
On Optimal Slicing of Parallel Programs

Markus Müller-Olm
Universität Dortmund, FB Informatik, LS 5

44221 Dortmund, Germany

mmo@ls5.cs.uni-dortmund.de

Helmut Seidl
∗

Universität Trier, FB 4-Informatik
54286 Trier, Germany

seidl@uni-trier.de

ABSTRACT
Optimal program slicing determines for a statement S in a
program π whether or not S affects a specified set of state-
ments, given that all conditionals in π are interpreted as
non-deterministic choices.

Only recently, it has been shown that reachability of pro-
gram points and hence also optimal slicing is undecidable for
multi-threaded programs with (parameterless) procedures
and synchronization [23]. Here, we sharpen this result by
proving that slicing remains undecidable if synchronization
is abandoned—although reachability becomes polynomial.
Moreover, we show for multi-threaded programs without
synchronization, that slicing stays PSPACE-hard when pro-
cedure calls are forbidden, and becomes NP-hard for loop-
free programs. Since the latter two problems can be solved
in PSPACE and NP, respectively, even in presence of syn-
chronization, our new lower bounds are tight.

Finally, we show that the above decidability and lower
bound properties equally apply to other simple program
analysis problems like copy constant propagation and true
liveness of variables. This should be contrasted to the prob-
lems of strong copy constant propagation and (ordinary)
liveness of variables for which polynomial algorithms have
been designed [15, 14, 24].

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—concurrent programming structures; F.2.2
[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages—Program analysis; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages—classes de-
fined by grammars or automata, decision problems

∗The second author was supported by the RTD project
IST-1999-20527 ”DAEDALUS” of the European FP5 pro-
gramme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01,July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

Keywords
Slicing, parallel programs, interprocedural analysis, unde-
cidability, complexity

1. INTRODUCTION
Static program slicing [27] is an established program re-

duction technique that has applications in program under-
standing, debugging, and testing [26]. More recently, it has
also been proposed as a technique for ameliorating the state-
explosion problem when formally verifying software or hard-
ware [13, 10, 4, 18]. The goal of program slicing is to identify
and remove parts of the program that cannot (potentially)
influence certain value(s) at certain program point(s) of in-
terest. The latter is called the slicing criterion.

There is a vast amount of literature on slicing sequential
languages (see the references in Tip’s survey [26]). A crucial
idea found in many variations is to perform slicing by means
of a backwards reachability analysis on a graph modeling
basic dependences between instructions. This approach has
been pioneered by Ottenstein and Ottenstein [21] who pro-
posed to use a structure called PDG (Program Dependence
Graph). A PDG captures two kinds of dependences, data de-
pendences and control dependences. Intuitively, a statement
S is data dependent on another statement T if T updates a
variable that can be referenced by S. For example, if S is
x := e and T is y := f , then S is data dependent on T if
y appears in e and there is a path from T to S in the pro-
gram on which no statement updates y. Control dependence
captures which guards (of branching statements or loops)
may determine whether a statement is executed or not. Its
formal definition can be found, e.g., in [26].

The first who considered static slicing of concurrent lan-
guages was J. Cheng [3]. In recent years the interest in this
problem has increased due to the proliferation of concurrent
languages. There has been work in connection with slicing
JAVA-like languages [10, 28], VHDL [13, 4], and Promela
[18], the input language of the Spin model checker. All these
articles have in common that slicing is again approached as a
backwards reachability problem but on some extended form
of PDG (called Process Dependence Net [3], Multithreaded
Dependence Graph [28], etc.). These structures model fur-
ther dependences besides data and control dependences that
may arise in concurrent programs of the considered kind.
One such dependence is interference dependence [17, 10]. A
statement S is interference dependent on a statement T in
another thread if the two threads may run in parallel and
there is a variable updated by T and referenced by S. This
captures the situation that in a parallel execution of the two

threads, S may be executed after T in such a way that the
shared variable is not overwritten in between. Interference
dependence may be interpreted as a kind of data dependence
arising from interleaved execution. Other kinds of depen-
dences represent the data flow induced by message passing
and the control flow induced by synchronization operations.

A program slicing algorithm must be sound : it must not
slice away parts of the program that affect the given slicing
criterion. Ideally, a slicer should remove as much of the pro-
gram as possible without sacrificing soundness. Weiser [27]
showed already that the problem of determining whether or
not a slice is statement-minimal is undecidable [26, p. 7].
The problem is that it is undecidable whether a condition
found in the program may be true (or false) on some exe-
cution path. Dataflow analysis in general suffers from this
problem and the common remedy is to ignore conditions al-
together when defining feasible paths. In other words, condi-
tional branching is interpreted as non-deterministic branch-
ing, a point of view adopted in this paper. We call a slicer
optimal if it determines a statement-minimal slice under this
abstraction.

In the sequential, intraprocedural case (i.e. in single proce-
dures), PDG-based slicing is efficient and optimal. Optimal-
ity can also be achieved in the sequential, interprocedural
case by solving a context-free reachability problem on the
System Dependency Graph (SDG) of the program in ques-
tion [11]. This analysis can be done in polynomial time [26].
For concurrent languages with procedures and synchroniza-
tion primitives even reachability is undecidable by a recent
result of Ramalingam [23]. This implies that also optimal
slicing cannot be decidable. In this paper, we consider opti-
mal slicing for concurrent languages but drop the facility of
synchronization. As a consequence, reachability as well as
reverse reachability become decidable—even polynomial [5,
6, 24]. Our new result is that optimal slicing remains unde-
cidable. We refine this new undecidability result by proving
optimal slicing to be PSPACE-hard in case that there are
no procedure calls, and still NP-hard if also loops are aban-
doned. The latter two lower complexity bounds are optimal,
as they match the corresponding upper bounds.

We conclude that all efficient slicing algorithms for con-
current languages are doomed to be sub-optimal (unless
P=PSPACE). Our results are shown under very weak as-
sumptions on the concurrent language. Intuitively, they ex-
ploit a weakness of interference dependence only. As no
synchronization properties are exploited, our results point
to a more fundamental limitation for slicing concurrent lan-
guages than Ramalingam’s and hence are applicable to a
much wider range of concurrency scenarios.

Finally, we consider related program analysis problems,
copy constant propagation and true liveness of variables,
and exhibit similar undecidability and complexity results as
for slicing thereby strengthening recent results [20]. In a cer-
tain sense, this comes as a surprise, as only slightly simpler
analysis questions, namely, strong copy constant propaga-
tion and (ordinary) liveness of variables can be optimally
solved in polynomial time [15, 14, 24].

2. A MOTIVATING EXAMPLE
Before we turn to the technical results, let us discuss a

small example that illustrates that backwards reachability
in the dependence graph can give sub-optimal results when

fork

join

b := a

b := 0

write(c)

a := 1

c := 0

fork

join

b := a

b := 0

write(c)

a := 1

c := 0

(a) CFG-like representation (b) Data and interference dependences

c := b c := b

Figure 1: An illustrative example.

slicing parallel programs. Consider the program

a := 1; [(b := 1; b := 0; c := 0) ‖ c := b] ; write(c) .

In Fig. 1 (a) a control flow graph-like representation of the
program is shown and in (b) the data and interference de-
pendences. We are interested in slicing w.r.t. variable c at
the write instruction. (We always use write instructions in
this paper to mark the slicing criterion clearly and conve-
niently; this is the only purpose of write instructions here).
Clearly, the instruction a := 1 is backwards reachable in the
dependency graph. But there is no execution of the program
that realizes all dependences in this path and therefore an
optimal slicer must remove a := 1. In order to see this con-
sider that in an execution b := 0 must be executed either
before or after c := b in the parallel thread. If it is exe-
cuted before c := b then it kills the propagation from b := a
to c := b. If it is executed after c := b then the subse-
quent statement c := 0 kills the propagation from c := b to
write(c). Our undecidability and hardness results exploit
that propagation can be prohibited in this way by means
of re-initializations. Krinke [17] also mentions that ‘inter-
ference dependence is not transitive’ and gives an example
that is, however, of a less subtle nature than our example.
He, too, does not consider synchronization operations and
presents an optimal algorithm for the intraprocedural paral-
lel case. His algorithm is worst-case exponential but he gives
no hardness proof. Our PSPACE-hardness result explains—
by all what we believe about PSPACE-hardness—why he
could not find a polynomial algorithm.

3. PARALLEL PROGRAMS
We consider a prototypic language with shared memory,

atomic assignments and fork/join parallelism. Only assign-
ments of a very simple form are needed: x := k where k is
either a constant or a variable.

A procedural parallel program comprises a finite set Proc
of procedure names containing a distinguished name Main.
Each procedure name P is associated with a statement πP ,
the corresponding procedure body, constructed according to
the following grammar, in which Q ranges over Proc\{Main}

and x over some given finite set of variables:

e ::= c | x
π ::= x := e | write(e) | skip | Q | π1 ; π2 |

π1 ‖ π2 | π1 u π2 | loop π end .

We use the syntax procedure P ;πP end to indicate the
association of procedure bodies to procedure names. Note
that procedures do not have parameters.

The specific nature of constants and the domain in which
they are interpreted is immaterial; we only need that 0 and
1 are two constants representing different values, which—by
abuse of notation—are denoted by 0 and 1 too. In other
words we only need Boolean variables. The atomic state-
ments of the language are assignment statements x := e that
assign the current value of e to variable x, ‘do-nothing’ state-
ments skip, and write statements. Write statements signify
the slicing criterion. A statement of the form Q denotes a
call of procedure Q. The operator ; denotes sequential com-
position and ‖ parallel composition. The operator u repre-
sents non-deterministic branching and loop π end stands
for a loop that iterates π an indefinite number of times.
Such construct are chosen in accordance with the common
abstraction from conditions mentioned in the introduction.
We apply the non-deterministic choice operator also to finite
sets of statements; u{π1, . . . , πn} denotes π1u· · ·uπn. The
ambiguity inherent in this notation is harmless because u is
commutative, associative, and idempotent semantically.

Note that there are no synchronization operations in the
language. The synchronization of start and termination in-
herent in fork- and join-parallelism is also not essential for
our results; see Section 7.

Parallelism is understood in an interleaving fashion; as-
signments and write statements are assumed to be atomic.
A run of a program is a maximal sequence of atomic state-
ments that may be executed in this order in an execution
of the program. The program (x := 1 ; x := y) ‖ y :=
x, for example, has the three runs 〈x := 1, x := y, y := x〉,
〈x := 1, y := x, x := y〉, and 〈y := x, x := 1, x := y〉. We de-
note the set of runs of program π by Runs(π).

4. INTERPROCEDURAL SLICING
In the remainder of this paper we adopt the following defi-

nition of the (optimal) slicing problem as a decision problem.
An instance comprises a (non-deterministic, parallel) pro-
gram π, a slicing criterion C (given by the write-instructions
in the program) and a statement S in π. The problem is to
decide whether S belongs to the optimal slice of π with re-
spect to C. The slicing problem is parameterized by the
class of programs considered.

Theorem 1. Parallel interprocedural slicing is undecid-
able.

It is well-known that the termination problem for two-
counter machines is undecidable [19]. In the remainder of
this section, we reduce this problem to an interprocedural
slicing problem thereby proving Theorem 1.

4.1 Two-Counter Machines
A two-counter machine has two counter variables c0 and

c1 that can be incremented, decremented, and tested against

zero. It is common to use a combined decrement- and test-
instruction in order to avoid complications with decrement-
ing a zero counter. The basic idea of our reduction is to
represent the values of the counters by the stack height of
two threads of procedures running in parallel. Incrementing
a counter is represented by calling another procedure in the
corresponding thread, decrementing by returning from the
current procedure, and the test against zero by using differ-
ent procedures at the first and the other stack levels that
represent the possible moves for zero and non-zero counters,
respectively. It simplifies the argumentation if computation
steps involving the two counters alternate. This can always
be enforced by adding skip-instructions that do nothing ex-
cept of transferring control.

Formally, we use the following model. A two-counter ma-
chine M comprises a finite set of (control) states S. S
is partitioned into two sets P = {p1, . . . , pn} and Q =
{q1, . . . , qm}; moves involving counter c0 start from P and
moves involving counter c1 from Q. Execution commences
at a distinguished start state which, w.l.o.G., is p1. There
is also a distinguished final state, w.l.o.G. pn, at which ex-
ecution terminates. Each state s ∈ S except of the final
state pn is associated with an instruction I(s) taken from
the following selection:

• ci := ci + 1;goto s′ (increment),

• if ci = 0 then goto s′ else ci := ci − 1; goto s′′

(test-decrement), or

• goto s′ (skip),

where i = 0 and s′, s′′ ∈ Q if s ∈ P , and i = 1 and s′, s′′ ∈ P
if s ∈ Q. Note that this condition captures that moves
alternate.

Execution of a two-counter machine M is represented by
a transition relation →M on configurations 〈s, x0, x1〉 that
consist of a current state s ∈ S and current values x0 ≥
0 and x1 ≥ 0 of the counters. Configurations with s =
pn are called final configurations. We have 〈s, x0, x1〉 →M

〈s′, x′
0, x

′
1〉 if and only if one of the following conditions is

valid for i = 0, 1:

• I(s) = ci := ci + 1; goto s′, x′
i = xi + 1, and x′

1−i =
x1−i.

• I(s) = if ci = 0 then goto s′ else ci := ci − 1;
goto s′′, xi = 0, x′

i = xi, and x′
1−i = x1−i.

• I(s) = if ci = 0 then goto s′′ else ci := ci − 1;
goto s′, xi 6= 0, x′

i = xi − 1, and x′
1−i = x1−i.

• I(s) = goto s′, x′
i = xi, and x′

1−i = x1−i.

Thus, each non-final configuration has a unique successor
configuration. We denote the reflexive transitive closure of
→M by →∗

M and omit the subscript M if it is clear from
context.

Execution of a two-counter machine commences at the
start state with the counters initialized by zero, i.e. in the
configuration 〈p1, 0, 0〉. The two-counter machine termi-
nates if it ever reaches the final state, i.e. if 〈p1, 0, 0〉 →∗

〈pn, x0, x1〉 for some x0, x1. As far as the halting behavior
is concerned we can assume without loss of generality that
both counters are zero upon termination. This can be en-
sured by adding two loops at the final state that iteratively

procedure P0;
loop

u{p := xk ; KillAllP ; yl := p ; P 6=0 |
I(pk) = c0 := c0 + 1; goto ql} u

u{p := xk ; KillAllP ; yl := p |
I(pk) = if c0 = 0 then goto ql else . . . } u

u{p := xk ; KillAllP ; yl := p | I(pk) = goto ql}
end
end

procedure P6=0;
loop

u{p := xk ; KillAllP ; yl := p ; P 6=0 |
I(pk) = c0 := c0 + 1; goto ql} u

u{p := xk ; KillAllP ; yl := p | I(pk) = goto ql}
end ;
u{p := xk ; KillAllP ; yl := p |

I(pk) = if c0 = 0 then . . . else . . .goto ql}
end

procedure KillAllP ;
y1 := 0 ; . . . ; ym := 0 ; q := 0 ; x1 := 0 ; . . . ; xn := 0
end

Figure 2: Definition of P0 and P6=0.

decrement the counters until they become zero. Obviously,
this modification preserves the termination behavior of the
two-counter machine. Note that for the modified machine
the conditions “〈p1, 0, 0〉 →∗ 〈pn, x0, x1〉 for some x0, x1”
and “〈p1, 0, 0〉 →∗ 〈pn, 0, 0〉” are equivalent. We assume in
the following that such loops have been added to the given
machine.

4.2 Constructing a Program
From a two-counter machine as above we construct a par-

allel program, πM . For each state pk ∈ P the program uses
a variable xk and for each state ql ∈ Q a variable yl. Intu-
itively, xk holds the value 1 in an execution of the program
iff this execution corresponds to a run of the two-counter
machine reaching state pk, and similarly for the yl.

The main procedure of πM reads as follows:

procedure Main;
x1 := 1 ; Init ;
(P0 ‖ Q0) ; write(xn)
end

procedure Init ;
x2 := 0 ; . . . ; xn := 0 ;
y1 := 0 ; . . . ; ym := 0
end

We will consider slicing with respect to variable xn at the
write-instruction (slicing criterion). The construction is
done such that the initialization x1 := 1 belongs to the opti-
mal slice if and only ifM terminates. This shows Theorem 1.
The goal of the construction can also be reformulated as fol-
lows because the initialization x1 := 1 is the only occurrence
of the constant 1 in the program and all other assignment
statement only copy values or initialize variables by 0.

M terminates if and only if
xn may hold 1 at the write-statement.

(1)

The initialization of all variables except x1 by 0 reflects that
p1 is the initial state. For each of the two counters the
program uses two procedures, P0 and P6=0 for counter c0

procedure Q0;
loop

u{q := yk ; KillAllQ ; xl := q ; Q 6=0 |
I(qk) = c1 := c1 + 1;goto pl} u

u{q := yk ; KillAllQ ; xl := q |
I(qk) = if c1 = 0 then goto pl else . . . } u

u{q := yk ; KillAllQ ; xl := q | I(qk) = goto pl}
end
end

procedure Q 6=0;
loop

u{q := yk ; KillAllQ ; xl := q ; Q 6=0 |
I(qk) = c1 := c1 + 1;goto pl} u

u{q := yk ; KillAllQ ; xl := q | I(qk) = goto pl}
end ;
u{q := yk ; KillAllQ ; xl := q |

I(qk) = if c1 = 0 then . . . else . . .goto pl}
end

procedure KillAllQ;
x1 := 0 ; . . . ; xn := 0 ; p := 0 ; y1 := 0 ; . . . ; ym := 0
end

Figure 3: Definition of Q0 and Q 6=0.

and Q0 and Q 6=0 for counter c1. Their definition can be
found in Fig. 2 and 3. We describe P0 and P6=0 in detail in
the following, Q0 and Q 6=0 are completely analogous.

Intuitively, P0 and P6=0 mirror transitions ofM induced by
counter c0 being =0 and 6=0, respectively, hence their name.
Each procedure non-deterministically guesses the next tran-
sition. Such a transition involves two things: first, a state
change and, secondly, an effect on the counter value. The
state change from some pk to some ql is represented by copy-
ing xk to yl via an auxiliary variable p and re-initializing xk

by zero as part of KillAllP . The effect on the counter value
is represented by how we proceed:

• For transitions that do not change the counter we jump
back to the beginning of the procedure such that other
transitions with the same counter value can be sim-
ulated subsequently. This applies to skip-transitions
and test-decrement transitions for a zero counter, i.e.
test-decrement transitions simulated in P0.

• For incrementing transitions we call another instance
of P6=0 that simulates the transitions induced by the
incremented counter. A return from this new instance
of P 6=0 means that the counter is decremented, i.e. has
the old value. We therefore jump back to the beginning
of the procedure after the return from P6=0.

• For test-decrement transitions simulated in P6=0, we
leave the current procedure.

This behavior is described in a structured way by means of
loops and sequential and non-deterministic composition and
is consistent with the representation of the counter value by
the number of instances of P 6=0 on the stack.

The problem with achieving (1) is that a procedure may
try to ‘cheat’: it may execute the code representing a tran-
sition from pi to qj although xi does not hold the value 1. If

this is a decrementing or incrementing transition the coin-
cidence between counter values and stack heights may then
be destroyed and the value 1 may subsequently be propa-
gated erroneously. Such cheating may thus invalidate the
‘if’ direction.

This problem is solved as follows. We ensure by appropri-
ate re-initialization that all variables are set to 0 if a proce-
dure tries to cheat. Thus, such executions cannot contribute
to the propagation of the value 1. But re-initializing a set of
variables safely is not trivial in a concurrent environment.
We have only atomic assignments to single variables avail-
able; a variable just set to 0 may well be set to another value
by instructions executed by instances of the procedures Q0

and Q 6=0 running in parallel while we are initializing the
other variables. Here our assumption that moves involving
the counters alternate comes into play. Due to this assump-
tion all copying assignments in Q0 and Q 6=0 are of the form
q := yi or xj := q (q is the analog of the auxiliary variable
p). Thus, we can safely assign 0 to the yi in P0 and P6=0 as
they are not the target of a copy instruction in Q0 or Q 6=0.
After we have done so, we can safely assign 0 to q; a copy
instruction q := yi executed by the parallel thread cannot
destroy the value 0 as all yi contain 0 already. After that
we can safely assign 0 to the xi by a similar argument. This
explains the definition of KillAllP .

4.3 Correctness of the Reduction
From the intuition underlying the definition of πM , the

‘only if’ direction of (1) is rather obvious: If M terminates,
i.e., if it has transitions leading from 〈p1, 0, 0〉 to 〈pn, 0, 0〉,
we can simulate these transitions by a propagating run of
πM . By explaining the definition of KillAllP , we justified the
‘if’ direction as well. A formal proof can be given along the
lines of the classic Owicki/Gries method for proving partial
correctness of parallel programs [22, 8, 1]. Although this
method is usually presented for programs without proce-
dures it is sound also for procedural programs. In the Ow-
icki/Gries method, programs are annotated with assertions
that represent properties valid for any execution reaching
the program point at which the assertion is written down.
This annotation is subject to certain rules that guarantee
soundness of the method.

Specifically, we prove that just before the write-instruc-
tion in πM the following assertion is valid:

xn = 1 ⇒ 〈p1, 0, 0〉 →∗ 〈pn, 0, 0〉 .
Validity of this assertion implies the ‘if’ direction of (1). The
details of this proof are deferred to Appendix A.

Our proof should be compared to undecidability of reach-
ability in presence of synchronization as proved by Rama-
lingam [23], and undecidability of LTL model-checking for
parallel languages (even without synchronization) as proved
by Bouajjani and Habermehl [2]. Both proofs employ two
sequential threads running in parallel. Ramalingam uses
the two recursion stacks of the threads to simulate context-
free grammar derivations of two words whose equality is en-
forced by the synchronization facilities of the programming
language. Bouajjani and Habermehl use the two recursion
stacks to simulate two counters (as we do) whose joint oper-
ation then is synchronized through the LTL formula. Thus,
both proofs rely on some kind of “external synchronization”
of the two threads – which is not available in our scenario.
Instead, our undecidability proof works with “internal syn-

chronization” which is provided implicitly by killing of the
circulating value 1 as soon as one thread deviates from the
intended synchronous behavior.

5. INTRAPROCEDURAL SLICING
The undecidability result just presented means that we

cannot expect a program slicer for parallel programs to
be optimal. We therefore must lower our expectation. In
dataflow analysis one often investigates also intraprocedural
problems. These can be viewed as problems for programs
without procedure calls. Here, we find:

Theorem 2. Parallel intraprocedural slicing is PSPACE-
complete.

In a fork/join parallel program without procedures, the
number of threads potentially running in parallel is bounded
by the size of the program. Therefore, every run of the pro-
gram can be simulated by a Turing machine using just a
polynomial amount of space. We conclude that the intrapro-
cedural optimal parallel slicing problem is in PSPACE.

It remains to show that PSPACE is also a lower bound on
the complexity of an optimal intraprocedural parallel slicer,
i.e. PSPACE-hardness. This is done by a reduction from
the Regular Expression Intersection problem. This
problem is chosen in favor of the better known intersection
problem for finite automata as we are heading for structured
programs and not for flow graphs.

An instance of Regular Expression Intersection is
given by a sequence r1, . . . , rn of regular expressions over
some finite alphabet A. The problem is to decide whether
L(r1) ∩ . . . ∩ L(rn) is non-empty.

Lemma 1. The Regular Expression Intersection
problem is PSPACE-complete.

In fact, PSPACE-hardness of the Regular Expression
Intersection problem follows by a reduction from the ac-
ceptance problem for linear space bounded Turing machines
along the same lines as in the corresponding proof for finite
automata [16]. The problem remains PSPACE-complete if
we consider expressions without ∅.

Suppose now that A = {a1, . . . , ak}, and we are given n
regular expressions r1, . . . , rn. In our reduction we construct
a parallel program that starts n+1 threads π0, . . . , πn after
some initialization of the variables used in the program:

procedure Main;
KillXY0 ; . . . ; KillXYn ; xn,a1 := 1 ;
[π0 ‖ π1 ‖ · · · ‖ πn] ; write(x0,a1)
end

The threads refer to variables xi,a and yi (i ∈ {0, . . . , n},
a ∈ A). Thread π0 is defined as follows.

π0 = loop
u{y0 := xn,a ; KillAll0 ; x0,b := y0 | a, b ∈ A}

end

The statement KillAll0 that is defined below ensures that all
variables except y0 are re-initialized by 0 irrespective of the
behavior of the other threads as shown below.

For i = 1, . . . , n, the thread πi is induced by the regular
expression ri. It is given by πi = πi(ri), where πi(r) is

defined by induction on r as follows.

πi(ε) = skip

πi(a) = yi := xi−1,a ; KillAlli ; xi,a := yi

πi(r1 · r2) = πi(r1) ; πi(r2)

πi(r1 + r2) = πi(r1) u πi(r2)

πi(r
∗) = loop πi(r) end

The statement KillAlli re-initializes all variables except yi.
This statement as well as statements KillXj and KillXYj on
which its definition is based are defined as follows.

KillXj = xj,a1 := 0; . . . ;xj,ak := 0

KillXYj = yj := 0; KillXj

KillAlli = KillXi;KillXYi+1; . . . ;KillXYn;

KillXY0; . . . ;KillXYi−1

Again it is not obvious that thread πi can safely re-initialize
the variables because the other threads may arbitrarily in-
terleave. But by exploiting that only copy instructions of
the form yj := xj−1,a and xj,a := yj with j 6= i are present
in the other threads this can be done by performing the
re-initializations in the order specified above.1 Two crucial
properties are exploited for this. First, whenever a := b
is a copying assignments in a parallel thread, variable b is
re-initialized before a. Therefore, execution of a := b after
the re-initialization of b just copies the initialization value 0
from b to a but cannot destroy the initialization of a. Sec-
ondly, in all constant assignments a := k in parallel threads
k equals 0 such that no other values can be generated.

Altogether, the threads are constructed in such a way that
the following is valid.

L(r1) ∩ . . . ∩ L(rn) 6= ∅ if and only if
xn,a1 := 1 belongs to the optimal slice.

(2)

In the following, we describe the intuition underlying the
construction and at the same time prove (2).

The threads can be considered to form a ring of processes
in which process πi has processes πi−1 as left neighbor and
πi+1 as right neighbor. Each thread πi (i = 1, . . . , n) guesses
a word in L(ri); thread π0 guesses some word in A∗. The
special form of the threads ensures that they can propagate
the initialization value 1 for xn,a1 if and only if all of them
agree on the guessed word and interleave the corresponding
runs in a disciplined fashion. Obviously, the latter is possible
iff L(r1) ∩ . . . ∩ L(rn) 6= ∅.

Let w = c1 · . . . · cl be a word in L(r1) ∩ . . . ∩ L(rn) and
let c0 = a1, the first letter in alphabet A. In the run in-
duced by w that successfully propagates the value 1, the
threads circulate the value 1 around the ring of processes in
the variables xi,ci for each letter ci of w. We call this the
propagation game in the following. At the beginning of the
j-th round, j = 1, . . . , l, process π0 ‘proposes’ the letter cj
by copying the value 1 from the variable xn,cj−1 to x0,cj in
which it was left by the previous round or by the initial-
ization, respectively. For technical reasons this copying is
done via the ‘local’ variable2 y0. Afterwards the processes
πi (i = 1, . . . , n) successively copy the value from xi−1,cj to

1Here and in the following, addition and subtraction in sub-
scripts of variables and processes is understood modulo n+1.
2Variable yi is not local to πi in a strict sense. But the
other threads do not use it as target or source of a copying
assignment; they only re-initialize it.

xi,cj via their ‘local’ variables yi. From xn,cj it is copied
by π0 in the next round to x0,cj+1 and so on. After the last
round (j = l) π0 finally copies the value 1 from xn,cl to x0,a1

and all processes terminate. Writing—by a little abuse of
notation—πi(a) for the single run of πi(a) and π0(a, b) for
the single run of y0 := xn,a ; KillAll0 ; x0,b := y0, we can
summarize above discussion by saying that

π0(a1, c1) · π1(c1) · . . . · πn(c1)·
π0(c1, c2) · π1(c2) · . . . · πn(c2)·

...
π0(cl−1, cl) · π1(cl) · . . . · πn(cl)·
π0(cl, a1)

is a run of π0 ‖ . . . ‖ πn that witnesses that the initialization
of xn,a1 belongs to the optimal slice. This implies the ’only
if’ direction of (2).

Next we show that the construction of the threads ensures
that runs that do not follow the propagation game cannot
propagate value 1 to the write-instruction. In particular, if
L(r1) ∩ . . . ∩ L(rn) = ∅, no propagating run exists, which
implies the ‘if’ direction of (2).

Note first that all runs of πi are composed of pieces of the
form πi(a) and all runs of π0 of pieces of the form π0(a, b)
which is easily shown by induction. A run can now deviate
from the propagation game in two ways. First, it can follow
the rules but terminate in the middle of a round:

π0(a1, c1) · π1(c1) · . . . · πi(c1) · . . . · πn(c1)·
π0(c1, c2) · π1(c2) · . . . · πi(c2) · . . . · πn(c2)·

...
π0(cm−1, cm) · π1(cm) · . . . · πi(cm)

Such a run does not propagate the value 1 to the write-
instruction as KillAlli in πi(cm) re-initializes x0,a1 .

Secondly, a run might cease following the rules of the
propagation game after some initial (possibly empty) part.
Consider then the first code piece πi(a) or π0(a, b) that is
started in negligence of the propagation game rules. It is
not hard to see that the first statement in this code piece,
yi := xi−1,a or y0 := xn,a, respectively, then sets the local
variable yi or y0 to zero. The reason is that the propaga-
tion game ensures that variable xi−1,a or xn,a holds 0 unless
the next statement to be executed according to the rules of
the propagation game comes from πi(a) or some π0(a, b), re-
spectively. The subsequent statement KillAlli or KillAll0 then
irrevocably re-initializes all the other variables irrespective
of the behavior of the other threads as we have shown above.
Thus such a run also cannot propagate the value 1 to the
write-instruction.

An Owicki/Gries style proof that confirms this fact is con-
tained in the full paper.

6. SLICING LOOP-FREE PROGRAMS
We may lower our expectation even more, and ban in

addition to procedures also loops from the programs that
we expect to slice optimally. But even then, the problem
remains intractable, unless P=NP.

Theorem 3. Parallel intraprocedural slicing of loop-free
programs is NP-complete.

That the problem is in NP is easy to see. For each state-
ment in the optimal slice we can guess a run that witnesses

that the statement can affect the slicing criterion. This run
can involve each statement in the program at most once as
the program is loop-free. Hence its length and consequently
the time that is necessary for guessing the run is linear in
the size of the given program.

NP-hardness can be proved by specializing the construc-
tion from Section 5 to star-free regular expressions. The
intersection problem for such expressions is NP-complete.

An alternative reduction from the well-known SAT prob-
lem was given in [20]. In contrast to the construction of the
current paper, the reduction there relies only on propaga-
tion along copying assignments but not on “quasi-synchro-
nization” through well-directed re-initialization of variables.
However, this technique does not seem to generalize to the
general intraprocedural and the interprocedural case.

7. EXTENSIONS

7.1 Beyond Fork/Join Parallelism
A weak form of synchronization is inherent in the fork/join

parallelism used in this paper as start and termination of
threads is synchronized. The hardness results in this paper,
however, are not restricted to such settings but can also be
shown without assuming synchronous start and termination.
Therefore, they also apply to languages like JAVA.

The PSPACE-hardness proof in Section 5, for instance,
can be modified as follows. Let c, d be two new distinct
letters and B = A ∪ {c, d}. Now πi is defined as πi(c · ri · d)
and the initialization and the final write-instruction is moved
to thread π0. More specifically, π0 is redefined as follows:

π0 = KillAll0 ; x0,c := 1 ;
loop

u{y0 := xn,a ; KillAll0 ; x0,b := y0 | a, b ∈ B}
end ;
write(xn,d)

(Of course the statements KillXi have to re-initialize also
the new variables xi,c and xi,d.) Essentially this modifi-
cation amounts to requiring that the propagation game is
played with a first round for letter c—this ensures a quasi-
synchronous start of the threads—and a final round for letter
d—this ensures a quasi-synchronous termination. Thus,

L(r1) ∩ . . . ∩ L(rn) 6= ∅ if and only if
x0,c := 1 belongs to the optimal slice of π0 ‖ . . . ‖ πn.

Similar modifications work for the reductions in Section 4
and 6.

7.2 Further Dataflow Analysis Problems
Our techniques here can be used to obtain similar results

also for other optimal program analysis problems, in par-
ticular, the detection of truly life variables and copy con-
stants thereby strengthening recent complexity results for
these problems [20].

A variable x is live at a program point p if there is a
run from p to the end of the program on which x is used
before it is overwritten. By referring to [9], Horwitz et. al.
[12] define a variable x as truly live at a program point p if
there is a run from p to the end of the program on which
x is used in a truly life context before being defined, where
a truly live context means: in a predicate, or in a call to a
library routine, or in an expression whose value is assigned
to a truly life variable.

Thus, true liveness can be seen as a refinement of the or-
dinary liveness property. For the programs considered in
this paper, the variable initialized in the crucial initializa-
tion statement is truly live at that program point if and only
if that statement belongs to the optimal slice. Therefore, the
lower bounds provided in Theorem 1, 2 and 3 immediately
translate to corresponding bounds also for the truly live vari-
able problem. Since the upper bounds PSPACE and NP for
intraprocedural and loop-free intraprocedural programs also
can be easily verified, we obtain the same complexity char-
acterizations as in Theorem 2 and 3. Indeed, these results
are in sharp contrast to the detection of ordinary liveness of
a variable at a program point which has been shown to be
solvable even in polynomial time [15, 5, 24].

Constant propagation is a standard analysis in compil-
ers. It aims at detecting expressions that are guaranteed
to evaluate to the same value in any run of the program,
information that can be exploited e.g. for expression simpli-
fication or branch elimination. Copy constant detection [7,
pp. 660] is a particularly simple variant of this problem in
sequential programs. In this problem only assignment state-
ments of the simple forms x := c (constant assignment) and
x := y (copying assignment), where c is a constant and x, y
are variables, are considered, a restriction obeyed by all pro-
grams in this paper. Here, we obtain:

Theorem 4. 1. The interprocedural copy constant de-
tection problem is undecidable for parallel programs.

2. The intraprocedural copy constant detection problem is
PSPACE-complete for parallel programs.

3. The intraprocedural copy constant detection problem is
co-NP-complete for loop-free parallel programs.

Only a small modification is necessary to apply the re-
ductions in this paper to copy constant detection in parallel
programs: the statement z := 0 u skip must be added just
before each write-statement, where z is the written variable.
Obviously, this statement prohibits z from being a copy con-
stant of value 1 at the write statement. After this modifica-
tion z is a copy constant at the write statement (necessarily
of value 0) iff the write-statement cannot output the value
1. The latter is the case iff the crucial initialization state-
ment in question does not belong to the optimal slice. This
proves the lower bounds in the above theorem. The upper
bounds are easily achieved by non-deterministic algorithms
that guess paths that witness non-constancy.

Theorem 4 essentially states that optimal detection of
copy constants in parallel programs is intractable. This re-
sult should be contrasted to the detection problem for strong
copy constants. Strong copy constants differ from (full) copy
constants in that only constant assignments are taken into
account by the analysis. In particular, each variable that is
a strong copy constant at a program point p is also a copy
constant. The detection of strong copy constants turns out
to be a much simpler problem as it can be solved in polyno-
mial time [14, 24].

8. CONCLUSION
In this paper we have studied the complexity of synchro-

nization-independent program slicing and related dataflow
problems for parallel languages. By means of a reduction
from the halting problem for two-counter machines, we have

shown that the interprocedural problem is undecidable. If
we consider programs without procedure calls (intraproce-
dural problem) the slicing problem becomes decidable but
is still intractable. More specifically, we have shown it to be
PSPACE-hard by means of a reduction from the intersection
problem for regular expressions. Finally, even if we restrict
attention to parallel straight-line programs, the problem re-
mains NP-hard. These lower bounds are tight as matching
upper bounds are easy to establish.

Previous complexity and undecidability results for data-
flow problems for concurrent languages [25, 23] exploit in
an essential way synchronization primitives of the considered
languages. In contrast our results hold independently of any
synchronization. They only exploit interleaving of atomic
statements and are thus applicable to a much wider class of
concurrent languages.

9. REFERENCES
[1] K.-R. Apt and E.-R. Olderog. Verification of

Sequential and Concurrent Programs. Springer, 1997.

[2] A. Bouajjani and P. Habermehl. Constrained
properties, semilinear systems, and Petri nets. In
Concur’96, LNCS 1119. Springer, 1996.

[3] J. Cheng. Slicing concurrent programs—a
graph-theoretical approach. In Proc. 1st International
Workshop on Automated and Algorithmic Debugging,
LNCS 749, pp. 223–240. Springer, 1993.

[4] E. M. Clarke, M. Fujita, S. P. Rajan, T. Reps,
S. Shankar, and T. Teitelbaum. Program slicing for
VHDL. In Charme’99, Bad Herrenalb, Germany,
September 1999.

[5] J. Esparza and J. Knoop. An Automata-theoretic
Approach to Interprocedural Data-flow Analysis. In
FOSSACS ’99, LNCS 1578, pp. 14–30. Springer, 1999.

[6] J. Esparza and A. Podelski. Efficient Algorithms for
pre∗ and post∗ on Interprocedural Parallel Flow
Graphs. In ACM POPL 2000, pp. 1–11, 2000.

[7] C. Fischer and R. LeBlanc. Crafting a Compiler.
Benjamin/Cummings Publishing Co., Inc., Menlo
Park, CA, 1988.

[8] N. Francez. Program Verification. Addison-Wesley,
1992.

[9] R. Giegerich, U. Möncke, and R. Wilhelm. Invariance
of approximative semantics with respect to program
transformations. In GI 11. Jahrestagung,
Informatik-Fachberichte 50, pp. 1–10. Springer, 1981.

[10] J. Hatcliff, J. Corbett, M. Dwyer, S. Sokolowski, and
H. Zheng. A formal study of slicing for multi-threaded
programs with JVM concurrency primitives. In
SAS’99, LNCS 1694, pp. 1–18. Springer, 1999.

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM TOPLAS,
12(1):26–61, 1990.

[12] S. Horwitz, T. Reps, and M. Sagiv. Demand
interprocedural dataflow analysis. Technical Report
TR-1283, Computer Sciences Department, University
of Wisconsin, Madison, WI, 1995.

[13] M. Iwaihara, M. Nomura, S. Ichinose, and H. Yasuura.
Program slicing on VHDL descriptions and its
applications. In Proc. 3rd APCHDL’96, pp. 132–139,
Bangalore, 1996.

[14] J. Knoop. Parallel constant propagation. In
Euro-Par’98, LNCS 1470, pp. 445–455. Springer, 1998.

[15] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for
free: Efficient and optimal bitvector analyses for
parallel programs. ACM TOPLAS, 18(3):268–299,
1996.

[16] D. Kozen. Lower bounds for natural proof systems. In
IEEE FOCS’77, pp. 254–266, Long Beach, CA, 1977.

[17] J. Krinke. Static slicing of threaded programs. In
ACM PASTE’98, pp. 35–42, Montreal, Canada, 1998.

[18] L. I. Millett and T. Teitelbaum. Issues in slicing
PROMELA and its applications to model checking,
protocol understanding, and simulation. STTT,
2(4):343–349, 2000.

[19] M. Minsky. Computation: Finite and Infinite
Machines. Prentice-Hall, 1967.

[20] M. Müller-Olm. The complexity of copy constant
detection in parallel programs. In STACS 2001, LNCS
2010, pp. 490–501. Springer, 2001.

[21] K. J. Ottenstein and L. M. Ottenstein. The program
dependence graph in a software development
environment. In ACM Software Engineering
Symposium on Practical Software Development
Environments, pp. 177–184, 1984.

[22] S. Owicki and D. Gries. An axiomatic proof technique
for parallel programs. Acta Informatica, 6:319–340,
1976.

[23] G. Ramalingam. Context-sensitive
synchronization-sensitive analysis is undecidable.
ACM TOPLAS, 22(2): 416–430, 2000.

[24] H. Seidl and B. Steffen. Constraint-based
inter-procedural analysis of parallel programs. In
ESOP’2000, LNCS 1782, pp. 351–365. Springer, 2000.

[25] R. N. Taylor. Complexity of analyzing the
synchronization structure of concurrent programs.
Acta Informatica, 19:57–84, 1983.

[26] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121–189,
1995.

[27] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, 1984.

[28] J. Zhao. Slicing concurrent Java programs. In 7th
IEEE International Workshop on Program
Comprehension, pp. 126–133, Pittsburgh, PA, USA,
May 1999.

APPENDIX

A. THE OWICKI/GRIES-STYLE PROOF
In this appendix we prove the ‘if’ direction of (1) by means

of an Owicki/Gries style program proof [22, 8, 1], a proof
that was omitted from the main body of this paper. We
assume all notations and definitions of Section 4.

As mentioned, we prove that just before the write instruc-
tion in πM the following assertion is valid in the sense of par-
tial correctness, i.e., that any execution reaching this pro-
gram point satisfies this property:

xn = 1 ⇒ 〈p0, 0, 0〉 →∗ 〈pn, 0, 0〉 . (3)

Validity of this assertion corresponds directly to the ‘if’ di-
rection of (1).

The Owicki/Gries method relies on proof outlines which
are programs annotated with assertions. Assertions are for-
mulas that represent properties valid for any execution that
reaches the program point where the assertion is written
down. As usual we write assertions in braces. The annota-
tion is subject to the rules well-known from sequential pro-
gram proofs. For example if an assignment statement x := e
is preceded by an assertion {φ} and followed by an assertion
{ψ}, then φ must imply ψ[e/x], where ψ[e/x] denotes the
assertion obtained by substituting e for x in ψ. We assume
that the reader is familiar with this style of program proofs
(for details see e.g. [22, 8, 1]).

The rule for parallel program looks as follows [1, Rule 19]:

The standard proof outlines {pi}S∗
i {qi},

i ∈ {1, . . . , n}, are interference free

{Vn
i=1 pi}[S1 ‖ . . . ‖ Sn]{Vn

i=1 qi}
In this rule S∗

i stands for an annotated version of parallel
component Si and the requirement that the proof outlines
for the component programs are ‘standard’ means in our
context that every atomic statement is surrounded by asser-
tions.

The crucial additional premise for parallel programs is
interference freedom. The following must be true in an in-
terference free proof outline for a parallel program: Suppose
{φ} is an assertion in one parallel component and S is an
atomic statement in another parallel component that is pre-
ceded by the assertion pre(S). Then {φ∧pre(S)}S{φ} must
be valid in the usual sense of partial correctness. Intuitively,
inference freedom guarantees that validity of an assertion is
not destroyed by a thread running in parallel.

A.1 Enriching the Program
Before we discuss the proof outlines, we enrich the pro-

gram πM by two variables c0 and c1 that reflect the values of
the counters. Initialization statements c0 := 0 and c1 := 0
are added to the Init procedure. Furthermore, c0 and c1
are incremented and decremented at appropriate places in
P0, P6=0, Q0, and Q 6=0. (For the purpose of performing the
proof we allow more general expressions in assignment state-
ments.) Specifically, the code pieces of the form

p := xk ; KillAllP ; yl := p ; P6=0

that represent incrementing transitions in P0 and P 6=0 are
replaced by

p := xk ; KillAllP ; c0 := c0 + 1 ; yl := p ; P6=0

and the code pieces after the loop in P6=0 that represent
decrementing transitions are replaced by

p := xk ; KillAllP ; c0 := c0 − 1 ; yl := p .

Analogous modifications are made in Q0 and Q 6=0 for
counter c1. It is obvious that Assertion (3) holds in the mod-
ified program if and only if it holds in the original program
as c0 and c1 are only used in assignments to themselves.
(c0 and c1 are auxiliary variables in the formal sense of the
term used in connection with the Owicki/Gries method. It
is well-known that the Owicki/Gries method is incomplete
without auxiliary variables [8].)

A.2 The Proof Outlines
The assertions in the proof ensure that certain configura-

tions are reachable in M if a certain variable in πM holds

value 1. We introduce an abbreviation for the formula ex-
pressing this fact:

OK(x, s, c0, c1) :⇔ x = 1 ⇒ 〈p1, 0, 0〉 →∗ 〈s, c0, c1〉

Here x is a variable of the constructed program, s is a state of
the two-counter machine and c0, c1 are expressions involving
the auxiliary variables from above. Note that Assertion (3)
is simply OK(xn, pn, 0, 0).

The global part of the proof outline looks as follows. For
clarity, we use a comma to denote conjunction in assertions.

[1] {true}
[2] x1 := 1 ;
[3] {x1 = 1}
[4] Init
[5] {x1 = 1, c0 = 0, c1 = 0,

Vn
i=2 xi = 0,

Vm
i=1 yi = 0}

[6] {c0 = 0, c1 = 0,Vn
i=1 OK(xi, pi, c0, c1),

Vm
i=1 OK(yi, qi, c0, c1)}

[7] (P0 ‖ Q0) ;
[8] {c0 = 0, c1 = 0,

Vn
i=1 OK(xi, pi, c0, c1),

Vm
i=1 OK(yi, qi, c0, c1)}

[9] {OK(xn, pn, 0, 0)}
[10] write(xn)

The obvious proof outline for Init is omitted. It is easy to
see that [5] implies the assertion in line [6] as OK(x, s, 0, 0)
trivially holds if x holds 0 or if s is p1. It is also obvious
that the assertion in line [8] implies the assertion in line [9].

For demonstrating validity of Assertion [8] we prove—by
interference free proof outlines—that P0 and Q0 satisfy the
following specifications and apply the parallel rule of the
Owicki/Gries method:

{c0 = 0,Vn
i=1 OK(xi, pi, c0, c1)}

P0

{c0 = 0,Vn
i=1 OK(xi, pi, c0, c1)}

{c1 = 0,Vm
i=1 OK(yi, qi, c0, c1)}

Q0

{c1 = 0,Vm
i=1 OK(yi, pi, c0, c1)}

Simultaneously, we prove similar specifications for P 6=0 and
Q 6=0 that are parameterized by a constant k > 0:

{c0 = k,Vn
i=1 OK(xi, pi, c0, c1)}

P 6=0

{c0 = k − 1,
Vn

i=1 OK(xi, pi, c0, c1)}

{c1 = k,Vm
i=1 OK(yi, qi, c0, c1)}

Q 6=0

{c1 = k − 1,
Vm

i=1 OK(yi, qi, c0, c1)}

As we are concerned with partial correctness, it suffices to
show that the body of the procedures satisfy these specifi-
cation, under the assumption that recursive calls do.

In the following we present the proof outlines for P0 and
P6=0 in detail; the proofs forQ0 andQ 6=0 are completely anal-
ogous. Afterwards we show interference freedom, a proof
that reflects crucial properties of our construction.

The first goal is to show that the precondition of each
procedure is an invariant of the loop in the body of that
procedure. This amounts to proving that each path through
the loop preserves the precondition. Let k = 0 for the proof
in P0 and k > 0 for the proof in P6=0.

This is the proof for the paths induced by skip-transitions
in both procedures or test-decrement transitions in P0 :

[11] {c0 = k,
Vn

i=1 OK(xi, pi, c0, c1)}
[12] p := xk ;
[13] {c0 = k, OK(p, pk, c0, c1)}
[14] KillAllP
[15] {c0 = k, OK(p, pk, c0, c1),Vm

i=1 yi = 0, q = 0,
Vn

i=1 xi = 0}
[16] yl := p
[17] {c0 = k,

Vn
i=1 OK(xi, pi, c0, c1)}

Instruction [16] leaves all variables xi untouched. Hence, it
establishes its postcondition [17], because all xi are ensured
to be zero in [15] and OK(xi, pi, c0, c1) holds trivially if xi =
0. It may be surprising that the conjunct OK(p, pk, c0, c1) is
not needed in this proof because, intuitively, it captures a
crucial property of the construction. The reason is that the
proofs of P0 and P6=0 establish only a property about the
xi. The conjunct OK(p, pk, c0, c1) is, however, important to
ensure interference freedom of [16] with the proof outlines
for Q0 and Q 6=0 that concern the variables yi.

The specification of KillAllP , viz. {[13]}KillAllP {[15]}, is
again parameterized by a constant k ≥ 0 and is also used
in the proof outlines that follow. It is straightforward to
construct a proof outline witnessing this specification: the
variables that have already been re-initialized are collected
in an increasingly larger conjunction.

The proof outline for the paths through the loop bod-
ies induced by incrementing transitions is similar but has to
reflect the change of the counter. It also applies the assump-
tion about recursive calls of P6=0 (for knew := k + 1):

[18] {c0 = k,
Vn

i=1 OK(xi, pi, c0, c1)}
[19] p := xk ;
[20] {c0 = k, OK(p, pk, c0, c1)}
[21] KillAllP
[22] {c0 = k, OK(p, pk, c0, c1),Vm

i=1 yi = 0, q = 0,
Vn

i=1 xi = 0}
[23] c0 := c0 + 1
[24] {c0 = k + 1, OK(p, pk, c0 − 1, c1),Vm

i=1 yi = 0, q = 0,
Vn

i=1 xi = 0}
[25] yl := p
[26] {c0 = k + 1,

Vn
i=1 OK(xi, pi, c0, c1)}

[27] P 6=0

[28] {c0 = k,
Vn

i=1 OK(xi, pi, c0, c1)}

This completes the proof that the preconditions of P0 and
P6=0 are loop invariants and also finishes the proof outline
for P0, as its pre- and postcondition coincide and its body
just consists of the loop.

It remains to show that the paths from the loop exit to the
procedure exit in P6=0 induced by decrementing transitions
establish the postcondition from the loop invariant, i.e. the
precondition of P6=0:

[29] {c0 = k,
Vn

i=1 OK(xi, pi, c0, c1)}
[30] p := xk ;
[31] {c0 = k, OK(p, pk, c0, c1)}
[32] KillAllP
[33] {c0 = k, OK(p, pk, c0, c1),Vm

i=1 yi = 0, q = 0,
Vn

i=1 xi = 0}
[34] c0 := c0 − 1 ;
[35] {c0 = k − 1, OK(p, pk, c0 + 1, c1),Vm

i=1 yi = 0, q = 0,
Vn

i=1 xi = 0}
[36] yl := p
[37] {c0 = k − 1,

Vn
i=1 OK(xi, pi, c0, c1)}

A.3 Interference Freedom
Let us now check interference freedom. We look at each

type of assignment found in Q0 and Q 6=0. It is clear that
an assignment to a variable z cannot invalidate conjuncts in
assertions that do not mention z. Therefore, we only need
to consider conjuncts in assertions mentioning the variable
to which the statement in question assigns.

• xi := 0, yi := 0, p := 0: these re-initializing assign-
ment statements cannot invalidate any assertion in the
proof outlines because all conjuncts that mention the
left-hand-side variable trivially hold if the variable is
zero. This holds in particular for conjuncts of the form
OK(x, s, c0, c1).

• c1 := c1 + 1 and c1 := c1 − 1: all conjuncts of the
form OK(p, pk, c0, c1) or OK(xi, pi, c0, c1) could poten-
tially be invalidated by these statements. The incre-
mentations and decrementations of c1 are however—in
analogy to [22] and [33]—guarded by a precondition
that ensures that p as well as all variables xi hold zero,
which make OK(p, pk, c0, c1) or OK(xi, pi, c0, c1) true
for trivial reasons.

Note that this argument exploits that the variables are
re-initialized in order to avoid ‘cheating’.

• q := yk: such a statement could potentially invalidate a
conjunct of the form q = 0. However, the conjunct q =
0 appears in assertions only together with the conjunctVm

i=1 yi = 0. In particular this holds in the (omitted)
proof outline for KillAllp because the variables yi are re-
initialized before q. Therefore, q := yk cannot destroy
validity of the assertion.

Note that it is essential for this argument to work, that
the re-initializations in KillAllP are done in the correct
order as discussed in Section 4.2.

• xl := q: such a statement could potentially invalidate
conjuncts of the form xl = 0 or OK(xl, pl, c0, c1).

All assertions that contain xl = 0 also contain a con-
junct q = 0. Thus we can argue as for instructions of
the form q := yk.

For conjuncts of the form OK(xl, pl, c0, c1) the argu-
ment is more subtle. Similarly to [15], [24], and [35],
xl := q is preceded by an assertion that ensures in
particular that OK(q, qk, c0, c1 + ι) holds, where ι ∈
{−1, 0, 1}. By the construction of πM , ι = −1, 1,
or 0 iff there is a transition from qk to pl that incre-
ments, decrements, or leaves the counter c1 unchanged,
respectively. Now suppose that xl is assigned the value
1 by xl := q, otherwise OK(xl, pl, c0, c1) holds triv-
ially. Then clearly q = 1 which implies 〈p1, 0, 0〉 →∗

〈qk, c0, c1 + x〉 by OK(q, qk, c0, c1 + x). By the transi-
tion from qk to pl, this transition sequence can now be
extended to a sequence 〈p1, 0, 0〉 →∗ 〈pl, c0, c1〉. Hence,
OK(xl, pl, c0, c1) holds.

It is interesting to observe that the crucial properties of the
construction are reflected in the interference freedom proof
rather than the local proofs. Note, however, that the inter-
ference freedom proof massively relies on the preconditions
of the interleaving statements that are established by the
local proofs.

