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Abstract

We present two automatic program analyses. The first
analysis checks if a given polynomial relation holds among
the program variables whenever control reaches a given
program point. It fully interprets assignment statements
with polynomial expressions on the right-hand side and
polynomial disequality guards. Other assignments are
treated as non-deterministically assigning any value and
guards that are not polynomial disequalities are ignored.
The second analysis extends this checking procedure. It
computes the set of all polynomial relations of an arbitrary
given form that are valid at a given target program point. It
is also complete up to the abstraction described above.

Keywords: Program analysis; Polynomial relation; Abstract
interpretation; Computable algebra; Program correctness

1 Introduction

Invariants and intermediate assertions are the key to de-
ductive verification of programs. Correspondingly, tech-
niques for automatically checking and finding invariants
and intermediate assertions have been studied (cf., e.g.,
[4, 3]). In this paper we present analyses that check
and find valid polynomial relations in programs. A poly-
nomial relation is a formula �������
	��
���
	���������� , where
����� � 	
���
�
	�� � � is a multi-variate polynomial in the program
variables � � 	��
���
	�� � .1 Our analyses combine techniques
from abstract interpretation and computable algebra and

�
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1More generally our analyses can handle positive Boolean combina-
tions of polynomial relations.

fully interpret assignment statements with polynomial ex-
pressions on the right hand sides while considering other
assignments as non-deterministic. Polynomial disequality
guards are also treated precisely2 while other conditions
at branches are ignored. The first analysis automatically
checks whether a given polynomial relation holds among
the program variables whenever control reaches a given tar-
get program point. Our second analysis extends this testing
procedure to compute precisely the set of all polynomial re-
lations of an arbitrary given form that are valid at the tar-
get program point among the program variables under the
above abstraction, e.g., all polynomial relation of bounded
degree.

The following is known as an undecidable problem in
non-deterministic flow graphs, if the full standard signa-
ture of arithmetic operators (addition, subtraction, multipli-
cation, and division) is available [7, 14]: decide whether
a given variable is actually a constant at a given program
point, i.e., holds the same value in all executions. Clearly,
constancy of a variable is a polynomial relation: � is a con-
stant at program point � if and only if the polynomial re-
lation ����� �!� is valid at � for some �#"�$ . Moreover,
with polynomials we can write all expressions involving ad-
dition, subtraction, and multiplication. Thus, our result al-
lows us to find constants in non-deterministic flow graphs
in which just these three operators are used (“polynomial
constants”) and indicates that division is the real cause of
undecidability of constant propagation.

The current paper extends and simplifies an earlier con-
ference paper [11] that considered just detection of polyno-
mial constants. We improve over this paper in a number of
respects:

% A modest generalization is that we show how to check

2Again, positive Boolean combinations of such guards can be handled.



validity of arbitrary polynomial relations (Section 3),
while in [11] only particular polynomial relations of
the form � � � � � , � " $ , were checked for validity.
While checking arbitrary polynomial relations can be
done with essentially the same technique this was not
made explicit in [11].

% We treat polynomial disequality guards.

% Most importantly, we are now able not just to check
polynomial relations but to derive all valid polynomial
relations of some given form (Section 4). Without a
systematic way of derivation, we must guess candidate
relations by some heuristic or ad-hoc method. In [11],
for instance, the constant � for the candidate relation
� � � ��� is determined in an ad-hoc way by executing
a single program path.

The main idea of our checking algorithm is to compute
a polynomial ideal that represents the weakest precondition
for the validity of the given polynomial relation at the given
target program point. We rely on results from computable
algebra in order to ensure that this computation can be done
effectively, most notably, on Hilbert’s Basis Theorem and
on Buchberger’s Algorithm. The polynomial relation in
question is valid at the target program point if and only if
the computed weakest precondition is valid for all states.
The latter can easily be checked.

In the case of derivation, we compute the weakest pre-
condition of a generic polynomial relation at the target pro-
gram point. In this generic relation coefficients are replaced
by variables. Again an ideal that represents the weakest-
precondition can be computed effectively. We can then
characterize the set of values of the new variables for which
the weakest precondition is universally valid by means of a
linear equation system. The space of solutions of this linear
equation system characterizes the coefficients of all poly-
nomial relations (of the given form) which are valid at the
target program point.

Looking for valid polynomial relations is a rather general
question with many applications. First of all, many classi-
cal data flow analysis problems can be seen as problems
about polynomial relations. Some examples are: finding
definite equalities among variables like �!� � ; constant
propagation, i.e., detecting variables or expressions with a
constant value at run-time; discovery of symbolic constants
like � ��� ����� or even � � ���
	��
��� ; detection of com-
plex common sub-expressions where even expressions are
sought which are syntactically different but have the same
value at run-time such as � ������� � ��	�� � ; and discovery
of loop induction variables.

Polynomial relations found by an automatic analysis are
also useful in program verification contexts, as they provide
non-trivial valid assertions about the program. In particular,
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Figure 1. An example program.

loop invariants can be discovered fully automatically. As
polynomial relations express quite complex relationships
among variables, the discovered assertions may form the
backbone of the program proof and thus significantly sim-
plify the verification task.

As an illustration of the kind of programs and proper-
ties our analysis can handle, consider the program in Fig-
ure 1. After initializing � � with 1 and � 	 with ��� , the
program iteratively executes the two assignments � ��� �
� ��� ��� � ����� 	 � � � 	 � ��� in sequence. It is not difficult
to see that after � iterations of the loop, ��� holds the value� �!#"%$'& ! �)(+*-,�.0/ �(0/ � (computed by Horner’s method) and � 	
holds the value

& ��1 � if
&

is the (unknown) initial value of
��� . Therefore, after leaving the loop and multiplying � �
with ��� �2� (i.e., the value

& �2� ), we can easily convince
ourselves that the equation: � � � � 	 � � � � holds at pro-
gram point 2.

2 Polynomial Programs

We model programs by non-deterministic flow graphs as
in Figure 1. Let 3 �54�� � 	��
���
	�� �76 be the set of (global)
variables the program operates on. We use � to denote the
vector of variables � � ��� � 	
���
��	�� � � . We assume that the
variables take values in a fixed field $ . If $ is finite, we
can effectively compute for each program point the possible
run-time states by an effective fixpoint computation. From
this information we can clearly check validity of polyno-
mial relations and derive valid polynomial relations. There-
fore, we assume without loss of generality that $ is infinite.
In practice, $ is the field of rational numbers.

A state assigning values to the variables is conveniently
modeled by a 8 -dimensional vector 9 � �:9 � 	
���
�
	;9 � � "
$ � ; 9 ! is the value assigned to variable �

!
. Note that we

distinguish variables and their values by using a different
font.

We assume that the basic statements in the program are
either polynomial assignments of the form �%< � � � or
non-deterministic assignments of the form �%< � �>= where
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Figure 2. Representation of guard � � � �� ���
� 	 ���� ��� � � �� � by a flow graph.
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Figure 3. A Petri Net.

� < " 3 and � is a polynomial in $
	 3�� , the polynomial
ring over the field $ with variables from 3 . Moreover, and
in generalization of [11], we allow polynomial disequality
guards which are of the form � ���� where � again is a poly-
nomial. While we allow only single negated polynomial
equations as guards, positive Boolean combinations can be
treated by coding them as small flow graphs, see Figure 2
for an illustrative example. Assignments � < � � � < have
no effect onto the program state. They are also called skip
statements and omitted in pictures. Non-deterministic as-
signments � < � �>= represent a safe abstraction of statements
in a source program our analysis cannot handle precisely,
for example assignments � < � � � with non-polynomial ex-
pressions

�
or read statements 
������ ��� <
� . Similarly, skip

statements can be used to abstract guards that are not poly-
nomial disequalities. Let ����� be the set of basic statements
and polynomial disequality guards.

A polynomial program is given by a control flow graph� � ��� 	�� 	�� 	��
� that consists of:
% a set � of program points;

% a set of edges �! "�$#%� ;

% a mapping � � �'&(����� that annotates each edge with
a basic statement or polynomial disequality guard; and

% a special entry (or start) point � "%� .

Note that we cannot allow polynomial equality guards
instead of (or even in addition to) disequality guards. As
shown in [12] constancy detection is undecidable already
for flow graphs with affine assignments and affine equal-
ity guards. This clearly implies that polynomial relations

) � � ) � �* � � * ��� * �� �
) � � ) � �
+ ����

) ����
) � � ) ���* � � *�� �+ � ���) � � �* � � �

4

1

2

3

0

Figure 4. Coding of the Petri Net.

cannot be checked or derived completely in programs with
polynomial assignments and polynomial equality guards.

Besides being a smooth abstraction of usual programs
for which our analyses are complete, polynomial programs
are also of interest in their own right. They can, for in-
stance, code Petri nets. As an example consider the Petri
net in Fig. 3 with three places � 	 � 	 � and three transitions� �
	 � 	 	 � � . The coding of this net by a polynomial program
is shown in Fig. 4. In the coding there is a variable for each
place of the Petri net. In the initialization we store the value
of the initial marking into these variables (transition from
program point � to � ). For each transition in the Petri net,
there is a loop from program point � to itself; the topmost
loop in Fig. 4, for instance, corresponds to transition

� 	 of
the net in Fig. 3. The loop for a transition first checks (by
disequality guards) that the transition is enabled and then
mirrors the effect of the transition on the marking by ap-
propriate assignments to the variables. It is easy to see that
the possible run-time states at program point � correspond
just to the reachable markings of the Petri net. On the re-
sulting polynomial program we can check and derive poly-
nomial invariants at program point � which are valid invari-
ants for all reachable markings of the Petri net. For example) �,* �.- is valid at program point � in Fig. 4. Indeed, as
our procedures are complete for polynomial programs, they
induce complete procedures for checking or deriving poly-
nomial invariants for the reachable markings of Petri nets.
Note that disequality guards are crucial for faithful coding
of Petri nets. If, for instance, the guard + �� � is ignored in
the program in Fig. 4, the invariant ) �,* �.- is no longer
valid at program point � .

The core part of our algorithm can be understood as a
precise abstract interpretation of a constraint system char-
acterizing the program executions that reach a given target
program point

� "/� . We represent program executions or
runs by finite sequences

02130 � �
�
��� � 054
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where each 0 ! is of the form � ���� or � < � � � where � < " 3
and � " $
	 3 � . We write

�������
for the set of runs. The set

of runs reaching
�

from some program point � "!� can
be characterized as the least solution of a system of subset
constraints on run sets. We start by defining the program
executions of base edges � in isolation. If � is annotated by
a guard, i.e., � ���
� 1 � �� � , or a polynomial assignment,
i.e., � ��� � 1 � < � � � , it gives rise to a single execution:	 �
� � ��4�� ��� � 6 . The effect of base edges � annotated by a
non-deterministic assignment � < � �>= is captured by all runs
that assign some value from $ to � < :

	 �
� � � 4�� < � ����� � " $ 6 �
Thus, we capture the effect of non-deterministic assign-
ments by collecting all constant assignments. The runs
reaching

�
from program nodes are the smallest solution of

the following constraint system
	

:

	 
 � � 	 � � ����4�� 6
	 
 � � 	 � � �������
� 	 � � ��� 	 if � � � � 	 � � " �

where “ � ” denotes the empty run, and ���
��� � � 4 0 � � � 0 "	 �
� � � � "�� 6 . By 	 
 � � , the set of runs reaching the tar-
get when starting from the target contains the empty run.
By 	 
 � � , a run starting from � is obtained by considering
an outgoing edge � � � � 	 � � and concatenating a run corre-
sponding to � with a run starting from � .

So far, we have furnished flow graphs with a symbolic
operational semantics only by describing the sets of runs
possibly reaching program points. Each of these runs gives
rise to a partial transformation of the underlying program
state 9 "�$ � ; for states outside the domain the run is not
executable, because some of the conditions in the run are
not satisfied. Every guard � �� � induces a partial identity
function with domain

����� ��	 	 � �� � � ����� 4-9 "#$ � � ���:9 � �� � 6 �
Polynomial assignments are always executable. Thus, a
polynomial assignment � < � � � gives rise to the transfor-
mation with domain ����� � 	 	 � < � � � � ��� � $ � and

	 	 � < � � � � � 9 � �:9 � 	
���
��	 9 < / � 	 ��� 9 � 	;9 < 1 ��	��
�
��	 9 � � �
These definitions are inductively extended to runs: 	 	 � � � �� � , where

� � is the identity function and 	 	 0 ����� � � 	 	 � � �! 	 	 0 � �
where ‘  ” denotes composition of partial functions.

The partial transformation � � 	 	 0 � � induced by a run0 can always be represented by polynomials
& $ 	��
�
��	 & � "

$�	 3 � such that �"�#� ��� ��� 4 9 " $ � � & $ � 9 � �� � 6 and
� �:9 � � � & � �:9 � 	
���
��	 & � �:9 ��� for every 9 " ����� �$� � . This is
clearly true for the identity transformation induced by the
empty path � (take the polynomials � 	�� �
	��
�
�
	���� ). It is also

not hard to see that the transformations induced by poly-
nomial assignments or guards can be represented this way.
Moreover, transformations of the given form are closed un-
der composition. To see this, consider a second transforma-
tion �&% which is given by polynomials

& %$ 	
�
���
	 & %� " $
	 3�� .
Then we have:

9 "%�"�#� ��� %  '� �
iff
& $ �:9 � �� � � & %$ � & � �:9 � 	
���
��	 & � �:9 ��� �� �

iff � & $ � & %$ 	 & ��( ��� 	��
��� 	 & �"(
������� � 9 � �� �
such that � %  �� is given by the polynomials

& $ � & % %$ 	 & % %� 	��
�
�
	 & % %�
where the

& % %! are obtained by substituting the polynomials& < for � < in
& %! , i.e.,

& % %! � & %! 	 & ��(
��� 	
���
�
	 & �"( ���5� .
3 Polynomial Relations and Weakest Precon-

ditions

A polynomial relation over a vector space $ � is an equa-
tion � � � for some �!" $
	 3 � . Such a relation can be
represented as the polynomial � alone. The vector ) " $ �
satisfies the polynomial relation � iff ���
) � � � .

The polynomial relation (denoted by) � holds after a sin-
gle run 0 for those initial states 9�""�"�#� � 	 	 0 � ��� that satisfy
����	 	 0 � � 9 � � � . For states 9�("%�"�#� � 	 	 0 � ��� , � is trivially guaran-
teed after run 0 as 0 is not executable for those states. Thus,

�*("%�"�#� � 	 	 0 � � � � ��� 	 	 0 � ����� � �
represents the weakest precondition of the validity of �#� �
after run 0 . Assuming that the transformation induced by
the run 0 is represented by the polynomials

& $ 	��
�
��	 & � , we
have for each 9 " $ � :

9�(" �"�#� � 	 	 0 � � � � ��� 	 	 0 � � 9 � ���
iff
& $ �:9 � ��� � ��� & � � 9 � 	
�
���
	 & � � 9 ��� ���

iff
& $ �:9 � ��� � � 	 & � ( � � 	��
��� 	 & � (
� � � �:9 � � �

iff � & $ � � 	 & � (
� � 	
���
� 	 & � ( � � ��� �:9 � � � �
From this calculation, we deduce that the weakest precon-
dition is again a polynomial relation. Even better: the map-
ping 	 	 0 � � + that assigns to each polynomial relation (repre-
sented by a single polynomial) its weakest precondition be-
fore run 0 is the total function defined by:

	 	 0 � � + � � & $ � � 	 & ��( ���
	��
�
��	 & �"(
���5� (1)

The only polynomial relation which is true for all program
states is the relation � � � . Thus, a given polynomial rela-
tion � is valid after run 0 iff 	 	 0 � � + � � � , because the ini-
tial state is arbitrary. Moreover, the polynomial relation
� is valid at the target node

�
, iff it is valid after all runs0 " 	 � �
� . Summarizing, we have:
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Lemma 1 The polynomial relation � � " $ 	 3 � is valid at
the target node

�
iff 	 	 0 � � + � � ��� for all 0 " 	 � �
� . �

We conclude that the set � �54�	 	 0 � � + � � � 0 " 	 � �
� 6  
$�	 3 � of polynomials gives us a handle to solve the validity
problem for the polynomial relation � � at the target node�
: � � is valid at

�
iff �$ 4
� 6 . The problem is that we

need a representation of this set which is finitary—and find
a way to compute it. In this place, we recall that the set
$�	 3 � of all polynomials forms a commutative ring. A non-
empty subset � of a commutative ring � satisfying the two
conditions:

(i) � ��� "�� whenever � 	 � "�� (closure under sum) and

(ii) 0 � � "�� whenever 0 " � and � "	� (closure under
product with arbitrary ring elements)

is called an ideal. Ideals (in particular those in polynomial
rings) enjoy interesting and useful properties. For a subset�  � , the least ideal containing

�
is given by


 ��� � 4 0 ��
 � � �
�
� � 0 � 
 � � ��� � 	 0 ! " � 	�
 ! " � 6 �
In this case,

�
is also called a set of generators of


 ���
. In

particular,


 ��� � 4
� 6 iff
�  4 � 6

for every
�  � . Thus, in our scenario, we can equivalently

check

 � � � 4
� 6 instead of �  4 � 6 . We conclude that we

can work with ideals of polynomials instead of sets without
losing interesting information. The set ��� of ideals of $ 	 3 � ,
ordered by subset inclusion, forms a complete lattice. In
particular:

% The least element of � � is 4
� 6 .
% The greatest element of ��� equals


 � � � $
	 3 � .
% The least upper bound � ��� � 	 of two ideals is defined

by � � � � 	 � 
 � ��� � 	 � .
Moreover, we recall Hilbert’s famous basis theorem for

polynomial ideals over a field:

Theorem 1 (Hilbert, 1888) Every ideal �  $
	 3 � of a
commutative polynomial ring in finitely many variables 3
over a field $ is finitely generated, i.e., � � 
 ��� for a finite
subset

�  �$
	 3 � . �

This means that each ideal can be effectively repre-
sented. For testing validity of a given polynomial relation
� � at a given target node

�
, we are thus left with the task to

compute the ideal

 4 	 	 0 � � + � � � 0 " 	 � �
� 6 � ( � the entry point

of the program). This ideal can be seen as an abstraction of

the set
	 � �
� of program executions starting in � and reach-

ing
�
. We are going to compute it by an abstract interpreta-

tion of the constraint system for
	 � � � from Section 2. The

desired abstraction of run sets is described by the mapping� � �������! &"� � :

� �
� � � 
 4 	 	 0 � � + � � � 0 " � 6 � �
This definition immediately implies the following identi-
ties:

� �$# � � 
 # � � 4
� 6
� � 4 0 6 � � 
 4�	 	 0 � � + � � 6 �

for a single run 0 . For the empty run � we get:

� �+4�� 6 � � 
 4 � � 6 �
because 	 	 � � � + � � � .

The mapping � is monotonic (w.r.t. subset ordering on
sets of runs and subspaces.) Also, it commutes with ar-
bitrary unions. This is due to the following well-known
lemma:

Lemma 2 Let % denote a set of subsets of polynomials.
Then


!& 4 � � � "'% 6 � �)( 4 
 ��� � � "�% 6 . �

In order to solve the constraint system for the run sets	 � � � over abstract domain � � , we need an abstract trans-
former �+*� � � � &,� � corresponding to edges � � � � 	 � �
which exactly abstracts � � , i.e., the effect of concatenating
the fixed run set of the edge � with run sets. We define:

� *� � � 
 4 	 	 0 � � + � � 0 " 	 �
� � 	 � "�� 6 � �
We prove:

Lemma 3 For every subset
�

of polynomials,

� *� 
 ��� � 
 4�	 	 0 � � + � � 0 " 	 �
� � 	 � " � 6 � �
Proof: Since

�  
 ���
, we trivially have the inclusion

“ � ” by monotonicity. For the reverse inclusion, consider
a polynomial ��" � *� 
 ��� . Then � can be written as
� � � 4! " � & ! � � ! for polynomials �

!
� 	 	 0 ! � � + � %! for some0 ! " 	 ���
� and � %! " 
 ��� , and

& ! " $
	 3 � . Each � %! in turn
can be written as � %! � � 4.-< " � & ! < � 
 ! < for 
 ! < " � and arbi-
trary polynomials

& ! < . In particular,

�
!
� 	 	 0 ! � � + � %!
� 	 	 0 ! � � +��

4 -/
< " �
& ! < � 
 ! < �

�
40-/
< " �
& %! < � 	 	 0 ! � � + 
 ! <

5



for some polynomials
& %! < (unfold the definition of

	 	 0 ! � � + for seeing the last step). Therefore, �
!
"
 4�	 	 0 � � + � � 0 " 	 �
� � 	�� " � 6 � for all

�
. But then also � "
 4�	 	 0 � � + � � 0 " 	 �
� � 	�� " � 6 � since ideals are closed under

sums and products with arbitrary polynomials.
�

Using Lemma 3, we calculate:

� *� � � ��� ��� � � *� 
 4�	 	 0 � � + � � � 0 "�� 6 �
� 
 4�	 	 0 % � � + � 	 	 0 � � + � � � � 0 % " 	 �
� � 	 0 " � 6 �
� 
 4�	 	 0 % � 0 � � + � � � 0 % " 	 �
� � 	 0 " � 6 �
� 
 4�	 	 0 � � + � � � 0 "�� � �
� � 6 �
� � �$� � �
� ��� �

Therefore, � *� is indeed an exact abstraction of � � . It re-
mains to prove that the application of � *� can be effectively
computed. This is easy if � ���
� is either a guard or a poly-
nomial assignment. Then the set

	 �
� � consists of a single
element, namely, a guard or a polynomial assignment. For
any generating system

�  $
	 3�� , we therefore obtain by
Lemma 3,

� *� 
 ��� �
� 
 4�� � & � & " � 6 � 	 if � ��� � 1 � �� �
 4 & 	 �&( � < � � & " � 6 � 	 if � ��� � 1 � < � � � �

In particular, we conclude that for every finite set of gener-
ator polynomials

�
, a finite generating system for the ideal

� *� 
 ��� is effectively computable.
Not quite as obvious is the case where the edge � is la-

beled with an unknown assignment �%< � �>= . Then the run
set

	 ��� � � 4�� < � � ��� � "�$ 6 is infinite. Still, however,
the effect of concatenating this run set turns out to be com-
putable. To see this, recall that every polynomial � " $
	 3 �
can be uniquely written as a sum

� 1 �/ !#"%$ � ! � � !<
where the 4�� < 6 -coefficient polynomials �

!
of �
!
< do not con-

tain occurrences of � < . Then define � < � $�	 3 � & ����� �	� as
the mapping which maps � to the set 4�� $ 	��
���
	�� � 6 of its4�� < 6 -coefficient polynomials. We prove:

Lemma 4 Assume � ���
� 1 � <>� �>= . Then for every set
�

of
generator polynomials,

� *� 
 ��� � 
�
 4�� < � & � � & " � 6 � �
The lemma and its proof are similar to Lemma 8 in [13].

Proof: By definition and Lemma 3, we have:

� *� 
 ��� � 
 	 	 � < � ��� � � + & ��� "#$ 	 & " ���
� 
 & 	 ��(
� < � � � " $ 	 & " � � �

Obviously, each polynomial
& 	 � (
�%< � is contained in the

ideal generated from the 4 � < 6 -coefficient polynomials of&
. Therefore, a generator set of the left-hand side � *� 
 ��� is

included in the right-hand side

 & 4
� < � & � � & " � 6 � of the

equation, and hence also the generated ideal. This proves
the inclusion “  ”.

For the reverse inclusion, it suffices to prove for
an arbitrary polynomial

& " �
, that the set � < � & �

of 4�� < 6 -coefficient polynomials of
&

is contained in
 & 	 � (
� < � � � " $ � . Assume that
& � � �! "%$'& ! � � !< where the

polynomials
& !

do not contain occurrences of � < . Consider
the square matrix � defined by:

� � �����
� 9 $ 9 	$ �
���59 �$� 9 � 9 	 � �
���59 � �
� ...

...
. . .

...� 9 � 9 	 � �
���59 ��
������

where 9 $ 	
���
�
	;9 � "�$ are � � � distinct elements. It is not
hard to see that

� ��� & $...& �
� �� � ��� & 	 9 $ (
� < �...& 	 9 � ( � < �

� �� �
The determinant of � is an instance of what is
known as Vandermonde’s determinant and has the value� $
� !�� 4 � � � 9 4 � 9 ! � . As the values 9 $ 	
���
� 	;9 � are dis-
tinct, the determinant is different from � . Therefore, matrix
� is invertible and for the inverse matrix, we have

��� & $...& �
���� � � / � ��� & 	 9 $ (
� < �...& 	 9 � (
� < �

���� �
Thus, the coefficient polynomials of

&
are even linear com-

binations of the polynomials
& 	 9 $ ( � < � 	��
�
��	 & 	 9 � (
� < � which

shows that � < � & � � 4 & $ 	
�
��� 	 & � 6 is contained in the ideal
generated by the polynomials

& 	 � ( � < � 	�� " $ .
�

Since for every polynomial � , the set of its 4��%< 6 -
coefficient polynomials is effectively computable, we con-
clude that also the generator set

& 4�� < � & � � & " � 6 of the
ideal � *� 
 ��� is effectively computable—given only that the
set
�

is finite.
For a given target node

� " � and polynomial relation
� � " $
	 3�� let

	 *��� denote the following abstracted con-
straint system over the complete lattice ��� :

	 
 � � * 	 * � � � � 
 4�� � 6 �
	 
 � � * 	 * � � � � � *� � 	 * � � ��� 	 if � � � � 	 � � " �

We find:
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Lemma 5 The constraint system
	 *� � has a unique least so-

lution
	 * � � � 	 � " � , with the following properties:

1.
	 * � � � 	 � "%� , is effectively computable.

2.
	 * � � � � � � 	 � � ��� for every � "%� .

Proof: Since �+� is a complete lattice and all transfer func-
tions � *� on right-hand sides of constraints are monotonic,
the constraint system

	 *� � has a unique least solution. More-
over, recall that Hilbert’s basis theorem, Theorem 1, implies
that every ascending sequence of ideals:

� $  ���
�  � 4  �
���
is ultimately stable, i.e., � 4 � � � 4 for some � " � and all
� % � � . We conclude that the least solution can be com-
puted by a finite number of fixpoint iterations. Since each
intermediately occurring ideal is finitely generated, each in-
dividual fixpoint iteration is computable. By Buchberger’s
algorithm (cf., e.g., [2]) it is decidable whether or not a
polynomial � is contained in the ideal


 ���
for a finite set

of generators
�

. It follows that it is also decidable whether
an ideal � � is included in another ideal � 	 —given only fi-
nite generator sets

� !
for the involved ideals � ! [2, Theorem

5.55]. Thus, we can effectively decide when fixpoint itera-
tion for

	 *��� reaches the least fixpoint. This completes the
proof of Assertion 1

For the second assertion, we apply the Transfer Lemma
of general fixpoint theory (see, e.g., [1, 5]):

Lemma 6 (Transfer lemma) Suppose � 	�� * are complete
lattices, � � �.&�� and 
 � �.* &�� * are monotonic func-
tions and � � �"&�� * is a completely distributive function.
If �  ��� 
  	� then � ��
 � � ��
 
 , where 
 � and 
 
 are
the least fixpoints of � and 
 , respectively, that exist by the
Knaster-Tarski fixpoint theorem.

�

In our case, � is the � ��� -fold Cartesian product of � �����  
(one component for each variable

	 � � � , � "'� , in con-
straint system

	
) and � * is the � ��� -fold Cartesian product

of �+� (one component for each variable
	 * � � � , � " � , in

constraint system
	 *� � ). The mappings � and 
 are induced

from the right hand sides of the constraints in
	

and
	 *� � in

the standard way, such that their least fixpoints correspond
to the least solutions of the constraint systems

	
and

	 *� � .
The mapping � maps a vector from � to the vector of the� -images of its components.

By Lemma 2 the abstraction function � is completely
distributive which implies that � is completely distributive
as well. By Lemma 3, the transfer functions are exact which
together with the fact that � is completely distributive im-
plies �  � � 
  
� . Hence, the Transfer Lemma ensures
that the least solution of the abstracted constraint system	 *��� is the abstraction of the least solution of the concrete

constraint system
	

. This is Assertion 2. Thus, the proof is
complete.

�

We can now put the pieces together and prove the main
theorem of this section.

Theorem 2 There is an effective procedure to decide
whether a polynomial relation � � is valid at a given pro-
gram point

�
or not.

Proof: The polynomial relation � � is valid at
�

if and only
if � � 	 � �
���#� 4
� 6 , where � is the entry point of the pro-
gram. By Lemma 5 we can effectively compute a generat-
ing system for � � 	 � �
��� by computing the least solution of
constraint system

	 *��� . As the ideal 4 � 6 has only two sets of
generators, namely # and 4
� 6 , it is easy to check, whether
the set of generators computed for

	 * � �
� generates 4
� 6 or
not.

�

Example 1 Consider the example program from Figure 1.
We want to verify that the relation given by the polynomial
��� 1 � � � � 	 � � holds at program point

� � � . Starting
from the ideal


 4 ��� 6 � for program point 2, we obtain a set of
generators for the ideal

	 * �+� � of preconditions at program
point 1 by first computing:

& � � 	 	 ��� � � ��� � ��� � �
�
� � � + � �
� � � 	 ��� � ��� � �
�
� (
��� �
� ��� � � � � ��� � � 	 � �

and then iteratively adding to the ideal

 & � � further precon-

ditions for the loop until stabilization is reached. We have:

	 	 � �>� ��� ��� ��� � �
��� 	 � � � 	 � ��� � � + & �
� & � 	 ��� � � � � � (
��� 	�� 	 � � � (
� 	 �
� ����� � � � � �
� � � � � ����� � � � � � ��� � 	 � � � � �
� ��� � � 	� � ��� � � � � � 	 � � � � � �
� � � � & �
" 
 & � �

Thus, the value of the fixpoint for program point 1 is given
by

	 * � � � � 
 4 & � 6 � . For the entry point 0 of the program
we then calculate the set of preconditions for the set 4 & � 6 :

	 	 � ��� ������� 	 � ����� � � + & � � � � ��� ��� � ��� � �
� �

Hence,
	 * ��� � � 
 � � � 4 � 6 , which implies that the relation

� � � � 	 � � ��� indeed holds at program point 2.
�

The considerations of this section can easily be extended
to checking finite sets of polynomials. A set

�  $ 	 3 �
is valid for a state ) " $ � iff ���
) � � � for all �!" � .
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Thus, a set represents the conjunction of its members. We
can clearly check validity of a given finite set

� � at a given
program point

�
by applying the above procedure for each

relation in
� � . We can do better, however, by checking all

of them at once. Clearly, we obtain from Lemma 1:

Corollary 1 The set of polynomial relations
� �  $
	 3�� is

valid at the target node
�

iff 	 	 0 � � + � � 4 � 6 for all 0 " 	 � � � ,
� " � � . �

Accordingly, we work with the abstraction mapping � % �� �����  &"�+� :

� % ��� � � 
 4�	 	 0 � � + � � 0 " � 	�� " � � 6 � � �
This leads to the a slightly modified constraint 	 
 � � * :

	 
 � � * 	 * � � � � 
 � � �

The rest works as before. We conclude:

Theorem 3 There is an effective procedure to decide
whether a (finite) set of polynomial relations

� � is valid at
a given program point

�
or not.

�

Note that we can represent disjunctions of polynomial
relations by products: � � � � � % � � is valid for a state )
iff � � � % � � is valid for ) . Thus, by considering sets of poly-
nomials and using products, we can indeed handle arbitrary
positive Boolean combinations of polynomial relations.

4 Inferring Valid Polynomial Relations

It seems that the algorithm of testing whether a certain
given polynomial relation �

$
� � is valid at some program

point contains no clue on how to infer so far unknown valid
polynomial relations. This, however, is not quite true. We
show in this section how to determine all polynomial rela-
tions of some arbitrary given form that are valid at a given
program point of interest. The form of a polynomial is given
by a selection of monomials that may occur in the polyno-
mial.

Let
�  � �$ be a finite set of exponent tuples for the

variables 9 � 	
�
���
	;9 � . Then a polynomial � is called a
�

-
polynomial if it contains only monomials � � �

!
.� � ���
� � �

!��
� ,� " $ , with � � � 	
�
���
	 � � � " � , i.e., if it can be written as

� �
/

� "�� ! � ������� � ! �
	���
 �
� � �
!
.� � �
��� � �

! �
�

If, for instance, we choose
� � 4 � � � 	��
��� 	 � � � � � � �

�
�
� � � ��� � 6 for a fixed maximal degree � " � , then
the

�
-polynomials are all the polynomials up to degree � .

Here the degree of a polynomial is the maximal degree of

a monomial occurring in � where the degree of a monomial� � �
!
.� � �
��� � �

!��
� , � " $ , equals

� � � ���
� � � � .
We introduce a new set of variables � 
 given by:

� 
 � 4�� � ��� " � 6 �
Then we introduce the generic

�
-polynomial as

�


�

/
� "�� !�� ������� � !�� 	���
 �

� � �
!
.� � �
�
� � �

!��
�

The polynomial �



is an element of the polynomial ring
$
	 3 � � 
 � . Note that every concrete

�
-polynomial � "

$
	 3�� can be obtained from the generic
�

-polynomial �



simply by substituting concrete values � � " $ , ��" � , for
the variables � � . If � � ���& � � and � � ���&�� � , we write
�

 	 ��(�� � for this substitution. We have:

Lemma 7 Let �#� � � "�� !�� ������� � !�� 	���
 � � � �
!
.� � ���
� � �

!��
� " $ 	 3 �

denote a
�

-polynomial with coefficients � � ���& � � . Then
for every run 0 ,

	 	 0 � � + � � ��	 	 0 � � + � 
 � 	 ��(�� �
where 	 	 0 � � + on the left-hand side of the equation is computed
over $
	 3 � whereas on the right-hand side it is computed
over $
	 3 � � 
 � .
Proof: By Equation (1), there are polynomials

& $ 	��
��� 	 & � "
$
	 3�� such that 	 	 0 � � + � % � & $ � � % 	 & ��(
��� 	
�
��� 	 & �"(
��� � for every
polynomial � % . Therefore,

	 	 0 � � + � � & $ � � 	 & ��( ���
	
���
� 	 & �"( �����
� & $ � � 
 	 ��(�� � 	 & � (
��� 	
�
���
	 & ��(
��� �
� � & $ � � 
 	 & � (
���
	��
���
	 & �"(
��� � � 	 ��(�� �
� ��	 	 0 � � + � 
 � 	 ��(�� �

which proves the asserted equality.
�

Lemma 7 tells us that instead of computing the weak-
est precondition of each

�
-polynomial separately, we as

well may compute the weakest precondition of the single
generic

�
-polynomial �



once and for all and substitute

the concrete coefficients � � of the polynomials � into the
precondition of �



later. In particular, we conclude that the

following statements are equivalent:

1. � is valid at the target program point
�
;

2. 	 	 0 � � + � ��� for all 0 " 	 � �
� ;
3. ( 	 	 0 � � + � 
 � 	 ��(�� � � � for all 0 " 	 � � � ;
4.
& 	 ��(�� � � � for all

& " 4 	 	 0 � � +�� 
 � 0 " 	 � �
� 6 ;
5.
& 	 ��(�� � � � for all

& " 
 4�	 	 0 � � +�� 
 � 0 " 	 � � � 6 � .
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6.
& 	 ��(�� � �!� for all

& " � in a (finite) generator
�

of
the ideal


 4�	 	 0 � � + � 
 � 0 " 	 � � � 6 � .
Now it should be clear how an algorithm may find all poly-
nomial relations ��� � with a

�
-polynomial � which are

valid at program point
�
: first, we construct the abstract con-

straint system
	 *� � , now over � ����� � , which for each pro-

gram point � computes (a finite generator set of) the ideal	 * � � � � 
 4�	 	 0 � � + � 
 � 0 " 	 � � � 6 � . Then it remains to de-
termine the set of all coefficient maps � � � & $ such that& 	 ��(�� � � � for all

& " 	 * � � � . Recall that each such polyno-
mial

& 	 ��(�� � is a polynomial in $ 	 3�� . Any such polynomial
equals 0 iff each coefficient � of each occurring monomial� � �
!
.� �
�
���

!��
� equals 0. The polynomial

& "#$
	 3 � � 
 � , on
the other hand, can uniquely be written as a finite sum

& �
/

� "�� ! . ������� �
!�� 	 & � � �

!
.� � �
��� � �

!��
� (2)

where each 3 -coefficient
& � is in $
	 � 
 � , i.e., may only

contain occurrences of variables from � 
 . Thus,
& 	 ��(�� � �

� iff
& � 	 ��(�� � ��� for all index tuples � occurring in the sum.

Summarizing our considerations so far, we have shown:

Lemma 8 Let
�

denote any finite generator set for the
ideal

	 * � �
� . The set of coefficient maps � � � & $ of the�
-polynomials which are valid at program point

�
equals

the set of solutions of the equation system having an equa-
tion: & � � �
for each 3 -coefficient

& � of a polynomial
& " � .

�

We are not yet done, since in general we are not able to
determine the precise set of solutions of an arbitrary polyno-
mial equation system algorithmically. Therefore, we need
the following extra observation:

Lemma 9 Every ideal
	 * � � � , � "/� 	 of the least solution

of the abstract constraint system
	 *� � has a finite generator

set
�

consisting of polynomials
&

whose 3 -coefficients are
of degree at most 1, i.e., are of the form:

/
� ��


� � � � �

for � � " $ . Moreover, such a generator set can be effec-
tively computed.

Proof: The polynomial �



has 3 -coefficients which triv-
ially have degree 1, since these consist of individual vari-
ables � � . Also, applications of the least upper bound opera-
tion as well as of the abstract transformers � *� when applied
to (ideals represented through) finite sets of generators with3 -coefficients of degree at most 1 again result in finite sets

of generators with this property. Therefore, the assertion of
the lemma follows by fixpoint induction.

�

Together Lemma 8 and Lemma 9 show that the set of
(coefficient maps) of

�
-polynomials which are valid at our

target program point
�

can be characterized as the set of so-
lutions of a linear equation system. Such equation systems
can be algorithmically solved, i.e., finite representations of
their sets of solutions can be constructed explicitly. We con-
clude our second main theorem:

Theorem 4 The set consisting of all the
�

-polynomials
that are valid at a given target program point

�
can be ef-

fectively computed.
�

Example 2 Consider again the example program from Fig-
ure 1. We want to determine for program point 2, all valid
polynomial relations up to degree 1, i.e., all valid polyno-
mial relations of the form � $ � � � � ��� � � 	 � � 	 � � � � � � � � .
Let � � 1 � $ � � � � ��� � � 	 � � 	 � � � � � � denote the generic�

-polynomial for
� � � � . Starting from the ideal


 4 � � 6 �
for program point 2, we determine a set of generators for
the ideal

	 * �+�
� of preconditions at program point 1. First,
we compute:
& � � 	 	 � �>� � � ��� ����� �
�
� � � + � �

� � � 	 � � � ����� �
�
� (
� � �
� � $ ��� ��� � � � � 	 � � 	 � � � � ��� � � ��� � � ���

Next, we add the preconditions for the body of the loop:

	 	 ��� � ����� � � � � ����� 	 � ��� 	 � � � � � + & �
� & ��	 ��� � � � � � (
���
	�� 	 � � � (
� 	 �
� � $ � � � � � � � � � � � � � � �

� � � � ��� � � � � 	 � � 	 � � � � � � ��� � 	�
� � � � & � �� � $ ��� � � ��� � $ � � � � � � � � � � ��� � � � 	���

The polynomial
& 	 1 � $ � � � � � � � $ � � � � � - � � � � � � � �

� 	� is independent of ��� and � 	 . Thus, the ideal

 4 & � 	 & 	 6 �

remains stable under further iteration and therefore equals	 * � � � . A generator set for
	 * ��� � is obtained by computing:

	 	 � ��� ������� 	 � � ��� � � + & � � � $ � � � � � � � � � 	 � � �
� � ���
	 	 � ��� ������� 	 � � ��� � � + & 	 � & 	

� � $ � � � �
��� � $ � � � � � �
� � ��� ��� � � � 	�

The 4�� � 	�� 	 	���� 6 -coefficients of these two polynomials now
must equal 0. This gives us the following linear equations:

� $ ��� � � � � $ � � � � �
� � � � 	 � � � � � � � $ � � � � � � � �

� � � � �
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Thus, � � � � , � � � � $ , and � 	 � � � $ . We conclude
that � � ��� � � 	 � � is (up to constant multiples) the only
polynomial relation of degree at most 1 which is valid at
program point 2.

�

5 Conclusion

We have presented two analysis algorithms. The first
analysis determines for a given program point of a polyno-
mial program with polynomial disequality guards whether a
given polynomial relation is valid or not. The second analy-
sis infers all polynomial relations of an arbitrary given form,
e.g., all polynomial relations up to a given degree � .

We do not know any upper complexity bound for our
algorithms. The termination proof relies on Hilbert’s ba-
sis theorem whose standard proof is non-constructive and
does not provide an upper bound for the maximal length
of strictly increasing chains of ideals. Therefore, we can-
not bound the number of iterations performed by the algo-
rithms. A first lower bound for the problems in question is
provided in [10] where detection of polynomial constants is
proved to be already PSPACE-hard.

It follows from undecidability of polynomial may-
constants [10] that we cannot decide whether a given state
is reachable at a given program point in a polynomial pro-
gram. The results of this paper show, however, that it is still
possible to decide or compute non-trivial properties of the
set of reachable states. Note that we can even compute its
affine hull: with our second analysis we can compute a ba-
sis for the vector space of all valid affine relations (i.e. poly-
nomial relations up to degree � ) at a given program point.
From this basis the affine hull of the set of reachable states
can be computed by standard linear algebra methods.

Linear algebra techniques have been used in program
analysis for a long time. In his seminal paper [8], Karr
presents an analysis that determines valid affine relations by
a forward propagation of affine spaces. His analysis is pre-
cise for affine programs, i.e., it interprets assignments with
affine right-hand sides precisely. In [10] we observe that
checking a given affine relation for validity at a program
point can be performed by a simpler backward propagating
algorithm. This idea of backward propagation has led to
an interprocedural generalization of Karr’s result [13] and
also underlies the current paper. In comparison with Karr’s
result, we have a more general space of properties, namely
polynomial relations instead of affine relations. Secondly,
our analysis is precise for a larger class of programs, namely
polynomial programs (possibly using disequality guards)
instead of affine programs. Finally, we leave the realm of
linear algebra and rely on results from computable algebra.

We are not aware of much work on using techniques
from computable algebra in program analysis, like we do

here. In the work of Michel le Borgne et. al. (cf., e.g., [9])
and Gunnarsson et. al. (cf., e.g., [6]) polynomials over a fi-
nite field are used for representing state spaces in a forward
reachability analysis of polynomial dynamical systems or
discrete event dynamical systems, respectively. However,
they actually work in a finite factorization of a polynomial
ring over a finite field and use polynomials for represent-
ing state spaces of finite systems and not for treating arith-
metic properties. Thus, they use polynomials as a conve-
nient data structure but not to gain new decidability insights.
Recently, Sankaranarayanan et. al. [15] proposed a method
for generating non-linear loop invariants using techniques
from computable algebra. In contrast to our technique their
method is approximate: there is no guarantee of complete-
ness for a well-specified class of programs. On the other
hand, they provide a non-trivial (but incomplete) treatment
of positive polynomial guards. Therefore, the results ob-
tained with these two techniques are incomparable.

It is a challenging open problem whether or not the set
of all valid polynomial relations can be computed not just
the ones of some given form. It is not hard to see that this
set is an ideal of $
	 3�� . Hence, by Hilbert’s basis theorem
it can be represented by a finite set of generators such that
this is a well-posed problem. Another challenge is to treat
the inter-procedural case, i.e., to detect or even infer poly-
nomial relations in programs with polynomial assignments
and procedures.
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