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Abstract. This article provides an overview over two constructive ap-
proaches to provably correct hard real-time code generation where hard
real-time code is generated from abstract requirements rather than ver-
ified against the timing requirements a posteriori. The first, more prag-
matic approach is concerned with translation of imperative programs,
extended by hard real-time commands which allow one to specify upper
bounds for the execution time of basic blocks. In the second approach,
Duration Calculus, a metric-time temporal logic, is used as the source
language. Duration Calculus allows one to specify real-time systems at
a very high level of abstraction.

1 Introduction

Due to rapidly dropping costs and the increasing power and flexibility of embed-
ded digital hardware, digital control is becoming ubiquitous in technical systems
encountered in everyday life. Modern means of transport rely on digital hard-
ware even in vital sub-systems like anti-locking brakes, fly-by-wire systems, or
signaling hardware. Medical equipment gains such a boost in functionality from
exploiting the flexibility of computer control that more classical technology is
replaced by digital control even in such critical applications as life-support sys-
tems or radiation treatment. Correct behavior of digital systems has thus become
crucial to the safety of human life.

Formal methods are mathematical techniques developed to aid in the de-
sign of software systems. These techniques can provide correctness guarantees
that are not otherwise available. Formal methods thus complement more tradi-
tional approaches for ensuring quality of software, like testing and certification by
code inspection. Classical program verification is concerned with functional in-
put/output specifications of stand-alone programs. In the application scenarios
sketched above, however, correctness typically does not only depend on func-
tional requirements but also on the time at which inputs are read and outputs
are provided. Moreover, the digital system typically controls an environment of
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non-digital nature, i.e. these systems belong to the class of real-time embedded
controllers.

The omnipresence of hard real-time systems in the realm of embedded sys-
tems urgently calls for techniques that support analysis, design, and reliable im-
plementation with respect to both facets of their functionality, which are logical
correctness and timeliness of service. As these aspects are not independent, tech-
niques that can deal with both aspects simultaneously are particularly desirable.
For early design phases like requirements capture and functional specification,
this has led to the development of prototypical formalisms that tightly integrate
algorithmic descriptions and timing. Prominent examples are timed automata
[1] on the more operational side and metric-time temporal logics [46, 49] on the
declarative side.

For later design phases, in particular code generation, it is, however, still
state of the art to keep algorithmic aspects and timing separate. While com-
pilers are generally used for generating code that is logically correct, timing
behaviour is mostly analysed a posteriori, using profiling tools or even machine-
code inspection. We suggest that the chain of formalisms and tools that sup-
port an integrated approach to functionality and timing may be extended down
to the implementation level. As functionality is nowadays generally dealt with
constructively by compilers or synthesis procedures, rather than through a pos-
teriori analysis, this necessitates an incorporation of constructive methods for
implementing hard real-time constraints into compilers or synthesizers, as well
as suitably expressive source languages for these procedures.

In this article, we survey research in this direction that has been pursued by
the authors in the scope of the ProCoS project [8]. On the more practical side,
this was translation of a hard real-time imperative programming language which
has a semantic model that — for the sake of nice algebraic properties — fully ab-
stracts from the runtime of non-communicating statements. Here, compilation
exploits invisibility of internal state changes for implementing such instanta-
neous statements through non-instantaneous sequential code. This considera-
tion is part of more comprehensive work on rigorous verification of compilers
which is surveyed in Sect. 2. On the more theoretical side, we have studied auto-
matic synthesis of embedded controllers from rich subsets of Duration Calculus,
an interval-based metric-time temporal logic introduced in [49]. Again, obser-
vational constraints of the environment are crucial as synthesis exploits band-
limitedness or, for still richer subsets of Duration Calculus, even synchronicity
properties of the environment for overcoming undecidability of Duration Calcu-
lus. This line of work is summarized in Sect. 3.

2 Compiler Verification

Although the idea of mathematically verified compilers dates back at least to
the sixties [28] the complete verification of realistic compilers is still a chal-
lenge. Most documented work on compiler verification heads for a mathematical
understanding of typical or semantically intricate implementation mechanisms
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illustrated by toy source and target languages [33, 43, 24, 38]. Target code for
commercially available processors is only seldomly formally investigated. The
work at CLI (Computational Logic Inc.) on the ‘small stack’ [7], a hierarchy
of languages with mechanically proved translations between them, particularly
Moore’s work on the verified translation of the PITON assembly language to
the binary machine code of the FM 9001 chip [31], is one of the rare exceptions.
Even the impressive work on VLisp, a verified translator for Scheme, [17] ends
at the level of an abstract machine that, given the abstractness of the source
language Scheme, is rather close to actual hardware but is still more abstract
than commercially available processors.

Apart from mathematical insight there is, however, a more practical motiva-
tion for an interest in compiler verification that certainly calls for an investigation
of actual machine code: the justification of compiler-generated code from the cor-
rectness of the source code. In particular in the area of safety-critical systems,
trusted verifed compilers would allow to certify control software on the source
code level which would be less time-consuming and thus less costly than the
current practice of inspecting machine code [39]. Moreover it would encourage a
good documentation or even formal verification of the source code.

In this section we highlight an approach to verifying translations to machine
code of actual processors. As a major case study we investigated the Transputer
manufactured by the British company INMOS (now part of SGS-THOMSON
Microelectronics Ltd) as target architecture. The source language is a prototyp-
ical hard real-time language, which allows the programmer to explicitly state
upper bound requirements for the execution time of basic blocks. Such a code
generator correctness proof may easily become monolithic, aimed at a narrow
source language with a specific code generator for the given target processor.
A proof of this kind would have little interest beyond the particular applica-
tion, and might still require a large effort. We have pursued a more modular
approach that should adapt to both extensions of the source and modifications
to the target which justifies the effort. Like most literature on compiler verifi-
cation we concentrate on the correctness proof for code generators here because
construction of scanners and parsers is well-understood.

2.1 Prologue

It is natural to think of instructions of von Neumann machines as denoting as-
signments to machine components like accumulators and store. Hence, the effect
of machine instructions can conveniently be described by imperative programs.
The Transputer instruction ldc(1), for instance, which loads the constant value
1 to the accumulator called A, and moves A’s contents to accumulator B, as well
as B’s contents to accumulator C (in the Transputer the registers A, B and C are
used in a stack-like manner), can be represented by the multiple assignment

E(ldc(1)) def= A, B, C :=1, A, B .
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Similarly, the effect of stl(x), writing A’s contents to variable x, moving B’s
value to A, C’s value to B, and an unspecified value to C, can be described by

E(stl(x)) def= x, A, B :=A, B, C ; C := ? ,

where C := ? denotes the nondeterministic choice between all possible assign-
ments to C. To specify a machine by a high level program is of course not a new
idea; it already underlies the concept of micro-programming [47], for instance.
Such descriptions can also be used as starting point for hardware design [27, 10,
19] and thus provide a good interface to lower levels of abstraction.

If semantics of machine instructions is captured by imperative program frag-
ments, refinement algebra [21], which provides semantics-preserving or refining
program transformation rules, can be used to show that certain machine instruc-
tion sequences implement certain source programs. The following calculation
proves, for example, that the code sequence 〈ldc(1), stl(x)〉, assumed to have
the same meaning as the sequential composition of the effects E(ldc(1)) and
E(stl(x)), is correct target code for the assignment x := 1; for the moment the
additional effect on the accumulator C is taken to be irrelevant:

E(ldc(1)) ; E(stl(x))
= [Definitions above]

A, B, C :=1, A, B ; x, A, B := A, B, C ; C := ?
= [(Combine-assign), (Identity-assign)]
x, A, B, C :=1, A, B, B ; C := ?

= [(Cancel-assign), (Identity-assign)]
x := 1 ; C := ? .

In this proof we have used the following three assignment laws where x and y
stand for disjoint lists of variables, e and f for lists of expressions of correspond-
ing type, and f [e/x] denotes substitution of e for x in expression f .

(Identity-assign) (x := e) = (x, y := e, y)
(Combine-assign) (x := e ; x := f) = (x := f [e/x])
(Cancel-assign) (x, y := e, f ; y := ?) = (x := e ; y := ?)

The above calculation illustrates a basic idea of our approach to compiler
verification: to use an imperative meta-language and refinement laws as proposed
by Hoare [20, 22]. We write ≥ for the refinement relation; intuitively P ≥ Q
means that P is better than Q in serving every purpose served by Q in every
context.1

1 Due to lack of space we cannot present a formal definition of the meta-language
in this article. For the purpose of this overview an informal understanding is suf-
ficient. Let us just mention that the imperative meta-language is interpreted by
predicate transformers in the tradition of Dijkstra’s wp-calculus [12] and the refine-
ment calculus [34, 5, 32] but extended to communicating programs. For performing
the abstractions we use a variant of the data refinement theory of Back [4], Gardiner
& Morgan [16], and Morris [35]. Details can be found in the monograph [37].
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The exposition up to now is of course oversimplified. Firstly, the model of
the instruction’s effect is too abstract. For example, the Transputer instructions
reference memory locations basically, not variable identifiers as we assumed in
the description of stl(x), and a machine program basically is not a separate
entity but the executed instructions are taken from the memory. Secondly, a
number of unformalized assumptions have been made in the surrounding text.

An idealized abstract model of the target processor simplifies the compiler
verification. But if considerations are based on such a model alone there is a
severe danger of unsoundness because the postulated model might fail to provide
a safe abstraction of the processor’s actual behavior. To ban this danger we
interface directly to the Transputer’s documentation by starting from a semi-
formal model of its execution cycle provided by INMOS, the manufacturer of
the Transputer, in [23]. A direct employment of this model in a compiler proof,
however, would result in very long and tedious calculations which would seriously
affect credibility of the proofs. How can we combine simplicity and conciseness
of proofs with realistic modeling of the processor?

The idea is to derive a hierarchy of mutually consistent, increasingly abstract
views to the Transputer’s behavior, starting from bit-code level up to assembly
levels with symbolic addressing. In each of the abstraction steps one particular
phenomenon can be tackled in isolation. Afterwards we can choose for each proof
task the model that allows the simplest proof or even mix reasoning at different
abstraction levels without risking inconsistencies or unsoundness.

In the remaining parts of this section we describe the Transputer base model,
the derived more abstract models, and the technique by which the abstraction is
performed. Then we show how this hierarchy can advantageously be employed in
the translation correctness proof for an imperative (un-timed) source language.
Afterwards we indicate the generalization to a timed language. Due to lack
of space we cannot present all formal details but invite the reader to enjoy
the presentation with an informal understanding. A complete treatment can be
found in the monograph [37].

2.2 Transputer Base Model

Appendix F of the Transputer Instruction Manual [23] contains a semi-formal
model of the Transputer’s behavior. Essentially it describes the Transputer as
a state machine that communicates via four bi-directional synchronous chan-
nels called links, and works on a state consisting of three accumulators A, B
and C (used as a small stack by most instructions), an operand register Oreg,
a workspace pointer Wptr, an error flag EFlag, an instruction pointer IP, and
an addressable memory Mem. We reformulate this model using the notation of
the imperative meta-language mentioned above. The state components are rep-
resented by likewise named variables of appropriate type and the links by four
input channels In0, . . . , In3 and four output channels Out0, . . . , Out3.

We introduce a process Run that is constrained by axioms in the form of
refinement formulas. Run models the complete behavior of the running phase
which is entered by the Transputer after the initialization phase that follows a
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reset. (The initialization phase need not be formally captured for the purpose
of compiler verification.) In order to describe Run in a modular fashion we
introduce auxiliary processes Step and Fetch and for each Transputer instruction
instr a processE0(instr). Step models the behavior of a complete execution cycle,
Fetch the instruction fetch phase and E0(instr) the instruction specific part of
the execution cycle.

The basic property of Run is that it cyclically executes steps. This is captured
by the axiom

Run = Step ; Run . (1)

Step is characterized by the family of axioms (one for each Transputer instruction
instr)

Step ≥ {CurFct(instr)} ; Fetch ; E0(instr) , 2 (2)

where CurFct(instr) def= (Byte(Mem, IP) bitand $F0) = InstrCode(instr). Intu-
itively, CurFct(instr) is a predicate that holds true if and only if the memory lo-
cation pointed to by the instruction pointer IP contains just the instruction code
of the instruction instr . The above property of Step means that Step behaves
like the sequential composition of the Fetch phase and the process E0(instr) if
activated in a state where CurFct(instr) holds. Fetch is completely described by
the axiom

Fetch = Oreg, IP := Oreg bitor (Byte(Mem, IP) bitand $0F), IP + 1 .

The effect of the single instructions is described by Z-like schemata in appendix
F.3 of [23]. (The fetch phase too is described by a schema called ‘InstrDecode’.)
The schema for the load constant instruction ldc, for example, which loads the
contents of the operand register Oreg to the evaluation stack, looks as follows
[23, Page 132]:

ldc #4 load constant
Areg′ = Oreg0

Breg′ = Areg
Creg′ = Breg
Oreg′ = 0
Iptr′ = NextInst

Primed names represent the values of the corresponding register after execution
and unprimed names the values before. Oreg0 stands for the operand register’s
contents after the fetch phase. In our framework the effect of ldc is captured by
a refinement axiom about E0(ldc). As we are using an imperative programming
notation we need not use primed and superscripted variables for distinguishing
2 For a predicate φ, the assertion {φ} is a process that terminates immediately without

state change if φ holds, and behaves chaotically, i.e. is completely unconstrained
otherwise. (Formally, {φ} is the predicate transformer defined by {φ}(ψ) = φ ∧ ψ.)
As a consequence, (2) constrains – for a given instruction instr – the behavior of
Step only for initial states in which CurFct(instr) holds.
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register values at different stages of execution; we differentiate between them im-
plicitly by the places at which they appear in the formulas. The register updates
caused by ldc can be represented simply by a multiple assignment statement:

E0(ldc) ≥ A, B, C, Oreg := Oreg, A, B, 0 . (3)

This refinement formula can be interpreted as an axiom on ldc’s behavior.
Comparing it with the Z-like schema above, the careful reader will notice that
incrementation of the instruction pointer is missing. We have decided to move
it consistently for all instructions to the fetch phase as this is slightly more
convenient for the following exposition.

The behavior of the other instructions can be captured by similar axioms.
This keeps the modularity of the description in [23]. Each instruction is de-
scribed separately by one (or more) formula, which leads in the abstractions to
short proofs for single instructions instead of one monolithic proof for the en-
tire instruction set. In addition, it allows to reason formally with only a partial
formalization of the instruction set; only the instructions actually used in the
compiler need be considered.

The axioms on E0(instr) claim refinement, not equality. This has a particular
benefit: it allows to approximate the actual effect safely if it is not completely
known. As an example, let us consider the following axiom for the instruction
stl (store-local). Intutitively, stl stores the top value of the register mini-stack
to a certain location in the memory.

E0(stl) ≥ {Index(Wptr, Oreg) ∈ Addr} ;
Mem[Index(Wptr, Oreg)], A, B, Oreg := A, B, C, 0 ; C := ? .

Addr denotes the set of valid word addresses and contains only those addresses
for which memory is actually available. The assertion {Index(Wptr, Oreg) ∈
Addr} ensures that the inequality is trivial if the referenced memory address
Index(Wptr, Oreg) is invalid. This means that the axiom doesn’t tell how stl
behaves in this situation. The nice effect is that we must ensure, when reasoning
about correctness of code, that stl is not used under such circumstances as we
cannot otherwise show correctness.

The non-deterministic assignment C :=? captures that the contents of register
C after a stl location is left unspecified by the Transputer designers. Clearly,
the C register will contain a certain value but our axiom does not say which.
So any reasoning based on this axiom cannot rely on any specific assumption
about the final value of C. Without the use of non-determinism and refinement
we would be forced either to describe the effect of stl on the register C and
stl’s behavior when it accesses invalid addresses completely, or to work with
an idealized model. The first solution is impractical as such information is not
available; the second solution might lead to unsafe reasoning.
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2.3 A Hierarchy of Views

The base model of the Transputer is on a rather low level of abstraction. It has
not even an explicit notion of an executed machine program but instructions are
taken from the memory. In principle it is possible to use this model directly in a
correctness predicate relating machine code with source programs but this leads
to a complicated definition and to complicated proofs. Therefore, we stepwise
derive more abstract views to the Transputer’s behavior. These views are suc-
cessively concerned with the following topics, which in this way can be treated
in isolation:

– symbolic representation of the control point, which results in a treatment of
the executed machine program as a separate entity;

– word-size operands for direct functions;
– convenient access to the workspace;
– symbolic variables instead of workspace addresses; the mapping of these

variables to the workspace is described by a dictionary δ;
– hiding of registers.

Each abstraction level comprises a collection of processes. The abstractions
are performed by defining the collection of processes for the more abstract view in
terms of the collection for the more concrete one. Afterwards sufficiently strong
theorems are established that allow one to reason with the abstract family of
processes alone, without referring to the concrete family. This is essential for
meeting the objective of abstraction, viz. to increase tractability.

Table 1 shows the drastic reduction of the complexity of the terms describing
the instruction ldl (load local) at the various abstraction levels. As mentioned,
the assertion {Index(Wptr, Oreg) ∈ Addr} present at the lower abstraction levels
make the inequalities applicable only if the referenced address is valid. From
Level 3 onwards this is ensured by a global assumption about the storage allo-
cated for the workspace. The models in the hierarchy are consistent by construc-
tion, i.e. by definition and calculation.

In the following we discuss the first two abstractions in more detail and sketch
the other abstractions.

Symbolic Representation of Programs. It is quite natural to think of a
machine program as a separate entity consisting of a sequence of instructions.
The point of execution, that is represented on the machine by the instruction
pointer’s contents, can be modeled by a distinguished position in that instruction
sequence. More elegantly we can use a pair of instruction sequences (a, b), where
a stands for the part of the machine program before the distinguished position
and b for the part thereafter, i.e. the complete machine program is a · b and the
next instruction to be executed is the first instruction of b. Progress of execution
can be elegantly expressed by partitioning the sequence a · b differently.

Formalizing this idea we define, based on Run, a family of processes I1(a, b)
(parameterized by the pair of instruction sequences a, b). I1(a, b) describes the
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Table 1. Illustration of abstraction levels

The letters v and w range over words; v additionally satisfies 1 ≤ v ≤ lW, i.e., it is a
valid workspace address. x is a variable of type word; it is assumed to be in the domain
of δ. adrx is the address of the memory cell allocated for x.

Eδ
5(ldl, adrx) ≥ SKIP

Eδ
4(ldl, adrx) ≥ A, B, C := x,A, B

E3(ldl, v) ≥ A, B, C := Wsp(v), A, B

E2(ldl, w) ≥ {Index(Wptr, w) ∈ Addr} ;

A, B, C := Mem(Index(Wptr, w)), A, B

E1(ldl) ≥ {Index(Wptr, Oreg) ∈ Addr} ;

A, B, C, Oreg := Mem(Index(Wptr, Oreg)), A, B, 0

E0(ldl) ≥ {Index(Wptr, Oreg) ∈ Addr} ;

A, B, C, Oreg := Mem(Index(Wptr, Oreg)), A, B, 0

total behavior resulting from starting a · b with the first instruction of b:

I1(a, b)
def= var IP ; [Loaded(a · b) ∧ IPAfter(a)] ; Run ; end IP .

The outer block var IP . . . end IP hides the instruction pointer IP that is no
longer needed because the point of execution is symbolically represented from
now on. The assumption3 [Loaded(a ·b)∧IPAfter(a)] ensures that Run is started
in a state where a · b is loaded and the instruction pointer IP points just after
a. The predicates Loaded(u) and IPAfter(v) are defined by

Loaded(u) def= |u| ≤ lP ∧
〈Byte(Mem, sP ), . . . ,Byte(Mem, sP + |u| − 1)〉 = Code(u)

IPAfter(v) def= IP = sP + |v| ,

where sP and lP are the start address and the length of the program memory,
i.e. that region of memory allocated to hold the program.

We also define abstractions of the effect processes E0(instr). These ensure
by a final assertion and by taking the greatest lower bound over all possible
instruction sequences a, b that neither the loaded program (whatever it might
be) nor the position of execution is changed or, more precisely, that changes lead
to chaotic behavior:

E1(instr) def=
∧
a,b

var IP ; [Loaded(a · b) ∧ IPAfter(a)] ; E0(instr) ;
{Loaded(a · b) ∧ IPAfter(a)} ; end IP .

3 For a predicate φ, the assumption [φ] is a process that — like the assertion {φ}
— terminates immediately without state change if φ holds but leads to miraculous
success otherwise. Formally, [φ] is the predicate transformer [φ](ψ) = (φ⇒ ψ).
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From these definitions and the axioms of the base model we can prove the fol-
lowing theorem:

Theorem 1 (I1-instruction theorem).
I1(a, instr(n) · b) ≥ Oreg := Oreg bitor n ; E1(instr) ; I1(a · instr(n), b) .

Here we write instr(n) for the code sequence consisting of the single instruction
instr with four-bit operand n, 0 ≤ n < 16. This theorem formally reflects that
a machine program that is loaded and started at some instruction instr with
four-bit operand n behaves as follows: n is bitwisely or-ed with the value in the
operand register (this loads n to the least four bits of the operand register since
every previous instruction leaves these bits cleared), and then the (abstracted)
effect of instr is executed. Afterwards it behaves as if the same program is
executed starting at the next instruction.

Moreover, we prove for each instruction instr approximations for E1(instr)
that do not refer to E0. An example for the ldl instruction can be found in
Table 1.

Large Operands for Instructions. The purpose of the Transputer’s operand
register Oreg is to provide word-size operands for the instructions. The idea is
that the operand register is filled with the operand in portions of four bits by
a sequence of pfix and nfix instructions preceding the instruction for the ac-
tual function, the operand part of which provides the least significant four bits
only. This special purpose and use of the operand register, however, is not di-
rectly reflected in the behavioral description of the Transputer we have available
up-to-now, where Oreg is treated like any other register. The second abstrac-
tion, therefore, provides an understanding of leading pfix and nfix sequences
together with a trailing non-pfix and non-nfix instruction as a multi-byte in-
struction.

We define a new view I2(a, b) based on I1(a, b) and an abstractionE2(instr , w)
of an instruction instr ’s effect together with a word operand w.4 We then can
prove a new version of the instruction theorem:

Theorem 2 (I2-instruction theorem).
I2(a, instr(w) · b) ≥ E2(instr , w) ; I2(a · instr(w), b) .

Now instr(w) stands for the instruction sequence resulting from the standard
scheme for generating pfix and nfix instructions described in [23, Chapter 4].
Furthermore we prove approximations for E2 as shown for the ldl-instruction
in Table 1. Note that the I2-instruction theorem is easier to apply than the old
I1-instruction theorem as it requires no explicit calculations with the operand
register.

4 The range of word operands differs for the different processors from the Transputer
family. A typically value is −231 ≤ w < 231 for 32-bit Transputers but there are also
16-bit Transputers for which the range is −215 ≤ w < 215.
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Further Abstractions. Due to lack of space we can only briefly sketch the
remaining abstraction levels:

– The third level I3 replaces the memory variable Mem by an array Wsp (the
‘workspace’) of a fixed length lW . A fixed value sW of the workspace pointer
is assumed and the workspace is mapped to the sequence of memory locations
just above sW . The abstraction is based on a global assumption that this
memory region is disjoint from the program storage and contains only valid
addresses. It allows us to reason more easily about Transputer code that
accesses the memory via the usual workspace mechanism because reasoning
on this level need not reflect the mechanism by which the workspace is
mapped to memory. This is done only once while performing the abstraction.

– The next level Iδ
4 replaces the workspace by a list of symbolic variables. The

set of introduced variables as well as their representation is described by a
dictionary δ.

– The final level Iδ
5 hides the remaining registers A, B, C and EFlag and provides

a view in which only the communications via the links and the symbolic
variables are visible.

The choice of the abstraction levels is not accidental. They correspond very well
to the intuitive concepts used in informal reasoning about Transputer code and
can be interpreted as semantical analogues to increasingly abstract assembler
languages. A formally justified counterpart to the intuitive understanding of
each abstraction level is provided by an instruction theorem like Theorem 1,
special theorems for jumps and conditional jumps, and theorems about the single
instructions.

2.4 Incremental Specification of Code

We benefit from the hierarchy of views to the Transputer’s behavior when defin-
ing the correctness relation between source and target programs. Consider as an
example a simple imperative programming language with syntactic categories
of programs, statements and expressions and assume that we are globally only
interested in the communication behavior of complete programs. Then it is sen-
sible to call a Transputer instruction sequencem correct code for a program prog
iff

I∅5 (ε,m) ≥ MP(prog) ,

where MP(prog) is the meaning of prog interpreted in the space of processes, ε
stands for the empty code sequence, and ∅ represents the empty dictionary.

Translation of statements, however, has to take representation of variables
into account. Therefore, a reasonable correctness condition relating a statement
stat to code m must employ a non-trivial dictionary δ for the variables appearing
in stat . When comparing m with stat we cannot simply use the predicate given
by

Iδ
5 (ε,m) ≥ MS(stat) ,
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since — inherited from Run — Iδ
5 (ε,m) does not terminate. (For complete pro-

grams this problem does not arise: we assume that programs stop on termination
which can be achieved by a stopp instruction in m). The main purpose of termi-
nation of stat is to transfer control to its sequential successor. Therefore, we do
not expect that the machine stops after execution ofm but rather that control is
transferred to the code just following m. Formalizing this idea we use the follow-
ing predicate as notion of correct implementation of statements: m implements
stat w.r.t. dictionary δ, CS(m, stat , δ) for short, iff

Iδ
5 (a,m · b) ≥ MS(stat) ; Iδ

5 (a ·m, b) ,
for all code sequences a, b. A correctness predicate for expression translation must
refer to the more concrete view Iδ

4 because correct expression code is expected
to leave the expression’s value in register A that is not visible on Level 5.

Having defined correctness predicates, we establish for each source language
constructor a theorem that shows how correct code for the composed construct
can be obtained from correct code of the components. From a comprehensive set
of such theorems a code generator program can be implemented without further
semantic consideration. As a first example we present the theorem for sequential
composition here; further examples can be found in Sect. 2.6.

Not surprisingly, the sequential composition seq(stat1, stat2) of two state-
ments stat1 and stat2 can simply be implemented by concatenating machine
code implementing stat1 and stat2.

Theorem 3 (Sequential composition translation). Suppose CS(m1, stat1, δ)
and CS(m2, stat2, δ) hold. Then CS(m1 ·m2, seq(stat1, stat2), δ).

The proof is by a little calculation that applies to arbitrary code sequences a
and b; of course, sequential composition in the source language corresponds to
the sequential composition operator ; of the meta-language:

Iδ
5 (a,m1 ·m2 · b)

≥ [CS(m1, stat1, δ)]
MS(stat1) ; Iδ

5 (a ·m1,m2 · b)
≥ [CS(m2, stat2, δ)]

MS(stat1) ; MS(stat2) ; Iδ
5 (a ·m1 ·m2, b)

= [Definition of semantics of seq]
MS(seq(stat1, stat2)) ; Iδ

5 (a ·m1 ·m2, b) .

The simplicity of this proof, which looks almost too straightforward to be of
interest, stems from the use of the adequate abstraction level. If we had defined
CS with direct reference to the Transputer base model (which is easily done
by unfolding the definition of Iδ

5 ) the proof would be far more complex as all
invariants that are kept by the code had to be explicitly treated. Now they are
treated incrementally during the derivation of the abstraction levels. Moreover,
we would not have such a clear way of speaking about the control point but had
to refer to its coding in the instruction pointer.
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2.5 Real-Time Programs

The ideas described up to now have been applied to a prototypic real-time lan-
guage. We considered the language of while-programs extended by (synchronous)
input/output statements and timing constructs. The timing constructs separate
two fundamentally different aspects of timing of computer programs. On the one
hand, means for explicitly specifying that certain actions happen at certain time
instants are needed. On the other hand, the delay caused by the execution of
statements must be controlled to stay in safe limits.

Time instants may be specified either relative or absolut. In a controller for an
elevator, for example, we might want to specify that the elevator door opens one
second after the chosen floor has been reached, which is a relative specification.
Absolute time instants are needed, for example, to express the requirement that
the elevator is to be shut off after closing-time, 6 o’clock p.m. (Of course this
requirement needs careful refinement in order to prohibit starvation of people
entering the elevator at 5:59...) To perform tasks at absolute time instants is
typically delegated to the operating system (consider, for example, the UNIX at
daemon); thus absolute timing constructs are not crucial for a real-time language.
Relative timing, however, is indispensable in control programs. Common means
for specifying relative timing are WAIT statements and time-out clauses. For
implementing these constructs, a compiler typically exploits specific features of
the implementing hardware, like timers, or applies some service provided by
the operating system. Therefore, they don’t provide a particular challenge for a
compiler. Our work focussed thus on mastering the execution delay.

From the specification point of view the delay caused by statement execution
is an undesirable inconvenience but it is an inevitable companion of computa-
tion. As it is typically orders of magnitude smaller than the timing requirements
of the application, it is often not explicitly adressed in real-time formalisms,
e.g., in synchronous languages [18, 6]. If computation load is high, however, the
implementing code must be analysed in order to guarantee the timing require-
ments of the application. We are heading for an approach that avoids such an a
posteriori analysis but remains as convenient as possible for the programmer.

The idea is to allow the programmer to specify upper bounds for the tolerated
execution time of basic blocks in the source language. It is the obligation of the
compiler to check whether these upper bounds are met by the generated code.
There is no point in specifying lower bounds on execution delay: faster execution
should always be an improvement. Note that faster execution does not affect
explicit delays as in WAIT statements, as these are implemented by primitives
that are not influenced by processor speed. To specify only upper bounds has the
benefits that the compiler has to perform just a worst-case timing analysis and
that migration to faster processors without recompilation is possible. It would,
however, be rather inconvenient for the programmer, if any statement must be
guarded by an upper-bound. We offer the idealization that internal computation,
like assignments and evaluation of guards of loops and conditionals, proceeds in
zero time. Thus only input/output statements must be guarded and smooth
program transformation laws are valid. Assignments, for example, can be moved
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in and out of time bounds, and logically redundant assignments can freely be
introduced or eliminated without affecting the timing behavior of programs.
This idealization, which is akin to that found in synchronous languages, can be
justified by exploiting that internal computation is not directly observable. We
describe in Sect. 2.6 how this challenge was met in a semantic compiler proof.

Let us illustrate both aspects of timing by means of a small program fragment
taken from a control program for the ProCoS gas burner (cf. Sect. 3.6):

. . .
heatreq := false
WHILE not(heatreq) DO

SEQ
WAIT 1/2
UPPERBOUND 1/8
input(hr, heatreq)

. . .

We use an OCCAM-like concrete syntax of programs, where indentation in-
dicates block structure; SEQ is the sequential composition operator, the other
constructors are self-explaining.

The statement input(hr, heatreq) reads the current state of a thermostat,
which is connected to the program via channel hr, and stores it to the variable
heatreq. The purpose of the above program fragment is to poll the thermostat
until it reports that heat is requested. Each iteration of the loop first waits half
a second and then questions channel hr for the current status of the thermostat.
The input statement is guarded by the UPPERBOUND 1/8 clause, which ensures
that it takes at most 1/8 seconds to read in the current state of the thermostat.5

The programmer can safely assume that all other activity is instantaneous, the
initial assignment to variable heatreq as well as the evaluation and checking
of the loop’s guard not(heatreq). He can also assume that WAIT 1/2 waits
precisely half a second. The actual execution time of the code implementing
these statements, as well as the deviation of the implementation of the WAIT
statement from the ideal timing is shifted by the compiler to the input statement
and then settled with the upperbound; thus the total overhead of each iteration
is bounded by 1/8 seconds. Consequently, the polling loop ensures that a change
to the heat request state of the thermostat is detected after at most 5/8 seconds.

The idealized timing properties supported by the compiler allow one to spec-
ify such a reactivity requirement in a simple way. Otherwise, all statement would
have to be bounded but it would be quite difficult to guess adequate bounds be-
cause the generated code is not known in advance.
5 Communication is synchronous; hence both input and output statements stall un-

til the corresponding communication partner becomes ready. The duration of this
stalling cannot be bounded by the compiler; it is totally dependent on the environ-
ment. By convention, it is not included into the time bounded by UPPERBOUND; the
UPPERBOUND only refers to the time used for preparation of the communication. In
the example program fragment, we assume that the thermostat is always ready to
output its current state on channel hr such that there is no stalling.
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2.6 Time Shifts

In this section we discuss the additional ingredients of the compiler correctness
proof for the timed language.

First of all, the imperative meta-language is provided with a timed interpreta-
tion and extended by delays∆d and time bounds |P | � d, where d ∈ R≥0∪{∞}.
This is done in such a way that all constructs except delays execute in zero time.
The bound operator constrains the time consumed by the enclosed process P
(not counting the time that P stalls waiting for communication partners to be-
come ready); ∆d executes in at most d time units without state change. For
simplicity, we use the duration of one execution cycle of the target processor as
the unit of time in this section.

We add delays to the axioms describing the effect of instructions. For exam-
ple, the timed version of Axiom (3) looks as follows:

E0(ldc) ≥ ∆ 1 ; A, B, C, IP, Oreg := Oreg, A, B, IP+ 1, 0 .

This expresses that ldc uses at most one execution cycle for execution. The
timing information is taken from the tables in [23, Appendix D].

A particularly interesting aspect of the code generator proof is that it justifies
the idealization of instantaneous execution for all internal constructs of the timed
source language, i.e. all constructs except input/output statements. Of course,
the code implementing, say, an assignment needs time to execute. The idea is to
shift such excess time of code implementing internal activity to a sequentially
successive process that is compiled to a machine program needing less time
for execution than allowed by the source [15]. This can be accomplished by
adding two parameters L and R to the correctness predicate for statements,
where L states the excess time of the sequential predecessor that is absorbed
and R states the excess time that is handed over to the sequential successor for
absorption. A third new parameter E is introduced that asserts a time bound for
the source statement. This leads to the following definition: a machine programm
implements source statement stat , absorbing excess time L from its sequential
predecessor, exporting excess time R to its sequential successor, under time
bound E, iff for all instruction sequences a and b

∆L ; Iδ
5 (a,m · b) ≥ |MS(stat) | � E ; ∆R ; Iδ

5 (a ·m, b) .
For brevity, we denote this implementation property by CS′(m, stat , δ, L,R,E).
Let us now have a look at some example translation theorems.

The theorem that allows to translate time bounds in the source program
looks as follows:

Theorem 4 (Translation of time bounds). Suppose CS′(m, stat , δ, L,R,E).
If E ≤ t then CS′(m,upperbound(P, t), δ, L,R,E).

Thus, a compiler encountering an upper bound operator in the source statement
needs only check whether the required time bound is more liberal than the one
asserted upon the code generated for the enclosed statement. If it is, then no
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further action is necessary, as the real-time requirement expressed by the bound
is met. If it is less liberal, on the other hand, the source statement cannot be
adequately compiled for the given target hardware with the given code generation
strategy, and should be rejected (or perhaps another code generator should be
activated). The proof of Theorem 4 is quite simple, given the following law.

(Multiple-bound) (| |P | � t1 | � t2) = (|P | � min(t1, t2))

Let us now have a look at the theorem for the translation of an assignment
statement assign(x, e). In the theorem below, CE is the correctness condition
for expression translation. Intutitively, CE(e,m,1 , δ, E1) holds, if m1 is a piece of
code that evaluates e assuming that variables are represented according to the
dictionary δ. CE(e,m,1 , δ, E1) also asserts that m1 executes in at most E1 time
units.

Theorem 5 (Assignment translation).
Suppose CE(e,m1, δ, E1), m = m1 · stl(adrx), and R ≥ L+E1 + ldt(adrx) + 1.
Then CS′(assign(x, e),m, δ, L,R,E) .

The proposed code m is composed from evaluation code for the expression e and
a stl-instruction that stores the result value to the location allocated for x. Its
execution time is the sum of the time E1 needed for evaluating the expression e,
the time ldt(adrx) needed for loading the operand of the final stl instruction,
i.e. the address of x, and one additional time unit for the execution of the stl
instruction itself. Note that the entire execution delay E1 + ldt(adrx) + 1 of m
is handed over via the parameter R to the sequential successor for absorption
together with the time L to be absorbed. Note also that there is no condition
on E. Hence, any time bound can be asserted for an assignment. This justifies
the idealization of immediate execution.

For communication statements, on the other hand, immediate execution can-
not be assumed as their effect is visible to the environment. Also the time ab-
sorbed from predecessor code becomes visible here. Let us have a look at the
theorem concerned with translation of an output statment output(Outi, expr),
which, intuitively, outputs the value of expression expr on link i (i = 0, . . . , 3).

Theorem 6 (Output translation).
Suppose CE(expr ,m1, δ, E1), m = m1 · mint · ldc(i) · bcnt · add · rev · outword,
R ≥ outdelay2, and E ≥ L+ E1 + outdelay1 + 8.
Then CS′(output(Outi, expr),m, δ, L,R,E) .

The code is composed from expression evaluation code m1, a piece of code
mint ·ldc(i) ·bcnt ·add ·rev (executing in 8 cycles) that fills the Transputer reg-
isters with adequate parameters, and a final outword instruction which initiates
the actual output. The execution of outword consists of three phases. After the
first phase, which executes in (at most) outdelay1 time units, the commuicated
value is available on the link i. In the second phase the Transputer waits for
its communication partner to become ready (recall that communication is syn-
chronous) and exchanges the actual value. The time spent during this phase
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cannot be controlled by a process but depends solely on the environment; it is
ignored in the semantic model used. The third phase, which executes in (at most)
outdelay2 time units, is concerned with some operation after the communication
commenced.

The time E1+outdelay1+8 spent by the code before the communicated value
becomes available to the environment cannot be handed over to the successor as
the communication is visible to the environment. Together with the time L to
be absorbed from the predecessor it poses a constraint on time bounds that can
be guaranteed for the output statement. This is expressed by the condition on
E. The time outdelay2 spent after the communication takes place, on the other
hand, is handed over to the sequential successor for absorption via parameter R.

Let us finally have a look at the timed version of Theorem 3.

Theorem 7 (Sequential composition translation).
Suppose CS′(stat1,m1, δ, L1, R1, E1), CS′(stat2,m2, δ, L2, R2, E2), and R1 ≤ L2.
Then CS′(seq(stat1, stat2),m1 ·m2, δ, L1, R2, E1 + E2) .

Here, the premise R1 ≤ L2 expresses that the code m2 for the second component
stat2 must be able to absorb at least the excess time R1 handed over from the
first component. Note that we can assert for a sequential composition the sum
of time bounds for its components.

From a collection of such theorems that describe construction of correct code
for each operator of the source language we have developed a code generator
written in the functional language Standard ML [30]. By adding a frontend, we
have constructed a prototypical compiler [36].

This concludes this overview on the modular verified design of code gener-
ators. The modularity of the approach facilitates the construction of code gen-
erators and assists rigorous control procedures because it allows to split both
tasks into relatively small, independent sub-tasks. Moreover, it enables reuse.
The derived views to the Transputer, e.g., can be exploited for different source
languages or even used when verifying boot programs or operating systems. To
use some form of refinement as underlying notion of correctness instead of se-
mantic equivalence allows a proper treatment of under-specification in the target
and the source language, which allows, e.g., to give a proper meaning to unini-
tialized variables. Moreover it accommodates modularization. Like the work at
CLI (Computational Logic Inc.) on the ‘small stack’ [7] we have put emphasis
on consistent interfaces to higher and lower levels of abstraction.

3 Synthesis of Embedded Real-Time Controllers

We will now turn to the problem of directly synthesizing real-time embedded
controllers from metric-time temporal logic specifications. In comparison to im-
perative programming languages, such logics provide a very abstract means of
specifying what the system should do rather than saying how to achieve this.
Thus, using such logics as source languages for compilation or synthesis methods
for embedded controllers would be desirable. This is particularly true for those
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logics that provide a very high level of abstraction from operational detail, like
e.g. the monadic second order logic of temporal distance [46] or the Duration
Calculus [49].

Unfortunately, in the realm of dense metric time, logics featuring rich metric-
time vocabulary and full negation tend to become undecidable (e.g., above two
are), which has direct impact on the feasibility of sound and complete auto-
matic synthesis procedures. However, the argument which makes decidability a
necessary condition for feasibility of synthesis (to be reviewed in Sect. 3.4) relies
on an essentially unconstrained environment dynamics. We argue that through
exploitation of general constraints on environment dynamics, synthesis methods
can be exposed even for some undecidable metric real-time logics, and exemplify
this on synthesis procedures for timed controllers from dense-time Duration Cal-
culus in Sect. 3.5.

3.1 Duration Calculus

Duration Calculus (abbreviated DC in the remainder) is a real-time logic that
is specially tailored towards reasoning about durational constraints on time-
dependent Boolean-valued states. The syntax of the subsets of DC formulae
that we will study is

〈formula〉 ::= 〈atomicform〉 | ¬〈formula〉 |
(〈formula〉 ∧ 〈formula〉) | (〈formula〉; 〈formula〉)

k ::∈ IN
〈state〉 ::= 〈variable〉 | ¬〈state〉 | (〈state〉 ∧ 〈state〉)

〈variable〉 ::∈ Varname

Concerning the available atomic formulae, we distinguish two different subsets of
DC. In the first subset, often called the {dP e, ` = k} fragment, atomic formulae
take the form

〈atomicform〉 ::= d〈state〉e | ` = k ,

while in the so-called {∫ P = k} fragment,

〈atomicform〉 ::=
R 〈state〉 = k .

Duration Calculus is interpreted over trajectories

tr ∈ Traj def= {tr : Time → Varname → IB | Time = R≥0 , tr finitely variable}
that provide a finitely variable, time-dependent, Boolean-valued valuation of
variables. Finite variability — sometimes also called non-Zenoness — means
that only finitely many state changes may occur within any finite time interval.
The definition of satisfaction of a formula φ by a trajectory tr , denoted tr |= φ is
given in Table 2. The set of models of φ, i.e. trajectories satisfying φ, is denoted
M[[φ]].

As usual, we say that φ is valid iff M[[φ]] = Traj . According to [48], validity
is undecidable for the fragment {dP e, ` = k}. Consequently, the same applies for
the fragment {∫P = k}, as dP e can be encoded as

∫¬P = 0 ∧ ¬(
∫
true = 0) and

` = k as
∫
true = k, resp.
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Table 2. Semantics of Duration Calculus

tr , [a, b] |= φ denotes that trajectory tr satisfies a formula φ within a time interval
[a, b] ⊂ R≥0 . It is defined by

tr , [a, b] |= R
P = k iff

R b

a
χP,tr (t) dt = k ,

tr , [a, b] |= dP e iff b > a ∧ R b

a
χP,tr (t) dt = b− a ,

tr , [a, b] |= ` = k iff b− a = k ,
tr , [a, b] |= ¬φ iff tr , [a, b] 6|= φ ,
tr , [a, b] |= (φ ∧ ψ) iff tr , [a, b] |= φ and tr , [a, b] |= ψ ,

tr , [a, b] |= (φ;ψ) iff ∃m ∈ [a, b] .

�
tr , [a,m] |= φ and
tr , [m, b] |= ψ

�
,

where χP,tr(t) = 1 iff the state formula P evaluates to true in time instant t over
trajectory tr , and χP,tr(t) = 0 otherwise.
A trajectory tr satisfies a formula φ, denoted tr |= φ, iff all finite prefixes of tr satisfy
φ — formally, tr |= φ iff tr , [0, t] |= φ for each t ∈ R≥0 . Accordingly, a trajectory is a
counterexample of φ, i.e. does not satisfy φ, iff some of its finite prefixes satisfies ¬φ.

3.2 Timed controllers

We do now turn to the implementation “technology” we are aiming at. For the
purpose of this overview, it is timed transition tables in the sense of Alur and
Dill [1] extended by a notion of environment input and transition-table output.
Thus, it is basically an untimed, Mealy-type transition table (Σ, σ0, T ), where

– Σ is a finite, nonempty set of states,
– σ0 ∈ Σ is the initial state,
– T ⊆ Σ×α×Σ is the transition relation, where the alphabet α is of the form

(I ]O) → IB with I being the finite set of (Boolean-valued) input ports and
O being the finite set of (Boolean-valued) output ports (i.e. α assigns binary
values to input and output ports),

– T is input-open, which means that from any state σ ∈ Σ there is a transition
for each input i ∈ I → IB.

However, in timed transition tables these basic untimed transition tables are
extended with a finite number of real-valued clocks that can be reset upon tran-
sitions and can be compared against constants in transition guards. Thus, tran-
sitions are of the extended form (σ, a, σ′, guard , reset), with a ∈ α, σ, σ′ ∈ Σ,
guard an integer-bounded interval constraint on the clocks Cl , and reset ⊆ Cl .

Intuitively, a timed transition table may take transition (σ, a, σ′, guard , reset)
when it is in internal state σ, the (internal) clock reading satisfies guard , and
the current input is a I . It then produces output valuation a O at its output
ports, which persists until the next transition, moves to internal state σ′, and
synchronously resets the clocks in reset to 0. The timed transition table thus
produces a time-dependent valuation of its input and output ports, i.e. a tra-
jectory. For any timed transition table C, the set of its trajectories is denoted
C[[C]].



Compilation and Synthesis for Real-Time Embedded Controllers 275

Finally, if timed transition tables are to be used as embedded controllers, we
must require that they be input open. Due to the clock-dependent behaviour, this
involves a slight extension to above notion of being input-open: a timed transition
table is input-open iff from any state σ under any possible clock valuation there
is a transition for each i ∈ I → IB. A timed transition table with that property
is called timed controller (with input I and outputs O) in the remainder.

Based on the definition of trajectories of timed controllers, it is straightfor-
ward to define when a timed controller satisfies a DC formula. The criterion is
trajectory inclusion.

Definition 8 (Satisfaction). Let C be a timed controller and φ a Duration
Calculus formula. We say that C satisfies φ iff C[[C]] ⊆ M[[φ]].

3.3 Control Problems and Controller Synthesis

Duration Calculus was designed for bridging the gap between requirements cap-
ture and controller implementation in an embedded-controller design activity.
Consequently, we are interested in the satisfaction problem between controllers
from the design space and control problems expressed in Duration Calculus.

Definition 9 (Control problem). A control problem is a pair (Req, I), where
Req is a formula of Duration Calculus specifying the admissible controller be-
haviours and I ⊆ Varname is a set of variable names specifying the inputs to
the controller, i.e. those variables that the controller cannot control and hence is
not allowed to constrain in their evolution over time. We say that a control prob-
lem (Req, I) is a {dP e, ` = k} control problem (or a {∫P = k} control problem)
iff Req is a {dP e, ` = k} formula (a {∫P = k} formula, resp.).

A controller C is said to solve the control problem (Req, I) iff C has inputs
I and satisfies Req.

Aiming at solutions to control problems we are interested in synthesis meth-
ods that derive controllers from control problems. Such a synthesis method can
be understood as a partial mapping synt from control problems to controllers.
Let synt be a (for the moment not necessarily effective) partial function from
the set of control problems to controllers. We will now define when synt provides
a sound and complete synthesis method for control problems.

Definition 10 (Soundness and completeness of a synthesis procedure).
We say

1. that synt is sound iff it maps control problems to solutions thereof, and
2. that synt is {dP e, ` = k}-complete (or {∫P = k}-complete) iff its domain

contains all {dP e, ` = k} control problems ({∫P = k} control problems,
resp.) that are solvable by timed controllers.

The interesting question is whether there is a sound and complete mechanic
synthesis method for timed controllers from DC-based control problems. Unfor-
tunately, the answer is negative, as is shown in the next section.
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3.4 Synthesis under Unconstrained Environment Dynamics

We start with analyzing the synthesis problem with respect to unconstrained en-
vironment dynamics. I.e., inputs may change arbitrarily — but of course finitely
variable — over time. Then, a controller cannot contribute to requirements that
are in terms of inputs only:

Lemma 11. Let φ be a duration formula and let C be an arbitrary controller
with inputs I ⊇ free(φ). Then C satisfies φ iff φ is valid.

Proof. It is obvious that validity of φ implies that C satisfies φ, as the trajectories
of C are necessarily a subset of the universe Traj of trajectories. For the converse
implication observe that satisfaction of φ by a trajectory tr does only depend on
the valuation that tr assigns to variables in free(φ). Assume that φ is invalid and
let tr 6|= φ. As C has inputs I, C has a trajectory tr ′ that coincides with tr on
all variables in I ⊇ free(φ). As satisfaction of φ depends only on the valuation
of its free variables, tr ′ 6|= φ follows. I.e., C does not satisfy φ. ut
This lemma has direct consequences for the feasibility of automatic synthesis.

Theorem 12. Any synthesis procedure is necessarily unsound or {dP e, ` = k}-
incomplete (and hence also {∫P}-incomplete) or ineffective. I.e., there is no
effective procedure that generates solutions for any solvable {dP e, ` = k} control
problem.

Proof. Let synt be a sound and complete mapping from {dP e, ` = k} control
problems to timed controllers. Let φ be a {dP e, ` = k} formula.

According to Lemma 11, the control problem (φ, free(φ)) has a solution iff φ
is valid. As synt is sound and complete it follows that (φ, free(φ)) ∈ dom (synt)
iff φ is valid. Thus, an effective mapping synt would provide a decision procedure
for {dP e, ` = k} formulae, in contrast to the undecidability result of [48]. This
implies that synt cannot be effective. ut
Thus, automatic synthesis of controllers is impossible even for the restricted class
of {dP e, ` = k} control problems, unless one is willing to sacrifice completeness.

However, it is enlightening to observe that the reduction of the decision prob-
lem to the synthesis problem performed in above proof is based on the reduction
of the validity problem to a satisfaction problem in Lemma 11, which in turn
crucially relies on the unconstrained input dynamics of timed controllers. The
latter allows inputs to exhibit arbitrary finitely variable dynamics, which per-
mits above reductions. However, embedded real-time controllers are embedded
into an environment which may not be able to provide arbitrary finitely vari-
able stimuli. Hence, it is questionable whether the full range of finitely variable
trajectories should be regarded as crucial to the satisfaction problem between
controllers and control problems. In most (if not all) application domains, more
restrictive constraints on the temporal evolution of trajectories can be justified
from physical properties of the systems. Therefore, it makes sense to investigate
the synthesis problem for Duration Calculus under suitable restrictions of the
possible input and output behaviour.
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3.5 Constrained Environment Dynamics

In the remainder, we will investigate the synthesis problem under some reason-
able constraints on the possible input and output dynamics. Therefore, we say
that Traj I ⊆ Traj is a constraint on input behaviour for the inputs I ⊂ Varname
iff tr ∈ Traj I implies tr ′ ∈ Traj I for any tr ′ ∈ Traj that differs from tr only
on non-input variables (i.e., any tr ′ that satisfies tr(t)(x) 6= tr ′(t)(x) ⇒ x 6∈ I).
Similarly, Traj O ⊆ Traj is a constraint on output behaviour iff tr ∈ Traj O implies
tr ′ ∈ Traj O for any tr ′ ∈ Traj that differs from tr only on non-output variables.

Definition 13 (Satisfaction under behavioural constraints). We say that
a controller C satisfies Req under input constraint Traj I and output constraint
Traj O iff Traj I ∩ C[[C]] ⊆ M[[Req]] ∩Traj O. I.e., if C is used in a context where
the environment guarantees the constraint on input behaviour then C guarantees
both Req and the constraint on output behaviour.

Now, it is straightforward to define when a controller solves a control problem
under input and output constraints and when synthesis is sound and complete
with respect to given input and output behavioural constraints.

With this machinery, we are now prepared for investigating the synthesis
problem under behavioural constraints.

Bounded Variability of Input and Output Behaviour. Considering the
fact that any physically realizable reactive system is subject to band-limitedness,
an easily justifiable assumption on realistic device models is that state changes
can only come arbitrarily close in time if they originate from different subsystems.
As the number of subsystems in a given technical system is finite this implies
that the number of state changes observable at the controller’s interface within
a time unit is bounded by a system-dependent natural number. An appropriate
behavioural model is that of n-bounded trajectories, which are those trajectories
that exhibit at most n state changes over any unit-length interval of time, where
n ∈ IN is a system-dependent parameter. The set of n-bounded trajectories is
denoted Traj n. Given inputs I and outputs O, we furthermore denote by Traj I,n

(Traj O,m) the sets of trajectories which after projection to the inputs I (outputs
O, resp.) are n-bounded (m-bounded, resp.).

Traj I,n and TrajO,m represent constraints on input and output behaviour.
With respect to synthesis it is interesting to see that these easily justifiable
constraints suffice to facilitate synthesizing timed controllers from {dP e, ` = k}
control problems:

Theorem 14. There is an effective, sound, and {dP e, ` = k}-complete synthe-
sis procedure for timed controllers when input dynamics is constrained to be n-
bounded and output dynamics is constrained to be m-bounded for given n,m ∈ IN.

Proof. Using standard techniques, an effective mapping of {dP e, ` = k} formulae
that do contain exactly one, outermost, negation to timed automata that recog-
nize their counterexamples of finite variability can be defined. Using the timed
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regular expression notation proposed by Asarin, Caspi, and Maler in [2], such
an automata-theoretic representation of the counterexamples can be achieved
through the mapping

Counterexamples(¬φ) def= FiniteModels(φ) · αω

of {dP e, ` = k}-formulae to timed regular expressions, where α is the set of
min-terms over the free state variables of φ and

FiniteModels(dP e) def=
((∨

a∈α,a|=P a
)∗ )

(0,∞)
,

FiniteModels(` = k) def= (α∗)[k,k] ,

FiniteModels(φ ∧ ψ) def= FiniteModels(φ) ∧ FiniteModels(ψ) ,

FiniteModels(φ ; ψ) def= FiniteModels(φ) · FiniteModels(ψ) .

As the timed regular languages of variability n+m are furthermore effectively
closed under complementation (relative to the set of (n+m)-bounded trajecto-
ries) [45], this procedure can be extended to deal with inner negation also if only
the (n+m)-bounded counterexamples are of interest. Therefore, any formula φ
of the {dP e, ` = k} fragment of DC can be effectively assigned a timed automa-
ton ATrajn+m\φ recognizing its (n + m)-bounded counterexamples. While the
deterministically recognizable timed regular languages are in general a proper
subclass of the non-deterministically recognizable ones, these two classes coincide
for the timed regular languages of variability n +m. In particular, ATrajn+m\φ

can be made deterministic.
Now, ATrajn+m\φ can be easily extended to an (again deterministic) timed

automaton ATrajn+m\(φ∪TrajO,m)∩TrajI,n
that, besides recognizing any (n +m)-

bounded counterexample of φ, also recognizes all trajectories violating the m-
boundedness constraints on outputs, yet excludes trajectories violating the n-
boundedness constraint on inputs. This effectively reduces the controller synthe-
sis problem to a strategy construction problem in a timed regular game, where
ATrajn+m\(φ∪TrajO,m)∩TrajI,n

is the game graph. As effective synthesis procedures
for timed regular games are known from the literature (cf. [3, 26]), this solves
the controller synthesis problem. ut

Unfortunately, Theorem 14 does not generalize to {∫ P = k} control prob-
lems, as their requirements formulae feature accumulated durations and thus
are considerably more expressive than the {dP e, ` = k} control problems: As
was shown in [14], page 35ff., by means of a real-time pumping lemma, it is in
general undecidable whether Traj n ⊆ M[[φ]] for {∫P = k} formulae φ. Thus, by
an argument akin to that used in the proof of Theorem 12, it follows that there
is no effective, sound, and {∫P = k}-complete synthesis procedure even when
interface dynamics is restricted to n-bounded inputs and m-bounded outputs.
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Time-wise Discrete Input and Output Behaviour. In order to obtain
automatic synthesis procedures for {∫P = k} control problems, we may try to
reduce the model class that is regarded crucial to satisfaction still further. If the
devices to be designed are embedded into a synchronously clocked environment
it makes sense to consider trajectories that are changing state only at evenly
spaced time instants. This is captured by studying time-wise discrete trajectories,
where a trajectory tr ∈ Traj is called time-wise discrete iff it has discontinuities
only in time instants which are multiples of the time unit. The set of time-wise
discrete trajectories is denoted DTraj . Accordingly, the input constraint that
restricts inputs to change only in time instants which are multiples of the time
unit is denoted DTraj I , while the corresponding behavioural output constraint
is denoted DTraj O.

The restriction to such time-wise discrete interface behaviour allows auto-
matic synthesis even for {∫P = k} control problems:

Theorem 15. There is an effective, sound, and {∫P = k}-complete (and thus
also {dP e, ` = k}-complete) synthesis procedure for timed controllers when input
and output behaviour is constrained to be time-wise discrete.

Proof. It is a tedious, yet mostly straightforward exercise to show that for any
formula φ of the {∫P = k} fragment, M[[φ]]∩DTraj is an unrolling of an ω-regular
language to real-time based on the convention that one letter per time unit is
traversed. A corresponding ω-automaton Auttwd

φ can be effectively constructed
(the construction is fully pursued in [14, chapter 6.3]).

Now, a similar construction as in the proof of the previous theorem can be
applied to Auttwd

φ to obtain an appropriate game graph representing the be-
haviorally constrained synthesis problem. However, this time the game graph
obtained is ω-regular as Auttwd

φ is an untimed finite automaton and the be-
havioural constraints can also be formalised with untimed automata using the
convention that one letter per time unit is traversed. This effectively reduces the
synthesis problem to strategy construction in ω-regular games. As algorithms for
the latter are well-known (cf. e.g. [44]), this yields the desired synthesis method.
Details of the construction can be found in [13, 14]. ut

As, for example, the ProCoS gas-burner requirements specification [41] can
be expressed in the {∫P = k} subset of DC, this allows automatic synthesis of a
timed controller directly from the requirements specification of the gas-burner,
which is shown in the next section.

3.6 A Case Study: Synthesizing a Synchronous Controller for the
ProCoS Gas-Burner

The ProCoS gas-burner [41, 42] is a simple model of a computer-controlled gas-
burner, depicted in Fig. 1. Its embedded controller has just three binary control
lines connected to the environment: hr signals heat requests from a thermostat,
fl signals whether the flame is burning, and gas controls the gas valve. The
gas valve is the only actuator in the system, and gas is expected to usually
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ignite spontaneously once the gas valve is opened.6 However, gas may sometimes
fail to ignite, leading to an increasing concentration of flammable gas in the
environment, which is an obvious risk. The task of the controller is to prevent
unsafe gas concentration in the environment through detection of ignition failures
and appropriate actions, and to deliver service as required by hr if ignition works
as expected.
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Fig. 1. The ProCoS gas-burner

The corresponding requirements can be easily formalized using {∫P = k}
formulae. Indeed, the patterns occurring have been the key motivation for de-
velopment of the Duration Calculus. In the following, we stick to the original
requirements given in [41, 9], but sometimes reduce time constants.

The foremost requirement the controller has to ensure is that the gas concen-
tration in the environment is kept below flammable level. As sensors for directly
detecting the gas concentration are expensive, the gas concentration has to be
safely estimated from the length and temporal distance of periods of leakage of
unignited gas to the environment. We assume that safety engineers have shown
that the system is safe if unignited gas may not leak from the burner for more
than 3 seconds within any 6 seconds of operation.7 Using DC, this can be for-

6 The reader reluctant to the idea of spontaneous ignition may equally well think of an
ignition device being coupled to the gas valve such that both can be simultaneously
controlled by the single control signal gas.

7 In the original formulation of the problem, the corresponding figures where a maxi-
mum of 4 seconds leak time within 30 seconds, but these have been reduced in order
to make the synthesized controller fit on a page.
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malized as

safe def= 2

(
` < 6 ⇒ ∫

leak < 3
)
,

where 2φ def= ¬(true; (¬φ); true) and
∫
P < k

def= ¬(
∫
P = k ; true). Using the

available sensors, leakage — or indeed a sufficient approximation of leakage —
is detected through observing the flame sensor when the gas valve is open: gas
is deemed to be leaking iff the flame sensor senses that the flame is not burning
while the gas valve is open.

leak def= gas ∧ ¬fl .

Requirement safe alone is easily satisfied: as leaks can only occur when the
gas valve is open, a controller permanently setting control line gas to false and
thus keeping the gas valve closed will satisfy safe. However, a customer will not be
satisfied with a gas-burner never delivering service. Therefore, some requirements
concerning controllability of the system through hr are added. First, we require
that ¬hr will shut the gas supply within one second:

stop def= (d¬hre ∧ ` = 1); d¬gase ,

where φ ; dP e def= ¬(true;φ; d¬P e; true). Furthermore, we would like to re-
quire that hr leads to heat supply within a reasonable time span. However, this
demand can only be realized if gas does not fail to ignite after opening the valve.
Therefore, the startup requirement is relative to an environment assumption
which formalizes the normal ignition behaviour. The normal ignition behaviour
is that gas ignites soon after opening the valve such that the flame sensor re-
ports a burning flame within 2 seconds. Whenever this is the case, heat should
be supplied after at most 8 seconds of continuous heat request:

start def= flame ok ⇒ ((dhre ∧ ` = 8); dfle) ,

flame ok def= (dgase ∧ ` = 2); dfle .

The requirement to be guaranteed by the embedded controller is the con-
junction of above three requirements:

GBReq = safe ∧ stop ∧ start .

Furthermore, the design has to respect the signature imposed by the application,
namely that hr and fl are inputs to the controller and that gas is an output.
The control problem to be solved thus is (GBReq , {hr ,fl}).

The synthesis procedure outlined in Theorem 15 has successfully been applied
to this control problem. As the control problem is underconstrained (sometimes
it allows free choice between switching gas on or off in a certain time instant),
this yields a non-deterministic control strategy with respect to the controlled out-
put gas . Adding a simple heuristics for resolving this nondeterminism, namely
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≅

≅ gas := off

gas := on

hr:  gas := off hr:  gas := off hr:  gas := off hr:  gas := off hr:  gas := off

idle

hr:  gas := off

1 2 3 4 5 6

0

hr:  gas := on

purge

hr:  gas := on

7

8
burn

true:  gas := off9
flame failure

ignite

  fl:  gas := off

  hr:  gas := off

  hr:  gas := off

hrhr fl:  gas := off fl:  gas := on

 hr:  gas := off

The automatically synthesized timed transition table for the gas burner control prob-
lem. As the timed transition table takes one transition every time unit, the clock
constraints and resets have been omitted from the transition diagram. For complete-
ness, a single clock c has to be added, and each transition has to be decorated with
guarding condition c = 1 and reset function c := 0.
Incidentally, the synthesized controller resembles the phase design of the manually
developed gas burners of [41, 9]. The corresponding phase names used in those designs
are indicated on the right.

Fig. 2. The synthesized gas-burner controller

switching gas off whenever possible, and finally applying automaton minimiza-
tion, we obtained a control automaton with only 10 states, which is depicted in
Fig. 2.

We were surprised to see that the resulting controller, although generated by
a fully effective procedure, even resembles the phase structure of the manually
developed controllers of A. P. Ravn, H. Rischel, and K. M. Hansen [41]. Ravn,
Rischel, and Hansen developed their control skeleton around the idea of an idle
phase, where the controller waits for the next heat request, a purge phase, where
the gas concentration in the environment is reduced through keeping gas shut off
for a while before doing an ignition attempt, an ignite phase opening the valve
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long enough to get the flame burning if flame ok holds, and a burn phase being
entered once the flame is stably burning and being left if it either extinguishes
or heat request hr is withdrawn. See Fig. 2 for more details of the phase design
of [41] and how these phases can be identified in the automatically generated
gas-burner controller.

3.7 Complexity of Synthesis

While the gas burner case study shows that engineering-quality controllers can in
principle be obtained from DC-based automatic synthesis, it is the complexity
of the automata-theoretic constructions involved that impairs practicality of
Duration Calculus as a source language for embedded systems synthesis. Even
for the simplest subsets of DC that feature chop and negation — not even metric
time is necessary — the worst case complexity of the synthesis problem is non-
elementary in the size of the specification, irrespective of the particular trajectory
class used. The reason is that chop and negation are akin to concatenation and
complement of languages s.t. the non-elementary emptiness problem of extended
regular languages can be linearly encoded in DC (see [14, Lemma 6.25] for the
details of such an encoding). Thus, for practical applications it may be better
to seriously restrict the use of chop and/or negation, as is done in the work of
H. Dierks [11], where synthesis from a subset of the so-called DC implementables
[40] is explored. DC implementables contain exactly one, outermost negation
and are restricted to certain patterns of using chop. Beyond circumventing the
non-elementariness problem by essentially forbidding negation, the gains of the
extra restrictions adopted by Dierks are that timing constants can be dealt with
essentially syntactically.

However, our focus has less been on exhibiting practical controller synthesis
procedures than on demonstrating the fundamental impact that observational
constraints of the environment have on the synthesis process. To this end, we
have been able to show that by suitable restriction of the model class used in
behavioural descriptions of system dynamics, automatic synthesis for large and
even undecidable subsets of Duration Calculus becomes theoretically possible.
Thereby, the particular behavioural restrictions adopted are motivated by physi-
cal properties of practical control problems, namely band-limitedness of reactive
systems and synchronicity of clocked systems.

4 Conclusion

We have summarized two approaches to the provably correct and automatic im-
plementation of abstractly described hard real-time controllers. The more con-
servative of the two is an extension of an imperative programming language by
hard real-time commands that allows one to specify upper bounds for the exe-
cution time of basic blocks. This extension allows one to specify absolute timing
requirements in the imperative source code, thereby obliging the compiler to
generate corresponding machine code. The other source language investigated is
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Duration Calculus, a metric-time temporal logic designed for reasoning about
real-time systems at a high level of abstraction.

Both approaches exploit in an essential way that the observational power of
the environment is limited: Firstly, the majority of the state-space of the embed-
ded controller is hidden from it due to the clear-cut interface between the two.
Secondly, protocol restrictions or even physical limitations, like band-limitedness,
apply to this interface. These observational limitations can be exploited for gain-
ing implementation freedom, thus facilitating correct implementation of idealized
behavioral models. While in the compilation approach this is used to justify the
idealization of immediate execution for internal statements it is exploited in the
synthesis approach for overcoming undecidability of the synthesis problem.

A key difference between the approaches is the complexity of the resulting
procedures. In the case of synthesis from Duration Calculus it is in general non-
elementary (ways of improving on this have been discussed at the end of Sect. 3).
The complexity of the compilation procedure on the other hand is linear. The
other side of the coin is of course the power of the formalisms. The compilation
work uses an imperative programming language. It requires one to specify ex-
actly how the desirable behavior is achieved and timing requirements have to be
specified rather locally, although this is defused a bit by the immediate execution
idealization together with time bounds. In contrast, Duration Calculus supports,
by being a full-fledged metric-time temporal logic, extremely advanced program-
ming techniques when used as a source language for automatic code generation.
A prominent example, which builds upon the availability of logical negation,
is the paradigm of programming by counterexample, i.e. specifying what should
never happen rather than saying how exactly to achieve this. Furthermore, global
timing requirements may be easily specified.
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