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Abstract

This paper shows how modal mu-calculus formulae characterizing finite-state pro-
cesses up to strong or weak bisimulation can be derived directly from the well-known
greatest fixpoint characterizations of the bisimulation relations. Our derivation sim-
plifies earlier proofs for the strong bisimulation case and, by virtue of derivation,
immediately generalizes to various other bisimulation-like relations, in particular
weak bisimulation.

1 Introduction

By a classic result of Hennessy and Milner [3,8] two (image-finite) processes
are strongly bisimilar if and only if they satisfy exactly the same formulae
of a simple modal logic, now often called Henessy-Milner-Logic (HML). In
particular, for any two non-bisimilar processes P,Q there is an HML formula
φ satisfied by P but not by Q. This result shows that HML is sufficiently
expressive for distinguishing processes up to strong bisimulation. In another
sense, however, the expressiveness of HML is too poor: there is in general
no single formula, i.e. no characteristic formula, satisfied by just the processes
bisimilar to a given process P . Bisimulation classes are thus only characterized
by sets of formulae.

Graf and Sifakis [2] show that characteristic formulae can be constructed
for finite, i.e. non-cyclic, CCS processes in the modal mu-calculus, an ex-
tension of HML with fixpoint formulae. This result has been extended to
finite-state processes by Steffen and Ingólfsdóttir [10,11]. While Graf and
Sifakis considered strong bisimulation and observational congruence, Steffen
and Ingólfsdóttir are concerned with the so-called strong divergence preorder
of CCS, a variant of strong bisimulation that takes information about diver-
gence (i.e. internal non-termination) into account. It is not difficult to modify
the latter in order to obtain characteristic formulae for strong bisimulation.
It is, however, less obvious how to construct characteristic formulae for weak
bisimulation-like relations. Actually, [10] proposes to treat weak bisimulation
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by transforming the processes in such a way that weak bisimilarity of the
original processes corresponds to strong bisimulation of the transformed ones.
Then the characteristic formulae for strong bisimulation could be applied on
the transformed processes. This approach, however, due to the necessity of
transformation does not lead to actual characteristic formulae.

The contribution of this paper is a direct derivation of characteristic for-
mulae from the classic greatest fixpoint characterization of (strong and weak)
bisimulation. On the one hand, this provides a more elegant proof of the
characterization property. On the other hand it immediately indicates how to
construct characteristic formulae for other bisimulation-like process relations,
like the various divergence relations discussed in [13], in particular for the
weak versions.

We proceed as follows. In the next section we define the modal mu-calculus
and labeled transition systems as basic model of processes and introduce equa-
tion systems. Section 3 defines the notion of strong bisimulation. In the
following section we derive a characteristic equation system of a finite-state
process from the fixpoint characterization of strong bisimulation. Section 5
generalizes this to weak bisimulation. In the section thereafter we indicate
how to construct actual characteristic formulae from characteristic equation
systems. The paper finishes with some concluding remarks.

2 Modal mu-Calculus, Processes, and Equation Sys-
tems

The modal mu-calculus [5] is a small, yet expressive process logic. It is defined
over a given finite set A of actions. We consider in this paper modal mu-
calculus formulae in positive normal form, which are constructed according to
the following grammar:

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ | X | µX . φ | νX . φ

Here, X ranges over an infinite set Var of variables and a over the assumed
action set A. The two fixpoint operators µX and νX bind the respective
variableX and we will apply the usual terminology of free and bound variables
in a formula, closed formula etc. Moreover, we write for a finite set M of
formulae

∧
M and

∨
M for the conjunction and disjunction of the formulae

in M . As usual, we agree that
∧ ∅ = true and

∨ ∅ = false.

Modal mu-calculus formulae are interpreted over processes, which are mod-
eled by labeled transition systems with a designated start state. Formally, a
process is a structure P = (S,A,→P , s0), where S is a set of states, A is the
above (finite) set of actions, →P ⊆ S×A×S is a transition relation, and s0 is
the initial state. Throughout this paper we assume that the constituting parts
of a process named P are S, A, →P , and s0 and the ones of a process named
Q are T , A, →Q and t0. A process P is called finite-state if the underlying
state set S is finite.
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MP (true)(ρ) = S

MP (false)(ρ) = ∅
MP (φ1 ∧ φ2)(ρ) = MP (φ1)(ρ) ∩ MP (φ2)(ρ)

MP (φ1 ∨ φ2)(ρ) = MP (φ1)(ρ) ∪ MP (φ2)(ρ)

MP (〈a〉φ)(ρ) = {s | ∃s′ : s
a→ s′ ∧ s′ ∈ MP (φ)(ρ)}

MP ([a]φ)(ρ) = {s | ∀s′ : s
a→ s′ ⇒ s′ ∈ MP (φ)(ρ)}

MP (X)(ρ) = ρ(X)

MP (µX .φ)(ρ) =
⋂{x ⊆ S | MP (φ)(ρ[X 7→ x]) ⊆ x}

MP (νX . φ)(ρ) =
⋃{x ⊆ S | MP (φ)(ρ[X 7→ x]) ⊇ x}

Fig. 1. Semantics of modal mu-calculus

Suppose given a process P for the remainder of this section. The subset of
states that satisfy a formula φ, denoted by MP (φ)(ρ), is inductively defined

in Fig. 1. As usual we refer to environments, partial mappings ρ : Var
part.→ 2S

which interpret at least the free variables of φ by subsets of S, in order to
explain the meaning of open formulas. For a set x ⊆ S and a variable X ∈ Var
we write ρ[X 7→ x] for the environment that maps X to x and that is defined
on a variable Y 6= X iff ρ is defined on Y and maps Y then to ρ(Y ).

Intuitively, true and false hold for all resp. no states and ∧ and ∨ are
interpreted by conjunction and disjunction. As in HML, 〈a〉φ holds for a state
s if there is an a-successor of s which satisfies φ, and [a]φ holds for s if all
its a-successors, satisfy φ. The interpretation of a variable X is as prescribed
by the environment. The formula µX . φ, called a least fixpoint formula, is
interpreted by the smallest subset x of S that recurs when φ is interpreted
with the substitution of x for X. Similarly, νX . φ, called greatest fixpoint
formula, is interpreted by the largest such set. Existence of such sets as well
as their characterization used in Fig. 1 follows from the well-known Knaster-
Tarski fixpoint theorem [12].

As the meaning of a closed formula φ does not depend on the environment,
we sometimes write MP (φ) for MP (φ)(ρ) where ρ is an arbitrary environment.
The set of processes satisfying a given closed formula φ is P (φ) = {Q | t0 ∈
MQ(φ)}.

We shall also refer to (closed) equation systems of modal mu-calculus for-
mulae of the form

E : X1 = φ1

...

Xn = φn ,
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whereX1, . . . , Xn are mutually distinct variables and φ1, . . . , φn are mu-calculus
formulae having at most X1, . . . , Xn as free variables.

An environment ρ : {X1, . . . , Xn} → 2S is a solution of an equation system
E, if ρ(Xi) = MP (φi)(ρ). That solutions always exist, is again a consequence
of the Knaster-Tarski fixpoint theorem. For, consider the set of environments
that are candidates for solutions, EnvP = {ρ | ρ : {X1, . . . , Xn} → 2S}. EnvP

together with the lifting v of the inclusion order on 2S, defined by

ρ v ρ′ iff ρ(Xi) ⊆ ρ′(Xi) for i = 1, . . . , n

forms a complete lattice. Now, we can define the equation functional FE
P :

EnvP → EnvP by FE
P (ρ)(Xi) = MP (φi)(ρ) for i = 1, . . . , n, the fixpoints of

which are just the solutions of E. Certainly, FE
P is monotonic as MP (φi) is

monotonic such that the Knaster-Tarski fixpoint theorem guarantees existence
of solutions. In particular, there is the largest solution νFE

P of E (w.r.t. v),
in which we are particularly interested and which we denote by MP (E). This
definition interprets equation systems on the states of a given process P . We
lift this to processes by agreeing that a process satisfies an equation system E,
if its initial state is in the largest solution of the first equation. Thus the set
of processes satisfying equation system E is P (E) = {Q | t0 ∈ MQ(E)(X1)}.

3 Strong Bisimulation

As transition systems provide a too fine-grained model of processes, various
equivalences have been studied in the literature that identify processes on the
basis of their behavior. A classic example is strong bisimulation [9,8] denoted
by ∼.

Suppose given two processes P and Q. Bisimulation is first defined as
a relation between the state sets S and T and then lifted to the processes
themselves. A relation R ⊆ S × T is called a (strong) bisimulation if for all
(s, t) ∈ R the following two conditions hold:

a) ∀a, s′ : s
a→P s′ ⇒ ∃t′ : t

a→Q t′ ∧ (s′, t′) ∈ R, and

b) ∀a, t′ : t
a→Q t′ ⇒ ∃s′ : s

a→P s′ ∧ (s′, t′) ∈ R.

Now, ∼ is defined to be the union of all bisimulations R. The processes P
and Q are called bisimilar if s0 ∼ t0. By abuse of notation we denote this
relationship by P ∼ Q and view ∼ also as a relation between processes.

The relation ∼ ⊆ S × T can also be characterized as the greatest fixpoint
νF∼ of the following monotonic functional F∼ on the complete lattice of rela-
tions R ⊆ S × T ordered by set inclusion:

F∼(R)
def
= {(s, t) | s, t satisfy the bisimulation conditions a) and b)} .

For, it is easy to see that a relation R is a bisimulation iff R ⊆ F∼(R), i.e. if R is
a post-fixpoint of F∼. And, by the Knaster-Tarski fixpoint theorem, νF∼ is just
the union of all post-fixpoints of F∼, i.e. bisimulations, and, therefore, equals
∼. This also establishes the well-known fact, that ∼ is again a bisimulation,
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viz. the largest one, as the largest fixpoint of F∼ clearly is also its largest
post-fixpoint.

4 Characteristic Equation Systems

Assume now, that a finite-state process P is given, that s1, . . . , sn are its
|S| = n states, and that s1 = s0 is its initial state. The goal of this paper is to
show how a formula characterizing P up to strong bisimulation can be derived
from the fixpoint characterization of bisimulation. While the existence and
construction of such formulae is well-known [10,11], their derivation rather
than postulation provides a more elegant proof of the characterization prop-
erty and shows, moreover, how corresponding formulae for other bisimulation-
like equivalences and preorders may be constructed. We illustrate this point
by treating also weak bisimulation (see Section 5).

Our derivation proceeds via a characteristic equation system

E∼ : Xs1 = φ∼
s1

...

Xsn = φ∼
sn

consisting of one equation for each of the states s1, . . . , sn ∈ S. The con-
struction of actual characteristic formulae from the characteristic equation
system is deferred to Section 6. The goal is to define the formulae φ∼

s such
that the largest solution MQ(E∼) of E∼ on an arbitrary process Q asso-
ciates the variables Xs just with the states of Q bisimilar to s, i.e. such that
MQ(E∼)(Xs) = {t ∈ T | s ∼ t}.

The construction of E∼ is based on the observation that EnvQ, the set of
candidates for solutions of E∼, is order-isomorphic to 2S×T , the set of rela-
tions that are candidates to be bisimulations between S and T . Actually, the
mapping α : EnvQ → 2S×T defined by

α(ρ) = {(s, t) ∈ S × T | t ∈ ρ(Xs)}
is an order isomorphism between EnvQ and 2S×T , the inverse of which is the
mapping β : 2S×T → EnvQ defined by β(R)(Xs) = {t ∈ T | (s, t) ∈ R}.

The idea is now to define E∼ such that F∼, the bisimulation functional,
and FE∼

Q , the functional belonging to E∼, are equal up to the isomorphism
induced by (α, β), i.e. such that

FE∼
Q = β ◦ F∼ ◦ α .(1)

Then their largest fixpoints are also related by the isomorphism, which yields:

MQ(E∼)(Xs)

= [Definition of MQ(E∼)]

(νFE∼
Q )(Xs)
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= [Fixpoints of FE∼
Q and F∼ are related by the isomorphism]

β(νF∼)(Xs)

= [Definition of β]

{t ∈ T | (s, t) ∈ (νF∼)}
= [∼ equals νF∼]

{t ∈ T | s ∼ t} ,

as required. By the definition of FE∼
Q , (1) amounts to defining φs such that

t ∈MQ(φ∼
s )(ρ) iff t ∈ (β ◦ F∼ ◦ α)(ρ)(Xs) .

The strategy for making this equivalence hold is to start a calculation with
the right hand side and to stepwise transform it into the direction of a for-
mula:

t ∈ (β ◦ F∼ ◦ α)(ρ)(Xs)

iff [Definition of β]

(s, t) ∈ (F∼ ◦ α)(ρ)

iff [Definition of F∼]

∀a : ∀s′ : s
a→P s′ ⇒ ∃t′ : t

a→Q t′ ∧ (s′, t′) ∈ α(ρ) , and

∀a : ∀t′ : t
a→Q t′ ⇒ ∃s′ : s

a→P s′ ∧ (s′, t′) ∈ α(ρ)

iff [Definition of α]

∀a : ∀s′ : s
a→P s′ ⇒ ∃t′ : t

a→Q t′ ∧ t′ ∈ ρ(Xs′) , and

∀a : ∀t′ : t
a→Q t′ ⇒ ∃s′ : s

a→P s′ ∧ t′ ∈ ρ(Xs′)

iff [Definition of MQ(Xs′)]

∀a : ∀s′ : s
a→P s′ ⇒ ∃t′ : t

a→Q t′ ∧ t′ ∈ MQ(Xs′)(ρ) , and

∀a : ∀t′ : t
a→Q t′ ⇒ ∃s′ : s

a→P s′ ∧ t′ ∈ MQ(Xs′)(ρ)

iff [Definition 〈a〉, Definition
∨

]

∀a : ∀s′ : s
a→P s′ ⇒ t ∈MQ(〈a〉Xs′)(ρ) , and

∀a : ∀t′ : t
a→Q t′ ⇒ t′ ∈MQ(

∨
{Xs′ | s a→P s′})(ρ)

iff [Definition
∧

, Definition [a]]

∀a : t ∈MQ(
∧

{〈a〉Xs′ | s a→P s′})(ρ) , and

∀a : t ∈MQ([a]
∨

{Xs′ | s a→P s′})(ρ)
iff [Definition

∧
]

t ∈MQ(
∧

{
∧

{〈a〉Xs′ | s a→P s′} | a ∈ A})(ρ) , and

t ∈MQ(
∧

{[a]
∨

{Xs′ | s a→P s′} | a ∈ A})(ρ)
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Fig. 2. An example process.

iff [Definition ∧]

t ∈MQ(
∧

{
∧

{〈a〉Xs′ | s a→P s′} | a ∈ A} ∧
∧

{[a]
∨

{Xs′ | s a→P s′} | a ∈ A})(ρ) .

Thus, (1) becomes valid if we define φ∼
s by

φ∼
s

def
=

∧{∧{〈a〉Xs′ | s a→P s′} | a ∈ A} ∧
∧{[a] ∨{Xs′ | s a→P s′} | a ∈ A}

and this gives us the desired theorem.

Theorem 4.1 (Char. eq. sys. on states) MQ(E∼)(Xs) = {t ∈ T | s ∼ t}.
This theorem holds for all processes Q as E∼ does not depend on Q. In

particular, a process Q is bisimilar to P iff its initial state t0 is contained
in MQ(E∼)(Xs1) (recall that s1 is the initial state of P ). Thus we have the
following corollary.

Corollary 4.2 (Char. eq. system on processes) P (E∼) = {Q | P ∼ Q}.
For illustration, we consider the small process pictured in Fig. 2 with state

set S = {s, t, u} and action alphabet A = {a, b, c}. After removing conjuncts
reading false, its characteristic equation system reads as follows:

E∼ : Xs = 〈b〉Xt ∧ [a]false ∧ [b]Xt ∧ [c]false

Xt = 〈a〉Xs ∧ 〈a〉Xu ∧ [a](Xs ∨Xu) ∧ [b]false ∧ [c]false

Xu = 〈c〉Xt ∧ [a]false ∧ [b]false ∧ [c]Xt

5 Weak Bisimulation

Strong bisimulation requires that every step of a process is matched by a cor-
responding step of a bisimilar process. Weak bisimulation [8] denoted by ≈
relaxes this requirement for internal computation steps represented by a dis-
tinguished action τ ∈ A, which can be matched by zero of more internal steps.
The definition of weak bisimulations relies on a derived transition relation

a⇒
that allows arbitrarily many τ -transitions before and after an a-transition. In
addition, the relation

ε⇒ is used that represents zero or more τ -transitions:
ε⇒ def

=
τ→∗ a⇒ def

=
ε⇒;

a→;
ε⇒
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Here, the operator ; denotes relational composition. In the following, we let
τ̂ = ε and for actions a 6= τ , â = a.

Now, a relation R ⊆ S × T between the state sets of two processes P
and Q is called a weak bisimulation [8] if for all (s, t) ∈ R the following two
conditions hold:

a) ∀a, s′ : s
a→P s′ ⇒ ∃t′ : t

â⇒Q t′ ∧ (s′, t′) ∈ R, and

b) ∀a, t′ : t
a→Q t′ ⇒ ∃s′ : s

â⇒P s′ ∧ (s′, t′) ∈ R.

≈ is defined to be the union of all weak bisimulations R and is the largest
weak bisimulation. As for strong bisimulation, P and Q are called bisimilar,
P ≈ Q for short, if s0 ≈ t0.

Again, we can define a monotonic functional F≈ : 2S×T → 2S×T on relations
from the two conditions in the definition of weak bisimulations, the greatest
fixpoint of which equals ≈. Moreover, an equation system characterizing a
process up to weak bisimulation,

E≈ : Xs1 = φ≈
s1

...

Xsn = φ≈
sn

,

i.e. that satisfies MQ(E≈)(Xs) = {t | s ≈ t}, can be constructed along the
lines of the construction for strong bisimulation. The only difference is the

occurrence of the derived transition relations
â⇒ in the corresponding places.

In order to tackle them we rely on ‘weak’ analogies 〈〈a〉〉 of the modality 〈a〉,
which can be introduced as abbreviations:

〈〈ε〉〉φ def
= µX . φ ∨ 〈τ〉X 〈〈a〉〉φ def

= 〈〈ε〉〉〈a〉〈〈ε〉〉φ .

The following proposition shows that they indeed correspond to
ε⇒ and

a⇒.

Proposition 5.1 (Weak diamond)

• MP (〈〈ε〉〉φ)(ρ) = {s | ∃s′ : s
ε⇒P s′ ∧ s′ ∈ MP (φ)(ρ)} .

• MP (〈〈a〉〉φ)(ρ) = {s | ∃s′ : s
a⇒P s′ ∧ s′ ∈MP (φ)(ρ)} .

Using these weak modalities it is now straightforward to redo the calcu-
lation that lead to an adequate definition of φ∼

s also for weak bisimulation,
which results in the following definition for φ≈

s :

φ≈
s

def
=

∧{∧{〈〈â〉〉Xs′ | s a→P s′} | a ∈ A} ∧
∧{[a] ∨{Xs′ | s â⇒P s′} | a ∈ A} .

The derivation shows in particular where to use strong and weak modalities
and which set construction have to range over strong and weak successors.

Theorem 5.2 (Char. eq. sys. on states) MQ(E≈)(Xs) = {t ∈ T | s ≈ t}.
Corollary 5.3 (Char. eq. system on processes) P (E≈) = {Q | P ≈ Q}.
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F : X1 = φ1

...

Xn−1 = φn−1

Xn = νXn . φn

G : X1 = φ1[φn/Xn]
...

Xn−1 = φn−1[φn/Xn]

Xn = φn

H : X1 = φ1

...

Xn−1 = φn−1

Fig. 3. Results of the transformation rules

6 Towards Characteristic Formulae

Up to now processes were characterized up to strong or weak bisimulation
by an appropriately defined equation system. Actual characteristic formulae,
i.e. single formulae characterizing processes can be constructed by applying
simple semantics-preserving transformation rules on equation systems, which
are provided in this section. Together these rules allow to reduce an equation
system stepwise by ever more equations. These rules are similar to the ones
used by A. Mader in [7] as a means of solving Boolean equation systems (with
alternation) by Gauss elimination.

In Fig. 3 we show the equation systems resulting from applying the three
needed transformation rules on an equation system of the form

E : X1 = φ1

...

Xn = φn .

For notational convenience, we describe the transformations only w.r.t. the
last equation in an equation system.

The first rule, transforming E to F , allows to eliminate the recursive de-
pendency of the right hand side formula in an equation from the left hand
side variable of that same equation. It is not difficult to show that, albeit F
might have fewer solutions than E, their greatest solutions coincide on every
process Q.

Proposition 6.1 MQ(E) = MQ(F ).

The second rule, that transforms E to G, allows to replace the variable
on the left hand side of an equation by the formula on the right hand side in
the other equations. As usual, φ[ψ/X] denotes the substitution of ψ for the
free occurrences of X in φ. Being an instance of a substitution of ‘equals for
equals’, E and G have the same solutions, as expected.

Proposition 6.2 E and G have the same solutions, in particular, MQ(E) =
MQ(G).

Our third and last rule, transforming E toH , allows to remove unnecessary
equations from an equation system. It relies on the side condition that the
variableXn does not appear free in φ1, . . . , φn. Note that by this side condition
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H is indeed a closed equation system. Removal of unnecessary equations does
not affect the interpretation of the other variables in solutions.

Proposition 6.3 Suppose Xn does not appear free in φ1, . . . , φn.

An environment ρ is a solution of H if and only if ρ[Xn 7→MQ(φn)(ρ)] is
a solution of E. In particular, MQ(E) = MQ(H)[Xn 7→ MQ(φn)(MQ(H))].

Now, applying to an equation system E the first rule followed by the second
rule results in an equation system that satisfies the side condition of the third
rule. Thus the last equation can be removed; the result is the equation system:

Ẽ : X1 = φ1[νXn . φn/Xn]
...

Xn−1 = φn−1[νXn . φn/Xn] .

This procedure can be iterated until an equation system with just one equa-
tion X1 = ψ is obtained. A final application of the first rule results in
the equation system with just the equation X1 = νX1 . ψ. The only solu-
tion of this equation system on a process Q is the environment ρ defined by
ρ(X1) = MQ(νX1 . ψ) as νX1 . ψ is a closed formula. By the correctness of the
transformation rules, νX1 . ψ is thus a formula, the interpretation of which
coincides with the interpretation of X1 in the greatest solution of the original
equation system E. Therefore, any set of processes that can be characterized
by an equation system can also be characterized by a single formula. Note,
however, that the iterated application of the second transformation rule can
lead to an exponential blow-up of the size of the formula.

Theorem 6.4 For any equation system E there is a formula φ such that
P (E) = P (φ).

The above procedure can, in particular, be applied to E∼ and E≈ which
shows that there are indeed characteristic formulae describing processes up to
strong or weak bisimulation.

Theorem 6.5 (Characteristic formulae) For all finite-state processes P
there are modal mu-calculus formulae ψ∼ and ψ≈ such that P (ψ∼) = {Q |
P ∼ Q} and P (ψ≈) = {Q | P ≈ Q}.

7 Conclusion

We have shown how equation systems and formulae that characterize finite-
state processes up to strong or weak bisimulation can be derived directly from
the greatest fixpoint characterizations of these relations. The existence of
such formulae for strong bisimulation was well-known. By virtue of deriva-
tion, however, our simpler and more elegant proof generalizes immediately to
weak bisimulation and can also easily be adapted to various other behavioral
equivalences and preorders (like simulation and the preorders studied in [13]).
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Do characteristic formulae exist also for some class of infinite-state pro-
cesses? The answer is no. Any mu-calculus formula ψ representing a certain
process P up to bisimulation has – by the finite model property of the modal
mu-calculus [6] – also a finite model Q. Thus P must be bisimilar to Q, i.e.
be a finite-state process up to bisimulation.

What is the use of characteristic equation systems and formulae? On
the theoretical side, their existence provides specific expressiveness results for
the modal mu-calculus. Combined with the fact that model checking the
modal mu-calculus is decidable for certain classes of infinite-state processes,
in particular push-down processes [14,1], this immediately implies that strong
and weak bisimulation (and various other relations for which characteristic
formulae can easily be constructed, e.g. simulation) are decidable between
finite-state processes and push-down processes. More far-reaching decidability
results of this kind have recently been studied by Jančar, Kučera, and Mayr
[4].

On the practical side, characteristic formulae allow to employ model check-
ers as bisimulation checkers. For this application the exponential blow-up
experienced in the transition from characteristic equation systems to charac-
teristic formulae seems to be particularly unfortunate. However, many model
checkers are based on equation systems rather than formulae, such that they
can be applied directly on characteristic equation systems.
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