
Using Dynamic Pushdown Networks to
Automate a Modular Information-flow Analysis

Heiko Mantel1, Markus Müller-Olm2, Matthias Perner1, and Alexander Wenner2

1 Computer Science Department, TU Darmstadt, Germany
{mantel,perner}@cs.tu-darmstadt.de

2 Institut für Informatik, Westfälische Wilhelms-Universität Münster, Germany
{markus.mueller-olm,alexander.wenner}@wwu.de

Abstract. In this article, we propose a static information-flow analysis
for multi-threaded programs with shared memory communication and
synchronization via locks. In contrast to many prior analyses, our anal-
ysis does not only prevent information leaks due to synchronization, but
can also benefit from synchronization for its precision. Our analysis is a
novel combination of type systems and a reachability analysis based on
dynamic pushdown networks. The security type system supports flow-
sensitive tracking of security levels for shared variables in the analysis of
one thread by exploiting assumptions about variable accesses by other
threads. The reachability analysis based on dynamic pushdown networks
verifies that these assumptions are sound using the result of an automatic
guarantee inference. The combined analysis is the first automatic static
analysis that supports flow-sensitive tracking of security levels while be-
ing sound with respect to termination-sensitive noninterference.

Keywords: information-flow security, concurrency, static analysis

1 Introduction

Before giving a multi-threaded program access to sensitive information, one
might want to know whether the program keeps this information secret. Static
information-flow analyses are a solution for checking whether a program keeps
sensitive information secret before running the program.

Information-flow security for sequential programs received a lot of attention
in research and mature solutions exist, e.g. [12, 2, 5, 7]. Analyzing information-
flow security for concurrent programs is conceptually more difficult. In particular,
analyses for sequential programs are not sufficient for analyzing concurrent pro-
grams [17], because further information leaks can occur. Consider, for instance,
the program o1 :=s1 ; s1 :=s2 ; s2 :=o1 ; o1 :=0, which swaps the values stored in
s1 and s2 via the variable o1 . Assume the values of s1 and s2 shall be kept
secret from an attacker who can only observe the variable o1 after the program
run. While the program does not leak the values of s1 and s2 if run in isolation,
it might leak the value of s1 to the attacker if the program o2 :=o1 ; o1 :=o2
is run concurrently. Synchronization adds further complexity to this problem,
because it can introduce additional information leaks [14].

Fig. 1. Work flow of the proposed analysis

For verifying that multi-threaded programs have secure information flow, sev-
eral security type systems were proposed and proven sound wrt. noninterference-
like security properties (e.g., [17, 16]). While some of this work addresses the
danger of information leakage via synchronization (e.g., [14, 19, 20]), the poten-
tial positive effects of synchronization primitives for information-flow security
have been neglected for some time. However, programmers use synchronization
frequently to limit the possible interferences between threads. In particular, syn-
chronization can be employed to prevent information leakage.

Mantel, Sands, and Sudbrock propose a framework for verifying information-
flow security in a modular fashion such that the positive effects of synchroniza-
tion can be exploited [10]. They present a flow-sensitive security type system
that is suitable for rely-guarantee-style reasoning about information-flow security
based on code annotations that capture a programmer’s intentions and expecta-
tions by so called modes. A mode is either an assumption about a given thread’s
environment that the programmer expects to hold when the thread reaches some
program point, or it is a guarantee that the programmer intends to provide to
the thread’s environment. In [10], the security type system is proven sound under
the precondition that all assumptions made by a thread are justified by corre-
sponding guarantees of other threads and that all such guarantees are, indeed,
provided. In [3], this approach is adapted to a hybrid information-flow analysis,
where monitors enforce the soundness of rely-guarantee-style reasoning by forc-
ing threads to provide all guarantees that are needed to justify the assumptions
made by other threads.

In this article, we propose a particular combination of security type systems
with dynamic pushdown networks [9] (brief: DPNs). The purpose of this com-
bination is to obtain a solution for rely-guarantee-style reasoning where DPNs
are used to effectively check that all assumptions are justified. In addition, we
present an inference that soundly computes the guarantees that are provided
at each program point. That is, our solution statically ensures that modes are
used soundly and our soundness result is unconditional, unlike in [10] where a
sound use of modes is assumed. In contrast to [3], we present a solution for a
static analysis, i.e. one only needs to verify the information flow security of a
program once and no run-time overhead is imposed on the program. Another
novelty of this article in comparison to [10, 3] is that our security type system
covers dynamic thread creation as well as lock-based synchronization.

Figure 1 illustrates how the different modules of our analysis interact. The
guarantee inference takes a program annotated with assumptions as input and
adds guarantee annotations. This program is input to the assumption verifier

and the security type system. A program is then accepted as secure if and only
if it is accepted by the assumption verifier as well as the security type system.

Overall, our analysis is the first completely automated, static information-
flow analysis that soundly enforces termination-sensitive noninterference while
permitting flow-sensitive tracking of security levels for shared variables.

2 Basic Notions and Notation

2.1 Model of Computation

We consider multi-threaded programs whose threads synchronize by locks and
communicate via shared memory. We focus on interleaving concurrency (i.e., one
thread performs a step at a time), non-deterministic scheduling (i.e., each thread
could be chosen to perform a step next), and non-re-entrant locks (i.e., a lock can
only be acquired if no thread, including the acquiring thread, holds this lock). To
capture the behavior of multi-threaded programs, we use two transition systems:
a local labeled transition system to capture the behavior of individual threads
and a global transition system to capture the behavior of multiple threads.

We assume as given a finite set of locks Lck and define the set of all memory
configurations by Mem = Var → Val , where Var is a finite set of variables and
Val is a set of values. We leave Var and Val both under-specified.

We refer to the states and labels of local, labeled transition systems as local
configurations and events, respectively. Formally, a local transition system is a

triple (LCnf ,Eve,−→) where LCnf and Eve are sets and −→⊆ LCnf×Eve×LCnf .
We define the set of local configurations by LCnf = CCnf ×Mem, where CCnf is
a set of control configurations that we leave under-specified for now. An event is
a term that captures the non-local effects of a thread’s computation. We define
the set of all events by Eve = {ε,↗ccnf , l ,¬l | ccnf ∈ CCnf , l ∈ Lck}. We
use the events ↗ccnf , l , and ¬l to capture the creation of a new thread with
initial control configuration ccnf , the acquisition of lock l , and the release of l ,
respectively. The term ε signals that no non-local effect occurs. We assume that
termination is captured by a predicate trm on control configurations.

A global transition system is a pair (GCnf ,�), where GCnf is a set of
global configurations and �⊆ GCnf × GCnf . We define GCnf by GCnf =
CCnf + ×Mem, i.e., a global configuration is a pair of a non-empty list of lo-
cal control configurations and a memory configuration. A global configuration
〈[ccnf 1, . . . , ccnf n],mem〉 models a snapshot of a computation with n threads
where the ith thread’s state is captured by (ccnf i,mem) for 1 ≤ i ≤ n. We say
that a list of control configurations [ccnf 1, . . . , ccnf n] has terminated (denoted
trm([ccnf 1, . . . , ccnf n])) iff trm(ccnf i) holds for all i ∈ {1, . . . , n}.

We assume the control configuration of a thread to capture which locks are
held by this thread. To retrieve the set of acquired locks, we use a function
locks : CCnf → 2Lck and inductively lift it to a function locks : CCnf ∗ → 2Lck

by locks([]) = ∅ and locks(
−−→
ccnf ++[ccnf]) = locks(

−−→
ccnf)∪ locks(ccnf). In a global

configuration 〈[ccnf 1, . . . , ccnf n],mem〉, locks(ccnf i) is the set of locks acquired
by the ith thread and Lck \ locks([ccnf 1, . . . , ccnf n]) is the set of available locks.

We say that a local transition system (LCnf ,Eve,−→) handles locks properly

iff (1) (ccnf ,mem)
l−→ (ccnf ′,mem ′) implies locks(ccnf ′) = locks(ccnf) ∪̇ {l},3

(2) (ccnf ,mem)
¬l−→ (ccnf ′,mem ′) implies locks(ccnf) = locks(ccnf ′) ∪̇ {l}, (3)

(ccnf ,mem)
α−→ (ccnf ′,mem ′) and α /∈ {l ,¬l | l ∈ Lck} imply locks(ccnf ′) =

locks(ccnf), and (4) (ccnf ,mem)
↗ccnf∗−−−−→(ccnf ′,mem ′) implies locks(ccnf ∗) = ∅.

Let (LCnf ,Eve,−→) be a local transition system that handles locks properly.
The global transition relation �⊆ GCnf ×GCnf induced by this local transition
system is the smallest relation that satisfies the following conditions:

1. If (ccnf i,mem)
l−→ (ccnf ′i,mem ′) and l /∈ locks(

−−→
ccnf 1++

−−→
ccnf 2) then

〈
−−→
ccnf 1++[ccnf i]++

−−→
ccnf 2,mem〉� 〈

−−→
ccnf 1++[ccnf ′i]++

−−→
ccnf 2,mem ′〉.

2. If (ccnf i,mem)
↗ccnf−−−→ (ccnf ′i,mem ′) then

〈
−−→
ccnf 1++[ccnf i]++

−−→
ccnf 2,mem〉� 〈

−−→
ccnf 1++[ccnf , ccnf ′i]++

−−→
ccnf 2,mem ′〉.

3. If (ccnf i,mem)
α−→ (ccnf ′i,mem ′) and α /∈ {↗ccnf , l | ccnf ∈ CCnf , l ∈ Lck}

then 〈
−−→
ccnf 1++[ccnf i]++

−−→
ccnf 2,mem〉� 〈

−−→
ccnf 1++[ccnf ′i]++

−−→
ccnf 2,mem ′〉.

The first item above captures the acquisition of a lock by the thread at position

i = 1 +](
−−→
ccnf 1). Since the local transition system handles locks properly, a lock

can only be acquired if no thread – including thread i – holds this lock. The
second item captures the creation of a thread by the ith thread. Due to the
proper handling of locks, newly created threads hold no locks. Finally, the third
item handles all other steps of the ith thread, including the release of a lock.

We inductively define a family of relations (�k)k∈N by gcnf �0 gcnf and
if gcnf �k gcnf ′ and gcnf ′ � gcnf ′′ then gcnf �k+1 gcnf ′′. The transitive,
reflexive closure of � is defined by gcnf �∗ gcnf ′ iff ∃k ∈ N. gcnf �k gcnf ′. If
gcnf �∗ gcnf ′ then gcnf ′ is reachable from gcnf . We define the set of all global
configurations reachable from gcnf by gReach(gcnf) = {gcnf ′ | gcnf �∗ gcnf ′}.

In Section 2.5, we define a local transition system (LCnf ,Eve,−→) for a simple
programming language and capture multi-threaded computations by the global

transition system (GCnf ,�), where � is induced by (LCnf ,Eve,−→).

2.2 Attacker Model and Definition of Security

We focus on confidentiality in this article. More concretely, we assume that
certain variables store secrets, and we only classify a program as secure if it does
not reveal information about these secrets when it is run. We consider attackers
that might be able to observe the values of all other variables both, before and
after a program run. We refer to variables that initially store secrets as high
and to variables that might be observable to the attacker as low.

We define a set of security levels by Lev = {low,high} and use a function
lev : Var → Lev to associate a security level with each variable. For the attacker,
two memory configurations are indistinguishable if they agree on the values of

3 We use ∪̇ to denote the disjoint union of two sets, e.g., locks(ccnf ′) = locks(ccnf)∪̇{l}
is equivalent to locks(ccnf ′) = (locks(ccnf) ∪ {l}) ∧ l /∈ locks(ccnf).

all low variables. We say that mem,mem ′ ∈ Mem are low-equal (denoted by
mem =lev

low mem ′) iff ∀x ∈ Var . (lev(x) = low =⇒ mem(x) = mem ′(x)) holds.

Definition 1. A control configuration ccnf is secure for lev : Var → Lev iff

∀mem1,mem ′1,mem2 ∈ Mem.∀
−−→
ccnf 1 ∈ CCnf +.

〈[ccnf],mem1〉�∗ 〈
−−→
ccnf 1,mem ′1〉 ∧ trm(

−−→
ccnf 1) ∧mem1 =lev

low mem2

=⇒ ∃mem ′2 ∈ Mem.∃
−−→
ccnf 2 ∈ CCnf +.

〈[ccnf],mem2〉�∗ 〈
−−→
ccnf 2,mem ′2〉 ∧ trm(

−−→
ccnf 2) ∧mem ′1 =lev

low mem ′2

Our security definition captures possibilistic, termination-sensitive noninterfer-
ence for a two-level security policy [15]. That is, if a program satisfies our security
definition then the initial values of high variables do not influence the possibility
of a low attacker’s observations. In particular, programs that leak information
via their termination behavior [4] do not satisfy Definition 1.

2.3 Dynamic Pushdown Networks

We briefly recall the result on analysis of dynamic pushdown networks (DPNs)
from [9] exploited in the assumption verifier and describe the connection to our
model of computation. A DPN consists of multiple instances of independent
pushdown systems running in parallel. Additional instances can be created dy-
namically. Synchronisation is supported in the form of locks. Using finite data
abstraction, DPNs can thus model concurrent programs with recursive proce-
dures, dynamic thread creation, and synchronization with locks.

Formally, a DPN is a tuple (P , Γ,A, ∆) where P is a finite set of control states,
Γ is a finite set of stack symbols, A is a finite set of actions, and ∆ ⊆ PΓ ×
A×PΓ ∗ is a finite set of transitions. An action from {↗p,γ | p ∈ P , γ ∈ Γ} ⊆ A
indicates creation of a new pushdown instance with a control state p and stack
symbol γ, and an action from {l ,¬l | l ∈ Lck} ⊆ A indicates acquisition and
release of a lock l . The set of acquired locks can be retrieved from a control
state with the function locks : P → 2Lck . The set of acquired locks in a control
state must be consistent with transitions, i.e. for all (pγ, a, p′w′) ∈ ∆ we have
locks(p′) = {l} ∪̇ locks(p) if a = l , locks(p) = {l} ∪̇ locks(p′) if a = ¬l and
locks(p) = locks(p′) otherwise; in addition locks(p′′) = ∅ if a =↗p′′,γ′′ . Note
that there is no re-entrant use of locks.

Configurations of a DPN are lists of pushdown instances represented as words
from DCnf = (PΓ ∗)+. Let locks(p1w1 . . . pnwn) =

⋃
i∈{1,...,n} locks(pi). A step

of the semantics of the DPN rewrites the control state and topmost stack-symbol
of one pushdown instance according to a transition rule, if allowed by the state
of locks. On thread creation, a new pushdown instance is added to the left of
the current instance in the configuration. Formally, the transition relation _ is
the smallest relation such that s pγw s ′ _ s s ′′ p′w′w s ′ holds for all s, s ′ ∈
DCnf , w ∈ Γ ∗, (pγ, a, p′w′) ∈ ∆ provided l /∈ locks(spγws ′) if a = l and
s ′′ = p′′γ′′ if a =↗p′′,γ′′ and s ′′ = ε otherwise.

We say that a thread uses locks in a well-nested fashion if it releases all locks
in opposite order of their acquisition. Given a DPN whose threads use locks in

a well-nested fashion and a regular set B ⊆ (P ∪ Γ)∗, we can check effectively,
whether a configuration in B is reachable from initial configuration s0 or not,
i.e., whether ∃s ∈ B : s0 _∗ s (see [9]).

In order to analyze a program from an initial configuration 〈[ccnf],mem〉,
we consider a DPN Mccnf = (Pccnf , Γccnf ,Accnf , ∆ccnf) with Pccnf ⊆ CCnf ,
ccnf ∈ Pccnf and Γccnf = {#} that satisfies the following condition: if ccnf ′ ∈
Pccnf and (ccnf ′,mem)

α−→ (ccnf ′′,mem ′) then ccnf ′′ ∈ Pccnf , α′ ∈ Accnf and
(ccnf ′#, α′, ccnf ′′#) ∈ ∆ccnf , where α′ = α for α /∈ {↗ccnf | ccnf ∈ CCnf }, and
ccnf ′′′ ∈ Pccnf and α′ =↗ccnf ′′′,# for α =↗ccnf ′′′ . Elements of Pccnf abstract lo-
cal configurations in the sense that they do not carry information about memory
configurations. Correspondingly, the transitions in ∆ccnf abstract steps in the lo-
cal semantics. However, labelling and hence synchronisation and thread creation
is preserved. We reuse the function locks defined for control configurations.

The DPN Mccnf can be used to approximate reachability of configurations
starting from 〈[ccnf],mem〉 respecting synchronisation via locks and thread cre-
ation, since 〈[ccnf],mem〉�∗ 〈[ccnf 1, . . . , ccnf n],mem ′〉 implies that ccnf # _∗
ccnf 1# . . . ccnf n#. Hence, an unreachable configuration in the DPN translates
to an unreachable configuration in the program. Since we abstract from the
shared global memory, the converse direction does not hold in general.

The above approach is fitted to non-recursive programs but can easily be
extended to recursive programs by using a larger stack alphabet.

2.4 Control Configurations and Modes

We specialize control configurations to triples of the form (c, lkst ,mdst), where
c is a command, lkst is a lock state, and mdst is a mode state. In the control
configuration of a thread, the command specifies how the thread’s computation
will continue, the lock state specifies which locks the thread currently holds, and
the mode state specifies the thread’s current assumptions about its environment
as well as the guarantees that the thread currently provides to its environment.

We use Com, LkSt , and MdSt to denote the set of all commands, the set of
all lock states, and the set of all mode states, respectively, i.e., CCnf = Com ×
LkSt ×MdSt . We leave Com under-specified and define LkSt and MdSt below.
In Section 2.5, we specialize Com for the syntax of a concrete programming
language and formalize the language’s semantics by a local transition system.

Formally, a lock state is a set of locks, i.e., LkSt = 2Lck . In a control config-
uration (c, lkst ,mdst) of a thread, the lock state lkst specifies which locks this
thread holds. Hence, we define the function locks by locks((c, lkst ,mdst)) = lkst .

We define mode states to be functions from modes to sets of variables, i.e.,
MdSt = Md → 2Var , where Md = {A-NR,A-NW,G-NR,G-NW} is the set of
modes. The modes A-NR (for no-read assumption) and A-NW (for no-write as-
sumption) represent assumptions, while the modes G-NR (for no-read guarantee)
and G-NW (for no-write guarantee) represent guarantees. If x ∈ mdst(A-NW)
then it is assumed that the thread’s environment does not write x . Similarly,
if y ∈ mdst(A-NR) then it is assumed that the thread’s environment does not

read the variable y . If x ∈ mdst(G-NW) and y ∈ mdst(G-NR), then the thread
guarantees to not write x and to not read y , respectively. We say a mode state
mdst is consistent with a mode state mdst ′ iff mdst(A-NW) ⊆ mdst ′(G-NW) and
mdst(A-NR) ⊆ mdst ′(G-NR), i.e., if all assumptions made by mdst are matched
by corresponding guarantees of mdst ′.

We say that a local configuration ((c, lkst ,mdst),mem) provides its no-write
guarantees iff for all x ∈ mdst(G-NW) and (ccnf ′,mem ′) ∈ LCnf the implication

((c, lkst ,mdst),mem)
α−→ (ccnf ′,mem ′) =⇒ mem ′(x) = mem(x) (1)

holds. Moreover, we say ((c, lkst ,mdst),mem) provides its no-read guarantees iff
for all y ∈ mdst(G-NR), v ∈ Val , and (ccnf ′,mem ′) ∈ LCnf the implication

((c, lkst ,mdst),mem)
α−→ (ccnf ′,mem ′) (2)

=⇒ ((c, lkst ,mdst),mem[y 7→ v])
α−→ (ccnf ′,mem ′)

∨ ((c, lkst ,mdst),mem[y 7→ v])
α−→ (ccnf ′,mem ′[y 7→ v])

holds. The two disjuncts on the right hand side of the implication cover the case
where the variable y is written and not written, respectively, in the step. Finally,
we say that a local configuration provides its guarantees if it provides both, its
no-write guarantees and its no-read guarantees.

We say that a global configuration 〈[ccnf 1, . . . , ccnf n],mem〉 with ccnf i =
(ci, lkst i,mdst i) for each i ∈ {1, . . . , n} justifies its assumptions iff mdstj is
consistent with mdstk for all j, k ∈ {1, . . . , n}, j 6= k. Intuitively, this means that
if one thread makes an assumption about a variable then all other threads must
provide the corresponding guarantee.

Modes and mode states were introduced in [10] as a basis for rely-guarantee-
style reasoning about information-flow security. The approach enables one to
verify the security of multi-threaded programs in a modular fashion, based on
security guarantees for each individual thread. More concretely, one statically
verifies that steps of each thread only cause flows of information that comply with
a given security policy. Rely-guarantee-style reasoning frees one from having to
reason about arbitrary environments, one only needs to consider environments
that satisfy the thread’s current assumptions. Such rely-guarantee-style reason-
ing is sound if at each step of a computation the assumptions of all threads are
justified and the guarantees of all threads are provided.

Definition 2. A global configuration gcnf ensures a locally sound use of modes
iff for each gcnf ′ ∈ gReach(gcnf), where gcnf ′ = 〈[ccnf ′1, . . . , ccnf ′n],mem ′〉, and
each i ∈ {1, . . . , n}, the local configuration (ccnf ′i,mem ′) provides its guarantees.

A global configuration gcnf ensures a globally sound use of modes iff each
gcnf ′ ∈ gReach(gcnf) justifies its assumptions.

A global configuration gcnf ensures a sound use of modes iff gcnf ensures
both, a locally sound use of modes and a globally sound use of modes.

Our semantics of modes is similar to the one in [10, 3]. One original extension
of rely-guarantee-style reasoning about information-flow security in this article
is that we cover dynamic thread creation and synchronization with locks, which
are two language features not supported by this prior work.

2.5 A Concrete Programming Language with Modes

We define an example programming language with annotations for acquiring
and releasing modes. The set of annotations is Ann = {acq(md , x), rel(md , x) |
md ∈ Md ∧ x ⊆ Var}. An annotation acq(md , x) acquires the mode md for all
variables in x , and an annotation rel(md , x) releases the mode md for all vari-
ables in x . To capture this formally, we define the function updMds : MdSt ×
Ann → MdSt by updMds(mdst , acq(md , x)) = mdst [md 7→ mdst(md) ∪ x] and
updMds(mdst , rel(md , x)) = mdst [md 7→ mdst(md) \ x], and lift it to lists
of annotations by updMds(mdst , []) = mdst and updMds(mdst , [a]++−→a) =
updMds(updMds(mdst , a),−→a).

We define the special mode state mdst⊥ by mdst⊥(A-NR) = mdst⊥(A-NW) =
∅ and mdst⊥(G-NR) = mdst⊥(G-NW) = Var . It is minimal in the sense that it
imposes no constraints on assumptions and guarantees of its environment.

We assume as given a set Exp of expressions, a function eval : Exp×Mem →
Val that returns the value to which an expression evaluates in a given memory,
and a function vars : Exp → 2Var that returns the set of all variables that appear
syntactically in an expression.

The set Comp of syntactically correct programs is defined by the grammar:

� := ε | @−→a
cp := skip | x :=e | if e then cp else cp fi | while e do cp od | cp; cp

| spawn(cp) | lock(l)�; cp; unlock(l)� | cp�

where −→a ∈ Ann∗, x ∈ Var , e ∈ Exp, and l ∈ Lck . The syntax ensures a
well-nested use of locks. The set Com of commands is defined by the grammar:

c := stop | lock(l)� | unlock(l)� | c; c | cp

We define that trm((c, lkst ,mdst)) holds iff c = stop. That is, the symbol stop
indicates that the computation of a thread has terminated.

The local transition system for our programming language is defined by the
calculus in Figure 2. For the rules sk, as, sq1, sq2, ift, iff, wht, and whf,
sp, the lock state as well as the mode state is irrelevant for the premises and
both remain unchanged. The rules lk and ulk realize acquiring and releasing
a lock, respectively. The rule an1 updates the mode state according to an an-
notation if the annotated command is reduced to stop. The rule an2 preserves
the annotation if the command is not reduced to stop.

Given a program cp, we say that cp is secure for lev iff (cp, ∅,mdst⊥) is secure
for lev , that cp ensures a locally sound use of modes iff 〈[(cp, ∅,mdst⊥)],mem〉
ensures a locally sound use of modes for all mem ∈ Mem, that cp ensures a
globally sound use of modes iff 〈[(cp, ∅,mdst⊥)],mem〉 ensures a globally sound
use of modes for all mem ∈ Mem, and that cp ensures a sound use of modes iff
〈[(cp, ∅,mdst⊥)],mem〉 ensures a sound use of modes for all mem ∈ Mem.

sk
(skip, lkst ,mdst ,mem)

ε−→ (stop, lkst ,mdst ,mem)

as
eval(e,mem) = v mem ′ = mem[x 7→ v]

(x :=e, lkst ,mdst ,mem)
ε−→ (stop, lkst ,mdst ,mem ′)

sq1
(c1, lkst ,mdst ,mem)

α−→ (c′1, lkst ′,mdst ′,mem ′) c′1 6= stop

(c1; c2, lkst ,mdst ,mem)
α−→ (c′1; c2, lkst ′,mdst ′,mem ′)

sq2
(c1, lkst ,mdst ,mem)

α−→ (stop, lkst ′,mdst ′,mem ′)

(c1; c2, lkst ,mdst ,mem)
α−→ (c2, lkst ′,mdst ′,mem ′)

sp
(spawn(c), lkst ,mdst ,mem)

↗(c,∅,mdst⊥)−−−−−−−−→ (stop, lkst ,mdst ,mem)

ift
eval(e,mem) = true

(if e then c else c′ fi, lkst ,mdst ,mem)
ε−→ (c, lkst ,mdst ,mem)

iff
eval(e,mem) = false

(if e then c else c′ fi, lkst ,mdst ,mem)
ε−→ (c′, lkst ,mdst ,mem)

wht
eval(e,mem) = true

(while e do c od, lkst ,mdst ,mem)
ε−→ (c; while e do c od, lkst ,mdst ,mem)

whf
eval(e,mem) = false

(while e do c od, lkst ,mdst ,mem)
ε−→ (stop, lkst ,mdst ,mem)

lk
lkst ∪̇ {l} = lkst ′

(lock(l), lkst ,mdst ,mem)
l−→ (stop, lkst ′,mdst ,mem)

ulk
lkst = lkst ′ ∪̇ {l}

(unlock(l), lkst ,mdst ,mem)
¬l−→ (stop, lkst ′,mdst ,mem)

an1
(c, lkst ,mdst ,mem)

α−→ (stop, lkst ′,mdst ′,mem ′) mdst ′′ = updMds(mdst ′,−→a)

(c@−→a , lkst ,mdst ,mem)
α−→ (stop, lkst ′,mdst ′′,mem ′)

an2
(c, lkst ,mdst ,mem)

α−→ (c′, lkst ′,mdst ′,mem ′) c′ 6= stop

(c@−→a , lkst ,mdst ,mem)
α−→ (c′@−→a , lkst ′,mdst ′,mem ′)

Fig. 2. Semantics of the programming language

3 A DPN-based Analysis for Sound Assumptions

We propose a two-step approach for ensuring a globally sound use of modes for
a given program cp. First, we construct a DPN that simulates cp in the sense of
Section 2.3. Second, we build an automaton that accepts all DPN configurations
that contain a pair of inconsistent mode states. By the connection between DPN
and program executions, cp uses modes globally sound, if no such configuration

is reachable in the DPN from a particular initial configuration. The techniques
from [9] then enable us to determine whether this is the case.

We construct a DPNMccnf for the control configuration ccnf =(cp, ∅,mdst⊥)
as follows: Starting with ccnf , we collect all reachable control configurations,
actions, and transitions using the rules from Figure 2, ignoring the memory con-
figurations. The resulting sets Pccnf , Accnf and ∆ccnf of control states, actions,
and transitions satisfy all requirements from Section 2.3. Due to the syntax of
programs locks are used well-nested in the DPN Mccnf and mode states are
preserved in its configurations.

For the second step, we first introduce a function that checks the mutual
consistency of two mode states and returns a summary mode state.

Definition 3. Let MdSt> = MdSt ∪{>}. The function ⊕ : MdSt>×MdSt> →
MdSt> is defined by mdst ⊕mdst ′ = mdst ′′ where

– mdst ′′(md) = mdst(md) ∪mdst ′(md) for md ∈ {A-NR,A-NW} and
mdst ′′(md) = mdst(md) ∩mdst ′(md) for md ∈ {G-NR,G-NW}
if mdst 6= >, mdst ′ 6= >, mdst is consistent with mdst ′, and

mdst ′ is consistent with mdst.

– mdst ′′ = > otherwise.

If the two parameter mode states are mutually consistent, the function ⊕ returns
a regular mode state that imposes the same constraints on concurrent threads
as the combination of the original mode states. That is, it makes all assumptions
that at least one of the mode states makes and provides only those guarantees
that both mode states provide. If one of the parameter mode states makes an
assumption that the other mode state does not match with a corresponding
guarantee, the function returns the special symbol >.

We are now ready to define the automaton that characterizes DPN configu-
rations containing inconsistent mode states using the function ⊕.

Definition 4. For a DPN Mccnf = (Pccnf , Γccnf ,Accnf , ∆ccnf) as described
above, we define Accnf = (MdSt>,Pccnf ∪ Γccnf , δ,mdst⊥, {>}) as the conflict
automaton, where δ = {(q, (c, lkst ,mdst), q⊕mdst) | q ∈ MdSt>, (c, lkst ,mdst) ∈
Pccnf } ∪ {(q,#, q) | q ∈ MdSt>}. We denote the language accepted by the au-
tomaton by L(Accnf).

The states of the automaton record the summary mode state of the partial
configuration already read. Thus the initial state is the minimal mode state and
transitions accepting a control state add the mode state of the process to the
summary using the ⊕ operation. Since we are interested in the configurations
with inconsistent mode states, > is the only accepting state.

DPN-reachability and globally sound use of modes are connected as follows:

Theorem 1. Let ccnf = (cp, ∅,mdst⊥). If L(Accnf) is not reachable from ccnf #
in DPN Mccnf , then cp ensures a globally sound use of modes.

isk
−→a = anno(x , ∅, x r, xw)

x ` ∅, ∅{skip}x r, xw : skip@−→a
ias

−→a = anno(vars(e) ∪ x , {x}, x r, xw)

x ` vars(e), {x}{x :=e}x r, xw : x :=e@−→a

ilo
−→a = anno(x , ∅, x r, xw)

x `∅, ∅{lock(l)}x r, xw : lock(l)@−→a
iul

−→a = anno(x , ∅, x r, xw)

x `∅, ∅{unlock(l)}x r, xw : unlock(l)@−→a

iif
x ∪ vars(e) ` ∅, ∅{skip; ci}x r, xw : c′i for all i ∈ {1, 2}

x ` vars(e), ∅{if e then c1 else c2 fi}x r, xw : if e then c′1 else c′2 fi

iwh
x ∪ vars(e) ` ∅, ∅{skip; c}vars(e), ∅ : c′ −→a = anno(x ∪ vars(e), ∅, x r, xw)

x ` vars(e), ∅{while e do c od}x r, xw : while e do c′ od@−→a

isq

x ` x ′r, x
′
w{c1}x ′′r , x ′′w : c′1

x ′ ` x ′′r , x
′′
w{c2}x r, xw : c′2

x ` x ′r, x
′
w{c1; c2}x r, xw : c′1; c′2

ian

−→a ′ = −→a �A
x ` x ′r, x

′
w{c}x r, xw : c′

x ` x ′r, x
′
w{c@−→a }x r, xw : c′@−→a ′

isp
∅ ` ∅, ∅{skip; c}∅, ∅ : c′ −→a = anno(x , ∅, x r, xw)

x ` ∅, ∅{spawn(c)}x r, xw : spawn(c′)@−→a

with anno(x1, x2, x3, x4)=[acq(G-NR, x1), acq(G-NW, x2), rel(G-NR, x3), rel(G-NW, x4)]

Fig. 3. Inference of guarantee annotations

4 An Inference for Sound Guarantees

We propose an inference to automatically annotate a command with guarantees.
Recall that the initial mode state provides all guarantees, and that mode states
are updated based on annotations after the annotated command terminates.
With this in mind, the intuition of our inference is that a command requests the
release of guarantees that it cannot provide from the preceding command and
vouches to re-acquire said guarantees. Hence, the inference propagates sets of
variables which may be read or written by a command backwards.

A judgment x ` x ′r, x
′
w{c}x r, xw : c′ with x , x r, x

′
r, xw, x

′
w ⊆ Var and c, c′ ∈

Com of the inference is derivable with the rules in Figure 3. The set x comprises
variables for which a conditional requests that a no-read guarantee shall be re-
acquired in the body of the conditional. The sets x ′r and x ′w comprise variables
for which c does not provide a no-read and no-write guarantee, respectively. The
sets x r and xw comprise variables for which a release of the respective guarantees
is requested. The resulting command c′ is annotated with guarantees.

All rules, except iif and ian, annotate a command to re-acquire guarantees
that this command cannot provide before releasing requested guarantees. The
rule iif requests that its branches re-acquire and release all guarantees. The
rule ian removes existing guarantee annotations to avoid conflicts with inferred
guarantees using a projection to assumption annotations The projection �A is
defined by [] �A= [], ([a]++−→a) �A= [a]++(−→a �A) if a ∈ {acq(md , x), rel(md , x) |
md ∈ {A-NR,A-NW} ∧ x ⊆ Var} and ([a]++−→a) �A= −→a �A otherwise.

Theorem 2. If ∅ ` ∅, ∅{skip; c′p}∅, ∅ : cp is derivable, then cp ensures a locally
sound use of modes.

Note that some rules add skip commands. These additional commands do
not influence which final memories are reachable. We do this as a lightweight
measure to support pre-annotations without further complicating our formalism.

5 A Type System for Information-flow Security

We extend the security type system from [10, 18]. To this end, we define a to-
tal, reflexive order v on Lev such that low v high. To support flow-sensitive
tracking of security levels for shared variables, we use partial level assignments,
i.e. partial functions from Var ⇀ Lev . For a given level assignment lev and a
given partial level assignment Λ, a lookup Λlev 〈x 〉 is defined by Λlev 〈x 〉 = Λ(x)
if x ∈ pre(Λ) and Λlev 〈x 〉 = lev(x) otherwise. Moreover, the partial type envi-
ronment Λ′ = Λ⊕lev a is defined by Λ′(x) = Λlev 〈x 〉 for all x ∈ pre(Λ′) and

pre(Λ′) =


pre(Λ) ∪ {x | x ∈ x ∧ lev(x) = low} if a = acq(A-NR, x)
pre(Λ) ∪ {x | x ∈ x ∧ lev(x) = high} if a = acq(A-NW, x)
pre(Λ) \ {x | x ∈ x ∧ lev(x) = low} if a = rel(A-NR, x)
pre(Λ) \ {x | x ∈ x ∧ lev(x) = high} if a = rel(A-NW, x)
pre(Λ) otherwise .

For low-variables, acquiring a no-read assumption enables floating of security
levels. This allows tracking when a low-variable possibly stores sensitive infor-
mation. For high-variables, acquiring a no-write assumption enables floating
of security levels. This allows tracking when a high-variable definitely stores
public information. Releasing the respective assumptions disables floating of se-
curity levels again. We lift the definition of ⊕lev to lists of annotations as follows
Λ⊕lev [] = Λ and Λ⊕lev ([a]++−→a) = (Λ⊕lev a)⊕lev

−→a .
The type system in Figure 4 allows to derive judgements of the form `lev

Λ{c}Λ′ : c′. If such a judgment is derivable and lev and Λ together approximate
where secrets are stored initially, then lev and Λ′ approximate where secrets
are stored after running c, provided concurrent threads behave according to
the assumptions. The command c′ is a low-slice of c, i.e. an abstraction of
c in which sub-commands that do not contribute to the behaviour observable
via low-variables are replaced by skip. The rule tth with judgment `lev c : c′

ensures that lev alone approximates where secrets are stored. If no such judgment
is derivable for a command c, then a secret might influence a low-variable in c.

The rule tan enables and disables flow-sensitivity for particular variables by
updating the pre-image of the partial level assignment, and ensures that a secret
written into a variable x with lev(x) = low must be overwritten before disabling
flow-sensitivity for x . The rules tfl and tfh track the floating security level of a
variable x by updating the level of x in the partial level assignment. The rule tih
permits branching on secrets. To avoid implicit information leaks due to such
branchings, tih requires that the low-slices of both branches are syntactically
identical. The rules tah, tfh, and tih perform the low-slicing.

tex
`lev,Λ e :

⊔
x∈vars(e) Λlev 〈x 〉

tah
lev(x) = high x /∈ pre(Λ)

`lev Λ{x :=e}Λ : skip

tsk
`lev Λ{skip}Λ : skip

tal
`lev,Λ e : low lev(x) = low x /∈ pre(Λ)

`lev Λ{x :=e}Λ : x :=e

tlo
`lev Λ{lock(l)}Λ : lock(l)

tfl
`lev,Λ e : low x ∈ pre(Λ)

`lev Λ{x :=e}Λ[x 7→ low] : x :=e

tul
`lev Λ{unlock(l)}Λ : unlock(l)

tfh
x ∈ pre(Λ)

`lev Λ{x :=e}Λ[x 7→ high] : skip

twl
Λ v Λ′ Λ′′ v Λ′ `lev,Λ′ e : low `lev Λ

′{c}Λ′′ : c′

`lev Λ{while e do c od}Λ′ : while e do c′ od

til
`lev,Λ e : low `lev Λ{c1}Λ′′ : c′1 `lev Λ{c2}Λ′′′ : c′2 Λ′ = Λ′′ t Λ′′′

`lev Λ{if e then c1 else c2 fi}Λ′ : if e then c′1 else c′2 fi

tih
`lev Λ{c1}Λ′′ : c′1 `lev Λ{c2}Λ′′′ : c′2 c′1 = c′2 Λ′ = Λ′′ t Λ′′′

`lev Λ{if e then c1 else c2 fi}Λ′ : skip; c′1

tsq

`lev Λ{c}Λ′′ : c′′

`lev Λ
′′{c′}Λ′ : c′′′

`lev Λ{c; c′}Λ′ : c′′; c′′′
tan

`lev Λ{c}Λ′ : c′ Λ′′ = (Λ′ ⊕lev
−→a)

∀x .Λ′lev 〈x 〉 v Λ′′lev 〈x 〉 −→a ′ = −→a �A-NR,A-NW

`lev Λ{c@−→a }Λ′′ : c′@−→a ′

tsp
`lev c : c′

`lev Λ{spawn(c)}Λ : spawn(c′)
tth

`lev Λ{c}Λ : c′ pre(Λ) = ∅
`lev c : c′

with Λ v Λ′ iff pre(Λ) = pre(Λ′) and Λ(x) v Λ′(x) for all x ∈ pre(Λ)

Fig. 4. Security type system

Theorem 3. If cp ensures a sound use of modes and `lev cp : c′ is derivable,
then cp is secure for lev.

Theorems 1, 2, and 3 establish the soundness result for our combined analysis:

Corollary 1. If ∅ ` ∅, ∅{skip; c′p}∅, ∅ : cp, and `lev cp : c′ are derivable and
L(Accnf) is not reachable from ccnf # in DPN Mccnf for ccnf = (cp, ∅,mdst⊥),
then cp is secure for lev.

6 Applying the Analysis

We illustrate how our type system gains precision from assumptions, while the
DPN-based analysis ensures soundness of the combined analysis with the ex-
ample program c1 = spawn(o2 :=o1 ; o1 :=o2); o1 :=s1 ; s1 :=s2 ; s2 :=o1 ; o1 :=0
and level assignment lev with lev(o1) = lev(o2) = low and lev(s1) = lev(s2) =
high. The program c1 may leak the value of s1 to an observer of o1 due to
concurrent execution of both threads.

Our security type system indeed rejects c1, because no typing rule is appli-
cable for o1 :=s1 : The rule tah cannot be applied due to lev(o1) 6= high, the
rule tal cannot be applied due to lev(s1) 6= low, and the rules tfl as well as
tfh cannot be applied due to o1 /∈ pre(Λ) (as the pre-image of the partial level
assignment is initially empty and there are no annotations in the program). Us-
ing the assumption A-NR to enable flow-sensitivity for variable o1 , o1 :=s1 can
be typed using tfh. To this end the program c1 can be annotated as follows:

spawn(o2 :=o1 ; o1 :=o2)@[acq(A-NR, {o1})];
o1 :=s1 ; s1 :=s2 ; s2 :=o1 ; o1 :=0@[rel(A-NR, {o1})]

However the program still contains the leak and the analysis detects this. The
guarantee inference transforms the command o2 :=o1 ; o1 :=o2 of the spawned
thread with the rules isp, isq, isk, and ias into the following command:

skip@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, {o1}), rel(G-NW, {o2})];
o2 :=o1 @[acq(G-NR, {o1}), acq(G-NW, {o2}), rel(G-NR, {o2}), rel(G-NW, {o1})];
o1 :=o2 @[acq(G-NR, {o2}), acq(G-NW, {o1}), rel(G-NR, ∅), rel(G-NW, ∅)] .

The annotation rel(G-NR, {o1}) in the first line makes explicit that the thread
cannot provide the guarantee to not read o1 during its next step, i.e. during the
step of o2 :=o1 in the second line. By spawning the new thread and executing
its annotated first skip step, we reach a configuration with two threads. We
have o1 /∈ mdst2(G-NR) for the mode state of the spawned thread due to the
annotation rel(G-NR, {o1}). Furthermore, we have o1 ∈ mdst1(A-NR) for the
mode state of the original thread due to the annotation acq(A-NR, {o1}). Hence
we have a reachable configuration that does not justify its assumptions. The
corresponding DPN configuration preserves the mode states and is thus accepted
by our conflict automaton that accepts DPN configurations with inconsistent
mode states. Since the DPN over-approximates reachablitiy of the semantics, the
reachability analysis from [9] detects that this DPN configuration is reachable,
i.e. it detects a possible violation of globally sound use of modes and, hence, the
program is rejected.

Adding synchronization via locks to ensure mutual exclusion of the regions
accessing variable o1 finally makes the program secure and no configuration with
inconsistent mode states is reachable in the semantics anymore. Since the DPN
models locking precisely, the DPN analysis also no longer detects reachability of
any violation of globally sound use of modes. The following version of c1 with
additional synchronization has no leak and is accepted by our analysis:

c2 =spawn(lock(l); o2 :=o1 ; o1 :=o2 ; unlock(l)); lock(l)@[acq(A-NR, {o1})];
o1 :=s1 ; s1 :=s2 ; s2 :=o1 ; o1 :=0; unlock(l)@[rel(A-NR, {o1})]

Theorem 4. Let lev be a domain assignment with lev(o1) = lev(o2) = low and
lev(s1) = lev(s2) = high. Then there are c′2, c

′′
2 such that ∅ ` ∅, ∅{skip; c2}∅, ∅ :

c′2 and `lev c′2 : c′′2 are derivable, and L(Accnf) is not reachable from ccnf # in
DPN Mccnf for ccnf = (c′2, ∅,mdst⊥). Hence, c′2 is secure for lev.

7 Related Work

Andrews and Reitman [1] were the first to propose a static information-flow
analysis based on flow rules, yet without a soundness proof wrt. a semantic
security property. In [17], Smith and Volpano proposed the first security type
system with a soundness proof against termination-sensitive noninterference.

The focus for most security type systems with support for synchronization,
e.g. [14, 19, 20], has been preventing information leaks via synchronization. To the
best of our knowledge, only the analyses in [11, 10, 18] can exploit synchroniza-
tion for their precision. In [11], barrier synchonization allows combining different
proof techniques in an analysis. In [10], Mantel, Sands, and Sudbrock introduced
the rely-guarantee-style reasoning and the first flow-sensitive security type sys-
tem for concurrent programs. The relationship of this article to [10] has already
been clarified in the introduction.

Beyond security type systems, model-checking, e.g. in [8, 13], as well as pro-
gram dependence graphs, e.g. in [6], have been used to verify information-flow
security for concurrent programs. These techniques promise very precise results,
but are not necessarily compositional. A compositional analysis reduces the con-
ceptual complexity of the verification, opens up the possibility to re-use analysis
results of components, and, thus, can contribute to the scalability of an anal-
ysis. Our type system and our guarantee inference are compositional, meaning
they can be applied to individual threads. Only our DPN-based analysis, which
verifies the assumptions exploited by the type system for the actual program
composed of multiple threads, is a whole-program analysis.

8 Conclusion

We automated a modular information-flow analysis for multi-threaded programs
with a novel combination of a security type system and a reachability analysis
based on DPNs. The combined analysis is sound wrt. termination-sensitive non-
interference. The security type system supports flow-sensitive tracking of secu-
rity levels for shared variables in the analysis of a given thread by exploiting
assumptions about accesses to said variables by other threads. Using a concep-
tual example, we illustrated how the modules of our analysis interact and how
synchronization with locks can contribute to the precision of our analysis.

Lifting the analysis to a realistic language with recursive procedure calls and
dynamically allocated data structures is an open task for future work. Finally,
we would like to implement our analysis and evaluate it in practice.

Acknowledgments. This work was funded by the DFG under the projects RSCP
(MA 3326/4-1/2/3) and IFC4MC (MU 1508/2-1/2/3) in the priority program RS3

(SPP 1496) and under project OpIAT (MU 1508/1-1/2).

References

1. Andrews, G., Reitman, R.: An axiomatic approach to information flow in programs.
ACM Transactions on Programming Languages and Systems 2(1), 56–76 (1980)

2. Arden, O., Chong, S., Liu, J., Myers, A.C., Nystrom, N., Vikram, K.,
Zdancewic, S., Zhang, D., Zheng, L.: Jif: Java information flow. Software release:
http://www.cs.cornell.edu/jif/ (July 2014)

3. Askarov, A., Chong, S., Mantel, H.: Hybrid monitors for concurrent noninterfer-
ence. In: 28th IEEE Computer Security Foundations Symposium (2015)

4. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: 13th European Symposium on Research in
Computer Security. pp. 333–348 (2008)

5. Broberg, N., van Delft, B., Sands, D.: Paragon for practical programming with
information-flow control. In: 11th Asian Symposium Programming Languages and
Systems. pp. 217–232 (2013)

6. Giffhorn, D., Snelting, G.: A new algorithm for low-deterministic security. Inter-
national Journal of Information Security pp. 1–25 (2014)

7. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International Jour-
nal of Information Security 8(6), 399–422 (Dec 2009)

8. Huisman, M., Blondeel, H.: Model-checking secure information flow for multi-
threaded programs. In: Joint Workshop on Theory of Security and Applications.
pp. 148–165 (2011)

9. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor Sets of Dynamic Push-
down Networks with Tree-Regular Constraints. In: 21st International Conference
on Computer Aided Verification. pp. 525–539 (2009)

10. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and Guarantees for Composi-
tional Noninterference. In: 24th IEEE Computer Security Foundations Symposium.
pp. 218–232 (2011)

11. Mantel, H., Sudbrock, H., Kraußer, T.: Combining different proof techniques for
verifying information flow security. In: 16th International Symposium on Logic-
Based Program Synthesis and Transformation. pp. 94–110 (2006)

12. Myers, A.C.: Jflow: Practical mostly-static information flow control. In: 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. pp.
228–241 (1999)

13. Ngo, T., Stoelinga, M., Huisman, M.: Confidentiality for probabilistic multi-
threaded programs and its verification. In: 5th International Symposium on Engi-
neering Secure Software and Systems. pp. 107–122 (2013)

14. Sabelfeld, A.: The impact of synchronisation on secure information flow in con-
current programs. In: 4th International Andrei Ershov Memorial Conference. pp.
225–239 (2001)

15. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

16. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: 13th IEEE Computer Security Foundations Workshop. pp. 200–214 (2000)

17. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 355–364 (1998)

18. Sudbrock, H.: Compositional and Scheduler-Independent Information Flow Secu-
rity. Ph.D. thesis, Technische Universität Darmstadt, Germany (2013)

19. Terauchi, T.: A type system for observational determinism. In: 21st IEEE Com-
puter Security Foundations Symposium. pp. 287–300 (2008)

20. Vaughan, J., Millstein, T.: Secure information flow for concurrent programs under
total store order. In: 25th IEEE Computer Security Foundations Symposium. pp.
19–29 (2012)

9 Proofs for the Theorems in the Paper

9.1 Soundness of the DPN-based Analysis

In this subsection, we provide a proof for our soundness theorem for the DPN analysis
(Theorem 1). The following table lists the dependencies between lemmas and theorems
in this subsection.

Lemma/Theorem Depends on lemmas/theorems

Lemma 1 none

Lemma 2 Lemma 1

Theorem 1 Lemmas 1, 2

In a first step, we proof that the semantics of a DPNMccnf for a control configura-
tion ccnf ∈ CCnf simulates the semantics of the any global configuration 〈[ccnf],mem〉.
For this purpose, we define a simulation relation that relates global configurations to
potential DPN configurations.

Definition 5. The function toDPN : GCnf → (CCnf {#})+ is defined by

toDPN (〈[ccnf 1, . . . , ccnf n],mem〉) = ccnf 1# . . . ccnf n#.

Lemma 1. For ccnf ∈ CCnf , let Mccnf = (Pccnf , Γccnf ,Accnf ,∆ccnf) be a DPN as
described above. If toDPN (gcnf) = s, s ∈ DCnf , and gcnf � gcnf ′, then exists s′ with
toDPN (gcnf ′) = s′, s′ ∈ DCnf and s _ s′.

Proof. Let gcnf = 〈[ccnf 1, . . . , ccnf n],mem〉. From toDPN (gcnf) = s and s ∈ DCnf
we have ccnf i ∈ Pccnf for all 1 ≤ i ≤ n.

We consider the following two cases for gcnf � gcnf ′:

1. If gcnf ′ = 〈[ccnf 1, . . . , ccnf ′i, . . . , ccnf n],mem ′〉 for some 1 ≤ i ≤ n and there

exists α /∈ {↗ccnf | ccnf ∈ CCnf } with (ccnf i,mem)
α−→ (ccnf ′i,mem ′). Then also

ccnf ′i ∈ Pccnf , α ∈ Accnf and (ccnf i#, α, ccnf ′i#) ∈ ∆ccnf .
From this we get ccnf 1# . . . ccnf ′i# . . . ccnf n# ∈ DCnf
and ccnf 1# . . . ccnf i# . . . ccnf n# _ ccnf 1# . . . ccnf ′i# . . . ccnf n#, since for α = l
we have l /∈ locks([ccnf 1, . . . , ccnf n]) and thus also
l /∈ locks(ccnf 1# . . . ccnf n#).
Furthermore toDPN (gcnf ′) = ccnf 1# . . . ccnf ′i# . . . ccnf n# and thus the hypoth-
esis.

2. If gcnf ′ = 〈[ccnf 1, . . . , ccnf s, ccnf ′i, . . . , ccnf n],mem ′〉 for some 1 ≤ i ≤ n and there

exists α =↗ccnf s with (ccnf i,mem)
α−→ (ccnf ′i,mem ′). Then also ccnf s, ccnf ′i ∈

Pccnf , ↗ccnf s,#∈ Accnf and (ccnf i#,↗ccnf s,#, ccnf ′i#) ∈ ∆ccnf .
From this we get ccnf 1# . . . ccnf s#ccnf ′i# . . . ccnf n# ∈ DCnf and
ccnf 1# . . . ccnf i# . . . ccnf n# _ ccnf 1# . . . ccnf s#ccnf ′i# . . . ccnf n#. Furthermore
toDPN (gcnf ′) = ccnf 1# . . . ccnf s#ccnf ′i# . . . ccnf n# and thus the hypothesis.

ut

Corollary 2. For all gcnf ∈ gReach(〈ccnf ,mem〉) there exists s ∈ DCnf , with toDPN (gcnf) =
s and ccnf # _∗ s.

Proof. This follows by simple induction from Lemma 1 and the fact that ccnf ∈ Pccnf ,
ccnf # ∈ DCnf ccnf and toDPN (〈[ccnf],mem〉) = ccnf #.

In the second step, we show that for all reachable configurations that violates sound
use of modes there is a DPN configuration that is accepted by the automaton Accnf .

Lemma 2. Let command c ∈ Com, gcnf ∈ GCnf , and
−−−→
mdst ∈ MdSt∗ be arbitrary.

If gcnf ∈ gReach(〈(c, ∅,mdst⊥),mem〉),
−−−→
mdst is the list of mode states in gcnf , and

the list of mode states
−−−→
mdst violates at least one of the conditions

– ∀x , i, j.i 6= j ∧ x ∈
−−−→
mdst [i](A-NR) =⇒ x ∈

−−−→
mdst [j](G-NR), or

– ∀x , i, j.i 6= j ∧ x ∈
−−−→
mdst [i](A-NW) =⇒ x ∈

−−−→
mdst [j](G-NW),

then toDPN (gcnf) ∈ L(AMc).

Proof. Let command c ∈ Com, gcnf ∈ GCnf , and
−−−→
mdst ∈ MdSt∗ be arbitrary such

that gcnf ∈ gReach(〈(c, ∅,mdst⊥),mem〉),
−−−→
mdst is the list of mode states in gcnf , and

−−−→
mdst violates at least one of the following conditions

C1: ∀x , i, j.i 6= j ∧ x ∈
−−−→
mdst [i](A-NR) =⇒ x ∈

−−−→
mdst [j](G-NR), or

C2: ∀x , i, j.i 6= j ∧ x ∈
−−−→
mdst [i](A-NW) =⇒ x ∈

−−−→
mdst [j](G-NW).

From the fact that
−−−→
mdst violates one of the two conditions C1 and C2, we know

that there is a smallest index n such that there is an index m with m < n and the pair
of indices contributes to the violation, i.e. at least one of the following four conditions
holds:

C3: x ∈
−−−→
mdst [m](A-NR) ∧ x /∈

−−−→
mdst [n](G-NR) for some x ∈ Var , or

C4: x /∈
−−−→
mdst [m](G-NR) ∧ x ∈

−−−→
mdst [n](A-NR) for some x ∈ Var , or

C5: x ∈
−−−→
mdst [m](A-NW) ∧ x /∈

−−−→
mdst [n](G-NW) for some x ∈ Var , or

C6: x /∈
−−−→
mdst [m](G-NW) ∧ x ∈

−−−→
mdst [n](A-NW) for some x ∈ Var .

From the fact that n is the smallest index such that there is a mode state at a
smaller index that violates one of the four conditions, we get from the definition of ⊕
(Definition 3) that there is a mode state mdst ′ ∈ MdSt with mdst ′ = ⊕n−1

i=0

−−−→
mdst [i],

−−−→
mdst [m](A-NR) ⊆ mdst ′(A-NR), mdst ′(G-NR) ⊆

−−−→
mdst [m](G-NR),

−−−→
mdst [m](A-NR) ⊆

mdst ′(A-NW), and mdst ′(G-NW) ⊆
−−−→
mdst [m](G-NW). Hence, one of the following con-

ditions holds:

C7: x ∈ mdst ′(A-NR) ∧ x /∈
−−−→
mdst [n](G-NR) for some x ∈ Var , or

C8: x /∈ mdst ′(G-NR) ∧ x ∈
−−−→
mdst [n](A-NR) for some x ∈ Var , or

C9: x ∈ mdst ′(A-NW) ∧ x /∈
−−−→
mdst [n](G-NW) for some x ∈ Var , or

C10: x /∈ mdst ′(G-NW) ∧ x ∈
−−−→
mdst [n](A-NW) for some x ∈ Var .

Thus, we get from definition of ⊕ that mdst ′ ⊕
−−−→
mdst [n] = > and, in consequence,

⊕len(
−−→
mdst)−1

i=0

−−−→
mdst [i] = > where len(

−−−→
mdst) denotes the length of the list of mode states.

By Corollary 2 we obtain s ∈ DCnf with toDPN (gcnf) = s. From the fact that
−−−→
mdst is the list of mode states in gcnf , we get by the definition of toDPN that

−−−→
mdst is

also the list of mode states of s. Since s ∈ DCnf , all symbols in s are from the correct

alphabet for A(c,∅,mdst⊥) and from the fact that ⊕len(
−−→
mdst)−1

i=0

−−−→
mdst [i] = > and

−−−→
mdst is

the list of mode states in s, we get by the definition of the automaton A(c,∅,mdst⊥)

(Definition 4) that the word s results in the state > in the automaton A(c,∅,mdst⊥).
Since > is an accepting state, we have s ∈ L(A(c,∅,mdst⊥)). ut

Finally, we can proof the soundness of the DPN analysis (Theorem 1).

Proof. We prove Theorem 1 by contradiction. Let c ∈ Com be arbitrary such that
(c, ∅,mdst⊥)# /∈ pre∗(L(A(c,∅,mdst⊥))) and c does not use modes globally sound.

From the fact that c does not use modes globally sound, we get by the definition
of globally sound use of modes and the definition of gReach that there is a global
configuration gcnf ∈ GCnf such that gcnf ∈ gReach(〈(c, ∅,mdst⊥),mem〉) and the list

of mode states
−−−→
mdst in the global configuration violates at least one of the following

conditions:

C1: ∀x , i, j.i 6= j ∧ x ∈
−−−→
mdst [i](A-NR) =⇒ x ∈

−−−→
mdst [j](G-NR), or

C2: ∀x , i, j.i 6= j ∧ x ∈
−−−→
mdst [i](A-NW) =⇒ x ∈

−−−→
mdst [j](G-NW).

From Lemma 2 and Corollary 2 we obtain s ∈ DCnf with toDPN (gcnf) = s,
s ∈ L(A(c,∅,mdst⊥)) and (c, ∅,mdst⊥)# _∗ s. This contradicts our initial assumption
that (c, ∅,mdst⊥)# /∈ pre∗(L(A(c,∅,mdst⊥))). ut

9.2 Soundness of the Guarantee Inference

Lemma/Theorem Depends on lemmas/theorems

Lemma 3 none

Lemma 4 none

Lemma 5 Lemma 4

Theorem 2 Lemma 3, Lemma 5

In the first step, we show that a command does not read and write the variables
for which a mode state provides the noread and nowrite guarantees, if the mode state
does not provide the guarantees for the inferred sets of variables.

Lemma 3. If x ` x ′r, x
′
w{c′}x r, xw : c, x ′r∩mdst(G-NR) = ∅, and x ′w∩mdst(G-NW) =

∅ then c provides its guarantees.

Proof. We prove this lemma by structural induction on x ` x ′r, x
′
w{c}x r, xw : c′. We

distinguish cases based on the last rule to derive this judgment.

Case (isk): In this case, we have c = skip@−→a . From c = skip@−→a , we get by the rules
an1, sk that c does not read x holds for all x ∈ Var and c does not write x holds
for all x ∈ Var . Thus, c provides its guarantees.

Case (ias): In this case, we have c = x ′:=e@−→a . From the rule ias we get that
x ′r = vars(e) and x ′w = {x ′}. From c = x ′:=e@−→a , x ′r ∩ mdst(G-NR) = ∅,
x ′w ∩ mdst(G-NW) = ∅, x ′r = vars(e), and x ′w = {x ′}, we get by the rules an1
and as that c′ does not read x holds for all x ∈ mdst(G-NR) and c′ does not write
x holds for all x ∈ mdst(G-NW). Thus, c provides its guarantees.

Case (ilo): In this case, we have c = lock(l)@−→a . From c = lock(l)@−→a , we get by
the rules an1, and lk, that c does not read x for all x ∈ Var and c does not write
x for all x ∈ Var . Thus, c provides its guarantees.

Case (iul): In this case, we have c = unlock(l)@−→a . From c = unlock(l)@−→a , we get
by the rules an1, and ulk, that c does not read x for all x ∈ Var and c does not
write x for all x ∈ Var . Thus, c provides its guarantees.

Case (isp): In this case, we have c = spawn(cs)@
−→a for some c′s ∈ Com and some

−→a ∈ Ann∗. From c = spawn(cs)@
−→a , we get by the rules an1, and sp, that c does

not read x for all x ∈ Var and c does not write x for all x ∈ Var . Thus, c provides
its guarantees.

Case (isq): In this case, we have c = c1; c2. From the rule isq, we get that x `
x ′r, x

′
w{co,1}x ′′r , x ′′w : c1.

From x ` x ′r, x
′
w{co,1}x ′′r , x ′′w : c1 and x ′r∩mdst(G-NR) = ∅ and x ′w∩mdst(G-NW) =

∅, we get by the induction hypothesis that c1 provides its guarantess.

From c = c1; c2 we get by the rules sq1 and sq2 and the fact that c1 provides its
guarantees that c provides its guarantees.

Case (iif): In this case, we have c = if e then c1 else c2 fi. From the rule iif we get
that vars(e) = x ′r.

From c = if e then c′1 else c′2 fi, vars(e) = x ′r, and x ′r ∩mdst(G-NR) = ∅, we get
by the rules ift, and iff, that c does not read x holds for all x ∈ mdst(G-NR) and
c does not write x holds for all x ∈ mdst(G-NW). Thus, c provides its guarantees.

Case (iwh): In this case, we have c = while e do c1 od@−→a . From the rule iwh,
we get that vars(e) = x ′r. From c = while e do c1 od@−→a , vars(e) = x ′r, and
x ′r ∩mdst(G-NR) = ∅, we get by the rules an2, wht, an1, and whf, that c does
not read x holds for all x ∈ mdst(G-NR) and c does not write x holds for all
x ∈ mdst(G-NW). Thus, c provides its guarantees.

Case (ian): In this case, we have c = c1@−→a with −→a = −→a �A. From the rule ian, we
get that x ` x ′r, x

′
w{co,1}x r, xw : c1 is derivable.

From x ` x ′r, x
′
w{co,1}x r, xw : c1 and x ′r∩mdst(G-NR) = ∅ and x ′w∩mdst(G-NW) =

∅, we get by the induction hypothesis that c1 provides its guarantees.

From c = c1@−→a we get by the rules an1 and an2 and the fact that c1 provides
its guarantees. that c provides its guarantees.

Next we show that a command that results from an execution step of a command
obtained with our guarantee inference again can be obtained with our guarantee infer-
ence and if the mode state and variable sets in the inference fit to each other before
the step, they also fit to each other after the step.

Lemma 4. If x ` x ′r, x
′
w{co}x r, xw : c is derivable, mdst(G-NR)∩x ′r = ∅ and mdst(G-NW)∩

x ′w = ∅ hold, and 〈c, lkst ,mdst ,mem〉 α−→ 〈c′, lkst ′,mdst ′,mem〉 is derivable, then either
the following three conditions are satisfied:

1. c′ = stop and

2. mdst ′(G-NR) ∩ x r = ∅ and

3. mdst ′(G-NW) ∩ xw = ∅

or the following three conditions are satisfied:

1. x ′ ` x ′′r , x
′′
w{c′o}x r, xw : c′ and

2. mdst ′(G-NR) ∩ x ′′r = ∅ and

3. mdst ′(G-NW) ∩ x ′′w = ∅.

Moreover, if α =↗〈c′′,∅,mdst⊥〉, then ∅ ` ∅, ∅{c′′o }∅, ∅ : c′′.

Proof. We prove this lemma by structural induction on x ` x ′r, x
′
w{co}x r, xw : c. We

distinguish cases for the last rule used in the derivation of this judgment.

Case (isk): In this case, we have c = skip@−→a with
−→a = [acq(G-NR, x), acq(G-NW, ∅), rel(G-NR, x r), rel(G-NW, xw)]. From c = skip@−→a
and
−→a = [acq(G-NR, x), acq(G-NW, ∅), rel(G-NR, x r), rel(G-NW, xw)], we get by the rules
an1, sk, and the definition of updMds that c′ = stop, α = ε, mdst ′(G-NR) =
(mdst(G-NR)∪x)\x r, and mdst ′(G-NW) = mdst(G-NW)\xw. Hence, mdst ′(G-NR)∩
x r = ∅ and mdst ′(G-NW) ∩ xw = ∅.
Since c′ = stop and α = ε we can conclude this case.

Case (ias): In this case, we have c = x :=e@−→a with
−→a = [acq(G-NR, vars(e) ∪ x), acq(G-NW, {x}), rel(G-NR, x r), rel(G-NW, xw)].

From c = x :=e@−→a and
−→a = [acq(G-NR, vars(e)∪x), acq(G-NW, {x}), rel(G-NR, x r), rel(G-NW, xw)] we get
by the rules an1, as, and the definition of updMds that c′ = stop, α = ε,
mdst ′(G-NR) = (mdst(G-NR)∪vars(e)∪x)\x r, and mdst ′(G-NW) = (mdst(G-NW)∪
{x}) \ xw. Hence, mdst ′(G-NR) ∩ x r = ∅, and mdst ′(G-NW) ∩ xw = ∅.
Since c′ = stop and α = ε we can conclude this case.

Case (ilo): In this case, we have c = lock(l)@−→a with
−→a = [acq(G-NR, x), acq(G-NW, ∅), rel(G-NR, x r), rel(G-NW, xw)].

From c = lock(l)@−→a and
−→a = [acq(G-NR, x), acq(G-NW, ∅), rel(G-NR, x r), rel(G-NW, xw)], we get by the rules
an1, lk, and the definition of updMds that c′ = stop, α = l , mdst ′(G-NR) =
(mdst(G-NR)∪x)\x r, and mdst ′(G-NW) = mdst(G-NW)\xw. Hence, mdst ′(G-NR)∩
x r = ∅, and mdst ′(G-NW) ∩ xw = ∅.
Since c′ = stop and α = l we can conclude this case.

Case (iul): In this case, we have c = unlock(l)@−→a with
−→a = [acq(G-NR, x), acq(G-NW, ∅), rel(G-NR, x r), rel(G-NW, xw)].

From c = unlock(l)@−→a and
−→a = [acq(G-NR, x), acq(G-NW, ∅), rel(G-NR, x r), rel(G-NW, xw)], we get by the rules
an1, ulk, and the definition of updMds that c′ = stop, α = ¬l , mdst ′(G-NR) =
(mdst(G-NR)∪x)\x r, and mdst ′(G-NW) = mdst(G-NW)\xw. Hence, mdst ′(G-NR)∩
x r = ∅, and mdst ′(G-NW) ∩ xw = ∅.
Since c′ = stop and α = ¬l we can conclude this case.

Case (isp): In this case, we have c = spawn(cs)@
−→a with

−→a = [acq(G-NR, x), acq(G-NW, ∅), rel(G-NR, x r), rel(G-NW, xw)] and
∅ ` ∅, ∅{co,s}∅, ∅ : cs.

From c = spawn(cs)@
−→a and

−→a = [acq(G-NR, x), acq(G-NW, ∅), rel(G-NR, x r), rel(G-NW, xw)], we get by the rules
an1, sp, and the definition of updMds that c′ = stop,
α =↗〈cs,∅,mdst⊥〉, mdst ′(G-NR) = (mdst(G-NR) ∪ x) \ x r, and mdst ′(G-NW) =
mdst(G-NW) \ xw. Hence, mdst ′(G-NR) ∩ x r = ∅, and mdst ′(G-NW) ∩ xw = ∅.
Since c′ = stop and mdst ′(G-NR) ∩ x r = ∅ and mdst ′(G-NW) ∩ xw = ∅ and
∅ ` ∅, ∅{co,s}∅, ∅ : cs we can conclude this case.

Case (isq): In this case, we have c = c1; c2.

From c = c1; c2 and x ` x ′r, x
′
w{co}x r, xw : c, we get by the rule isq that x `

x ′r, x
′
w{co1}x ′′r , x ′′w : c1 and

x ′ ` x ′′r , x
′′
w{co2}x r, xw : c2.

From c = c1; c2 we get that the last rule in the derivation of

〈c, lkst ,mdst ,mem〉 α−→ 〈c′, lkst ′,mdst ′,mem ′〉 must be either sq1 or sq2. We dis-
tinguish these two cases.

Case (sq1): From the assumption of this case, we get by the rule sq1 that c′ =

c′1; c2 and 〈c1, lkst ,mdst ,mem〉 α−→ 〈c′1, lkst ′,mdst ′,mem ′〉 and c′1 6= stop.
From x ` x ′r, x

′
w{co1}x ′′r , x ′′w : c1 and

〈c1, lkst ,mdst ,mem〉 α−→ 〈c′1, lkst ′,mdst ′,mem ′〉 and mdst(G-NR) ∩ x ′r = ∅ and
mdst(G-NW)∩x ′w = ∅ and c′1 6= stop, we get by the induciton hypothesis that
1. x ′′ ` x ′′′r , x

′′′
w {c′o1}x ′′r , x ′′w : c′1 and

2. mdst ′(G-NR) ∩ x ′′r = ∅ and
3. mdst ′(G-NW) ∩ x ′′w = ∅.

Moreover we get from the induction hypothesis, that if α =↗〈c′′,∅,mdst⊥〉, then
∅ ` ∅, ∅{c′′o }∅, ∅ : c′′.
From c′ = c′1; c2 and
x ′′ ` x ′′′r , x

′′′
w {c′o1}x ′′r , x ′′w : c′1 and x ′ ` x ′′r , x

′′
w{co2}x r, xw : c2 we get by the

rule isq that x ′′ ` x ′′′r , x
′′′
w {c′o}x ′′r , x ′′w : c′.

Case (sq2): From the assumption of this case, we get by the rule sq2 that c′ = c2

and 〈c1, lkst ,mdst ,mem〉 α−→ 〈c′1, lkst ′,mdst ′,mem ′〉 and c′1 = stop.
From x ` x ′r, x

′
w{co1}x ′′r , x ′′w : c1 and

〈c1, lkst ,mdst ,mem〉 α−→ 〈c′1, lkst ′,mdst ′,mem ′〉 and mdst(G-NR) ∩ x ′r = ∅ and
mdst(G-NW)∩x ′w = ∅ and c′1 = stop, we get by the induction hypothesis that
1. mdst ′(G-NR) ∩ x ′′r = ∅ and
2. mdst ′(G-NW) ∩ x ′′w = ∅.

Moreover we get from the induction hypothesis, that if α =↗〈c′′,∅,mdst⊥〉, then
∅ ` ∅, ∅{c′′o }∅, ∅ : c′′.
Since, x ′ ` x ′′r , x

′′
w{co2}x r, xw : c2 and mdst ′(G-NR)∩x ′′r = ∅ and mdst ′(G-NW)∩

x ′′w = ∅ we can conclude this case.

Case (iif): In this case, we have c = if e then c1 else c2 fi and x ∪ vars(e) `
∅, ∅{skip; co,1}x r, xw : c1 and x ∪ vars(e) ` ∅, ∅{skip; co,2}x r, xw : c2.
From c = if e then c1 else c2 fi we get by the rules ift and iff that c′ = c1 or
c′ = c2 and, furthermore, mdst ′ = mdst and α = ε or α = ε
Since x ∪ vars(e) ` ∅, ∅{skip; co,1}x r, xw : c1
and x ∪ vars(e) ` ∅, ∅{skip; co,2}x r, xw : c2 and mdst ′(G-NR) ∩ ∅ = ∅, and
mdst ′(G-NW) ∩ ∅ = ∅, we can conclude this case.

Case (iwh): In this case, we have c = while e do c1 od@−→a and
−→a = [acq(G-NR, x ∪ vars(e)), acq(G-NW, ∅), rel(G-NR, x r), rel(G-NW, xw)] and x ∪
vars(e) ` ∅, ∅{skip; co,1}vars(e), ∅ : c1 and x ` vars(e), ∅{co}x r, xw : while e do c1 od@−→a .
From c = while e do c1 od we get by the rules whf, wht, an1 and an2 that
either c′ = stop and α = ε or c′ = c1; while e do c1 od@−→a and α = ε. We
distinguish the two cases.

Case (c′ = stop): From the assumption of this case we get by the rules whf and
an1 and the definition of updMds that
mdst ′(G-NR) = (mdst(G-NR)∪x∪vars(e))\x r and mdst ′(G-NW) = mdst(G-NW)\
xw. Hence, mdst ′(G-NR) ∩ x r = ∅ and mdst ′(G-NW) ∩ xw = ∅.
Since c′ = stop and mdst ′(G-NR) ∩ x r = ∅ and mdst ′(G-NW) ∩ xw = ∅, we
can conclude this case.

Case (c′ = c1; while e do c1 od@−→a): From the assumption of this case we get by
the rules wht and an2 that mdst ′ = mdst .
From x ∪ vars(e) ` ∅, ∅{skip; co,1}vars(e), ∅ : c1 and
x ` vars(e), ∅{co}x r, xw : while e do c1 od@−→a we get by the rule isq that
x ∪ vars(e) ` ∅, ∅{co}x r, xw : c1; while e do c1 od@−→a .
Since mdst(G-NR)∩∅ = ∅ and mdst(G-NW)∩∅ = ∅, we can conclude this case.

Case (ian): In this case, we have c = c1@−→a and −→a = −→a ′ �A and
x ` x ′r, x

′
w{co,1}x r, xw : c1.

From c = c1@−→a we get by the rule in the derivation of

〈c, lkst ,mdst ,mem〉 α−→ 〈c′, lkst ′,mdst ′,mem ′〉 must be either an1 or an2. We dis-
tinguish these two cases.

Case (an1): In this case, we get from the rule an1 that

〈c1, lkst ,mdst ,mem〉 α−→ 〈stop, lkst ′,mdst ′′,mem ′〉 and c′ = stop and mdst ′ =
updMds(mdst ′′,−→a).

From 〈c1, lkst ,mdst ,mem〉 α−→ 〈stop, lkst ′,mdst ′′,mem ′〉 and
x ` x ′r, x

′
w{co,1}x r, xw : c1 and mdst(G-NR)∩ x ′r = ∅ and mdst(G-NW)∩ x ′w =

∅ and c′ = stop and x ` x ′r, x
′
w{co,1}x r, xw : c1 we get by the induction

hypothesis that mdst ′′(G-NR) ∩ x r = ∅ and mdst ′′(G-NW) ∩ xw = ∅.
From mdst ′ = updMds(mdst ′′,−→a) and −→a = −→a ′ �A we get by definition
of updMds and �A that mdst ′′(G-NR) = mdst ′(G-NR) and mdst ′′(G-NW) =
mdst ′(G-NW). Hence, due to mdst ′′(G-NR)∩x r = ∅ and mdst ′′(G-NW)∩xw = ∅
we have mdst ′(G-NR) ∩ x r = ∅ and mdst ′(G-NW) ∩ xw = ∅.
Moreover we get from the induction hypothesis, that if α =↗〈c′′,∅,mdst⊥〉, then
∅ ` ∅, ∅{c′′o }∅, ∅ : c′′.

Since c′ = stop and mdst ′(G-NR)∩ x r = ∅ and mdst ′(G-NW)∩ xw = ∅ we can
conclude this case.

Case (an2): In this case, we get from the rule an2 that

〈c1, lkst ,mdst ,mem〉 α−→ 〈c′1, lkst ′,mdst ′,mem ′〉 and c′1 6= stop and c′ = c′1@−→a .

From 〈c1, lkst ,mdst ,mem〉 α−→ 〈c′1, lkst ′,mdst ′,mem ′〉 and
x ` x ′r, x

′
w{co,1}x r, xw : c1 and mdst(G-NR)∩ x ′r = ∅ and mdst(G-NW)∩ x ′w =

∅ and c′ 6= stop and x ` x ′r, x
′
w{co,1}x r, xw : c1 we get by the induction

hypothesis that x ′ ` x ′′r , x
′′
w{c′o,1}x r, xw : c′1 and mdst ′(G-NR) ∩ x ′′r = ∅ and

mdst ′(G-NW) ∩ x ′′w = ∅.
Moreover we get from the induction hypothesis, that if α =↗〈c′′,∅,mdst⊥〉, then
∅ ` ∅, ∅{c′′o }∅, ∅ : c′′.

From x ` x ′′r , x
′′
w{c′o,1}x r, xw : c′1 and−→a = −→a ′ �A we get that x ` x ′′r , x

′′
w{c′o,1@−→a ′}x r, xw :

c′1@−→a .

Since x ` x ′′r , x
′′
w{c′o,1@−→a ′}x r, xw : c′1@−→a and mdst ′(G-NR) ∩ x ′′r = ∅ and

mdst ′(G-NW) ∩ x ′′w = ∅, we can conclude this case.

ut

Lemma 5. Let gcnf = 〈[(c1, lkst1,mdst1), . . . , (cn, lkstn,mdstn)],mem〉 be a global
configuration such that for all i we have either ci = stop or the following three condi-
tions are satisfied:

1. x i ` x ′r,i, x
′
w,i{co,i}x r,i, xw,i : ci, and

2. mdst i(G-NR) ∩ x ′r,i = ∅, and

3. mdst i(G-NW) ∩ x ′w,i = ∅.

If gcnf � 〈[(c′1, lkst ′1,mdst ′1), . . . , (c′m, lkst ′m,mdst ′m)],mem ′〉, then for all i we have
either c′i = stop or the following three conditions are satisfied:

1. x ′i ` x ′′′r,i, x
′′′
w,i{c′o,i}x ′′r,i, x ′′w,i : c′i, and

2. mdst ′i(G-NR) ∩ x ′′′r,i = ∅, and

3. mdst ′i(G-NW) ∩ x ′′′w,i = ∅.

Proof. From the definition of the global transition system we know that either m = n
or m = n+ 1 and there are j, j′ with j ≤ n and j′ = n− j such that

– c′i = ci, lkst ′i = lkst i, mdst ′i = mdst i for all i < j, and
– c′m−i = cn−i, lkst ′m−i = lkstn−i, mdst ′m−i = mdstn−i for all i < j′.

For these control configurations, we get that the conclusion of the lemma holds directly
from the assumptions of the lemma.

From the definition of the global transition system we further get that

〈cj , lkstj ,mdstj ,mem〉 α−→ 〈c′m−j′ , lkst ′m−j′ ,mdst ′m−j′ ,mem ′〉.
From x j ` x ′r,j , x

′
w,j{co,j}x r,j , xw,j : cj and

〈cj , lkstj ,mdstj ,mem〉 α−→ 〈c′m−j′ , lkst ′m−j′ ,mdst ′m−j′ ,mem ′〉 and mdstj(G-NR)∩x ′r,j =
∅ and mdstj(G-NW) ∩ x ′w,j = ∅ we get by Lemma 4 that either c′m−j′ = stop or the
following three conditions hold:

1. xm−j′ ` x ′r,m−j′ , x
′
w,m−j′{c′o,m−j′}x r,m−j′ , xw,m−j′ : c′m−j′ and

2. mdstj(G-NR) ∩ x ′r,j = ∅ and
3. mdstj(G-NW) ∩ x ′w,j = ∅.

It remains to show that c′j and mdst ′j satisfy the conditions from the lemma. If
m = n, the cases for j and m− j′ coincide. Hence assume m = n+1. Then we get from
the definition of the global transition system that α =↗〈cs,∅,mdst⊥〉 and c′j = cs and
mdstj = mdst⊥. In this case, we additionally get from Lemma 4 that ∅ ` ∅, ∅{c′o,j}∅, ∅ :
c′j . Since mdst⊥(G-NR)∩ ∅ = ∅ and mdst⊥(G-NW)∩ ∅ = ∅, we can conclude the proof.

The following is the proof sketch for Theorem 2.

Proof. Let c, c′ ∈ Com be arbitrary such that ∅ ` ∅, ∅{skip; c′}∅, ∅ : c is derivable.
We must proof that 〈[c, ∅,mdst⊥],mem〉 ensures a locally sound use of modes

for all mem ∈ Mem. According to the definition of “ensures a locally sound use
of modes” this means we must show that (c′′, lkst ′′,mdst ′′) provides its guarantees

holds for all (c′′, lkst ′′,mdst ′′) ∈ CCnf ,
−−→
ccnf ,

−−→
ccnf ′ ∈ CCnf ∗, and mem ′′ ∈ Mem with

〈
−−→
ccnf ++[(c′′, lkst ′′,mdst ′′)]++

−−→
ccnf ′,mem ′′〉∈gReach(〈[c, ∅,mdst⊥],mem〉).

Let (c′′, lkst ′′,mdst ′′) ∈ CCnf ,
−−→
ccnf ,

−−→
ccnf ′ ∈ CCnf ∗, and mem ′′ ∈ Mem be arbi-

trary such that

〈
−−→
ccnf ++[(c′′, lkst ′′,mdst ′′)]++

−−→
ccnf ′,mem ′′〉 ∈ gReach(〈[c, ∅,mdst],mem〉).

From 〈
−−→
ccnf ++[(c′′, lkst ′′,mdst ′′)]++

−−→
ccnf ′,mem ′′〉 ∈ gReach(〈[c, ∅,mdst],mem〉), we

get by definition of global reachability that

〈[c, ∅,mdst⊥],mem〉 �∗ 〈
−−→
ccnf ++[(c′′, lkst ′′,mdst ′′)]++

−−→
ccnf ′,mem ′′〉. Hence, we have

either
〈
−−→
ccnf ++[(c′′, lkst ′′,mdst ′′)]++

−−→
ccnf ′,mem ′′〉 = 〈[c, ∅,mdst⊥],mem〉 or there is k such

that 〈[c, ∅,mdst⊥],mem〉�k 〈
−−→
ccnf ++[(c′′, lkst ′′,mdst ′′)]++

−−→
ccnf ′,mem ′′〉.

Assume 〈
−−→
ccnf ++[(c′′, lkst ′′,mdst ′′)]++

−−→
ccnf ′,mem ′′〉 = 〈[c, ∅,mdst⊥],mem〉. Hence,

c′′ = c and mdst ′′ = mdst⊥. From ∅, ∅{skip; c′}∅, ∅ : c we get by the definition of the
inference Figure 3 that c = skip@−→a ; cB for some −→a and cB . Hence, we get from the
rules sq1, an1, and sk, that c does not read or write any variable and, consequently,
c′′ also does not read or write any variable. Thus, ((c, ∅,mdst⊥),mem) provides its
guarantees.

Now assume there is a k such that
〈[c, ∅,mdst⊥],mem〉�k 〈

−−→
ccnf ++[(c′′, lkst ′′,mdst ′′)]++

−−→
ccnf ′,mem ′′〉. Since ∅ ` ∅, ∅{skip; c′}∅, ∅ :

c and mdst⊥(G-NR) ∩ ∅ = ∅ and mdst⊥(G-NW) ∩ ∅ = ∅ and the fact that Lemma 5
re-establishes its prerequisits for the resulting configuation after a global transition, we
can apply Lemma 5 k times inductively to obtain that x ` x ′r, x

′
w{c′′′}x r, xw : c′′ and

mdst ′′(G-NR) ∩ x ′r = ∅ and mdst ′′(G-NW) ∩ x ′w = ∅.
From x ` x ′r, x

′
w{c′′′}x r, xw : c′′ and mdst ′′(G-NR) ∩ x ′r = ∅ and mdst ′′(G-NW) ∩

x ′w = ∅ we get by Lemma 3 that ((c′′, lkst ′′,mdst ′′),mem ′′) provides its guarantees. ut

9.3 Soundness of the Security Type System

In this subsection, we introduce a bisimulation-based security property and prove the
soundness of our security type system with respect to this bisimulation-based security
property. The following table lists the dependencies between lemmas and theorems in
this subsection.

Lemma/Theorem Depends on lemmas/theorems

Lemma 6 none

Lemma 7 none

Lemma 8 Lemma 7

Lemma 9 none

Lemma 10 Lemma 6, Lemma 7, Lemma 8, Lemma 9

Lemma 11 Lemma 7, Lemma 8, Lemma 10

Lemma 12 none

Lemma 13 Lemma 11, Lemma 12

Lemma 14 Lemma 6

Theorem 5 Lemma 13, Lemma 14

We first introduce a type system that has subtyping for partial level assignments
integrated and has a typing rule for stop. We show that this type system is sound and
in a second step that a program that can be typed with the type system form the body
of the article can be typed with this type system.

Now we show that whenever a command that is accepted by our type system is
also accepted by our type system after lowering some security levels in the initial
partial type environment and raising some security levels in the resulting partial type
environment.

Lemma 6. If
lev Λ1{c}Λ′1 : cs is derivable, then
lev Λ2{c}Λ′2 : cs is derivable for
all Λ2 and Λ′2 with Λ2 v Λ1 and Λ′1 v Λ′2.

Proof. We proof this lemma by induction on
lev Λ1{c}Λ′1 : cs. We distinguish the
cases for the last rule used in the derivation of this judgment.

Case (tsk2): We get by the rule tsk2 that c = skip and cs = skip and Λ1 v Λ′1. Let
Λ2 and Λ′2 be arbitrary with Λ2 v Λ1 and Λ′1 v Λ′2.
From Λ2 v Λ1, Λ1 v Λ′1, and Λ′1 v Λ′2, we get that Λ′2 v Λ′2
Hence, we get from the rule tsk2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (tal2): We get by the rule tal2 that c = x :=e and cs = x :=e and
lev,Λ1 e : low
and lev(x) = low and x /∈ pre(Λ1) and Λ1 v Λ′1. Let Λ2 and Λ′2 be arbitrary with
Λ2 v Λ1 and Λ′1 v Λ′2.
From Λ2 v Λ1 and
lev,Λ1 e : low we get that
lev,Λ2 e : low.
From Λ2 v Λ1, Λ1 v Λ′1, and Λ′1 v Λ′2, we get that Λ′2 v Λ′2.
Hence, we get from the rule tal2 that
lev Λ2{c}Λ′2 : cs is derivable.

tst

lev Λ{stop}Λ : stop

tah2
lev(x) = high x /∈ pre(Λ) Λ v Λ′

lev Λ{x :=e}Λ′ : skip

tsk2
Λ v Λ′

lev Λ{skip}Λ′ : skip
tal2

`lev,Λ e : low lev(x) = low x /∈ pre(Λ) Λ v Λ′

lev Λ{x :=e}Λ′ : x :=e

tlo2
Λ v Λ′

lev Λ{lock(l)}Λ′ : lock(l)
tfl2

`lev,Λ e : low x ∈ pre(Λ) Λ[x 7→ low] v Λ′

lev Λ{x :=e}Λ′ : x :=e

tul2
Λ v Λ′

lev Λ{unlock(l)}Λ′ : unlock(l)
tfh2

x ∈ pre(Λ) Λ[x 7→ high] v Λ′

lev Λ{x :=e}Λ′ : skip

twl2
Λ v Λ′′ `lev,Λ′′ e : low
lev Λ

′′{c}Λ′′ : c′ Λ′′ v Λ′

lev Λ{while e do c od}Λ′ : while e do c′ od

til2
`lev,Λ e : low
lev Λ{c1}Λ′ : c′1
lev Λ{c2}Λ′ : c′2

lev Λ{if e then c1 else c2 fi}Λ′ : if e then c′1 else c′2 fi

tih2

lev Λ{c1}Λ′ : c′1
lev Λ{c2}Λ′ : c′2 c′1 = c′2

lev Λ{if e then c1 else c2 fi}Λ′ : skip; c′1

tsq2

lev Λ{c}Λ′′ : c′′

lev Λ
′′{c′}Λ′ : c′′′

lev Λ{c; c′}Λ′ : c′′; c′′′
tan2

lev Λ{c}Λ′ : c′ Λ′′ = (Λ′ ⊕lev
−→a)

∀x .Λ′lev 〈x 〉 v Λ′′lev 〈x 〉 −→a ′ = −→a �A-NR,A-NW

lev Λ{c@−→a }Λ′′ : c′@−→a ′

tsp2

lev c : c′ Λ v Λ′

lev Λ{spawn(c)}Λ′ : spawn(c′)
tth2

lev Λ{c}Λ : c′ pre(Λ) = ∅

lev c : c′

with Λ v Λ′ iff pre(Λ) = pre(Λ′) and Λ(x) v Λ′(x) for all x ∈ pre(Λ)

Fig. 5. Security type system for proofs

Case (tah2): We get by the rule tah2 that c = x :=e and cs = skip and lev(x) = high
and x /∈ pre(Λ1) and Λ1 v Λ′1. Let Λ2 and Λ′2 be arbitrary with Λ2 v Λ1 and
Λ′1 v Λ′2.

From Λ2 v Λ1, Λ1 v Λ′1, and Λ′1 v Λ′2, we get that Λ′2 v Λ′2.

Hence, we get from the rule tah2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (tfl2): We get by the rule tfl2 that c = x :=e and cs = x :=e and
lev,Λ1 e : low
and x ∈ pre(Λ1) and Λ1[x 7→ low] v Λ′1. Let Λ2 and Λ′2 be arbitrary with Λ2 v Λ1

and Λ′1 v Λ′2.

From Λ2 v Λ1 and
lev,Λ1 e : low we get that
lev,Λ2 e : low.

From Λ2 v Λ1 we get that Λ2[x 7→ low] v Λ1[x 7→ low]. From Λ2[x 7→ low] v
Λ1[x 7→ low], Λ1[x 7→ low] v Λ′1, and Λ′1 v Λ′2 we get that Λ2[x 7→ low] v Λ′2.

Hence, we get from the rule tfl2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (tfh2): We get by the rule tfh2 that c = x :=e and cs = skip and x ∈ pre(Λ1)
and Λ1[x 7→ high] v Λ′1. Let Λ2 and Λ′2 be arbitrary with Λ2 v Λ1 and Λ′1 v Λ′2.

From Λ2 v Λ1 we get that Λ2[x 7→ high] v Λ1[x 7→ high]. From Λ2[x 7→ high] v
Λ1[x 7→ high], Λ1[x 7→ high] v Λ′1, and Λ′1 v Λ′2, we get that Λ2[x 7→ high] v Λ′2.

Hence, we get from the rule tfh2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (tlo2): We get by the rule tlo2 that c = lock(l) and cs = lock(l) and Λ1 v Λ′1.
Let Λ2 and Λ′2 be arbitrary with Λ2 v Λ1 and Λ′1 v Λ′2.

From Λ2 v Λ1, Λ1 v Λ′1, and Λ′1 v Λ′2, we get that Λ′2 v Λ′2
Hence, we get from the rule tlo2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (tul2): We get by the rule tul2 that c = unlock(l) and cs = unlock(l) and
Λ1 v Λ′1. Let Λ2 and Λ′2 be arbitrary with Λ2 v Λ1 and Λ′1 v Λ′2.

From Λ2 v Λ1, Λ1 v Λ′1, and Λ′1 v Λ′2, we get that Λ′2 v Λ′2
Hence, we get from the rule tul2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (tsp2): We get by the rule tsp2 that c = spawn(c1) and cs = spawn(cs1) and

lev c1 : cs1 and Λ1 v Λ′1. Let Λ2 and Λ′2 be arbitrary with Λ2 v Λ1 and Λ′1 v Λ′2.

From Λ2 v Λ1, Λ1 v Λ′1, and Λ′1 v Λ′2, we get that Λ′2 v Λ′2
Hence, we get from the rule tsp2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (tih2): We get by the rule tih2 that c = if e then c1 else c2 fi and cs = skip; cs1
and
lev Λ1{c1}Λ′1 : cs1 and
lev Λ1{c2}Λ′1 : cs2 and cs1 = cs2. Let Λ2 and Λ′2 be
arbitrary with Λ2 v Λ1 and Λ′1 v Λ′2.

From
lev Λ1{c1}Λ′1 : cs1 and
lev Λ1{c2}Λ′1 : cs2 we get by the induction hypoth-
esis that
lev Λ2{c1}Λ′2 : cs1 and
lev Λ2{c2}Λ′2 : cs2.

Hence, we get from the rule tih2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (til2): We get by the rule til2 that c = if e then c1 else c2 fi and cs =
if e then cs1 else cs2 fi and
lev Λ1{c1}Λ′1 : cs1 and
lev Λ1{c2}Λ′2 : cs2 and

lev,Λ1 e : low. Let Λ2 and Λ′2 be arbitrary with Λ2 v Λ1 and Λ′1 v Λ′2.

From
lev Λ1{c1}Λ′1 : cs1 and
lev Λ1{c2}Λ′2 : cs2 we get by the induction hypoth-
esis that
lev Λ2{c1}Λ′2 : cs1 and
lev Λ2{c2}Λ′2 : cs2.

From
lev,Λ1 e : low and Λ2 v Λ1 we get that
lev,Λ2 e : low

Hence, we get from the rule til2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (twl2): We get by the rule twl2 that c = while e do c1 od and cs =
while e do cs1 od and
lev Λ′′1{c1}Λ′′1 : cs1 and
lev,Λ′′1

e : low and Λ1 v Λ′′1
and Λ′′1 v Λ′1. Let Λ2 and Λ′2 be arbitrary with Λ2 v Λ1 and Λ′1 v Λ′2.

From Λ1 v Λ′′1 and Λ2 v Λ1 we get that Λ2 v Λ′′1 .

From Λ′′1 v Λ′1 and Λ′1 v Λ′2 we get that Λ′′1 v Λ′2.

Hence, we get from the rule twl2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (tsq2): We get by the rule tsq2 that c = c1; c2 and cs = cs1; cs2 and
lev

Λ1{c1}Λ′′1 : cs1 and
lev Λ
′′
1{c2}Λ′1 : cs2. Let Λ2 and Λ′2 be arbitrary with Λ2 v Λ1

and Λ′1 v Λ′2.

From Λ2 v Λ1 and
lev Λ1{c1}Λ′′1 : cs1 we get by the induction hypothesis that

lev Λ2{c1}Λ′′1 : cs1. From Λ′1 v Λ′2 and
lev Λ′′1{c2}Λ′1 : cs2. we get by the
induction hypothesis that
lev Λ

′′
1{c2}Λ′2 : cs2.

Hence, we get from the rule tsq2 that
lev Λ2{c}Λ′2 : cs is derivable.

Case (tan2): We get by the rule tan2 that c = c1@−→a and cs = cs1@−→a �A-NR,A-NW and

lev Λ1{c1}Λ′′1 : cs1 and Λ′1 = Λ′′1 ⊕lev

−→a and ∀x .Λ′′1 lev 〈x 〉 v Λ′1lev 〈x 〉. Let Λ2 and
Λ′2 be arbitrary with Λ2 v Λ1 and Λ′1 v Λ′2.

From c = c1@−→a we get that that last rule in any derivation of
lev Λ2{c}Λ′2 : cs
must be tan2. We now must show that there is Λ′′2 such that
lev Λ2{c1}Λ′′2 : cs1,
Λ′2 = Λ′′2 ⊕lev

−→a and ∀x .Λ′′2 lev 〈x 〉 v Λ′2lev 〈x 〉.
From Λ′1 v Λ′2 and ∀x .Λ′′1 lev 〈x 〉 v Λ′1lev 〈x 〉 we get that ∀x .Λ′′1 lev 〈x 〉 v Λ′2lev 〈x 〉.
From Λ2 v Λ1 and
lev Λ1{c1}Λ′′1 : cs1 we get by the induction hypothesis that
lev

Λ2{c1}Λ′′2 : cs1 is derivable for all Λ′′2 with Λ′′1 v Λ′′2 . Since, ∀x .Λ′′1 lev 〈x 〉 v Λ′2lev 〈x 〉
holds, this judgment is also derivable for Λ′′2 with Λ′2(x) = Λ′′2 lev 〈x 〉 for all x ∈
pre(Λ′2) and Λ′′1 (x) = Λ′′2 (x) for all x ∈ pre(Λ′′2) \ pre(Λ′2). From Λ′2(x) = Λ′′2 lev 〈x 〉

for all x ∈ pre(Λ′2), pre(Λ′′1) = pre(Λ′′2), pre(Λ′1) = pre(Λ′2), and Λ′1 = Λ′′1 ⊕lev
−→a ,

we get that Λ′2 = Λ′′2 ⊕lev
−→a .

From Λ′2(x) = Λ′′2 lev 〈x 〉 for all x ∈ pre(Λ′2) and Λ′′1 (x) = Λ′′2 (x) for all x ∈ pre(Λ′′2)\
pre(Λ′2) and ∀x .Λ′′1 lev 〈x 〉 v Λ′2lev 〈x 〉 we get that ∀x .Λ′′2 lev 〈x 〉 v Λ′2lev 〈x 〉.
Hence, we get from the rule tan2 that
lev Λ2{c}Λ′2 : cs is derivable.

ut

We now define, when a partial type environment is compatible with a domain
assignment and a mode state as follows.

Definition 6. A partial type environment Λ : Var ⇀ Lev, a mode state mdst ∈ MdSt,
and a domain assignment lev are compatible, if and only if

pre(Λ) =

{
x ∈ Var

∣∣∣∣ (lev(x) = low ∧ x ∈ mdst(A-NR))
∨(lev(x) = high ∧ x ∈ mdst(A-NW))

}
We denote the set of mode states that is compatible with lev and Λ by comp(lev , Λ).

Intuitively, a partial type environment is compatible with a domain assignment and
a mode state, if it only tracks flow-sensitive levels for low variables for which a no-read
assumption is made, and for high variables for which a no-write assumption is made.

We further define a notion of memory equivalence that relates exactly those mem-
orys that refer to equal values for all variables that currently have the security level
low as follows.

Definition 7. Two memories mem,mem ′ ∈ Mem are low-equal wrt. a partial type
environment Λ and a domain assignment lev (denoted by: mem =lev,Λ

low mem ′), if and
only if the following condition holds:

– Λlev 〈x 〉 = low =⇒ mem(x) = mem ′(x) for all x ∈ Var.

We now show that whenever the low slice of a command is a skip, then the
memories before and after the execution step of the command are low-equal with
respect to the partial type environment after the step and the domain assignment, and
the command terminates in one step.

Lemma 7. If
lev Λ{c}Λ′ : skip is derivable, then

〈c, lkst ,mdst ,mem〉 α−→ 〈stop, lkst ,mdst ,mem ′〉

is derivable with mem =lev,Λ′

low mem ′ and Λ v Λ′ holds.

Proof. The last rule in the derivation of
lev Λ{c}Λ′ : skip must be either tsk2, tah2,
or tfh2

We distinguish these three cases.

Case (tsk2): We get by the rule tsk2 that c = skip and Λ v Λ′ holds.
From c = skip we get by the rule sk that

〈c, lkst ,mdst ,mem〉 α−→ 〈stop, lkst ,mdst ,mem ′〉

is derivable with mem ′ = mem.
From mem ′ = mem we get that mem =lev,Λ′

low mem ′.

Case (tah2): We get by the rule tah2 that c = x :=e and x /∈ pre(Λ) and lev(x) =
high and Λ v Λ′ holds.

From c = x :=e we get by the rule sk that

〈c, lkst ,mdst ,mem〉 α−→ 〈stop, lkst ,mdst ,mem ′〉

is derivable with mem ′ = mem[x 7→ v] for some v ∈ Val .

From Λ v Λ′ and x /∈ pre(Λ) we get that x /∈ pre(Λ′).

From x /∈ pre(Λ′) and lev(x) = high we get mem =lev,Λ′

low mem[x 7→ v]. Hence,

mem =lev,Λ′

low mem ′.

Case (tfh2): We get by the rule tfh2 that c = x :=e and x ∈ pre(Λ) and Λ[x 7→
high] v Λ′ holds.

From c = x :=e we get by the rule sk that

〈c, lkst ,mdst ,mem〉 α−→ 〈stop, lkst ,mdst ,mem ′〉

is derivable with mem ′ = mem[x 7→ v] for some v ∈ Val .

From Λ[x 7→ high] v Λ′ and Lev = {low,high} and low v high and high v
high we get that Λ v Λ′.
From Λ[x 7→ high] v Λ′ and Lev = {low,high} and high 6v low we get that

Λ′(x) = high. From Λ′(x) = high we get that mem =lev,Λ′

low mem[x 7→ v]. Hence,

mem =lev,Λ′

low mem ′.

ut

We now show that, whenever two commands have the same low-slice, and partial
type environments in the beginning with identical pre-images, then the resulting partial
type environments have the same pre-image.

Lemma 8. If pre(Λ1) = pre(Λ2),
lev Λ1{c1}Λ′1 : cs and
lev Λ2{c2}Λ′2 : cs, then
pre(Λ′1) = pre(Λ′2).

Proof. We proof this lemma by structural induction on the judgment
lev Λ1{c1}Λ′1 :
cs. We make a case distinction on the last rule in the derivation of
lev Λ1{c1}Λ2 : cs.

Case (tsk2): We get by the rule tsk2 that cs = skip.

From cs = skip and
lev Λ1{c1}Λ′1 : cs and
lev Λ2{c2}Λ′2 : cs we get by Lemma 7
that Λ1 v Λ′1 and Λ2 v Λ′2. From Λ1 v Λ′1 and Λ2 v Λ′2 we get that pre(Λ1) =
pre(Λ′1) and pre(Λ2) = pre(Λ′2).

From pre(Λ1) = pre(Λ2) and pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2) we get
that pre(Λ′1) = pre(Λ′2).

Case (tal2): We get by the rule tal2 that cs = x :=e and x /∈ pre(Λ1) and lev(x) =
low and Λ1 v Λ′1
From x /∈ pre(Λ1) and pre(Λ1) = pre(Λ2) we get that x /∈ pre(Λ2). From cs = x :=e
and x /∈ pre(Λ2) and lev(x) = low we get that the last rule in the derivation of

lev Λ2{c2}Λ′2 : cs must be tal2. From this rule we get Λ2 v Λ′2.

From Λ1 v Λ′1 and Λ2 v Λ′2 we get that pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2).

From pre(Λ1) = pre(Λ2) and pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2) we get
that pre(Λ′1) = pre(Λ′2).

Case (tfl2): We get by the rule tfl2 that cs = x :=e and x ∈ pre(Λ1) and Λ1[x 7→
low] v Λ′1.

From x ∈ pre(Λ1) and pre(Λ1) = pre(Λ2) we get that x ∈ pre(Λ2). From cs = x :=e
and x ∈ pre(Λ2) we get that the last rule in the derivation of
lev Λ2{c2}Λ′2 : cs
must be tfl2. From this rule we get Λ2[x 7→ low] v Λ′2.

From Λ1[x 7→ low] v Λ′1 and Λ2[x 7→ low] v Λ′2 we get that pre(Λ1[x 7→ low]) =
pre(Λ′1) and pre(Λ2[x 7→ low]) = pre(Λ′2).

From pre(Λ1) = pre(Λ2) and pre(Λ1[x 7→ low]) = pre(Λ′1) and pre(Λ2[x 7→
low]) = pre(Λ′2) we get that pre(Λ′1) = pre(Λ′2).

Case (tah2): We get by the rule tsk2 that cs = skip.

From cs = skip and
lev Λ1{c1}Λ′1 : cs and
lev Λ2{c2}Λ′2 : cs we get by Lemma 7
that Λ1 v Λ′1 and Λ2 v Λ′2. From Λ1 v Λ′1 and Λ2 v Λ′2 we get that pre(Λ1) =
pre(Λ′1) and pre(Λ2) = pre(Λ′2).

From pre(Λ1) = pre(Λ2) and pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2) we get
that pre(Λ′1) = pre(Λ′2).

Case (tfh2): We get by the rule tsk2 that cs = skip.

From cs = skip and
lev Λ1{c1}Λ′1 : cs and
lev Λ2{c2}Λ′2 : cs we get by Lemma 7
that Λ1 v Λ′1 and Λ2 v Λ′2. From Λ1 v Λ′1 and Λ2 v Λ′2 we get that pre(Λ1) =
pre(Λ′1) and pre(Λ2) = pre(Λ′2).

From pre(Λ1) = pre(Λ2) and pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2) we get
that pre(Λ′1) = pre(Λ′2).

Case (tlo2): We get by the rule tlo2 that cs = lock(l) and Λ1 v Λ′1
From cs = lock(l) we get that the last rule in the derivation of
lev Λ2{c2}Λ′2 : cs
must be tlo2. From this rule we get Λ2 v Λ′2.

From Λ1 v Λ′1 and Λ2 v Λ′2 we get that pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2).

From pre(Λ1) = pre(Λ2) and pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2) we get
that pre(Λ′1) = pre(Λ′2).

Case (tul2): We get by the rule tlo2 that cs = unlock(l) and Λ1 v Λ′1
From cs = unlock(l) we get that the last rule in the derivation of
lev Λ2{c2}Λ′2 :
cs must be tul2. From this rule we get Λ2 v Λ′2.

From Λ1 v Λ′1 and Λ2 v Λ′2 we get that pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2).

From pre(Λ1) = pre(Λ2) and pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2) we get
that pre(Λ′1) = pre(Λ′2).

Case (tsp2): We get by the rule tsp2 that cs = spawn(csA) and Λ1 v Λ′1
From cs = spawn(csA) we get that the last rule in the derivation of
lev Λ2{c2}Λ′2 :
cs must be tsp2. From this rule we get Λ2 v Λ′2.

From Λ1 v Λ′1 and Λ2 v Λ′2 we get that pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2).

From pre(Λ1) = pre(Λ2) and pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2) we get
that pre(Λ′1) = pre(Λ′2).

Case (tsq2): We get by the rule tsq2 that c1 = cA; cB and cs = csA; csB and
lev

Λ1{cA}Λ′′1 : csA and
lev Λ
′′
1{cB}Λ′1 : csB .

From cs = csA; csB we get that the last rule in the derivation of
lev Λ2{c2}Λ′2 : cs
must be either tsq2 or tih2. We distinguish these two cases.

Case (tsq2): In this case, we get from the rule tsq2 that c2 = cC ; cD and
lev

Λ2{cC}Λ′′2 : csA and
lev Λ
′′
2{cD}Λ′2 : csB .

From pre(Λ1) = pre(Λ2) and
lev Λ1{cA}Λ′′1 : csA and
lev Λ2{cC}Λ′′2 : csA
we get by the induction hypothesis that pre(Λ′′1) = pre(Λ′′2). From pre(Λ′′1) =
pre(Λ′′2) and
lev Λ

′′
1{cB}Λ′1 : csB and and
lev Λ

′′
2{cD}Λ′2 : csB we get by the

induction hypothesis that pre(Λ′1) = pre(Λ′2).

Case (tih2): In this case, we get from the rule tih2 that c2 = if e then cC else cD fi
and
lev Λ2{cC}Λ′2 : csB and
lev Λ2{cD}Λ′2 : csB and csA = skip.

From csA = skip and
lev Λ1{cA}Λ′′1 : csA we get by Lemma 7 that Λ1 v Λ′′1 .
From Λ1 v Λ′′1 we get that pre(Λ1) = pre(Λ′′1).

From pre(Λ1) = pre(Λ′′1) and pre(Λ1) = pre(Λ2) and
lev Λ′′1{cB}Λ′1 : csB
and
lev Λ2{cC}Λ′2 : csB we get by the induction hypothesis that pre(Λ′1) =
pre(Λ′2).

Case (til2): We get by the rule til2 that c1 = if e then cA else cB fi and cs =
if e then csA else csB fi and
lev Λ1{cA}Λ′1 : csA.

From cs = if e then csA else csB fi we get that the last rule in the derivation of
lev

Λ2{c2}Λ′2 : cs must be til2. From this rule we get that c2 = if e then cC else cD fi
and
lev Λ2{cC}Λ′2 : csA.

From pre(Λ1) = pre(Λ2) and
lev Λ1{cA}Λ′1 : csA and
lev Λ2{cC}Λ′2 : csA we get
by the induction hypothesis that pre(Λ′1) = pre(Λ′2).

Case (tih2): We get by the rule tih2 that c1 = if e then cA else cB fi and cs =
skip; csA and
lev Λ1{cA}Λ′1 : csA.

From cs = skip; csA we get that the last rule in the derivation of
lev Λ2{c2}Λ′2 : cs
must be either tih2 or tsq2. We distinguish these two cases.

Case (tih2): In this case, we get by the rule tih2 that c2 = if e then cC else cD fi
and
lev Λ2{cC}Λ′2 : csA.

From pre(Λ1) = pre(Λ2) and
lev Λ1{cA}Λ′1 : csA and
lev Λ2{cC}Λ′2 : csA
we get by the induction hypothesis that pre(Λ′1) = pre(Λ′2).

Case (tsq2): In this case, we get by the rule tsq2 that c2 = cC ; cD and
lev

Λ2{cC}Λ′′2 : skip and
lev Λ
′′
2{cD}Λ′2 : csA.

From
lev Λ2{cC}Λ′′2 : skip we get that Λ2 v Λ′′2 . From Λ2 v Λ′′2 we get
that pre(Λ2) = pre(Λ′′2). From pre(Λ2) = pre(Λ′′2) and pre(Λ1) = pre(Λ2)
and
lev Λ1{cA}Λ′1 : csA and
lev Λ′′2{cD}Λ′2 : csA we get by the induction
hypothesis that pre(Λ′1) = pre(Λ′2).

Case (twl2): We get by the rule twl2 that cs = while e do csA od and Λ1 v Λ′′1
and Λ′′1 v Λ′1. From Λ1 v Λ′′1 and Λ′′1 v Λ′1 we get that pre(Λ1) = pre(Λ′1).

From cs = while e do csA od we get that the last rule in the derivation of

lev Λ2{c2}Λ′2 : cs must be twl2. From this rule we get Λ2 v Λ′′2 and Λ′′2 v Λ′2.
From Λ2 v Λ′′2 and Λ′′2 v Λ′2 we get that pre(Λ2) = pre(Λ′2).

From pre(Λ1) = pre(Λ2) and pre(Λ1) = pre(Λ′1) and pre(Λ2) = pre(Λ′2) we get
that pre(Λ′1) = pre(Λ′2).

Case (tan2): We get by the rule tan2 that c1 = cA@−→a A and cs = csA@−→a A �A-NR,A-NW

and
lev Λ1{cA}Λ′′1 : csA and Λ′1 = Λ′′1 ⊕lev
−→a A.

From cs = csA@−→a A �A-NR,A-NW we get that the last rule in the derivation of
lev

Λ2{c2}Λ′2 : cs must be tan2. From this rule we get that c2 = cB@−→a B and
lev

Λ2{cB}Λ′′2 : csA and Λ′2 = Λ′′2 ⊕lev
−→a B and −→a A �A-NR,A-NW= −→a B �A-NR,A-NW.

From pre(Λ1) = pre(Λ2) and
lev Λ1{cA}Λ′′1 : csA and
lev Λ2{cB}Λ′′2 : csA we get
by the induction hypothesis that pre(Λ′′1) = pre(Λ′′2).

From pre(Λ′′1) = pre(Λ′′2) and −→a A �A-NR,A-NW= −→a B �A-NR,A-NW and Λ′1 = Λ′′1 ⊕lev
−→a A

and Λ′2 = Λ′′2 ⊕lev
−→a B we get by the definition of ⊕lev that pre(Λ′1) = pre(Λ′2).

ut

We define the least upper bound of two partial type environments by a point-wise
least upper bound of all variables in the pre-image of the partial type environments.

Definition 8. The least upper bound Λ of two partial type environments Λ′ and Λ′′

with pre(Λ′) = pre(Λ′′) (denoted by: Λ = Λ′ t Λ′′) is defined by pre(Λ) = pre(Λ′) and
Λ(x) = Λ′(x) t Λ′′(x) for all x ∈ pre(Λ).

We show that whenever a command has skip as low-slice and is accepted by our
type system for an initial and final partial type environment, then it is also accepted
by our type system when using the least upper bound of the initial and final partial
type environments with an arbitrary partial type environment.

Lemma 9. If
lev Λ1{c}Λ′1 : skip and pre(Λ1) = pre(Λ2),
then
lev (Λ1 t Λ2){c}(Λ′1 t Λ2) : skip.

Proof. The last rule in the derivation of
lev Λ1{c}Λ′1 : skip must be either tsk2,
tah2, or tfh2.

We distinguish these three cases.

Case (tsk2): We get by the rule tsk2 that c = skip and Λ1 v Λ′1 holds.
From Λ1 v Λ′1 we get that (Λ1 t Λ2) v (Λ′1 t Λ2).
From (Λ1tΛ2) v (Λ′1tΛ2) we get by the rule tsk2 that
lev (Λ1tΛ2){c}(Λ′1tΛ2) :
cs.

Case (tah2): We get by the rule tah2 that c = x :=e and x /∈ pre(Λ1) and lev(x) =
high and Λ1 v Λ′1 holds.
From Λ1 v Λ′1 we get that (Λ1 t Λ2) v (Λ′1 t Λ2).
From x /∈ pre(Λ1) and pre(Λ1) = pre(Λ2) we get that x /∈ pre(Λ1 t Λ2).
From x /∈ pre(Λ1 t Λ2) and lev(x) = high and (Λ1 t Λ2) v (Λ′1 t Λ2) we get by
the rule tah2 that
lev (Λ1 t Λ2){c}(Λ′1 t Λ2) : cs.

Case (tfh2): We get by the rule tfh2 that c = x :=e and x ∈ pre(Λ1) and Λ1[x 7→
high] v Λ′1 holds.
From Λ1[x 7→ high] v Λ′1 and Lev = {low,high} and high 6v low we get that
Λ′1(x) = high. From Λ′1(x) = high we get that (Λ′1 t Λ2)(x) = high. From
Λ1[x 7→ high] v Λ′1 and Lev = {low,high} and low v high and high v high we
get that Λ1 v Λ′1. From Λ1 v Λ′1 and Λ2 v Λ2 we get that (Λ1 tΛ2) v (Λ′1 tΛ2).
From (Λ1 t Λ2) v (Λ′1 t Λ2) and (Λ′1 t Λ2)(x) = high and high v high we get
that (Λ1 t Λ2)[x 7→ high] v (Λ′1 t Λ2).
From x ∈ pre(Λ1) and pre(Λ1) = pre(Λ2) we get that x ∈ pre(Λ1 t Λ2).
From x ∈ pre(Λ1 t Λ2) and (Λ1 t Λ2)[x 7→ high] v (Λ′1 t Λ2) we get by the rule
tfh2 that
lev (Λ1 t Λ2){c}(Λ′1 t Λ2) : cs.

ut

Now we show that whenever two commands with identical low-slices are accepted
by our type system for some, possibly different initial and final partial type environ-
ments, then the first command is also accepted by our type system when using the least
upper bounds of the respective partial type environments as initial and final partial
type environments. Note that the conclusion the lemma establishes also holds for the
second command, because all premises are symmetric and, hence, one could simply
switch the two typing judgments.

Lemma 10. If
lev Λ1{c1}Λ′1 : cs1 and
lev Λ2{c2}Λ′2 : cs2 and cs1 = cs2 and
pre(Λ1) = pre(Λ2) and pre(Λ′1) = pre(Λ′2), then
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Proof. We prove this lemma by structural induction on
lev Λ1{c1}Λ′1 : cs1 and
lev

Λ2{c2}Λ′2 : cs2. To this end, we distinguish cases based on the last rule applied in the
derivation of
lev Λ1{c1}Λ′1 : cs1.

Case (tsk2): We get by the rule tsk2 that c1 = cs1 = skip and Λ1 v Λ′1.
From cs1 = cs2 and cs1 = skip we get cs2 = skip. From cs2 = skip we get by
Lemma 7 that Λ2 v Λ′2.
From Λ1 v Λ′1 and Λ2 v Λ′2 we get that (Λ1 t Λ2) v (Λ′1 t Λ′2).
From (Λ1tΛ2) v (Λ′1tΛ′2) we get by the rule tsk2 that
lev (Λ1tΛ2){c1}(Λ′1tΛ′2) :
cs1.

Case (tah2): We get by the rule tah2 that c1 = x :=e and cs1 = skip and x /∈ pre(Λ1)
and lev(x) = high and Λ1 v Λ′1.
From cs1 = cs2 and cs1 = skip we get cs2 = skip. From cs2 = skip we get by
Lemma 7 that Λ2 v Λ′2.
From Λ1 v Λ′1 and Λ2 v Λ′2 we get that (Λ1 t Λ2) v (Λ′1 t Λ′2).
From (Λ1 t Λ2) v (Λ′1 t Λ′2) and x /∈ pre(Λ1) and lev(x) = high we get by the
rule tah2 that
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (tfh2): We get by the rule tfh2 that c1 = x :=e and cs1 = skip and x ∈ pre(Λ1)
and Λ1[x 7→ high] v Λ′1.
From cs1 = cs2 and cs1 = skip we get cs2 = skip. From cs2 = skip we get by
Lemma 7 that Λ2 v Λ′2.
From Λ1[x 7→ high] v Λ′1 we get Λ1 v Λ′1. From Λ1 v Λ′1 and Λ2 v Λ′2 we get
that (Λ1 t Λ2) v (Λ′1 t Λ′2). From Λ1[x 7→ high] v Λ′1 we get that (Λ1 t Λ2)[x 7→
high] v (Λ′1 t Λ′2).
From pre(Λ1) = pre(Λ2) and x ∈ pre(Λ1) we get that x ∈ pre((Λ1 t Λ2)).
From (Λ1 tΛ2)[x 7→ high] v (Λ′1 tΛ′2) and x ∈ pre((Λ1 tΛ2)) we get by the rule
tfh2 that
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (tal2): We get by the rule tal2 that c1 = x :=e and cs1 = x :=e and
lev,Λ1 e :
low and x /∈ pre(Λ1) and lev(x) = low and Λ1 v Λ′1.
From cs1 = cs2 and cs1 = x :=e we get cs2 = x :=e. From cs2 = x :=e and x /∈
pre(Λ1) and pre(Λ1) = pre(Λ2) we get that the last rule in the derivation of

lev Λ2{c2}Λ′2 : cs2 must be tal2. From this rule we get that c2 = x :=e and
cs2 = x :=e and
lev,Λ2 e : low and Λ2 v Λ′2.
From Λ1 v Λ′1 and Λ2 v Λ′2 we get that (Λ1 t Λ2) v (Λ′1 t Λ′2).
From
lev,Λ1 e : low and
lev,Λ2 e : low we get that
lev,(Λ1tΛ2) e : low.
From (Λ1 t Λ2) v (Λ′1 t Λ′2) and
lev,(Λ1tΛ2) e : low and x /∈ pre((Λ1 t Λ2) and
lev(x) = low we get by the rule tal2 that
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (tfl2): We get by the rule tfl2 that c1 = x :=e and cs1 = x :=e and
lev,Λ1 e :
low and x ∈ pre(Λ1) and Λ1[x 7→ low] v Λ′1.
From cs1 = cs2 and cs1 = x :=e we get cs2 = x :=e. From cs2 = x :=e and x ∈
pre(Λ1) and pre(Λ1) = pre(Λ2) we get that the last rule in the derivation of

lev Λ2{c2}Λ′2 : cs2 must be tfl2. From this rule we get that c2 = x :=e and
cs2 = x :=e and
lev,Λ2 e : low and Λ2[x 7→ low] v Λ′2.
From Λ1[x 7→ low] v Λ′1 and Λ2[x 7→ low] v Λ′2 we get that (Λ1tΛ2)[x 7→ low] v
(Λ′1 t Λ′2).
From
lev,Λ1 e : low and
lev,Λ2 e : low we get that
lev,(Λ1tΛ2) e : low.
From (Λ1tΛ2)[x 7→ low] v (Λ′1tΛ′2) and
lev,(Λ1tΛ2) e : low and x ∈ pre((Λ1tΛ2)
we get by the rule tfl2 that
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (tlo2): We get by the rule tlo2 that c1 = lock(l) and cs1 = lock(l) and
Λ1 v Λ′1.
From cs1 = cs2 and cs1 = lock(l) we get cs2 = lock(l). From cs2 = lock(l) we get
that the last rule in the derivation of
lev Λ2{c2}Λ′2 : cs2 must be tlo2. From this
rule we get c2 = lock(l) and Λ2 v Λ′2.
From Λ1 v Λ′1 and Λ2 v Λ′2 we get that (Λ1 t Λ2) v (Λ′1 t Λ′2).

From (Λ1 tΛ2) v (Λ′1 tΛ′2) we get by the rule tlo2 that
lev (Λ1 tΛ2){c1}(Λ′1 t
Λ′2) : cs1.

Case (tul2): We get by the rule tul2 that c1 = unlock(l) and cs1 = unlock(l) and
Λ1 v Λ′1.
From cs1 = cs2 and cs1 = unlock(l) we get cs2 = unlock(l). From cs2 =
unlock(l) we get that the last rule in the derivation of
lev Λ2{c2}Λ′2 : cs2 must
be tul2. From this rule we get c2 = unlock(l) and Λ2 v Λ′2.
From Λ1 v Λ′1 and Λ2 v Λ′2 we get that (Λ1 t Λ2) v (Λ′1 t Λ′2).
From (Λ1tΛ2) v (Λ′1tΛ′2) we get by the rule tul2 that
lev (Λ1tΛ2){c1}(Λ′1tΛ′2) :
cs1.

Case (tsp2): We get by the rule tsp2 that c1 = spawn(cA) and cs1 = spawn(csA)
and
lev cA : csA and Λ1 v Λ′1.
From cs1 = cs2 and cs1 = spawn(csA) we get cs2 = spawn(csA). From cs2 =
spawn(csA) we get that the last rule in the derivation of
lev Λ2{c2}Λ′2 : cs2 must
be tsp2. From this rule we get c2 = spawn(cB) and
lev cB : csA and Λ2 v Λ′2.
From Λ1 v Λ′1 and Λ2 v Λ′2 we get that (Λ1 t Λ2) v (Λ′1 t Λ′2).
From (Λ1 t Λ2) v (Λ′1 t Λ′2) and
lev cA : csA we get by the rule tsp2 that

lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (tsq2): We get by the rule tsq2 that c1 = cA; cB and cs1 = csA; csB and
lev

Λ1{cA}Λ′′1 : csA and
lev Λ
′′
1{cB}Λ′1 : csB .

From cs2 = cs1 and cs1 = csA; csB we get that cs2 = csA; csB . From cs2 = csA; csB
we get that there are only two rules that can be applied last in the derivation of

lev Λ2{c2}Λ′2 : cs2, namely tsq2 and tih2. We make a case distinction based on
these two possibilities.

Case (tsq2): In this case, we get by the rule tsq2 that c2 = cC ; cD and
lev

Λ2{cC}Λ′′2 : csA and
lev Λ
′′
2{cD}Λ′2 : csB .

From
lev Λ1{cA}Λ′′1 : csA and
lev Λ
′′
1{cB}Λ′1 : csB and
lev Λ2{cC}Λ′′2 : csA

and
lev Λ
′′
2{cD}Λ′2 : csB we get by the induction hypothesis that
lev (Λ1 t

Λ2){cA}(Λ′′1 t Λ′′2) : csA and
lev (Λ′′1 t Λ′′2){cB}(Λ′1 t Λ′2) : csB .
From
lev (Λ1tΛ2){cA}(Λ′′1 tΛ′′2) : csA and
lev (Λ′′1 tΛ′′2){cB}(Λ′1tΛ′2) : csB
we get by the rule tsq2 that
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (tih2): In this case, we get by the rule tih2 that c2 = if e then cC else cD fi
and
lev Λ2{cC}Λ′2 : csB and
lev Λ2{cD}Λ′2 : csB and csA = skip.
From
lev Λ

′′
1{cB}Λ′1 : csB and
lev Λ2{cC}Λ′2 : csB we get by the induction

hypothesis that
lev (Λ′′1 t Λ2){cB}(Λ′1 t Λ′2) : csB .
From csA = skip and
lev Λ1{cA}Λ′′1 : csA we get by Lemma 9 that
lev

(Λ1 t Λ2){cA}(Λ′′1 t Λ2) : csA.
From
lev (Λ1tΛ2){cA}(Λ′′1 tΛ2) : csA and
lev (Λ′′1 tΛ2){cB}(Λ′1tΛ′2) : csB
we get by the rule tsq2 that
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (til2): We get by the rule til2 that c1 = if e then cA else cB fi and cs1 =
if e then csA else csB fi and
lev Λ1{cA}Λ′1 : csA and
lev Λ1{cB}Λ′1 : csB and

lev,Λ1 e : low.
From cs1 = cs2 and cs1 = if e then csA else csB fi we get cs2 = if e then csA else csB fi.
From cs2 = if e then csA else csB fi we get that the last rule in the derivation of

lev Λ2{c2}Λ′2 : cs2 must be til2. From this rule we get c2 = if e then cC else cD fi
and
lev Λ2{cC}Λ′2 : csA and
lev Λ2{cD}Λ′2 : csB and
lev,Λ2 e : low.
From
lev,Λ1 e : low and
lev,Λ2 e : low we get that
lev,(Λ1tΛ2) e : low.
From
lev Λ1{cA}Λ′1 : csA and
lev Λ1{cB}Λ′1 : csB and
lev Λ2{cC}Λ′2 : csA
and
lev Λ2{cD}Λ′2 : csB we get by the induction hypothesis that
lev (Λ1 t
Λ2){cA}(Λ′1 t Λ′2) : csA and
lev (Λ1 t Λ2){cB}(Λ′1 t Λ′2) : csB .

From
lev,(Λ1tΛ2) e : low and
lev (Λ1 t Λ2){cA}(Λ′1 t Λ′2) : csA and
lev (Λ1 t
Λ2){cB}(Λ′1tΛ′2) : csB we get by the rule til2 that
lev (Λ1tΛ2){c1}(Λ′1tΛ′2) : cs1.

Case (tih2): We get by the rule til2 that c1 = if e then cA else cB fi and cs1 =
skip; csA and
lev Λ1{cA}Λ′1 : csA and
lev Λ1{cB}Λ′1 : csA.
From cs1 = cs2 and cs1 = skip; csA we get that cs2 = skip; csA. From cs2 =
skip; csA we get that there are only two rules that can be applied last in the
derivation of
lev Λ2{c2}Λ′2 : cs2, namely tsq2 and tih2. We make a case distinc-
tion based on these two possibilities.

Case (tih2): In this case, we get by the rule tih2 that c2 = if e then cC else cD fi
and
lev Λ2{cC}Λ′2 : csA and
lev Λ2{cD}Λ′2 : csA.
From
lev Λ1{cA}Λ′1 : csA and
lev Λ1{cB}Λ′1 : csA and
lev Λ2{cC}Λ′2 : csA
and
lev Λ2{cD}Λ′2 : csA we get by the induction hypothesis that
lev (Λ1 t
Λ2){cA}(Λ′1 t Λ′2) : csA and
lev (Λ1 t Λ2){cB}(Λ′1 t Λ′2) : csA.
From
lev (Λ1 tΛ2){cA}(Λ′1 tΛ′2) : csA and
lev (Λ1 tΛ2){cB}(Λ′1 tΛ′2) : csA
we get by the rule tih2 that
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (tsq2): In this case, we get by the rule tsq2 that c2 = cC ; cD and
lev

Λ2{cC}Λ′′2 : skip and
lev Λ
′′
2{cD}Λ′2 : csA.

From
lev Λ1{cA}Λ′1 : csA and
lev Λ1{cB}Λ′1 : csA and
lev Λ
′′
2{cD}Λ′2 : csA

we get by the induction hypothesis that
lev (Λ1tΛ′′2){cA}(Λ′1tΛ′2) : csA and

lev (Λ1 t Λ′′2){cB}(Λ′1 t Λ′2) : csA.
From
lev Λ2{cC}Λ′′2 : skip we get by Lemma 7 that Λ2 v Λ′′2 . From Λ1 v Λ1

and Λ2 v Λ′′2 we get that (Λ1 tΛ2) v (Λ1 tΛ′′2). From (Λ1 tΛ2) v (Λ1 tΛ′′2)
and
lev (Λ1 tΛ′′2){cA}(Λ′1 tΛ′2) : csA and
lev (Λ1 tΛ′′2){cB}(Λ′1 tΛ′2) : csA
we get by Lemma 6 that
lev (Λ1 t Λ2){cA}(Λ′1 t Λ′2) : csA and
lev (Λ1 t
Λ2){cB}(Λ′1 t Λ′2) : csA.
From
lev (Λ1 tΛ2){cA}(Λ′1 tΛ′2) : csA and
lev (Λ1 tΛ2){cB}(Λ′1 tΛ′2) : csA
we get by the rule tih2 that
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (twl2): We get by the rule twl2 that c1 = while e do cA od and cs1 =
while e do csA od and Λ1 v Λ′′1 and Λ′′1 v Λ′1 and
lev,Λ′′1

e : low and
lev

Λ′′1{cA}Λ′′1 : csA.
From cs1 = cs2 and cs1 = while e do csA od we get that cs2 = while e do csA od.
From cs2 = while e do csA od we get that the last rule in the derivation of
lev

Λ2{c2}Λ′2 : cs2 must be twl2. From this rule we get that c2 = while e do cB od
and Λ2 v Λ′′2 and Λ′′2 v Λ′2 and
lev,Λ′′2

e : low and
lev Λ
′′
2{cB}Λ′′2 : csA.

From
lev,Λ′′1
e : low and
lev,Λ′′2

e : low we get that
lev,(Λ′′1 tΛ
′′
2) e : low.

From
lev Λ′′1{cA}Λ′′1 : csA and
lev Λ′′2{cB}Λ′′2 : csA we get by the induction
hypothesis that
lev (Λ′′1 t Λ′′2){cA}(Λ′′1 t Λ′′2) : csA.
From Λ1 v Λ′′1 and Λ′′1 v Λ′1 and Λ2 v Λ′′2 and Λ′′2 v Λ′2 we get that (Λ1 t Λ2) v
(Λ′′1 t Λ′′2) and (Λ′′1 t Λ′′2) v (Λ′1 t Λ′2).
From (Λ1tΛ2) v (Λ′′1tΛ′′2) and (Λ′′1tΛ′′2) v (Λ′1tΛ′2) and
lev (Λ′′1tΛ′′2){cA}(Λ′′1t
Λ′′2) : csA we get by the rule twl2 that
lev (Λ1 t Λ2){c1}(Λ′1 t Λ′2) : cs1.

Case (tan2): We get by the rule tan2 that c1 = cA@−→a A and
lev Λ1{cA}Λ′′1 : csA
and cs1 = csA@−→a A �A-NR,A-NW and Λ′1 = Λ′′1 ⊕lev

−→a A and ∀x .Λ′′1 lev 〈x 〉 v Λ′1lev 〈x 〉.
From cs2 = cs1 and cs1 = csA@−→a A �A-NR,A-NW we get that cs2 = csA@−→a A �A-NR,A-NW.
From cs2 = csA@−→a A �A-NR,A-NW we get that the last rule in the derivation of

lev Λ2{c2}Λ′2 : cs2 must be tan2. From this rule we get that c2 = cB@−→a B and

lev Λ2{cB}Λ′′2 : csA and −→a B �A-NR,A-NW= −→a A �A-NR,A-NW and Λ′2 = Λ′′2 ⊕lev

−→a B

and ∀x .Λ′′2 lev 〈x 〉 v Λ′2lev 〈x 〉.
From pre(Λ1) = pre(Λ2) and
lev Λ1{cA}Λ′′1 : csA and
lev Λ2{cB}Λ′′2 : csA we
get by Lemma 8 pre(Λ′′1) = pre(Λ′′2). Hence, from
lev Λ1{cA}Λ′′1 : csA and
lev

Λ2{cB}Λ′′2 : csA we get by the induction hypothesis that
lev (Λ1 t Λ2){cA}(Λ′′1 t
Λ′′2) : csA.
From ∀x .Λ′′1 lev 〈x 〉 v Λ′1lev 〈x 〉 and ∀x .Λ′′2 lev 〈x 〉 v Λ′2lev 〈x 〉 we get that ∀x .(Λ′′1 t Λ′′2)lev 〈x 〉 v
Λ′1 t Λ′2)lev 〈x 〉.
From Λ′1 = Λ′′1⊕lev

−→a A and Λ′2 = Λ′′2⊕lev
−→a B we get by definition of ⊕lev that ∀x ∈

pre(Λ′1).Λ′1(x) = Λ′′1 lev 〈x 〉 and ∀x ∈ pre(Λ′2).Λ′2(x) = Λ′′2 lev 〈x 〉. From pre(Λ′2) =
pre(Λ′1) and ∀x ∈ pre(Λ′1).Λ′1(x) = Λ′′1 lev 〈x 〉 and ∀x ∈ pre(Λ′2).Λ′2(x) = Λ′′2 lev 〈x 〉
we get that ∀x ∈ pre((Λ′1tΛ′2)).(Λ′1tΛ′2) = (Λ′′1 t Λ′′2)lev 〈x 〉. From ∀x ∈ pre((Λ′1t
Λ′2)).(Λ′1 t Λ′2) = (Λ′′1 t Λ′′2)lev 〈x 〉 we get by definition of ⊕lev that (Λ′1 t Λ′2) =
(Λ′′1 t Λ′′2)⊕lev

−→a A.
From
lev (Λ1 t Λ2){cA}(Λ′′1 t Λ′′2) : csA and ∀x .(Λ′′1 t Λ′′2)lev 〈x 〉 v Λ′1 t Λ′2)lev 〈x 〉
and (Λ′1 t Λ′2) = (Λ′′1 t Λ′′2) ⊕lev

−→a A we get by the rule tan2 that
lev (Λ1 t
Λ2){c1}(Λ′1 t Λ′2) : cs1.

ut

We define an equality that relates all mode states that agree on all the assumptions
made in these mode states.

Definition 9. Two mode states mdst ,mdst ′ ∈ MdSt make equal assumptions (de-
noted by: mdst ={A-NR,A-NW} mdst ′), if and only if mdst(A-NR) = mdst ′(A-NR) and
mdst(A-NW) = mdst ′(A-NW)

We now show that, whenever two commands are typeable with the same partial
type environments and have identical low-slices, then the fact that the first command
can do a step in a given memory, then this implies that the second command can also
do a step in any memory that is low equal with respect to a partial type environment,
the resulting commands are again typable with identical partial type environments
(type preservation), and the resulting memories are again low-equal with respect to a
partial type environment.

Lemma 11. If

–
lev Λ{c1}Λ′ : cs1 and
lev Λ{c2}Λ′ : cs2 with cs1 = cs2, and
– mdst1,mdst2 ∈ comp(lev1, Λ), and
– mdst1 ={A-NR,A-NW} mdst2, and

– mem1 =lev,Λ
low mem2, and

– 〈c1, lkst ,mdst1,mem1〉
α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉

then there is α′ ∈ Eve, mdst ′2 ∈ MdSt, c′2, c
′
s1, c

′
s2 ∈ Com, mem ′2 ∈ Mem, and Λ′′ such

that

–
lev Λ
′′{c′1}Λ′ : c′s1, and
lev Λ

′′{c′2}Λ′ : c′s2, with c′s1 = c′s2,
– mdst ′1,mdst ′2 ∈ comp(lev , Λ′′), and
– mdst ′1 ={A-NR,A-NW} mdst ′2, and

– mem ′1 =lev,Λ′′

low mem ′2, and

– 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉.

Proof. We proof this lemma by structural induction on the derivations of the two
judgments
lev Λ{c1}Λ′ : cs1 and
lev Λ{c2}Λ′ : cs2.

Hence, let Λ,Λ′, c1, cs1c2, cs2, c
′
1 ∈ Com, mem1,mem2,mem ′1 ∈ Mem, lkst , lkst ′ ∈

LkSt , and mdst1,mdst2,mdst ′1 ∈ MdSt be arbitrary such that

–
lev Λ{c1}Λ′ : cs1 and
lev Λ{c2}Λ′ : cs2 with cs1 = cs2, and

– mdst1,mdst2 ∈ comp(lev1, Λ), and

– mdst1 ={A-NR,A-NW} mdst2, and

– mem1 =lev,Λ
low mem2, and

– 〈c1, lkst ,mdst1,mem1〉
α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉

We make a case distinction on the last rule applied used in the derivation of
lev

Λ{c1}Λ′ : cs1.

Case (tsk2): By the rule tsk2 we get c1 = cs1 = skip, Λ v Λ′, and thus also pre(Λ) =

pre(Λ′). From c1 = skip we get that the only rule to derive 〈c1, lkst ,mdst1,mem1〉
α−→

〈c′1, lkst ′,mdst ′1,mem ′1〉 is sk and, hence, c′1 = stop, lkst ′ = lkst , mdst ′1 = mdst1,

and mem ′1 = mem1. Thus, mem ′1 =lev,Λ′

low mem1 holds.

From
lev Λ{c2}Λ′ : skip we get by Lemma 7 that 〈c2, lkst ,mdst2,mem2〉
α′−→

〈c′2, lkst ′,mdst ′2,mem ′2〉 with c′2 = stop, lkst ′ = lkst , mdst ′2 = mdst2, mem ′2 =lev,Λ′

low

mem2.

From Λ v Λ′ and mem1 =lev,Λ
low mem2 we get that mem1 =lev,Λ′

low mem2. From

mem1 =lev,Λ′

low mem2, mem ′2 =lev,Λ′

low mem2, and mem ′1 =lev,Λ′

low mem1 we get mem ′1 =lev,Λ′

low

mem ′2.

From mdst ′1 = mdst1, mdst ′2 = mdst2, mdst1,mdst2 ∈ comp(lev , Λ), and pre(Λ) =
pre(Λ′) we get by the definition of comp that mdst ′1,mdst ′2 ∈ comp(lev , Λ′), and
from mdst1 ={A-NR,A-NW} mdst2 that mdst ′1 ={A-NR,A-NW} mdst ′2.

Since c′1 = stop and c′2 = stop, we get from the rule tst that
lev Λ
′′{c′1}Λ′ : stop

and
lev Λ
′′{c′2}Λ′ : stop with Λ′′ = Λ′.

Case (tah2): By the rule tah2 we get that c1 = x :=e, cs1 = skip, x /∈ pre(Λ),
lev(x) = high, Λ v Λ′, and thus also pre(Λ) = pre(Λ′) and Λ′lev 〈x 〉 = high.

From c1 = x :=e we get that the only rule to derive 〈c1, lkst ,mdst1,mem1〉
α−→

〈c′1, lkst ′,mdst ′1,mem ′1〉 is as and, hence, c′1 = stop, lkst ′ = lkst , mdst ′1 = mdst1,
and mem ′1 = mem1[x 7→ v] for some v . From mem ′1 = mem1[x 7→ v] and Λ′lev 〈x 〉 =

high we get by definition of =lev,Λ′

low that mem ′1 =lev,Λ′

low mem1.

From
lev Λ{c2}Λ′ : skip we get by Lemma 7 that 〈c2, lkst ,mdst2,mem2〉
α′−→

〈c′2, lkst ′,mdst ′2,mem ′2〉 with c′2 = stop, lkst ′ = lkst , mdst ′2 = mdst2, mem ′2 =lev,Λ′

low

mem2.

From Λ v Λ′ and mem1 =lev,Λ
low mem2 we get that mem1 =lev,Λ′

low mem2. From

mem1 =lev,Λ′

low mem2, mem ′2 =lev,Λ′

low mem2, and mem ′1 =lev,Λ′

low mem1 we get mem ′1 =lev,Λ′

low

mem ′2.

From mdst ′1 = mdst1, mdst ′2 = mdst2, mdst1,mdst2 ∈ comp(lev , Λ), and pre(Λ′) =
pre(Λ) we get by the definition of comp that mdst ′1,mdst ′2 ∈ comp(lev , Λ′), and
from mdst1 ={A-NR,A-NW} mdst2 that mdst ′1 ={A-NR,A-NW} mdst ′2.

Since c′1 = stop and c′2 = stop, we get from the rule tst that
lev Λ
′′{c′1}Λ′ : stop

and
lev Λ
′′{c′2}Λ′ : stop with Λ′′ = Λ′.

Case (tfh2): By the rule tfh2 we get that c1 = x :=e, cs1 = skip, x ∈ pre(Λ),
Λ[x 7→ high] v Λ′, and thus also pre(Λ) = pre(Λ′). From c1 = x :=e we get that

the only rule to derive 〈c1, lkst ,mdst1,mem1〉
α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉 is as and,

hence, c′1 = stop, lkst ′ = lkst , mdst ′1 = mdst1, and mem ′1 = mem1[x 7→ v] for
some v . From mem ′1 = mem1[x 7→ v] and Λ[x 7→ high] v Λ′ we get by definition

of =lev,Λ′

low that mem ′1 =lev,Λ′

low mem1.

From Λ v Λ′ and mem1 =lev,Λ
low mem2 we get that mem1 =lev,Λ′

low mem2. From

mem1 =lev,Λ′

low mem2, mem ′2 =lev,Λ′

low mem2, and mem ′1 =lev,Λ′

low mem1 we get mem ′1 =lev,Λ′

low

mem ′2.

From mdst ′1 = mdst1, mdst ′2 = mdst2, mdst1,mdst2 ∈ comp(lev , Λ), and pre(Λ′) =
pre(Λ) we get by the definition of comp that mdst ′1,mdst ′2 ∈ comp(lev , Λ′), and
from mdst1 ={A-NR,A-NW} mdst2 that mdst ′1 ={A-NR,A-NW} mdst ′2.

Since c′1 = stop and c′2 = stop, we get from the rule tst that
lev Λ
′′{c′1}Λ′ : stop

and
lev Λ
′′{c′2}Λ′ : stop with Λ′′ = Λ′.

Case (tal2): By the rule tal2 we get that c1 = x :=e, cs1 = cs2 = x :=e, x /∈
pre(Λ), lev(x) = low,
lev,Λ e : low, Λ v Λ′, and thus also pre(Λ′) = pre(Λ).

From c1 = x :=e we get that the only rule to derive 〈c1, lkst ,mdst1,mem1〉
α−→

〈c′1, lkst ′,mdst ′1,mem ′1〉 is as and, hence, c′1 = stop, lkst ′ = lkst , mdst ′1 = mdst1,
and mem ′1 = mem1[x 7→ eval(e,mem1)].

From cs2 = x :=e, lev(x) = low, and x /∈ pre(Λ) we know that the only rule to
derive the judgment
lev Λ{c2}Λ′ : cs2 can be tal2. Hence, c2 = x :=e. Thus we

get by the rule as that 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉 with

lkst ′ = lkst , mdst ′2 = mdst2, and mem ′2 = mem2[x 7→ eval(e,mem2)].

From mem1 =lev,Λ
low mem2 and
lev,Λ e : low we get that eval(e,mem1) = eval(e,mem2).

Hence, mem ′1 = mem1[x 7→ v] and mem ′2 = mem2[x 7→ v] for v = eval(e,mem1).
Thus, we have mem ′1 =lev,Λ

low mem ′2. From Λ v Λ′ and mem ′1 =lev,Λ
low mem ′2 we get

mem ′1 =lev,Λ′

low mem ′2.

From mdst ′1 = mdst1, mdst ′2 = mdst2, mdst1,mdst2 ∈ comp(lev , Λ), and pre(Λ′) =
pre(Λ) we get by the definition of comp that mdst ′1,mdst ′2 ∈ comp(lev , Λ′), and
from mdst1 ={A-NR,A-NW} mdst2 that mdst ′1 ={A-NR,A-NW} mdst ′2.

Since c′1 = stop and c′2 = stop, we get from the rule tst that
lev Λ
′′{c′1}Λ′ : stop

and
lev Λ
′′{c′2}Λ′ : stop with Λ′′ = Λ′.

Case (tfl2): By the rule tfl2 we get that c1 = x :=e, cs1 = cs2 = x :=e, x ∈
pre(Λ),
lev,Λ e : low, Λ[x 7→ low] v Λ′, and thus also pre(Λ′) = pre(Λ).

From c1 = x :=e we get that the only rule to derive 〈c1, lkst ,mdst1,mem1〉
α−→

〈c′1, lkst ′,mdst ′1,mem ′1〉 is as and, hence, c′1 = stop, lkst ′ = lkst , mdst ′1 = mdst1,
and mem ′1 = mem1[x 7→ eval(e,mem1)].

From cs2 = x :=e, x ∈ pre(Λ), we know that the only rule to derive the judgment

lev Λ{c2}Λ′ : cs2 can be tfl2. Hence, c2 = x :=e. Thus we get by the rule as

that 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉 with lkst ′ = lkst , mdst ′2 =

mdst2, and mem ′2 = mem2[x 7→ eval(e,mem1)].

From mem1 =lev,Λ
low mem2 and
lev,Λ e : low we get that eval(e,mem1) = eval(e,mem2).

Hence, mem ′1 = mem1[x 7→ v] and mem ′2 = mem2[x 7→ v] for v = eval(e,mem1).
Thus, we have mem ′1 =lev,Λ

low mem ′2. From Λ v Λ′ and mem ′1 =lev,Λ
low mem ′2 we get

mem ′1 =lev,Λ′

low mem ′2.

From mdst ′1 = mdst1, mdst ′2 = mdst2, mdst1,mdst2 ∈ comp(lev , Λ), and pre(Λ′) =
pre(Λ) we get by the definition of comp that mdst ′1,mdst ′2 ∈ comp(lev , Λ′), and
from mdst1 ={A-NR,A-NW} mdst2 that mdst ′1 ={A-NR,A-NW} mdst ′2.

Since c′1 = stop and c′2 = stop, we get from the rule tst that
lev Λ
′′{c′1}Λ′ : stop

and
lev Λ
′′{c′2}Λ′ : stop with Λ′′ = Λ′.

Case (tlo2): By the rule tlo2 we get that c1 = cs1 = cs2 = lock(l), Λ v Λ′, and
thus also pre(Λ′) = pre(Λ). From c1 = lock(l) we get that the only rule to derive

〈c1, lkst ,mdst1,mem1〉
α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉 is lk and, hence, c′1 = stop,

lkst ′ = lkst ∪ {l}, mdst ′1 = mdst1, and mem ′1 = mem1.

From cs2 = lock(l), we know that the only rule to derive the judgment
lev

Λ{c2}Λ′ : cs2 can be tlo2. Hence, c2 = lock(l). Thus we get by the rule lk

that 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′′,mdst ′2,mem ′2〉 with lkst ′′ = lkst ∪ {l},

mdst ′2 = mdst2, and mem ′2 = mem2. Since lkst ′′ = lkst ∪ {l} and lkst ′ = lkst ∪ {l}
we have lkst ′′ = lkst ′.
From mem ′1 = mem1, mem ′2 = mem2, and mem1 =lev,Λ

low mem2 we get mem ′1 =lev,Λ
low

mem ′2. From Λ v Λ′ and mem ′1 =lev,Λ
low mem ′2 we get mem ′1 =lev,Λ′

low mem ′2.
From mdst ′1 = mdst1, mdst ′2 = mdst2, mdst1,mdst2 ∈ comp(lev , Λ), and pre(Λ′) =
pre(Λ) we get by the definition of comp that mdst ′1,mdst ′2 ∈ comp(lev , Λ′), and
from mdst1 ={A-NR,A-NW} mdst2 that mdst ′1 ={A-NR,A-NW} mdst ′2.
Since c′1 = stop and c′2 = stop, we get from the rule tst that
lev Λ

′′{c′1}Λ′ : stop
and
lev Λ

′′{c′2}Λ′ : stop with Λ′′ = Λ′.
Case (tul2): From the assumption of this case we get by the rule tul2 that c1 =

cs1 = cs2 = unlock(l), l ∈ lkst , Λ v Λ′, and thus also pre(Λ′) = pre(Λ). From

c1 = unlock(l) we get that the only rule to derive 〈c1, lkst ,mdst1,mem1〉
α−→

〈c′1, lkst ′,mdst ′1,mem ′1〉 is ulk and, hence, c′1 = stop, lkst ′ = lkst \ {l}, mdst ′1 =
mdst1, and mem ′1 = mem1.
From cs2 = unlock(l), we know that the only rule to derive the judgment
lev

Λ′2{c2}Λ2 : cs2 can be tul2. Hence, c2 = unlock(l). Since l ∈ lkst we get by

the rule ulk that 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′′,mdst ′2,mem ′2〉 with lkst ′′ =

lkst \ {l}, mdst ′2 = mdst2, and mem ′2 = mem2. Since lkst ′′ = lkst \ {l} and lkst ′ =
lkst \ {l} we have lkst ′′ = lkst ′.
From mem ′1 = mem1, mem ′2 = mem2, and mem1 =lev,Λ

low mem2 we get mem ′1 =lev,Λ
low

mem ′2. From Λ v Λ′ and mem ′1 =lev,Λ
low mem ′2 we get mem ′1 =lev,Λ′

low mem ′2.
From mdst ′1 = mdst1, mdst ′2 = mdst2, mdst1,mdst2 ∈ comp(lev , Λ), and pre(Λ′) =
pre(Λ) we get by the definition of comp that mdst ′1,mdst ′2 ∈ comp(lev , Λ′), and
from mdst1 ={A-NR,A-NW} mdst2 that mdst ′1 ={A-NR,A-NW} mdst ′2.
Since c′1 = stop and c′2 = stop, we get from the rule tst that
lev Λ

′′{c′1}Λ′ : stop
and
lev Λ

′′{c′2}Λ′ : stop with Λ′′ = Λ′.
Case (tsp2): From the assumption of this case we get by the rule tsp2 that c1 =

spawn(c3), cs1 = cs2 = spawn(cs3), Λ v Λ′, and thus also pre(Λ′) = pre(Λ).

From c1 = spawn(c3) we get that the last rule in the derivation of 〈c1, lkst ,mdst1,mem1〉
α−→

〈c′1, lkst ′,mdst ′1,mem ′1〉 must be sp and, hence, c′1 = stop, lkst ′ = lkst , mdst ′1 =

mdst1, and mem ′1 = mem1. Thus, mem1 =lev,Λ′

low mem1′ .
From cs2 = spawn(cs3), we know that the last rule in the derivation of
lev

Λ{c2}Λ′ : cs2 must be tsp2. Hence, c2 = spawn(c4). Thus we get by the rule sp

that 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉 with lkst ′ = lkst , mdst ′2 =

mdst2, and mem ′2 = mem2. Thus, mem2 =lev,Λ′

low mem2′ .

From Λ v Λ′ and mem1 =lev,Λ
low mem2 we get that mem1 =lev,Λ′

low mem2. From

mem1 =lev,Λ′

low mem2, mem ′2 =lev,Λ′

low mem2, and mem ′1 =lev,Λ′

low mem1 we get mem ′1 =lev,Λ′

low

mem ′2.
From mdst ′1 = mdst1, mdst ′2 = mdst2, mdst1,mdst2 ∈ comp(lev , Λ), and pre(Λ′) =
pre(Λ) we get by the definition of comp that mdst ′1,mdst ′2 ∈ comp(lev , Λ′), and
from mdst1 ={A-NR,A-NW} mdst2 that mdst ′1 ={A-NR,A-NW} mdst ′2.
Since c′1 = stop and c′2 = stop, we get from the rule tst that
lev Λ

′′{c′1}Λ′ : stop
and
lev Λ

′′{c′2}Λ′ : stop with Λ′′ = Λ′.
Case (tsq2): By the rule tsq2 that c1 = c3; c4, cs1 = cs3; cs4,
lev Λ{c3}Λ1 : cs3, and

lev Λ1{c4}Λ′ : cs3.

From c1 = c3; c4 and 〈c1, lkst ,mdst1,mem1〉
α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉 we get by

the rule sq1 and sq2 that 〈c3, lkst ,mdst1,mem1〉
α−→ 〈c′3, lkst ′,mdst ′1,mem ′1〉.

From cs1 = cs3; cs4 and cs1 = cs2 we get that cs2 = cs3; cs4. Hence, the last rule
applied in the derivation of
lev Λ1{c2}Λ2 : cs2 must be either tsq2 or tih2. We
distinguish these two cases.

Case (tsq2): From the assumption of this case, we get by the rule tsq2 that
c2 = c5; c6,
lev Λ{c5}Λ2 : cs5, and
lev Λ2{c6}Λ′ : cs6 with cs5 = cs3 and
cs6 = cs4.

From
lev Λ{c3}Λ1 : cs3 and
lev Λ{c5}Λ2 : cs5 and cs5 = cs3 we get by
Lemma 10 that
lev Λ{c3}(Λ1 tΛ2) : cs3 and
lev Λ{c5}(Λ1 tΛ2) : cs5. From

lev Λ1{c4}Λ′ : cs4 and
lev Λ2{c6}Λ′ : cs6 and cs6 = cs4 we get by Lemma 10
that
lev (Λ1 t Λ2){c4}Λ′ : cs4 and
lev (Λ1 t Λ2){c6}Λ′ : cs6.

From
lev Λ{c3}(Λ1tΛ2) : cs3 and
lev Λ{c5}(Λ1tΛ2) : cs5 and cs5 = cs3 and
mdst1,mdst2 ∈ comp(lev , Λ,) and mdst1 ={A-NR,A-NW} mdst2 and mem1 =lev,Λ

low

mem2 and 〈c3, lkst ,mdst1,mem1〉
α−→ 〈c′3, lkst ′,mdst ′1,mem ′1〉 we get by the

induction hypothesis that there is α′ ∈ Eve, mdst ′2 ∈ MdSt , c′5, c
′
s3, c

′
s5 ∈ Com,

mem ′2 ∈ Mem, and Λ′′ such that

∗
lev Λ
′′{c′3}(Λ1tΛ2) : c′s3, and
lev Λ

′′{c′5}(Λ1tΛ2) : c′s5, with c′s3 = c′s5,
∗ mdst ′1,mdst ′2 ∈ comp(lev , Λ′′), and
∗ mdst ′1 ={A-NR,A-NW} mdst ′2, and

∗ mem ′1 =lev,Λ′′

low mem ′2, and

∗ 〈c5, lkst ,mdst2,mem2〉
α′−→ 〈c′5, lkst ′,mdst ′2,mem ′2〉.

We now distinguish two cases based on whether c′3 = stop.

Case (c′3 = stop): In this case, we get from
lev Λ
′′{c′3}(Λ1 tΛ2) : c′s3 by the

rule tst that c′s3 = stop and Λ′′ = (Λ1 t Λ2). From c′s3 = stop and
c′s3 = c′s5 we get c′s5 = stop. From c′s5 = stop we get that the last rule in
the derivation of
lev Λ

′′{c′5}(Λ1 t Λ2) : c′s5 must be tst. From this rule
we get that c′5 = stop.

From c1 = c3; c4 and c′3 = stop and 〈c3, lkst ,mdst1,mem1〉
α−→ 〈c′3, lkst ′,mdst ′1,mem ′1〉

we get that the last rule in the derivation of 〈c1, lkst ,mdst1,mem1〉
α−→

〈c′1, lkst ′,mdst ′1,mem ′1〉 must be sq2. From this rule we get that c′1 = c4.

From c2 = c5; c6 and c′5 = stop and 〈c5, lkst ,mdst1,mem1〉
α−→ 〈c′5, lkst ′,mdst ′1,mem ′1〉

we get that 〈c2, lkst ,mdst2,mem2〉
α−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉 with c′2 =

c6 is derivable with the rule sq2.
Since Λ′′ = (Λ1 t Λ2) and

·
lev (Λ1 t Λ2){c4}Λ′ : cs4, and
lev (Λ1 t Λ2){c6}Λ′ : cs6, with cs4 =
cs6,
· mdst ′1,mdst ′2 ∈ comp(lev , Λ′′), and
· mdst ′1 ={A-NR,A-NW} mdst ′2, and

· mem ′1 =lev,Λ′′

low mem ′2, and

· 〈c2, lkst ,mdst2,mem2〉
α−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉.

we can conclude this case.
Case (c′3 6= stop): In this case, we get from
lev Λ′′{c′3}(Λ1 t Λ2) : c′s3 by

the typing rules that c′s3 6= stop. From c′s3 6= stop and c′s3 = c′s5 we get
c′s5 6= stop. From c′s5 6= stop we get that the last rule in the derivation
of
lev Λ

′′{c′5}(Λ1 t Λ2) : c′s5 cannot be tst and, hence, we get from the
typing rules that c′5 6= stop

From c′3 6= stop and 〈c3, lkst ,mdst1,mem1〉
α−→ 〈c′3, lkst ′,mdst ′1,mem ′1〉

we get that the last rule in the derivation of 〈c1, lkst ,mdst1,mem1〉
α−→

〈c′1, lkst ′,mdst ′1,mem ′1〉 must be sq1. From this rule we get that c′1 =
c′3; c4.

From c2 = c5; c6 and c′5 6= stop and 〈c5, lkst ,mdst2,mem2〉
α−→ 〈c′5, lkst ′,mdst ′2,mem ′2〉

we get by sq1 that 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉 is

derivable with c′2 = c′5; c6.
From c′1 = c′3; c4 and
lev Λ

′′{c′3}(Λ1tΛ2) : c′s3 and
lev (Λ1tΛ2){c4}Λ′ :
cs4 we get by the rule tsq2 that
lev Λ

′′{c′3; c4}Λ′ : c′s3; cs4 is derivable.
From c′2 = c′5; c6 and
lev Λ

′′{c′5}(Λ1tΛ2) : c′s5 and
lev (Λ1tΛ2){c6}Λ′ :
cs6 we get by the rule tsq2 that
lev Λ

′′{c′5; c6}Λ′ : c′s5; cs6 is derivable.
From c′s3 = c′s5 and cs4 = cs6 we get that c′s3; cs4 = c′s5; cs6. Hence, we
can conclude this case.

Case (tih2): From the assumption of this case, we get by the rule tih2 that c2 =
if e then c5 else c6 fi and cs2 = skip; c5 and
lev Λ{c5}Λ′ : cs5, and
lev

Λ{c6}Λ′ : cs6 with cs5 = cs6. From cs1 = cs2 and cs1 = cs3; cs4 and cs2 =
skip; c5 we get that cs3 = skip and cs4 = cs5.

From cs3 = skip and
lev Λ{c3}Λ1 : cs3 we get by Lemma 7 and the fact
that commands evaluate deterministically in our language that c′3 = stop and
lkst ′ = lkst and mdst ′1 = mdst1 and mem ′1 =lev,Λ1

low mem1 and Λ v Λ1. From
Λ v Λ1 we get that pre(Λ) = pre(Λ1). From c1 = c3; c4 and c′3 = stop and

〈c3, lkst ,mdst1,mem1〉
α−→ 〈c′3, lkst ′,mdst ′1,mem ′1〉 we get that the last rule in

the derivation of 〈c1, lkst ,mdst1,mem1〉
α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉 must be

sq2. From this rule we get that c′1 = c4.

From
lev Λ1{c4}Λ′ : cs4 and
lev Λ{c5}Λ′ : cs5 and
lev Λ{c6}Λ′ : cs6 and
cs5 = cs6 and cs4 = cs5 we get by Lemma 10 that
lev (Λ t Λ1){c4}Λ′ : cs4
and
lev (Λ t Λ1){c5}Λ′ : cs5 and
lev (Λ t Λ1){c6}Λ′ : cs6.

From c2 = if e then c5 else c6 fi we get by the rule ift and iff that

〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′′,mdst ′2,mem ′2〉 is derivable with c′2 = ci

for some i ∈ {5, 6} and lkst ′′ = lkst and mdst ′2 = mdst2 and mem ′2 = mem2.

It remains to show that

∗ mdst ′1,mdst ′2 ∈ comp(lev , (Λ t Λ1)), and
∗ mdst ′1 ={A-NR,A-NW} mdst ′2, and

∗ mem ′1 =
lev,(ΛtΛ1)
low mem ′2.

From mdst1 = mdst ′1 and mdst2 = mdst ′2 and pre(Λ) = pre(Λ1) = pre((Λ t
Λ1)) and mdst1,mdst2 ∈ comp(lev , Λ) we get that mdst ′1,mdst ′2 ∈ comp(lev , (Λt
Λ1)).

From mdst1 = mdst ′1 and mdst2 = mdst ′2 and mdst1 ={A-NR,A-NW} mdst2 we
get that mdst ′1 ={A-NR,A-NW} mdst ′2.

From mem ′1 =lev,Λ1
low mem1 and mem1 =lev,Λ

low mem2 and mem ′2 = mem2 and

Λ v (Λ t Λ1) and Λ1 v (Λ t Λ1) we get that mem ′1 =
lev,(ΛtΛ1)
low mem ′2.

Case (til2): By the rule til2 we get that c1 = if e then c3 else c4 fi, cs1 = cs2 =
if e then cs3 else cs4 fi,
lev,Λ e : low,
lev Λ{c3}Λ′ : cs3, and
lev Λ{c4}Λ′ : cs4.

From cs2 = if e then cs3 else cs4 fi we get that the last rule applied in the
derivation of
lev Λ{c2}Λ′ : cs2 must be til2. From cs2 = if e then cs3 else cs4 fi
we get by this rule that c2 = if e then c5 else c6 fi,
lev Λ{c5}Λ′ : cs3, and

lev Λ{c6}Λ′ : cs3.

From
lev,Λ e : low and mem1 =lev,Λ
low mem2, we get that eval(e,mem1) =

eval(e,mem2). We now distinguish two cases based on whether eval(e,mem1) =
true or eval(e,mem1) = false.

Case (eval(e,mem1) = true): From the assumption of this case we get by the rule
ift that c′1 = c3, lkst ′ = lkst , mdst ′1 = mdst1, and mem ′1 = mem1.
From eval(e,mem1) = eval(e,mem2) and the assumption of this case we also

get by the rule ift that 〈c2, lkst ,mdst2,mem2〉
α−→ 〈c′2, lkst ′′,mdst ′2,mem ′2〉 is

derivable with c′2 = c5, lkst ′′ = lkst , mdst ′2 = mdst2, and mem ′2 = mem2.
Since
lev Λ{c3}Λ′ : cs3,
lev Λ{c5}Λ′ : cs3, mdst1,mdst2 ∈ comp(lev , Λ),
mdst1 ={A-NR,A-NW} mdst2, and mem1 =lev,Λ

low mem2, we can conclude this case.
Case (eval(e,mem1) = false): From the assumption of this case we get by the rule

iff that c′1 = c4, lkst ′ = lkst , mdst ′1 = mdst1, and mem ′1 = mem1.
From eval(e,mem1) = eval(e,mem2) and the assumption of this case we also

get by the rule iff that 〈c2, lkst ,mdst2,mem2〉
α−→ 〈c′2, lkst ′′,mdst ′2,mem ′2〉 is

derivable with c′2 = c6, lkst ′′ = lkst , mdst ′2 = mdst2, and mem ′2 = mem2.
Since
lev Λ{c4}Λ′ : cs4,
lev Λ{c6}Λ′ : cs4, mdst1,mdst2 ∈ comp(lev , Λ),
mdst1 ={A-NR,A-NW} mdst2, and mem1 =lev,Λ

low mem2, we can conclude this case.

Case (tih2): From the assumption of this case we get by the rule tih2 that c1 =
if e then c3 else c4 fi, cs1 = skip; cs3,
lev Λ{c3}Λ′ : cs3,
lev Λ{c4}Λ′ : cs4, and
cs3 = cs4.
From c1 = if e then c3 else c4 fi and 〈c1, lkst ,mdst1,mem1〉

α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉
we get by ift and iff that c′1 = ci for some i ∈ {3, 4} and lkst ′ = lkst and
mdst ′1 = mdst1 and mem ′1 = mem1.
From cs1 = cs2 and cs1 = skip; cs3 we get that cs2 = skip; cs3. From cs2 =
skip; cs3 we get that that last rule in the derivation of
lev Λ{c2}Λ′ : cs2 must be
either tih2 or tsq2. We distinguish these two cases.

Case (tih2): In this case, we get by the rule tih2 that c2 = if e then c5 else c6 fi
and
lev Λ{c5}Λ′ : cs5 and
lev Λ{c6}Λ′ : cs6 and cs3 = cs5 = cs6.

From c2 = if e then c5 else c6 fi we get that 〈c2, lkst ,mdst2,mem2〉
α−→

〈c′2, lkst ′′,mdst ′2,mem ′2〉 is derivable with the rule ift or iff, and c′2 = ci for
some i ∈ {5, 6} and lkst ′′ = lkst and mdst ′2 = mdst2 and mem ′2 = mem2.
Hence, all conditions that we need to show hold directly due to the assumptions
of this case.

Case (tsq2): In this case, we get by the rule tsq2 that c2 = c5; c6 and
lev

Λ{c5}Λ2 : skip, and
lev Λ2{c6}Λ′ : cs6 with cs6 = cs3.

From
lev Λ{c5}Λ2 : skip we get by Lemma 7 that 〈c5, lkst ,mdst2,mem2〉
α′−→

〈c′5, lkst ′′,mdst ′2,mem ′2〉 is derivable with c′5 = stop and lkst ′′ = lkst and
mdst ′2 = mdst2 and mem ′2 =lev,Λ2

low mem2 and Λ v Λ2. From Λ v Λ2 we get that

pre(Λ) = pre(Λ2). From 〈c5, lkst ,mdst2,mem2〉
α′−→ 〈c′5, lkst ′′,mdst ′2,mem ′2〉

and c′5 = stop we get by the rule sq2 that 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′′,mdst ′2,mem ′2〉

with c′2 = c6.
From cs6 = cs3 and cs3 = cs4 and pre(Λ) = pre(Λ2) and
lev Λ2{c6}Λ′ : cs6
and
lev Λ{c3}Λ′ : cs3 and
lev Λ{c4}Λ′ : cs4 we get by Lemma 10 that
lev

(ΛtΛ2){c6}Λ′ : cs6 and
lev (ΛtΛ2){c3}Λ′ : cs3 and
lev (ΛtΛ2){c4}Λ′ : cs4.
It remains to show that
∗ mdst ′1,mdst ′2 ∈ comp(lev , (Λ t Λ2)), and
∗ mdst ′1 ={A-NR,A-NW} mdst ′2, and

∗ mem ′1 =
lev,(ΛtΛ2)
low mem ′2.

From mdst1 = mdst ′1 and mdst2 = mdst ′2 and pre(Λ) = pre(Λ1) = pre((Λ t
Λ2)) and mdst1,mdst2 ∈ comp(lev , Λ) we get that mdst ′1,mdst ′2 ∈ comp(lev , (Λt
Λ2)).
From mdst1 = mdst ′1 and mdst2 = mdst ′2 and mdst1 ={A-NR,A-NW} mdst2 we
get that mdst ′1 ={A-NR,A-NW} mdst ′2.

From mem ′2 =lev,Λ2
low mem2 and mem1 =lev,Λ

low mem2 and mem ′1 = mem1 and

Λ v (Λ t Λ2) and Λ2 v (Λ t Λ2) we get that mem ′1 =
lev,(ΛtΛ2)
low mem ′2.

Case (twl2): We get by the rule twl2 that c1 = while e do c3 od and cs1 =
while e do cs3 od and
lev,Λ1 e : low and Λ v Λ1 and Λ1 v Λ′ and
lev

Λ1{c3}Λ1 : cs3.
From cs1 = while e do cs3 od and cs1 = cs2 we get that cs2 = while e do cs3 od.
Hence, the last rule applied in the derivation of
lev Λ{c2}Λ′ : cs2 must be twl2.
From this rule we get that c2 = while e do c4 od and Λ v Λ2 and Λ2 v Λ′ and

lev Λ2{c4}Λ2 : cs3 and
lev,Λ2 e : low.
From Λ v Λ1 and
lev,Λ1 e : low and mem1 =lev,Λ

low mem2 we get that eval(e,mem1) =
eval(e,mem2).
We now distinguish two cases based on whether eval(e,mem1) = false or eval(e,mem1) =
true.

Case (eval(e,mem1) = false): From the assumption of this case we get by the rule
whf that c′1 = stop, lkst ′ = lkst , mdst ′1 = mdst1, and mem ′1 = mem1.
From c2 = while e do c4 od and eval(e,mem1) = eval(e,mem2) and the as-

sumption of this case we also get by the rule whf that 〈c2, lkst ,mdst2,mem2〉
α−→

〈c′2, lkst ′′,mdst ′2,mem ′2〉 is derivable with c′2 = stop, lkst ′′ = lkst , mdst ′2 =
mdst2, and mem ′2 = mem2.
From Λ v Λ1 and Λ1 v Λ′ and mem ′1 = mem1 and mem ′2 = mem2 and

mem1 =lev,Λ
low mem2 we get that mem1 =lev,Λ′

low mem2.
From Λ v Λ1 and Λ1 v Λ we get that pre(Λ) = pre(Λ′). Hence, we get
from mdst1,mdst2 ∈ comp(lev , Λ), by definition of comp that mdst1,mdst2 ∈
comp(lev , Λ′).
Since c′1 = stop and c′2 = stop and
lev Λ

′{stop}Λ′ : stop and mdst1,mdst2 ∈
comp(lev , Λ′) and mdst1 ={A-NR,A-NW} mdst2 and mem1 =lev,Λ′

low mem2, we can
conclude this case.

Case (eval(e,mem1) = true): From the assumption of this case we get by the rule
wht that c′1 = c3; c1 and lkst ′ = lkst and mdst ′1 = mdst1 and mem ′1 = mem1.
From c2 = while e do c4 od and eval(e,mem1) = eval(e,mem2) and the as-

sumption of this case we also get by the rule whf that 〈c2, lkst ,mdst2,mem2〉
α−→

〈c′2, lkst ′′,mdst ′2,mem ′2〉 is derivable with c′2 = c4; c2, lkst ′′ = lkst , mdst ′2 =
mdst2, and mem ′2 = mem2.
From
lev,Λ1 e : low and
lev,Λ2 e : low we get that
lev,(Λ1tΛ2) e : low.
From
lev Λ1{c3}Λ1 : cs3 and
lev Λ2{c4}Λ2 : cs3 we get by Lemma 10 that

lev (Λ1 t Λ2){c3}(Λ1 t Λ2) : cs3 and
lev (Λ1 t Λ2){c4}(Λ1 t Λ2) : cs3.
From Λ1 v Λ′ and Λ2 v Λ′ we get that (Λ1 t Λ2) v Λ′.
From (Λ1 t Λ2) v (Λ1 t Λ2) and (Λ1 t Λ2) v Λ′ and
lev,(Λ1tΛ2) e : low and

lev (Λ1tΛ2){c3}(Λ1tΛ2) : cs3 and c1 = while e do c3 od we get by the rule
twl2 that
lev (Λ1 t Λ2){c1}Λ′ : cs1. From
lev (Λ1 t Λ2){c3}(Λ1 t Λ2) : cs3
and
lev (Λ1 t Λ2){c1}Λ′ : cs1 and c′1 = c3; c1 we get by the rule tsq2 that

lev (Λ1 t Λ2){c′1}Λ′ : cs3; cs1.
From (Λ1 t Λ2) v (Λ1 t Λ2) and (Λ1 t Λ2) v Λ′ and
lev,(Λ1tΛ2) e : low and

lev (Λ1tΛ2){c4}(Λ1tΛ2) : cs3 and c2 = while e do c4 od we get by the rule

twl2 that
lev (Λ1 t Λ2){c2}Λ′ : cs1. From
lev (Λ1 t Λ2){c4}(Λ1 t Λ2) : cs3
and
lev (Λ1 t Λ2){c2}Λ′ : cs1 and c′2 = c4; c2 we get by the rule tsq2 that

lev (Λ1 t Λ2){c′2}Λ′ : cs3; cs1.
It remains to show that
∗ mdst ′1,mdst ′2 ∈ comp(lev , (Λ1 t Λ2)), and
∗ mdst ′1 ={A-NR,A-NW} mdst ′2, and

∗ mem ′1 =
lev,(Λ1tΛ2)
low mem ′2.

From mdst1 = mdst ′1 and mdst2 = mdst ′2 and pre(Λ) = pre(Λ1) = pre(Λ2) =
pre((Λ1 t Λ2)) and mdst1,mdst2 ∈ comp(lev , Λ) we get that mdst ′1,mdst ′2 ∈
comp(lev , (Λ1 t Λ2)).
From mdst1 = mdst ′1 and mdst2 = mdst ′2 and mdst1 ={A-NR,A-NW} mdst2 we
get that mdst ′1 ={A-NR,A-NW} mdst ′2.

From mem ′2 = mem2 and mem1 =lev,Λ
low mem2 and mem ′1 = mem1 and Λ v

(Λ1 t Λ2) we get that mem ′1 =
lev,(ΛtΛ2)
low mem ′2. Hence, we can conclude this

case.

Case (tan2): From the assumption of this case we get by the rule tan2 that c1 =
c′′1 @−→a 1,
lev Λ{c′′1 }Λ1 : c′′s1, Λ′ = (Λ1 ⊕lev

−→a 1), ∀x .Λ1lev 〈x 〉 v Λ′lev 〈x 〉, and
cs1 = c′′s1@−→a 1 �A-NR,A-NW.
We first show, that the last rule in the type derivation for c2 must tan2 and
how the variables in this last step must be instantiated. From cs1 = cs2 and
cs1 = c′′s1@−→a 1 �A-NR,A-NW we get that the last rule to derive
lev Λ′1{c2}Λ2 : cs2
must be tan2. Thus, we get from this rule that c2 = c′′2 @−→a 2,
lev Λ{c′′2 }Λ2 : c′′s2,
Λ′ = (Λ2 ⊕lev

−→a 2), ∀x .Λ2lev 〈x 〉 v Λ′lev 〈x 〉, and cs2 = c′′s2@−→a 2 �A-NR,A-NW. From
cs1 = cs2 and cs2 = c′′s2@−→a 2 �A-NR,A-NW, we get that cs2 = c′′s1@−→a 1 �A-NR,A-NW,
c′′s2 = c′′s1, and −→a 2 �A-NR,A-NW= −→a 1 �A-NR,A-NW.
Now we show that c′′1 and c′′2 can be typed with the same resulting partial type
environment and this type environment can still fulfill the premises for tan2. From

lev Λ{c′′1 }Λ1 : c′′s1 and
lev Λ{c′′2 }Λ2 : c′′s2 and c′′s1 = c′′s2 we get by Lemma 8 that
pre(Λ1) = pre(Λ2). Hence, we get from Lemma 10 that
lev Λ{c′′1 }(Λ1 t Λ2) : c′′s1
and
lev Λ{c′′2 }(Λ1 t Λ2) : c′′s2. Since ∀x .Λ1lev 〈x 〉 v Λ′lev 〈x 〉 and ∀x .Λ2lev 〈x 〉 v
Λ′lev 〈x 〉 we also have ∀x .(Λ1 t Λ2)lev 〈x 〉 v Λ′lev 〈x 〉. From Λ′ = (Λ1 ⊕lev

−→a 1) and
Λ′ = (Λ2 ⊕lev

−→a 2) and pre(Λ1) = pre(Λ2) and −→a 2 �A-NR,A-NW= −→a 1 �A-NR,A-NW we
get by definition of ⊕lev that Λ′ = (Λ1 t Λ2)⊕lev

−→a 1.

From c1 = c′′1 @−→a 1 we get that the last rule in the derivation of 〈c1, lkst ,mdst1,mem1〉
α−→

〈c′1, lkst ′,mdst ′1,mem ′1〉 must be either an1 or an2. From these rules we get that

〈c′′1 , lkst ,mdst1,mem1〉
α−→ 〈c′′′1 , lkst ′,mdst ′′1 ,mem ′1〉 is derivable. From
lev Λ{c′′1 }(Λ1t

Λ2) : c′′s1 and
lev Λ{c′′2 }(Λ1 t Λ2) : c′′s2 and c′′s1 = c′′s2 and mdst1,mdst2 ∈
comp(lev , Λ) and mdst1 ={A-NR,A-NW} mdst2 and mem1 =lev,Λ

low mem2 we get by
the induction hypothesis that there is α′ ∈ Eve, mdst ′′2 ∈ MdSt , c′′′2 , c

′′′
s1, c

′′′
s2 ∈

Com, mem ′2 ∈ Mem, and Λ′′ such that
lev Λ′′{c′′′1 }(Λ1 t Λ2) : c′′′s1, and
lev

Λ′′{c′′′2 }(Λ1 t Λ2) : c′′′s2, with c′′′s1 = c′′′s2, and mdst ′′1 ,mdst ′′2 ∈ comp(lev , Λ′′), and

mdst ′′1 ={A-NR,A-NW} mdst ′′2 , and mem ′1 =lev,Λ′′

low mem ′2, and 〈c′′2 , lkst ,mdst2,mem2〉
α′−→

〈c′′′2 , lkst ′,mdst ′′2 ,mem ′2〉.
We now distinguish two cases depending on the last rule in the derivation of

〈c1, lkst ,mdst1,mem1〉
α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉.

Case (an1): In this case, we get by the rule an1 that c′′′1 = stop and mdst ′1 =
updMds(mdst ′′1 ,

−→a 1) and c′1 = stop.
From c′′′1 = stop we get that the last rule in the derivation of
lev Λ

′′{c′′′1 }(Λ1t
Λ2) : c′′′s1 must be tst. Hence, c′′′s1 = stop and Λ′′ = (Λ1tΛ2). From c′′′s1 = stop

and c′′′s1 = c′′′s2 we get c′′′s2 = stop. Hence, the last rule in the derivation of

lev Λ

′′{c′′′2 }(Λ1 t Λ2) : c′′′s2 must also be tst and, thus, c′′′2 = stop.

From c′′′2 = stop and 〈c′′2 , lkst ,mdst2,mem2〉
α′−→ 〈c′′′2 , lkst ′,mdst ′′2 ,mem ′2〉

and c2 = c′′2 @−→a 2 we get by the rule an1 that 〈c2, lkst ,mdst2,mem2〉
α′−→

〈c′2, lkst ′,mdst ′2,mem ′2〉 is derivable with mdst ′2 = updMds(mdst ′′2 ,
−→a 2) and

c′2 = stop.
From c′1 = stop and c′2 = stop we get by the rule tst that
lev Λ

′{c′1}Λ′ :
stop and
lev Λ

′{c′2}Λ′ : stop.
It remains to show that mdst ′1 ={A-NR,A-NW} mdst ′2 and mdst ′1,mdst ′2 ∈ comp(lev , Λ′)

and mem ′1 =lev,Λ′

low mem ′2.
From mdst ′1 = updMds(mdst ′′1 ,

−→a 1) and mdst ′2 = updMds(mdst ′′2 ,
−→a 2) and

−→a 2 �A-NR,A-NW= −→a 1 �A-NR,A-NW we get by the definition of updMds that mdst ′1 ={A-NR,A-NW}
mdst ′2.
From Λ′′ = (Λ1tΛ2) and Λ′ = (Λ1tΛ2)⊕lev

−→a 1 we get that Λ′ = (Λ′′⊕lev
−→a 1).

From mdst ′′1 ∈ comp(lev , Λ′′) and mdst ′1 = updMds(mdst ′′1 ,
−→a 1) and Λ′ =

(Λ′′ ⊕lev
−→a 1) we get that mdst ′1 ∈ comp(lev , Λ′). From mdst ′1 ={A-NR,A-NW}

mdst ′2 and mdst ′1 ∈ comp(lev , Λ′) we get that mdst ′2 ∈ comp(lev , Λ′).

From ∀x .(Λ1 t Λ2)lev 〈x 〉 v Λ′lev 〈x 〉 and Λ′′ = (Λ1 t Λ2) and mem ′1 =lev,Λ′′

low

mem ′2 we get that mem ′1 =lev,Λ′

low mem ′2.
Case (an2): In this case, we get by the rule an2 that c′′′1 6= stop and mdst ′1 =

mdst ′′1 and c′1 = c′′′1 @−→a 1. From c′′′1 6= stop and
lev Λ
′′{c′′′1 }(Λ1 tΛ2) : c′′′s1 we

get that c′′′s1 6= stop. Hence, we get from c′′′s1 = c′′′s2 that c′′′s2 6= stop.

From c′′′2 6= stop and 〈c′′2 , lkst ,mdst2,mem2〉
α′−→ 〈c′′′2 , lkst ′,mdst ′′2 ,mem ′2〉

and c2 = c′′2 @−→a 2 we get by the rule an2 that 〈c2, lkst ,mdst2,mem2〉
α′−→

〈c′2, lkst ′,mdst ′2,mem ′2〉 is derivable with mdst ′2 = mdst ′′2 and c′2 = c′′′2 @−→a 2.
From c′1 = c′′′1 @−→a 1 and c′2 = c′′′2 @−→a 2 and
lev Λ′′{c′′′1 }(Λ1 t Λ2) : c′′′s1,
and
lev Λ

′′{c′′′2 }(Λ1 t Λ2) : c′′′s2 and ∀x .(Λ1 t Λ2)lev 〈x 〉 v Λ′lev 〈x 〉 and Λ′ =
(Λ1 t Λ2) ⊕lev

−→a 1 we get by the rule tan2 that
lev Λ
′′{c′1}Λ′ : c′s1 and
lev

Λ′′{c′2}Λ′ : c′s2 with c′s1 = c′′′s1@−→a 1 �A-NR,A-NW and c′s2 = c′′′s2@−→a 2 �A-NR,A-NW.
Hence, from c′′′s1 = c′′′s2 and −→a 1 �A-NR,A-NW= −→a 2 �A-NR,A-NW we get c′s1 = c′s2.
From mdst ′′1 ,mdst ′′2 ∈ comp(lev , Λ′′) and mdst ′′1 ={A-NR,A-NW} mdst ′′2 and mdst ′1 =
mdst ′′1 and mdst ′2 = mdst ′′2 we get that mdst ′′1 ,mdst ′′2 ∈ comp(lev , Λ′′) and
mdst ′′1 ={A-NR,A-NW} mdst ′′2 .

Since we already obtained mem ′1 =lev,Λ′′

low mem ′2 from the induction hypothesis,
we can conclude this case.

ut

We now show that whenever two commands have identical low-slices and the first
command spawns a new thread, then the second command can also spawn a new thread
in its next step and the commands of the spawned threads have identical low-slices.

Lemma 12. If
lev Λ1{c1}Λ′1 : cs1,
lev Λ2{c2}Λ′2 : cs2, cs1 = cs2, and 〈c1, lkst ,mdst1,mem1〉
↗〈c3,∅,mdst⊥〉−−−−−−−−−→

〈c′1, lkst ′,mdst ′1,mem ′1〉,
then there is c′2, c4 ∈ Com, mdst2,mdst ′2 ∈ MdSt, mem ′2 ∈ Mem, and Λ3 such that

〈c2, lkst ,mdst2,mem2〉
↗〈c4,∅,mdst⊥〉−−−−−−−−−→ 〈c′2, lkst ′′,mdst ′2,mem ′2〉,
lev Λ3{c3}Λ3 : cs3,

lev Λ3{c4}Λ3 : cs4, cs3 = cs4, and pre(Λ3) = ∅.

Proof. We prove this by structural induction on the derivation height of

〈c1, lkst ,mdst1,mem1〉
↗〈c3,∅,mdst⊥〉−−−−−−−−−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉.

The induction base is the tuple a derivation height of 1. From

〈c1, lkst ,mdst1,mem1〉
↗〈c3,∅,mdst⊥〉−−−−−−−−−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉, we know that derivations

of height 1 are only possible with the rule sp and, hence, c1 = spawn(c3). Thus, the
only rule to derive
lev Λ1{c1}Λ′1 : cs1 is tsp2. From this rule we get c1 = spawn(c3),
cs1 = spawn(cs3),
lev Λ3{c3}Λ3 : cs3, and pre(Λ3) = ∅.

From cs1 = cs2 we get that cs2 = spawn(cs4) with cs3 = cs4. Hence, we know
that the last rule used in the derivation of
lev Λ2{c2}Λ′2 : cs2 must have been tsp2.
From this rule we get c2 = spawn(c4),
lev Λ4{c4}Λ4 : cs4, and pre(Λ4) = ∅. Since
pre(Λ4) = ∅ and pre(Λ3) = ∅. From c2 = spawn(c4), we get by semantics rule sp that

〈c2, lkst ,mdst2,mem2〉
↗〈c4,∅,mdst⊥〉−−−−−−−−−→ 〈stop, lkst ,mdst ′2,mem ′2〉 is derivable.

For the induction step, let n > 1 be the height of the derivation. Derivations of

〈c1, lkst ,mdst1,mem1〉
↗〈c3,∅,mdst⊥〉−−−−−−−−−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉 with a height of n > 1

are only possible with the rules an1, an2, sq1, and sq2. Hence, c1 = c′′1 @−→a 1, or
c1 = c′′1 ; c′′′1 . We distinguish these two cases.

Case (c1 = c′′1 @−→a 1): From the assumption of this case, we get by the rule tan2 that
cs1 = c′′s1@−→a 1 �A-NR,A-NW and
lev Λ1{c′′1 }Λ′′1 : c′′s1. Thus, we get from cs1 = cs2
that cs2 = c′′s1@−→a 1 �A-NR,A-NW. Hence, the last typing rule in the derivation of

lev Λ

′
1{c2}Λ′2 : cs2 must be tan2. From this rule we get that c2 = c′′2 @−→a 2 and

lev Λ2{c′′2 }Λ′′2 : c′′s2 with c′′s1 = c′′s2.

From c1 = c′′1 @−→a 1 we get by the rules an1 and an2 that

〈c′′1 , lkst ,mdst1,mem1〉
↗〈c3,∅,mdst⊥〉−−−−−−−−−→ 〈c′′′1 , lkst ′,mdst ′′1 ,mem ′1〉. Since c′′s1 = c′′s2, we

get from the induction hypothesis that there is c′′′2 , c4 ∈ Com, mdst2,mdst ′′2 ∈
MdSt , mem ′2 ∈ Mem, and Λ3 such that

〈c′′2 , lkst ,mdst2,mem2〉
↗〈c4,∅,mdst⊥〉−−−−−−−−−→ 〈c′′′2 , lkst ′,mdst ′′2 ,mem ′2〉,
lev Λ3{c3}Λ3 :

cs3,
lev Λ3{c4}Λ3 : cs4, cs3 = cs4, and pre(Λ3) = ∅.
It remains to show that there is c′2 ∈ Com, mdst ′2 ∈ MdSt , such that

〈c2, lkst ,mdst2,mem2〉
↗〈c4,∅,mdst⊥〉−−−−−−−−−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉. This follows directly

from c2 = c′′2 @−→a 2 and

〈c′′2 , lkst ,mdst2,mem2〉
↗〈c4,∅,mdst⊥〉−−−−−−−−−→ 〈c′′′2 , lkst ′,mdst ′′2 ,mem ′2〉 by the rules an1 and

an2.

Case (c1 = c′′1 ; c′′′1): From the assumption of this case, we get by the rule tsq2 that
cs1 = c′′s1; c′′′s1 and
lev Λ1{c′′1 }Λ′′1 : c′′s1. Hence, the last typing rule in the derivation
of
lev Λ2{c2}Λ′2 : cs2 must be tsq2. From this rule we get that c2 = c′′2 ; c′′′2 and

lev Λ2{c′′2 }Λ′′2 : c′′s2 with c′′s1 = c′′s2.

From c1 = c′′1 ; c′′′1 we get by the rules sq1 and sq2 that

〈c′′1 , lkst ,mdst1,mem1〉
↗〈c3,∅,mdst⊥〉−−−−−−−−−→ 〈c′′′1 , lkst ′,mdst ′′1 ,mem ′1〉. Thus, we get from

cs1 = cs2 that cs2 = c′′s1, c
′′′
s1. Since c′′s1 = c′′s2, we get from the induction hypothesis

that there is c′′′2 , c4 ∈ Com, mdst2,mdst ′′2 ∈ MdSt , mem ′2 ∈ Mem, and Λ3 such
that
〈c′′2 , lkst ,mdst2,mem2〉

↗〈c4,∅,mdst⊥〉−−−−−−−−−→ 〈c′′′2 , lkst ′,mdst ′′2 ,mem ′2〉,
lev Λ3{c3}Λ3 :
cs3,
lev Λ3{c4}Λ3 : cs4, cs3 = cs4, and pre(Λ3) = ∅.
It remains to show that there is c′2 ∈ Com, mdst ′2 ∈ MdSt , such that

〈c2, lkst ,mdst2,mem2〉
↗〈c4,∅,mdst⊥〉−−−−−−−−−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉. This follows directly

from c2 = c′′2 ; c′′′2 and

〈c′′2 , lkst ,mdst2,mem2〉
↗〈c4,∅,mdst⊥〉−−−−−−−−−→ 〈c′′′2 , lkst ′,mdst ′′2 ,mem ′2〉 by the rules sq1 and

sq2.

ut

We define an equivalence on memories that requires equivalence on low-variables
and variables for which we make a noread assumption.

Definition 10. Let lev : Var → Lev be a domain assignment and mdst ∈ MdSt be a
mode state. Two memories mem,mem ′ ∈ Mem are low-equal modulo modes (denoted
by: mem =lev,mdst

low), if and only if the following condition is satisfied:

– ∀x ∈ Var .lev(x) = low ∧ x /∈ mdst(A-NR) =⇒ mem(x) = mem ′(x).

Two memories are related by =lev,mdst
low if they agree on all variables of the security level

low for which no no-read assumption is currently made.

Similar to [10, 18] we define a compositional security property in two steps. First, we
define a closure condition for binary relations that captures updates of an environment,
i.e. other threads, that respect assumptions of a given thread. Second, we define a
bisimulation on local configurations that defines our notion of security for individual
threads in arbitrary environments that respect the assumptions of this thread.

Definition 11. A binary relation Rlev ⊆ LCnf × LCnf with lev : Var → Lev is
closed under globally consistent changes if for all c1, c2 ∈ Com, lkst1, lkst2 ∈ LkSt,
mdst1,mdst2 ∈ MdSt, and mem1,mem2 ∈ Mem with

〈c1, lkst1,mdst1,mem1〉Rlev 〈c2, lkst2,mdst2,mem2〉)

the following three conditions are satisfied

1. ∀x ∈ Var .(lev(x) = high ∧ x /∈ mdst1(A-NW)
=⇒ ∀v1, v2 ∈ Val .
〈c1, lkst1,mdst1,mem1[x 7→ v1]〉Rlev 〈c2, lkst2,mdst2,mem2[x 7→ v2]〉),

2. ∀x ∈ Var .(lev(x) = low ∧ x /∈ mdst1(A-NW)
=⇒ ∀v ,∈ Val .
〈c1, lkst1,mdst1,mem1[x 7→ v]〉Rlev 〈c2, lkst2,mdst2,mem2[x 7→ v]〉).

The definition of the closure condition captures updates of high variables (first item)
and low variables (second item) by other threads similar to the closure conditions
in [10, 18]. Note that our definition of the closure condition only considers the mode
state in the first local configuration. In the context in which we will use the closure
condition we will explicitly ensure that the mode states of both local configurations
are compatible (i.e. mode states agree on the assumptions).

We now define a bisimulation relation that characterizes secure information flow
modulo modes.

Definition 12. A symmetric binary relation Rlev ⊆ LCnf × LCnf with lev : Var →
Lev is a strong low bisimulation modulo modes if it is closed under globally consistent
changes, and if for all c1, c2 ∈ Com, lkst1, lkst2 ∈ LkSt, mdst1,mdst2 ∈ MdSt, and
mem1,mem2 ∈ Mem with

〈c1, lkst1,mdst1,mem1〉Rlev 〈c2, lkst2,mdst2,mem2〉

the following conditions are satisfied

1. lkst1 = lkst2, mdst1 ={A-NR,A-NW} mdst2, mem1 =lev,mdst1
low mem2,

2. for all c′1 ∈ Com, lkst ′1 ∈ LkSt, mdst ′1 ∈ MdSt, mem ′1 ∈ Mem, and α1 ∈ Eve with

〈c1, lkst1,mdst1,mem1〉
α−→ 〈c′1, lkst ′1,mdst ′1,mem ′1〉 there are c′2 ∈ Com, lkst ′2 ∈

LkSt, mdst ′2 ∈ MdSt, mem ′2 ∈ Mem, and α2 ∈ Eve such that the following condi-
tions are satisfied:

(a) 〈c2, lkst2,mdst2,mem2〉
α−→ 〈c′2, lkst ′2,mdst ′2,mem ′2〉,

(b) 〈c′1, lkst ′1,mdst ′1,mem ′1〉Rlev 〈c′2, lkst ′2,mdst ′2,mem ′2〉, and

(c) if there is c3 ∈ Com such that α1 =↗〈c3,∅,mdst⊥〉, then there is c4 ∈ Com such
that α2 =↗〈c4,∅,mdst⊥〉 and

〈c3, ∅,mdst⊥,mem ′1〉Rlev 〈c4, ∅,mdst⊥,mem ′1〉 .

The relation ∼lev is the union of all strong low bisimulations modulo modes.

We now show that our type system is sound with respect to our bisimulation-based
security property.

Lemma 13. If
lev Λ{c}Λ′ : c′ is derivable, then

〈c, lkst ,mdst1,mem1〉 ∼lev 〈c, lkst ,mdst2,mem2〉

holds for all lkst ∈ LkSt, mdst1,mdst2 ∈ MdSt, and mem1,mem2 ∈ Mem with
mdst1,mdst2 ∈ comp(lev , Λ), mdst1 ={A-NR,A-NW} mdst2 and mem1(x) =lev,Λ

low mem2(x).

Proof. We prove Theorem 5 in three steps. In the first step, we construct a family of
binary relations on local configurations RΛ

′
lev that is parameterized by a partial type

environments. In the second step, we show that

〈c, lkst ,mdst1,mem1〉RΛ
′

lev lev〈c, lkst ,mdst2,mem2〉

holds. In the third step, we show that the union of all relations RΛ
′

lev in the family
is a strong low bisimulation modulo modes. Since ∼lev is the union of all strong low
bisimulation modulo modes, this suffices to show that

〈c, lkst ,mdst ,mem1〉 ∼lev 〈c, lkst ,mdst ,mem2〉

holds.

Before we start, note that whenever mdst1 ={A-NR,A-NW} mdst2 holds, then

– mdst1 ∈ comp(lev , Λ) holds if and only if mdst2 ∈ comp(lev , Λ) holds, and

– x ∈ mdst1(md) holds iff x ∈ mdst2(md) holds for md ∈ {A-NR,A-NW}.

Hence, we only need to check for these properties in one of two mode states when the
two mode states fulfill mdst1 ={A-NR,A-NW} mdst2.

Step 1: Constructing the family of relations. We define

RΛ
′

lev =


(〈c1, lkst ,mdst1,mem1〉,
〈c2, lkst ,mdst2,mem2〉)

∣∣∣∣∣∣∣∣∣∣
∃Λ.

lev Λ{c1}Λ′ : cs1∧
lev Λ{c2}Λ′ : cs2
∧cs1 = cs2 ∧mdst1,mdst2 ∈ comp(lev , Λ)
∧mdst1 ={A-NR,A-NW} mdst2
∧mem1 =lev,Λ

low mem2



Step 2: Showing that 〈c, lkst ,mdst1,mem1〉RΛ
′

lev lev〈c, lkst ,mdst2,mem2〉 holds.
By the assumption
lev Λ{c}Λ′ : c′ of the theorem we get directly that

〈c, lkst ,mdst1,mem1〉RΛ
′

lev 〈c, lkst ,mdst2,mem2〉

holds for all lkst ∈ LkSt , mdst1,mdst2 ∈ MdSt , and mem1,mem2 ∈ Mem with
mdst1,mdst2 ∈ comp(lev , Λ), mdst1 ={A-NR,A-NW} mdst2, and mem1(x) =lev,Λ

low mem2(x).

Step 3: Showing that RΛ′lev is a strong low bisimulation modulo modes. It is clear

from the definition that the family of relationsRΛ
′

lev is symmetric, because all conditions
are symmetric.

We show thatRΛ
′

lev is closed under globally consistent changes. Hence, let 〈c1, lkst ,mdst1,mem1〉RΛ
′

lev 〈c2, lkst ,mdst2,mem2〉.
According to the definition of “closed under globally consistent changes” (Defini-
tion 11), we must show that for all x ∈ Var with x /∈ mdst1(A-NW) the following
two conditions hold:

1. If lev(x) = low,
then 〈c1, lkst ,mdst1,mem1[x 7→ v]〉RΛ1,Λ2

lev 〈c2, lkst ,mdst2,mem2[x 7→ v]〉 holds for
all v ∈ Val , and

2. If lev(x) = high,
then 〈c1, lkst ,mdst1,mem1[x 7→ v1]〉RΛ1

lev 〈c2, lkst ,mdst2,mem2[x 7→ v2]〉 holds for
all v1, v2 ∈ Val .

Let Λ be a partial type environment that has the properties required in the defini-
tion of RΛ

′
lev , i.e. mdst1,mdst2 ∈ comp(lev , Λ) and mem1 =lev,Λ

low mem2.

We must show that the memories are still related by =lev,Λ
low after the modification

of the variables. For condition (1) this is immediate, because the variables are set to
equal values on both sides of the relation.

For condition (2), we know that lev(x) = high. Hence, Λlev 〈x 〉 = low only if
x ∈ pre(Λ).

Since mdst1 ∈ comp(lev , Λ), this would mean that x ∈ mdst(A-NW). This contra-

dicts the assumption that x /∈ mdst(A-NW). Hence, mem1[x 7→ v1] =
lev,Λ′1
low mem2[x 7→

v2] also holds for condition (2).

Now we show that whenever 〈c1, lkst ,mdst1,mem1〉RΛ
′

lev 〈c2, lkst ,mdst2,mem2〉, then
mem1 =lev,mdst1

low mem2. Let Λ be a partial type environment with the properties

stated in the definition of RΛ
′

lev , i.e. mdst1,mdst2 ∈ comp(lev , Λ) and mem1 =lev,Λ
low

mem2. To show that mem1 =lev,mdst1
low mem2 holds, assume lev(x) = low and x /∈

mdst1(A-NR). Since mdst1 ∈ comp(lev , Λ) according to the definition of RΛ
′

lev , we have
x /∈ pre(Λ). Hence, Λ′1lev 〈x 〉 = low and, thus, mem1(x) = mem2(x) follows directly
from mem1 =lev1,Λ

low mem2.

We finally show that whenever 〈c1, lkst ,mdst1,mem1〉RΛ
′

lev 〈c2, lkst ,mdst2,mem2〉
and 〈c1, lkst ,mdst1,mem1〉

α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉, then there is c′2 ∈ Com, mdst ′2,
α′ ∈ Eve, and mem ′2 ∈ Mem such that the following three conditions hold:

1. 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉,

2. 〈c′1, lkst ′,mdst ′1,mem ′1〉RΛ
′

lev 〈c′2, lkst ′,mdst ′2,mem ′2〉, and
3. if there is c3 ∈ Com such that α =↗〈c3,∅,mdst⊥〉, then there is Λ′′ and c4 ∈ Com

such that α′ =↗〈c4,∅,mdst⊥〉 and

〈c3, ∅,mdst⊥,mem ′1〉RΛ
′′

lev 〈c4, ∅,mdst⊥,mem ′1〉 .

From 〈c1, lkst ,mdst1,mem1〉RΛ
′

lev 〈c2, lkst ,mdst2,mem2〉, we know by the definition

of RΛ
′

lev that
lev Λ{c1}Λ′ : cs1,
lev Λ{c2}Λ′ : cs2, cs1 = cs2, mdst1,mdst2 ∈
comp(lev , Λ), mdst1 ={A-NR,A-NW} mdst2, and mem1 =lev,Λ

low mem2.

Assume that 〈c1, lkst ,mdst1,mem1〉
α−→ 〈c′1, lkst ′,mdst ′1,mem ′1〉.

From
lev Λ{c1}Λ′ : cs1,
lev Λ{c2}Λ′ : cs2, mdst1,mdst2 ∈ comp(lev , Λ), mdst1 ={A-NR,A-NW}

mdst2, mem1 =lev,Λ
low mem2, cs1 = cs2, and 〈c1, lkst ,mdst1,mem1〉

α−→ 〈c′1, lkst ′,mdst ′2,mem ′1〉
we get by Lemma 11 that there is mdst ′2 ∈ MdSt , α′ ∈ Eve, c′2, c

′
s1, c

′
s2 ∈ Com,

mem ′2 ∈ Mem, and Λ′′ such that 〈c2, lkst ,mdst2,mem2〉
α′−→ 〈c′2, lkst ′,mdst ′2,mem ′2〉,

lev Λ′′{c′1}Λ′ : c′s1,
lev Λ′′{c′2}Λ′ : c′s2, c′s1 = c′s2, mdst ′1,mdst ′2 ∈ comp(lev , Λ′′),

mdst ′1 ={A-NR,A-NW} mdst ′2, and mem ′1 =lev,Λ′′

low mem ′2.
From
lev Λ

′′{c′1}Λ′ : c′s1,
lev Λ
′′{c′2}Λ′ : c′s2, c′s1 = c′s2, mdst ′1,mdst ′2 ∈ comp(lev , Λ′′),

mdst ′1 ={A-NR,A-NW} mdst ′2, and mem ′1 =lev,Λ′′

low mem ′2, we get by the definition of RΛ
′

lev

that 〈c′1, lkst ′,mdst ′1,mem ′1〉RΛ
′

lev 〈c′2, lkst ′,mdst ′2,mem ′2〉.
Hence, the first and the second condition are fulfilled. It remains to show that the

third condition, i.e. if there is c3 ∈ Com such that α =↗〈c3,∅,mdst⊥〉, then there is
c4 ∈ Com and Λ′′′ such that α′ =↗〈c4,∅,mdst⊥〉 and

〈c3, ∅,mdst⊥,mem ′1〉RΛ
′′′

lev 〈c4, ∅,mdst⊥,mem ′1〉 .

Hence, assume that there is c3 ∈ Com such that α =↗〈c3,∅,mdst⊥〉. By Lemma 12
we get that there is c′2, c4 ∈ Com, lkst ′′ ∈ LkSt , mdst ′2 ∈ MdSt , mem ′2 ∈ Mem, and Λ′′′

such that α′ =↗〈c4,∅,mdst⊥〉, 〈c2, lkst ,mdst2,mem2〉
↗〈c4,∅,mdst⊥〉−−−−−−−−−→ 〈c′2, lkst ′′,mdst ′2,mem ′2〉.

lev Λ′′′{c′3}Λ′′′ : cs3,
lev Λ′′′{c′4}Λ′′′ : cs4, cs3 = cs4, and pre(Λ′′′) = ∅. From
pre(Λ′′′) = ∅ we get that mdst⊥ ∈ comp(lev , Λ′′′). From mem ′1 = mem ′1 we get that

mem ′1 =lev,Λ′′′

low mem ′1. Thus,

〈c3, ∅,mdst⊥,mem ′1〉RΛ
′′′

lev 〈c4, ∅,mdst⊥,mem ′1〉

holds. ut

We now show that every program that is typeable with the type system from the
body of the article is also typeable with the type system from the appendix.

Lemma 14. If `lev Λ{c}Λ′ : c′ is derivable, then
lev Λ{c}Λ′ : c′ is also derivable.

Proof. We prove Lemma 14 by induction on the derivation of `lev Λ{c}Λ′ : c′. We
distinguish the cases of the last rule applied in the derivation of `lev Λ{c}Λ′ : c′.

Case (tsk):
From the typing rule tsk we get that c = c′ = skip and Λ = Λ′. From c = c′ =
skip and Λ = Λ′ we get by the typing rule tsk2 that
lev Λ{c}Λ′ : c′.

Case (tah):
From the typing rule tah we get that c = x :=e, c′ = skip, lev(x) = high,
x /∈ pre(Λ) and Λ = Λ′. From c = x :=e, c′ = skip, lev(x) = high, x /∈ pre(Λ) and
Λ = Λ′ we get by the typing rule tah2 that
lev Λ{c}Λ′ : c′.

Case (tal):
From the typing rule tal we get that c = x :=e, c′ = x :=e, lev(x) = low, `lev,Λ

e : low, x /∈ pre(Λ) and Λ = Λ′. From c = x :=e, c′ = x :=e, lev(x) = low,
`lev,Λ e : low, x /∈ pre(Λ) and Λ = Λ′ we get by the typing rule tal2 that

lev Λ{c}Λ′ : c′.

Case (tfl):
From the typing rule tfl we get that c = x :=e, c′ = x :=e, `lev,Λ e : low x ∈
pre(Λ) and Λ′ = Λ[x 7→ low]. From Λ′ = Λ[x 7→ low] we get that Λ[x 7→ low] v Λ′.
From c = x :=e, c′ = x :=e, `lev,Λ e : low x ∈ pre(Λ) and Λ[x 7→ low] v Λ′ we get
by the typing rule tfl2 that
lev Λ{c}Λ′ : c′.

Case (tfh):
From the typing rule tfh we get that c = x :=e, c′ = skip, x ∈ pre(Λ) and
Λ′ = Λ[x 7→ high]. From Λ′ = Λ[x 7→ high] we get that Λ[x 7→ high] v Λ′. From
c = x :=e, c′ = x :=e, x ∈ pre(Λ) and Λ[x 7→ high] v Λ′ we get by the typing rule
tfh2 that
lev Λ{c}Λ′ : c′

Case (tlo):
From the typing rule tlo we get that c = c′ = lock(l) and Λ = Λ′. From c = c′ =
lock(l) and Λ = Λ′ we get by the typing rule tlo2 that
lev Λ{c}Λ′ : c′.

Case (tul):
From the typing rule tul we get that c = c′ = unlock(l) and Λ = Λ′. From c =
c′ = unlock(l) and Λ = Λ′ we get by the typing rule tul2 that
lev Λ{c}Λ′ : c′.

Case (tsp):
From the typing rule tsp we get that c = spawn(c′′), c′ = spawn(c′′′), `lev

c′′ : c′′′ and Λ′ = Λ. From `lev c′′ : c′′′ we get by the typing rule tth that
`lev Λ′′{c′′}Λ′′ : c′′′ with pre(Λ′′) = ∅. From `lev Λ′′{c′′}Λ′′ : c′′′ we get by
the induction hypothesis that
lev Λ

′′{c′′}Λ′′ : c′′′. From
lev Λ
′′{c′′}Λ′′ : c′′′ and

pre(Λ′′) = ∅ we ge by the typing rule tth2 that
lev c′′ : c′′′. From c = spawn(c′′),
c′ = spawn(c′′′),
lev c′′ : c′′′ and Λ′ = Λ we get by the typing rule tsp2 that

lev Λ{c}Λ′ : c′.

Case (twl):
From the typing rule twl we get that c = while e do c′′ od, c = while e do c′′′ od,
Λ v Λ′, Λ′′ v Λ′, `lev,Λ′ e : low, and `lev Λ

′{c′′}Λ′′ : c′′′. From `lev Λ
′{c′′}Λ′′ :

c′′′ we get by the induction hypothesis that
lev Λ′{c′′}Λ′′ : c′′′. From
lev

Λ′{c′′}Λ′′ : c′′′ and Λ′′ v Λ′ we get by Lemma 6 that
lev Λ
′{c′′}Λ′ : c′′′. From

c = while e do c′′ od, c = while e do c′′′ od, Λ v Λ′, `lev,Λ′ e : low, and

lev Λ

′{c′′}Λ′ : c′′′ we get by the typing rule twl2 that
lev Λ{c}Λ′ : c′.
Case (til):

From the typing rule til we get that c = if e then c1 else c2 fi, c′ = if e then c′1 else c′2 fi,
`lev,Λ e : low, `lev Λ{c1}Λ′′ : c′1, `lev Λ{c2}Λ′′′ : c′2, and Λ′ = Λ′′ t Λ′′′. From
Λ′ = Λ′′ t Λ′′′ we get Λ′′ v Λ′ and Λ′′′ v Λ′. From `lev Λ{c1}Λ′′ : c′1 and
`lev Λ{c2}Λ′′′ : c′2, we get by the induction hypothesis that
lev Λ{c1}Λ′′ : c′1
and
lev Λ{c2}Λ′′′ : c′2. From
lev Λ{c1}Λ′′ : c′1,
lev Λ{c2}Λ′′′ : c′2, Λ′′ v Λ′

and Λ′′′ v Λ′ we get by Lemma 6 that
lev Λ{c1}Λ′ : c′1 and
lev Λ{c2}Λ′ : c′2.
From c = if e then c1 else c2 fi, c′ = if e then c′1 else c′2 fi `lev,Λ e : low,

lev Λ{c1}Λ′ : c′1 and
lev Λ{c2}Λ′ : c′2 we get by the typing rule til2 that

lev Λ{c}Λ′ : c′.

Case (tih):
From the typing rule tih we get that c = if e then c1 else c2 fi, c′ = if e then c′1 else c′2 fi,
c′1 = c′2, `lev Λ{c1}Λ′′ : c′1, `lev Λ{c2}Λ′′′ : c′2, and Λ′ = Λ′′ t Λ′′′. From
Λ′ = Λ′′ t Λ′′′ we get Λ′′ v Λ′ and Λ′′′ v Λ′. From `lev Λ{c1}Λ′′ : c′1 and
`lev Λ{c2}Λ′′′ : c′2, we get by the induction hypothesis that
lev Λ{c1}Λ′′ : c′1 and

lev Λ{c2}Λ′′′ : c′2. From
lev Λ{c1}Λ′′ : c′1,
lev Λ{c2}Λ′′′ : c′2, Λ′′ v Λ′ and
Λ′′′ v Λ′ we get by Lemma 6 that
lev Λ{c1}Λ′ : c′1 and
lev Λ{c2}Λ′ : c′2. From
c = if e then c1 else c2 fi, c′ = if e then c′1 else c′2 fi c′1 = c′2,
lev Λ{c1}Λ′ : c′1
and
lev Λ{c2}Λ′ : c′2 we get by the typing rule til2 that
lev Λ{c}Λ′ : c′.

Case (tsq):
From the typing rule tsq we get that c = c1; c2, c′ = c′1; c′2, `lev Λ{c1}Λ′′ : c′1
and `lev Λ′′{c2}Λ′ : c′2. From `lev Λ{c1}Λ′′ : c′1 and `lev Λ′′{c2}Λ′ : c′2. we get
by the induction hypothesis that
lev Λ{c1}Λ′′ : c′1 and
lev Λ

′′{c2}Λ′ : c′2. From
c = c1; c2, c′ = c′1; c′2
lev Λ{c1}Λ′′ : c′1 and
lev Λ′′{c2}Λ′ : c′2. we get by the
typing rule tsq2 that
lev Λ{c}Λ′ : c′.

Case (tan):
From the typing rule tan we get that c = c1@−→a , c = c′1@−→a ′, `lev Λ{c1}Λ′ :
c′1, Λ′ = Λ′′ ⊕lev

−→a , ∀x .Λ′′lev 〈x 〉 v Λ′lev 〈x 〉 and −→a ′ = −→a �A-NR,A-NW. From `lev

Λ{c1}Λ′ : c′1 we get by the induction hypothesis that
lev Λ{c1}Λ′ : c′1. From
c = c1@−→a , c = c′1@−→a ′,
lev Λ{c1}Λ′ : c′1, Λ′ = Λ′′ ⊕lev

−→a , ∀x .Λ′′lev 〈x 〉 v Λ′lev 〈x 〉
and −→a ′ = −→a �A-NR,A-NW we get by the typing rule tan2 that
lev Λ{c}Λ′ : c′.

ut

Theorem 5. If `lev Λ{c}Λ′ : c′ is derivable, then

〈c, lkst ,mdst1,mem1〉 ∼lev 〈c, lkst ,mdst2,mem2〉

holds for all lkst ∈ LkSt, mdst1,mdst2 ∈ MdSt, and mem1,mem2 ∈ Mem with
mdst1,mdst2 ∈ comp(lev , Λ), mdst1 ={A-NR,A-NW} mdst2 and mem1(x) =lev,Λ

low mem2(x).

Proof. Let lev , Λ, Λ′, c, and c′ be arbitrary such that `lev Λ{c}Λ′ : c′ is derivable.
From `lev Λ{c}Λ′ : c′ we get by Lemma 14 that
lev Λ{c}Λ′ : c′ is derivable.
From
lev Λ{c}Λ′ : c′ we get by Lemma 13 that

〈c, lkst ,mdst1,mem1〉 ∼lev 〈c, lkst ,mdst2,mem2〉

holds for all lkst ∈ LkSt , mdst1,mdst2 ∈ MdSt , and mem1,mem2 ∈ Mem with
mdst1,mdst2 ∈ comp(lev , Λ), mdst1 ={A-NR,A-NW} mdst2 and mem1(x) =lev,Λ

low mem2(x).
ut

9.4 Soundness of the Combined Analyses

In this subsection, we prove the soundess of our combined analysis. This includes the
proof for the security type system with respect to termination-sensitive noninterference
(Theorem 3), as well as the concrete combination of our analyses (Corollary 1). The
following table lists the dependencies between lemmas and theorems in this subsection.

Lemma/Theorem Depends on lemmas/theorems

Lemma 15 none

Lemma 16 Lemma 15

Lemma 17 Lemma 16, Lemma 11, Lemma 13

Theorem 3 Lemma 17, Lemma 14

Corollary 1 Theorems 1, 2, 3

Definition 13. A command c does not read variable x , if for all c′, lkst, lkst ′, mdst,

mdst ′, mem, mem ′, and α with 〈c, lkst ,mdst ,mem〉 α−→ 〈c′, lkst ′,mdst ′,mem ′〉 one of
the following two conditions is satisfied:

– ∀Val .〈c, lkst ,mdst ,mem[x 7→ v]〉 α−→ 〈c′, lkst ′,mdst ′,mem ′[x 7→ v]〉, or

– ∀Val .〈c, lkst ,mdst ,mem[x 7→ v]〉 α−→ 〈c′, lkst ′,mdst ′,mem ′〉.

Note that in a local configuration 〈c, lkst ,mdst ,mem〉 the command c does not
read any variable for which it provides a no-read guarantee, because the conditions in
the definition of “does not read” and “provide its no-read guarantees” coincide.

First we prove that a command that does not read some variables is not influenced
by said variables.

Lemma 15. Let 〈c, lkst ,mdst ,mem1〉, 〈c′, lkst ′,mdst ′,mem ′1〉 ∈ LCnf be local config-
urations, α ∈ Eve be an event, x1, . . . , xk ∈ Var be variables, and mem2 ∈ Mem be a
memory.

If c does not read xi for all i ∈ {1, . . . , k},
〈c, lkst ,mdst ,mem1〉

α−→ 〈c′, lkst ′,mdst ′,mem ′1〉, mem1(x) = mem2(x) for all x ∈ Var \
{x1, . . . , xk}, then there is a memory mem ′2 ∈ Mem such that

〈c, lkst ,mdst ,mem2〉
α−→ 〈c′, lkst ′,mdst ′,mem ′2〉 and mem ′1(x) = mem ′2(x) for all x ∈

Var \ {x1, . . . , xk}.
Moreover, if mem1(x) 6= mem ′1(x) or mem2(x) 6= mem ′2(x) hold for x ∈ {x1, . . . , xk},

then mem ′1(x) = mem ′2(x).

Proof. We prove this lemma by induction on the number of variables k. Let firstly
k = 0. In this case, we have mem1 = mem2 and we conclude by setting mem ′2 = mem ′1.

Now let k > 0. Let mem3 = mem2[xk 7→ mem1(xk)]. This means, mem3 and
mem1 differ only in the variables in {x1, . . . , xk−1}. Hence, we get from the induction
hypothesis that there is mem ′3 with

〈c, lkst ,mdst ,mem3〉
α−→ 〈c′, lkst ′,mdst ′,mem ′3〉

and mem ′1 and mem ′3 only differ in the variables in {x1, . . . , xk−1} for which mem1(x) =
mem ′1(x) or mem3(x) = mem ′3(x). By construction of mem3 there is v such that
mem3 = mem2[xk 7→ v)]. Since c does not read xk one of the following conditions
holds:

– 〈c, lkst ,mdst ,mem2〉
α−→ 〈c′, lkst ′,mdst ′,mem ′3[xk 7→ v]〉

– 〈c, lkst ,mdst ,mem2〉
α−→ 〈c′, lkst ′,mdst ′,mem ′3〉

In the first case, we define mem ′2 = mem ′3[xk 7→ v], and in the second case, we
define mem ′2 = mem ′3. Hence, mem ′2 and mem ′3 differ at most in xk. Moreover, if
mem2(xk) 6= mem ′2(xk), then mem ′2(xk) 6= v . Hence, it must be the second case, thus,
mem ′2(xk) = mem ′3(xk). Finally, if mem3(xk) 6= mem ′3(xk), we can turn around the
reasoning and consider mem3 = mem2[xk 7→ v ′] to conclude.

Hence, mem ′1 and mem ′2 differ only on the variables in {x1, . . . , xk} and they do not
differ on those variables in {x1, . . . , xk} that have been written in one of the execution
steps.

We now show that for two global configurations in which each pair of configurations
is related by our bisimulation, all steps of the first configuration can be matched by the
second thread, and in the resulting global configurations each pair of configurations is
again related by our bisimulation relation.

Lemma 16. Let gcnf 1 = 〈[(c1,1, lkst1,mdst1,1), . . . , (c1,n, lkstn,mdst1,n)],mem1〉 and
gcnf 2 = 〈[(c2,1, lkst1,mdst2,1), . . . , (c2,n, lkstn,mdst2,n)],mem2〉 be two global config-
urations that use modes globally sound, provide sound guarantees, and that satisfy
∀i, j.i 6= j =⇒ lkst i ∩ lkstj = ∅.

If there is a global configuration

gcnf ′1 = 〈[(c′1,1, lkst ′1,mdst ′1,1), . . . , (c′1,m, lkst ′m,mdst1,m)′],mem ′1〉

such that gcnf 1 � gcnf ′1 and there exist mem1,i,mem2,i ∈ Mem for all i ∈ {1, . . . , n}
with

– 〈c1,i, lkst i,mdst1,i,mem1,i〉 ∼lev 〈c2,i, lkst i,mdst2,i,mem2,i〉, and
– mem1,i(x) = mem1(x) and mem2,i(x) = mem2(x) hold for all x with

(lev(x) = high) ∨mem1(x) = mem2(x) ∨ x /∈
⋃
j∈{1,...,n}mdst1,j(A-NR),

then there exist gcnf ′2, c′2,1, . . . , c
′
2,m, mdst ′2,1, . . . ,mdst ′2,m, and mem ′2 with

gcnf ′2 = 〈[(c′2,1, lkst ′1,mdst ′2,1), . . . , (c′2,m, lkst ′m,mdst ′2,m)],mem ′2〉 such that

1. gcnf 2 � gcnf ′2, and
2. for all i ∈ {1, . . . ,m} there are mem ′1,i,mem ′2,i ∈ Mem with

– 〈c′1,i, lkst ′i,mdst ′1,i,mem ′1,i〉 ∼lev 〈c′2,i, lkst ′i,mdst ′2,i,mem ′2,i〉, and
– mem ′1,i(x) = mem1(x) and mem ′2,i(x) = mem2(x) hold for all x with (lev(x) =

high) ∨mem ′1(x) = mem ′2(x) ∨ x /∈
⋃
j∈{1,...,m}mdst ′1,j(A-NR), and

3. ∀i, j.i 6= j =⇒ lkst ′i ∩ lkst ′j = ∅.

Proof. We prove this lemma in two steps. In the first step, we construct a global
configuration gcnf ′2 such that conclusion (1) and (3) from the lemma is satisfied, i.e.
gcnf 2 � gcnf ′2. In the second step, we prove that the global configuration gcnf ′2 also
satisfies conclusion (2) of this lemma.

Step 1 (Constructing gcnf ′2). We show that the execution step gcnf 1 � gcnf ′1 can
be matched by an execution step in gcnf 2. From gcnf 1 � gcnf ′1,

gcnf 1 = 〈[(c1,1, lkst1,mdst1,1), . . . , (c1,n, lkstn,mdst1,n)],mem1〉

and gcnf ′1 = 〈[(c′1,1, lkst ′1,mdst ′1,1), . . . , (c′1,m, lkst ′m,mdst1,m)′],mem ′1〉 we get by the
definition of the global transition system that either m = n or m = n+ 1 and there is
some j, j′ ∈ {1, . . . , n} and α ∈ Eve with n− j′ = j

(A) 〈c1,j , lkstj ,mdst1,j ,mem1〉
α−→ 〈c′1,m−j′ , lkst ′m−j′ ,mdst ′1,m−j′ ,mem ′1〉

(B) (c1,i, lkst i,mdst1,i) = (c′1,i, lkst ′i,mdst ′1,i) for all i < j
(C) (c1,n−i, lkstn−i,mdst1,n−i) = (c′1,m−i, lkst ′m−i,mdst ′1,m−i) for all i < j′

(D) if m = n+ 1, then (c′1,j , lkst ′j ,mdst ′1,j) = (c3, ∅,mdst⊥) and α =↗〈c3,∅,mdst⊥〉

By assumption of this lemma there are mem1,j ,mem2,j ∈ Mem such that for all
x ∈ Var we have

(E) 〈c1,j , lkstj ,mdst1,j ,mem1,j〉 ∼lev 〈c2,j , lkstj ,mdst2,j ,mem2,j〉, and
(F) [(lev(x) = high) ∨mem1(x) = mem2(x) ∨ x /∈

⋃
k∈{1,...,n}\{j}mdst1,k(A-NR)]

=⇒ mem1,j(x) = mem1(x), and
(G) [(lev(x) = high) ∨mem1(x) = mem2(x) ∨ x /∈

⋃
k∈{1,...,n}\{j}mdst1,k(A-NR)]

=⇒ mem2,j(x) = mem2(x).

From (E) we get by definition of strong low bisimulation modulo modes that

(H) mem1,j =
lev,mdst1,j
low mem2,j .

Due to (F), mem1,j and mem1 differ only in variables x with lev(x) = low, mem1(x) 6=
mem2(x), and x ∈ mdst1,k(A-NR) for some k 6= j. As by the assumption of this lemma,
gcnf 1 uses modes globally sound, we have x ∈ mdst1,j(G-NR) for these variables.
Moreover, by assumption of this lemma, gcnf 1 provides its guarantees and, hence, c1,j
does not read the variables whose values differ in mem1 and mem1,j . We may hence
apply Lemma 15 for the transition in (A) and the memory mem1,j . This yields a
memory mem ′1,m−j′ with

(I) 〈c1,j , lkstj ,mdst1,j ,mem1,j〉
α−→ 〈c′1,m−j′ , lkst ′m−j′ ,mdst ′1,m−j′ ,mem ′1,m−j′〉

(J) [(lev(x) = high) ∨mem1(x) = mem2(x) ∨ x /∈
⋃
k∈{1,...,n}\{j}mdst1,k(A-NR)]

=⇒ mem ′1,m−j′(x) = mem ′1(x) for all x ∈ Var .

From (E) we get due to (I) that there is mdst2,m−j′ , c′2,m−j′ , α
′ ∈ Eve,

mem ′2,m−j′ ∈ Mem with

(K) 〈c2,j , lkstj ,mdst2,j ,mem2,j〉
α′−→ 〈c′2,m−j′ , lkst ′m−j′ ,mdst ′2,m−j′ ,mem ′2,m−j′〉

(L)
〈c′1,m−j′ , lkst ′m−j′ ,mdst ′1,m−j′ ,mem ′1,m−j′〉

∼lev

〈c′2,m−j′ , lkst ′m−j′ ,mdst ′2,m−j′ ,mem ′2,m−j′〉
(M) if α =↗〈c3,∅,mdst⊥〉, then there is c4 such that α =↗〈c4,∅,mdst⊥〉 and
〈c′1,j , lkst ′j ,mdst ′1,j ,mem ′1,j〉 ∼lev 〈c′2,j , lkst ′j ,mdst ′2,j ,mem ′2,j〉 with c′1,j = c3, c′2,j =
c4, lkst ′j = ∅, mdst ′1,j = mdst ′2,j = mdst⊥, and mem ′2,j = mem ′1,j = mem ′1,m−j′ .

From (L) we get by the definition of strong low bisimulation modulo modes that

(N) mdst1,m−j′ ={A-NR,A-NW} mdst2,m−j′ , and

(O) mem ′1,m−j′ =
lev,mdst1,m−j′
low mem ′2,m−j′ .

Due to (G), we may exploit globally sound use of modes and providing sound guarantees
as before to apply Lemma 15 (as before) for the transition in (K) and the memory
mem2. This yields a memory mem ′2 such that

(P) 〈c2,j , lkstj ,mdst2,j ,mem2〉
α′−→ 〈c′2,m−j′ , lkst ′m−j′ ,mdst ′2,m−j′ ,mem ′2〉

(Q) [(lev(x) = high) ∨mem1(x) = mem2(x) ∨ x /∈
⋃
k∈{1,...,n}\{j}mdst1,k(A-NR)]

=⇒ mem ′2,j(x) = mem ′2(x) for all x ∈ Var .

That means, we have now constructed c2,m−j′ , mdst2,m−j′ and mem ′2. It remains
to construct c′2,i, lkst ′i and mdst ′2,i for i 6= (m− j′). To this end, we define

(R) c′2,i = c2,i, lkst ′i = lkst i, and mdst ′2,i = mdst2,i for i < j
(S) c′2,m−i = c2,m−i, lkst ′m−i = lkstm−i, and mdst ′2,m−i = mdst2,m−i for i < j′.

Now assume that m = n and α 6= l , then we get by the definition of the global
transition system that gcnf 2 � gcnf ′2 with
gcnf ′2 = 〈[(c′2,1, lkst ′1,mdst ′2,1), . . . , (c′2,m, lkst ′m,mdst ′2,m)],mem ′2〉. Since α 6= l , we get
from the definition of the local transition system (Figure 2) that
lkstm−j′ ⊆ lkstj . Hence, ∀i, k.i 6= k =⇒ lkst ′i ∩ lkst ′k follows directly from ∀i, k.i 6=
k =⇒ lkst i ∩ lkstk.

Now assume that m = n and α = l , then we get from gcnf 1 � gcnf ′1 by the
definition of the global transition system that

l /∈ locks([(c1,1, lkst1,mdst1,1), . . . , c1,n, lkstn,mdst1,n]). From this we get by the defini-
tion of the global transition system that gcnf 2 � gcnf ′2 with gcnf ′2 = 〈[(c′2,1, lkst ′1,mdst ′2,1), . . . , (c′2,m, lkst ′m,mdst ′2,m)],mem ′2〉.
Since α = l , we get from the definition of the local transition system (Figure 2) that
lkstm−j′ = lkstj ∪{l}. Since l /∈ locks([(c1,1, lkst1,mdst1,1), . . . , c1,n, lkstn,mdst1,n]) we
get from lkstm−j′ = lkstj ∪ {l} and lkst ′i = lkst i for all i < j and lkst ′m−i = lkstn−i for
all i < j′ and ∀i, k.i 6= k =⇒ lkst i ∩ lkstk that ∀i, k.i 6= k =⇒ lkst ′i ∩ lkst ′k.

Now assume that m = n+ 1. We further define c′2,j = c4, lkst ′j = ∅, and mdst ′2,j =
mdst⊥ and get from the definition of the global transition system that gcnf 2 � gcnf ′2
with
gcnf ′2 = 〈[(c′2,1, lkst ′1,mdst ′2,1), . . . , (c′2,m, lkst ′m,mdst ′2,m)],mem ′2〉. In this case, we have
α =↗ 〈c3, ∅,mdst⊥〉 and α =↗ 〈c4, ∅,mdst⊥〉. Hence, we get by the definition of the
local transition system (Figure 2) that lkstj = lkst ′m−j′ . From lkst i = lkst ′i for all
i < j and lkstn−i = lkstm−i for all i < j′ and lkstj = lkst ′m−j′ and lkst ′j = ∅ and
∀i, k.i 6= k =⇒ lkst i ∩ lkstk that ∀i, k.i 6= k =⇒ lkst ′i ∩ lkst ′k holds.

Step 2 (Showing that gcnf ′2 satisfies conclusion (2)). In this step, we show that
for all i ∈ {1, . . . ,m} there are memories mem ′1,i,mem ′2,i ∈ Mem with mem ′1(x) =
mem ′1,i(x) and mem ′2(x) = mem ′2,i(x) for all x with (lev(x) = high) ∨ mem ′1(x) =
mem ′2(x) ∨ x /∈

⋃
k∈{1,...,m}mdst ′1,k(A-NR), and

〈c′1,i, lkst ′i,mdst ′1,i,mem ′1,i〉 ∼lev 〈c′2,i, lkst ′i,mdst ′1,i,mem ′2,i〉.
We distinguish four cases i < j, i = m − j′, i > m − j′, and i = j where (j is the

index of of the command performing the execution step, and j′ = n − j is the index
counted from the end of the command performing the execution step as exhibited in
Step 1).

Case (i=m− j′): The memories mem ′1,m−j′ and mem ′2,m−j′ have already been con-
structed in Step 1. In (L), we have already established that

〈c′1,m−j′ , lkst ′m−j′ ,mdst ′1,m−j′ ,mem ′1,m−j′〉
∼lev

〈c′2,m−j′ , lkst ′m−j′ ,mdst ′2,m−j′ ,mem ′2,m−j′〉.

It remains to show that for all x with (lev(x) = high) ∨ mem ′1(x) = mem ′2(x) ∨
x /∈

⋃
k∈{1,...,m}\{m−j′}mdst ′1,k(A-NR), we have mem ′1(x) = mem ′1,m−j′(x) and

mem ′2(x) = mem ′2,m−j′(x).

Assume first that lev(x) = high. Then mem ′1(x) = mem ′1,i(x) and mem ′2(x) =
mem ′2,i(x) follow directly from (J) and (Q).

Assume now that x /∈
⋃
k∈{1,...,m}\{m−j′}mdst ′1,k(A-NR). For all k 6= (m − j′)

and k 6= j we have mdst1,k = mdst ′1,k according to (B) and (C). If m = n + 1
(and hence m − j′ 6= j), we have mdst ′j = mdst⊥ according to (D). Hence,⋃
k∈{1,...,m}\{m−j′}mdst ′1,k(A-NR) =

⋃
k∈{1,...,n}\{j}mdst1,k(A-NR). Thus, mem ′1(x) =

mem ′1,i(x) and mem ′2(x) = mem ′2,i(x) follow directly from (J) and (Q).

Assume finally that mem ′1(x) = mem ′2(x). If mem1(x) = mem2(x) also holds,
then mem ′1(x) = mem ′1,i(x) and mem ′2(x) = mem ′2,i(x) follow directly from (J)
and (Q). Hence, assume that mem1(x) 6= mem2(x). This means, that the execution
step from (A) or (I) has modified x . Since both execution steps have been obtained
with Lemma 15, we get that x is modified to the same value in mem1,m−j′ and
mem1 respectively mem2,m−j′ and mem2. This concludes this case.

Case (i < j): We define the memories mem ′1,i and mem ′2,i as follows for all x ∈ Var :

(T) If lev(x) = high or mem ′1(x) = mem ′2(x) or
x /∈

⋃
k∈{1,...,m}\{i}mdst ′1,k(A-NR), then

mem ′1,i(x) = mem ′1(x) and mem ′2,i(x) = mem ′2(x).

(U) Otherwise, i.e. lev(x) = low, mem ′1(x) 6= mem ′2(x), and
x ∈

⋃
k∈{1,...,m}\{i}mdst ′1,k(A-NR),

mem ′1,i(x) = mem1,i(x) and mem ′2,i(x) = mem2,i(x).

We first show that mem ′1,i(x) = mem ′1(x) and mem ′2,i(x) = mem ′2(x) hold for all
all x with lev(x) = high or mem ′1(x) = mem ′2(x) or x /∈

⋃
k∈{1,...,m}\{i}mdst ′1,k(A-NR).

From the properties assumed for x we get by (T) that mem ′1,i(x) = mem ′1 and
mem ′2,i(x) = mem ′2 hold directly.

We now show that 〈c′1,i, lkst ′i,mdst ′1,i,mem ′1,i〉∼lev〈c′2,i, lkst ′i,mdst ′2,i,mem ′2,i〉. Since
i < j, we have c′1,i = c1,i, c′2,i = c2,i, lkst ′i = lkst i, mdst ′1,i = mdst1,i, and
mdst ′2,i = mdst2,i. Hence, we need to show that
〈c1,i, lkst i,mdst1,i,mem ′1,i〉 ∼lev 〈c2,i, lkst i,mdst2,i,mem ′2,i〉. According to the as-
sumptions of this Lemma, we have
〈c1,i, lkst i,mdst1,i,mem1,i〉 ∼lev 〈c2,i, lkst i,mdst2,i,mem2,i〉. Since ∼lev is closed
under globally consistent changes, it suffices to show that mem ′1,i and mem ′2,i can
be obtained from mem1,i and mem2,i, respectively, using the closure condition for
globally consistent changes.

Note that due to the definition in (T) and (U), mem ′1,i(x) 6= mem1,i(x) or mem ′2,i(x) 6=
mem2,i(x) only hold if lev(x) = high or mem ′1(x) = mem ′2(x) or x /∈

⋃
k∈{1,...,m}\{i}mdst ′1,k(A-NR).

We further only need to consider cases in which one of the three conditions holds.
Moreover, due to (T) we have mem ′1,i(x) = mem1(x) and mem ′2,i(x) = mem2(x)
in these cases.

First, consider a variable x with x /∈ mdst1,i(A-NW). If lev(x) = high, then the
new values of x can be set by global consistent changes, because global consistent
changes allow modifying high variables to arbitrary values. If lev(x) = low, we get
by the assumptions from the previous paragraph that mem ′1(x) = mem ′2(x) or x /∈⋃
k∈{1,...,m}\{i}mdst ′1,k(A-NR). If x /∈

⋃
k∈{1,...,m}\{i}mdst ′1,k(A-NR), this means

in particular that x /∈ mdst ′1,j(A-NR). Hence, by (O) we get that mem ′1,m−j′(x) =
mem ′2,m−j′(x), and hence by (J) and (Q) we get mem ′1(x) = mem ′2(x). Since
global consistent changes allows modifying these variables to identical values, we
can conclude this case.

Now consider a variable x with x ∈ mdst1,i(A-NW). This means in particular,
that x ∈ mdst2,i(A-NW) also holds due to mdst1,i ={A-NR,A-NW} mdst2,i. From the
assumption that the global configurations gcnf 1 and gcnf 2 use modes globally
sound, we get that x ∈ mdst1,j(G-NW) and x ∈ mdst2,j(G-NW). Since gcnf 1 and
gcnf 2 also provide sound guarantees, c1,j and c2,j do not write x . Hence, due to
the definition of “does not write”, we get mem1(x) = mem ′1(x) and mem2(x) =
mem ′2(x).

Assume now that mem1(x) = mem1,j(x), and mem2(x) = mem2,j(x). Then
mem ′1,m−j′(x) = mem1,j(x) and mem2,m−j′(x) = mem2,j(x), due to the fact
that x is not written (established in the previous paragraph).

Assume now contrarily that mem1(x) 6= mem1,j(x), or mem2(x) 6= mem2,j(x).
Then we have from the assumptions of this Lemma that lev(x) = low, mem1(x) 6=
mem2(x), and x ∈

⋃
k∈{1,...,n}\{i}mdst1,k(A-NR). If mem ′1(x) = mem ′2(x), this

would contradict that c1,j and c2,j do not write x (established two paragraphs be-
fore). Hence, assume mem ′1(x) 6= mem ′2(x). Due to the assumption above this im-
plies that x /∈

⋃
k∈{1,...,m}\{i}mdst ′1,k(A-NR). However, since x ∈

⋃
k∈{1,...,n}\{i}mdst1,k(A-NR)

and all mode states except for the mode state mdstj and possibly the new mode
state mdst ′j do not change during the execution step, and if there is a new mode
state mdst ′j , then mdst ′j = mdst⊥, we get that x ∈ mdst1,j(A-NR) and x /∈

mdst1,m−j′(A-NR). This contradicts that mem1,j =
lev,mdst1,j
low mem2,j and mem ′1,m−j′ =

lev,mdst′
1,m−j′

low

mem ′2,m−j′ while c1,j and c2,j do not write x . Hence, we know that mem1,i(x) =
mem ′1(x) and mem2,i(x) = mem ′2(x) for all variables with x ∈ mdst ′1,i(A-NW)
and, hence, we must not apply any changes.

Case (i > m− j′): This case is analogous to the case i < j, but with different index-
ing, i.e. whenever one encounters an i for a symbol without a prime one uses n− j′
and whenever one encounters an i for a symbol with a prime one uses m− j′.

Case (i = j): If m = n, then this case (i = j) coincides with the case i = m − j′.
Hence assume that m = n+ 1.
We define the memories mem ′1,j and mem ′2,j as follows for all x ∈ Var :
(V) If lev(x) = high or mem ′1(x) = mem ′2(x) or

x /∈
⋃
k∈{1,...,m}\{j}mdst ′1,k(A-NR), then

mem ′1,j(x) = mem ′1(x) and mem ′2,j(x) = mem ′2(x).
(W) Otherwise, i.e. lev(x) = low, mem ′1(x) 6= mem ′2(x), and

x ∈
⋃
k∈{1,...,m}\{j}mdst ′1,k(A-NR),

mem ′1,j(x) = mem ′2,j(x) = mem ′1,m−j′(x).
We first show that mem ′1,j(x) = mem ′1(x) and mem ′2,j(x) = mem ′2(x) hold for all
all x with lev(x) = high or mem ′1(x) = mem ′2(x) or x /∈

⋃
k∈{1,...,m}\{j}mdst ′1,k(A-NR).

From the properties assumed for x we get by (V) that mem ′1,j(x) = mem ′1(x) and
mem ′2,j(x) = mem ′2(x) hold directly.
We now show that 〈c′1,j , lkst ′j ,mdst ′1,j ,mem ′1,j〉 ∼lev 〈c′2,j , lkst ′j ,mdst ′2,j ,mem ′2,j〉.
Since i = j and m = n+ 1, we have c′1,j = c3, c′2,j = c4, lkst ′j = ∅, and mdst ′1,j =
mdst ′2,j = mdst⊥. Hence, we need to show that 〈c3, ∅,mdst⊥,mem ′1,j〉 ∼lev 〈c4, ∅,mdst⊥,mem ′2,j〉.
According to (M) we have
〈c3, ∅,mdst⊥,mem ′1,m−j′〉 ∼lev 〈c4, ∅,mdst⊥,mem ′2,m−j′〉 Since ∼lev is closed un-
der globally consistent changes, it suffices to show that mem ′1,j and mem ′2,j can
be obtained from mem ′1,m−j′ .
Note that due to the definition in (V) and (W), mem ′1,j(x) 6= mem ′1,m−j′(x) or
mem ′2,j(x) 6= mem ′1,m−j′(x) can only hold if lev(x) = high or mem ′1(x) = x ′2(x)
or x /∈

⋃
k∈{1,...,m}\{i}mdst ′1,k(A-NR). We further only need to consider cases in

which one of the three conditions holds. Moreover, due to (V) we have mem ′1,j(x) =
mem ′1(x) and mem ′2,j(x) = mem ′2(x) in these cases.
Since mdst ′1,j = mdst⊥ there are no variables x with x ∈ mdst ′1,j(A-NW), and
we only need to consider variables x with x /∈ mdst ′1,j(A-NW). Hence, assume
x /∈ mdst ′1,j(A-NW) holds for x . If lev(x) = high, then the new values of x
can be set by global consistent changes, because global consistent changes al-
low modifying high variables to arbitrary values. If lev(x) = low, we get by
the assumptions from the previous paragraph that mem ′1(x) = mem ′2(x) or x /∈⋃
k∈{1,...,m}\{j}mdst ′1,k(A-NR). If x /∈

⋃
k∈{1,...,m}\{i}mdst ′1,k(A-NR), this means

in particular that x /∈ mdst ′1,j(A-NR). Hence, by (O) we get that mem ′1,m−j′(x) =
mem ′2,m−j′(x), and hence by (J) and (Q) we get mem ′1(x) = mem ′2(x). Since
global consistent changes allows modifying these variables to identical values, we
can conclude this case.

ut

Lemma 17. If cp ensures a sound use of modes and
lev cp : c′ is derivable, then cp
is secure for lev.

Proof. Let lev and c, c′ ∈ Com be arbitrary such that c ensures a sound use of mdoes
and `lev c : c′.

We now must show

∀
−−→
ccnf 1 ∈ CCnf ∗.∀mem1,mem ′1,mem2 ∈ Mem.

〈[(c, ∅,mdst⊥)],mem1〉�∗ 〈
−−→
ccnf 1,mem ′1〉 ∧ trm(

−−→
ccnf 1) ∧mem1 =lev

low mem2

=⇒ ∃
−−→
ccnf 2 ∈ CCnf ∗.∃mem ′2 ∈ Mem.

〈[(c, ∅,mdst⊥)],mem2〉�∗ 〈
−−→
ccnf 2,mem ′2〉 ∧ trm(

−−→
ccnf 2) ∧mem ′1 =lev

low mem ′2

Hence, let
−−→
ccnf 1 ∈ CCnf ∗ and mem1,mem2,mem ′1 ∈ Mem be arbitrary such that

trm(
−−→
ccnf 1), mem1 =lev

low mem2, and 〈[(c, ∅,mdst⊥)],mem1〉 �∗ 〈
−−→
ccnf ,mem ′1〉. Hence,

we know that there is a k such that 〈[(c, ∅,mdst⊥)],mem1〉�k 〈
−−→
ccnf ,mem ′1〉. We now

show that k inductive applications of Lemma 16 establish the desired result.
From
lev c : c′ we get by the rule tth2 that
lev Λ{c}Λ : c′ with pre(Λ) = ∅. From

lev Λ{c}Λ : c′ we get by Lemma 13 that 〈c, lkst ,mdst1,mem1〉 ∼lev 〈c, lkst ,mdst2,mem2〉
holds for all lkst ∈ LkSt , mdst1,mdst2 ∈ MdSt , and mem1,mem2 ∈ Mem with
mdst1,mdst2 ∈ comp(lev , Λ), mdst1 ={A-NR,A-NW} mdst2, and mem1(x) = mem2(x)
for all x with levΛ〈x 〉 = low.

From pre(Λ) = ∅ we get by the definition of mdst⊥ and comp(lev , Λ) that mdst⊥ ∈
comp(lev , Λ).

From pre(Λ) = ∅ we get that mem1 =lev
low mem2 implies that mem1(x) = mem2(x)

for all x with levΛ〈x 〉 = low.
Hence, we have 〈c, ∅,mdst⊥,mem1〉 ∼lev 〈c, ∅,mdst⊥,mem2〉 for all mem1 =lev

low

mem2.
Furthermore, since the lock state is ∅, the global configurations 〈[c, ∅,mdst⊥],mem1〉

and 〈[c, ∅,mdst⊥],mem2〉 satisfies ∀i, j.i 6= j =⇒ lkst i ∩ lkstj = ∅.
Since sound use of modes is invariant under execution steps in our semantics, and

the postconditions of Lemma 16 again establish the preconditions of Lemma 16 for
the subsequent global configurations, we can apply Lemma 16 k times inductively to

obtain that there is
−−→
ccnf 2 ∈ CCnf ∗ and mem ′2 such that 〈[(c, ∅,mdst⊥)],mem2〉 �k

〈
−−→
ccnf 2,mem ′2〉.

It remains to show that trm(
−−→
ccnf 2), and mem ′1 =lev

low mem ′2.
From the inductive application of Lemma 16, we also get that there is c1,1, . . . , c1,m, c2,1, . . . , c2,m ∈

Com and lkst1, . . . , lkstm ∈ LkSt and
mdst1,1, . . . ,mdst1,m,mdst2,1, . . . ,mdst2,m ∈ MdSt such that
−−→
ccnf 1 = [(c1,1, lkst1,mdst1,1), . . . , (c1,m, lkstm,mdst1,m)] and
−−→
ccnf 2 = [(c2,1, lkst1,mdst2,1), . . . , (c2,m, lkstm,mdst2,m)] and
for all i ∈ {1, . . . ,m} there are mem ′1,i,mem ′2,i ∈ Mem with

– 〈c1,i, lkst i,mdst1,i,mem ′1,i〉 ∼lev 〈c2,i, lkst i,mdst2,i,mem ′2,i〉, and
– mem ′1,i(x) = mem ′1(x) and mem ′2,i(x) = mem ′2(x) hold for all x with (lev(x) =

high) ∨mem1(x) = mem2(x) ∨ x /∈
⋃
j∈{1,...,n}mdst1,j(A-NR)

From trm(
−−→
ccnf 1) and

−−→
ccnf 1 = [(c1,1, lkst1,mdst1,1), . . . , (c1,m, lkstm,mdst1,m)] we

get that c1,i = stop for all i ∈ {1, . . . ,m}. From 〈c1,i, lkst i,mdst1,i,mem ′1,i〉 ∼lev

〈c2,i, lkst i,mdst2,i,mem ′2,i〉 for all i ∈ {1, . . . ,m}, we get that c2,i = stop for all i ∈
{1, . . . ,m}. Hence, we get from

−−→
ccnf 2 = [(c2,1, lkst1,mdst2,1), . . . , (c2,m, lkst2,m,mdstm)]

by the definition of trm that trm(
−−→
ccnf 2).

From the typing rules tsp2 and tth2, we know that the command of each thread
is typeable with partial type environments that have an empty preimage. As we have
seen in Lemma 11, this means that all resulting mode state must be compatible
with the partial type environment with empty preimage. Thus, x /∈ mdst1,i(A-NR)
holds for all x with lev(x) = low. Hence, we get from mem ′1,i(x) = mem ′1(x) and
mem ′2,i(x) = mem ′2(x) hold for all x with (lev(x) = high)∨mem1(x) = mem2(x)∨x /∈⋃
j∈{1,...,n}mdst1,j(A-NR), that mem ′1,i(x) = mem ′1(x) and mem ′2,i(x) = mem ′2(x)

hold for all x with lev(x) = low. From this combined with 〈c1,i, lkst i,mdst1,i,mem ′1,i〉 ∼lev

〈c2,i, lkst i,mdst2,i,mem ′2,i〉 for all i ∈ {1, . . . ,m} we get by the definition of ∼lev , =lev
low,

and =lev,mdst
low that mem ′1 =lev

low mem ′2. ut

We are now ready to prove the soundness of our security type system with respect
to termination-sensitive noninterference (Theorem 3).

Proof. Let lev , cp, c′ be arbitrary such that cp ensures a sound use of modes and
`lev cp : c′ is derivable.

From `lev cp : c′ we get by the typing rule tth that `lev Λ{cp}Λ : c′ with pre(Λ) =
∅. From `lev Λ{cp}Λ : c′ we get by Lemma 14 that
lev Λ{cp}Λ : c′. From
lev

Λ{cp}Λ : c′ and pre(Λ) = ∅ we ge by the typing rule tth2 that
lev cp : c′.
From the fact that cp ensures a sound use of modes and
lev cp : c′ we get by

Lemma 17 that cp is secure for lev . ut

The following is the proof of Corollary 1.

Proof. Corollary 1 follows directly from the soundness result for the security type
system (Theorem 3), and the soundness result for the guarantee inference (Theorem 2),
and the soundness result for the DPN analysis (Theorem 1). ut

9.5 Proof for example analysis

The following is the proof sketch for our example analysis 4.

Proof (sketch). The judgment ∅ ` ∅, ∅{skip; cs2}∅, ∅ : c′s2 with

c′s2 =
skip@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, ∅), rel(G-NW, ∅)];
spawn(

skip@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, ∅), rel(G-NW, ∅)];
lock(l)@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, {o1}), rel(G-NW, {o2})];
o2 :=o1@[acq(G-NR, {o1}), acq(G-NW, {o2}), rel(G-NR, {o2}), rel(G-NW, {o1})];
o1 :=o2@[acq(G-NR, {o2}), acq(G-NW, {o1}), rel(G-NR, ∅), rel(G-NW, ∅)];
unlock(l)@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, ∅), rel(G-NW, ∅)]

)@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, ∅), rel(G-NW, ∅)];
lock(l)@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, {s1}), rel(G-NW, {o2})]@[acq(A-NR, {o1})];
o1 :=s1@[acq(G-NR, {s1}), acq(G-NW, {o1}), rel(G-NR, {s2}), rel(G-NW, {s1})];
s1 :=s2@[acq(G-NR, {s2}), acq(G-NW, {s1}), rel(G-NR, {o1}), rel(G-NW, {s2})];
s2 :=o1@[acq(G-NR, {o1}), acq(G-NW, {s2}), rel(G-NR, ∅), rel(G-NW, {o1})];
o1 :=0@[acq(G-NR, ∅), acq(G-NW, {o1}), rel(G-NR, ∅), rel(G-NW, ∅)];
unlock(l)@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, ∅), rel(G-NW, ∅)]@[rel(A-NR, {o1})]

is derivable with the rules isq, isk, isp, ilo, ias, iul, and ian.

The judgment lev ` c′s2 : c′′s2 is derivable with the rules tth, tsq, tan, tsk, tsp,
tlo, tex, tal, tul, tfh, tah, and tfl.

For ccnf = (c′s2, ∅,mdst⊥) and the DPNMccnf , we observe that the set of reachable
DPN configurations starting from ccnf # has at most two concurrent control states,
one for each thread. Furthermore, we observe that the spawned thread has only one
control state that might be in conflict (as defined by the automaton Accnf) with a
control configuration of the spawning thread, namely, (cconflict , lkstconflict ,mdstconflict)
with

cconflict =
o2 :=o1@[acq(G-NR, {o1}), acq(G-NW, {o2}), rel(G-NR, {o2}), rel(G-NW, {o1})];
o1 :=o2@[acq(G-NR, {o2}), acq(G-NW, {o1}), rel(G-NR, ∅), rel(G-NW, ∅)];
unlock(l)@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, ∅), rel(G-NW, ∅)]

and lkstconflict = {l} and mdstconflict(G-NR) = x \ {(o1)}. However, all control states
with a mode state mdst ′conflict such that o1 ∈ mdst ′conflict(A-NR) also have a lock
state lkst ′conflict with l ∈ lkst ′conflict . Since l ∈ lkstconflict and l ∈ lkst ′conflict no DPN
configuration is reachable from ccnf # that contains the two control states that are in
conflict due to consistent use of locks in the DPN. ut

