
The Complexity of

Copy Constant Detection in Parallel Programs

Markus Müller-Olm

Universität Dortmund, FB Informatik, LS V,
44221 Dortmund, Germany

mmo@ls5.cs.uni-dortmund.de

Abstract. Despite of the well-known state-explosion problem, certain
simple but important data-flow analysis problems known as gen/kill
problems can be solved efficiently and completely for parallel programs
with a shared state [7, 6, 2, 3, 13]. This paper shows that, in all probabil-
ity, these surprising results cannot be generalized to significantly larger
classes of data-flow analysis problems.
More specifically, we study the complexity of detecting copy constants
in parallel programs, a problem that may be seen as representing the
next level of difficulty of data-flow problems beyond gen/kill problems.
We show that already the intraprocedural problem for loop-free parallel
programs is co-NP-complete and that the interprocedural problem is
even PSPACE-hard.

1 Introduction

A well-known obstacle for the automatic analysis of parallel programs is the
so-called state-explosion problem: the number of (control) states of a parallel
program grows exponentially with the number of parallel components. It comes
as a surprise that certain basic but important data-flow analysis problems can
nevertheless be solved completely and efficiently for programs with a fork/join
kind of parallelism.

Knoop, Steffen, and Vollmer [7] show that bitvector analyses, which comprise,
e.g., live/dead variable analysis, available expression analysis, and reaching defi-
nition analysis [8], can efficiently be performed on such programs. Knoop shows
in [6] that a simple variant of constant detection, that of so-called strong con-
stants, is tractable as well. These articles restrict attention to the intraprocedural
problem, in which each procedure body is analyzed separately with worst-case
assumption on called procedures. Seidl and Steffen [13] generalize these results
to the interprocedural case in which the interplay between procedures is taken
into account and to a slightly more extensive class of data-flow problems called
gen/kill problems1. All these papers extend the fixpoint computation technique
1 Gen/kill problems are characterized by the fact that all transfer functions are of the

form λx.(x∧ a)∨ b, where a, b are constants from the underlying lattice of data-flow
facts.
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common in data-flow analysis to parallel programs. Another line of research ap-
plies automata-theoretic techniques that were originally developed for the ver-
ification of PA-processes, a certain class of infinite-state processes combining
sequentiality and parallelism. Specifically, Esparza, Knoop, and Podelski [2, 3]
demonstrate how live variables analysis can be done and indicate that other
bitvector analyses can be approached in a similar fashion.

Can these results be generalized further to considerably richer classes of data-
flow problems? The current paper shows that this is very unlikely. We investigate
the complexity of detection of copy constants, a problem that may be seen as
a canonic representative of the next level of difficulty of data-flow problems be-
yond gen/kill problems. In the sequential setting the problem gives rise to a
distributive data-flow framework on a lattice with small chain height and can
thus – by the classic result of Kildall [5, 8] – completely and efficiently be solved
by a fixpoint computation. We show in this paper that copy constant detection
is co-NP-complete already for loop-free parallel programs without procedures
and becomes even PSPACE-hard if one allows loops and non-recursive proce-
dures. This renders the possibility of complete and efficient data-flow analysis
algorithms for parallel programs for more extensive classes of analyses unlikely,
as it is generally believed that the inclusions P ⊆ co-NP ⊆ PSPACE are proper.

Our theorems should be contrasted with complexity and undecidability re-
sults of Taylor [14] and Ramalingam [11] who consider synchronization-dependent
data-flow analyses of parallel programs, i.e. analyses that are precise with respect
to the synchronization structure of programs. Taylor and Ramalingam largely
exploit the strength of rendezvous style synchronization, while we exploit only
interference and no kind of synchronization. Our results thus point to a more
fundamental limitation in data-flow analysis of parallel programs.

This paper is organized as follows: In Sect. 2 we give some background in-
formation on data-flow analysis in general and the constant detection problem
in particular. In Sect. 3 we introduce loop-free parallel programs. This sets the
stage for the co-NP-completeness result for the loop-free intraprocedural par-
allel case which is proved afterwards. We proceed by enriching the considered
programming language with loops and procedures in Sect. 4. We then show that
the interprocedural parallel problem is PSPACE-hard even if we allow only non-
recursive procedures. In the Conclusions, Sect. 5, we indicate that the presented
results apply also to some other data-flow analysis problems, detection of may-
constants and detection of faint code, and discuss directions for future research.
Throughout this paper we assume that the reader is familiar with the basic
notions and methods of the theory of computational complexity (see, e.g., [10]).

2 Copy Constants

The goal of data-flow analysis is to gather information about certain aspects
of the behavior of programs by a static analysis. Such information is valuable
e.g. in optimizing compilers and in CASE tools. However, most questions about
programs are undecidable. This holds in particular for the question whether a
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condition in a program may be satisfied or not. In order to come to grips with
undecidability, it is common in data-flow analysis to abstract from the conditions
in the programs and to interpret conditional branching as non-deterministic
branching, a point of view adopted in this paper. Of course, an analysis based
on this abstraction considers more program executions than actually possible at
run-time. One is careful to take this into account when exploiting the results of
data-flow analysis.

An expression e is a constant at a given point p in a program, if e evalu-
ates to one and the same value whenever control reaches p, i.e. after every run
from the start of the program to p. If an expression is detected to be a con-
stant at compile time it can be replaced by its value, a standard transformation
in optimizing compilers known as constant propagation or constant folding [8].
Constant folding is profitable as it decreases both code size and execution time.
Constancy information is sometimes also useful for eliminating branches of con-
ditionals that cannot be taken at run-time and for improving the precision of
other data-flow analyses.

Reif and Lewis [12] show by a reduction of Hilbert’s tenth problem that the
general constant detection problem in sequential programs is undecidable, even if
branching is interpreted non-deterministically. However, if one restricts the kind
of expressions allowed on the right hand side of assignment statements appro-
priately, the problem becomes decidable. (In practice assignments of a different
form are treated by approximating or worst-case assumptions.) A problem that
is particularly simple for sequential programs are so-called copy constants. In
this problem assignment statements take only the simple forms x := c (constant
assignment) and x := y (copying assignment), where c is a constant and x, y are
variables. In the remainder of this paper we study the complexity of detecting
copy constants in parallel programs.

3 Loop-Free Parallel Programs

Let us, first of all, set the stage for the parallel loop-free intraprocedural copy
constant detection problem. We consider loop-free parallel programs given by the
following abstract grammar,

π ::= x := e | write(x) | skip | π1 ; π2 | π1 ‖ π2 | π1 u π2

e ::= c | x ,

where x ranges over some set of variables and c over some set of basic constants.
As usual we use parenthesis to disambiguate programs. Note that this language
has only constant and copying assignments. The specific nature of basic con-
stants and the value domain in which they are interpreted is immaterial; we
only need that 0 and 1 are two constants representing different values, which –
by abuse of notation – are also denoted by 0 and 1. The atomic statements of
the language are assignment statements x := e that assign the current value of e
to variable x, ‘do-nothing’-statements skip, and write-statements. The purpose
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of write-statements in this paper is to mark prominently the program points
at which we are interested in constancy of a certain variable. The operator ;
represents sequential composition, ‖ represents parallel composition, and u non-
deterministic branching.

Parallelism is understood in an interleaving fashion; assignments and write-
statements are assumed to be atomic. A run of a program is a maximal sequence
of atomic statements that may be executed in this order in an execution of the
program. The program (x := 1 ; x := y) ‖ y := x for example, has the three runs
〈x := 1, x := y, y := x〉, 〈x := 1, y := x, x := y〉, and 〈y := x, x := 1, x := y〉.

In order to allow a formal definition of runs, we need some notation. We
denote the empty sequence by ε and the concatenation operator by an infix
dot. The concatenation operator is lifted to sets of sequences in the obvious
way: If S, T are two sets of sequences then S · T = {s · t | s ∈ S, t ∈ T }. Let
r = 〈e1, . . . , en〉 be a sequence and I = {i1, . . . , ik} a subset of positions in r
such that i1 < i2 < · · · < ik. Then r|I is the sequence 〈ei1 , . . . , eik

〉. We write |r|
for the length of r, viz. n. The interleaving of S and T is

S ‖ T
def= {r | ∃IS , IT : IS ∪ IT = {1, . . . , |w|}, IS ∩ IT = ∅, r|IS ∈ S, r|IT ∈ T } .

The set of runs of a program can now inductively be defined:

Runs(x := e) = {〈x := e〉}
Runs(write(x)) = {〈write(x)〉}

Runs(skip) = {ε}

Runs(π1 ; π2) = Runs(π1) · Runs(π2)
Runs(π1 ‖ π2) = Runs(π1) ‖ Runs(π2)
Runs(π1 u π2) = Runs(π1) ∪ Runs(π2) .

3.1 NP-Completeness of the Loop-Free Intraprocedural Problem

The remainder of this section is devoted to the proof of the following theorem,
which shows that complete detection of copy constants is intractable in parallel
programs, unless P = NP.

Theorem 1. The problem of detecting copy constants in loop-free parallel pro-
grams is co-NP-complete.

Certainly, the problem lies in co-NP: if a variable x is not constant at a
certain point in the program we can guess two runs that witness two different
values. As the program has no loops, the length of these runs (and thus the time
needed to guess them) is at most linear in the size of the program.

For showing co-NP-hardness we reduce SAT, the most widely known NP-
complete problem [1, 10], to the negation of a copy constant detection problem.
An instance of SAT is a conjunction c1 ∧ . . . ∧ ck of clauses c1, . . . , ck. Each
clause is a disjunction of literals ; a literal l is either a variable x or a negated
variable ¬x, where x ranges over some set of variables X . It is straightforward
to define when a truth assignment T : X → B , where B = {tt, ff} is the set of
truth values, satisfies c1 ∧ . . . ∧ ck. The SAT problem asks us to decide for each
instance c1 ∧ . . . ∧ ck whether there is a satisfying truth assignment or not.
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Now suppose given a SAT instance c1 ∧ . . . ∧ ck with k clauses over n vari-
ables X = {x1, . . . , xn}. We write X̄ = {¬x1, . . . ,¬xn} for the set of negated
variables. From this SAT instance we construct a loop-free parallel program. In
the program we use k + 1 variables z0, z1, . . . , zk. Intuitively, zi is, for 1 ≤ i ≤ k,
related to clause ci; z0 is an extra variable.

For each literal l ∈ X ∪ X̄ we define a program πl. Program πl consists of a
sequential composition of assignments of the form zi := zi−1 in increasing order
of i. The assignment zi := zi−1 is in πl if and only if the literal l makes clause i
true. Formally, πl = πk

l , where

π0
l

def= skip and πi
l

def=
{

πi−1
l ; zi := zi−1 , if clause ci contains l

πi−1
l , if clause ci does not contain l

for i = 1, . . . , k. Now, consider the following program π:

z0 := 1 ; z1 := 0 ; . . . ; zk := 0 ;

[(πx1 u π¬x1) ‖ · · · ‖ (πxn u π¬xn
)] ;

(zk := 0 u skip) ; write(zk) .

Clearly, π can be constructed from the given SAT instance c1 ∧ . . . ∧ ck in
polynomial time or logarithmic space. We show that the variable zk at the write-
statement is not a constant if and only if c1 ∧ . . . ∧ ck is satisfiable. This proves
the co-NP-hardness claim.

First observe that 0 and 1 are the only values zk can hold at the write-
statement because all variables are initialized by 0 or 1 and the other assignments
only copy these values. Clearly, due to the non-deterministic choice just before
the write-statement, zk may hold 0 finally. Thus, zk is a constant at the write-
statement iff it cannot hold 1 there. Hence, our goal reduces to proving that zk

can hold 1 finally if and only if c1 ∧ . . . ∧ ck is satisfiable.

“If”: Suppose T : X → B is a satisfying truth assignment for c1 ∧ . . . ∧ ck.
Consider the following run of π: in each parallel component πxi uπ¬xi

we choose
the left branch πxi if T (xi) = tt and the right branch π¬xi

otherwise. As T is
a satisfying truth assignment, there will be, for any i ∈ {1, . . . , k}, at least one
assignment zi := zi−1 in one of the chosen branches. We interleave the branches
now in such a way that the assignment(s) to z1 are executed first, followed by
the assignment(s) to z2 etc. This results in a run that copies the initialization
value 1 of z0 to zk.

“Only if”: Suppose zk may hold 1 at the write-statement. As the initialization
z0 := 1 is the only statement in which the constant 1 occurs, there must be a run
in which this value is copied from z0 to zk via a sequence of copy instructions. As
all copying assignments in π have the form zi := zi−1, the value must be copied
from z0 to z1, from z1 to z2 etc. Consequently, the non-deterministic choices in
the parallel components can be resolved in such a way that the chosen branches
contain all the assignments zi := zi−1 for i = 1, . . . , k. From such a choice a
satisfying truth assignment can easily be constructed.
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4 Adding Loops and Procedures

Let us now consider a richer program class: programs with procedures, par-
allelism and loops. A procedural parallel program comprises a finite set Proc of
procedure names containing a distinguished name Main . Each procedure name P
is associated with a statement πP , the corresponding procedure body, constructed
according to the grammar

e ::= c | x

π ::= x := e | write(x) | skip | Q | π1 ; π2 | π1 ‖ π2 | π1 u π2 | π∗ ,

where Q ranges over Proc. A statement of the form Q represents a call to pro-
cedure Q and π∗ stands for a loop that iterates π an indefinite number of
times. Such an indefinite looping construct is consistent with the abstraction
that branching is non-deterministic. A program is non-recursive if there is an
order on the procedure names such that in the body of each procedure only
procedures with a strictly smaller name are called.

The definition of runs from the previous section can easily be extended to
the enriched language by the following two clauses:2

Runs(π∗) = Runs(π)∗ Runs(P ) = Runs(πP ) .

As usual, we define X∗ =
⋃

i≥0 X i, where X0 = {ε} and X i+1 = X · X i for a
set X of sequences. The runs of the program are the runs of Main .

4.1 PSPACE-Hardness of Interprocedural Copy Constant Detection

The goal of this section is to prove the following result.

Theorem 2. The problem of detecting copy constants in non-recursive procedu-
ral parallel programs is PSPACE-hard.

The proof is by means of a reduction of the QBF (quantified Boolean formulas)
problem to copy constant detection. QBF (called QSAT in [10]) is a well-known
PSPACE-complete problem.

Quantified Boolean Formulas. Let us first recall QBF. A QBF instance is a
quantified Boolean formula,

φ ≡ Qnxn : · · · ∀x2 : ∃x1 : c1 ∧ . . . ∧ ck ,

where Qn is the quantifier ∃ if n is odd and ∀ if n is even, i.e. quantifiers are
strictly alternating.
2 If the program has recursive procedures, the definition of runs is no longer inductive.

Then the clauses are meant to specify the smallest sets obeying the given equations,
which exist by the well-known Knaster-Tarski fixpoint theorem. However, only non-
recursive programs occur in this paper.
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As in SAT, each clause ci is a disjunction of literals, where a literal l is either a
variable from X = {x1, . . . , xn} or a negated variable from X̄ = {¬x1, . . . ,¬xn}.
The set of indices of clauses made true by literal l is Cl(l) def= {i ∈ {1, . . . , k} |
ci contains l}. For later reference the following names are introduced for the
sub-formulas of φ:

φ0 ≡ c1 ∧ . . . ∧ ck and φi ≡ Qixi : φi−1 for 1 ≤ i ≤ n ,

where again Qi is ∃ if i is odd and ∀ if i is even. Clearly, φ is just φn.
Formula φi is assigned a truth value with respect to a truth assignment

T ∈ TAi
def= {T | T : {xi+1, . . . , xn} → B}. We write T [x 7→ b] for the truth

assignment that maps x to b ∈ B and behaves otherwise like T . We use this
notation only if x is not already in the domain of T . For a truth assignment T
we denote by Cl(T ) the set of indices of clauses that are made true by T :

Cl(T ) def=
⋃

x:T (x)=tt

Cl(x) ∪
⋃

x:T (x)=ff

Cl(¬x) .

Note that Cl(T [x 7→ tt]) = Cl(T ) ∪ Cl(x) and Cl(T [x 7→ ff]) = Cl(T ) ∪ Cl(¬x)
(recall that x is not in the domain of T ). Note also that TAn contains only the
trivial truth assignment ∅ for which Cl(∅) = ∅.

Using this notation, the truth value of a formula with respect to a truth
assignment can be defined as follows:

T |= φ0 iff Cl(T ) = {1, . . . , k}
T |= φi iff

{
T [xi 7→ tt] |= φi−1 or T [xi 7→ ff] |= φi−1 , if i is odd (Qi = ∃)
T [xi 7→ tt] |= φi−1 and T [xi 7→ ff] |= φi−1 , if i is even (Qi = ∀)

The Reduction. From a QBF instance as above, we construct a program, in
which we again use k + 1 variables z0, z1, . . . , zk in a similar way as in Sect. 3.
Let the programs πl be defined as in that section.

Let Proc = {Main , P0, P1, . . . , Pn} be the set of procedures. The associated
statements are defined as follows:

πMain
def= z0 := 1 ; z1 := 0 ; . . . ; zk := 0 ; Pn ; (z0 := 0 u skip) ; write(z0)

πP0

def= z1 := 0 ; . . . ; zk := 0 ; z0 := zk

πPi

def=
{

(π∗
xi

‖ Pi−1) u (π∗
¬xi

‖ Pi−1) , if i is odd
(π∗

xi
‖ Pi−1) ; (π∗

¬xi
‖ Pi−1) , if i is even for 1 ≤ i ≤ n .

Clearly, this program can be constructed from the QBF instance in polynomial
time or logarithmic space. Note that the introduction of procedures is essential
for this to be the case. While we could easily construct an equivalent program
without procedures by inlining the procedures, i.e. by successively replacing each
call to procedure Pj by its body, for j = 0, . . . , n, the size of the resulting program
would in general be exponential in n, as each procedure Pj is called twice in Pj+1.
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Therefore, we need the procedures to write this program succinctly and to obtain
a logspace-reduction.

We show in the following, that the variable z0 is not a constant at the write-
statement in procedure Main if and only if the QBF instance is true. This
establishes the PSPACE-hardness claim.3

Observe again that z0 can hold only the values 0 and 1 at the write-statement
because all variables are initialized by these values and the other assignments
only copy them. Clearly, due to the non-deterministic choice just before the
write-statement, it can hold 0. Thus, z0 is a constant at the write-statement iff
it cannot hold 1 there. Hence we can rephrase our proof goal as follows:

z0 can hold the value 1 at the write-statement in πMain

if and only if φ is true. (PG)

In the remainder of this section we separately prove the ‘if’ and the ‘only if’
direction.

The “If” Direction. For the ‘if’ claim, we show that procedure Pn has a run
of a special form called a copy chain, if φ is true.

Definition 3. A (total) segment is a sequence of assignment statements of
the form 〈z1 := 0, . . . , zk := 0, (z1 := z0)n1 , . . . , (zk := zk−1)nk , z0 := zk〉 , where
ni ≥ 1 for i = 1, . . . , n. A (total) copy chain is a concatenation of segments.

Every segment copies the initial value of z0 back to z0 via the sub-chain of assign-
ments z1 := z0, z2 := z1, . . . , zk := zk−1, z0 := zk, where each zi := zi−1 is the
last assignment in the block (zi := zi−1)ni . Note that the other statements in a
segment do not kill this value; in particular the assignments 〈z1 := 0, . . . , zk := 0〉
do not affect z0. By induction on the number of segments, a total copy chain
copies the initial value of z0 back to z0 too. Thus, if Pn has a run that is a
total copy chain, then z0 can, at the write-statement in πMain , hold the value
1 by which it was initialized. As a consequence the following lemma implies the
‘if’-direction of (PG).

Lemma 4. If φ is true, then Pn has a run that is a total copy chain.

In order to enable an inductive proof of this lemma we consider partial copy
chains in which some of the blocks (zi := zi−1)ni may be missing (i.e. ni may
be zero).

Definition 5. A partial segment is a sequence of assignment statments of the
form s = 〈z1 := 0, . . . , zk := 0, (z1 := z0)n1 , . . . , (zk := zk−1)nk , z0 := zk〉, where
now ni ≥ 0 for i = 1, . . . , n. For H ⊆ {1, . . . , k} we say that s is a partial
segment with holes in H if H ⊇ {i | ni = 0}. A partial copy chain with holes in
H is a concatenation of partial segments with holes in H.
3 Recall that PSPACE coincides with co-PSPACE because PSPACE is closed under

complement.
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Intuitively, the holes in a partial copy chain may be filled by programs running
in parallel to form a total copy chain. Note that a partial copy chain with holes
in H = ∅ is a total copy chain.

Lemma 6. For all i = 0, . . . , n and all truth assignments T ∈ TAi the following
holds: if T |= φi then Pi has a partial copy chain with holes in Cl(T ).

Note that Lemma 6 indeed implies Lemma 4: φ is true iff the (unique) truth
assignment T ∈ TAn, viz. T = ∅, satisfies φn. By Lemma 6, Pi has then a partial
copy chain with holes in Cl(∅) = ∅, i.e. a total copy chain.

We show Lemma 6 by induction on i.

Base case (i = 0). Suppose given T ∈ TA0 with T |= φ0, i.e. Cl(T ) = {1, . . . , k}.
By definition, P0 has the run 〈z1 := 0, . . . , zk := 0, z0 := zk〉, which may be writ-
ten as 〈z1 := 0, . . . , zk := 0, (z1 := z0)0, . . . , (zk := zk−1)0, z0 := zk〉 , i.e. it is a
partial copy chain with holes in {1, . . . , k} = Cl(T ).

Induction step (i → i+1). Assume that for a given i, 0 ≤ i ≤ k−1, the claim of
Lemma 6 holds for all T ∈ TAi (induction hypothesis). Suppose given T ∈ TAi+1

with T |= φi+1.
If i + 1 is even, we have, by definition of φi+1, T |= ∀xi : φi, i.e. T [xi+1 7→

tt] |= φi and T [xi+1 7→ ff] |= φi. By the induction hypothesis, there are thus two
partial copy chains rtt and rff with holes in Cl(T [xi+1 7→ tt]) = Cl(T ) ∪ Cl(xi+1)
and Cl(T [xi+1 7→ ff]) = Cl(T ) ∪ Cl(¬xi+1), respectively.

By interleaving each segment of rtt with a single iteration of π∗
xi+1

appropri-
ately we can fill the holes from Cl(xi+1); this gives us a run r1 of π∗

xi+1
‖ Pi that

is a partial copy chain with holes in Cl(T ). Similarly, we can fill the holes from
Cl(¬xi+1) in rff by interleaving each segment with an iteration from π¬xi+1 ; this
gives us a run r2 of π∗¬xi+1

‖ Pi that is a partial copy chain with holes in Cl(T )
too. By concatenating r1 and r2 we get a run of Pi+1 that is a partial copy chain
with holes in Cl(T ).

The argumentation for the case that i + 1 is odd is similar.

The ‘Only If’ Direction. As the constant 1 appears only in the initialization
to z0, z0 can hold the value 1 finally in πMain only if Pn has a run that copies
z0 (perhaps via other variables) back to z0. We call such a run a copying run.
Thus, the ‘only if’ direction of (PG) follows from the following lemma.

Lemma 7. If Pn has a copying run then φ is true.

Note that, while we could restrict attention to runs of a special form in the
‘if’-proof, viz. total and partial copy chains, we have to consider arbitrary runs
here, as any of them may copy z0’s initial value back to z0.

In order to enable an inductive proof, we will be concerned with runs that
are not (necessarily) yet copying runs but may become so if assignments from a
set A are added at appropriate places. Each assignment from A may be added
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zero, one or many times. The assignment sets A considered are induced by truth
assignments T : A = Asg(T ) def= {zi := zi−1 | i ∈ Cl(T )}. We call such a run a
potentially copying run with holes in Asg(T ).

Lemma 8. For all i = 0, . . . , n and for all T ∈ TAi the following is valid: If
there is a potentially copying run of Pi with holes in Asg(T ) then T |= φi.

Note that the case i = n establishes Lemma 7: For the empty truth assignment
∅ ∈ TAn, we have Asg(∅) = ∅ and a potentially copying run with holes in ∅ is
just a copying run. Moreover, ∅ |= φn iff φ is true.

We show Lemma 8 by induction on i.

Base case (i = 0). Suppose given T ∈ TA0. The only run of P0 is

r = 〈z1 := 0, . . . , zk := 0, z0 := zk〉 .

If r is a potentially copying run with holes in Asg(T ), assignments from Asg(T )
can be added to r in such a way that the initial value of z0 influences its final
value. As we have only assignments of the form zi := zi−1 available, this can only
happen via a sub-chain of assignments of the form z1 := z0, z2 := z1, . . . , zk :=
zk−1, where each assignment zi := zi−1 has to take place after zi := 0 and
zk := zk−1 must happen before the final z0 := zk. Therefore, all assignment
z1 := z0, . . . , zk := zk−1 are needed. This means that Asg(T ) must contain all of
them, i.e. Cl(T ) must be {1, . . . , k}. But then T |= φ0.

Induction step (i → i + 1). Suppose given i, 0 ≤ i ≤ k − 1, and T ∈ TAi+1.
Assume that there is a potentially copying run r of Pi+1 with holes in Asg(T ).

If i + 1 is odd, r is either a run of π∗
xi+1

‖ Pi or of π∗¬xi+1
‖ Pi. We discuss

the case π∗
xi+1

‖ Pi in detail; the case π∗
¬xi+1

‖ Pi is analogous. So let r be an
interleaving of a run s of π∗

xi+1
and t of Pi. By definition of πxi+1 , s consists only

of assignments from Asg(xi+1)
def= {zj := zj−1 | j ∈ Cl(xi+1)}. As r can be inter-

leaved with the assignments in Asg(T ) to form a copying run, t can be interleaved
with assignments from Asg(T )∪Asg(xi+1) to form a copying run. Therefore, t is a
potentially copying run with holes in Asg(T )∪Asg(xi+1) = Asg(T [xi+1 7→ tt]). By
the induction hypothesis thus T [xi+1 7→ tt] |= φi. Consequently, T |= ∃xi+1 : φi,
i.e. T |= φi+1.

If i+1 is even, there are runs s and t of π∗
xi+1

‖ Pi and π∗
¬xi+1

‖ Pi respectively,
such that r = s · t. It suffices to show that s and t are potentially copying runs
with holes in Asg(T ). An argumentation like in the case ‘i + 1 odd’ then yields
that T [xi+1 7→ tt] |= φi and T [xi+1 7→ ff] |= φi and thus T |= ∀xi+1 : φi, i.e.
T |= φi+1.

As r = s · t is a potentially copying run with holes in Asg(T ) it may be
interleaved with assignments from Asg(T ) to form a copying run r′. Clearly, we
can interleave its two parts s and t separately by assignments from Asg(T ) to
sequences s′ and t′ such that r′ = s′ · t′. It is, however, not obvious that s′ and
t′ really copy from z0 to z0 – if they do so, we are done because then s and t
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are potentially copying runs with holes in Asg(T ). Of course, there must be a
variable zj such that the value of z0 is copied by s′ to zj and the value of zj is
copied by t′ to z0; otherwise z0 cannot be copied to z0 by r′. But, at first glance,
zj may be different from z0. It follows from the below lemma, that zj indeed
must be z0, which completes the proof of Lemma 8.

Lemma 9. Let r be some interleaving of a run of Pi, i = 0, . . . , n, with assign-
ments of the form zl := zl−1, l = 1, . . . , k. Then r copies none of the variables
z1, . . . , zk to some variable.

This last lemma is proved by induction on i. The interesting argument is in the
base case; the induction step is almost trivial.

Base case. Let i = 0 and assume given a variable zj, j ∈ {1, . . . , k}. Then r is an
interleaving of 〈z1 := 0, . . . , zk := 0, z0 := zk〉 with assignments of the form zl :=
zl−1. Assignments of this form can copy only to variables with a higher index.
Thus, just before the assignment zj := 0 at most the variables zj, zj+1, . . . , zk

can contain the value copied from zj . The contents of zj is overwritten by the
assignment zj := 0. So immediately after zj := 0 at most zj+1, . . . , zk can contain
the value copied from zj. This also holds just before the assignment zj+1 which
overwrites zj+1; and so on. Just after zk := 0, no variable can still contain the
value copied from zj .

Induction step. Let i > 0 and assume that the claim is valid for i − 1. Any run
of Pi either starts with (if i is even) or is (if i is odd) an interleaving of a run of
Pi−1 with assignments of the described form. Therefore, r starts with or is an
interleaving of a run of Pi−1 with such assignments. The property follows thus
immediately from the induction hypothesis.

5 Conclusion

In this paper we have presented two complexity results with detailed proofs.
They indicate that the accounts of [7, 6, 2, 3, 13] on efficient and complete data-
flow analysis of parallel programs cannot be generalized significantly beyond
gen/kill problems.

The reductions in this paper apply without change also to the may-constant
detection problem in parallel programs. In the may-constant problem [9] we ask
whether a given variable x can hold a given value k at a certain program point
p or not, i.e. whether there is a run from the start of the program to p after
which x holds k. In the NP-hardness proof in Sect. 3 we showed that zk may
hold the value 1 at the write-statement iff the given SAT instance is satisfiable
and, similarly, in Sect 4 that z0 may hold 1 at the write-statement iff the given
QBF instance is true. This proves that the may constant problem is NP-complete
for loop-free parallel programs and PSPACE-hard for programs with procedures
and loops. Also the complexity of another data-flow problem, that of detecting



The Complexity of Copy Constant Detection in Parallel Programs 501

faint variables [4] which is related to program slicing [16, 15], can be attacked
with essentially the same reductions.

For the interprocedural parallel problem the current paper only establishes a
lower bound, viz. PSPACE-hardness. It is left for future work to study the precise
complexity of this problem. Another interesting question is the complexity of the
general intraprocedural problem for parallel programs where we have loops but
no procedures.
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