, =
(1, (a,d) - (e, f),1). Intuitively, both have the gap (d, e) but 7; has the additional
gap (b, ¢). If a run r of a parallel context can successively fill the two holes in 71—
i.e. if r is compatible with the dependence trace 13 = (0, (b, ¢)-(d, €), 0)—it can also
fill the single hole in 75—i.e. 7 is then also compatible with 7, = (0, (d, €),0). Two
interesting relationships between dependence traces popped up in this discussion.
On the one hand, 7 is “subsumed” by 7’ in the sense sketched above as it has
fewer gaps. On the other hand 7, is “implied” by 73 as it has less dependences:
any run having 73 as a dependence traces also has 7, as a dependence trace.

We now define two orders on the set of dependence traces that capture these
two relationships, the “implication order” and the “subsumption order”.

8.3 Implication Order

Let <C DT x DT be the smallest reflexive and transitive relation on the set of
dependence traces that satisfies

1 (b, (z,y) -, k) < (L, -, k), if opF£FeVi=0and ¢ # eV Kk =0);
2. (1,¢,k) < (0,¢,k); and
3. (t,0,1) < (4, ,0).
Proposition 8.6 < is a partial order on DT called the implication order. O

The implication order < allows us to weaken the information in a dependence
trace in two ways. First of all, we can omit dependences (1.); here we must be
careful not to omit the first or last dependence if the corresponding transparency
bit is set, as otherwise the transparency bit might become invalid. Secondly, we

1For sequential composition we also need the set of variables for which a transparent run
exists in order to allow a proper propagation of the transparency bits.
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Figure 8.1: Illustration of implication and subsumption order.

can weaken the information about the transparency of the inital or final part of
the run, by changing the transparency bits from 1 to 0 (2. & 3.).

The most appealing fact about < is that it preserves compatibility, which
justifies the name “implication order”.

Proposition 8.7 (< preserves compatibility) Suppose r = 7 and 7 < 7'.
Then r 7', O

Example 8.8 Consider the dependence trace T = (1,{(a,b), (c,d)),0), which is,
for instance, compatible with the run r = (b:=a,c:=0,d :=c¢,d :=0). Here is
a list of the dependence traces that are implied by 7:

o= (0: <(a’ b)’ (C, d))? 0)

2 = (1,{(a,b)),0)

3 = (0,((a,b)),0)

T = (0,{(c,d)),0)

5 = (0,¢,0)
i.e., we have 7 < 1; fori=1,...,5. All of them are dependence traces of r. But
we do not have T < 14 for 7 = (1, (¢, d)),0). And indeed, 4 is not a dependence
trace of r because variable c is killed before it is read in 7. O

8.4 Subsumption Order

A transfer information with fewer gaps is more useful for the construction of
dependences. We now define the subsumption order = C DT x DT. Intuitively,
T C 7/ captures that 7’ has fewer gaps than 7 and thus subsumes the potential of
7 for forming dependences with a cooperating parallel context, hence the name
subsumption order. We define C as the smallest transitive and reflexive relation
that satisfies

(Lo (zy)-¢ - (@, y)-¢" k) E (Lo (2,9) - ¢",K).

In Figure 8.1 we illustrate the difference between the implication and the sub-
sumption order. For simplicity, we only show the dependence sequences and omit
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the transparency bits. In the top row we show a dependence trace 7, in the middle
row a dependence trace 7' that is implied by 7, and in the bottom row a depen-
dence trace 7" that subsumes 7. With the implication order, dependences can
be omitted (and transparency bits weakened). In contrast with the subsumption
order, gaps are removed.

It is obvious from the defining rule that a transfer sequence 7' that prop-
erly subsumes another transfer sequence 7 embodies a strictly shorter transfer
sequence. Therefore, C satisfies the ascending chain condition.

Proposition 8.9 C is a partial order on DT that satisfies the ascending chain
condition: every strictly increasing sequence T C To C - - - 1S finite. O

Note that dependence traces of the form (1, (z,y), 1), which by Proposition 8.5
correspond to dependences, are maximal w.r.t. . This simple observation is
important, as it implies that we cover all dependences even when we only consider
C-maximal dependence traces.

8.5 A Lattice of Antichains

An antichain with respect to C (or C-antichain for short) is a set D C DT of
dependence traces satisfying

-dr7eD:rCT.

We denote the set of C-antichains by AC. We can lift the subsumption order to
AC as follows:

DC D = VreD3IreD :r7C 1.

The intuition is that D' subsumes D, if every dependence trace in D is subsumed
by some dependence trace in D'. We call C the antichain order. This is justified
by the following lemma.

Lemma 8.10 C is a partial order on AC.

Proof. It is straightforward to show that C is reflexive and transitive. Let us
show that C is also antisymmetric and hence a partial order:

Suppose D C D' © D. We show that D C D', the reverse inclusion follows
analogously. Suppose 7 € D. Then there is 7/ € D' with 7 C 7" as D C D'.
Because of D' C D, there is 7”7 € D with 7" C 7”. Thus, we have

D>rC7CreD.

As D is an antichain, this implies that 7 = 7”. Consequently, all these three
dependence traces must be equal: 7 =7 = 7. But then 7 = 7" € D" a



8.5. A LATTICE OF ANTICHAINS 123

A simple way to form an C-antichain out of an arbitrary subset D C DT is to
consider the set of C-maximal elements in D. We denote this set by D':

D'={reD|-3'e€D:7C7}.

The dependence traces in DT subsume all dependence traces in D. In this sense,
no interesting information is lost when going from D to D'.

Lemma 8.11 (" subsumes) For any T € D there is a v € D' such that 7 C 7'.

The lemma follows from the ascending chain condition.
The operator T is a co-closure operator that yields C-antichains.

Lemma 8.12 (' is a co-closure operator)
1. D' C D.
2. (DYt = D
3. D' is an C-antichain.

4. ()" is monotonic: D C E implies D' C ET.

The proof of these properties is straightforward.

By 3., (-)T is an operator from 2PT to AC, by 4., this operator is monotonic.
Indeed, as we will see in a minute, ()" is the lower adjoint of a Galois connection
between 2°T and AC. Before we elaborate this, let us show that the C-antichains
together with the lifted subsumption order form a complete lattice.

Lemma 8.13 (AC,C) is a complete lattice. The least upper bound (lub) of a
subset D C AC is | | D := (IUD)" and the least element of (AC,C) is Lac := 0.

Proof. In order to show that (AC,C) is a complete lattice, it suffices to demon-
strate that any subset D C AC has a least upper bound. We show that, as
claimed in the lemma, E := (|JD)" is indeed the least upper bound of D.

Firstly, E is an upper bound of D: we have to show that D C FE for any
D € D, which is seen as follows:

TeD

= [D € D, definition of | D]
T E UD

=  |[Lemma 8.11, definition F]
e E:rC 1.
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Secondly, F is smaller than any other bound D: suppose F' is an arbitrary up-
per bound of D. Then E C F follows from the following chain of implica-
tions:

TeFE

= [Definition E, Lemma 8.12(1.)]
T E UD

= |Definition of | D]
dDeD:7e€D

= [DLC F as F'is an upper bound of D, definition C]
eF:7CT.

The least element of (AC,C) is Lac =[]0 = (0)T = 0. O

Let us consider another operator on sets of dependence traces, the downwards
closure operator (-)*. It is defined for sets D € DT by

Dt={reDT |37 eD:7C7'}.

We can apply (-)* in particular to antichains. Thus, we may consider (-)¥ as an
operator (-)¥ : AC — 2PT. Tt is not hard to see that (-)* is monotonic.

Proposition 8.14 Suppose A, B € AC. Then A C B implies A¥ C B}, O

()" and (-)* are approximate inverses of each other.

Lemma 8.15 For any D € DT, we have D DO D and Dt C D. For any
A € AC, we even have A" = A. As a consequence, ()Y, ()Y) is a Galois

surjection from 2°T to AC:
N

2PT — AC
()¢

Proof.

D™ D D: By Lemma 8.11, there is, for any 7 € D, a dependence trace 7' € D'
such that 7 C 7/. This implies that 7 € D

p¥' CD: Ifre DJ'T, then 7 is a maximal element in D¥. The maximal elements
in D*, however, must already be in D, as they cannot be added to D by
lying strictly below another element of D.

A¥" = A: Tt remains to show that AY' D A Any 7 € A is maximal in AY.
Therefore, any such 7 is also in A+ 0
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The fact that ((-)T, (-)*) is a Galois surjection from 2PT into AC shows us that
C-antichains form a reasonable abstraction of sets of dependence traces. It also
has other interesting consequences.

First of all, it implies that (-)T is universally disjunctive, which is important
for ensuring that the abstraction mapping and the abstract operators defined
later are universally disjunctive as well.

Proposition 8.16 ()" : 2PT — AC is universally disjunctive (‘distributive’). O

Secondly, it shows us that we can present (AC, C) isomorphically by downwards
closed sets of dependence traces. From the theory of Galois connections, we
know that the images of the upper and lower adjoint are isomorphic. This im-
plies that (AC,C), the image of (+), is isomorphic to the image of (-)¥, which is
the set of downwards closed sets of dependence traces ordered by set inclusion.
Note that this isomorphism depends on the fact that the underlying subsumption
order on dependence traces satisfies the ascending chain condition. Otherwise,
Lemma 8.11 would fail and we would not have the property ptt DO D that is
crucial for the isomorphism between antichains and downwards closed sets.

For our purposes it is more convenient to work with antichains, because this
leads to a more natural definition of the interleaving operator. If we work with
downwards closed sets we may add dependence traces by means of downwards
closure that are not compatible with any run in the abstracted run set. These
additional dependence traces do not represent actual potential of the run set and
in order to avoid imprecision, we must ensure that they are not considered for
inferring dependence traces of interleavings.

8.6 Short Dependence Traces

A dependence sequence ¢ = ((z1,y1), ..., (zk, yx)) is called short if

1. all destination variables of dependences not counting the last one are dis-
tinct: for all 1 <7 < j <k, y; # y;; and

2. all source variables of dependences not counting the first one are distinct:
forall1 <i<j <k, z; # ;.

A dependence trace 7 = (1, ¢, k) is called short if the embodied dependence
sequence ¢ is short. We write DTS for the set of short dependence traces:

DTS = {7 €DT |7 isshort}.

Example 8.17 Consider the run r = {c:=a,c:=b,e :=d). One of its depen-
dence traces is T = (1,{(a,c), (b, ¢), (d,€)), 1), which is not short due to the repe-
tition of variable ¢ as a target variable. But run r has also the dependence trace
= (1,{(a,c), (d,e)),1) which is short and subsumes 7. This is not a coincidence
as we will see in a moment (Lemma 8.19). O
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We are interested in short dependence traces for two reasons. Firstly, there
are only finitely many short dependence traces. This makes the abstract domain
introduced in the next section finite as well and ensures that fixpoints for mono-
tonic functions on this domain can be calculated effectively. The following lemma
provides a formula for the cardinality of DTS and an asymptotic bound.

Lemma 8.18 Let n = |X|. Then [DTS|=1+4n*n?)"" LQ = O(n*"*2).

Proof. By the pigeonhole principle, a dependence sequence cannot contain
more than n + 1 dependences without violating the condition of shortness.

Let i € {0,...,n}. For forming a short dependence trace (dy, ..., d;) of length
1 + 1, we can choose arbitrary program variables as source variable of dy and
as destination variable of d;; there are n? ways of doing this. We can choose
the remaining source variables of d;, ..., d; as an arbitrary i-permutation of the
variables in X. (Recall that an i-permutation of X is an ordered sequence of i
elements of X, with no element appearing more than once in the sequence). The
same holds for the remaining destination Variables of dy,...,d;_1. As there are
(n"—!z), i-permutations [11], there are thus n (( Bl )2 short dependence sequences
of length 7 + 1. There are four possible choices for the transparency bits in a
dependence trace with a given non-empty dependence sequence. In addition we
have a single dependence trace with an empty dependence sequence, viz. (0, ¢, 0).
Summing up, the number of short dependence traces is thus

2 n n
1 1
_ 2,12 12
1+4Z( (n_zl))_1+4nn'2(n_z)l = 1+4n™n! sz'

=0 =0

Using the well-known fact that n! < n™ and bounding the sum by

Z - :
=€

12 — Zl

1: zOZ 7!

the asymptotic bound O(n***?) follows. O

The asymptotic bound O(n?**?) for |DTS| is rather rough as it involves the
rather bad estimate n™ for n!. Using for instance Stirling’s approximation [11]
for the factorial function, we could obtain tighter bounds. But the given bound
suffices for our purposes.

The second reason why we are interested in short dependence traces is that
they suffice to capture the potential of runs to aid in forming dependences ‘up to
subsumption’ as the following lemma shows.

Lemma 8.19 (Short dependence traces subsume) Suppose r = 7. Then
there is a short dependence trace 7" with r = 7" and 7 C 7.
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Proof. Suppose r =7 = (¢, ((z1,y1),- -, (Tk, Yx)), £). We describe a shortening
procedure that can be iterated until a short dependence trace is obtained.

Suppose 7 is not already short. Let us assume that condition 1. is violated; if 2.
is violated we can proceed analogously. Then there are indices 7,7, 1 <1 < j < £k,
with y; = y;. Consider the dependence trace 7’ obtained from 7 by removing the
middle part ((zi+1, Yit1), - - -, (zj,y;)) of the dependence sequence:

T = (L, <($1,y1), ceey (ﬂvi,yz’)a (xj+1,yj+1), -y (xkayk)): K)-

It is not hard to see that both 7 C 7/ and 7 < 7/. By Proposition 8.7 the latter
implies r - 7'. a

While this lemma shows us that short dependence traces are promising, we
are not yet done. We still have to see that we can obtain the short dependence
traces of a composed set of runs from the short dependence traces of the argument
run sets. This is particularly challenging for run sets obtained by interleaving
and will be the topic of Sections 8.8-8.12.

Shortening a dependence trace w.r.t. either < or C results again in a short
dependence trace.

Lemma 8.20 (< and C preserve shortness) If 7 is short and 7 < 7' or 7 C
7', then 7' is short.

Proof. All pairs of source or target variables in 7/ are also pairs of target vari-
ablesin 7if 7 <7 or7C 7. O

We denote the set of antichains of short dependence traces by ACS:
ACS={D e AC| D C DTS}.

Lemma 8.19 implies that C-maximal dependence traces of a run (or run set) are
always short. Therefore, if we restrict attention to short dependence traces of a
run or run set, we still capture all maximal dependence traces. By working with
ACS instead of AC, we code this knowledge into the domain. In particular, we do
not loose dependences because the dependence traces of the form (1, ((a,b)),1)
that correspond to dependences are trivially short.

Lemma 8.21 (ACS, C) is a complete sub-lattice of (AC,C). Its height is [DTS|+
1 = O(n*"*?) where n = |X|.

Proof. Suppose D C ACS. In order to prove that (ACS,C) is a complete sub-
lattice of (AC, C) we have to show that | |D € ACS, i.e. that | |D C DTS:

UD = UDP)Y c UD c DTS,
T T T
[Lem. 8.13] [Lem. 8.12][D C ACS]
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We can restrict the downwards closure operator to short dependence traces,
i.e. redefine it by D¥ = {r € DTS | 37’ € D : 7 C 7'} for D C DTS. It follows as
in Lemma 8.15 that ((-)T, (-)¥) is a Galois surjection from 2°T* into ACS:

oL
2PTS = ACS
()¢
As a consequence (ACS, C) is isomorphic to the lattice of downwards closed sub-
sets of DTS, ordered by set inclusion. The latter is a sub-lattice of (2PT5 C).
Hence its height (and thus the height of (ACS,C)) cannot be larger than the
height of (2°T5, C) which is [DTS| + 1.

On the other hand, we can construct an ascending chain of size |[DTS| + 1:
Let (x1,...,%pTs|) be a topological sort of (DTS,C), i.e., a list containing all
elements of DTS such that z; C z; implies ¢ < j for all 4,5 € {1,...,|DTS|}.
Then we can define a chain of length DTS + 1 by choosing Ay = () and A; =
(4; 1 U{z;}) fori =1,...,|DTS|. A; ; C A; is obvious, and A4; ; # A; holds
because A; 1 C {z1,...,x; 1}, which is seen by a straightforward induction, and
thus z; is maximal in A; ; U {z;} due to the topological sort property.

The asymptotic bound |[DTS| + 1 = O(n?"*?) follows from Lemma 8.18. O

8.7 The Abstract Domain

Let us now define the abstract domain. The values of the abstract domain are

pairs (T, D) consisting of a set T C X of variables and an C-antichain D of

short dependence traces. In the applications the dependence traces in D form

the more interesting piece of information. 7" represents the variables for which a

transparent run exists. This information is necessary in order to allow a proper

propagation of initial and final transparency information in sequential contexts.
Thus, the abstract domain, AD, is given by

AD = 2% x ACS.

The order on the abstract domain, which we also denote by the symbol C, is
defined as the lift of the inclusion order on the 7' component and the antichain
order C on the D component: (7, D) C (T",D') iff

1. T CT" and
2. DC D'.

(AD, ) is the product lattice of the complete lattices (2%, C) and (ACS,C) and
hence also a complete lattice. Both of these lattices have () as their least element.
Hence, (0, 0) is the least element of C.

Lemma 8.22 (AD,C) is a complete lattice with least element (0,0). Its height
is O(n*"*3) where n = | X|.
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Proof. It only remains to prove the asymptotic bound for the height. The
height of AD is the product of the height of (2%,C), which is n + 1, and the
height of (ACS, C), which is O(n?"*?) by Lemma 8.21. This implies the stated
bound. O

Let us now define an abstraction mapping o : NR — AD that captures the
intuition how non-atomic run sets are abstracted to values from AD:

a(R) = (Tgr,Dg), where
Tr = {z € X |3r € R:ris transparent for z} and
Dr = {reDT|FIreR:r+1}".

Before we proceed, let us show that this is a proper definition.

Lemma 8.23 « is well-defined.

Proof. We have to show two things for an arbitrary R € NR:
1. Dy consists of short dependence traces.

2. Dg is an C-antichain.

To 1.: Assume there is 7 € Dpg that is not short. Then there is r € R with
r 7. By Lemma 8.19, there is a short dependence trace 7" with r - 7
and 7 C 7. In particular 7" € {r € DT | 3r € R : r - 7} and, as 7'
is short and 7 is not, we even have 7 C 7'. But this shows that 7 is not
maximal in {7 € DT | 3r € R : r I 7} and hence is not a member of Dg, a
contradiction.

To 2.: This is ensured by Lemma 8.12(4.). O

The abstraction a(R) of a run set R is induced by the following abstraction S(r)
of the single runs r € R:

p(r) = (1;,D,), where
T, = {:c eX | r is transparent for :C} and
D, = {reDT|r+7}.

Lemma 8.24 Suppose R € NR. Then o(R) =| {5(r) | r € R}.
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Proof. We have | |{3(r) | 7 € R} = (U,erTrs|),cr Dr). It is obvious that
Tr = U,eg Ir- On the other hand, we have | |, .z D, = (U,cp{7 | 7 F 7}1)T, by
Lemma 8.13. It is not hard to show that this equals Dy by considering the C-
and the J-direction separately. O

The fact that « is induced by an abstraction on single runs has nice consequences.
First of all, it immediately implies that « is monotonic.

Proposition 8.25 « is monotonic: R C R' implies a(R) C a(R'). O
Secondly, it even implies that « is universally disjunctive.
Proposition 8.26 « is universally disjunctive. O

This property is crucial for preciseness of the abstract interpretation of constraint
systems, cf. Chapter 9, and shows us that « provides a proper abstraction of run
sets by being the lower adjoint of a Galois connection. For completeness let us
introduce the corresponding upper adjoint. It is v : AD — NR, defined by

WT,D) = {r |T, CT, D, C D}.

Proposition 8.27 («,7) is a Galois connection between NR and AD:

NR=AD

v
a

We leave the proof that 7 is well-defined and forms a Galois connection with o
to the reader.

In the sections that follow we define composition operators on AD and show
that they are precise abstractions of the corresponding operators on NR. We
start with the pre- and the post-operator that are rather simple. Then we dis-
cuss sequential composition. Afterwards we consider the most interesting and
challenging operator: interleaving. Finally, we discuss the abstract semantics of
base edges.

8.8 Pre-Operator

We define the (abstract) pre-operator, pre* : AD — AD, as follows:

{(0,@), if D=0

pre¥ (T, D) (X, {(1,0.5) €DT | (1,,0) € D}), if D #0.

Lemma 8.28 pre? is well-defined: for any (T, D) € AD, pre? (T, D) € AD.
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Proof. The only property that is not obvious is that A := {(¢,p,k) € DT |
(t,,0) € D} is an antichain of short dependence traces. First of all, any
dependence trace (i,p,k) € A inherits being short from the dependence trace
(t,0,0) € D that induces its inclusion in A. Secondly, assume that there are
distinct dependence traces 7,7 € A with 7 C 7/. By the definition of the sub-
sumption order, the transparency bits in 7 and 7/ must coincide, i.e. we can write
them in the form 7 = (1, ¢, k) and 7" = (1, ¢', k). From 7 C 7' it follows that also
(t,0,0) C (¢, ¢',0). But then (1, ¢,0) and (¢, ¢',0) are two distinct comparable
dependence traces in D, which is a contradiction to D being an antichain. Hence
pre® (T, D) must be an antichain of short dependence traces. O

The crucial observation for the adequacy of the definition of pre# is this.

Lemma 8.29 r I (¢, ¢,0) if and only if there is a prefiz ' of r with r' = (¢, ¢, k).

Proof. Let ¢ = ((z1,y1),---, (Tk, Yk))-

‘=’ Suppose r F (1,,0). If Kk = 0, we can choose ' = r. So assume k = 1.
Choose a decomposition tory - - -ty of 7 that witnesses r F (¢, ¢,0). Let
r" =tory - - 1. Then, clearly, ' is a prefix of r and tory -« - rpt) with ¢, = ¢
is a decomposition of 7’ that witnesses 7’ F (¢, ¢, 1).

‘<’ Suppose 7’ is a prefix of r with ' + (i, ¢, k). Choose r” with r = r'r",
and let tory - - -rity be a decomposition of 7’ that witnesses 7’ F (¢, ¢, k).
Then tory - - - rit), with t, = txr” is a decomposition of r that witnesses
rF (¢, 0,0). a

We can now show that the abstract pre-operator is a precise abstraction of the
concrete pre-operator.

Theorem 8.30 (Abstract pre-operator is precise) Suppose R € NR. Then
a(pre(R)) = pre* (a(R)).

Proof. If R = (), then a(pre(R)) = a(D) = (0,0) = pre*(0,0) = pre* (a(R)).
So let us assume R # ().
By unfolding the definitions, we see that a(pre(R)) = (Tpre(r)> Dpre(r)) With

Tore(ry = {z | 3r,r" € Runs: 7 -7’ € R Ar is transparent for z}
Dprery = {7 3,7 €Runs:r-r' € RATH T},

In order to evaluate the right hand side, note first that Dg is non-empty: there
is a run 7 € R and any such run satisfies r - (0,¢,0); moreover, (0,¢,0) is C-

maximal and hence contained in Dg. Consequently, the second case applies in
the definition of pre# and we have pre* («(R)) = pre# (T, Dg) = (X, D) with

D = {(t,p,k) € DT | (1,,0) € Dg}'



132 CHAPTER 8. DEPENDENCE TRACES

Thus, we have to show Ty gy = X and Dyper) = D.

Tprery € X is trivial. In order to see the reverse inclusion, i.e. that T} (g)
contains any z € X, choose an arbitrary r € R and observe that the empty run
¢ is a prefix of r that is transparent for any variable zx.

The following chain of implications shows Dpry C D:

(4,0, k) € Dyre(ry
=  [Equation above, Lemma 8.12(1.)]
Ir.r" €Runs:r-r" € RATH (1,0,K)
ifft  [Lemma 8.29]
dre R:rtF (t,0,0)
iff  [Set comprehension]
(t, 0,00 € {7 €DT |IreR:rk+71}
=  [Lemma 8.11, definition Dg]|
Ir' € Dr: (1,,0) C 7'
= [See below]
dreD:(,p,k)CT.

The reasoning for the last step is as follows. The fewer gaps ordering C is con-
cerned only with removing gaps from the dependence sequence ¢ in a dependence
trace but leaves the initial and final transparency information untouched. Hence,
the dependence trace 7' € Dy with (¢, ,0) C 7' must have the form 7" = (¢, 1), 0).
But then 7 := (1,%, k) € D and (¢, 0, k) C (1,9, k).

Finally, we show D C Dy(g):

(t,0,6) € D
= [Above equation for D, Lemma 8.12(1.)]
(¢,,0) € Dg
= [Definition of Dg, Lemma 8.12(1.)]
IreR:rF (1,0,0)
iff  [Lemma 8.29]
Ir,r' e € RATE (1, 0,K)
iff  [Set comprehension]
(t,0,6) €{T€DT | Ir,r' :r-rYe RATFT}
= [Lemma 8.11]
Jre{reDT|3Irr:r-r"eRATFTY:(Lp,k)C T
ifft ~ [Above equation for Dp.(p)]
37 € Dpre(r) = (L, 0,6) E T
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This completes the proof. O

8.9 Post-Operator

We define the (abstract) post-operator, post* : AD — AD, in complete analogy
to the pre-operator as follows:

[ 0,0), if D=0
post”(T, D) = {(X,{(L,QD,K)ED-H(O,SD,K)ED})ﬂ if D#0.

By symmetry to the pre-operator we obtain that the post operator is well-defined
and a precise abstraction of the post-operator on non-atomic run sets.

Theorem 8.31 (Abstract post-operator is precise) Suppose R € NR. Then
a(post(R)) = post™ (a(R)). O

8.10 Sequential Composition

The (abstract) sequential composition operator, ;¥ : AD x AD — AD, which we
write as an infix operator, is defined by

(T,D);#*(T",D") = (TnT',(D-D",
where
D-D' = {(,p,k) €D |rk=1 :>$€T'}
U{(t,p,k) €D | =1 :><;€T}
U{(t,o-1,k) € DTS | (1, ,0) € D,(0,v,k) € D'}
U{(t,¢- (x,2) - ¢,k) € DTS |
Ely:(a,gp-(x,y),l)ED,(l,(y,z)-w,m)ED'}.

Before we explain the intuition underlying this definition we show well-definedness.

N N N
© 0o o
I O R
N SN N N

Lemma 8.32 The abstract sequential composition operator ;# is well-defined.

Proof. We have to show that (D - D')T € ACS for all D, D' € ACS, i.e. that
(D - D")!is an C-antichain of short dependence traces.

It is easy to see that D- D' (and hence its subset D - D')") contains only short
dependence traces: the first two sets contain only dependence traces from D or
D', which consequently are short, and the constructions in the third and forth
set are explicitly restricted to contain short dependence traces. The application
of the T-operator ensures that (D - D')" € ACS is an C-antichain. O
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r r
A sequentially composed run r:

1) o Tk
How subruns mediating 2) r. . Ty
dependences in ¢ may 3) oy ries Tk
overlap with pieces of r:

4) .. T L Te

Figure 8.2: Intuition of sequential composition.

Obviously, a run » = r’ - ¥ composed of two runs 7’ and r” is transparent for a
variable z if and only if both r' and " are. Therefore, transparency information
must be intersected in a sequential composition.

Let us explain the intuition underlying the definition of D - D'. Suppose given
arun r = r' - r” which is composed of two runs 7' € D and r” € D' that use
distinct virtual variables (virtual(r’) N virtual(r”) = (). Assume that 7 = (¢, ¢, k)
with ¢ = (dy,...,dg) is a dependence trace compatible with r. Each dependence
d; in ¢ is mediated by a sub-piece r; of r; we can choose the r; as short as possible
(i.e., such that it starts with an assignment that reads the source variable of d;
and ends with an assignment to the destination variable of d;). There are four
possibilities, how these sub-pieces can be situated in r as illustrated in Fig. 8.2:

1) all of them can lie in 7/;
2) all of them can lie in 7”;

3) there is an 4, 1 < ¢ < k, such that ry,...,r; liein 7' and r;;q,..., 7t lie in

.
5

4) there is an i such that r; overlaps with the join point of ' and r”.
These four cases are handled by the four sets appearing in the definition of D - D’:

1) in this case, 7 is also a dependence trace of r'. Vice versa, dependence
traces 7' = (/,¢', k") of r’ give rise to dependence traces of r. However,
—

if K = 1, no statement that kills ¢', the destination variable of the last
dependence in ¢', is allowed after r,. Therefore, ' must be transparent for
o

¢'; hence the side condition in set (8.1).
2) this case is symmetric to case 1).

3) in this case, r’ has the dependence trace (¢, (ds, ..., d;),0) and 7" the depen-
dence trace (0, (d;i1,...,dx), k). Vice versa, dependence traces of 7’ and r”
of this form give rise to a dependence trace of r.
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4) choose variables z,z € X such that d; = (z,2). Sub-run r; accomplishes
the transfer from = to z via certain intermediate variables. One of these
intermediate variables, say y, must bridge the joint point between ' and r”
(i.e., it is assigned to in 7', read from in r” and not killed in between).
As r and 7’ use distinct virtual variables, y must be a program vari-
able: y € X. Then (s,(dy,...,di—1,(z,y)),1) is a dependence of r' and
(1,{(dq,...,d; 1, (z,y)),1) is a dependence of . 1 as the final component
of 7" and first component of 7" is justified, as y is not killed from the place
where it is assigned to in 7’ and read in r”. Similarly, dependences of 7' and
r"" of the above form give rise to a dependence trace of r.

It is not hard to see that in all four cases the dependence traces of ' and/or
r" in question are short and C-maximal if 7 is and, vice versa, that each short
and C-maximal dependence trace of r can be composed of short and C-maximal
dependence traces compatible with ' and r” in the described way.

Lemma 8.33 (Abstract sequential composition operator is precise)
Suppose R, S € NR. Then a(R;S) = a(R);*a(S).

Proof. By formalizing the intuition described above. O

8.11 Interleaving

Transparency information for the interleaving R ® S of two run sets R and S is
easy to obtain from transparency information of the components: a transparent
run for a variable x exists in R ® S if and only if each component set contains
a transparent run. Therefore, the transparency information in 7% and 7s must
simply be intersected.

By far more interesting is to consider the dependence traces in Dgggs as the
two threads modeled by R and S can cooperate in order to mediate dependences.
More specifically, a dependence (u,v) can be composed of complementary depen-
dence sequences of two runs r € R and s € S, e.g., as illustrated here:

Transfers of 1 u = x1—=Yy; Xo—=Ys X3—>Ys -+ T 1—Yk—1 Tp—Yp =V
Transfers of s: Y1 =Ty Yo—T3 e Yp_1—Tk

Of course such a combination of complementary dependence sequences can also
start and/or end with a dependence of s. And, as a border case, one of the
dependence sequences can be empty; the other then just consists of a single
dependence. Before we define the abstract interleaving operator, we present
in the next section the general definition of when two dependence sequences
complement each other to a single dependence and also introduce a relation C'
that extends this definitions to dependence traces.
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T: Ty ——=Y1 | --- Z; Yi |- | Tp———— Yk

T1-: L1l —» —>y1 eee Lj—» —=U —»yz e —

T2: j— I I o | Thp— =Yk

Figure 8.3: Complementary dependence traces.

8.11.1 Complementary Dependence Traces

Let ¢,% € DS be two dependence sequences (one of them can be empty) and
u,v € X. Choose variables such that ¢ = {(z1,41),..., (zx,yx)), k > 0. We say
that ¥ complements ¢ to (u,v) if one of the following cases applies:

—

-
1. o #e,u=p,v=p,and ¥ = ((y1,22), - -, (Yk—1,Tk));

—

2. @ 7é &, /l/] 7é €U :(QZ, v :wa and w = <(Z/1,332), R (yk—laxk)a (ykav»a
3. p#e,YFe,u :;Z, v :9_0): and ¢ = <(u,$1), (yl,xQ)a R (yk*hxk»; or

4. ¢ 7& € U :;Za v :;b)a and 1/1 = <(u: xl), (yh 332), SRR (ykflamk)a (yka U))

Intuitively, ¢ complements ¢ to (u,v) if the two of them can alternately be
combined to a gap-free transfer from u to v. The different cases are distinguished
by whether the first read in this gap-free transfer comes from ¢ (cases 1/2) or v
(cases 3/4) and whether the last write is in ¢ (cases 1/3) or 1 (cases 2/4).

Now, consider a dependence trace 7 compatible with a run ¢t € R ® S which
is an interleaving of the runs r € R, s € S. Then every single dependence in 7
must be obtained in the above described fashion from pieces of dependence traces
compatible with r and s. We, therefore, generalize this notion of completion to
dependence traces as follows: suppose given dependence traces 7, 7, 71, where 7 =
(& (@1, 91), -5 (@ks YK))s K), To = (0, 5 60), 71 = (11,9, K1). Then we say that
71 complements 7y to 7, C (79, 71, 7) for short, if there are dependence sequences
O1yenes Py W1, ..., U such that

l.op=@1-...-ppand ¥ =y - .. - Yy
2. 1; complements ¢; to (x;,y;) fori =1,... k.

3. ¢+ =1 implies ;g = 1 and v; complements ¢; to (z1,y;) according to cases
1 and 2, or t; = 1 and v; complements ¢, according to cases 3 and 4; and

4. k =1 implies kg = 1 and ¥}, complements @y to (z, yx) according to cases
1 and 3, or k; = 1 and %, complements ¢, according to cases 2 and 4.
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The typical situation of two dependence traces 7y and 7; that complement each
other to a dependence trace 7 is illustrated in Fig. 8.3. For clarity we omit the
transparency bits. The dashed vertical lines indicate equality of variables.

A number of elementary properties of the relation C' is collected in the fol-
lowing lemma.

Lemma 8.34 (Basic properties of C') Suppose 7,79, 71 € DT. Then

1. C is symmetric in the first two parameters: C(ry,71,7T) if and only if
C(71,70, 7).

2. (0,¢,0) is a ‘neutral element’: C((0,¢,0),7,7).
3. In particular, C((0,¢,0),(0,¢,0), (0,&,0)).

Proof. Left to the reader. O

8.11.2 Interleaving Operator

We are now in the position to define the (abstract) interleaving operator, % :
AD x AD — AD, which we write again as an infix operator:

(T,D)®* (T',D") = (TNnT {r"eDTS|3reD,7 €D :C(r,7,7)}").

By restricting the set construction to short dependence traces and applying the
()" operator, the interleaving operator is trivially well-defined. The goal of the
remainder of this section is to show that it is a precise abstraction of the inter-
leaving operator on sets of non-atomic runs.

Theorem 8.35 (Abstract interleaving operator is precise)
Suppose R, S € NR. Then a(R® S) = a(R) " «a(9).

The proof is deferred to Section 8.11.5. Before that, we establish a number of
lemmas that capture the main insights underlying the proof.

8.11.3 Soundness Lemmas

The lemmas in this section are concerned with the soundness of the abstract
interleaving composition operator, i.e. they are crucial for the proof that (R ®
S) C a(R) ®* a(S) for any two run sets R,S. The critical point here is to
guarantee that our definition of the abstract interleaving operator includes enough
dependence traces.

As a first step, we show that each dependence trace that is compatible with
some interleaving of two runs r, s can also be obtained by combining two depen-
dence traces of the component runs r and s via the relation C.

Let r, s, ¢ € Runs with virtual(r) Nvirtual(s) = ) and 7 € DT.
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Lemma 8.36 Supposet € r® s and t = 7. Then there are 7,7, € DT with
rt1., sk 1, and C(1,, 75, 7).

Proof. Assume that ¢ is an interleaving of r and s and 7 = (¢, {d1, ..., dk), K)
is a dependence trace of t. Each dependence d; is mediated by a certain sub-run
t; of t and each ¢; is an interleaving of certain sub-runs of r and s.

From t; we can construct dependence traces ¢; and v; of these sub-pieces of
r and s such that ¢; complements 1); to dependence d;. This is described below.
Then ¢y -... ¢, and 9 - ... 1Yy are dependence sequences of r and s, resp., and
we can choose transparency bits ¢, k., s, ks € B such that 7, = (¢, 01+ .- Ok, K1)
and 75 = (ts,%1 - ... - Py, ks) are dependence traces of r and s, resp., such that
C(7,7s,7) holds. Specifically, we choose ¢, = ¢ if the first assignment instance
involved in the mediation of d; belongs to r and ¢; = ¢ if it belongs to s, and
similarly for the final transparency bits and the last assignment instance involved
in the mediation of di. All other transparency bits are chosen 0.

Let us now explain how to construct the dependence sequences ¢; and );
mentioned above. Choose program variables z,y such that d; = (z,y). Sub-run
t; of ¢ mediates d; via certain assignment instances a; := e;, j = 1,...,[, as
specified in the definition of mediation. In particular, a; = y. Each of these
assignment instances lies either in a sub-piece of r or a sub-piece of s. Let us
consider the case that the first assignment instance a; := e; lies in a sub-piece of
r; the case that it lies in a sub-piece of r is analogous. We can then find indices
0 <jo<j1<...<Jjpnsuch that a; :== e; lies in a sub-piece of r if j,,, < j < jp1
for an even m € {0,...,n—1} and in a sub-piece of s otherwise. In particular, for
any j € {j1,...,Jn_1} one of the assignments instances a; := e; and a;;1 := e;1
lies in a sub-piece of r and the other one in a sub-piece of s. This implies that a;
must be a program variable, because it appears in e;; according to the definition
of mediation and virtual(r) N virtual(s) = . Choose now

i = <(‘T7 ajl)’ (a'jzv a’js)v R (ajn—27 ajn—l)) )

¥ = <(aj1’ aj2)a (ajaa aj4)a RN (ajnfl’y))

if n is even and

i = <(.’L‘, a’j1)’ (a'jza a’j3)7 REE (ajn—1ay)> )

d}i = <(a/j17a’j2)7(a/j37a’j4)""’(a'jn727a'jn71)>

if n is odd. Then ¢; and 1); are dependence sequences of the sub-runs of r and s
that comprise ¢; and, obviously, ¢; complements v; to d;. O

Example 8.37 Fig. 8.4 illustrates the construction in the proof of Lemma 8.36.
The run t is an interleaving of the runs r and s. We can thus decompose r



8.11. INTERLEAVING 139

t ™1 S1 T2 852 T3 53 T4 S4 Ts
r 1 T2 T3 T4 Ts
s 51 S2.... L 3. L sS4
T a tl b C tz
Tp: a € f— —b h % '7
: : N~ : : :
" e f (9) ¢ h i j

Figure 8.4: Dependence traces of interleavings are induced by complementary
dependence traces of the components.

and s into sub-runs such that t is obtained by alternately shuffling these sub-runs
together; in the example r = r1ror3raTs, S = 1595354, aNd T = T151T9S97353745475.

Let us assume that T = (1, {(a,b), (c,d)), k) is a dependence trace of t. Then
there are sub-runs t; and ty of t that mediate the two dependences (a,b) and (c,d),
e.g., as shown in the figure. These sub-runs overlap in a certain way with the
decompositions of r and s; in the example in the figure, for instance, t; overlaps
with a postfiz of r1, all of s1,72, S2, and a prefix of r3. The dependence (a,b) is
mediated via certain intermediate assignments a; := e; (not shown in the figure);
we call these assignments crucial in the following.

There may be sub-runs of r and/or s that overlap with t; but do not contain
a crucial assignment. Such sub-runs must be transparent for the variable that
transfers the dependence at this moment and can be ignored. In our example, ro
s such a sub-run and g is the variable that transfers the dependence while ry is
erecuted.

Whenever two successive crucial assignments lie in sub-pieces of different
runs, the dependence must be transfered in a program variable between these as-
signments because r and s do not share virtual variables. In the figure, e.g.,
e 1s the vartable that transfers the dependence from the last crucial assignment
in r1 to the first crucial assignment in s1 and f transfers it from the last cru-
cial assignment in s1 to the first crucial assignment in ro. From these variables
we can construct dependence traces T, and Ts of r and s such that C(7., Ts,T)
holds. In Fig. 8.4, for instance, we have 7, = (¢,{(a,e€),(f,b), (h,i),(j,d)), k)
and 75 = (0, {(e, k), (¢, h), (4,7)),0). O

Lemma 8.36 ensures that combining dependence traces of component runs
via C is fundamentally rich enough to give us all dependence traces of potential
interleavings. However, in our abstract domain, we do not collect all dependence
traces but only the mazimal ones. Therefore, we only combine the maximal
dependence traces of component runs in the definition of interleaving, which is
the best we can do with the available information. A legitimate question to ask
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Figure 8.5: Removing gaps in a component dependence trace

is, whether this is sufficient. Can we really obtain all the mazimal dependence
traces just from the mazimal dependence traces of the components? The answer
to this question must be yes; otherwise Theorem 8.35 would be wrong. But
Lemma 8.36 alone does not suffice to prove this.

The next lemma provides a kind of shortening rule that is crucial for the
proof that maximal dependence traces of component run sets suffice to infer the
maximal dependence traces of their interleaving.

Suppose 19,74, 71,7 € DT.

Lemma 8.38 Suppose C(1y,71,7) and 79 C 75. Then there are dependence traces
11,7 € DT such that m < 7|, 7 C 7', and C(7§,7{,7"). By symmetry of C,
Lemma 8.34(1), an analogous property holds with the roles of 7y and 7 exchanged.

Proof. The proof is illustrated in Fig. 8.5. In a) the typical situation of depen-
dence traces 79,7, and 7 with C(7p, 71, 7) is shown. For clarity the transparency
bits are omitted. In b) a typical dependence trace 7§ with 79 C 7 is shown.
It is obtained from 73 by removing all gaps between the target variable u of a
certain dependence d in 75 and the destination variable v of a later dependence
e. We can remove all the dependences from 71 that are used to fill some or all of
these gaps in C(7g,71,7). This results in a dependence trace 7{ with < 7/ as
shown in b). Then the dependence traces 7, and 7{ complement each other to a
dependence trace 7/ with 7 < 7’ as shown. As border cases, we may have 7} = 7y,
if none of the gaps between d and e is filled in C(7y,71,7), or 7/ = 7 if d and e
are used in C(7y, 71, 7) in the same dependence of 7. But this does not invalidate
our reasoning as C and < are reflexive. O

By iteratively applying this shortening rule, we obtain the following lemma
that is of direct use in the proof of Theorem 8.35.

Lemma 8.39 Suppose 7, € {7 |IreR:r-71}, ,€{r|3Is€ S:skF 7}, and
C(7,7s, 7). Then there are 7. € Dg, 7. € Dg, and 7" € DT with C(7},7.,7") and
TC 1.
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Proof. The problem is that 7, and 7, need not be C-maximal in their respective
set. Hence they may not belong to Dg and Dg, respectively. By iteratively
applying Lemma 8.38, however, we can determine dependence traces 7, and 7]
that are C-maximal in these sets (and hence belong to Dy and Dy, respectively)
as well as a dependence trace 77 with C (7}, 7], 7") and 7 C 7'

7?8
We start with (7,71, 7") := (7,75, 7). This initialization trivially ensures
te{r|IreR:rt7}, 7l e{r|IseS:st 7}, C(rl, 7], "), and 7 C 7T,

which is an invariant of the loop we describe in the following.

If 7,7 is not C-maximal in {7 | 3r € R: r F 7}, we can choose a dependence
trace 7. € {T | 3r € R : r = 7} which is strictly larger: 7] C 7/. Then, by
Lemma 8.38, there are 7/ and 7/ with 7] < 7!, 7 C 7T C 7/, and C(7,7!,7'). By
Proposition 8.7, 7. € {r | 3r € R : r F 7}, hence the invariant remains valid.
We then set (71,7],71) := (7!, 7!,7'). We can proceed analogously, if 7] is not
maximal in {7 |Is € S: sk 7}

This shortening procedure is applied iteratively until both 7 and 7 are C-
maximal in their respective sets. Termination is guaranteed, because in each step
either the dependence sequence in 7 or in 7] becomes shorter and the dependence

sequence in the other dependence trace does not become longer. O

8.11.4 Completeness Lemmas

The lemmas in this section are concerned with completeness of the interleaving
operator, i.e. they are important for the proof that a(R ® S) J a(R) ®* «(S)
for any two non-atomic run sets R,S. They crucially depend on runs being
non-atomic.

A dependence mediated by a non-atomic run r must involve a virtual variable
at a certain stage as assignments that have program variables on both the left- and
the right-hand-side do not occur in non-atomic runs. But when the execution of
r is in such a stage, no parallel thread can disturb propagation of the dependence
because parallel threads do not interfere on virtual variables. This is the idea
underlying the proof of the following lemma.

Lemma 8.40 Suppose r, s are runs with virtual(r) Nvirtual(s) = 0, and z,y € X.
If r mediates (x,y) then there is a run t € r ® s that mediates (z,y).

Proof. Suppose r mediates (z,y). This means that r can be written in the
formr =rg-{(a; :=e1)-r1-{ag :=ey)-ro-...-1_1-{a; := e;) -7y as in the definition
of mediation. Then in particular e; contains the variable x. As z is a program
variable, this implies by the form of assignments appearing in runs that a; must
be a virtual variable (cf. the definition of Asg). As virtual(r) N virtual(s) = 0, s
therefore cannot contain an assignment to a;. Consequently, s is transparent for
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a;. Hence the run t € r ® s defined by
t:=ro-{a1:=e1)-s-r1-{ag: =€) ro-...-11_1-{(a:=¢) -1
still mediates the dependence (z,y). O

Note that this argument crucially depends on the assumption about the form
of assignments in runs that derives from the assumption that assignments execute
non-atomically. If assignments execute atomically, the above lemma is no longer
valid.

Example 8.41 Consider the parallel execution of the two straight-line programs
m=(y:=2) and mp = (x := 0;y := 0).
If assignment statements execute atomically, there are just three possible runs,

1) (:=0,y:=0,y := x),
2) (x:=0,y :=x,y:=0), and
3) (y:=x,2:=0,y:=0).

None of these runs mediates the dependence (z,y) because either x is killed before
y =z is ezecuted as in 1) and 2), ory is killed after y := x is executed as in 2)
and 3).

If, on the other hand, assignment statements may ezxecute non-atomically,
then the two initialization statements in my could well be executed after x is read
but before y is written. This is witnessed by the run

4 (vi=x,2:=0,y:=0,y :=v),

where v is a virtual variable, in our model of non-atomic execution. In contrast
to the runs 1)-8), run 4) mediates the dependence (z,y). O

Lemma 8.40 provides an intuitive explanation why precise analysis of parallel
programs is simpler if we assume non-atomic execution of assignments. With
this assumption dependences once generated by a thread cannot be definitely
destroyed by its environment. Thus, an analysis that collects positive information
about potential dependences is precise. (In order to do this in a compositional
fashion it must collect more information, namely (maximal, short) dependence
traces.)

This is different if we analyze with respect to the assumption that assignments
execute atomically. Then there is a complex interplay between the way depen-
dences are generated by a thread and the order of re-initializations performed by
its environment as illustrated by the above example. Therefore, an analysis that
just collects positive information is doomed to be imprecise.

Lemma 8.42 Suppose ry,r1 are runs with virtual(ro)Nvirtual(r1) = O and 79, 71, T
are dependence traces with o = 19, 71 = 11, and C(19,71,7). Then there is a run
r €1y Q1 such that r = 1.
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Proof. For notational convenience, we discuss the case that the dependence
sequence in 7 consists of just a single transfer; the generalization to arbitrary
transfer sequences is left to the reader. Let 7 = (i, ((u,v)), k). Furthermore, let
To = (L(), (b, K)()) and T = (Ll,w, Iﬁll).

Let us assume that case 2 in the definition of C(7g, 71, 7) applies; the other
cases are similar. Then we can choose variables v = z1, ..., 2,11 = v such that

o = ((&1,91),--, (Tr, Yk)) »
Y = ((y1,$2),---a(yk,$k+1)>a

anditis¢ =1ifc=1land kg =1if k=1. Asry 79 and r; F 77 we can write
ro and r; in the form

ro = tordtdrd. % rit)
ro= tritiry -t ity
such that
a) r) mediates (z;,v;) and r} mediates (y;, ;1) fori=1,... k;

b) 9 is transparent for v if « = 1 (and hence ¢o = 1); and

¢) t; is transparent for v if K = 1 (and hence x; = 1).

The run 79r{rdry - --riri clearly mediates the dependence (u,v), but in order to

construct an interleaving of ry and 71, we must also execute the intermediate code
pieces t’ Fortunately, each of the dependences realized by some ] must involve
a virtual variable; and, while the transfer is in such a stage, code pieces of the
other run, r;_;, can safely be executed without destroying the dependence, due
to the disjointness of the virtual variables used in ry and ;. Thus, we can execute
each code piece ¢; at such a stage of execution of r,, and, similarly, ¢) during
such a stage of r}. The rest of the proof pursues this argument more formally.

By Lemma 8.40, there are interleavings s € r) ® t;_; and s} € r} ®t) such
that, forz=1,...,k,

o s? still mediates (x;,y;) and
o s! still mediates (y;, zi11)-

Then the run

400,101 0,141
7= 1751515589 " Sp. St}

is an interleaving of 7o and r; (i.e. 7 € r1 ®3). On the other hand, r F 7 because

s9s189s5 - - - s%s; mediates the dependence (u,v) and items b) and c) above give
the transparency properties. O

Note that the proof relies on Lemma 8.40. Like that lemma, Lemma 8.42 fails
to hold if assignments execute atomically as illustrated by the following example.
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Example 8.43 Consider the two programs m1 = (y := ) and mp = (z := 0y :=
0;z :=vy) and the three dependence traces T = (1, {(z,v)),1), = = (1,{(v, 2)), 1),
and T = (1,{(z, 2)), 1).

If assignments execute atomically, m has only the run ry = (y := x) and m
has only the run ro = (x := 0,y := 0,z :=y). Clearly, 1 is a dependence trace
of r1 and 15 is a dependence trace of ro, independently of whether assignments
execute atomically or not. Moreover, C (11,7, T) holds.

But only the following four runs are possible interleavings of r1 and ro:

It is not hard to see that T is compatible with none of these runs.
If, on the other hand, assignments do not execute atomically, there are also
runs like

5) (vi=xz,x:=0,y:=0,y:=v,u:=y,2:=u),

where u,v are virtual variables, which possess T as a dependence trace. O

8.11.5 Proof of Theorem 8.35

We can now put the pieces together and prove Theorem 8.35. By unfolding the
definitions, we have

O!(R ® S) = (TR@S, DR@S) and
a(R) ®% a(S) = (TgNTs,D), where
D = {re€DTS|3rg € Dg,7s € Dg: C(TR,TS,T)}T.

Consequently, we have to show Tgrgs = Tr NTs and Dggs = D.

“Tres CTrNTs”: If x € Tgygs, then thereisarunt € R®S that is transparent
for x. By definition, ¢ is an interleaving of runs r € R and s € S. These
runs 7, s must then also be transparent for x. Thus, z € Tr N T%.

“Tres 2 TpNTs”: If x € TR N'Ts, then there are runs r € R and s € S that
are transparent for z. By bounded renaming of virtual variables these
runs can be chosen such that they do not share virtual variables. Then all
interleavings of these two runs are in S® R, and all of them are transparent
for z. Thus, x € Tgrgs.
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“Dgrgs T D”: In order to show this relationship, assume that we are given 7 €
Drgs. Then we have, by the definition of Dygs and Lemma 8.12(1.):

HeRRS:tHT
iff  [Definition R ® S|
IreRseSter®s:tkr
=  [Lemma 8.36]
dreRseS 1,7, €DT :rt1. ANst1s AN C(1,T5,T)
= [Shunting, set comprehension]
dr,e{r|IFreR:rkrhr,e{r|3IseS:st1}:C(1,,7,7).
=  [Lemma 8.39]
37, € Dg,7s € Dg, 7 € DT : C(7p, 7, 7) ANTC 7
iff  [Set comprehension, see below]
Ir' € {r € DTS | 37 € Dg,7s € Ds : C(Tr,7s,7)} : TE 7'
= [Definition D, Lemma 8.11]
IfeD:rC 7.

There is a little snag in the step marked by ‘see below’: for the direction
=, we must prove that 7' can be chosen as a short dependence trace, which
is not true for this step in isolation. But, it is true under the assumption
that 7 € Dggs which underlies the whole calculation: as a consequence
of this assumption 7 is short and this implies that any 7/ with 7 C 7/
must also be short (Lemma 8.20). A calculation, in which this step is valid
in isolation, requires to furnish each of the preceeding predicates with the
conjunct 7 € Dggg, which would clutter the calculation. This is the reason
why we resort to this explanation.

“Dprgs 3 D”: This is shown by the following chain of implications:

TeD
= [Definition of D, Lemma 8.12(1.)]
drgr € Dg,7s € Dg : C(TR,Ts,T)
= |Definition Dg, Dg, Lemma 8.12(1.)]
Ir e R,s €S, Tr,7s :7F TR AN st Ts AN C(Tr,Ts,T)
ifft  [By bounded renaming of virtual variables in s
dre R,s € 5,7, Ts :
r1r AN st 75 A C(Tr,Ts,T) A virtual(r) N virtual(s) = 0
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=  [Lemma 8.42, definition R ® S|
HeRRS:tET

iff  [Set comprehension]
re€{reDT|IreRS:rtr}

=  [Lemma 8.11, definition Dggs|
Ir' e Dprgs : 7 ET’.

This ends the proof of Theorem 8.35. O

8.12 Base Edges

In Chapter 7 we discussed that the atomicity assumptions about assignments
may vary and that this would give rise to different definitions of the non-atomic
run sets [z := ¢e] assigned to an assignment statement z := e. Fortunately, all
reasonable choices give rise to the same abstraction which is given by the following
definition:

[z:=e]" = (X\{z},{(+,{(y,2)),k) | 1,k €B, y appears in e}).

Whatever atomicity assumption we are working with, all runs in [z := ] will
contain certain auxiliary assignments to virtual variables and a single assignment
to x. No program variable except x will ever be the target of an assignment in a
run in [z := e]. Hence all non-atomic runs are transparent just for the program
variables in X \ {z}, which explains the adequacy of the first component of
[z := €]*.

The fact that any non-atomic run contains just a single assignment to x and
no other assignments to program variables implies that no dependence trace of
a non-atomic run can embody a dependence sequence that is longer than one
or has a destination variable different from z. Each reasonable non-atomic run
induces the same dependences between program variables as x := e, hence the
induced dependences are (y,x) where y is a variable appearing in e. Moreover, no
reasonable run kills a variable in e before it reads it or kills = after it has written
it, which implies that the transparency bits can be chosen arbitrarily.

All dependence traces included in the second component of [z :=e]# are
trivially short and C-maximal, which implies well-definedness.

Proposition 8.44 Suppose z := e € Stmt. Then o[z :=¢]) = [z :=¢]*. O

Statement skip has just the single run e, which is obviously transparent for all
variables and has just the dependence trace (0,¢,0). Hence, we define [skip]# =

(X, {(0,¢,0)}).
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Proposition 8.45 «([skip]) = [skip]*. O

We define the abstract interpretation of a base edge e of the underlying flow
graph as the interpretation of the statement A(e) associated with e: [e]# =
[A(e)]*.

Proposition 8.46 «a([e]) = [e]* for all base edges e. O

8.13 Run-Time

The goal of this section is to show that we can compute the abstract operations
pre#, post# ;# and ®# in time 2°(X) where p(z) is a polynomial. We emphasize
that we do neither intend to develop efficient implementations of the operations
nor to present a very precise analysis. The results of this section will mainly
be used in order to establish the qualitative complexity statement that the al-
gorithms developed later run in exponential time. We are, however, interested
in uncovering the parameter of exponential growth: it is the number of program
variables | X| rather than the size of the parallel flow graph.

Let us investigate the most expensive operation, interleaving, to some detail.
First of all, we recall its definition from Section 8.11:

(T,D)®* (I",D") = (TNT',D"") where
D" = {"eDTS|3re D,7 e D :C(r,7,7")}.

The sets 7" and 1" are subsets of X, the set of program variables. Computing
the intersection of 7" and 7" is cheap: if we represent these sets as bit-strings (of
length |X|), we can clearly calculate the intersection in time O(|X|) by looking
through the bit-strings for 7" and 7" once.

D and D' are antichains of short dependence traces, hence D, D' C DTS. By
Lemma 8.18, the cardinality of DTS and hence of D and D' is O(|X |?*X+2). This
clearly is @(2Po(XD) for some polynomial py(z) because 1272 = 2log2(2)(22+2) <
220’422 We can hence consider at most O(2ro(XD . 2p0( XDy = O (220(XD) pairs
of dependence traces 7 and 7' when computing D”. For each fixed pair of depen-
dence traces 7,7’ all dependence traces 7" with C'(7,7',7") can be determined in
time O(2P1(XD) for some polynomial p;(x). We leave it to the reader to invent
some procedure for this task that realizes this rather brutal bound. Even a very
naive procedure that lists all short dependence traces 7" and then checks for
each listed dependence trace whether C'(7, 7', 7") holds will do. The observation
that 7, 7', and 7" are short, and hence the length of their dependence sequences
is bounded by |X| + 1 is helpful. As a consequence, we can calculate D" in
time O(22Po(IXD) . 2P1( XDy = O (220 XD+PL(XD) ~ Again O(270(XD) is an asymptotic
bound for the size of D" because D" C DTS. It is, therefore, not hard to see
that D", the second component of (T, D) % (", D'), can be computed from D"
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in time O(2P2(XD) for some polynomial py(x). Hence the overall cost of comput-
ing (T, D) ®% (T', D) is O(| X| + 22o0XD+p1(IX1) . 9p2(XD) = 0 (2°(XD) for some
polynomial p(x).

By similar considerations we can show that the other operations can be com-
puted in time O(2°P(XD) too.

Lemma 8.47 The operations pre¥ , post#, :#, and @% can be computed in time
O(2PUXD)Y for some polynomial p(z). O

8.14 Conclusion

In this chapter, we have defined an abstraction of sets of non-atomic runs from
which the mediated dependences can be derived. Run sets are abstracted to an-
tichains of short dependence traces that capture the potential to mediate depen-
dences in cooperation with a parallel environment. The abstraction also records
the set of program variables for which a transparent run exists in the abstracted
run set. This information is necessary to propagate the transparency bits of the
dependence traces properly in sequential contexts.

We have defined abstract interpretations of the operations and constants used
in the constraint systems of Section 6.5 and have shown that they precisely ab-
stract the corresponding operations on sets of non-atomic runs. We can thus
effectively determine the dependences mediated by the sets of runs characterized
by the constraint systems of Section 6.5 by solving these constraint systems over
the abstract lattice (AD,C) domain. This can be done effectively because this
lattice is finite. In particular, we can determine the dependences mediated by
bridging runs in procedural parallel flow graphs. This information can in turn
be used to detect all copy constants and eliminate faint code completely, which
is explained in detail in the next chapter.

In summary, the dependence traces abstraction provides us with a means to
perform precise interprocedural dependence analysis in parallel programs.



Chapter 9

Detecting Copy Constants and
Eliminating Faint Code

In this chapter we show that we can detect copy constants and eliminate faint
code in parallel flow graphs completely relative to the non-atomic semantics. The
basic idea is to evaluate the constraint system for bridging runs over the abstract
domain AD from the previous section and to exploit this information.

We have seen that the abstract counterparts of the operators and constants
appearing in the constraint systems in Chapter 6 precisely abstract the corre-
sponding operators on non-atomic run sets. Moreover, the abstraction mapping
a : NR — AD is universally disjunctive (Proposition 8.26). This implies that
the least solution of the constraint systems over domain AD consists just of the
abstractions of the least solution over domain NR. This is commonly known in
the area of abstract interpretation [12, 13] and follows directly from the following
fixpoint-theoretic lemma known as Transfer-Lemma [4] or u-Fusion Rule [44].

Lemma 9.1 (Transfer lemma) Suppose L, L' are complete lattices, f : L — L
and g : L' — L' are monotonic functions and h : L — L' (Fig. 9.1).

If b is universally disjunctive and ho f = go h then h(uf) = ug, where pf
and pg are the least firpoints of f and g, respectively. O

The least solution of a constraint system over some domain corresponds in
a straightforward way to the least fixpoint of a function derived from the con-
straints. The facts recalled above ensure that the premises of the Transfer-Lemma,
hold for the functions f and g derived from the concrete and abstract interpre-
tation of the constraint systems over non-atomic runs and over AD, respectively,
and the transfer function h that component-wise maps the concrete interpretation
x of each variable X of the constraint system to its abstraction «(x). Hence, by
solving the constraint system for bridging runs over domain AD, we can determine
the abstractions of the non-atomic bridging runs precisely. From the abstract val-
ues we can read off in particular all the dependences mediated by bridging runs:

149
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fOLi>L’ <>g

Figure 9.1: The situation in the transfer lemma

if (T, D) € AD is the precise abstraction of a set R of (non-atomic) runs, i.e., if
a(R) = (T, D), then (z,y) is a dependence mediated by a run in R if and only if
(1,{(z,y)),1) € D (Proposition 8.5).

Based on this information we can detect copy constants and eliminate faint
code. Corresponding algorithms are developed in this chapter. These algorithms
are not, efficient: they run in exponential time. More precise statements about
the dependence of the run time from the different input parameters can be found
in Theorem 9.6. The point here is not to develop efficient algorithms—we will see
in the next chapter that all these problems are intractable already for loop-free
parallel programs—the point is that these problems are effectively solvable at all!
This comes as a surprise, because the corresponding problems are uncomputable,
if we assume atomic execution of assignments (Chapter 5).

Without further ado, we present, in the remainder of this chapter, the algo-
rithms for detection of copy constants (Section 9.1) and faint-code elimination
(Section 9.2). While we do not perform formal correctness proofs for these al-
gorithms, we argue (hopefully convincingly) that the presented algorithms solve
the respective problems. In our opinion a more formal argumentation would ob-
scure rather than clarify matters here. After the presentation of the algorithms,
we analyze their asymptotic run-time in Section 9.3 and finish the chapter with
some concluding remarks. Throughout this chapter we assume that execution of
base statements is non-atomic.

9.1 Copy-Constant Detection

Roughly speaking, a variable x is a copy constant either if it is assigned a constant
value (e.g., through = := 42) or if it is assigned the value of another copy constant
(e.g., in y := 42;x := y). Thus, in copy-constant detection only assignments of
the simple form x := k, where k is a constant or variable are interpreted, all other
forms of assignments (e.g. x := y + 1) are (conservatively) assumed to make x
non-constant [70].

Algorithm 9.1 in Fig. 9.2 reads a parallel flow graph, a program point v € N,
and a program variable y € X and decides whether y is a copy constant at v or
not. For this purpose it first computes (in Steps 1 and 2) for each program point
w the set

Iw] = {z | emain = Cu = ¢,, Aty (cy), Aty(cy), 7 mediates dep. (z,y)} .
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Algorithm 9.1

Input: A parallel flow graph as defined in Chapter 6, a program point v € N
and a program variable y € X.

Output: “yes” if y is a copy constant at v; “no” otherwise.
Method:

1) Compute—by standard fixpoint iteration—the least solution over do-
main (AD,C) of the constraint system for bridging runs to program
point v; this gives us a value B¥[u] for each program point u.

2) Set Iw] :== {z | (1,{(z,y)),1) € B¥[w].2} for each program point
weE N.

3) Set flag := false and wval := unset.

4) If I[enain] # O then flag := true.

5) For all base edges e = (u,w) annotated by an assignment statement
z :=e with z € I[w]:
5.1) If e is a composite expression then flag := true;

5.2) If e is a constant expression then
if val = unset then val := e else if val # e then flag := true.

6) If flag then output “no” else output “yes”.

Figure 9.2: An algorithm that detects copy constants in parallel programs.

Intuitively, I[w] is the set of variables that can influence the value of y at v when
some computation is at w. Clearly, in I[w] dependences of bridging runs from
w to v are considered. By solving the constraint system for bridging runs from
Chapter 6 over the domain (AD,C) (Step 1), we can compute the dependence
traces of bridging runs; they are given by the second component of the value B [w]
that is computed. From the dependence traces we can read off the dependences
by Proposition 8.5 and hence determine I[w] (Step 2).

The rest of the algorithm is based on the following observation: variable y is
not a copy constant at v if and only if one of the following is true:

a) there is a variable x the initial value of which can influence y at v;

b) there is a base edge e = (u,w) annotated by an assignment z := e with a
composite expression e on the right hand side such that z’s value at w can
influence y’s value at v;
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c¢) there are two distinct base edges e = (u,w) and € = (v',w’) each of them
annotated by a constant assignment x := k and x’ := k', respectively, such
that both z at w and z’ at w' can influence y at v and k # k'.

In Step 3-6 we check whether one of these conditions is true. We use a Boolean
variable flag that is initialized to false and is set to true once we encounter a
reason for y not being a copy constant at v. Step 4 tests whether condition
a) holds true. Step 5 is concerned with conditions b) and c¢). Each base edge
is examined in turn. Step 5.1 tests whether b) holds. In order to check c), we
memorize in a variable val the value of the constant assignment that can influence
y at w encountered first. In order to check c¢) we simply compare the value of
constant assignments encountered later with the value memorized in val. Variable
val is initialized with a special value unset that indicates that we have not seen
a constant assignment so far. Finally, Step 6 outputs the answer.

Of course we could stop the algorithm immediately, once the flag is set to
true. Moreover, we can output the value stored in val as additional information,
if we have identified y as a copy constant at v. It is the value guaranteed for y
at v. It may happen that val has still the value unset; this indicates that v is an
unreachable program point.

We conclude:

Theorem 9.2 Algorithm 9.1 solves the interprocedural copy-constant detection
problem in parallel flow graphs relative to non-atomic interpretation of base state-
ments.

9.2 Faint-Code Elimination

A variable z is live at a program point p if there is a run from p to the end of
the program on which z is used before it is overwritten. By referring to [23],
Horwitz et. al. [28] define a variable z as truly live at a program point p if there is
a run from p to the end of the program on which x is used in a truly live context
before being defined, where a truly live context means: in a predicate, or in a
call to a library routine, or in an expression whose value is assigned to a truly
live variable. True liveness can be seen as a refinement of the ordinary liveness
property. We call a use of a variable x in a predicate or call to a library routine
a relevant use of x.

Assignments to variables that are not truly live at the program point immedi-
ately after the assignment are called faint. Intuitively, faint assignments can not
influence any predicate in the program or call of a library routine. Thus, they
cannot influence the observable behavior of the program (except of producing
run-time errors) and may safely be eliminated from the program. This is called
faint-code elimination.



9.2. FAINT-CODE ELIMINATION 153

Algorithm 9.2

Input: A parallel flow graph 7 as defined in Chapter 6; a mapping R : N — 2%
that associates each program point v with the set of variables relevant at
U.

Output: An updated edge annotation A, of the parallel flow graph in which
faint code is eliminated.

Method:

1) Initialize the new annotation of flow graph edges: Apew 1= A.
2) For each base edge e € Base: Apey[e] := skip.
3) For each v € N with R(v) # 0:

3.1) Compute—by standard fixpoint iteration—the least solution over
domain (AD, C) of the constraint system for bridging runs to pro-
gram point v; this gives us a value B¥[u] for each program point
u.

3.2) Set I[w] :== {z | Jy € R(v) : (1,{(x,y)),1) € B¥[u].2} for each
program point w € N.

3.3) For each base edge e = (., w) € Base with Ale] = (z :=1t):

if x € Ilw] then Aneyle] := (z :=1t).

4) Output the new edge annotation Aey.

Figure 9.3: An algorithm that eliminates faint code in parallel programs.

Faint-code elimination is a stronger form of the classic transformation of dead-
code elimination [51]. Indeed, any assignment that is dead is also faint but not
vice versa. The paradigmatic example is shown in Fig. 9.4. Thus, faint-code
elimination in general can eliminate more code from a program.

We present now an algorithm for faint-code elimination in parallel programs.
Faint-code elimination is based on information about the relevant uses of vari-
ables. Typically, this information is derived from the output and branching state-
ments in the program: each output statement that refers to a variable z means
that the value of z is relevant at the program point just before the output state-
ment. Similarly, a branching statement guarded by a condition b means that all
variables occurring in b are relevant at the program point just before the branch-
ing statement. As our view of the source program, a parallel flow graph, is an
abstraction of the actual program in which I/O statements as well as the condi-
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Figure 9.4: An example of an assignment that is faint but not dead. The value
computed by = := z+1 in the loop is immediately overwritten after the loop and
thus never used in a relevant context. Hence x := x + 1 is faint. However, it is
not dead because z is potentially (non-relevantly) used by the same statement in
the next iteration of the loop.

tions guarding the branching are abstracted to skip-edges, we cannot derive this
information from the flow graph. Therefore, we assume that we are given this
information explicitly in the form of a mapping R : N — 2%; for each program
point v € N, R(u) is the set of variables relevant at w.

Example 9.3 In a given source program we might find a printf statement, e.q.,

printf ("x+y=id", x+y);

In the abstract flow graph view of the program this statement gives rise to a skip
edge e = (u,v). Then both x and y are relevant at u, hence R(u) = {x,y}.
Similarly, we might find a branching statement, e.q.,

if (z > xxy) then {...} else {...}

in the source program. In the abstract flow graph view of the program this if-
statement gives rise to two skip-edges (u,v) and (u,w); u is the start node for the
flow graph for the whole if-statement; at v the flow graph for the then part and at

w the flow graph for the else part is found. In this case, we have R(u) = {x,y,z}.
O

Algorithm 9.2 in Fig. 9.3 reads a parallel flow graph and a mapping R: N —
2% as described above. Based on this information it calculates an updated version
of the edge annotation mapping of the given flow graph in which faint code is
eliminated. More precisely, faint instances of base statements are replaced by
skip.

First the new edge annotation mapping is initialized by the original edge
annotation (Step 1) and all annotations of base edges are removed, i.e. replaced
by skip (Step 2). The rest of the algorithm restores the original edge annotation
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for the base edges that are not faint. The algorithm is based on the simple idea
that an instance of a base statement is not faint if and only if it can influence a
relevant value.

We explore all program points v at which at least one variable is relevant and
restore the base edges that perform a computation that can influence a variable
y that is relevant at v (Step 3). For this purpose we calculate in Steps 3.1 and
3.2 for all program points w the set

Iw] = {2 | erain = cw == ¢y, Aty(cy), Aty(cy), Jy € R(v) : 7 med. dep. (z,y)}.

Intuitively, I[w] contains the variables that can influence the value of a relevant

variable y at v when some computation is at w. The computation is analogous

to the one of the similar set I[w] in Algorithm 9.1; therefore, we omit a detailed

explanation. Step 3.3 restores the annotation of those base edges that assign to

a variable that can influence a relevant variable at v from the target node of the

base edge. Finally, Step 4 outputs the computed new edge annotation mapping.
We conclude:

Theorem 9.4 Algorithm 9.2 solves the interprocedural faint-code elimination
problem in parallel flow graphs relative to non-atomic interpretation of base state-
ments.

9.3 Run-Time

The goal of this section is to analyze the asymptotic run-time of the algorithms
from the previous sections. We do not determine very sharp estimates but are
satisfied with showing that the algorithms run in time exponential in the number
of program variables, | X| and polynomial in the size of the parallel flow graph.
The latter is measured by the parameters |N|, the number of program points,
|E|, the number of edges, and |Proc|, the number of procedures.

In both algorithms the bulk of the work is done during the least fixpoint
computation(s) for the constraint system(s) for bridging runs over the domain
(AD, C). Let us, first of all, determine an asymptotic bound for the complexity of
such a fixpoint computation. As we are heading only for a rough bound, we can
assume that the least fixpoint is computed naively by standard fixpoint iteration:
starting from an assignment of the bottom value to each variable appearing in
the constraint system we iteratively determine a new assignment to the variables
by re-evaluating all constraints until convergence, i.e. until we observe no further
modification. Of course the asymptotic complexity of this naive fixpoint algo-
rithm is bounded by the product of the maximal number of iterations and the
maximal cost of a single step.

In each iteration except of the last one, at least one constraint variable must
change its value. It is well-known that the values assigned to a constraint vari-
able can only increase during fixpoint iteration. Therefore, for each constraint
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variable the value can change at most O(|X2X/*3) times, because O(|X|?XI+3)
is a bound for the height of AD by Lemma 8.22. Moreover, it is a simple count-
ing exercise to show that the complete constraint system for bridging runs (it
comprises the constraint systems for same-level runs, inverse same-level runs,
reaching runs, etc.) has O(|Proc| - [N|) constraint variables.! Thus, we can have
at most O(|Proc|- |N|-|X|?X!*3) iterations. This clearly is O(|Proc|-|N|-2ro(XD)
for some polynomial py(z) in z, because 22713 = 2l082(¥)(22+3) < 92a”+3z

Let us now bound the costs of a single iteration. In each iteration we must
reevaluate all constraints. As the number of operations in a single constraint
is bounded, we can get an asymptotic bound for the costs of a complete re-
evaluation of all constraints by multiplying a bound for the number of constraints
with a bound for the maximal costs of a single operation. It is again a simple
counting exercise to show that the complete constraint system for bridging runs
has O(|N|-|E|) constraints.? From Lemma 8.47 we know that all operations can
be computed in time O(2P(XD) for some polynomial p;(x). Hence the cost of a
single iteration is O(|N| - |E| - 2p1(XD).

Summarizing, the constraint system for bridging runs can be evaluated over
domain (AD,C) in time O(|Proc| - |N|- 2Po(XD . |N| . |E| - 2710XD) = O(|Proc] -
IN|2-|E|-2P0XD) for p(z) = po(x) +p1(x). Let us fix this result for later reference
as a lemma.

Lemma 9.5 The constraint system for bridging runs can be evaluated over do-
main (AD, C) in time O(|Proc| - |N|? - |E| - 2°UXD) where p(z) is a polynomial.
O

Let us now turn attention to the algorithms. Clearly, in the copy-constant
detection algorithm, Algorithm 9.1, the bulk of the work is done in Step 1 such
that the time taken for Step 1 majorizes the time taken for the other steps. Hence
this algorithm runs in time O(|Proc| - |[N|? - |E| - 2P(XD) by Lemma 9.5.

In the faint-code elimination algorithm, Algorithm 9.2, the work performed in
Step 3.1 majorizes the work done in the other steps. Step 3.1 is executed at most
|N| times. Consequently, Algorithm 9.2 runs in time O(|Proc| - |N|? - |E| - 2P(XD).

Clearly, only those program variables are of interest in the algorithms that
appear in the parallel low graph. We can thus assume without loss of generality,
that all program variables in X appear in the parallel flow graph. As the latter
constitutes part of the input to all algorithm, the input size cannot be smaller
than the size of X. Obviously, the same holds for Proc, N, and E such that the
size of the input clearly bounds all the parameters appearing in above run-time
estimations. Hence all algorithms run in time exponential in the size of the input.

1This asymptotic bound holds in the special case where ASS1 and ASS2 are true as well as
in the general case.
2 Again this asymptotic bound holds for both the special and the general case.
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Theorem 9.6 Algorithms 9.1 and 9.2 run in exponential time. More precisely,
Algorithm 9.1 runs in time O(|Proc|-|N|2-|E|-2PUXD) and Algorithm 9.2 in time
O(|Proc| - |[N[? - |E| - 20(XD), O

Corollary 9.7 If base statements are interpreted non-atomically, the following
two problems can be solved interprocedurally in parallel flow graphs in exponential
time: (1) copy-constant detection and (2) faint-code elimination. O

9.4 Conclusion

We have shown in this chapter that we can detect copy constants and eliminate
faint code in parallel flow graphs in exponential time, if we do not assume that
base statements execute atomically. This should be contrasted to the result that
all these problems are undecidable if assignment statements are assumed to ex-
ecute atomically (Chapter 5). So, the (unrealistic) idealization from program
verification “atomic execution of assignment statements” that presumably sim-
plifies matters actually increases the difficulty of these problems from the point
of view of program analysis: amazingly these problems become more tractable if
we adopt a less idealized, more realistic view of execution!

These results raise the question whether there are also efficient algorithms
for these problems. Sadly, the answer to this question is ‘no’, unless P=NP, as
we show in the next chapter.
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Chapter 10

Complexity in the Non-atomic
Scenario

In the previous chapter, we have seen that we can detect all copy constants and
eliminate faint code completely in parallel programs, if we abandon the assump-
tion that base statements execute atomically. The presented algorithms run in
exponential time, which raises the question whether there are also efficient algo-
rithms for these problems. In this chapter we show that the answer is ‘no’, unless
P=NP. In the conclusions of this thesis, Chapter 11, we sketch possible reme-
dies and discuss directions of future research that may still lead to algorithms of
practical interest.

The hardness proofs from Chapter 5 rely on well-directed re-initialization of
variables in order to ensure that runs which do not correspond to behavior to be
simulated do not contribute to propagation. The example in Section 7.2 indicates
that this technique does not work, if the assumption of atomic execution of base
statements is abandoned. This also follows from the fact that the above analysis
problems become decidable, which trivially implies that the un-decidability proofs
cannot be valid any more.

In Section 10.1 we exhibit a co-NP-hardness proof by means of a reduction
from the well-known SAT-problem [10, 60] that applies to both flow analysis prob-
lems. We have first presented this reduction in [53] where atomic execution of
base statement has been assumed, but it remains valid if this assumption is aban-
doned. Unlike the reductions in Chapter 5, it only relies on active propagation
along copying assignments but not on well-directed re-initialization.

The hardness proof constructs loop-free programs and it is easy to see that
the co-NP lower bound is indeed sharp for loop-free programs. We have not yet
been able to fully characterize the complexity for the other classes: the general
intraprocedural problem and the interprocedural problem. Up to now we have
the EXPTIME upper bound through the algorithms from Chapter 9 and the NP
lower bound through the SAT reduction from Section 10.1. A natural idea for
an NP-easiness proof would be to show that non-constancy and non-faintness is
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always witnessed by runs of polynomial length. We show in Section 10.2 that
this idea does not work. Specifically, we exhibit a family of programs in which
the length of the shortest witnessing runs is exponential in the program size.
This justifies the conjecture that the general intraprocedural problem does not
belong to NP, i.e., cannot be solved by a non-deterministic algorithm that runs
in polynomial time.

For ease of presentation we represent parallel programs in this chapter, like
in Chapter 5, by syntactic programs rather than flow graphs.

10.1 The SAT-Reduction!

We now describe the SAT reduction. An instance of SAT is a conjunction ¢; A
... N ¢ of clauses cy,...,cp. Each clause is a disjunction of literals; a literal [
is either a variable z or a negated variable Z, where x ranges over some set of
variables X. We write X = {Z7,...,7,} for the set of negated variables. It is
straightforward to define when a truth assignment T : X — B, where B = {tt, ff}
is the set of truth values, satisfies ¢; A...Acg. The SAT problem asks us to decide
for each instance c; A ... A ¢ whether there is a satisfying truth assignment or
not.

From a given SAT instance c; A ... A ¢ with k£ clauses over n variables X =
{z1,...,2,} we construct a loop-free parallel program. In the program we use
k + 1 variables zy, 21, ..., 2. Intuitively, z; is related to clause ¢; for 1 <1 < k;
Zp 1s an extra variable.

For each literal [ € X UX we define a statement ;. 7, consists of a sequential
composition of assignments of the form z; := z; | in increasing order of 7. The
assignment z; := z;_1 is in 7 if and only if the literal [ makes clause 7 true.
Formally, m = 7, where

def .
7Tl0 = skip
Ll = if cl ins [
i def | ;2 = z_1, if clause ¢; contains
o= i . .
! Tt if clause ¢; does not contain !
for:=1,..., k. Now, consider the following program :

procedure Main;

29 :=1;

21 :=05...52,:=0;

[(Tay Do) || - || (e, T )] 5
(2 := 0M skip);

write(zy)

end

1This reduction has first been presented in [53]
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Clearly, 7 can be constructed from the given SAT instance ¢; A ... A ¢ in poly-
nomial time or logarithmic space.

It is not hard to see that the value 1 from the initialization of zp can be
propagated to the final write statement if and only if the given SAT instance is
satisfiable:

“If”: On the one hand, we can construct from a satisfying truth assignment 7 :
X — B a run that propagates zy’s initialization to the write-statement. In
each parallel component 7., M7z we choose the left branch 7, if T'(x;) = tt
and the right branch 7z otherwise. As T is a satisfying truth assignment,
there will be, for any 7 € {1, ..., k}, at least one assignment z; := z;_; in one
of the chosen branches. We interleave the branches now in such a way that
the assignment(s) to z; are executed first, followed by the assignment(s) to
29 etc. This results in a propagating run.

“Only if”: On the other hand, a run can propagate the value with which z, is
initialized to the write-statement only via copying it from 2y to z1, from z;
to zy etc., because all assignments have the form z; := z;_;. Such a run
must thus contain the assignment z; := z;_; for all2 =1,..., k. But from
the way in which the non-deterministic choices are resolved in such a run
we can easily construct a satisfying truth assignment.

The arguments for both directions hold independently from the atomicity as-
sumption for assignment statements.

Example 10.1 Fig. 10.1 shows an example clause and program for illustration.
Assignments to different variables are shown on different levels. Intuitively a sat-
isfying truth assignment corresponds to a way of resolving the non-deterministic
choices in the three threads such that at each level at least one assignment is
present in one of the chosen branches. This is the case if and only if the value 1
from zy’s initialization may propagate to the write instruction.

It is not hard to infer from this propagation property that the given SAT instance
is satisfiable if and only if any of the following two conditions holds:

1. 2o :=1 is not a faint assignment.
2. zr is not a copy constant at the write statement.

The second point deserves additional explanation. Observe first that z; can hold
only 0 or 1 at the write-statement because all variables are initialized by 0 or
1 and the other assignments only copy these values. Clearly, due to the non-
deterministic choice just before the write-statement, zy may hold 0 finally. Thus,
zr 18 a constant at the write-statement if and only if it cannot hold 1 there.
The latter obviously holds if and only if the initialization value of 2y, cannot be
propagated.
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Figure 10.1: The flow graph for (z1 V 2o V 23) A (21 VT3 VT3) A (T1 V 22).

The program constructed in the above reduction is loop-free and does not em-
ploy procedures. Therefore, the reduction already applies to the intraprocedural
problems for loop-free programs. It is easy to see that the problems can also
be solved in non-deterministic polynomial time for loop-free programs: imagine
non-deterministic algorithms that guess two runs that witnesses non-constancy
or a single run that witnesses non-faintness, respectively. Each of these runs can
visit any program point at most once because the program is loop-free. Hence it
can be guessed even in time linear in the program size.

These considerations prove:

Theorem 10.2 Independently of the atomicity assumption for base statements,
detecting copy constants and detecting faint code in loop-free parallel programs
are co-NP-complete problems.

Corollary 10.3 Independently of the atomicity assumption, detecting copy con-
stants, and detecting faint code are co-NP-hard problems in arbitrary parallel
programs.
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10.2 Towards Stricter Lower Bounds

A natural question is whether the lower bound provided by Corollary 10.3 for
the three flow analysis problems, NP-hardness, is sharp, i.e., whether there are
non-deterministic algorithms that run in polynomial time and solve the general
intraprocedural (or even interprocedural) version of one (or both) of these prob-
lems. While we have not yet been able to settle this complexity question, we
have achieved some progress towards an answer.

A natural approach for showing NP-easiness would be to exhibit a proof that
shortest propagating runs are always of a length polynomial in the program size.
This would guarantee that non-deterministic algorithms that guess runs that
witness non-constancy or non-faintness would run in polynomial time.

At first glance this approach seems promising, at least for the intraprocedural
problem which has a fixed process architecture. One is tempted to believe that
each assignment instance x := e in the program can be used at most once for
propagation in a shortest propagating run: if it is used twice in a propagating
run 7 it seems possible to shorten this run. The intuition is that the thread
T that contains this assignment instance x := e could store the value to be
propagated in a virtual variable v when z := e is reached the first time in 7;
then it could wait until the environment has evolved to its state when x := e is
reached the second time in r. As virtual variables are private to P the evolution
of the environment cannot affect the stored value. This reasoning seems similar
to the intuition underlying Lemma 8.40 that is crucial for the completeness of
the abstract interleaving operator ®7.

This intuition, however, is wrong as we show in Section 10.2.1. Specifically,
we present an example program in which any propagating run must necessarily
use a certain instance of an assignment twice. In Section 10.2.2 we exploit the
construction of this example to exhibit a family of programs in which the length of
shortest propagating runs grows exponentially with the program size. This proves
that a non-deterministic algorithms that guesses witnessing runs is doomed to run
in time exponential in the input size. While this does not rule out the possibility
that small certificates other than witnessing runs exist, it nevertheless justifies
the conjecture that the two flow analysis problems that accompany us through
this thesis probably do not belong to the class NP but that their complexity is
higher. It is an open problem, whether the technique of these examples can be
used to show better lower bounds than NP-hardness, e.g., PSPACE-hardness.

What is the error in the argument sketched above? It is that the thread T can
prevent the environment from certain evolutions by waiting after it has stored
the value to virtual variable v. For constructing programs in which this happens
(like the ones shown in the remainder of this section), we can exploit the causality
inherent in sequential and parallel composition and looping. Most importantly,
we can exploit that the parallel composition operation synchronizes termination
of the component threads.
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10.2.1 Assignment Statements that Propagate Twice

Recall that a run r is said to mediate the dependence (x,y), r - (x,y) for short,
if there are variables ag,...,q;, [ > 0, expressions ej,...,e;, and (sub-) runs
To,--.,T; such that

Loay=z,a =y;

2. e; contains a;_q fori=1,...,1[;
3.r=rg-{ar:=e1) 11 -{ag:=e3) - r9-... (a;:=¢)-r; and
4. r; is transparent for a; for 1 =0, ... 1.

If this is the case, we say that the run r propagates from x to y via the assignments
a; := e;. When r is a run of a program 7, the assignments with a program variable
on their left hand side correspond to certain assignment statements in 7. Then
we say that the run propagates via these assignment statements.

We now present a program 7 that can mediate the dependence (a,c), but in
which any run that mediates (a, ¢) must use a certain assignment instance twice.
Consider the following program :

r:=0b
c Y3 R
loop | z:=a; ||(y:§’> end.
b=y y-=
z:=0

Program 7 can mediate the dependence (a,c) even when assignments execute
atomically (and hence also when they execute non-atomically): by iterating the
loop twice and interleaving the two components of the parallel processes appro-
priately, we see that it has the run

1. Iteration: z:=b,c:=y,x:=a,y:=X,b:=y,2:=0,y:=0,
2. Iteration : x:=b,y:=x,c:=y,x:=a,b:=y,x:=0,y:=0

This run mediates the dependence (a,c) via the assignments printed in bold
face. The interesting point of this example is that—even when we assume non-
atomic execution of assignments—there is no run that mediates this dependence
without copying via the assignment y := zx in the second parallel component
twice. In order to see this, consider the following: as variable a is read only by the
assignment x := a, a propagating run must use this assignment for propagation
in some iteration of the loop, say in the k’th iteration. Before this iteration
of the loop ends, r must be further propagated, because otherwise propagation
is prohibited by the execution of x := 0. This can only happen in the second
thread by means of y := x. Again, in order to successfully proceed with the
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propagation, y must be propagated before the end of the iteration of the loop,
because otherwise y := 0 prohibits further propagation. Hence, b := y must be
executed before the end of the k’'th loop iteration after complete execution of
y := x. After the kth loop iteration, the value in b must be further propagated
to ¢, which requires a second use of y := z.

Note that this example exploits the synchronous termination of the parallel
composition operator as well as the causality inherent in sequential composition.

10.2.2 Propagating Runs of Exponential Length

By iterating the technique of the previous example we can construct a family of
processes in which exponentially long runs are necessary to mediate a particular
dependence.

We inductively define processes P;, i > 0. These processes have the ability
to propagate from a variable a; to a variable ¢;. We will show below that the
shortest runs that do so have length Q(2%).

1 = 0: Process P, is defined as ¢y := ag. It plays the role of the instruction y := x
in the previous example; ay corresponds to z and c¢g to y.

1> 0: For 2 > 0, the process P; relies on the ability of P,_; to propagate from
a;—1 to ¢;_1. The construction from Section 10.2.1 is used to enforce that
P;_; has to contribute two runs that propagates from a;_1 to ¢;_; in any
run of P; that propagates from a; to ¢;. For this purpose an intermediate
variable b; is used. This is the definition of P;:

a1 = by
¢ = Ci—1, .
1 = a; B d; b;:=0
oop A;—1 = Qg || iy = ena,; 0; .=
— . i—1 =
bi = ci_1;
;-1 = 0

Let us now prove by induction on 7 that process P, has a run that propagates
from a; to ¢; and that (for i > 0) any run of P; that does so must include at least
two runs of P;_; that propagate from a;_; to c;_;. This proves the £(2¢) claim for
the length of shortest propagating runs. In order to enable an inductive proof,
the following additional property is proved simultaneously: any run of P; finally
kills all variables that are assigned to except of ¢;, more precisely: if a run r of
P; can be written as 7 = ¢ - (x := e) - r; with z # ¢; and e # 0, then r; can be
written as 71 = 1o - (x := 0) - r3.

For P, these properties are trivial. So suppose 7 > 0 and assume that the
properties are valid for P,_;. Let r be a shortest run of P,_; with r - (a;_1, ¢i—1).
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Then we can define a run s of P; (with atomically executed assignments) in
analogy to the run considered in the previous example:

1. Iteration: a;_1 := b;,¢c; :== ¢;_1,a;_1 := a;,r,b; :=cj_1,0,_1 :=0,¢;_1 := 0,
2. Iteration: a;_y := by, r,c; := ci_1,0,-1 := a;,b; :==ci_1,0,_1 :=0,¢;_1 := 0,
After loop: b;:=0

The parts written in bold face witness that s - (a;,¢;) and, obviously, this run
contains r twice.

In order to see that any run s of P; with s F (a;,¢;) necessarily contains
two runs of P;_;, we argue similar to Section 10.2.1: as variable a; is read only
by the assignment a;,_; := a;, a propagating run must use this assignment for
propagation in some iteration of the loop, say in the £’th iteration. Before the
k’th iteration of the loop ends, a;,_; must be read, because otherwise propagation
is prohibited by the execution of a; 1 := 0. This can only happen in the second
thread in a run r of P;,_;. By the induction hypothesis this run kills all variables
except ¢;_; finally, and ¢;_; is also killed explicitly after the execution of P;_;
before the k’th iteration of the loop ends. Thus, successful propagation requires
that r is a run that propagates to ¢; ; and that afterwards b; := ¢; ; is executed.
In order to propagate from b; to ¢; in a later iteration of the loop, a further run
of P,_; that propagates from a;_; to ¢;_; is needed.

That all runs of P; kill all the variables they assign to except ¢; is easy to
see from the corresponding property for P;,_; and the places of the assignments
ai_1:=0,¢_1:=0,and b; :=0in P,

These considerations justify the following conjecture.

Conjecture 10.4 For parallel programs, the intraprocedural copy-constant detec-
tion problem does not belong to co-NP. The same holds for faint-code elimination.

10.3 Summary

In this chapter we have seen that both detecting copy constants and eliminating
faint code are intractable problems, even if the assumption that base statements
execute atomically is abandoned. Both problems have been shown to be co-NP-
hard by means of a reduction from the SAT problem. Unlike the reductions in [55],
this reduction applies under the assumption that assignments execute atomically
as well as when this assumption is abandoned. Moreover, we have exhibited a
family of example programs in which the length of shortest propagating runs
is exponential in the program size. This indicates that the lower bound, NP-
hardness, probably can be improved for the general intraprocedural problem as
well as the interprocedural problem.



Chapter 11

Conclusion

For fundamental recursion-theoretic reasons, program analyzers are doomed to
give only approximate answers. By applying abstractions to programs, we can
come to precisely defined, weaker analysis problems that can be solved exactly. By
classifying such problems with the means provided by the theory of computational
complexity, we hope to shed light on the trade-off between efficiency and precision
for approximate analyzers and to uncover potential for more precise analysis
algorithms.

In this thesis we studied various version of the constant propagation problem.
More specifically, our contributions are the following:

1. We characterized the complexity of constant detection for a three-dimen-
sional taxonomy of constants in sequential flow graphs that work on integer
variables almost completely. The first dimension selects a subset of expres-
sions that are interpreted precisely. The second dimension distinguishes
between must- and may-constants; may-constants appear in two variations:
single- and multiple-valued. In the third dimension we distinguish between
programs with or without loops.

2. We showed that detection of copy constants in parallel programs is unde-
cidable, PSPACE-complete, and NP-complete if we consider programs with
procedures, without procedures, and without loops, respectively. These
proofs rely on the standard assumption that base statements execute atom-
ically. They reveal fundamental limits for precise analysis of parallel pro-
grams.

3. We then abandoned this atomic execution assumption. Surprisingly, this
makes copy-constant detection decidable for programs with procedures al-
though it remains intractable (co-NP-hard). Similar statements can be
made for faint-code elimination. In order to show decidability we exhibited
a precise abstract interpretation of sets of runs (program executions). The
worst-case running time of this algorithm is exponential in the number of
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global variables but polynomial in the parameters describing the program
size.

From a practical perspective, our most interesting findings concern potential
for the construction of algorithms. In the sequential case, we find that polynomial
constants are decidable and that Presburger constants can even be detected in
polynomial time. In the parallel case we could show that problems that are un-
decidable under the standard idealization of atomic execution are in the reach of
algorithmic techniques if more realistic atomicity assumptions are adopted. This
in particular holds for the fundamental problem of exact dependence analysis.
While further work is necessary to construct algorithms that are efficient enough
to be of practical use, our findings open up potential for interesting future work.

The worst-case running-time of the algorithms in Chapter 9 is exponential.
We cannot even hope that they would perform well in practice because already
the elementary operations are expensive, in particular the abstract interleaving
operator. Nevertheless, we believe that refinements of the technique underlying
dependence traces can lead to practically interesting algorithms with acceptable
performance and superior precision. Let us discuss possible targets for improve-
ments.

While the run-time of the algorithms is exponential in the number of pro-
gram variables, it is polynomial in the program size; cf. Theorem 9.6. Hence,
if the number of program variables is bounded, they are polynomial-time algo-
rithms. For a practical algorithm it is thus essential to keep the number of the
variables that are used in dependence trace construction small. In order to keep
the technical treatment manageable, we do not distinguish between local and
global variables of threads and procedures in the current exposition. All vari-
ables are global and all of them are visible to each thread. Therefore, we must
include all variables into the precise interference analysis provided by dependence
traces. In practice, however, most variables are local to threads and there are only
a few global variables on which interference can happen. A practical algorithm
should take advantage of the distinction between local and global variables. The
idea is to devise a combined analysis that uses a cheap sequential technique for
propagation via local variables and applies the expensive interference reasoning
via dependence traces only to global variables. Analysis with respect to such a
domain promises to be exponential only in the number of global variables, which
is probably small in practice.

We should also strive for a compact representation of the values in the ab-
stract domain AD. Each value comprises a set of variables T and an antichain
of short dependence traces D. Set 7" may straightforwardly be represented by
a bitvector. It is less clear, however, what is an adequate representation for
D. Storing all the dependence traces in D, e.g., as a linked list, is proba-
bly not a good solution, because D can be large and there is much redun-
dancy. The run (b:=a,d :=c, f :=e), for instance, has the dependence trace
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Figure 11.1: A lattice for constant propagation.

7= (1,{(a,b), (c,d), (e, f)), 1) but also the dependence traces (1, {(a, b), (¢, d)), 1),
(1,{(a,b)),1) and many others. In a certain sense the latter dependence traces
are implied by 7 except of the transparency bits. We should use a represen-
tation that employs sharing to compactly represent all these dependence traces
by a structure that is not much larger than 7 alone and that allows a cheaper
computation of the composition operators.

In flow analysis of sequential programs we mostly propagate informative values
through the program. In constant propagation, for instance, we use values of a
lattice like the one in Figure 11.1. The dependence traces domain, however, is a
rather poor and pure domain that treats interference in isolation. It is fitted to
the computation of dependences only. Although it allows us to solve problems like
copy-constant detection and faint-code elimination, the approach is indirect via
bridging runs and involves even an iterated computation of dependence traces
in the case of faint-code detection. It is interesting to invent and study more
complex abstract domains that work with more informative values but rely on
the idea of dependence traces to come to grips with interference. Ideally, such
domains should be obtained by a modular extension of the dependence traces
domain in order to isolate the interference-related reasoning from other semantic
questions.

11.1 Future Research

Let us discuss some ideas for future research.

Complete the hierarchy of constants. An obvious target for future research
are the two questions that remain open in the hierarchy of constants of Chapter 3:
(1) we miss an upper bound for linear may-constants and (2) the upper and
lower bound for polynomial must-constants do not coincide. Currently, we have
decidability as an upper bound, as witnessed by the algorithm in Chapter 4, and
PSPACE-hardness as a lower bound.



170 CHAPTER 11. CONCLUSION

Investigate interprocedural hierarchy. It is interesting to study the hierar-
chy of constants in Chapter 3 also in sequential programs with procedures, i.e.,
the interprocedural problem. Particularly interesting are the questions whether
Presburger constants can still be detected efficiently and whether polynomial
constants are still decidable. In view of the negative results of Chapter 5 and 10
already for the weakest class of constants, copy constants, it is less interesting to
generalize the results to parallel programs.

Implement Presburger and polynomial constant detection. On the prac-
tical side, we would like to implement the detection algorithms for Presburger
and polynomial (must-)constants. In particular, it is interesting to evaluate how
the algorithm for polynomial constants performs in practice.

Research towards more practical analysis algorithms. Concerning anal-
ysis of parallel programs the dependence traces domain proposed in this thesis
is only a first step. We do not expect that the algorithms in Chapter 9 run
satisfactorily in practice. We believe, however, that variants of the dependence
traces techniques can well lead to algorithms with acceptable performance and
superior precision. The next three points mention again the possible targets for
improvements that have already been motivated and discussed in more detail
above.

Take advantage of local variables. We would like to study algorithms that
take advantage of the distinction between local and global variables. The expen-
sive dependence traces technique should be applied only to global variables and
local variables should be treated by much cheaper sequential techniques. The
two propagation methods must be intertwined because both types of variables
can contribute to propagate information to a certain point in the program. This
may make the resulting algorithms rather complicated.

Represent antichains compactly. It is important to find a compact repre-
sentation of antichains of dependence traces on which the abstract operations can
be computed more efficiently than on an explicit representation.

Specialized domains. It is worth inventing domains that work with more
informative values than dependence traces. With such domains it should be
possible to perform, e.g., copy-constant detection by means of an abstraction of
reaching runs rather than bridging runs. Thus it would reveal a closer connection
to traditional analysis of sequential programs. Note, however, that in itself this
does not imply a gain in efficiency (with respect to asymptotic run-time) because
the constraint systems for reaching runs and bridging runs both have O(|Proc| -
|N|) constraint variables and O(|N| - |E|) constraints.
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More realistic programming languages. We should also consider applica-
tion of the dependence traces technique to more realistic programming languages.
In this thesis we studied the prototypic scenario of non-deterministic parallel flow
graphs. Generalization to practical languages may lead to additional interesting
problems.

Weak memory consistency models. Many modern implementations of multi-
threaded programs provide only a weak memory consistency model that allows
the implementation to change the order in which writes from one thread are
observed in other threads [1, 63, 69]. The reason is that weaker assumptions
about the memory enable a multitude of software and hardware optimizations.
A weak memory consistency model is another reason besides non-atomicity, why
the idealistic atomicity assumptions adopted in classic program verification and
in our reductions in Chapter 5 are unrealistic. We conjecture that the dependence
traces abstraction is sound and complete also under most if not all weak memory
consistency models. This would emphasize the importance of dependence traces.
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Appendix A

A Primer on Constraint-Based
Program Analysis

Constraint-based program analysis provides a framework for developing analyses
and arguing about their correctness and completeness. In this chapter we describe
the idea underlying constraint-based program analysis. As a running example we
use forward dataflow analysis in (non-procedural, sequential) flow graphs and
consider constant propagation in particular.

Definition A.1 A flow graph is a structure G= (N, E, A,s,e) with node set
N, edge set E C N X N, a unique start node s € N, and a unique end node
e € N. The mapping A : E — Asg U {skip} associates each edge with an
assignment statement x := e € Asg or with the statement skip. Fdges represent
the branching structure and the statements of a program, while nodes represent
program points.

Program analysis problems are concerned with answering questions about
certain sets of runs. A run is a sequence of atomic action; in a sequential context
we can think of an action simply as an edge of the flow graph. A forward dataflow
analysis, for instance, is concerned with the runs that reach program points from
the start point of the program.

Definition A.2 Suppose G=(N,E, A,s,e) is a flow graph and w € N is a
program point. A run reaching w is a sequence of edges (ey,...,ex) with e; =
(u;,v;) € E such that uy =s, vy = w, and v; = u;yq for 1 <i <k . In addition
e, the empty sequence, is a run reaching s, the start node. We write R[u] for the
set of runs reaching u.

In constraint-based program analysis, we first set up a system of subset con-
straints that characterize the run sets of interest. Each constraint takes the form

X; D E(Xy,..., Xk),
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where the variables X; represent the run sets of interest plus, perhaps, some
additional auxiliary run sets, and E(X3,..., Xy) is a term in these variables that
denotes a monotonic mapping on run sets. We can have more than one constraint
per variable. It follows from the Knaster-Tarski fixpoint theorem [76] that such a
constraint system always has a smallest solution. We choose the constraints such
that their smallest solution comprises just the run sets of interest. This is meant
by saying that the constraint system characterizes the run sets. Throughout
this thesis, we obey the following convention: run sets of interest are denoted by
letters in sans serif font and the corresponding variables in constraint systems by
the same letter in italic font.

In the constraint system for the reaching runs in flow graphs, for example, we
have one variable R[u| for each program point u € N that represents R[u] and no
auxiliary variables. The characterizing constraint system for reaching runs has a
special constraint for the start node

[ Rls] 2 {}
and one constraint for each edge e = (u,v) € E:

2] R[v] 2 Rlu] - {{(u,v))} .

It is easy to see that the family (R[u])uen of sets of reaching runs satisfies all
these constraints. It is moreover not hard to prove by induction on the length of
runs that if (F})4en is a family of run sets that solves this constraint system, then
any run that reaches u must be contained in F,. Together this implies that the
smallest solution of this family of inequations over run sets is indeed the family
of reaching run sets.

On the right hand side of constraints, certain run sets and operations on run
sets are used. We may conceive the constraint system abstractly as a system over
a certain signature Sig = (C,O) consisting of a set of constants C' and a set of
operator O, where each operator o has an associated arity ar(o) € N.

In the constraint system for reaching runs, for instance, the signature consists
of one constant c. and a unary operator o,; the constraint system is this:*

[1] Rls] 2 c
2] R[v] 3 0e(R[u]), if (u,v) € E
An interpretation I of the signature comprises a complete lattice (D, C) and

an assignment of a value I(c) € D to each constant ¢ and an (n-ary) operations
I(o) : D" — D to each n-ary operator o.

!The reader may consider it more natural to read the second constraint as
[2'] R[v] 3 R[u];ce, if (u,v) € E

where ¢, is a constant and ; is a binary operator. While this alternative interpretation is
legitimate in principle, it does not lead to an efficient intraprocedural analysis algorithm.
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IR

-2 -1 0 1 2 o

Figure A.1: Hasse diagram of the co-flat order on Z U {T}.

In the standard or concrete interpretation I, DD is the power set of the set of
runs, D = 2RU"S_ the order is subset inclusion, C = C, and the interpretation of the
constants and operators is as in the concrete constraint system. Thus, the least
solution of the constraint-system comprises the run sets of interest. The concrete
interpretation for the signature underlying the reaching runs in flow graphs, for
instance, is this: I(c.) = {e} € 2R for constant ¢, and I(0,) = (AR : R-{(e)}) €
(2Runs —, 9Runs) for unary operator o,.

In constraint-based program analysis we obtain the analysis result by solving
the constraint system over an abstract lattice (D#,C#) and a non-standard or ab-
stract interpretation I* of the constants and operators over (D#, C#). Typically,
D# is a finite-height lattice such that the constraint system can be effectively
solved by standard fixpoint iteration.

In order to specify a forward dataflow analysis, we choose a finite-height lat-
tice (D, C#) of dataflow facts and a value dy € D¥ that represents the fact valid
at the start of the program, and associate with each flow graph edge e a mono-
tonic transfer function [e]* : D¥ — D* that describes the effect of execution of
edge e on dataflow facts. Often the latter is given via the annotation of edges
by statements. The members of D# represent, depending on the specific anal-
ysis, potential run-time properties of program points. The order, C#, captures
information contents: smaller values represents more accurate (more precise) in-
formation. In particular, the top value, Tp#, represents absence of information.
Note that our interpretation of the order is dual to the traditional one.

Example A.3 (Simple constant propagation) Let us discuss so-called sim-
ple constant propagation. Here the lattice is Ds. = (Var — (ValU{T})) U {L},
where Var is the set of variables occurring in the program and Val is the set from
which variables draw their value at run-time.2 L is an artificial bottom element
that is added in order to make Dy. a complete lattice. The other values are ab-
stract states d : Var — (MalU {T}). An abstract state assigns to each variable
x € Var either a value ¢ € Val—in this case x is quaranteed to be a constant of
value c—or the special value T —in this case x’s value at run-time is unknown.
The order on Dy, s defined as follows: L T d for all d € Dy, and, for abstract
states d,d, d C d' iff for all x € Var, d(z) = L ord(z) = d'(z). That is, the order
is the lift of the co-flat order on Val U{T} extended by L as a bottom element.

2For simplicity, we assume that all variables have the same type.
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The co-flat order on ValU{T} is illustrated by the Hasse diagram in Fig. A.1 for
Val = Z.

The initial value is dy = (Az : T)—at the start of the program we have no
knowledge about the value of the variables.

The transfer functions are induced by the statements: [e]# = [A(e)]sc, where
[skip]s.(d) = d, i.e., [skip] is the identity on Dy, and [z := e]s is defined by
[z :=¢€]se(L) = L and [z :=€]sc(d) = dlx — €] for abstract states d. The
standard way of defining e, the value of expression d in abstract state d, is by
extending the standard interpretation of operators from Val to Val U {T} in a
strict way, i.e., such that each operation yields T if any of its arguments is T.3

The entities that specify a forward dataflow analysis induce a non-standard
interpretation of the signature underlying the constraint system for reaching runs:
the interpretation works on the lattice (D#, C#) of dataflow facts; constant c. is
interpreted by I# (c.) = dy, and the operator o, by the transfer function associated
with edge e: I'(0.) = [e]*. The smallest solution of the constraint system for
reaching runs over this non-standard interpretation can effectively be computed
by fixpoint iteration. It is called the MFP-solution in dataflow analysis parlance.
We denote the value computed for variable R[v] by MFP[v] for each v € N.

Example A.4 (Simple Constant Propagation) If, for the simple constant
propagation framework, MFP[v] # L and MFP[v](x) = ¢ € Val then z is called a
simple constant of value ¢ at program point v.

The theory of abstract interpretation allows us to argue that the non-standard
interpretation gives us the desired analysis result. For this purpose, we define
first an abstraction function o : D — D¥ that describes the intended relationship
between concrete interpretation I and abstract interpretation I#. In the standard
setting this amounts to a relationship between run sets and analysis results.

We call o a weak homomorphism of the two interpretations I and I# if

1. a(I(c))E#I#(c) for any constant ¢ € C' and

2. a(I(0))(dy,...,dy)E*I#(0)(a(d:), . .., a(dy)) for any k-ary operator o € O
and values dy,...,d; € D.

Alternatively, we say in this case that the abstract operators and constants are
correct abstractions of the concrete ones. Intuitively, « is a weak homomorphism
if computation on abstractions yields sound but in general less accurate abstrac-
tions computation on concrete values.

3For some operators, we could use a non-strict interpretation, if other arguments determine
the value of the operation uniquely. For example, we could define that 0- T = 0.
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We call o a strong homomorphism if 1. and 2. hold with = in place of C#.
Alternatively, we say that the abstract operators and constants are precise ab-
stractions of the concrete ones. Intuitively, « is a strong homomorphism if we
get the same information by computing on abstractions.

A function f : L — L' between complete lattices L and L' is called distributive
(universally disjunctive) if it distributes over arbitrary joins, i.e., if f(\/S) =
V{f() |l € S} forall SC L.

For any variable X used in a given constraint system, let X. € D be the
value assigned to variable X in the smallest solution over concrete interpretation
I and X, € D¥ be the value assigned to X in the smallest solution over abstract
interpretation I#. Then the crucial theorem can be formulated as follows:

Theorem A.5 Suppose a is distributive.

1. If a is a weak homomorphism then a(X.)C# X,.
2. If a is a strong homomorphism then a(X.) = X,.

In forward dataflow analysis the relationship between the standard and the
abstract interpretation is given by the MOP-abstraction. MOP stands for “Meet
Over all Paths”. As our interpretation of the order is dual to the traditional one
we define it here as a “join over all paths”. Nevertheless, we use the term MOP
that is very well-established in the literature.

In order to define the MOP-abstraction, the local interpretation [e] : D — D
of flow-graph edges is extended to runs by the natural definition

[ler, ... ex)] ¥ [ex] o-..0[ed].

In particular, [¢] = (Ad € D¥ : d), the identity on D#. Obviously, the in-
formation valid after execution of a particular run r is given by [r](do). The
MOP-abstraction is now defined as apop : D — D#:

amor(R) = | [{Ir](d) | € R}.

With this definition, we clearly have

amop(R[t]) = MOP[] | [{[rl(do) |~ € Riv]} .

That is, the set of reaching runs to v is abstracted to what is commonly called
the MOP-solution in dataflow analysis, where it is used as the specification of
what the analysis tries to compute or approximate. The intuition is that MOP[v]
is the most precise abstract information we can guarantee whenever execution
reaches program point v: we must be prepared to see any of the runs r € R[v];
the best we can say after a specific run r is [r](dp); and the most precise value
consistent with all these values is their join. Therefore, a sound analysis must
compute for program point v a fact f with MOP[v]C# f, preferably f = MOP[u].
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Example A.6 (Simple constant propagation) For the simple constant prop-
agation framework, MOP[v] # L for each reachable program point v € N. Let us
assume that v is indeed reachable. If x is a constant of value ¢ € Val at program
point v, i.e., holds ¢ whenever execution reaches v, MOP[v](x) = ¢. Otherwise,
MOP[v]|(z) = T. Therefore, the MOP-solution of the simple constant propagation
framework is a perfect reference point for judging soundness of constant propaga-
tion algorithms.

It is not hard to prove that the MOP-abstraction is distributive. Furthermore,
if all transfer functions [e] are monotonic, a very natural assumption we have
made above, amop is a weak homomorphism. By Theorem A.5 this means that
the constraint-based analysis delivers sound results, a classic theorem by Kam
and Ullman [34].

Theorem A.7 (Monotonic frameworks) If all transfer functions [e], e € F,
are monotonic then MOP[v]C#MFP[v] for all v € N.

Example A.8 Theorem A.7 implies, in particular, that simple constant propaga-
tion yields sound results. If MFP[v](x) = ¢ € Val for a program point v € N and a
variable © € Var, we can infer MOP[v](x) = ¢ because MOP[v] C MFP[v]. There-
fore, x is indeed a constant of value c in this case. However, if MFP[v](z) = T
we cannot infer anything.

Ideally, we would like that MOP- and MFP-solution coincide. Indeed, if we
pose stronger requirements on the transfer functions we obtain such a result: it is
not hard to show that « is a strong homomorphism if all transfer functions [e] are
universally disjunctive (distributive) and by Theorem A.5 this implies that the
constraint-based analysis computes exactly the MOP-solution in this case. Thus,
we obtain the classic theorem of Kildall [36] ensuring soundness and completeness
of the MFP-solution for distributive frameworks.

Theorem A.9 (Distributive frameworks) If all transfer functions [e], e €
E, are distributive then MOP[v] = MFP|v] for allv € N.

The transfer functions in simple constant propagation are not distributive
as illustrated by the program in Fig. A.2: while the MOP-solution assigns the
value 5 to z at node 7, the MFP-solution looses precision at node 6 by assigning
T to both z and y at node 6. Hence, the MFP-solution assigns the sound but
imprecise value T to z at node 7. The reason is that [z := x + y]s, the transfer
function assigned to edge (6,7), is non-distributive. Let us write [a, b, | with
a,b,c € ValU {T} for the abstract state that assigns a to x, b to y, and ¢ to z.
Then

[z:=24+ y]se([2,3, T|U[3,2,T]) = [z =2+ y]([T, T, T)) = [T, T, T]
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Figure A.2: Non-distributivity of simple constant propagation.

but
[z :=2+ylse([2,3, TD U [z := 2+ ylse([3,2, T]) = [T, T, 5] # [T, T, T].

It is possible to define distributive frameworks for constant propagation. A
well-known example is copy-constant propagation in which composite expressions
are not interpreted at all.

Example A.10 (Copy-constant propagation) In copy-constant propagation
we use the same lattice as in simple constant propagation, the same order, and
the same initial value. We modify, however, the transfer functions: composite
expressions are no longer interpreted. Specifically, we define for composite ex-
pressions e, [z := €] by [T :=€]ec(L) = L and [z := €] (d) = d[x — T|. For
all other base statements s, [s]cc = [s]sc- Note that besides of skip, only con-
stant and copying assignments x = v, where v is a constant or variable, are
interpreted, hence the name copy-constant propagation.

It is not hard to prove that the transfer functions of the copy-constant frame-
work are universally disjunctive, Therefore, the MFP-solution of the copy con-
stant propagation framework coincides with the MOP-solution. Of course we pay
a price for this coincidence. The MOP-solution of the copy constant propaga-
tion framework no longer captures constancy at run-time precisely; unlike the
MOP-solution of simple constant propagation framework, it is itself a conserva-
tive approrimation only.

There is no deep fundamental difference between the classic approach to
dataflow analysis, which relies on equations, and the constraint-based approach
that relies on inequations. However, the constraint-based approach enables a
more modular specification, as in any single inequation we can concentrate on
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one particular phenomenon, why a certain dataflow information must be weak-
ened, while in an equational specification we must consider all of them at the
same time. This often results in a more transparent specification, in particular if
we consider more complex scenarios than intraprocedural analysis of sequential
flow graphs like analysis of parallel flow graphs.



