Precise Interprocedural Analysis through Linear Algebra

*
Markus Muller-Olm

FernUniversitat Hagen, LG Praktische Informatik 5
58084 Hagen, Germany

mmo@Is5.cs.uni-dortmund.de

Abstract

We apply linear algebra techniques to precise interprocedural
dataflow analysis. Specifically, we describe analyses that deter-
mine for each program point identities that are valid among the
program variables whenever control reaches that program point.
Our analyses fully interpret assignment statements with affine ex-
pressions on the right hand side while considering other assign-
ments as non-deterministic and ignoring conditions at branches.
Under this abstraction, the analysis computes the set of all affine
relations and, more generally, all polynomial relations of bounded
degree precisely. The running time of our algorithms is linear in the
program size and polynomial in the number of occurring variables.
We also show how to deal with affine preconditions and local vari-
ables and indicate how to handle parameters and return values of
procedures.

Categories and Subject Descriptors: F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs; D.3.3 [Programming Languages]: Language Constructs
and Features—procedures, functions, and subroutines; D.3.4 [Pro-
gramming Languages]: Processors—compilers; D.3.4 [Program-
ming Languages]: Processors—optimization

General Terms: algorithms, theory, verification.

Keywords: interprocedural analysis, linear algebra, weakest pre-
condition, affine relation, polynomial relation.

1 Introduction

The field of program analysis is concerned with designing algo-
rithms that compute information about the dynamic behavior of
programs by a static analysis. Such information is useful in many

*On leave from Universitat Dortmund, FB 4, LS 5, 44221 Dort-
mund, Germany.

©ACM, 2004. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of POPL’04, January 14-16,
2004, Venice, Italy. http://doi.acm.org/10/1145/nnnnnn.nnnnnn.

Helmut Seidl
TU Minchen, Lehrstuhl fur Informatik |1
80333 Minchen, Germany

seidl@informatik.tu-muenchen.de

circumstances. Important application areas are optimizing com-
pilers and validation or verification of programs. An often used
simplification is to work with intraprocedural or context-insensitive
analyses. Intraprocedural analyses treat bodies of single procedures
(or methods) in isolation, while context-insensitive analyses assume
conservatively that a procedure called at one call site may return to
any other call site of this procedure. The context-insensitive ap-
proach, though interprocedural, still is limited in the quality of the
computed information: if only weak information about one partic-
ular calling context of a procedure or method is available, this may
affect all other calling contexts. The design of context-sensitive in-
terprocedural analyses that mirror the actual call/return behavior of
programs is generally deemed to be challenging. Here, if we speak
about interprocedural analyses without further qualification, we al-
ways will mean context-sensitive ones.

In this paper, we show how linear algebra techniques can be used
for interprocedural flow analysis. Our specific goal is to determine
for each program point affine and, more generally, polynomial re-
lations that are valid among the program variables whenever con-
trol reaches that program point. An affine relation is a condition
of the form ag + zi"+1aixi =0, where ap,...,an are constants and
X1,...,Xn are program variables; a polynomial relation is a condi-
tion of the form p(xy,...,xn) = 0, where p is a multi-variate poly-
nomial in X1, ...,Xn. We call an analysis precise (w.r.t. a given class
of programs) if it computes for every program point u of a program
all valid relations of the given form which are valid along every fea-
sible program path reaching u. (A program path is called feasible if
it mirrors the actual call/return behavior of procedures.)

Looking for valid affine and polynomial relations is a rather general
question with many applications. First of all, many classical data
flow analysis problems can be seen as problems about affine and
polynomials relations. Some examples are: finding definite equali-
ties among variables like x =y; constant propagation, i.e. detecting
variables or expressions with a constant value at run-time; discov-
ery of symbolic constants like x = 5y + 2 or even x = yz2 +42;
detection of complex common sub-expressions where even expres-
sions are sought which are syntactically different but have the same
value at run-time; and discovery of loop induction variables. Karr
[10] also discusses applications in connection with parallelization
of do-loops.

Affine and polynomial relations found by an automatic analysis
routine are also useful in program verification contexts, as they pro-
vide non-trivial valid assertions about the program. In particular,
certain loop invariants can be discovered in this way fully automat-
ically. As affine and, even more, polynomial relations express quite
complex relationships among variables, the discovered assertions

may form the backbone of the program proof and thus significantly
simplify the verification task.

In this paper we consider affine programs for which our analy-
sis will be precise, i.e., compute not some but all affine relations
which are valid at a program point. We then extend this analysis
to compute all valid polynomial relations up to a given degree d
and to take affine preconditions into account completely. Affine
programs differ from ordinary programs over integers in that they
have non-deterministic (instead of conditional) branching, and con-
tain only assignments where the right-hand sides either equal “?”
denoting an unknown value, or are affine expressions such as in
X3 := X3 — 3X2 + 7. Clearly, in practice our analyses can also be
applied to arbitrary programs simply by ignoring the conditions at
branchings and simulating input operations and non-affine right-
hand sides in assignments through assignments of unknown values.

To use linear algebra for program analysis is not a new idea. In his
seminal paper [10], Karr presents an intraprocedural analysis that
determines all intraprocedurally valid affine relations in an affine
program. However, the potential of linear algebra has never been
exploited fully. We extend Karr’s work in three respects. Firstly,
we describe a precise interprocedural analysis of affine programs.
Secondly, we extend our algorithm to an algorithm that computes
all interprocedurally valid polynomial relations of degree bounded
by some fixed d. Thirdly, we show how to treat local variables and
indicate how to handle parameters and result values of procedures.
Our base algorithm as well as the extended algorithms run in time
linear in the program size and polynomial in the number of program
variables.

The key observation onto which our algorithms are based is that the
weakest precondition of an affine or polynomial relation a along a
single run of an affine program can be determined by means of a lin-
ear transformation applied to a. The set of all linear transformations
of a vector space again forms a vector space and we can compute
for each program point u the finite-dimensional subspace generated
by the linear transformations induced by the program runs reaching
u. A relation a turns out to be valid at u if and only if the sub-
space of linear transformations computed for u transforms a into 0
(or a relation implied by the precondition, respectively). This im-
plies that the set of all valid relations can be computed as the set
of solutions of a linear equation system. Thus, finite-dimensional
subspaces of linear transformation describe the effect of procedure
calls precisely enough.

The program in Figure 1 illustrates the kind of properties our anal-
yses can handle. It consists of two procedures Main and P. After
memorizing the (unknown) initial value of variable x; in variable
X2 and initializing x3 by zero, Main calls P. Procedure P can either
terminate without changing any variable or call itself recursively.
In the latter case, it increments X1 by X2 + 1 and x3 by 1 before the
recursive call and decrements x4 by X, afterwards. Therefore, the
total effect of each instance of P with a recursive call is to incre-
ment both x1 and x3 by one. Thus, upon termination of the call to
P in Main (i.e., at program point 3), X3 holds the number of recur-
sive calls of P and x; the value x> + x3. Consequently, the final
assignment in Main always assigns zero to x;. More formally, this
amounts to saying that the affine relation x; — X2 —x3 = 0 is valid
at program point 3 and that the affine relation x4 = 0 is valid at
program point 4.

Another interesting relationship between the variables holds when-
ever P is called. As mentioned, variable x3 counts the number of
recursive calls, and, thus, how often x; has been incremented by

Main: \é) P:

X2 =Xy Xpi=X1+x2+1
©
X3:=0 X3:=X3+1

U
B

X1 :=X1—X2—X3

Figure 1. An example program.

X1 =X1—X2

X2+ 1. Consequently, at any call to P variable x1 holds the value
X2 4 X3(X2 + 1) = XoX3 + X2 + X3. This amounts to saying that the
polynomial relation (of degree 2) xox3 — X1 + X2 + X3 = 0 is valid
at program points 2, 5and 7.

Related Work

Unlike our algorithm, Karr’s intraprocedural algorithm [10] works
with a forward propagation of affine spaces and uses quite compli-
cated subroutines to deal with join points and assignments x; :=t
where the affine right-hand side depends on the variable x; on the
left-hand side. Similar to our approach, it abstracts non-affine as-
signments and general guards. Due to the forward propagation
strategy, however, it is able to handle positive affine guards pre-
cisely. In [13] we observe that, in absence of affine guards, check-
ing a given affine relation for validity at a program point can be per-
formed by a simpler backward propagating algorithm which in turn
is generalized to a backward propagating algorithm for checking ar-
bitrary polynomial relations for polynomial programs (where poly-
nomial right hand side of assignments are interpreted) in [15, 14].
In a recent paper, Gulwani and Necula [8] present a probabilistic
analysis for finding affine relationships. Their algorithm is also just
intraprocedurally applicable but asymptotically faster than Karr’s—
at the price of a (small) probability of yielding non-valid affine re-
lations.

A generalization of these approaches to the interprocedural case is
not obvious. The functional approach of Sharir/Pnueli [20, 11] to
designing interprocedural data flow analyses is limited to finite lat-
tices of data flow informations. Accordingly, it has successfully
been applied to the detection of copy constants [17]. In copy con-
stant detection only assignments of the form x := a are treated ex-
actly where a is a constant or a variable. The lattice of affine spaces,
however, is clearly infinite. The call string approach of [20], on the
other hand, is applicable to more general lattices but abstracts the
call/return behavior of procedures. Thus, it does not lead to precise
interprocedural analyses. In more recent work on precise interpro-
cedural analysis, Horwitz et al. propose a polynomial-time algo-
rithm for detecting linear constants [9] interprocedurally. In lin-
ear constant detection only those affine assignments are interpreted
whose right-hand sides contain at most one occurrence of a vari-
able. We strictly improve on these results as our analyses treat all
affine assignments exactly and determine more general properties.

Figure 2. Another example program.

A generalization of Karr’s algorithm in another direction is the use
of polyhedra instead of affine spaces for approximately represent-
ing sets of program states; the classic reference is Cousot’s and
Halbwachs’ paper [6]. Polyhedra allow to determine besides affine
equalities also affine inequalities like 3x1 + 5x2 < 7x3. Since the
lattice of polyhedra has infinite height, widenings must be used to
ensure termination of the analysis (see [2] for a recent discussion)—
making it unsuitable for precise analyses. Sets of affine inequal-
ities, however, allow to relate the values of variables before and
after a procedure call (a relational analysis in the terminology of
Cousot)—thus naturally allowing for an interprocedural general-
ization. A relational analysis, however, that uses affine spaces or
polyhedra for approximating the relational semantics of procedures
is not precise enough to detect all valid affine relations in a pro-
gram with procedures. For a simple example see Figure 2. The
true relational semantics of procedure P is described by the formula
X =XoVX=2-Xg— 2) where X represents the initial and x the fi-
nal value of the variable. The best approximation of this relation
by an affine space or polyhedron is described by the formula true.
It is obvious that this approximation of P’s semantics is too weak
to detect that the affine relation x = 2 is valid at program point 2 in
procedure Main.

The paper is organized as follows. In Section 2, we formally in-
troduce the programs to be analyzed together with their semantics.
In Section 3, we introduce affine relations, their weakest precondi-
tions along a program run and explain our algorithm for this special
case. In Section 4, we generalize our approach to deal with arbitrary
polynomial relations of bounded degree. In Section 5, we extend
our approach to procedures with local variables and in Section 6 we
show how to take into account affine preconditions completely.

2 Affine Programs

We model programs by systems of non-deterministic flow graphs
that can recursively call each other as in Figure 1. Let X =
{X1,...,Xk} be the set of (global) variables the program operates on.
We use x to denote the column vector! of variables x = (Xg, . .., Xk)".
We assume that the variables take values in a fixed field F. In prac-
tice, F is the field of rational numbers. Then a state assigning val-
ues to the variables is conveniently modeled by a k-dimensional
(column) vector x = (xq,...,xk)! € F¥; x; is the value assigned to
variable x;. Note that we distinguish variables and their values by
using a different font. For a state x, a variable x; and a value ¢ € F,
we write X[x;j — ¢] for the state (X1,...,Xi—1,C,Xit1,---,Xk)"

We assume that the basic statements in the program are either affine

1The superscript “t” denotes the transpose operation which mir-
rors a matrix at the main diagonal and changes a row vector into a
column vector (and vice versa).

assignments of the form x; := to+ K ; tix; (with tj € F for i =
0,...,k and xj € X) or non-deterministic assignments of the form
Xj :=? (with xj € X). Assignments x; := X;j have no effect onto
the program state. They are also called skip statements and omitted
in pictures. Non-deterministic assignments x; :=? represent a safe
abstraction of statements in a source program our analysis cannot
handle precisely, for example of assignments xj :=t with non-affine
expressions t or of read statements read(X;). Let Stmt be the set of
basic statements.

A program comprises a finite set Proc of procedure names that con-
tains a distinguished procedure Main. Execution starts with a call
to Main. Each procedure name p € Proc is associated with a con-
trol flow graph Gp = (Np,Ep,Ap,ep, p) that consists of:

o aset Np of program points;
o asetof edges Ep € Np x Np;

e a mapping A, : Ep — Stmt U Proc that annotates each edge
with a basic statement of the form described above or a pro-
cedure call;

o aspecial entry (or start) point ep € Np; and
e aspecial return point rp € Np.

We assume that the program points of different procedures are dis-
joint: NpNNg =0 for p # q. This can always be enforced by re-
naming program points.

We write N for UpeprocNp, E for Upeproc Ep, and A for
Upeproc Ap- We agree that Base = {e | A(e) € Stmt} is the set
of base edges and Callp = {e | A(e) = p} is the set of edges that
call procedure p.

The core part of our algorithm can be understood as a precise ab-
stract interpretation of a constraint system characterizing the pro-
gram executions that reach program points. We represent program
executions or runs by sequences of affine assignments. Formally, a
run r is a finite sequence

r=51...;5m

of assignments s; of the form x;j :=t where xj € X and t =

to+ YK tixi for some to,...,t € F. We write Runs for the set
of runs. The set of runs reaching program point u € N can be char-
acterized as the least solution of a system of subset constraints on
run sets (see, e.g., [19] for a similar approach for explicitly paral-
lel programs). We start by defining the program executions of base
edges e in isolation. If e is annotated by an affine assignment, i.e.,
A(e) = xj :=t, it gives rise to a single execution: S(e) = {x; :=t}.
The effect of base edges e annotated by a non-deterministic assign-
ment xj :=? is captured by all runs that assign some value from F
to X;j:

S(e) = {xj:=c|ceF}.

Thus, we capture the effect of non-deterministic assignments by
collecting all constant assignments. Next, we characterize same-
level runs. Same-level runs of procedures capture complete runs of
procedures in isolation. As auxiliary sets we consider same-level
runs of program nodes, i.e., those runs that reach a program point u
in a procedure p from a call to p on same-level, i.e., after all pro-
cedures called by p have terminated. The same-level runs of proce-
dures and program nodes are the smallest solution of the constraint
system S:

[S1] S(q) 2 S(rq)

[S2] S(eq) 2 {e}

[S3] S(v) 2S(u);S(e) ife=(u,v) € Base
[S4] S(v) D S(u);S(p) ife=(u,v)e Callp

where “€” denotes the empty run, and the operator “;” denotes con-
catenation of run sets. By [S1], the set of same-level runs of a pro-
cedure q comprises all same-level runs reaching the return point of
g. By [S2], the set of same-level runs of the entry point of a pro-
cedure contains the empty run. By [S3] and [S4], a same-level run
for a program point v is obtained by considering an ingoing edge
e = (u,v). In both cases, we concatenate a same-level run reaching
u with a run corresponding to the edge. If e is a base edge, we con-
catenate with an edge from S(e). If e is a call to a procedure p, we
take a same-level run of p.

Next, we characterize the runs that reach program points. They are
the smallest solution of the constraint system R:

[R1] R(Main) D {e}
[R2] R(p) DO R(u) if (u,-) € Callp
[R3] R(u) D R(p);S(u) ifueNp

By [R1], the procedure Main is reachable by the empty path. By
[R2], every procedure p is reachable by a path reaching a call of
p. By [R3], we obtain a run reaching a program point u in some
procedure p, by composing a run reaching p with a same-level run
reaching u.

So far, we have furnished procedural flow graphs with a symbolic
operational semantics only by describing the sets of sequences
of assignments possibly reaching program points. Each of these
runs gives rise to a transformation of the underlying program state
x € F¥. Every assignment statement x; := t induces a state transfor-
mation [[x; :=t] : FX — F¥ given by

[xj =thx = x[xj = t(x)],

where t(x) is the value of term t in state x. This definition is induc-
tively extended to runs: [[€] = Id, where Id is the identical mapping

and [[ra]] = [[a]] o [r].

The state transformation of an affine assignment xj :=to+ YX_; tix;
is an affine transformation. Hence, it can be written in the form
[:=t]x = Ax+ b with a matrix A € F**k and a (column) vector

b € F¥. More specifically, A and b have the form indicated below:

liia| O 0
0 [0
Here, |; is the unit matrix with i rows and columns and 0 denotes
zero matrices and vectors of appropriate dimension. In b, tg appears
as j-th component.

As a composition of affine transformations, the state transformer of
arun is an affine transformation as well. Forany runr, let A, € <k
and by € F¥ be such that [[r]x = Arx+by.

3 Affine Relations and Weakest Preconditions

An affine relation over a vector space F¥ is an equation ag+aix1 +
..agxXkx = 0 for some a; € F. Geometrically, it can be viewed as a

hyper-plane in the k-dimensional vector space F¥. Such a relation
can be represented as a polynomial of degree at most 1 (namely, the
left-hand side) or, equivalently, as a column vector a = (ag, ..., ax)".
In particular, the set of all affine relations forms an F-vector space
which is isomorphic to F¥*1. The vector y € F¥ satisfies the affine
relation a iff ag +a’ -y = 0 where &’ = (ay,...,ax)t and “-” denotes
scalar product. We write y |= a to denote this fact. Geometrically,
this means that the point y is an element of the hyper-plane de-
scribed by a.

The affine relation a is valid after a single run r iff [r]x = a for
all x € B, i.e., iff ag+a - [r]x = 0 for all x € F¥; x represents
the unknown initial state. Thus, ag+a’ - [[rx = 0 is the weakest
precondition for validity of the affine relation a after run r. We
have

ap+a -[rjx=0
iff [Choice of Ar and by]
ag+a - (Arx+Dbr) =0
iff [Linearity, rearrangement]
(ag+a -br)+a -Ax=0
iff [Law x-Ay = Alx.y from linear algebra]
(ap+a -br)+(Ald).x=0
From this characterization we see that the weakest precondition is
again an affine relation. Even better: The mapping that assigns

to each affine relation its weakest precondition before run r is the
linear map described by the following (k+1) x (k4 1) matrix W;:

1] bt
Wr = (T’T) @

In particular, we have proved that for every x e F¥:

[fixE=a iff x=Wa. ®)

Thus, the matrix W, provides us with a finite description of the
weakest precondition transformer for affine relations of a single
program execution r.

Note that the only affine relation which is true for all program states
is the relation 0= (0,...,0)%. Thus, the affine relation a is valid after
run r iff Wy a = 0, because the initial state is arbitrary. Accordingly,
the affine relation a is valid at a program point u, iff it is valid after
all runs r € R(u). Summarizing, we have:

LEMMA 1. The affine relation a € F<*1 is valid at program point
uiff Wra =0 for all r € R(u).

Thus, the set W = {W; | r € R(u)} gives us a handle to solve the
validity problem for affine relations. The problem is that we do
not know how to represent ¥/ in a finitary way—Iet alone how to
compute it. In this place, we recall from linear algebra that the set
of (k+1) x (k+ 1) matrices again forms an F-vector space. The
dimension of this vector space equals (k +1)2. We observe:

LEMMA 2. Let M denote a set of n x n matrices.

a) For every W € M, the set {a | Wa = 0} forms a subspace of
.

b) As an intersection of vector spaces, the set {a | YW € M :
Wa = 0} forms a subspace of F".

c) For every a € F", the following three statements are equiva-
lent:

- Wa=0forallW € M;
- Wa =0 for allW € Span(M).
— Wa =0 for all W in a basis of Span(M).

Here, Span(M) denotes the vector space generated by the elements
in M, i.e., the vector space of all linear combinations of elements
in M. We conclude that we can work with Span(#/), i.e., the sub-
space of Fk+1)x(k+1) generated by /' without losing interesting
information. As a subspace of the vector space Fk+Dx(k+1) of dj-
mension (k+1)2, Span(#/) can be described by a basis of at most
(k+1)2 matrices. Indeed, due to the special form of the matrices
W,—in the first column all but the first entry are zero—Span(W/)
can have at most dimension k? 4k + 1.

Based on these observations, we can determine the set of all affine
relations at program point u from a basis of Span({W, |r € R(u)})
and estimate the complexity of the resulting algorithm. For simplic-
ity we use here and in the following unit cost measure for arithmetic
operations.

THEOREM 1. Assume we are given a basis B for the set
Span({W | r € R(u)}). Then we have:

a) Affine relation a € F¥t1 is valid at program point u iff Wa = 0
for allW € B.

b) A basis for the subspace of all affine relations valid at pro-
gram point u can be computed in time O(k®).

PROOF. Statement a) follows directly from Lemma 1 and
Lemma 2,c).

For seeing b), consider that by a) the affine relation a is valid at u
iff a is a solution of all the equations

k
Zowijaj =0
=

for each matrix W = (wjj) € Band i =0,...,k.

The basis B contains at most O(k?) matrices each of which con-
tributes k + 1 equations. Thus, we must determine, the solution of
an equation system with O(k®) equations over k + 1 variables. This
can be done, e.g. by Gaussian elimination, in time O(k5). O

So we are left with the task to compute, for every program point u,
(a basis of) Span({W; | r € R(u)}). This subspace of F{k+1)x(k+1)
can be seen as an abstraction of the set R(u) of program executions
reaching u. We are going to compute it by an abstract interpretation
of the constraint system for R(u) from Section 2. Recall that the
set of subspaces of a finite-dimensional F-vector space V forms a
complete lattice (w.r.t. the ordering set inclusion) where the least
element is given by the 0-dimensional vector space consisting of
the O-vector only. The least upper bound of two spaces V1,V5 is
given by:

ViuVe = Span(Vl UVZ)
{vi+vz |vi €Vi}.
We denote the complete lattice of subspaces of V by Sub(V). The

height of Sub(V), i.e., the maximal length of a strictly increasing
chain, equals the dimension of V.

The desired abstraction of run sets is described by the mapping o :
2Runs N Sub(]F(k+1)><(k+l)) :

a(R) =Span({W; | r e R}).
Thus, we have:
a(0) = Span(0) = {0}
a({r}) Span({Wr})
for a single run r. By Equation (2) we get for the empty run,
a({e}) = Span({l+1})
because A¢ = I and bg = 0.

The mapping a is monotonic (w.r.t. subset ordering on sets of runs
and subspaces.) Also it is not hard to see that it commutes with
arbitrary unions.

In order to solve the constraint system for the run sets R(u) over

abstract domain Sub(F(k+1)x(k+1)) ‘we need adequate abstract ver-
sions of the operators and constants in this constraint system. In
particular, we need an abstract version of the concatenation of run
sets. For My, My C Fk+1)x(k+1) \e define:

Mo Mz = Span({A1A2 | Ai € Mi}).

First of all, we observe:

LEMMA 3. For all sets of matrices M1, Mo,
Span(Mj) o Span(Mz) = MjoMy.
PROOF. Observe first that Span(M;) 2 M; and therefore,
Span(Mj) o Span(Mz) D M1oM;

by monotonicity of “o”.

For the reverse inclusion, consider arbitrary elements B; = Yi)\gi) -
AE') in Span(M;) for suitable AE') € M;. Then

- (1)5(2) A(L)A(2)

by linearity of matrix multiplication. Since each A%)A(-Z) is con-
tained in M1 oMo, B1B> is contained in M1 oMy as well. Therefore,
also the inclusion “C” follows. [

Accordingly, a generating system for M1 o M2 can be computed
from generating systems G1, G, for M1 and M by multiplying each
matrix in G1 with each matrix in Go.

Secondly, we observe that “o” precisely abstracts the concatenation
of run sets:

LEMMA 4. LetR3,R> C Runs. Then
G(Rl) oG(Rz) = G(Rl; Rz).

PROOF. Consider the auxiliary map % mapping run sets to sets of
matrices by:

W(R) ={W, |r e R}.

Then we have a(R) = Span(‘W(R)). We observe:
{AlAz | A € W(R|)} = W(Rl; Rz) .

This suffices as the span construction commutes with composition
by Lemma 3. [

Let us now turn attention to the abstraction of base edges. Let
us first consider a base edge e € Base annotated by an affine
assignment, i.e., A(e) = xj :=t where t =tg+ Y tiX;. Then
S(e) = {xj :=t}. By (1) and (2), the corresponding abstract trans-
former is given by

a(S(e)) = a({xj:=t})
I to 0

Span

0 tx Ik—j

Informally, the weakest precondition for an affine relation a € F<+1
is computed by substituting t into x; of the corresponding affine
combination.

Next, consider a base edge e € Base annotated with xj :=?. In this
case, S(e) = {xj :=c¢ | c € F}—implying that we have to abstract an
infinite set of runs if the field T is infinite. Clearly, the abstraction
of this set again can be finitely represented. We obtain this repre-
sentation by selecting two different values from T, e.g., 0 and 1. We
find:

LEMMA 5.

a(s(e))

a({xj:=c|celF})
= Span({To, T1}),

where T¢ =Wx;:=c is the matrix obtained from I, 1 by replacing the
j+1-th column with (c,0,...,0)%.

PROOF. Only the second equation requires a proof. From Equa-
tions (1) and (2) we get a({xj :=c|c € F}) = Span({T¢ | c € F}).
We verify: Tc= (1—c)-Tp+c-T1. Hence, Tc € Span({To,T1})
and Span({T¢ | c € F}) = Span({To, T1}).

From the constraint systems S and R for run sets, we construct now
the constraint systems Sy and Ry by application of a. The variables
in the new constraint systems take subspaces of F(kt1D)x(k+1) 3
values. We apply a to the occurring constant sets {€} and S(e) and
replace the concatenation operator “;” with “o”:

Sa(d) 2 Sa(rq)

Sa(eq) 2 Span({ld})
(v) D Su(u) oa(S(e)) ife=(u,v) € Base

Sa (V) D Sq(u) o Se(p) ife={(u,v) € Callp

Ra(Main) D Span({ld})
Ra(p) D Ra(u) if (u,) € Callp
Rq (u) D Rqu(p) o Sa(u) ifueNp

The resulting constraint system can be solved by computing on
bases. For estimating the complexity of the resulting algorithm,
we assume that the basic statements in the given program have
size O(1). Thus, we measure the size n of the given program by
IN|+ |E|. Note that program nodes typically have bounded out-
degree, such that typically [N|+|E| = O(|N]).

THEOREM 2. For every program of size n with k variables the
following holds:

a) The values:
Span({W; | r € S(u)}),
Span({Wr | r € S(p)}), p € Proc,
Span({W; | r € R(u)}), p € Proc, and
Span({Wr |r € R(u)}),ueN,
are the least solutions of the constraint systems Sy and Rq,
respectively.

u}),ueN,

b) These values can be computed in time O(p-k®).

c) The sets of all valid affine relations at program point u, u € N,
can be computed in time O(n-k8).

PROOF. Statement a) amounts to saying that the least solution of
constraint systems Sy and Ry is obtained from the least solution of
S and R by applying the abstraction a. This follows from the Trans-
fer Lemma known in fixpoint theory (see, e.g., [1, 4]), which can be
applied since a commutes with arbitrary unions, the concatenation
operator is precisely abstracted by the operator o (Lemma 4), and
the constant run sets {€} and S(e) are replaced by their abstractions
a({e}) = Span({ld}) and a(S(e)), respectively.

For b) we show that the least solution of the abstracted constraint
systems can be computed in time O(n - k®). For that, recall that the
lattice of all subspaces of Ftk+D)x(k+1) has height (k +1)2. Thus,
a worklist-based fixpoint algorithm will evaluate at most O(n - k?)
constraints. Each constraint evaluation consists of multiplying two
sets of at most (k+ 1)2 matrices. The necessary (k -+ 1)* matrix
multiplications can be executed in time O(k7). Finally, we must
compute a basis for the span of the resulting (k+ 1)* matrices. By
Gaussian elimination, this can be done in time O(k8). Altogether,
we obtain an upper complexity bound of O(n-k?-k8) = O(n-k'°).
A better running time can be obtained if we use a semi-naive fix-
point iteration strategy [16, 3, 7]. The idea here is that when the
value of a fixpoint variable changes, we do not propagate the com-
plete new value to all uses of the variable in right-hand sides of
constraints but just the increment, i.e., in our case the new matri-
ces extending the current basis (instead of the complete new basis).
The total time spent with a constraint then sums up to O(k8) which
overall results in the desired complexity O(n - k8).

Finally, for c) we recall that we know from Theorem 1 that, from
bases of Span({W, | r € R(u)}) for all program points u, we can
compute the sets of all valid affine relations within the stated com-
plexity bounds. [J

Let us consider the example program from Figure 1 for illustra-
tion. Due to lack of space, we cannot describe the fixpoint iteration
in detail or give the full result. However, we report and discuss
some characteristic values. The fixpoint iteration for Sy stabilizes
after 3 iterations. We obtain: Sq(P) = Sq(9) = Span({l4,W1}) and
Sa(3) = Span({W1,W-}), where W1, W, are the matrices

01 0 1 100 0
000 0 011 0
Wi=119 00 o0 Wa=19 00 0
000 0 000 0

As there are no recursive calls to Main, reaching runs and same-
level runs coincide for the program points of Main. Consequently,
we have, Rq(3) = Sa(3) = Span({Wy,W-}). Hence, at program
point 3 just the affine relations a = (ay, . . .,ax)t with W;a = 0 and
Woa = 0 are valid which reduces to the requirements ag = 0 and
ap = az3 = —ay. Therefore, just the affine relations of the form
aijx1 —aiXp —aixz = 0 are valid at program point 3, in particular,
X1 — X2 — X3 = 0 which confirms our informal reasoning from the
introduction.

For program point 4 we have Rq(4) = Sq(4) = Span({Ws,Ws}).
Here, the requirements Wza = 0 and W4a = 0 reduce to ag = ap =
a3 = 0. Thus, just the affine relations of the form a;x; = 0 are valid
at program point 4, in particular, x; = 0. Again this confirms our
informal reasoning that x; is a constant of value zero.

The computation of Ry for the program points of P stabilizes again
after 3 iterations. For the program point 7 just before the recursive
call to P, we obtain Ry (7) = Span({Ws,Ws}), where

1000 010 1
0110 0100
Ws=110 00 0 We=110 00 0
0000 000 0

Here the conditions Wsa = 0 and Wga = 0 for valid affine relations
translate into ag = a; = a» = agz = 0. Interestingly, this implies that
no non-trivial affine relation is valid at every call to P.

In order to find out about validity of the polynomial relation xox3 —
X1+ X2+ X3 = 0 at program point 7, hinted upon in the introduction,
we must generalize our analysis to polynomial relations which is
the topic of the next section.

4 Polynomial Relations of Bounded Degree

Polynomial relations are much more expressive than affine rela-
tions. In particular, they are closed under disjunction: p=0vq=0
holds if and only if pq = 0. For example, the relation:

(Xl—l) . (Xl—Xz) =0
represents the disjunction of the two affine relations:
Xx1—1=0V X3 —%X2=0.

Also, the property whether a variable x; has a value in a given finite
set {C1,-..,cr } C FF with r elements can be expressed by a polyno-
mial relation:

(Xj—c1)-...-(xj—cr) =0.

Formally, a polynomial relation over a vector space F¥ is an equa-
tion p = 0 where p is a polynomial over the unknowns X, i.e.,
p € F[X]. The vectory € IF* satisfies the polynomial relation p = 0,
y = p for short, iff ply/x] = 0 where [y/x] denotes the substitution
of the values y; for the variables ;.

The set of polynomials F[X] forms an F-vector space. However,
as the dimension of this vector space is infinite, we cannot effec-
tively compute with bases. One way out is to restrict attention to

polynomials of bounded degree. The degree of a polynomial p (or
the polynomial relation p = 0) is the maximal sum ji +...+ j of

exponents of a monomial ax{1 . .xlj(k occurring in p. We denote the
set of polynomials of degree at most d by F<q [X].

F<4[X] is an F-vector space of dimension (kgd) = O((k+d)9):
obviously, the monomials lel...xlj(k € Fq[X] with coefficient 1
form a basis of F<q[X] and we prove momentarily by induction
that there are (ngd) such monomials. For d = 0 or k = 0 there
is just the single monomial x(l)...xE or 1, respectively, and indeed
(g) = (g) =1. So assume d > 0 or k > 0. By induction hypothesis
there are (kﬂzl) monomials of degree less than d. The monomials
with degree d over k variables are obtained from the (k’é“’) mono-
mials x{l . ..xli"j of degree at most d over the first k — 1 variables
by multiplying with x:(k where Iy =d — z:‘;llli. Altogether, there

are thus (*497%) + (*=1+9) = (*49) monomials with coefficient 1

of degree at most d.

The polynomial relation p = 0 is valid after a single run r iff for all
x € T, p[[[r]x/x] = 0 or, equivalently, p[(Arx+ by)/x] = 0 where
Ay, by are defined as in Section 2. Thus, p[(Arx+br)/x] =0 s the
weakest precondition for validity of p = 0 after run r. We observe:

LEMMA 6. 1. The polynomial p[(Arx+ by)/X] is again of de-
gree at most d.

2. The mapping Wr(d) which maps polynomials p of degree at

most d to p[(Arx+by)/x] is linear.

PROOF. For a proof of the first statement, it suffices to consider a
runr=x :=t,t=tg+ z'ﬁnzltmxm, of a single assignment and a
single monomial p = xi'...x} . Then

P[(Arx+br)/x] = p[t/xi]

) Ji Ko 1Kk
2 Kot HKi=ji (Ko,..l.,Kk) o G

x| .xij‘_‘i+"“1x:“xijj:i+"i+1 xR
where the (, .j.i. «,) are the multinomial coefficients for the ji-th
power of a sum on k+ 1 summands. Since in each monomial of
the result, Ko+ ... 4+ Kk = Ji, the degree of p[t/x;] is bounded by
j1+ ...+ jk i.e., the degree of p.

The second assertion follows since substitution commutes with
sums and constant multiples. [

The only polynomial relation which is true for all program states is
the zero relation 0 = 0. As for affine relations, we conclude that the

polynomial relation p = 0 is valid after run r iffWr(d)p =0 (where
0 denotes the zero polynomial). Summarizing, we have:

LEMMA 7. The polynomial relation p of degree at most d is valid
at program point u iff Wr(d) p=0forallreR(u).

Now we can proceed analogously to Section 3. By applying
Lemma 2, we can safely replace the set {Wr(d) | r € R(u)} with
its span. The resulting subspace of linear mappings can be de-

scribed by a basis of at most O((k+d)?®) matrices. The entries of
these matrices are now indexed by pairs of tuples J = (j1,..-, jk),

yK , ji <d. Let I denote the set of all such tuples. We determine
the set of all valid polynomial relations at program point u for poly-
nomials of degree at most d as follows:

THEOREM 3. Assume we are given a basis B for the set
span({W'? | r € R(u)}). Then we have:

a) The polynomial relation p = 0 of degree at most d is valid at
program point u iff Wp =0 for all W € B.

b) A basis of the subspace of all polynomial relations of degree
at most d valid at program point u can be computed in time
O((k+d)>).

PROOF. Statement a) follows directly from Lemma 2 and
Lemma 7.

For the proof of b), note that by a) the polynomial relation p =0

isvalid at Uiff p=y;_(j, _joeraxy...x, where the ay,J € I,
are a solution of the equation:

JZanJ:O
€l

for every matrix W = (wy3) € B and every | € I. The basis B may
contain at most O((k 4 d)2®) matrices each of which contributes
O((k+d)9) equations. Thus, we have to compute the solution of
an equation system with O((k 4 d)34) equations over O((k +d)9)
variables. This can be done in time O((k+d)>). O

By Theorem 3, it suffices to compute, for every program point u,

the span of the set of all precondition transformers Wr(d), r € R(u).
We do so by abstracting the run sets to subspaces of linear transfor-
mations now of polynomials of degree at most d. The abstraction is
thus given by:

a@(R) = span({W ¥ |r eR}).
As in the case of affine relations, we have:
a@@ = span(®) = {0}
a({ry) = span(iw{¥})
for a single run r. In particular,

a@{e}) = span({l1}),

where I; is the diagonal matrix describing the identity. The map-
ping a@ js again monotonic (w.r.t. subset ordering on sets of
runs and subspaces) and commutes with arbitrary unions. Also,
Lemma 4 analogously holds for a(d). Therefore, the desired values
can be computed by abstracting the constraint systems for same-
level and reaching run sets. In order to obtain an effective algo-
rithm, it remains to derive explicit abstractions for the effects of
base edges.

For a definite assignment x; :=t, this is obviously possible. It re-
mains to consider a base edge e € Base annotated by x; :=? with
S(e) ={xj:=c|ceF}.

In case FF contains less than d 4 1 elements, the set S(e) is also finite
and we simply may enumerate it. More interesting is the case when
F has at least d + 1 elements, e.g., because F has characteristic 0.

Each polynomial p € F<q[X] can be written as p =y p; - x' for
polynomials p;j not containing x;j. The coefficient polynomials p

have at most degree d and are uniquely determined by p. For 0 <
i <d let C; be the mapping on F4[X] that maps each p to its i-th
coefficient polynomial, i.e., Ci(p) = pi. It is not hard to see that C;
is a linear map and hence can be represented by a matrix. We find

that a(® (S(e)) can be finitely represented by Co, ...,Cq:

LEMMA 8. If F has more than d elements, then
a®(se) = a@({x:=clceF})
= Span({C |1=0,...,d}).

PROOF. From the definitions we have a(? (S(e)) = a(@ ({xj :=c|

cefF}) = Span({WX(f;')=C | c € F}). It remains to show that this span
equals Span({C, |1 =0,...,d}). For this we show:

1. Wx(ﬂ):c € Span({C, |1 =0,...,d}) forallc € F.

2. ¢ € Span({W{Le | c € F}) for 1 =0,...,d.

To 1: For arbitrary p € F<q[X] we have

d d i
WiLe(p) = ple/xj] = PRICES

This means wx(ﬁ):c = zidzocici, which implies 1.
To 2: Since the cardinality of F is at least d 4+ 1, we can find d + 1
distinct elements c, . ..,Ccq € F. Defining matrix A by

1 ¢ ... c§
A 1 01. Cl.
1 ¢g ... ¢
it is not hard to see, that
Co(p) plco/xj]
Al 2= 5
Ca(p) plca/xj]

The determinant of A is an instance of what is known as Vander-
monde’s determinant and has the value [Jo<i<i<a(CI —Ci). Asall ¢
are distinct, the determinant is different from 0. Therefore, matrix
A'is invertible and for the inverse matrix A=1 = (by), we have
Co(p) p[co/X|]
. = A_l .
Ca(p) plca/xj]

Thus, Ci(p) = o bir pler/xj] = S obuWa"Le (p). This shows
Ci =5 obiWi%L, which implies 2. O

Analogously to the last section, we construct constraint systems
Sq@ Ry Which are obtained from the constraint systems S and R

by applying a(9). We conclude:

THEOREM 4. For every program of size n with k variables the
following holds:
a) The values:
Span({Wr(d) |[resS(u)}), ueN,
Span({Wr(d) |resS(p)}), p € Proc,

Span({Wr(d) |reR(p)}), p € Proc,and

Span({Wr(d) [reR(U)}),ueN,

are the least solutions of the constraint systems S, and
Ry, respectively.

b) The sets of all valid polynomial relations of degree at most d
at program point u, u € N, can be computed in time O(n- (k+
d)8dy.

Consider again the example program from the introduction. Since
it uses three program variables, the vector-space of polynomials of
degree at most 2 has dimension (352) = 10. Assume we have or-

dered the index tuples of monomials lexicographically as follows:
(0,0,0) < (0,0,1) < ... < (1,1,0) < (2,0,0).

Then the pre-condition transformer, e.g., of the assignment x; :=
X1+ X2+ 1 is given by the matrix:

cleololNaoll e lleNolNoNo)
OFrRrPO0OOFrRrORFrOOoOOo
PNONRFPONOOR

cNeololoNoNeNeNeNo N
OO0 O0OO0OO0OO0OOrOoO
clololoNoloNol e Ne)
OO O0OO0OO0OOFroOOoOOoO
cleololoNol lleNelNoNo)
OOORFrRPROORFrRrROOR
OOPrPOOPFrOORrOo

We refrain from describing the details of the fixpoint iteration. The
least fixpoint computation for analyzing the valid quadratic rela-
tions at the entry of procedure p stabilizes after three iterations
with three matrices. The rows of these matrices span a vector
space of dimension 9 and have the (coefficients of) the relation
X2X3 — X1 + X2 + X3 = 0 as their only non-trivial solution (up to
constant multiples, of course). Again, this confirms our informal
reasoning from the introduction.

5 Local Variables

So far we have considered programs which operate on global vari-
ables only. In this section, we explain how our techniques can be
extended to work on procedures with global and local variables.

For notational convenience, we assume that all procedures have the
same set X = {X1,...,Xm} of variables where the first k are global
and the remaining m —k are local. For describing program execu-
tions, it now no longer suffices to consider execution paths. Instead,
we have to take the proper nesting of calls into account. Therefore,
same-level runs s and reaching runs r are now finite sequences of
(unranked) trees b and, possibly, enter:

st = Xxj:=t| call{s)
s = sty;...;Sty (n>0)
rt = Xxj:=t| call(s) | enter

r rty;...;rty (n>0)

Trees represent base actions or complete executions of procedures.
Same-level runs represent sequences of such completed executions,
while reaching runs may enter a procedure—without ever leaving it
again.

The set of runs reaching program point u € N can again be charac-
terized as the least solution of a system of subset constraints on run
sets. If e is annotated by an affine assignment, i.e., A(e) = x; :=t,

we again define: S’(e) = {x; :=t}. Similarly for A(e) = x; :=?,
S'(e) ={xj :=c|ceF}.

The same-level runs of procedures and program nodes are the
smallest solution of the following constraint system S':

[§'1] S'(g) 2 S'(rq)

[S'2] S'(eq) 2 {e}

[S'3] S'(v) DS'(u);S'(e) ife = (u,v) € Base
[S'4] S'(v) 2S'(u);call(S'(p)) ife=(u,v)e Callp

Note that, for convenience, the application of the constructor call
to all sequences of a set S is denoted by call(S). Constraints [S'1],
[S'2] and [S'3] are as in Section 2. The new constraint [S'4] deals
with calls. If the ingoing edge e = (u,V) is a call to a procedure p,
we concatenate a same-level run reaching u with a tree constructed
from a same-level run of p by applying the constructor call.

For characterizing the runs that reach program points and proce-
dures, we construct the constraint system R’:

[R'1] R'(Main) D {¢}
[R'2] R'(p) D R(u), if (u,.) € Callp
[R'3] R'(u) D R(p); {enter}; S'(u), ifueNp

Constraints [R’1] and [R’2] are as in Section 3. The only modifi-
cation occurs in [R'3] where an enter is inserted between the run
reaching the current procedure p and the same-level run inside p.

Each of these runs gives rise to a transformation of the underlying
program state x € F™. Here, we just explain how the transforma-
tions of enter and call(s) are obtained. The transformation [Jenter]|
passes the values of the globals x; (j =1,...,k) and sets the locals

Xj, j >k, t0 0.2 Thus,

[enter] = [Xky1:=0;...;Xm:=0] = e | O .
0|0
Let us denote this m x m matrix by E’.

The transformation [[call(s)]] is more complicated. Like [[enter], it
must pass the values of the globals into the execution of the called
procedure and initialize its local variables. In addition, it must re-
turn the values of the globals to the calling context and restore the
values of the local variables. Given that [[s] x = Asx + bs as in Sec-
tion 2, we define:
[cali{s)] x E'([sI(E'x)) +T'x
(E'AE" +T")x+E’bs,

0
0] Imxk
cation of E’ in the first summand prohibits propagation of the called
procedure’s local variables and the second summand, T'x bypasses
the values of the local variables of the calling context. The above
calculation shows that [[call(s)]] is an affine transformation as well.

where T' is the m x m matrix . The outermost appli-

2By convention, local variables are initialized by 0. Other con-
ventions could easily be modeled as well. Uninitialized local vari-
ables as in C, for instance, can be handled by adding xj :=? state-
ments for j =k+ 1,...,m at the beginning of each procedure body.

We want to determine for every (reaching or same-level) run the
transformation which produces the weakest precondition. For sim-
plicity, we construct the weakest precondition transformer only for
affine relations. The weakest precondition transformer for enter is
given by:

Let E denote this matrix. To obtain analogous results as in Sec-
tion 3, we determine the weakest precondition transformation of
call(s). We define an operator O : ™D x(k+1) _y (m-1)x (k1)
on (m+1) x (m+ 1) matrices by:

OW)=EWE+w-T
where w is the element in the left upper corner of W, and T is the
(m+1) x (m+1) matrix< 8 0)

Im—k
The operator O returns a linear transformation and is itself linear.
This implies that O maps subspaces of Fk+1x(k+1) to subspaces

of Fk+1)x(k+1) and, considered as a mapping on subspaces, com-
mutes with arbitrary least upper bounds. Moreover, we have:

LEMMA 9. Let Ws denote the precondition transformer for s.
Then for an affine relation a € F™ and a program state x € F™,
[call(s)]Ix = a iff x = O(Ws) a.

Thus, We,y(s) = O(Ws) is the weakest precondition transformer for
call(s). In order to furnish the same approach as for global vari-
ables, we define the abstraction function a for sets R of (same-level
or reaching) runs by:

a(R) = Span({W; | r € R})
In particular, a({enter}) = Span({E}).

Analogously to Lemma 4, we find:

LEMMA 10. For every set S of same-level runs,
a(call(S)) = a({call{s) | s € S}) =0(a(S)).

Finally, we construct constraint systems S, and Rf, from S’ and
R’ by applying a where concatenation is replaced with “o” and the
constructor call is replaced with “0O”. Then we obtain our main
theorem for programs with local variables:

THEOREM 5. For a program of size n with m global and local
variables the following holds:

a) The values:
Span({Ws |s € S'(u)}), ueN,
Span({Ws | s € S'(p)}), p € Proc,
Span({Ws|s € R'(p)}), p € Proc, and
Span({W; |r e R'(u)}), ueN,
are the least solutions of the constraint systems Sf, and Ry,
respectively.

b) The sets of all valid affine relations at program pointu, u € N,
can be computed in time O(n-mé&).

Our technique can be adapted to procedures with parameters. Value
parameters, for instance, can be simulated via a scratch pad of glob-
als through which the actual parameters are communicated from the
caller to the callee. Return values can be treated similarly.

6 Affine Preconditions

The analyses considered so far assume that we have no knowledge
whatsoever about the initial state in which the program is started.
However, in a verification context we are often in a more lucky sit-
uation when we are given a precondition that constrains potential
initial states. Of course, if less initial states are possible more rela-
tions may be valid at the nodes of a program and an analyses that
ignores the precondition may be overly pessimistic. In this section
we extend the analyses of Section 3 and Section 4 to take into ac-
count affine preconditions completely. The analyses of this section
thus compute for each program point of an affine program the space
of all those affine or polynomial relations that are valid whenever
the program is started in a state satisfying a given affine precondi-
tion.

Assume given a finite set Pre C Fkt1 of affine relations, repre-
senting the affine precondition. We say that Pre is satisfiable if
there is an x € F¥ such that x |= h for all h € Pre. If Pre is not
satisfiable, all relations are valid at all program points under pre-
condition Pre. As we can check whether Pre is satisfiable or not
with the aid of Gaussian elimination, we can detect this trivial
case. Thus, we assume without loss of generality that Pre is sat-
isfiable in the following. In this case, the set of states satisfying
Pre, Sat(Pre) = {x € F | x |= h,h € Pre}, is an affine subspace of
F¥ and can be represented in the form Sat(Pre) = xo + L, where
Xo € Sat(Pre) and L is a (linear) subspace of F¥. Assume that
X1,...,X With | <k s abasis of L. Then we have

[
Sat(Pre) = {xo+) ArXr [A1,...,\ €F}. 4
r=1

Vectors X, ..., € F with this property can be computed from Pre
with standard techniques from linear algebra.

Obviously, an affine relation a is valid at a program point u un-
der precondition Pre, iff its weakest precondition for each program
path r reaching u is valid for all x € Sat(Pre), i.e., if x =W, a for
all r € R(u), x € Sat(Pre). By the characterization of Sat(Pre) in
Equation 4, we thus have:

LEMMA 11. The affine relation a € F<1 is valid at program
point u under precondition Pre iff xg + zlrzl)\fxf = W a for all
Al,..., Al €F, r € R(u).

By arguing analogously to Section 3 we can equivalently require
this property for all matrices W in a basis of Span{W; | r € R(u)}.
Thus, we obtain the following generalization of Theorem 1:

THEOREM 6. Assume we are given a basis B for the set
Span({W | r € R(u)}). Then we have:

a) Affine relation a € F<+1 is valid at program point u under
precondition Pre iff xg + Z',=17\rXr E=Wa for all Ag,..., A €
F, W € B.

b) A basis for the subspace of all affine relations valid at pro-
grarg point u under precondition Pre can be computed in time
o(k).

PROOF. As a) has already been justified we prove only b). By a)
an affine relation a is valid at u if and only if for all W € B:

Xo+ z ArXr =Wa forall Ay,...,\ €F. (5)
r=1

By unfolding the definition of “[=" and writing W = (wjj) and x; =
(Xi1,---,Xik) fori=0,...,1, Formula (5) means that

jiai(""oi +iiX0iWij) +rlzi>\r jiaj iixnwij =0

for all Aq,...,A; € F. This is an affine equation in the Ay whose
coefficients are affine combinations of the a;. It is valid for all Ar if
and only if all these combinations are 0. Therefore, an affine rela-
tion a is valid at u under precondition Pre if and only if it satisfies
the equations:

k k
Z}aj (woj + ZXOiWij) =0
i= is

and

k k
Z}aj Zxriwij =0 forr=1,...,1
=0 =

for all W = (w;j) € B. We can hence compute the subspace of all
valid affine relations by setting up and solving the linear equation
system consisting of all these equations.

Let us estimate the complexity of this procedure. Each matrix W €
B contributes | + 1 = O(k) equations and there are at most O(k?)
matrices in B. Hence the equation system has O(k®) equations.
It is not hard to see, that the coefficients of each equation can be
computed in time O(kz). Hence the equation system can be set up
in time O(k®). As a linear equation system with O(k®) equations
in the k+ 1 variables ag, ...,ax it can be solved, e.g., by Gaussian
elimination in time O(k%). O

From Theorem 2 we know that we can compute a basis of
Span({W, | r € R(u)}) in time O(n-k8). Together with Theorem 6
this implies:

COROLLARY 1. The sets of all valid affine relations at program
point u, u € N, under precondition Pre can be computed in time
o(n-k8).

This approach for treating affine preconditions can straightfor-
wardly be generalized to the setting of Section 4. Here a polyno-
mial relation of degree at most d turns out to be valid at a program
point u under precondition Pre if and only if for all W in a basis of

span({W@ | r e R(W)}):
|
Xo+z?\rXr EWp forallAq,...,\ €F. (6)
r=1

This time, this translates to a polynomial equation (of degree at most
d) in the A; whose coefficients are affine combinations of the coeffi-
cients of p. Again all these affine combinations must equal 0 which
gives rise to a linear equation system that we can set up and solve.

COROLLARY 2. The sets of all valid polynomial relations of de-
gree at most d at program point u, u € N, under precondition Pre
can be computed in time O(n- (k+d)8d).

7 Conclusion

We have presented an interprocedural analysis that determines for
each program point of an affine program the set of all valid affine
relations. We generalized the algorithm to infer all polynomial rela-
tions of bounded degree and showed that our methods work also in

presence of local variables and parameter passing by value and re-
sult. We also generalized our analyses to take affine preconditions
into account.

All our analyses run in polynomial time. More precisely, they are
linear in the program size and polynomial of a higher degree in the
number of variables. It remains for future work to find out whether
this theoretical complexity bound is prohibitive to apply the anal-
ysis in practice or in how far heuristic methods are necessary to
identify promising but sufficiently small sets of variables to be in-
cluded in the analysis.

Instrumental for our approach is that we can capture the effect
of procedures as weakest precondition transformers for affine and
polynomial relations completely by subspaces of linear maps. This
provides us with a kind of abstract “higher-order denotation” of
procedures that we can compute in polynomial time and use at any
call site. Similar in spirit is “relational analysis” of recursive proce-
dures as proposed by Cousot [5, 6] and the “functional approach”
to interprocedural analysis [20, 11]. While these approaches rely
on relations or functions, we capture the effects of procedures by
finitely representable sets of functions.

Our results improve on the analysis of linear constants by Hor-
witz et al. [9, 17] and, upto the treatment of positive affine guards,
also on the results obtained by Karr [10]. In a recent paper, Reps,
Schwoon, and Jha [18] use a library for reachability analysis of
weighted pushdown systems for interprocedural dataflow analysis.
They report that G. Balakrishnan has created a prototype implemen-
tation of our interprocedural analysis for affine relations based on a
preliminary version of the current paper.

The results of this paper are still not strong enough to deal with
positive affine guards as Karr’s approach. Also, they do not gener-
alize our intraprocedural analysis in [15, 14] where we succeed in
checking the validity of arbitrary polynomial relations for polyno-
mial programs—even in presence of negative polynomial guards. It
remains as challenging open problems whether or not precise inter-
procedural treatments of positive guards or precise interprocedural
analysis of polynomial programs are possible.

Acknowledgments

We would like to thank the anonymous POPL reviewers for their
remarks that helped to improve our original submission. The first
author would also like to thank the members of IFIP Working
Group 2.2 for their constructive comments on a talk about a pre-
liminary version of this paper.

8 References

[1] K. R. Aptand G. D. Plotkin. Countable Nondeterminism and
Random Assignment. Journal of the ACM, 33(4):724-767,
1986.

[2] R. Bagnara, P. Hill, E. Ricci, and E. Zaffanella. Precise
Widening Operators for Convex Polyhedra. In 10th Int. Static
Analysis Symposium (SAS), pages 337-354. LNCS 2694,
Springer-Verlag, 2003.

[3] I. Balbin and K. Ramamohanarao. A Generalization of the
Differential Approach to Recursive Query Evaluation. Jour-
nal of Logic Programming (JLP), 4(3):259-262, 1987.

[4] P. Cousot. Constructive Design of a Hierarchy of Seman-
tics of a Transition System by Abstract Interpretation. Elec-

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

tronic Notes in Theoretical Computer Science, 6, 1997. URL:
www. el sevier.nl/locatelentcs/vol ume6. htni .

P. Cousot and R. Cousot. Static Determination of Dynamic Properties
of Recursive Procedures. In E. Neuhold, editor, IFIP Conf. on For-
mal Description of Programming Concepts, pages 237-277. North-
Holland, 1977.

P. Cousot and N. Halbwachs. Automatic Discovery of Linear Re-
straints among Variables of a Program. In 5th ACM S GPLAN-
S GACT Symp. on Principles of Programming Languages (POPL),
pages 84-97, 1978.

C. Fecht and H. Seidl. Propagating Differences: An Efficient New
Fixpoint Algorithm for Distributive Constraint Systems. Nordic Jour-
nal of Computing (NJC), 5(4):304-329, 1998.

S. Gulwani and G. Necula. Discovering Affine Equalities Using Ran-
dom Interpretation. In 30th Ann. ACM Symp. on Principles of Pro-
gramming Languages (POPL), pages 74-84, 2003.

S. Horwitz, T. Reps, and M. Sagiv. Precise Interprocedural Dataflow
Analysis with Applications to Constant Propagation. Theoretical
Computer Science (TCS), 167(1&2):131-170, 1996.

M. Karr. Affine Relationships Among Variables of a Program. Acta
Informatica, 6:133-151, 1976.

J. Knoop and B. Steffen. The Interprocedural Coincidence Theo-
rem. In Compiler Construction (CC), pages 125-140. LNCS 541,
Springer-Verlag, 1992.

S. S. Muchnick and N. D. Jones, editors. Program Flow Analysis:
Theory and Applications. Prentice Hall, Engelwood Cliffs, New Jer-
sey, 1981.

[13]

[14]

[15]

[16]

[

[18]

[19]

[20]

M. Miiller-Olm and O. Rithing. The Complexity of Constant Propa-
gation. In 10th European Symposium on Programming (ESOP), pages
190-205. LNCS 2028, Springer-Verlag, 2001.

M. Miiller-Olm and H. Seidl. Computing Polynomial Program Invari-
ants. Submitted for publication.

M. Miiller-Olm and H. Seidl. Polynomial Constants are Decidable.
In 9th Static Analysis Symposium (SAS), pages 4-19. LNCS 2477,
Springer-Verlag, 2002.

B. Paige and S. Koenig. Finite Differencing of Computable Expres-
sions. ACM Trans. Prog. Lang. and Syst., 4(3):402-454, 1982.

T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow
Analysis via Graph Reachability. In 22nd ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages (POPL), pages 49—
61. ACM Press, 1995.

T. Reps, S. Schwoon, and S. Jha. Weighted Pushdown Systems and
their Application to Interprocedural Dataflow Analysis. In Int. Satic
Analysis Symposium (SAS), pages 189-213. LNCS 2694, Springer-
Verlag, 2003.

H. Seidl and B. Steffen. Constraint-Based Inter-Procedural Analysis
of Parallel Programs. Nordic Journal of Computing (NJC), 7(4):375-
400, 2000.

M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data
Flow Analysis. In [12], chapter 7, pages 189-233.

