
A Note on Karr’s Algorithm

Markus Müller-Olm1? and Helmut Seidl2

1 FernUniversität Hagen, FB Informatik, LG PI 5, Universitätsstr. 1, 58097 Hagen, Germany
mmo@ls5.informatik.uni-dortmund.de

2 TU München, Informatik, I2, 85748 München, Germany
seidl@informatik.tu-muenchen.de

Abstract. We give a simple formulation of Karr’s algorithm for computing all
affine relationships in affine programs. This simplified algorithm runs in time
O(nk3) where n is the program size and k is the number of program variables
assuming unit cost for arithmetic operations. This improves upon the original
formulation by a factor of k. Moreover, our re-formulation avoids exponential
growth of the lengths of intermediately occurring numbers (in binary representa-
tion) and uses less complicated elementary operations. We also describe a gener-
alization that determines all polynomial relations up to degree d in time O(nk3d).

1 Introduction

In 1976, Michael Karr came up with an ingenious algorithm that computes for each
program point in a flow graph a vector space of affine relations that hold among the
program variables whenever control reaches the program point [6].1 His algorithm is
an iterative fixpoint algorithm that propagates affine spaces through the flow graph and
computes for each program point u an affine space that over-approximates the set of
run-time states that occur at u, i.e., contains all those run-time states. Hence, affine
relationships valid for all states of the computed affine space are also valid for all pos-
sible run-time states. Karr represents affine spaces by kernels of affine transformations,
i.e., as sets of solutions of linear equation systems. From this representation the affine
relations valid for all states in a given affine space can be read off easily.

Finding valid affine relations has many applications. Many classical data flow analy-
sis problems can be conceived as problems about affine relations such as definite equal-
ities among variables like x = y and constant propagation. More general affine rela-
tions (such as 2x + 3y = 0) found by automatic analysis routines can also be used as
valid assertions in program verification. Leroux uses affine relations for the analysis of
counter systems [7]. More applications are discussed in [6, 11].

In recent related work [4, 8, 11] a number of difficulties associated with Karr’s algo-
rithm have been observed. Firstly, Karr’s algorithm uses quite complicated operations
like the transfer function for (“non-invertible”) assignments and the union of affine
spaces. Secondly, due to the complexity of these operations a straightforward imple-
mentation of Karr’s algorithm performs O(nk4) arithmetic operations in the worst-case

? On leave from Universität Dortmund.
1 An affine relation is a property of the form a0 +

P

k

i=1
aixi = 0, where x1, . . . ,xk are

program variables and a0, . . . , ak are elements of the underlying field of values.

J. Dı́az et.al. (Eds.): ICALP 2004, LNCS 3142, pp. 1016–1027, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Note on Karr’s Algorithm 1017

(where n is the size of the flow graph and k is the number of program variables) and it
is not obvious to improve upon this complexity by using standard tricks like semi-naı̈ve
fixpoint iteration. Thirdly, the algorithm can lead to exponentially large numbers.

The main contribution of this paper is an extremely simple formulation of Karr’s
algorithm which solves all three above problems. By using a different representation of
affine spaces – we represent an affine space A of dimension l by l+1 affine independent
points of A – the union operation and the transfer functions become virtually trivial;
by using semi-naı̈ve iteration, the complexity goes down to O(nk3); and the involved
numbers remain of polynomial length. We also show how to generalize our version of
Karr’s algorithm to determine polynomial relations, i.e., properties of the form p = 0,
where p is a multi-variate polynomial in the program variables xi.

In this paper we study affine programs [11] which differ from ordinary programs in
that they have non-deterministic (instead of conditional) branching, and contain only
assignments where the right-hand sides either are affine expressions like in x3 :=
x1 − 3x2 + 7 or equal “?” denoting an unknown value. Clearly, our analysis can be
applied to arbitrary programs by ignoring the conditions at branchings and simulating
input operations and non-affine right-hand sides in assignments through assignments of
unknown values. As a byproduct of our considerations we show that Karr’s algorithm
is precise for affine programs, i.e., computes not just some but all valid affine relations.
While this is kind of folklore knowledge in the field, it has (up to our knowledge) not
been formally stated and proved before. Similarly, we show that our extension deter-
mines all valid polynomial relations up to a given degree in an affine program.

Related Work. Karr’s algorithm has been generalized in different directions. A promi-
nent generalization is the use of polyhedra instead of affine spaces for approximation
of sets of program states; the classic reference is Cousot’s and Halbwachs’ paper [3].
Polyhedra allow us to determine also valid affine inequalities like 3x1 + 5x2 ≤ 7x3.
Since the lattice of polyhedra has infinite height, widening must be used to ensure ter-
mination of the analysis (see [1] for a recent discussion) – making it unsuitable for
precise analyses. Like Karr’s original algorithm, analyses using polyhedra suffer from
the problem of potentially large numbers.

More recently, we have described an analysis that determines all valid polynomial
relations of bounded degree in polynomial programs [10, 9] with techniques from com-
putable algebra. (In polynomial programs deterministic assignments with polynomial
right hand side as well as polynomial disequality guards are allowed.) However, while
we can show termination of the analysis we do not know an upper complexity bound.

Gulwani and Necula [4] present a probabilistic analysis for finding affine relations
that with a (small) probability yields non-valid affine relations. Unlike the algorithms
described so far, however, their algorithm assumes that variables take values in the
finite field Zp = Z/(pZ) of natural numbers modulo p, where p is a (large) prime
number, instead of natural or rational numbers. This assumption is introduced for two
reasons. Firstly, it is needed for the estimation of the error probability. Secondly, it
avoids problems with exponentially large numbers. In comparison our version of Karr’s
algorithm guarantees to yield only valid affine relations and to use only polynomially
large numbers despite of working with rational numbers.

1018 Markus Müller-Olm and Helmut Seidl

Like Karr’s algorithm the analyses described so far are intraprocedural algorithms,
i.e., they do not treat procedures. Precise interprocedural algorithms for affine programs
that compute all valid affine or polynomial relations of bounded degree, respectively,
are presented in [11]. While these algorithms run in polynomial time, they are asymp-
totically slower than Karr’s, even if we specialize them to the intraprocedural case.

2 Affine Programs

We use a similar notation as in [11]. Let X = {x1, . . . ,xk} be the set of variables
the program operates on and let x denote the vector of variables x = (x1, . . . ,xk).
We assume that the variables take values in Q, the field of rational numbers. Then
a state assigning values to the variables is conveniently modeled by a k-dimensional
vector x = (x1, . . . , xk) ∈ Qk; xi is the value assigned to variable xi. Note that we
distinguish variables and their values by using a different font.

For the moment, we assume that the basic statements in the program are affine
assignments of the form xj := t0 +

∑k
i=1 tixi (with ti ∈ Q for i = 0, . . . , k and xj ∈

X) and that branching is non-deterministic. We show in Sect. 4 how to extend the basic
algorithm to non-deterministic assignments xi :=? and discuss guards in Sect. 7. Let
Stmt be the set of affine assignments. Each affine assignment s ≡ xj := t0+

∑k
i=1 tixi

induces a transformation, [[s]], on the program state given by [[s]]x = (x1, . . . , xj−1, t0+
∑k

i=1 tixi, xj+1, . . . , xk). It is easy to see that [[s]] is an affine transformation, i.e., it can
be written in the form [[s]]x = Ax + b for a matrix A ∈ Qk×k and a vector b ∈ Qk.

An affine program is given by a control flow graph G = (N, E, st) that consists of:
a set N of program points; a set of edges E ⊆ N × Stmt × N ; and a special entry (or
start) point st ∈ N .

As common in flow analysis, we use the program’s collecting semantics [2] as a
reference point for judging the soundness and completeness of Karr’s algorithm. The
collecting semantics assigns to each program point u ∈ N the set of all those states
that occur at u in some execution of the program. It can be characterized as the least
solution of the following constraint system, V , on sets of states, i.e., subsets of Qk:

[V1] V[st] ⊇ Qk

[V2] V[v] ⊇ fs(V[u]) , for each (u, s, v) ∈ E ,

where the transfer functions fs are defined by fs(X) = {[[s]]x | x ∈ X}. We denote the
components of the least solution of the constraint system V (which exists by Knaster-
Tarski fixpoint theorem) by V [v], v ∈ N .

3 The Algorithm

The affine hull of a subset G ⊆ Qk is the set

aff(G) = {
m

∑

j=0

λjxj | m ≥ 0, xj ∈ G, λj ∈ Q,
m

∑

j=0

λj = 1} .

A Note on Karr’s Algorithm 1019

In particular, aff(G) = G whenever G contains at most one element. Whenever X =
aff(G) for some G, we call X an affine space and G a set of generators for X . If G is a
minimal set with X = aff(G) we call G an affine basis of X . The goal of our algorithm
is easily stated in terms of the collecting semantics: compute for each program point u
the affine hull of the collecting semantics for u, aff(V [u]).

Obviously, aff is a closure operator, i.e., it is monotonic and we have, aff(X) ⊇ X
and aff(aff(X)) = aff(X) for all X ⊆ Qk. It is well-known in abstract interpretation,
that the image of a closure operator on a complete lattice is a complete lattice as well
(cf., e.g., [2]). By definition, the image of aff consists of the affine subspaces of Qk.
Let us denote this complete lattice by (D,v) = ({X ⊆ Qk | X = aff(X)},⊆).
The least element of D is ∅ and its greatest element is Qk. It is well-known that affine
spaces are closed under intersection but not under union. Correspondingly, the meet and
join operations of the lattice D are given by the following equations: uX = ∩X and
tX = aff(∪X) for X ⊆ D. In particular, we have:

Lemma 1. For all sets X ⊆ 2Qk

of subsets of states, aff(∪X) = t{aff(X) | X ∈ X}.

The height of D is k + 1 as in any strictly increasing chain A0 ⊂ A1 ⊂ . . . the
dimensions must strictly increase: dim(A0) < dim(A1) < Here, the dimension of
∅ is −1, and the dimension of a non-empty affine space X is the dimension of the linear
space L = {x−x0 | x0, x ∈ X}. Thus, the dimensions are bounded by −1 from below
and by k from above. (It is easy to construct a strictly increasing chain of length k + 1.)

Recall that every statement s defines an affine transformation [[s]]. Therefore:

Lemma 2. For all statements s and X ⊆ Qk, aff(fs(X)) = fs(aff(X)).

Let V] be the following constraint system obtained from V by replacing “⊇” with “w”,
i.e., switching from the complete lattice of subsets of states to the lattice of affine spaces.

[V1]] V][st] w Qk

[V2]] V][v] w fs(V
][u]) , for each (u, s, v) ∈ E .

We denote the components of the least solution of V] over the domain (D,v) by V][v],
v ∈ N . This solution again exists by Knaster-Tarski fixpoint theorem. Lemmas 1 and
2 together with the fact that aff(Qk) = Qk imply by standard argumentation from
abstract interpretation that the least solution of the abstract constraint system V] is the
precise abstraction of the least solution of the concrete constraint system V , i.e.:

Lemma 3. For all program points v, V][v] = aff(V [v]).

In order to obtain an effective algorithm we must choose a finitary representation
of affine spaces. As mentioned, Karr represents affine spaces by kernels of affine trans-
formation. Instead, we represent an affine space X ⊆ Qk by an affine basis of X . This
enables us to use semi-naı̈ve fixpoint iteration for computing the solution of constraint
system V]. A corresponding algorithm is given in Fig. 1. The algorithm uses an array
G indexed by the program points u ∈ N to store the sets of vectors to become gener-
ating sets for V][u]. Moreover, it uses a workset W in which it holds pairs of the form

1020 Markus Müller-Olm and Helmut Seidl

forall (v ∈ N) G[v] = ∅;

G[st] = {0, e1, . . . , ek};

W = {(st,0), (st, e1), . . . , (st, ek)};

while (W 6= ∅) {

(u, x) = Extract(W);

forall (s, v with (u, s, v) ∈ E) {

t = [[s]]x;

if (t /∈ aff(G[v])) {

G[v] = G[v] ∪ {t};

W = W ∪ {(v, t)};

}

}

Fig. 1: The base algorithm.

(u, x) ∈ N × Qk; each pair (u, x) stored
in W records that vector x has still to be
propagated from program point u. We write
0 for the zero vector and e1, . . . , ek for the
standard basis of the vector space Qk. The
function Extract(W) returns an arbitrary el-
ement of W and removes it from W .
The idea of semi-naı̈ve fixpoint iteration is
to propagate just “increments” instead of full
abstract values via the edges of the flow
graph. Thus it avoids full re-computation of
the transfer functions for new abstract values.
In our case a full abstract value is an affine
subspace of Qk and an “increment” amounts
to a new affine independent vector x that is
added to a generating set stored for some pro-
gram point u. The propagation of x via an

outgoing edge (u, s, v) is done by applying the concrete semantics of statement s, [[s]],
to the vector x, and adding the result to the set of generators stored for the target pro-
gram point of this edge, v, if it is not already in the affine hull of G[v]. Intuitively, this
is sufficient because, by Lemma 2, G′ = {[[s]]x | x ∈ G} is a generating set for fs(X)
if X = aff(G). Sect. 3.1 contains a more formal correctness argument.

3.1 Correctness

We claim that the algorithm in Fig. 1 computes sets of generators for the affine spaces
V][v]. The proof of this claim is based on two invariants of the while-loop:

I1: for all v ∈ N , G[v] ⊆ V [v], and for all (u, x) ∈ W , x ∈ V [u] .
I2: for all (u, s, v) ∈ E, aff(G[v] ∪ {[[s]]x | (u, x) ∈ W}) w fs(aff(G[u])) .

Both invariants can be easily verified by inspection of the initialization code and body
of the while-loop. We thus obtain:

Theorem 1. a) The above algorithm terminates after at most nk +n iterations of the
loop (where n = |N | and k is the number of variables).

b) For all v ∈ N , we have aff(Gfin[v]) = V][v], where Gfin[v] is the value of G[v]
upon termination of the algorithm.

Proof. a) In each iteration of the loop an entry is extracted from the workset W until
the workset is empty. Therefore, the number of loop iterations equals the number of
elements that are put to the workset. We observe that a new pair (u, x) is put to the
workset only when the affine space aff(G[u]) has been enlarged. In summary, this is
also true for the initialization of G and W . Since each strictly ascending chain of affine
spaces has length at most k+1, we conclude that for every program point u, there are at
most (k +1) insertions into W . Since there are at most n program points, the algorithm
terminates after at most n · (k + 1) iterations of the while-loop.

A Note on Karr’s Algorithm 1021

b) In order to show the inclusion aff(Gfin[v]) v V][v] we note that the loop invariant
I1 implies in particular that Gfin[v] ⊆ V [v] for each v ∈ N . Hence, aff(Gfin[v]) v
aff(V [v]) = V][v] for each v ∈ N .

In order to prove the reverse inclusion, aff(Gfin[v]) w V][v], we observe that the
invariant I2 implies that upon termination when the workset W is empty, we have

aff(Gfin[v]) w fs(aff(Gfin[u]))

for all (u, s, v) ∈ E. We also have aff(Gfin[st]) w aff({0, e1, . . . , ek}) = Qk because
the elements 0, e1, . . . , ek assigned to G[st] by the initialization are never removed.
Hence the family of values (aff(Gfin[v]))v∈N satisfies all the constraints of the con-
straint system V]. As the values V][v] are the components of the least solution of V],
this implies aff(Gfin[v]) w V][v] for all v ∈ N . 2

3.2 Complexity

In order to reason about the complexity of the algorithm, we consider a uniform cost
measure, i.e., we count each arithmetic operation for 1. Moreover, we assume that the
affine assignments at control flow edges are of constant size, meaning that all occur-
ring coefficients are of constant size, and that each assignment s may contain only a
constant number of variables with non-zero coefficients. Note that this assumption does
not impose any restriction on the expressiveness of programs since more complicated
assignments can easily be simulated by sequences of simpler ones. As a consequence,
the size of the control flow graph, n = |N | + |E|, can be considered as a fair measure
of the size of the input to the analysis algorithm.

Taking a closer look at the algorithm, we notice that each iteration of the while-
loop consists in processing one pair (u, x) by inspecting each outgoing edge (u, s, v)
of u. Thus, its time complexity is proportional to 1 + out(u) · C where out(u) is the
out-degree of u and C is the complexity of checking whether a vector t is contained in
aff(G[v]) for some program point v. Since the sum

∑

u∈N out(u) equals the number of
edges of the control flow graph, the complexity of the algorithm is proportional to

(k + 1) ·
∑

u∈N

(1 + out(u) · C) ≤ (k + 1) · (n + n · C) = (k + 1) · n · (C + 1) .

It remains to determine the complexity C of testing whether a vector t is contained
in the affine hull of G[v] for some program point v. If G[v] is empty, the test will
always return false. Otherwise, G[v] consists of vectors x0, . . . , xm, 0 ≤ m ≤ k. Then
t ∈ aff(G[v]) iff the vector t−x0 is contained in the linear vector space generated from
B = {x1 − x0, . . . , xm − x0}. This can be decided by means of Gaussian elimination
– resulting in an O(k3) upper bound on the complexity C of the element test.

We can do better, though. The key idea is to avoid repeated Gaussian elimination
on larger and larger subsets of vectors. Instead, we maintain for v with G[v] 6= ∅ a
diagonal basis B′ = {x′

1, . . . , x
′
m} spanning the same linear vector space as B. This

means: if li is the index of the first non-zero component of x′i for i = 1, . . . , m, then
the li’th component of all other basis vectors x′

j , j 6= i is zero. Reduction of a vector

1022 Markus Müller-Olm and Helmut Seidl

x = t−x0 w.r.t. the diagonal basis B′ then amounts to successively subtracting suitable
multiples of the vectors x′

i from x in order to make the li’th components of x zero. Let
x′ denote the vector obtained by reduction of t−x0. Then x′ = 0 iff t−x0 is contained
in L or, equivalently, t ∈ aff({x0, . . . , xm}). If x′ 6= 0, the algorithm inserts t into the
set G[v]. Therefore, we must extend B′ to a diagonal basis for Span(B ∪ {t− x0}) in
this case. Indeed, this is very simple: we only need to subtract suitable multiples of x′

from the vectors x′
1, . . . , x

′
m in order to make the l’th component of these vectors zero,

where l is the index of the first non-zero component of x′. Afterwards, we add x′ to the
set consisting of the resulting vectors. In summary, we have replaced a full Gaussian
elimination for each test t ∈ aff(G[u]) by the reduction of t − x0 possibly followed by
the reduction of the vectors in B′ by x′. Subtraction of a multiple of one x′

i from t and
of a multiple of x′ from x′

i uses O(k) operations. Since m ≤ k, reduction of t − x0 as
well as reduction of B′ can thus be done in time O(k2). Therefore we obtain:

Theorem 2. The affine hulls V][u] = aff(V [u]) of the sets of program states reaching
u, u ∈ N , can be computed in time O(nk3) where n is the size of the program and k
the number of program variables.

Moreover this computation performs arithmetic operations only on numbers upto
bit length O(nk2).

Proof. It only remains to estimate the lengths of numbers used by the algorithm. First,
we observe that the algorithm performs at most n · (k + 1) evaluations of assignment
statements s. Each assignment may increase the maximal absolute value of entries of
a vector x at most by a constant factor d > 0. Therefore, the absolute values of en-
tries of all vectors in Gfin[u], u ∈ N, are bounded by dn·(k+1). Now for each set
Gfin[u] = {x0, . . . , xm} with m > 0, the algorithm successively applies reduction
to construct a diagonal basis for the vectors xj −x0, j = 1, . . . , m. Altogether these re-
duction steps perform one Gaussian elimination on all m vectors. It is well-known that
Gaussian elimination introduces rational numbers whose numerators and denumerators
are determinants of minors of the original coefficient matrix [12, Problem 11.5.3]. In
our application, the original entries have absolute values at most 2 · dn·(k+1). At most
k-fold products therefore have absolute values at most 2k · dn·(k+1)k . Finally, determi-
nants are at most (k!)-fold sums of such products. Therefore, their absolute values are
bounded by k! · 2k · dnk(k+1) = 2O(n·k2) – which completes the proof. 2

4 Non-Deterministic Assignments

Let us now extend affine programs as defined in Section 2 with non-deterministic as-
signments xi :=?. Such assignments are necessary to model input routines returning un-
known values or variable assignments whose right-hand sides are not affine expressions.
The semantics of such a statement may update xi in the current state with any possible
value. Therefore, the transfer function fxi:=? is given by fxi:=?(X) =

⋃

{fxi:=c(X) |
c ∈ Q}. Unfortunately, this is not a finitary definition no matter whether X is an affine
space or not. Fortunately, we have:

A Note on Karr’s Algorithm 1023

Lemma 4. fxi:=?(aff(G)) = (fxi:=0(aff(G))) t (fxi:=1(aff(G))).

Thus for affine X , the infinite union in the definition of fxi:=? can be simplified to
the least upper bound of two affine spaces. Lemma 4 implies that we can treat unknown
assignments in flow graphs by replacing each edge (u, s, v) that is annotated with an
unknown assignment, s ≡ xi :=?, by the two edges (u, xi := 0, v) and (u, xi := 1, v)
labeled by affine assignments prior to the analysis.

5 Affine Relations

An equation a0 + a1x1 + . . . + akxk = 0 is called an affine relation. Clearly, such a
relation can be uniquely represented by its coefficient vector a = (a0, . . . , ak) ∈ Qk+1.
The affine relation a is valid for set X ⊆ Qk iff a is satisfied by all x ∈ X , i.e.,

a0 +
k

∑

i=1

ai · xi = 0 for all (x1, . . . , xk) ∈ X .

Accordingly, the relation a is valid at a program point u iff it is valid for the set V [u]
of all program states reaching u. The key objective, now of Karr’s algorithm was not to
determine (an approximation of) the collecting semantics of the program but to deter-
mine, for every program point u, the set V T[u] of all affine relations valid at u. Here we
show that this task is easy — once we have computed the affine hull V][u] of the sets
of program states reaching u. First we recall from linear algebra that the set:

A(X) = {a ∈ Qk+1 | a is valid for X}

is a linear vector space. Moreover, we have for every affine relation a:

Lemma 5. For every X ⊆ Qk, a is valid for X iff a is valid for aff(X).

Thus, given a set {x0, . . . , xm} of vectors generating aff(X), we can determine the set
A(X) as the set of solutions of the linear equation system:

a0 + a1 · xi1 + . . . + ak · xik = 0 i = 0, . . . , m

if xi = (xi1, . . . , xik). Determining a basis for the vector space of solutions can again
be done, e.g., by Gaussian elimination. Thus, we obtain:

Theorem 3. Assume p is an affine program of size n with k program variables. Then
the sets of all relations valid at program points u can be computed in time O(nk3).

The computation requires algebraic operations only for integers of lengths bounded
by O(nk2).

Recall, moreover, that our algorithm not only provides us, for every program point
u, with a finite set of generators of aff(V [u]). Whenever aff(V [u]) 6= ∅, it also returns a
pair (x0, B) where x0 is an element of V [u] and B is a diagonal basis of a linear vector
space L such that x ∈ aff(V [u]) iff x = x0 + x′ for some x′ ∈ L.

1024 Markus Müller-Olm and Helmut Seidl

Lemma 6. Assume a non-empty affine space X is given by a vector x0 ∈ X together
with a basis B for the linear vector space L = {x−x0 | x ∈ X}. Then the set of affine
relations valid for X is the set of all solutions of the equation system:

a0 + a1 · x01 + . . . + ak · x0k = 0
a1 · x′

i1 + . . . + ak · x′
ik = 0 for i = 1, . . . , m ,

where x0 = (x01, . . . , x0k) and B = {x′
1, . . . , x

′
m} with x′

i = (x′
i1, . . . , x

′
ik).

Moreover, if the basis B is already in diagonal form, we directly can read off a basis
for A(X). From a practical point of view, we therefore can be even more efficient and
avoid the extra post-processing round of Gaussian elimination.

6 Polynomial Relations

In [11], an interprocedural algorithm is presented which not only computes, for every
program point u of an affine program, the set of valid affine relations but the set of
all polynomial relations of degree at most d in time O(nk8d). Here we show how our
version of Karr’s algorithm can be extended to compute polynomial relations intrapro-
cedurally much faster.

A polynomial relation is an equation p = 0 for a polynomial p ∈ Q≤d[X], i.e., a
polynomial in the unknowns X = {x1, . . . ,xk} with coefficients from Q and degree
bounded by d. Recall that any such polynomial can be represented as its coefficient
vector a = (aI)I∈Id

where the index set Id is given by

Id = {(i1, . . . , ik) | i1 + . . . + ik ≤ d} .

Recall that |Id| =
(

k+d
d

)

. The polynomial relation p = 0 is valid for a set X ⊆ Qk iff
p is satisfied by all x ∈ X , i.e., p[x/x] = 0 for all (x1, . . . , xk) ∈ X . Accordingly, the
relation p = 0 is valid at a program point u iff it is valid for the set V [u] of all program
states reaching u. Our goal is to determine, for every program point u, the set of all
polynomial relations of degree up to d valid at u. Note that the set:

Pd(X) = {p ∈ Q≤d[X] | p is valid for X}

is still a linear vector space of dimension less or equal
(

k+d
d

)

= O(kd). This vector
space, however, can no longer be determined from the affine hull of X .

As a simple example consider the
two flow graphs in Fig. 2. In G1, we
have V [1] = V][1] = {(x1, x2) ∈
Q2 | x1 = x2}. In G2, we have
V [5] = {(0, 0), (1, 1)}. Hence V][5] =
aff(V [5]) = {(x1, x2) ∈ Q2 | x1 =
x2} = V][1]. It is easy to see, however,
that at node 5 the polynomial relation
x2

1−x2 = 0 holds for all run-time states
in contrast to node 1.

1

2

5

43

x1 := 0 x1 := 1

x2 := 1x2 := 0

0
x1 := x2

G1:

G2:

Fig. 2: Polynomial relations and affine hull.

A Note on Karr’s Algorithm 1025

Therefore, we define the polynomial hull pold(X). We do this in two steps. For a
vector x = (x1, . . . , xk) ∈ Qk, we define its polynomial extension ηd(x) = (xI)I∈Id

of degree d by: x(i1,...,ik) = xi1
1 · . . . · xik

k , where, in particular, x(0,...,0) = 1. Thus,
the polynomial extension of x has exactly

(

k+d
d

)

components. Let ηd(X) = {ηd(x) |
x ∈ X}. We call a vector x polynomially implied (up to degree d) by X ⊆ Qk iff
ηd(x) ∈ Span(ηd(X)), i.e., iff the polynomial extension ηd(x) is contained in the
linear hull of the polynomial extensions of the vectors in X . The polynomial hull of
degree d, pold(X), then consists of all vectors which are polynomially implied by X :

pold(X) = {x ∈ Qk | ηd(x) ∈ Span(ηd(X))} .

It is easily verified that the polynomial hull of X of degree 1 coincides with the affine
hull of X . Moreover, we show for every polynomial p of degree at most d:

Lemma 7. For every X ⊆ Qk, p = 0 is valid for X iff p = 0 is valid for pold(X).

Thus, given a set {x0, . . . , xm} of vectors whose extensions ηd(xi) = (ziI)I∈Id
gen-

erate the linear vector space Span(ηd(X)), we can determine the set Pd(X) as the set
of solutions of the linear equation system:

∑

I∈Id

aI · ziI = 0 , i = 0, . . . , m

Determining a basis for the vector space of solutions can again be done, e.g., by Gaus-
sian elimination — now with O(kd) variables. Thus, in order to compute the sets
Pd(V [u]), we modify our base fixpoint algorithm to compute, instead of a finite gen-
erating set of aff(V [u]), a finite set Gd[u] generating the polynomial hull of V [u]. It is
easily verified that pold is again a closure operator. Also Lemma 2 remains valid for the
polynomial hull, i.e., pold(fs(X)) = fs(pold(X)) for all statements s and X ⊆ Qk. A
suitable set of vectors that represents Qk up to pold is given by the following lemma:

Lemma 8. pold(Id) = Qk.

Sketch of proof. The vector space spanned by ηd(Q
k) is contained in the vector space

Qd′

for d′ =
(

d+k
d

)

. It trivially subsumes the span of ηd(Id), i.e., Span(ηd(Id)) ⊆

Span(ηd(Q
k)) ⊆ Qd′

. We prove by induction on k + d that, for all p ∈ Q≤d[X]:
p(x) = 0 for all x ∈ Id implies p ≡ 0. From this we conclude that the set of poly-
nomial extensions ηd(x), x ∈ Id, is in fact linearly independent. Therefore, their span,
Span(ηd(Id)), has dimension d′ and thus equals Qd′

. This implies pold(Id) = Qk.
ut

By arguing similarly to Sect. 3, we obtain an algorithm that computes a finite generating
set of pold(V [u]) by modifying the algorithm in Fig. 1 as follows. We replace the test
“t /∈ aff(G[u])” with “t /∈ pold(G[u])” and the initialization of G[st] and W with

G[st] = Id ; W = {(st, I) | I ∈ Id} ;

In order to avoid replicated Gaussian elimination, we may maintain a diagonal basis
Bd for the current vector space Span(ηd(Gd[u])). This simplifies the element test for
every newly encountered x ∈ Qk to the reduction of the extension ηd(x) of x w.r.t. Bd

possibly followed by reduction of the vectors in Bd with the reduced vector. We obtain:

1026 Markus Müller-Olm and Helmut Seidl

Theorem 4. Assume p is an affine program of size n with k program variables. Then
the sets of all polynomial relations of degree at most d which are valid at program points
u can be computed in time O(nk3d).

The computation requires algebraic operations only for integers of lengths bounded
by O(nk2d).

Similarly to [11] we can treat non-deterministic assignments xi :=? by replacing
each edge (u, xi :=?, v) by d + 1 edges (u, xi := l, v) for l = 0, . . . , d. Note that the
complexity of the resulting intraprocedural algorithm improves upon the complexity of
our interprocedural algorithm in [11] by a factor of k5d.

7 Positive Guards

In this paper we restricted attention to affine programs for which we have shown our
algorithms to be precise. In Karr’s paper, one can also find a non-trivial treatment of
branching nodes with affine guards. The main idea is to intersect in the “true” branch
the propagated affine space with the hyperplane described by the guard. While this
leads to more precise results than ignoring guards totally, it is not a complete treatment
of positive affine guards. Indeed, as we show next it is undecidable to decide in affine
programs with positive affine guards (or even with only equality guards) whether a given
affine relation holds at a program point or not. This implies that a complete algorithmic
treatment of positive affine guards is impossible.

We exhibit a reduction of the Post correspondence problem (PCP) inspired by Hecht
[5, 8]. A Post correspondence system is a finite set of pairs (u1, v1), . . . , (um, vm) with
ui, vi ∈ {0, 1}∗. The correspondence system has a solution, if and only if there is
a non-empty sequence i1, . . . , in such that ui1 · . . . · uin

= vi1 · . . . · vin
. From

a given Post correspondence system we construct an affine program with an equal-
ity guard as indicated in Fig. 3. We write |u| for the length of a string u ∈ {0, 1}∗

and 〈u〉2 for the number represented by u in standard binary number representation.
The variables x and y hold
binary numbers that repre-
sent strings in {0, 1}∗. For
each pair (ui, vi) ∈ S there
is an edge from program
point 1 to 2 that appends the
strings ui and vi to x and
y, respectively, by appro-
priate affine computations.
The program can loop back
from program point 2 to 1
by a skip-edge. The initial-
ization of x and y with 1

0

1

4

2

3

x := 1
y := 1

x := 2|u1| · x + 〈u1〉2

y := 2|v1| · y + 〈v1〉2

x = y ?

z := 1

x := 2|um| · x + 〈um〉2

y := 2|vm| · y + 〈vm〉2

z := 0

Fig. 3: A PCP reduction with affine guards.

avoids a problem with leading zeros. It is not hard to see that there is an execution
in which x = y is true at program point 2 if and only if the Post correspondence system
admits a solution. Only in this case the path from program point 2 via 3 to 4 can be
executed. We conclude that the affine relation z = 0 is valid at program point 4 if and
only if the given Post correspondence system S does not admit a solution.

A Note on Karr’s Algorithm 1027

8 Discussion and Perspective

We have presented a variant of Karr’s algorithm for computing valid affine relationships
among the variables in a program that has a better worst-case complexity than Karr’s
original formulation, avoids exponentially large numbers, and is easy to implement. We
also showed how to generalize this algorithm to determine polynomial relationships.

Instrumental for our results is that we represent affine spaces by affine bases instead
of kernels of affine transformations. Ironically, Karr discards a closely related represen-
tation early in his paper [6, p. 135] by remarking that the number of valid affine relation-
ships typically will be small and hence the dimension of the affine spaces will be large,
such that many basis vector but few relations are required for representation. This leads
to the question whether our representation can compete with Karr’s as far as memory
consumption is concerned. Clearly, we need more memory for representing an affine
space A of high dimension, if we store all the vectors in an affine basis {x0, . . . , xm}
of A explicitly. Fortunately, instead of storing the affine basis, it suffices to store one
vector, x0, together with the diagonal basis of Span({x1 − x0, . . . , xm − x0}) that is
computed for the membership tests. The other vectors x1, . . . , xm need not be stored
because they are neither needed for the membership tests nor for extraction of the final
result. The vectors in the diagonal basis, however, can be stored sparsely such that only
the non-zero components (together with their index) are stored. Then we need for rep-
resenting an affine space of dimension m, 0 ≤ m ≤ k, at most k + m + m(k − m)
entries compared to at most 2k− 2m+m(k−m) in a (sparse) representation by affine
relations. Surprisingly, the maximal difference is just 2k. Insights into the practical be-
havior of these two representations require experiments for real-world programs which
we leave for future work.

References

1. R. Bagnara, P. Hill, E. Ricci, and E. Zaffanella. Precise Widening Operators for Convex
Polyhedra. In 10th Int. Static Analysis Symp. (SAS), 337–354. LNCS 2694, Springer, 2003.

2. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In 4th POPL, 1977.

3. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among Variables of
a Program. In 5th POPL, 84–97, 1978.

4. S. Gulwani and G. Necula. Discovering Affine Equalities Using Random Interpretation. In
30th POPL, 74–84, 2003.

5. M. S. Hecht. Flow analysis of computer programs. Elsevier North-Holland, 1977.
6. M. Karr. Affine Relationships Among Variables of a Program. Acta Inf., 6:133–151, 1976.
7. J. Leroux. Algorithmique de la Vérification des Systèmes à Compteurs: Approximation et

Accélération. PhD thesis, Ecole Normale Supérieure de Cachan, 2003.
8. M. Müller-Olm and O. Rüthing. The Complexity of Constant Propagation. In 10th European

Symposium on Programming (ESOP), 190–205. LNCS 2028, Springer, 2001.
9. M. Müller-Olm and H. Seidl. Computing Polynomial Program Invariants. Submitted, 2003.

10. M. Müller-Olm and H. Seidl. Polynomial Constants are Decidable. In 9th Static Analysis
Symposium (SAS), 4–19. LNCS 2477, Springer, 2002.

11. M. Müller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear Algebra. In
31st POPL, 330–341, 2004.

12. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

