
MetaGame: An Animation Tool for

Model-Checking Games

Markus Müller-Olm1? and Haiseung Yoo2

1 FernUniversität in Hagen, Fachbereich Informatik, LG PI 5
Universitätsstr. 1, 58097 Hagen, Germany
mmo@ls5.informatik.uni-dortmund.de

2 Universität Dortmund, Fachbereich Informatik, LS 5
Baroper Str. 301, 44221 Dortmund, Germany

Haiseung.Yoo@cs.uni-dortmund.de

Abstract. Failing model checking runs should be accompanied by ap-
propriate error diagnosis information that allows the user to identify the
cause of the problem. For branching time logics error diagnosis informa-
tion can be given by a winning strategy in a graph game derived from the
model checking instance. However, winning strategies as such are hard to
grasp. In this paper we describe the MetaGame tool that computes and
animates winning strategies for modal µ-calculus model checking games
on finite graphs. MetaGame allows the user to play model checking games
in a GUI interface thus making winning strategies more accessible.

Keywords: model checking, game, error diagnosis, branching time logic, anima-
tion

1 Introduction

Over the last two decades model checking has evolved as a useful technique that
aids in the correct design of hardware and software systems. Here we are inter-
ested in checking formulas of the modal µ-calculus for small finite-state models.
Such models arise, e.g., as high-level descriptions of systems as coordinated lower
level components. In such scenarios, state explosion is not an issue as models
typically are rather small in comparison to the models used in hardware or soft-
ware model checking. Therefore, systems can be represented by explicitly given
annotated graphs and global techniques can be applied.

Nowadays there is a growing awareness that model checking is most effective
as an error finding technique rather than a technique for guaranteeing absolute
correctness. This is partly due to the fact that specifications that can be checked
automatically through model checking are necessarily partial in that they specify
only certain aspects of the system behavior. Therefore, successful model checking
runs while reassuring cannot guarantee full correctness. On the other hand,

? On leave from Universität Dortmund.

K. Jensen and A. Podelski (Eds.): TACAS’04, LNCS 2988, pp. 163–167, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



164 Markus Müller-Olm and Haiseung Yoo

careful investigation of the cause for failing of model checking runs may allow
the user to identify errors in the system. Thus, model checkers are more and
more conceived as elaborate debugging tools that complement traditional testing
techniques.

For model checkers being useful as debugging tools, it is important that
failing model checking attempts are accompanied by appropriate error diagnosis

information that explains why the model check has failed. Model checkers can
fail spuriously, i.e., although the property does not hold for the investigated
abstraction it may still be valid for the real system. In order to be useful it
should be easy for the user to rule out spurious failures and to locate the errors
in the system from the provided error diagnosis information. Therefore, it is
important that error diagnosis information is easily accessible by the user.

For linear-time logics error diagnosis information is conceptually of a simple
type: it is given by an (eventually cyclic) execution path of the system that vio-
lates the given property. Thus, linear-time model checkers like Spin [3] compute
and output such an error trace in case model checking fails. The situation is
more complex for branching-time logics like the modal µ-calculus. Such logics
do not just specify properties of single program executions but properties of the
execution tree. Hence, meaningful error diagnosis information for branching-time
logic model checking cannot be represented by linear executions, in general.

Stirling [4, 5] developed a characterization of µ-calculus model checking as
a two player graph game with a Rabin chain winning condition [6]. It is well-
known that such games are determined (i.e., one of the players has a winning
strategy) and that the winning player always has a memory-less winning strategy.
Memoryless strategies can be presented as sub-graphs of the game graph.

In the game constructed from a model checking instance, Player II has a
winning strategy if and only if model checking fails. Thus, we can use a winning
strategy of Player II as error diagnosis information. Conversely, Player I has a
winning strategy in the constructed game if and only if model checking succeeds.
Thus, a winning strategy of Player I can be seen as justification for a successful
model check. Thus, both successful and failing model checking runs give rise to
the same type of justifying information, a nice symmetry.

However, it is not easy to interpret winning strategies as such. Therefore, we
propose to animate winning strategies. The idea is that the user is put into the
position of the losing player and plays games against the system. The system
plays according to the computed winning strategy. Obviously, this implies that
the user will lose all games. By this, the user increases his knowledge about the
system behavior and hopefully understands the model checking result better.
By the above mentioned symmetry, this idea is applicable for error diagnosis
(user=Player I, system=Player II) as well as for understanding successful model
checking results (user=Player II, system=Player I).

The MetaGame tool realizes this idea. It is integrated into the MetaFrame
environment [2] and relies on its basic infrastructure and graph manipulation ca-
pabilities. MetaGame extends the MetaFrame environment with strategy synthe-
sis and a GUI-based animation of µ-calculus model-checking games. A number



MetaGame: An Animation Tool for Model-Checking Games 165

Fig. 1. A screenshot showing the main windows of MetaGame.

of features are intended to allow a more informative and more easily accessible
animation. In the next section we show an example run of MetaGame on a small
illustrative example and discuss the main features.

2 Playing Games with MetaGame

As usual, system models are given by finite graphs the edges of which are labeled
by actions and the nodes of which are labeled by sets of atomic propositions.
System models can be created and manipulated with MetaFrame’s PLGraph
editor or loaded from a file. The top left window in Fig. 1 shows an example
system model. The logic supported by MetaGame is a variant of the modal µ-
calculus. The formula to be checked onto the system model can be typed into
a text field or loaded from a file. The bottom left window in Fig. 1 shows an
example formula. In standard µ-calculus syntax this formula reads µX1.(〈a〉(P ∧
〈b〉[c]X1)).

After loading or creating a system and a formula, MetaGame constructs the
corresponding game graph and computes the winning regions of Player I and
II and their respective winning strategies. This is done simultaneously for all
positions of the game graph by a strategy synthesis algorithm that achieves
essentially the same asymptotic complexity as counter-based global µ-calculus
model checkers [1].

After computing the winning strategies, MetaGame offers the user to play
error diagnosis games; i.e., the user is put into the position of Player I. The
primary view of the played game is a designated window that shows the explored
game positions in a tree-like fashion together with a “Game Menu” window that
offers options for proceeding with building this tree. The big window in the right



166 Markus Müller-Olm and Haiseung Yoo

part of Fig. 1, for instance, shows a situation in an error diagnosis game for the
example graph and formula in which the user has decided to play from the state
start and proceed with the game position (u, P ∧ 〈b〉[c]X1).

Each game position is a pair (s, φ) consisting of a state s in the system
model and a sub-formula φ of the model-checked formula. Intuitively, Player I
(the user) tries to justify that φ holds for s while Player II (the system) tries
to refute it. Accordingly, Player I plays from positions in which the outermost
operator of φ is of a disjunctive nature (i.e., “∨” or “〈A〉”) and Player II from
positions in which the outermost operator is a conjunctive operator (i.e., “∧” or
“[A]”). Positions of Player I are shown as squares and positions of Player II as
circles. Fixpoint formulas σX.φ (where σ ∈ {Min, Max}) are identified with their
unfolding φ[σX.φ/X ]. Player II wins the game if (1) the game reaches a position
of the form (s, P ) (or (s,¬P )) where state s does not satisfy atomic proposition
P (or satisfies P , respectively); (2) the game reaches a position (s, φ) in which
it is Player I’s turn, but Player I has no move; or (3) the game becomes cyclic
(i.e., a position (s, φ) is revisited in a game) and the outermost fixpoint operator
in the cycle is a minimal fixpoint. The winning conditions for Player I are dual.

In the game window, the user can choose his next move by selecting a position
in the game position tree with the mouse. After clicking the “Play” button in
the Game Menu window, the system proceeds with the game according to Player
II’s winning strategy as far as possible. Afterwards it asks the user for a next
move or, if a winning situation for Player II has been reached, it informs the
user about the reason for winning. By clicking the “Fast Forward” button the
user can also instruct the system to choose some next move arbitrarily.

A number of features lead to a more informative and accessible animation.

1. As shown in Fig. 1, the projection of the selected game position onto the
state and the formula component are shown in the system model and in
the formula window by coloring the corresponding state and sub-formula,
respectively. This allow the user to match the game position with the model
state and the sub-formula much more easily.

2. The user can backtrack in a play and multiple plays can be in progress
simultaneously. This is achieved by allowing the user to select his next move
at an arbitrary place in the position tree.

3. The user can prune the position tree, by cutting off explored pieces he is no
longer interested in (“Stop”-button). In addition, various AutoDelete options
allow the user to automatically prune the position tree according to the place
of the chosen next move.

4. The user can introduce delays into the animation of Player I’s strategy and
interrupt the animation with the “Pause” button.

Fig. 2 shows a final situation for the example graph in which the user has lost
all three possible plays. Besides error diagnosis games, MetaGame also allows
the user to play games that explain successful model checking runs.



MetaGame: An Animation Tool for Model-Checking Games 167

Fig. 2. A final situation.

3 Conclusion

We have described the MetaGame tool that allows the user to play model check-
ing games in a GUI interface. As state explosion is not an issue in the intended
application scenarios, we can apply global strategy synthesis and compute and
store strategies for the whole game graph completely. This allows us to animate
model checking games without noticeable delays and to offer the flexibility to
backtrack and to have multiple plays in progress simultaneously. We consider
this important factors for a wider acceptance of the idea of playing games as a
means for understanding model checking results of branching time logics.

References

1. R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the modal
mu-calculus. In G. v. Bochmann and D. K. Probst, editors, Computer Aided Verifi-
cation (CAV’92), volume 663 of Lecture Notes in Computer Science, pages 410–422.
Springer-Verlag, June/July 1992.

2. Metaframe homepage. http://ls5-www.cs.uni-dortmund.de/projects/METAFrame/.
3. Spin homepage. http://spinroot.com/spin/whatispin.html.
4. C. Stirling. Local model checking games. In S. A. Smolka, editor, Proc. 6th In-

tern. Conf. on Concurrency Theory (CONCUR’95), volume 962 of Lecture Notes in
Computer Science, pages 1–11. Springer-Verlag, 1995.

5. C. Stirling and P. Stevens. Practical model-checking using games. In TACAS 1998,
volume 1384 of Lecture Notes in Computer Science, pages 85–101, 1998.

6. W. Thomas. On the synthesis of strategies in infinite games. In E. Mayr and
C. Puech, editors, Proceedings of the 12th Annual Symposium on Theoretical Aspects
of Computer Science, STACS ’95, volume 900 of Lecture Notes in Computer Science,
pages 1–13. Springer-Verlag, 1995.


