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Abstract. In his seminal paper [5], Granger presents an analysis which infers lin-
ear congruence relations between integer variables. For affine programs without
guards, his analysis is complete, i.e., infers all such congruences. No upper com-
plexity bound, though, has been found for Granger’s algorithm. Here, we present
a variation of this analysis which runs in polynomial time. Moreover, we provide
an interprocedural extension of this algorithm. These algorithms are obtained by
means of multiple instances of a general framework for constructing interproce-
dural analyses of numerical properties. Finally, we indicate how the analyses can
be enhanced to deal with equality guards interprocedurally.

1 Introduction

In recent years, a growing interest in the design of very precise analyses of numerical
properties of programs could be observed. On the one hand, this comes from a revived
interest in aggressive program optimizations as demanded by low-cost embedded pro-
cessors. On the other hand when designing and implementing critical applications, we
are faced with a need for certifying absence of certain program errors [2, 11] or security
vulnerabilities such as buffer-overflows [3, 15].

Here, we concentrate on equality-based numerical properties. Such properties are
particularly useful, e.g., for induction variable detection or identification of data align-
ments [1]. This type of analysis has been pioneered by Karr in [9] where he presents a
first intraprocedural analysis of valid affine relations over a field. Karr’s analysis main-
tains for every program point a vector space of valid affine relations. Fifteen years later,
his analysis was generalized by Granger [4, 5]. Since Granger uses Z instead of Q, his
intraprocedural analysis not only returns valid affine relations but also valid affine con-
gruence relations — with the draw-back, perhaps, that no upper complexity bound is
known. Granger’s analysis also differs from Karr’s in that Granger first determines a
linear (in fact affine) abstraction of the sets of intraprocedurally reachable states from
which the set of valid relations then is derived in a second step. A forward accumu-
lation of the abstracted collecting semantics is also used by Miiller-Olm and Seidl in
[12] where (in absence of equality guards) the run-time of Karr’s analysis algorithm is
improved and also the sizes of occurring numbers is bounded. The same authors also



provide the first precise interprocedural extension of Karr’s analysis [13] and show how
it can be adapted to work not only over fields but also over modular rings Z,,, where
m = 2" as used by standard programming languages like Java [14]. In [6, 7], Gulwani
and Necula re-consider Karr’s analysis problem. In order to improve on the complexity
of the analysis, they propose randomization. In particular, sizes of occurring numbers
are bounded by computing modulo random primes.

In this paper, we present general methods how intraprocedural analyses of numerical
properties can be constructed which naturally extend to interprocedural analyses of the
same properties. Our framework is parametric in the ring within which the computation
of the analysis is performed. For the case of affine relations over fields or modular
rings Z,, (m a power of 2), we subsume versions of the intra- and interprocedural
analyses from [12, 13] and [14], respectively. Beyond these known analyses, we succeed
in deriving an interprocedural extension of Granger’s analysis [5] that determines not
only all valid affine relations but also all valid congruence relations. We also indicate
how the analyses can be enhanced to deal with equality guards interprocedurally.

The immediate interprocedural extension of Granger’s analysis as provided by the
general framework shares with Granger’s original algorithm the draw-back of perform-
ing fixpoint iterations over complete lattices with unbounded (though finite) ascending
chains. In order to improve on this, we propose a new algorithm which, in absence of
procedures, runs in polynomial time. The new algorithm is based on a careful inspection
of Granger’s analysis problem which allows us to divide the analysis into one analysis
over the field QQ together with several analyses over carefully chosen modular rings.

The paper is organized as follows. In section 2 we introduce affine programs to-
gether with their collecting semantics. In section 3 we introduce, for every ring R, the
R-linear abstraction and show how it can be used to determine valid R-linear relations
and also (in case of R = Z) valid linear congruence relations. In section 4, we then show
for every principal ideal ring R that the R-linear abstraction of the collecting semantics
can be computed precisely and provide complexity bounds for fields and modular rings
Zn,. In section 5, we particularly deal with the case R = Z and provide an alternative
algorithm which (at least in absence of equality guards) determines all intraprocedu-
rally valid linear congruence relations in polynomial time. In the interprocedural case,
the new algorithm is polynomial if the length of intermediately occurring numbers is
polynomially bounded. In section 6, we finally extend the proposed approach to take
equality guards into account. Finally, section 7 summarizes and gives hints on direc-
tions of future research.

2 The General Set-up

We use similar conventions as in [13] and [14] which we recall here for reasons of
selfcontainedness. Thus, programs are modeled by systems of non-deterministic flow
graphs that can recursively call each other as in Figure 1. Let X = {x1,...,xx} be
the set of (global) variables the program operates on. In order to cover the various
computational domains of interest, we assume that the variables take values in some
commutative ring R with 1 element. In the programs we analyze, we assume the ba-
sic statements either to be affine assignments of the form x; = to + 3., tix; (with



X1 := 3% X1
X2 1= X1 + X2 Main :

X1 = 5% X1
X9 1= X1 + X2

Fig. 1. An interprocedural program.

t; € Rfori=0,...,kand x; € X) or non-deterministic assignments of the form x; :=7
(with x; € X). It is to reduce the number of program points in the example, that we
annotated the edges in Figure 1 with sequences of assignments. Also, we use assign-
ments x; := x; which have no effect onto the program state as skip-statements and omit
these in pictures. For the moment, skip-statements are used to abstract guards. Later, we
will present methods which treat equality guards more precisely. Non-deterministic as-
signments x; :=? can be used as a safe abstraction of statements in a source program
which our analysis cannot handle precisely, for example of assignments x; := ¢ with
non-affine expressions ¢ or of read statements.

In this setting, an affine program comprises a finite set Proc of procedure names
together with one distinguished procedure Main. Execution starts with a call to Main.
Each procedure g € Proc is specified by a distinct edge-labeled control flow graph with
a single start point st, and a single return point ret, where each edge is either labeled
with an assignment or a call to some procedure.

The basic approach of [13,12, 14] which we take up here is to construct a precise
abstract interpretation of a constraint system characterizing the concrete program se-
mantics. Similar to [5, 12], we find it convenient to start from the collecting semantics.
For that, we model a state attained by program execution when reaching a program
point or procedure by a k-dimensional (column) vector® z = [z1,...,2]' € R* of
ring elements where z; is the value assigned to variable x;. For convenience, we con-
sider extended states [1,z1,...,x]" containing an extra 0-th component 1. Then ev-
ery assignment x; := t, x; € X, t = to + >.r_, t;x;, induces a linear transformation
[x; := t] : R¥** — R*"! of the extended state which is described by the matrix:

I; 0
IIXj::t]] = to...tj—1|tj ...tk
0 T

where I; is the identity matrix in R7*. This definition is readily extended to sets of
extended states. Composition of transformations is captured by matrix multiplication.
Since linear mappings are closed under composition, the effect of a single run can be

represented by one matrix in R*+D* Since in general, procedures have multiple runs,

3 The superscript “t” denotes the transpose operation which mirrors a matrix at the main diago-
nal and changes a row vector into a column vector (and vice versa).



we model their semantics by sets of linear transformations. These are characterized by
the constraint system Erg:

[Erl]  Er(q) 2 Er(rety)

[€r2]  Er(stg) 2 {Lk+1}

[Er3]  Er(v) D &r(u) - {[x; :==1{]} if edge (u,v) is labeled x; : =t
[Er4]  Er(v) 2D &r(u) - {[x; :=(] | c € R} ifedge (u,v) is labeled x; :=?
[ErB]  Er(v) 2D Er(u) - Er(q) if edge (u,v) calls ¢

The variable £r(g) is meant to capture the set of effects of the procedure g. By the con-
straints g1, this value is obtained as the set of transformations Er(ret,) for the return
point ret, of g. According to £r2, this accumulation starts at the start point st, with the
identity transformation. The constraints £r3 and Er4 deal with affine and nondetermin-
istic assignments, respectively, while the constraints Er5 correspond to calls.

Given the effects of procedures, we characterize the sets of extended states reaching
program points and procedures by the constraint system Cg:

[Cr1] Cr(Main) D {1} x R*

[Cr2] Cr(q) D Cr(u) if edge (u, -) calls ¢

[Cr3] Cr(sty) 2 Cr(q)

[Cr4] Cr(v) 2 [x5 = t](Cr(uw)) if edge (u,v) is labeled x; := ¢
[Cr5]  Cr(v) O WUAlx; :=J(Cr(w)) | ¢c € R} ifedge (u,v) is labeled x; :=7
[Cr6]  Cr(v) 2 &r(q)(Cr(w)) if edge (u,v) calls ¢

The constraint Cr1 indicates that we start before the call of Main with the full (ex-
tended) state space. The constraints Cr2 indicate that the extended states reaching a
procedure includes all extended states reaching its calls and the constraints Cr3 state
that the extended states reaching a call to a procedure also reach its start point. The con-
straints Cr4 through Cr6 then are completely analogous to a usual forward propagating
definition of the intra-procedural collecting semantics only that at a call edge the set of
transformations obtained for the called procedure is applied (constraints Cr6).

By the fixpoint theorem of Knaster-Tarski, the constraint systems £r and Cg have
least solutions. For convenience, we denote the components of these least solutions by
Er(X), and Cr(X), respectively (X a procedure name or program point).

3 The Linear Abstraction

Program analyses of numerical program properties are based on abstractions of subsets
of vectors. Here, we consider the abstraction of a set V' C R**! of extended states by
the R-linear closure of V:

aR(V): <V>R:{)\1'U1+...+/\SUS|820,)\i€ R,m EV}

Due to the extension of states by an extra 0-th component, the abstraction adds all lin-
ear combinations of vectors in V — with the understanding that only those vectors in the
closure are meaningful whose 0-th components equal 1. We remark that ar (V) is closed
under vector addition and multiplication with ring elements r € R. Such sets are called



R-modules where the set (V')r is the R-module generated by V. It is well-known that for
any 7, the R-submodules of R" are closed under intersection. Ordered by set inclusion
(which we denote by C in the context of submodules) they thus form a complete lattice
Sub(R"), like the linear subspaces of F" for a field F. The least element of Sub(R") is
{0} consisting of the zero vector only, the greatest element is R” itself. The least upper
bound of two R-submodules M, M- is

M, I_IM2:<M1UM2>R:{m1 +m2|mi€Mi}.

The linear abstraction has been extensively studied for different rings. In [5], it is used
with R = Z to analyze linear congruence relations. In [12], this abstraction is applied
for fields to speed up Karr’s analysis [9] of affine relations. Interestingly, the interpro-
cedural analyses of affine relations [13, 14] over fields and modular rings Z,, m = 2%,
do not directly rely on abstractions of the collecting semantics but on linear abstractions
of sets of weakest precondition transformers.

In general, we are interested in numerical properties P which invariantly hold for
all (extended) states x in the collecting semantics at a given program point. Clearly, the
linear abstraction can only be used to detect properties which are invariant under linear
combinations of the extended state or, equivalently, affine combinations of the program
state. In particular, this is the case for affine relations between program variables like,
e.g., 2 —4x; + 3x2 = 0. Since we work with extended states, we can rely on the simpler
linear relations on extended states here. In general, a linear relation over a ring R is a
(row) vector a = [ao, . . . ,ax] where x = [zo, ..., xx]" satisfies a iffa-ox = Zf:o aixz; = 0.
The set of affine relations satisfied by a set of states coincides with the set of linear
relations satisfied by the corresponding set of extended states. We observe:

Fact1 For every ring R the following holds:

1. For every row vector a, the set {x € R**! | a -z = 0} is an R-module.
2. For every set G C R+

(GYV& =qer {a|V2€G:a-2=0}={a|Vz € (G)r:a -z =0}.

Moreover, the set (G)x is an R-module. O

Assume that the R-module (Cr(X))r is generated by the finite set G C R***. Then by
fact 1, we can determine the set of all valid linear relations at X as the set of all solutions
of the homogeneous system of equations:
a-x=0, z€G

where a = [ao, ..., ax] iS a row vector of variables. Here, we are mostly interested in
principal ideal rings (or PIRs). A principal ring R is a commutative ring with 1 in which
every ideal is principal. Recall that an ideal I C R is a subset of R which is closed under
addition and multiplication with arbitrary ring elements, i.e., a+b € I whenevera,b € I
and r - a € I whenever a € I and r € R. An ideal I is principal if it is generated by
a single element, i.e., I = {r -d | »r € R} for some d € R. PIRs comprise not only
fields but also the integral domain Z as well as all modular rings Z,,, m > 2. In [8, 16],
efficient methods are developed for computing various normal forms of matrices over
PIRs. The most notable property of PIRs is that they allow us to solve linear systems of
equations by a generalized Gaussian elimination algorithm. Of particular importance is



the integral domain Z. Assume G C Z** is a set of integer vectors. Then the set of all
linear relations which are valid for G is (up to multiplication with constants) identical
to the set of linear relations which are valid over the Q-module generated by G:

Fact 2 For every subset G C ZF' of column vectors and every row vector a € ZF*,
the following statements are equivalent:

l. a-x=0 forallx € G;
2. a-x=0 forallx € (G)z;
3. a-2=0 forallz € (G)q. 0

Assume we want to determine the set of valid Z-linear relations at a program point
X. By fact 2, it suffices to determine the linear relations which are valid for (Cz(X))q.
Since Q is a field, these can be computed efficiently with the techniques from [13,
12]. It therefore does not pay off to determine the (complicated) Z-linear closure of the
collecting semantics if we are interested in linear relations only.

In [5], however, Granger considers a more general form of properties, namely, linear
congruence relations. A linear congruence equation is an equation a - x = 0 [m] where
a € Z is a tow vector and m > 0 is the integer modulus. The column vector z € Z**+?
satisfies the congruence relation iff a - = = 0 [m] or, equivalently, a - © + mz = 0 for
some z € Z. A linear relation of the extended state can be seen as a particular linear
congruence relation if we allow m to equal 0. If m > 1, we can assume that all compo-
nents of a are in the range {0, ..., m — 1}. The set of all = satisfying a linear congruence
relation is closed under addition and multiplication with elements of Z and therefore a
Z-module. In [5], Granger shows that every Z-module can also be represented as the
set of solutions of a finite number of linear congruence relations. For later use, we pro-
vide a refinement of his characterization. We introduce the following auxiliary notions.
Assume that G C Z" is a set of ¢ linearly independent* column vectors. Let V C Z"¢
denote the matrix formed by the vectors in G. Using generalized Gaussian elimination,
some unimodular matrix’ T € Z™ can be constructed such that T - V = % for an

upper triangular square matrix D. Then we define det(G) as the absolute value of the
determinant of D. It follows from uniqueness of the Hermite normal form [17, 16] that
this definition is independent of the choice of 7". We obtain:

Theorem 1. Assume G C Z" is a set of linearly independent vectors where det(G)
divides m > 0. Let Eo and E,, denote finite sets of generators for (G)z and (G)z, ,
respectively. Then the following holds:

1. (G)z is the set of solutions of the system
a-x=0,a€ Ey, b-x=0[m],be€ En
2. Another linear congruence relation b’ - x = 0 [m/] is satisfied by all vectors in G
iff the following holds. If m' = 0 then V' € (Eo)z. Otherwise, let h denote the least
common multiple of m and m’ where m -d = hand m' -d = h. Then d' - ' is
contained in (Eo U{d-b|b € En})z,.

* Recall that G is linearly independent over Q iff G is linearly independent over Z.
> An integer matrix is unimodular iff its determinant equals +1.



For a proof of this theorem, see appendix A. By the second statement, the sets Eo and
E,, allow us, for every other modulus m/, to determine a finite set E’ of generators of
all valid linear relations modulo m'. First, we construct the set E = EqU{d-b | b € Ey}
where h = d-m is the least common multiple of m and m’. The idea is now to determine
E’ as a finite set of generators of all Zy-linear combinations of vectors in £ which
contain d’ = % as a factor. For this, let V' denote the matrix whose rows are formed
by the vectors in E. Then a vector v is a linear combination of the vectors in E which
contains d’ as a factor iff v = y - V for some y € ZP! such that m’ - (y - V) = 0 [h].

Thus, we first compute generators b1, ...,bq € Z‘hE‘ for the module of solutions of the
equation system y (m’ - V) = 0 [h]. The vectors b; V can be written as b; V = d'b; —
giving us the set £’ = {b}, ..., b} of generators for all valid linear relations modulo m’.

Theorem 1 allows us to compute the linear congruence relations which are valid at
X from the Z-linear closure of Cz(X), the set of extended states reaching X. Our new
observation is that, instead of computing the Z-linear closure of the reachable states, we
can decompose the analysis into an analysis returning all valid linear relations plus an
analysis returning all valid linear relations modulo a carefully chosen m. If on the other
hand, we are interested in the linear closure of the reachable extended states at X, then
we can recover these from the linear equations together with the valid linear equations
modulo m by solving an appropriate homogeneous system of equations.

4 Constructing Interprocedural Analyses

We have seen that for affine programs, the effects of procedures are given by sets of
linear transformations, or matrices. Matrices in turn can be viewed as vectors — only
with quadratically many components. We therefore can use the same abstraction ag for
effects which we use for sets of extended state vectors. By applying ar to the constraint
systems £ and Cg, we obtain constraint systems £ and C:

) DEL) - {[x; = t]})r if edge (u,v) is labeled x; := ¢
EH] Ei(v) T Ew) - ({[xj :=0],[x; := 1]})r ifedge (u,v) is labeled x; :=?
EEn)  Ei(v) D EL(w) - Eig) if edge (u,v) calls ¢

As in [13, 12], the abstract effect of a non-deterministic assignment x; :=? can be mod-
eled by the span of the two transformations [x; := 0] and [x; := 1].

The constraint system &% closely resembles the corresponding constraint systems as
presented in [13] and [14]. There, however, the accumulated transformations are inter-
preted as weakest precondition transformers and therefore accumulated from the rear.
The constraint system now accumulates values in a forward fashion. Accordingly, the
second constraint system Cf is in the spirit of the forward intraprocedural accumulation
as used, e.g., in [12]. Thus, in contrast to [13, 14], the second constraint system directly



speaks about abstract sets of values and not about abstract sets of transformations:

[Ci1]  Ci(Main) O RFF!
[Ci2]  Cli(q) JCh(u) if edge (u, -) calls ¢
C23] Ch(st) 3 Ch(a)
[Ck4]  Ch(v) 3 [x; =] (Ci(u)) ifedge (u,v) is labeled x; := ¢
Ci5] Ch(v) 3P = 0] (Ch(w)U

[x; := 1] (Ci(w)) ifedge (u,v) is labeled x; :=?
[CE6]  Ch(v) D EN(a)(Ch(u)) if edge (u,v) calls g

By the fixpoint theorem of Knaster-Tarski, the constraint systems £3 and C5 have least
solutions. Again, we denote the components of these least solutions by £5(X) and
CL(X), respectively (X a procedure or program point). Abstracting the collecting se-
mantics according to constraint system C2 has the advantage that it relies on matrices
only for procedure calls. This means that we can take advantage from any improve-
ments on the abstractions, e.g., for guards g = 0 (¢ an affine combination) or non-affine
assignments which have been proposed for the intraprocedural analysis [9, 5].

Furthermore, we verify that the abstraction commutes with the application and with
the composition of transformations. By linearity we have:

Proposition 1. Let R denote a commutative ring with 1. Then:

1. ({Az|zeV,Aec M}r = ({Az |z c (V)r,A € (M)r})R
2. <{A1 Ao | A; e M1}>R = <{A1 Ao | A; € <M1>R}>R
2
for every set of vectors V. C R**! and sets of matrices M, My, Mo C RFTD”, 0

By the fixpoint transfer lemma, we therefore obtain from proposition 1, for the con-
straint systems €% and C%:

Theorem 2. For a program interpreted over a ring R, the following holds:

1. EL(q) = (Er(q))r for every procedure g;
2. CL(X) = (Cr(X))r for every procedure or program point X. O

Theorem 2 gives a precise characterization of the linear closure of the collecting se-
mantics through a constraint system. Note that for principal ideal rings R, the lattice of
R-submodules of R" satisfies the ascending chain condition. If R is a field, the length of
every strictly increasing sequence of R-submodules of R" is bounded by r for dimen-
sional reasons. If R is a modular ring Z.., then the length of every strictly increasing
sequence of R-submodules of R™ can be shown to be bounded by r - log(m). If R is the
ring of integers, the lengths of strictly increasing sequences of R-submodules, though
finite, cannot be bounded.

Secondly, we note that every R-submodule M of R” can be represented by M = (G)r
for a set G of at most r generators. Accordingly, inclusion of R-submodules can be
reduced to deciding for a vector v € R” whether or not v € (G)r for a finite subset
G CR".If G = {v1,...,vs}, the latter problem consists in deciding whether there exist
A1, ..., As € R such that



AMvL+ . F Asvs =0

Thus, the problem reduces to solving inhomogeneous systems of linear equations. If R
is a field, this can be achieved, e.g., by standard Gaussian elimination. Instead, we may
rely on reduction to echelon form as discussed in [8, 16]. Therefore, theorem 2 gives
rise to an effective analysis over any effective PIR R, i.e., every PIR R where 0 and 1,
equality as well as the arithmetic operations and the basic principal ideal operations are
computable. The ideal operations we need are a generalized gcd and effective methods
for solving one variable equations a - x; = b with a, b € R (see again [8, 16] for details).
Summarizing, we have:

Theorem 3. Assume p is an affine program over an effective PIR R. Then the least
solutions of the constraint systems Eé and Cg are effectively computable. a

In particular, we obtain interprocedural algorithms for computing the linear closures of
the collecting semantics for fields as well as for all modular rings — thus giving us algo-
rithms for computing all valid linear relations. The corresponding run-time complexities
for a program of size n with k variables are summarized in figure 2. For simplicity, we
have assumed unit cost for every arithmetic operation as well as for the principal ideal
operations. The first line reports the results obtained in [12, 13], while the result on Z,,

| R ||intraprocedural |interprocedural |
field||O(n - k%) O(n - k%)
Z [|O(n - K* - log(m))|O(n - kB - log(m))

Fig. 2. Unit cost complexity of computing the R-linear closure.

is the generalization of [14] to arbitrary modular rings. Theorem 3 also provides us
with an interprocedural generalization of Granger’s analysis. The complexity, however,
remains unclear here, since ascending chains of Z-modules can have arbitrary lengths.

5 Efficient Linear Congruence Analysis

In this section, we refine the general approach for PIRs for the case R = Z in order
to obtain a polynomial time algorithm for computing all intraprocedurally valid linear
congruence relations. This algorithm also extends to a fast interprocedural algorithm —
provided that mild restrictions on occurring numbers are satisfied.

Theorem 4. Assume p is an affine program over Z of size n with k variables.

1. For every program point or procedure X, we can compute a (finite) representation
of the set of all linear congruence relations valid at X.

2. Intraprocedurally, these representations can be computed in polynomial time.

3. Interprocedurally, these representations can be computed in exponential time.



Proof. Assume the program p has k program variables. The algorithm achieving the
explicit complexity bounds is based on theorem 1. It proceeds in three phases.

Phase 1:  We compute the least solutions of the constraint systems &g and C(g. More
precisely, we compute for every program point or procedure X, linearly indepen-
dent subsets Ge(X) C &z(X), Ge(X) C Cz(X) such that

EL(X) = (Ge(X))o Ch(X) = (Ge(X))o

Then we determine for every X, a set of generators for the set of all Z-linear rela-
tions which are valid at X.

Phase 2:  For every X, we determine m(X) as the determinant det(Gc¢(X)).

Phase 3:  For every X, we solve the constraint systems £f and C}, for m = m(X).
This allows us to determine the Z,,-module Cgm (X)) and compute a set of generators
of the Z,,-linear relations which are valid at X.

We successively discuss the three phases of the algorithm. The first phase is readily im-
plemented by a variant of the algorithm proposed in [13] for solving constraint system
5& and (an adapted version of) [12] for then solving Cg. These algorithms are based
on semi-naive fixpoint iteration and generate for every program point or procedure X a
basis consisting of matrices from £7(X) and (extended) states from Cz(X), respectively.

Example 1. Consider, e.g., the program from section 2. We find the matrices:

| o= [bt] o [ist]

which are contained in £z(q) and together generate the vector space 5&(q). Using these
matrices, we determine a set of generators for the vector-space Cé(G) as:

20 =[1,2,0]" 21 =[1,30,36]" 22 = [1,450,564]"

= O o
oo
o Ut O
= O o
N OO
= O o

1
1

10
Qo= 101
00

O

Since (Cz(X))q = (Co(X))q, fact 1 implies that the Z-module (G¢(X))7 already equals
the Z-module (Cz(X))7, i.e., the set of valid linear equalities.

Let Ag, Ac denote the maximal absolute sizes of the entries of the matrices and
vectors, respectively, in the sets of generators used by the fixpoint computation over Q.
By inspecting the algorithms in [13, 12], we find:

Ap <2 A < A7H

In general, solving the constraint systems 6(% and C(g over Q thus can be performed
by O(n - k®) operations using arithmetic for numbers bounded in length by O(n - k2 -
log(A¢)). In case of an intra-procedural analysis, we can completely abandon the con-
straint system S(é. Adapting the algorithm from [12], we need just O(n - k*) arithmetic
operations on numbers of length O(n - k).

We turn to phase 2. Given a linearly independent set G¢(X) of cardinality ¢, we
compute the determinant m(X) = det(G¢ (X)) with a polynomial number of bit opera-
tions, e.g., using the methods of Storjohann [17, 16]. In our application the length of the
computed determinant (and thus also of log(m(X))) is bounded by O(n - k? - log(A¢)).
Let G denote a linearly independent set of generators of C%(X) = (Cz(X))z. Since
(GYg = (Ge(X))q, G has cardinality g as well.

20(n-k?)



Claim: det(G) divides det(G¢(X)).

This central claim together with theorem 1 implies that the set of all linear congruence
relations valid at X can be derived from the set of all linear relations valid at X (as
computed in phase 1) together with all linear congruence relations modulo m(X) (as
computed in phase 3).

We turn to the proof of the claim. Let V € Z**Y? and V' € z®* 17 denote the
coefficient matrices formed by the vectors of G¢(X) and G, respectively. By definition,

there are square unimodular matrices 7, 7" € Z*+Y” such that T-V = [%] and 7'V’ =

[DT,} for square upper triangular matrices D, D’ where the product of the diagonal

elements of D and D’ equals det(Gc(X)) and det(G), respectively. Since Ge¢(X) C
(@)z, there is also a square matrix S € 77 such that V = V'-S. Therefore, D = Ty-D' S
where T is the left upper (¢ x ¢)-submatrix of T - (T”)~! and, thus, det(D) = det(T1) -
det(D’) - det(S). Since T and S are integer matrices the claim follows.

Example 2. Starting from the vectors zo, 21, 22 for program point 6 of example 1, we
may apply elementary row transformations (over Z) each with determinant 1 to the
coefficient matrix of the z;. Thus, we obtain the matrix:

11 1
04 700
00 —84

Thus, the determinant equals m(6) = 1 -4 -84 = 336 — serving as the modulus for
the third stage. Since the three vectors zo, z1, z2 are linearly independent, they span
the complete vector space Q®. Therefore, no non-trivial linear relation holds for every
reachable state at program point 6. O

In phase 3, it remains to determine the set of all linear relations modulo m(X) which
hold for all vectors in C%(X). Since taking integers modulo m(X) is a homomorphism,
we conclude that the Z,, x)-module <C§m o (X ))Zﬁn . equals the set of all linear con-
gruence relations which are valid at X modulo m(X). Note further that the third phase
of fixpoint iteration for the constraint systems over Z,, x) need not start from scratch

but can use the generators computed in the first phase modulo m(X) as start value.

Example 3. We turn to phase 3 for our example program. Recall that the modulus for
program point 6 equals 336. Accordingly, we determine the least solutions of the con-
straint systems 82336705336. We start with the already obtained sets of generators —
modulo 336. In order to obtain a subsumption test for 52336 at variable ¢, we bring the
set of matrices {Qo, Q1, @2} computed in example 1 into echelon form (modulo 336).

In our case this results in the matrices:

Qaz[ }Q’1={

Propagating, e.g., the matrix Q- for the call at the edge (1, 2), we obtain:

|

Matrix Qs is already subsumed by the Q. The same also holds for the propagation of

o O

0
1
0

= OO
o oo
& O
(=N e
o oo

0
0
6
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1
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the matrices Qo and Q1. Therefore, the set {Qo, @1, Q2} already represents the fixpoint.
Accordingly, the module 62336 (6) is generated from the vectors:

2 =[1,2,0]" 25 =[1,30,36]" 2z =[1,114,228]"

Next, we determine the module of valid equalities modulo 336 as the set of solutions of
the following homogeneous system of equations over Zssg:
11 1

[a0,a1,a2] - 230114 | = [0,0,0]
0 36 228

or, equivalently,

100
[ao,al,ag]~ 228 0 = [0,0,0]
0 36 84

2
36 8

The module of solutions is generated by the two vectors:
[312,12,0], [0,0,28]
This corresponds to the congruence equations:

312-x0+12-x1 =0 [336] 28 x5 = 0 [336] 0

Remark that all calculations on vectors or matrices in the third phase of the algorithm
are in fixed modular rings and thus do not incur extra swells of intermediate numbers.
In particular, we can use the complexity bounds from figure 2, to estimate the num-
ber of arithmetic and generalized gcd computations. For the intraprocedural case, we
thus obtain O(n - k% - log(m(X))) operations. Since the length log(m(X)) of m(X) is
polynomially bounded in n and k, we obtain a polynomial algorithm.

In the interprocedural case, the number of operations is bounded by O(n - k% -
log(m(X)). The modulus m(X), though, can have exponential length. Therefore, we
obtain an exponential complexity bound as stated in assertion 2. a

A subtle point in the algorithm over Q or Z is the potential swell of intermediate num-
bers. Our complexity analysis reveals that the total run-time of the interprocedural algo-
rithm is polynomial in the size n of the program, the number & of variables and log(A¢).
Thus, the algorithm performs well if A¢ is found to be moderate. At the expense of loss
of precision, this can always be enforced. Assume we have given us a threshold A.
Whenever a matrix A with entry |A4;;| > A is to be added to some fixpoint variable, we
instead add matrices A(©), A which are obtained from A by replacing the too large
entry with O and d, respectively, for some divisor d of A;; (e.g., 1).

6 Guards

The draw-back of the interprocedural analyses of section 4 is that conditional branching
is abstracted by non-deterministic choice. A natural class of guards to be taken into
account are equality guards of the form g = 0 for g = go + gix1 + ... + gexk. In
presence of equality guards, however, already the problem of determining at a given
program point whether a variable always equals 0 is undecidable [12]. This holds even
in absence of procedures. Accordingly, any effective analysis of programs with guards



must be approximate. Intraprocedurally, an approximative treatment of equality guards
has been considered both by Karr for fields [9] and by Granger for Z [5]. In both cases,
the effect of such a guard amounts to intersection of affine spaces. This idea also works
for R-modules of extended states and any ring R:

IIg = 0]] M = <M N {[:L‘o7 .. 47$k]t | xo =1, Z?zogjxj = 0}>R

Computing the intersection can be reduced to solving a pair of linear equations: Assume
M = (G)r where G is a finite set of generators. Let V' denote a matrix containing the
vectors of G as column vectors, let b denote the O-th row of V. Then we obtain a system
of generators for [g = 0] M by solving the system:

(gV)-y=0 by=1
for the row vectors g = [go,...,gx] and b = [b1,...,b,] and a column vector y =
[y1,-..,yq]" of variables.

It is not obvious, though, how intersections can be lifted to the transformer level.
Therefore, we suggest to postpone the decision taken at the guard. Instead of perform-
ing the intersection, we accumulate the value of the guard expression in an indicator
variable. More precisely, assume that the edges with guards are numbered k+1, ..., m.
Then we instrument the original program by introducing fresh variables xx+1, ..., Xm,
one for each guard. Initially, all these variables are assumed to have values 0. At the
j-th guard g = 0, we place the assignment x; := x; + g. This corresponds to the matrix:

Tnia 0

0 I, 1]0] 0

0 0 |0[Zm_,
The extra values stored in the indicator variables are then used for an improved treat-
ment of calls in the constraint system C%. As an invariant, we insist in C that all indica-
tor variables have values 0, since this is the case for all program runs permitted by the
guards. Thus the first constraint now reads:

[Ci1]  CE(Main) J R x {0™*}

Accordingly, we modify the constraints for calls to:

[CR6]  Ca(v) 2 (Ek(@)(Ch(w)) N ({1} x R¥ x {0™F})r ifedge (u,v) calls g

Thus, having applied the transformations from ££(¢), we select just those vectors from
the result whose indicator variables all equal 0. These can be determined by solving an
appropriate system of linear equations. Altogether, we obtain for every effective PIR R,
an enhanced interprocedural analysis which deals with equality guards and conserva-
tively extends the corresponding intraprocedural analysis. In particular, this technique
extends the known methods for fields, for modular rings Z,,, and also for Z.

The separation of computing valid affine relations from computing valid modular
relations as in section 5 also returns sound information. In presence of guards, however,
the latter may result in an extra loss of precision. Consider, e.g., the guard 8 — x; = 0.
Assume that before the guard, we have the extended state z = [1, 3]*. Since 8—3 = 5 # 0,
x does not pass the guard both in an analysis over Q and over Z. Assume, however, that
we perform the third stage of the algorithm modulo 5. Since z satisfies the guard modulo
5, = is propagated through the guard — thus incurring an extra loss in precision.



7 Conclusion

We have provided a general framework for analyzing interprocedurally valid affine rela-
tions over any principal ideal ring R. In absence of guards, the analyses could be shown
to be complete, i.e., to infer all valid relations of the given form. In particular, our frame-
work covers the known cases of fields Q or Z,, (p a prime) as well as modular rings Z,,
(m composite) and also provides an interprocedural extension of Granger’s analysis of
linear congruence relations. In order to obtain a faster analysis, we then decomposed
the latter analysis into several instances of our framework. This new algorithm has the
advantage that its run-time complexity can be explicitly determined. In particular, its in-
traprocedural variant runs in polynomial time. Finally, we indicated how the proposed
techniques can be enhanced to deal interprocedurally with equality guards.

A key issue in designing efficient algorithms has been to bound potential swell of
intermediately occurring numbers. In case of linear congruence analysis, we therefore
refrained from computing the Z-affine abstraction of the collecting semantics directly.
Instead, we resorted to computations over modular rings. Remark that instead of per-
forming a separate analysis for each program point X of interest we could as well
perform one joint analysis using the lcm of the moduli for the X. The disadvantage,
however, is that lengths of occurring numbers could then again grow unacceptably.

In order to keep the presentation simple, we have considered parameterless proce-
dures and global variables only. Local variables, call-by-value passing of parameters
and return values can be handled along the lines of [13]. At the expense of an increase
in the complexity, our methods can also be used to determine valid polynomial relations
up to a fixed degree d [12, 13]. Further questions remain. It is still open whether it is
possible to determine all valid polynomial relations — independent of a given degree
bound. Also, it is desirable to design interprocedural analyses that deal precisely with
further arithmetic operators.

References

1. G. Balakrishnan and T. W. Reps. Analyzing Memory Accesses in x86 Executables. In
Compiler Construction, 13th Int. Conf. (CC), 5-23. LNCS 2985. Springer-Verlag, 2004.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, C. Mauborgue, D. Mormiaux, and X. Rival.
A Static Analyzer for Large Safety-Critical Software. In Int. ACM Conf. on Programming
Language Design and Implementation (PLDI), 196-207, 2003.

3. N.Dor, M. Rodeh, and M. Sagiv. Cleanness Checking of String Manipulations in C Programs
via Integer Analysis. In 8th Int. Static Analysis Symposium (SAS’01), 194-212. LNCS 2126,
Springer Verlag, 2001.

4. P. Granger. Static Analysis of Arithmetical Congruences. Int. J. of Computer Math., 165—
190, 1989.

5. P. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program.
In Int. Joint Conf. on Theory and Practice of Software Development (TAPSOFT), 169-192.
LNCS 493, Springer-Verlag, 1991.

6. S. Gulwani and G. Necula. Discovering Affine Equalities Using Random Interpretation. In
30th ACM Symp. on Principles of Programming Languages (POPL), 74-84, 2003.

7. S. Gulwani and G. Necula. Precise Interprocedural Analysis Using Random Interpretation.
In 32th Ann. ACM Symp. on Principles of Programming Languages (POPL), 324-337, 2005.



8. J. Hafner and K. McCurley. Asymptotically Fast Triangularization of Matrices over Rings.
SIAM J. of Computing, 20(6):1068-1083, 1991.
9. M. Karr. Affine Relationships Among Variables of a Program. Acta Informatica, 6:133-151,

1976.

10. S. Lang. Algebra, Third Edition. Pearson Education, Inc., 1993.

11. A. Miné. Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors.
In European Conf. on Programming (ESOP), 3—17. LNCS 2986, Springer Verlag, 2004.

12. M. Miiller-Olm and H. Seidl. A Note on Karr’s Algorithm. In 37st Int. Coll. on Automata,
Languages and Programming (ICALP), 1016-1028. Springer Verlag, LNCS 3142, 2004.

13. M. Miiller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear Algebra. In
31st ACM Symp. on Principles of Programming Languages (POPL), 330-341, 2004.

14. M. Miiller-Olm and H. Seidl. Analysis of Modular Arithmetic. In European Symposium on
Programming (ESOP), 46-60. Springer Verlag, LNCS 3444, 2005.

15. A. Simon and A. King. Analyzing String Buffers in C. In Algebraic Methodology and
Software Technology, 9th Int. Conf. (AMAST), 365-379. LNCS 2422, Springer Verlag, 2002.

16. A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, ETH Ziirich, Diss. ETH
No. 13922, 2000.

17. A. Storjohann. A Fast, Practical, and Deterministic Algorithm for Triangularizing Integer
Matrices. Tech. Rep. 255, ETH Ziirich, 1996.

18. O. Zariski and P. Samuel. Commutative Algebra, Vol. I. Nostrand, Princeton, NJ, 1958.

A Proof of Theorem 1

The proof of statement (1) is a refinement of Granger’s argument for computing a set
of congruence relations characterizing (G)z. Let V. € Z"? denote the matrix whose
column vectors are the vectors from G. Then z € (G); iff V y = z for some (column)

vectory = [y1,...,yq]" € Z9. Since V is linearly independent, we can find a unimodular
matrix T € Z"~ such that T-V = [%} where D is an upper triangular (¢ x ¢)-matrix and

the product of the diagonal elements equals det(G) and thus divides m. In particular,
Vy=ziff (T-V)y =T z. Inthis matrix equation, the last » — ¢ rows constitute linear
equations over Z whereas the first ¢ rows can equivalently be formulated using linear
equations modulo m. In order to see this, let d; denote the i-th diagonal element of D
and ¢; the i-th row of 7. Then the ¢-th row of the equation reads dqy, = t4 -  which is
equivalent to the linear congruence equation ¢4-x = 0 [dq]. By multiplying the remaining
rows with d, and subtracting suitable multiples of the ¢-th row, we can remove the ¢-th
column of the remaining left-hand side of the equation system which leaves us with a
similar problem where ¢ has been decreased by one. Thus, we successively construct
linear congruences with moduli d; - ... - dq for i« = ¢ down to ¢ = 1. By scaling these
equations with the products p; = Figy . dica, we obtain equivalent congruences
modulo m which together with the m + 1 — ¢ linear equations characterize all z € (G)z.

Example 4. Consider the set G = {[2, 16, 34]°,[—2, —11, —24]*}. Let V' denote the cor-
responding (3 x 2)-matrix of coefficients. Then there is unimodular matrix 7" with:

-7 1 0 23
T =|-8 10 and V =T-V = 1|05
—-1-2 1 00

From the last row of T' we thus can read off the linear equation:



—X0—2X1 —|—X2 =0
The first two rows of the matrix equation V' [y1, y2]* = T [x0, 1, 72]* give us:

2y1 + 3y2 = —Txo + 71
oy2 = —8xo + x1

Subtracting three times the second equation from 5 times the first one gives us:

10y1 = —llwo + 2%1
oy2 = —8xo + w1

This provides us with the following two congruence equations which together with the
linear relation characterize the Z-module generated by G:

—11X0 + 2X1 =0 [10]

—8%0+ x1 =0 [5] 0

It remains to consider statement 2. The case m’ = 0 s trivial. So let m’ > 0. As the linear
congruence equation b’ - x = 0 [m’] is satisfied for a vector v € Z" iff (d'-b') -x = 0 [h] is
satisfied for v (recall that h = m’ - d'), it suffices to show that (Eo U {d-b|b € En})z,
characterizes the linear congruence relations valid for all vectors in G modulo h. Thus
we show: b’ - x = 0 [h] is satisfied by all vectors in G iff o’ € (Eq U{d-b| b € En})z,.

First of all, if &’ € Eo, then &’ - x = 0 and hence also &’ - x = 0 [h] for all z € G.
Moreover if b € E,, then b- z = 0 [m] and hence (d - b) - z = 0 [h] for all z € G because
h = d-m. Thus, for any b’ € (EoU{d-b|b€ En})z,, b -x = 0 [h] is satisfied by
all vectors in G because validity of linear congruence relations is preserved by linear
combinations. This shows the “if”’-direction.

For the “only if”-direction, let again V' € Z"? be the matrix whose columns are
formed by the vectors from G. Note that for any [ > 0 and b € Zj, the linear congruence
relation b - x = 0 [I] holds for all z € G iff b is a solution of the following equation
system E over Z;: y - V = 0. Similarly, for b € Z" the relation b- x = 0 is satisfied by all
vectors in G if b is a solution of the equation system E over Z. Let b’ be a solution of E
over Zp,. We need to show that b’ = b}, + d - b} where by, is a solution of E over Z and b
is a solution over Z,,. As the columns of V" are linearly independent, we can construct

D

a unimodular matrix 7" such that V' = T'- V' = || where D is upper triangular with

diagonal elements d1, ..., d; and det(G) = d; - ... - dq divides m. Now we consider the
homogeneous system E’: y - V' = 0. The vector b’ = b’ - T~ is a solution of E’ over
Zn. We can write b” in the form by + b7 where all components 7 = 1,...,q of bj and
all components i = ¢ + 1,...,r of by are 0. By inspecting E’, we see that by is also a
solution of E’ over Z and b/ is also a solution over Z;. By induction for i = g down to
i = 1, we verify in addition that the i-th entry of b7 equals O modulo d - di11 - ... - dg.
Thus, by =d -y forsomey € Z". Since d -y - V' = b{ - V' = 0 [d - m], we conclude that
also y - V' = 0 [m]. Therefore, y is a solution of the system y - V' = 0 over Z,,. Now,
we choose by = by - T and b) = y- T such thatb’ =b" - T = (b§ +d-y)-T = by + d - b.
Moreover, we have b, - V = bj - T -V = by - V' such that b solves equation system E
over Z because b solves E’ over Z. Similarly, b} - V = b7 - T -V = b{ - V' such that b}
solves FE over Z., because b} solves E’ over Z,,. This completes the proof. O



