A Modal Fixpoint Logic with Chop

Markus Miiller-Olm

Department of Computer Science
University of Dortmund
44221 Dortmund, Germany
mmo@ls5.informatik.uni-dortmund.de

Abstract. We study a logic called FLC (Fixpoint Logic with Chop)
that extends the modal mu-calculus by a chop-operator and termination
formulae. For this purpose formulae are interpreted by predicate trans-
formers instead of predicates. We show that any context-free process can
be characterized by an FLC-formula up to bisimulation or simulation.
Moreover, we establish the following results: FLC is strictly more expres-
sive than the modal mu-calculus; it is decidable for finite-state processes
but undecidable for context-free processes; satisfiability and validity are
undecidable; FLC does not have the finite-model property.

1 Introduction

Imperative programming languages typically offer a sequential composition op-
erator which allows the straightforward specification of behavior proceeding in
successive phases. Similar operators are provided by interval temporal logics,
where they are called chop-operators. Important examples are Moszkowski’s In-
terval Temporal Logic ITL [13] and the Duration Calculus DC [17]. As far as we
know, however, no point-based temporal logic and, in particular, no branching-
time logic with a chop operator has been proposed up to now. Indeed, at first
glance there seems to be no natural way for explaining the meaning of sequen-
tially composed formulae ¢; ; ¢2 in the setting of point-based temporal or modal
logic, as there is no natural notion of where interpretation of ¢, stops and inter-
pretation of ¢o starts.

In this paper we present a logic called FLC (Fixpoint Logic with Chop)
that extends the modal mu-calculus [8], a popular point-based branching-time
fixpoint logic, by a chop operator ; and termination formulae term. For this
purpose we utilize a ‘second-order’ interpretation of formulae. While (closed)
formulae of usual temporal logics are interpreted by sets of states, i.e. repre-
sent predicates, we interpret formulae by mappings from states to states, i.e. by
predicate transformers. A similar idea has been used by Burkart and Steffen [3]
in a model checking procedure for modal mu-calculus formulae and context-free
processes. However, while we use a second-order interpretation of formulae, they
rely on a second-order interpretation of states as property transformers.

It turns out that FLC is strictly more expressive than the modal mu-calculus
but is still decidable for finite-state processes. Consequently, FL.C-based model

C. Meinel and S. Tison (Eds.): STACS’99, LNCS 1563, pp. 510-520, 1999.
© Springer-Verlag Berlin Heidelberg 1999

A Modal Fixpoint Logic with Chop 511

checking is, in our opinion, an interesting alternative to modal mu-calculus based
model checking as it enables to verify non-regular properties. The chop-operator
also enables a straightforward specification of phased behavior. Other results
shown in this paper are that FLC is undecidable for context-free processes, that
satisfiability (and thus also validity) is undecidable, and that the logic does not
have the finite model property. These results are inferred from the existence of
formulae characterizing context-free processes up to bisimulation and simulation.

The remainder of this paper is structured as follows. The next section recalls
bisimulation, simulation and context-free processes. In Section 3 we introduce
the logic FLC and show that it conservatively extends the modal mu-calculus.
Section 4 shows that context-free processes can be characterized up to bisim-
ulation and simulation by single FLC-formulae. These facts, besides being of
interest in their own, provide the main means for establishing the results on
expressiveness and decidability, which are presented in Section 5. The paper
finishes with a discussion of the practical utility of FLC.

2 Preliminaries

Processes, Bisimulation, and Simulation. A commonly used basic operational
model of processes is that of rooted labeled transition systems. Assume for the
remainder of this paper given a finite set Act of actions. Then a labeled transition
system (over Act) is a structure T' = (S, Act,—), where S is a set of states, and
—C S x Act x S is a transition relation. We write s = s’ for (s,a,s’) € —.
A process is a pair P = (T, sp) cousisting of a labeled transition system T =
(S, Act,—) and an initial state (or root) so € S. A process is called finite-state
if the underlying state set S is finite.

Transition systems provide a rather fine-grained model of processes. There-
fore, various equivalences and preorders have been studied in the literature that
identify or order processes on the basis of their behavior. Classic examples are
strong bisimulation [15,11] denoted by ~ and simulation denoted by <.

For two given processes P = ((S, Act, —p),s0) and Q = (T, Act,—q),to)
both bisimulation ~ and simulation < are first defined as relations between the
state sets S and T'. These definitions are then lifted to the processes themselves.
As relations between S and T' they can be characterized as the greatest fixpoints
vF. and vF< of certain monotonic functionals F., and F<. These functionals
operate on the complete lattice of relations R C S x T ordered by set inclusion
and are defined by

Fu(R) ¥ {(s,8)]| Va,8:s5ps =Tt 1t S0t A(s,t)ER
AVa,t' :t Hoth =3 s Sp s’ N(s',t') € R}
and F<(R) of {(s,t) | Va,s' : s Bp s = 3 :t Lo t' A(s',t') € R}. The
processes P and @ are called bisimilar if sq ~ tg. Similarly, @ is said to simulate
P if sy < tyg. By abuse of notation we denote these relationships by P ~ @ and
P < @ and view ~ and =< also as relations between processes.

512 Markus Miller-Olm

Rl LN S SN - Y- L

SR

£ =2 B <=2 <2 g2 ...

Fig. 1. A context-free process

Context-Free Processes. Context-free processes, also called BPA (basic process
algebra) processes [1], are a certain type of finitely generated infinite-state pro-
cesses. Their name derives from the fact that they are induced by leftmost
derivations of context-free grammars in Greibach normal form, where the termi-
nal symbols are interpreted as actions and the non-terminals induce the state.
Greibach normal form means that all rules have the form A ::= aa, where A is a
non-terminal symbol, a a terminal symbol, and « a string of non-terminals. For-
mally, context-free processes can be defined as an instance of Rewrite Transition
Systems as introduced by Caucal [4].

A context-free process rewrite system (over Act) is a triple R = (V, Act, A)
consisting of a finite set V' of process variables, the assumed finite set Act of
actions, and a finite set A C V x Act x V* of rules. The labeled transition
system induced by R = (V, Act, A), called a context-free transition system, is
Tr = (V*, Act,—), where — C V* x A x V* is the smallest relation obeying the
prefix rewrite rule

(A a,a) € A

PRE .
AB S ap

Note that the states in a context-free transition system are words of process
variables of the underlying context-free process rewrite system. A context-free
process is a pair (Tg, ap), consisting of a context-free transition system Tg and
an initial state ap € V*. As an example we picture in Fig. 1 the context-free
process (Tr, A) where R = (V, Act, A), V. = {A, B}, Act = {a,b,c}, and A =
{(Av a, AB)v (Av G, 5)7 (Bv b, 5)}

The following two results are crucial for the remainder of this paper: firstly,
there are context-free processes that are not bisimilar to any finite-state process
(the process in Fig. 1 is an example) and, secondly, simulation between context-
free processes is undecidable [6]. The reader interested in learning more about
context-free processes and other classes of Rewrite Transition Systems is pointed
to the surveys [12] and [2] and the many references there.

3 The Logic FLC

In the remainder of this paper the letter X ranges over an infinite set Var of
variables, a over the assumed finite action set Act and p over an assumed finite
set Prop of atomic propositions. We assume that Prop contains the propositions
true and false.

A Modal Fixpoint Logic with Chop 513

The modal mu-calculus [8] is a small, yet expressive process logic that has
been used as underlying logic in a number of model checkers. Modal mu-calculus
formulae in positive normal form are constructed according to the grammar

¢u=pllao|(a)p |1 Aga|drV o[X [puX. ¢|vX.¢.

In the modal mu-calculus the modal operators [a] and (a) do not have the
status of formulae but can only be used in combination with already constructed
formulae ¢ to form composed formulae [a]¢ and (a)$. We now define FLC (Fliz-
point Logic with Chop), an extension of the modal mu-calculus that gives the
modal operators the status of formulae. More importantly, FLC provides a chop
operator ;, which intuitively represents sequential composition of behavior, and
a termination formula term, which intuitively requires the behavior of the se-
quential successor formula.

We consider again formulae in positive form which are now constructed ac-
cording to the following grammar:

dou=plla]|{a) | prAp2 |1V | X | uX.d|vX .| term | 1 ;02 .

As in the modal mu-calculus, the two fizpoint operators uX and vX bind the
respective variable X and we will apply the usual terminology of free and bound
variables in a formula, closed formula etc. Moreover, we write for a finite set M
of formulae A M and \/ M for the conjunction and disjunction of the formulae
in M. As usual, we agree that /\) = true and \/ () = false.

Both the modal mu-calculus as well as FLC are basically interpreted over a
given labeled transition system T = (S, Act, —). Furthermore, an interpretation
I € (Prop — 2°) is assumed, which assigns to each atomic proposition the set
of states for which it is valid. We assume that interpretations always interpret
true and false in the standard way, i.e. such that I(true) = S and I(false) = ().

In the modal mu-calculus the meaning of a closed formula essentially is a
subset of the state set S, i.e. a predicate on states. In order to explain the meaning
of the new types of formulae, we interpret FLC-formulae by monotonic predicate
transformers. A (monotonic) predicate transformer is simply a mapping f : 25
29 which is monotonic w.r.t. the inclusion ordering on 2°. It follows from well-
known results of lattice theory that the set of monotonic predicate transformers,
which we denote by MTransr, together with the pointwise extension C of the
inclusion ordering on 2° defined by

FCf iff f(z)C f'(z) forallz C S

is a complete lattice. We denote the join and meet operations by U and M.
It is customary to refer to environments, in order to explain the meaning of
open formulas. In the modal mu-calculus, environments are partial mappings of

type p : Var PaLt o8 ; they interpret (at least) the free variables of the formula
in question by a set of states. In FLC we interpret free variables by predicate

transformers. Thus, we use environments of type § : Var PR M Transt. The
predicate transformer assigned to an FLC-formula ¢, denoted by CL(¢)(6), is

514 Markus Miller-Olm

C1(p)(8)(x) = 1(p)
Cf«([a])(é)(az) ={s| Vs s Ss = s ¢ xz}
C%((a))(é)(m) ={s| ' s s A S e x}
Cr(p1 A ¢2)(8) () = Cr(d1)(6)(x) N Cr(¢2) () ()
Cr (1 V 62)(8)(x) = C(1)(6)(x) U Cr(¢2) () ()
C1(X)(9) = 6(X)
Cr(uX . ¢)(8) = N{f € MTransr | Cz(¢)(5[X +— f]) C f}
Cr(vX . $)(6) = U{f € MTransz | Cr(¢)(5[X — f]) 3 f}
C}(term)((S) (z) ==z
C (1 ; $2)(8) = C1(¢1)(0) o Cr(2)(9)

Fig. 2. Semantics of FLC

inductively defined in Fig. 2. The similar definition of the predicate MZ(¢)(p)
assigned to a modal mu-calculus formulae ¢ is omitted due to lack of space. It
can be found in many papers on the modal mu-calculus.

Note that the fixpoint formulae of FLC are interpreted by the corresponding
fixpoints in the set of predicate transformers and not in the set of predicates
as in the modal mu-calculus. Also note that the chop operator is interpreted by
functional composition and that term denotes the identity predicate transformer.
Thus, term is the neutral element of ;.

As the meaning of a closed formula ¢ does not depend on the environment,
we sometimes write just CL(¢) (ML(¢)) for CL(¢)(8) (ML(¢)(p)), where § (p)
is an arbitrary environment. We also omit the indices 7" and I if they are clear
from the context.

The set of states satisfying a given closed formula ¢ is C(¢)(S). A process
P = (T, sp) is said to satisfy ¢ if its initial state so satisfies ¢. It might appear
somewhat arbitrary that the predicate transformer C(¢) : 2% — 25 is applied
to the full state set S in the definition of satisfaction. As far as expressiveness
is concerned, however, the choice of a specific set « to which C(¢) is applied is
largely arbitrary, as long as x can be described by a closed FLC formula ¢,:
assume = = C(¢;)(S); then C(¢)(z) equals C(¢ ; ¢5)(S). As Lemma 1 below
shows, sets x expressible in this way include at least all state sets that can be
described by a modal mu-calculus formula (i.e. all modal mu-calculus definable

properties). The formula ¢py, def Nacacilal ; false, for instance, characterizes
the set of deadlocked states.

Any modal mu-calculus formula ¢ can straightforwardly be translated to
FLC: just replace all sub-formulas of the form [a]t) or (a)y by [a] ; ¢ or {(a) ; ¥,
respectively. We call the resulting FLC-formula 7 (¢). A rather straightforward
structural induction shows that the interpretation of 7 (¢) is just the constant
predicate transformer mapping any state set to the interpretation of the original
modal mu-calculus formula.

A Modal Fixpoint Logic with Chop 515

Lemma 1. Let ¢ be a modal mu-calculus formula and p : Var P2 9S4 modal
mu-calculus environment. Let § be the environment defined by domd = domp
and 6(X) = Ay.p(X) for X € domp. (Note that § assigns constant predicate
transformers to the variables.) Then C(T (¢))(0) = Ay . M(¢)(p)-

As a consequence, FLC is at least as expressive as the modal mu-calculus.

Corollary 1. Suppose ¢ is a closed modal mu-calculus formula and P is a pro-
cess. Then P satisfies ¢ (in the sense of the mu-calculus) iff P satisfies T (¢)
(in the sense of FLC).

Equation systems. A (closed) equation systems of FLC-formula is a set £ =
{X; =¢;| 1< i< n} consisting of n > 0 equations X; = ¢;, where X1,..., X,
are mutually distinct variables and ¢, ..., ¢, are FLC-formulae having at most
X1,..., X, as free variables. An environment 6 : {X1,...,X,} — MTrans is
a solution of equation system FE, if §(X;) = C(¢;)(d) for ¢ = 1,...,n. By the
Knaster-Tarski fixpoint theorem every equation system has a largest solution as
the corresponding functional on environments is easily seen to be monotonic.
We denote the largest solution of F by vE.

While it proves convenient to refer to equation systems, they do not in-
crease the expressive power. Any predicate transformer that can be obtained as
a component of the largest solution of an equation system E can just as well be
characterized by a single formula. In order to show this, Gaufl elimination [10]
can be applied to the equation system (see e.g. [14]).

Proposition 1. Let E be a closed equation system and X a variable bound in
E. Then there is a closed FLC-formula ¢ such that C(¢) = (WE)(X).

4 Characteristic Formulae for Context-Free Processes

The goal of this section is to show that any context-free process can be char-
acterized up to bisimulation or simulation by an FLC-formula.! As a stepping
stone, we construct equation systems that capture the contribution of the sin-
gle process variables to bisimulation and simulation. Characteristic formulae for
various other (bi-)simulation-like relations, in particular the weak versions, can
be constructed along this line too.

In the following, we assume given a context-free process rewrite system R =
(V, Act, A) and agree on the following variable conventions: the letters A and
B, By, Bs, ... range over V, a ranges over Act, and a and 3 range over V*. For
notational convenience we use the process variables A € V also as variables of
the logic.

We consider the three equation systems E. = {A = ¢4 | A €V}, E< =
{A=¢<a| A€V}, and Ex = {A = ¢4 | A € V}. Analogously to the

! For the simulation case we shall actually construct two formulae. One of them char-
acterizes the set of processes that are simulated by the process in question and the
other the set of processes that simulate it.

516 Markus Miller-Olm

finite-state case [16,14], the formulae ¢4, ¢<4, and ¢» 4 mirror the conditions
in the definition of bisimulation and simulation and are defined by

def

P = Pra N G=<a
def
p=<a = /\ [a] ; \/ By;...;B; , and
acAct (A,a,B1--B;)EA

. /\ /\ (@);Bij...; B .

acAct (A,a,B1---B))EA

Now, suppose given an arbitrary transition system T = (S, Act,—) and an
arbitrary interpretation I : Prop — 2°. (The specific interpretation does not
matter as only the atomic propositions true and false appear in the characteristic
equation systems.) Let 6. = vE. : V — (29 — 2%) be the largest solution of
E. on T. The following lemma intuitively shows that the A-component of this
solution represents the contribution of the process variable A to bisimulation.

Lemma 2. 6. (A){se€S|s~p}) ={se€S|s~AF} forall AcV,peV*.

The ‘D’-direction can be proved by a fixpoint induction for §.. and the ‘C’-
direction by a fixpoint induction for ~ = vF.. Combined with Proposition 1,
Lemma 2 shows that there is a closed formula .. 4 for each A € V such that for
all g e V*:

Crlpn)({s€ S| s~ B)) = {scS|s~AB} . (1)

These formulae ¢4 can now be used to construct characteristic formulae for
context-free processes with underlying process rewrite system R.

Theorem 1 (Characteristic formulae). For each context-free process P there
is a (closed) FLC-formula v~.p such that, for any process Q, @ satisfies ¥..p iff
Q~ P.

Proof. Let P = (Tr,B1---B;) and let ¢p be the formula g, ;... ; ¢~p ;
épr, where ¢py, is the formula characterizing the set of deadlocked states from
Section 3.

Suppose @ = ((S, Act,—), sg) is an arbitrary process. Clearly, a state s € S
is bisimilar to the state € in Tg if and only if it satisfies ¢pr. It follows by
repeated application of (1) that, for ¢ = 1,...,l, a state s € S satisfies p.p, ;
... p~p, ; ¢pr if and only if s ~ B; - - - B;. Thus, @ is bisimilar to P if and only
if it satisfies ¥ p. O

An analogue of Lemma 2 for E< and E,. ensures the existence of closed
formulae <4 and ¢ 4 such that Cr(p<a)({s€ S|s=20}) ={se€S|s =< AF}
and Cr(pna){s € S| s = p}) = {s €S| s> Ap} for arbitrary A and .
These formulae are used to establish the final theorem of this section.

Theorem 2 (Characteristic formulae for simulation). For each context-
free process P there are (closed) FLC-formulae ¥<p and 1=p such that, for any

process @, @ satisfies Y<p iff Q <X P, and Q satisfies Y»-p iff Q = P.

A Modal Fixpoint Logic with Chop 517

Proof. Let P = (Tg, By ---B;) and Q = ((S, Act,—), so)-

A state s € S is simulated by ¢ if and only if it satisfies ¢pr. Thus, <p can
be chosen as the formulae p<p, ;...; v<B, ; DL

On the other hand, every state s € S simulates €. In other words, a state
simulates ¢ if and only if it satisfies the formulae true. Thus, ¥~ p can be chosen
as the formulae p»p, ;...; Yxp, ; true.? a

5 Decidability and Expressiveness Issues

Clearly, FLC is decidable for finite-state processes: given a finite-state process
P = (T, 59), an interpretation I, and an FLC-formula ¢, C1.(¢) can effectively be
computed inductively over ¢. The usual approximation of fixpoints terminates
as MTransy is finite.

Theorem 3. FLC is decidable for finite-state processes.

However, FLC is not decidable for context-free processes. This is a conse-
quence of the existence of characteristic formulae for simulation. A decision pro-
cedure for FLC could namely be used to decide simulation between context-free
processes, which is — as mentioned in Section 2 — undecidable: given two context-
free processes P and) one would just have to check, whether () satisfies - p
in order to decide, whether P < Q.

Theorem 4. FLC is undecidable for context-free processes.

There is an interesting duality between the decidability of FLC for finite-
state processes and the decidability of the modal mu-calculus for context-free
(and even push-down) processes [3]. Both scenarios relate an inherently ‘regular’
structure with a structure of at least ‘context-free strength’. While the former
is concerned with the at least ‘context-free’ logic FLC and ‘regular’ finite-state
processes, the latter relates the ‘regular’ modal mu-calculus (recall that the mu-
calculus can be translated to monadic second order logic, which closely corre-
sponds to finite automata) with context-free processes.

The existence of characteristic formulae for simulation also implies that sat-
isfiability (and hence validity) of FLC is undecidable: assume given two context-
free processes P and Q. It is easy to see that) simulates P if and only if the
formula ¢ p A =< is satisfiable. Thus, decidability of satisfiability would again
imply decidability of simulation between context-free processes.

Theorem 5. Satisfiability and validity of FLC are undecidable.

An interesting consequence of the existence of characteristic formulae for
bisimulation is that FLC does not enjoy the finite-model property:® choose a

2 The final true could be omitted due to our definition of satisfaction.
3 A modal logic has the finite-model property, if any satisfiable formula has a finite
model.

518 Markus Miller-Olm

a b

021283

b b C

—4—=5—"%6

Fig. 3. A linear, finite process

context-free process P that is not bisimilar to any finite-state process and take
its characteristic formulae ¥, p. Then this formulae is satisfiable (namely by P
itself). But it cannot be satisfied by a finite-state process, as this finite-state
process would then be bisimilar to the context-free process which yields a con-
tradiction.

Theorem 6. FLC does not enjoy the finite-model property.

The modal mu-calculus on the other hand does enjoy the finite-model prop-
erty [9]. Hence, in general, context-free processes cannot have characteristic
modal mu-calculus formulae: let P again be a context-free process that is not
bisimilar to a finite-state process and assume there would be a modal mu-calculus
formula ¢ characterizing P up to bisimulation. Then — by the finite-model prop-
erty — there would be a finite-state process @) satisfying ¢. But this would mean
that P and @ are bisimilar, which contradicts the choice of P.

As a consequence, FLC is strictly more expressive than the modal mu-
calculus. However, if this increase of expressiveness would not show through
on finite-state processes, it would be useless, as far as automatic model checking
is concerned.

Fortunately, we can show that FLC already is more expressive on the class of
finite-state processes, and even on a small subclass, that of finite linear processes.
These are processes corresponding to finite words over Act. Formally, the process
corresponding to a word w = wyg - - - wy, € Act* is P, = (({0,...,k}, Act,—),0),
where —= {(i,w;,i+1) | 0 < i < k}. As an example, the process corresponding
to the word ababbe is pictured in Fig. 3. The class of finite linear processes is
{Py | w € Act™} and subclasses of it can straightforwardly be identified with
sets of words over Act. The modal mu-calculus can be translated to monadic
second-order logic. Therefore, the class of finite linear models of a modal mu-
calculus formula ¢ corresponds to a regular set of words. The class of finite linear
models of the FLC-formula (uX . (term V (a) X (b))) ; ¢pr, however, corresponds
to the set {a™b™ | n=0,1,...}, which is well-known not to be regular [7].

Theorem 7. FLC is strictly more expressive than the modal mu-calculus, even
on finite linear processes, and therefore also on finite-state processes.

It is interesting to note that FLC can even characterize certain non-context-
free sets of finite linear processes due to the presence of conjunction: let, for
arbitrary actions a and b, ¢4 be the formula pX . (term V ({a) ; X ; (b))) and),
be the formula pX . (term V (a) ; X). Then the finite linear models of

(¢ab ; Qe ¢DL) A (¢a i Dbe (bDL)

A Modal Fixpoint Logic with Chop 519

correspond to the set {a"b"™c™ | n = 0,1,...}, which is context-sensitive but
not context-free. A more thorough study of the expressiveness of FLC is left for
future research.

6 Conclusion

We have proposed a modal logic FLC with fixpoints, a chop-operator, and ter-
mination formulae. The basic idea has been to interpret formulae by predicate
transformers instead of predicates and to take fixpoint construction over pred-
icate transformers as well. As a stepping stone in the technical development
we have shown that FLC allows to characterize context-free processes up to
bisimulation and simulation. FLC is strictly more expressive than the modal
mu-calculus but is still decidable for finite-state processes.

Like the modal mu-calculus, FLC is perhaps not so much suited as a direct
vehicle for specification. Rather it provides an expressive core logic, into which
various other logics can be translated. An FLC-based model checking system
could handle non-regular specification formalisms that are beyond the reach
of modal mu-calculus based model checkers. An interesting example of such a
formalism from a practical point of view are the timing diagrams studied by
K. Fisler in [5]. It is a topic of future research whether they can actually be
embedded into FLC.

A simple global model checking algorithm for FLC and finite-state processes
can straightforwardly be constructed from the usual iterative computation of
fixpoints. This procedure in general has an exponentially larger storage require-
ment compared to a straightforward global modal mu-calculus model checker:
we have to store a mapping 2° — B per state and formula (where B denotes
the set of the Boolean values true and false) instead of just a single Boolean
value.* Also the time complexity of FLC seems to be much higher than that of
modal mu-calculus as (2% — 2°) has exponentially longer chains than 2° such
that fixpoint computation can require exponentially more iterations. Thus, at
first glance model checking FLC seems to be impractical. (We currently know
that model checking with a fixed formula is at least PSPACE-hard.)

However, the exponential blow up can be avoided for FLC-formulae corre-
sponding to modal mu-calculus formulae. The idea is to represent the above
mentioned mappings of type 2° — B by binary decision diagrams (BDDs). As a
consequence of Lemma 1 these mappings are constant for all FLC-formulae cor-
responding to modal mu-calculus formulae. It is, moreover, easy to see that the
intermediate functions occurring during fixpoint iteration are constant too and
correspond to the Boolean values that would be observed in a mu-calculus model
checking procedure. Therefore, only a linear penalty arises for both space and
time when model checking FLC-formula corresponding to modal mu-calculus
formulae because constant BDDs can be represented in constant space. In this
sense the increased expressiveness of FLC is obtained for free: the exponential

4 A collection consisting of one of those mappings for each state in S represents a
mapping 25 — 29 i.e. a predicate transformer, which is the meaning of a formula.

520 Markus Miller-Olm

blow-up can only occur in cases that cannot be handled by a modal mu-calculus
model checker at all!

The above comparison applies to straight-forward global model checking. If
and how more elaborate global and local mu-calculus model checking procedures
can be adapted to FLC remains to be seen. Other topics for future research
are a more thorough study of the complexity and expressiveness of FLC, in
particular its relationship to context-free and context-sensitive languages and,
last not least, the implementation and empirical evaluation of an FLC-based
model checker. It is, moreover, interesting to study, whether the idea of a ‘second-
order’ interpretation of formulae by predicate transformers can advantageously
be applied to other logics.

References

1. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37:77-121, 1985.

2. O. Burkart and J. Esparza. More infinite results. FENTCS, 6, 1997. URL:
http://www.elsevier.nl/locate/entcs/volume6.html.

3. O. Burkart and B. Steffen. Model checking the full modal mu-calculus for infinite
sequential processes. In ICALP ’97, LNCS 1256, 419-429. Springer-Verlag, 1997.

4. D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer
Science, 106:61-86, 1992.

5. K. Fisler. Containment of regular languages in non-regular timing diagram lan-
guages is decidable. In CAV’97, LNCS 1254. Springer-Verlag, 1997.

6. J. F. Groote and H. Hiittel. Undecidable equivalences for basic process algebra.
Information and Computation, 115(2):354-371, 1994.

7. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

8. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333-354, 1983.

9. D. Kozen. A finite model theorem for the propositional mu-calculus. Studia Logica,
47:233-241, 1988.

10. A. Mader. Modal mu-calculus, model checking and Gauss elimination. In
TACAS’95, LNCS 1019, 72-88. Springer-Verlag, 1995.

11. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

12. F. Moller. Infinite results. In CONCUR’96, LNCS 1119, 195-216. Springer-Verlag,
1996.

13. B. Moszkowski. A temporal logic for multi-level reasoning about hardware. IEEE
Computer, 18(2):10-19, 1985.

14. M. Miiller-Olm. Derivation of characteristic formulae. ENTCS, 18, 1998. URL:
http://www.elsevier.nl/locate/entcs/volumel8.html.

15. D. M. R. Park. Concurrency and automata on infinite sequences. In LNCS 154,
561-572. Springer-Verlag, 1981.

16. B. Steffen and A. Ingdlfsdéttir. Characteristic formulae for processes with diver-
gence. Information and Computation, 110(1):149-163, 1994.

17. Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Infor-
mation Processing Letters, 40(5):269-276, 1991.

