Published in TCS, 31(1), pp. 325-388, 2004.

Precise Interprocedural Dependence Analysis
of Parallel Programs *

Markus Miiller-Olm

Universitit Dortmund, FB Informatik, LS 5, 44221 Dortmund, Germany *

Abstract

It is known that interprocedural detection of copy constants and elimination of
faint code in parallel programs are undecidable problems, if base statements are
assumed to execute atomically. We show that these problems become decidable,
if this assumption is abandoned. So, the (unrealistic) idealization from program
verification “atomic execution of base statements” introduced in order to simplify
matters, actually increases the difficulty of these problems from the point of view
of program analysis: amazingly these problems become more tractable if we adopt
a less idealized, more realistic model of execution.

We introduce an effective abstract domain of antichains of dependence traces
that allows us to perform a precise interprocedural dependence analysis in (non-
atomically executing) parallel programs. The main idea is to trace sequences of
dependences exhibited successively by program executions. We define operations
on antichains of dependence traces and show that they precisely abstract the cor-
responding operations on sets of non-atomic program executions. Using these op-
erations, we can analyze dependences by means of an abstract interpretation of
constraint systems that characterize sets of program executions of interest. The re-
sult of the dependence analysis can in turn be used to detect all copy constants and
to eliminate faint code.

While the run-time of the algorithms is exponential in the number of program
variables, it is polynomial in the program size. Hence, they are polynomial-time
algorithms if the number of program variables is bounded. In order to justify their
overall exponential run-time, we show that both detection of copy constants and
elimination of faint code are intractable (NP-hard) even when the atomic execution
idealization is abandoned. This holds already for parallel programs without loops
or procedures.

Key words: program analysis, concurrency, dependence, atomicity assumption

Preprint submitted to Elsevier Science 23 June 2004

Contents

21

2.2

2.3

24

2.5

2.6

3.1

3.2

3.3

3.4

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Introduction

Parallel Flow Graphs

Parallel Flow Graphs

Operational Semantics

Atomic Runs

The Run Sets of Ultimate Interest
The Constraint Systems

Discussion

Non-Atomic Execution

Modeling Non-Atomic Execution by Virtual Variables
A Motivating Example

The Domain of Non-Atomic Run Sets
Discussion

Dependence Traces

Transparency and Dependences
Dependence Traces

Implication Order

Subsumption Order

A Lattice of Antichains

Short Dependence Traces

The Abstract Domain

10

11

22

23

25

27

28

31

31

32

32

35

36

37

40

43

* The research reported here was partially supported by the RTD project IST-1999-
20527 “DAEDALUS” of the European FP5 programme.

Email address: mmo@ls5. cs.uni-dortmund.de (Markus Miiller-Olm).
URL: http://1sb-www.cs.uni-dortmund.de/~mmo (Markus Miiller-Olm).

L Current affiliation: FernUniversitit in Hagen, FB Informatik, LG PI 5, Univer-
sitatsstrasse 1, 58097 Hagen, Germany.

4.8 Pre-Operator

4.9 Post-Operator

4.10 Sequential Composition
4.11 Interleaving

4.12 Base Edges

4.13 Run-Time

4.14 Discussion

5 Detecting Copy Constants and Eliminating Faint Code
5.1 Copy Constant Detection
5.2 Faint Code Elimination
5.3 Run-Time

6 Intractability

6.1 The SAT-Reduction

7 Conclusion

Acknowledgements

References

1 Introduction

46

48

49

51

62

62

64

64

65

67

70

71

72

74

75

76

Automatic analysis of parallel programs is known as a notoriously hard prob-
lem. A well-known obstacle is the so-called state-explosion problem: the num-
ber of (control) states of a parallel program grows exponentially with the
number of parallel components. Therefore, most practical flow analysis algo-
rithms of concurrent programs conservatively approximate the effects arising
from interference of different threads in order to achieve efficiency. An excel-
lent survey on practical research towards analysis of concurrent programs with
many references is provided by Rinard [1]. In contrast to this research, we are
interested in analyses of parallel programs that are exzact (or precise) except of
the common abstraction of guarded branching to non-deterministic branching

that is well-known from analysis of sequential programs.

Surprisingly, certain basic but important dataflow analysis problems can be
solved precisely and efficiently for programs with a fork/join kind of paral-
lelism. Corresponding results have been achieved either by generalizing the
fixpoint computation techniques common in classic dataflow analysis of se-
quential programs [2—4] or by automata-theoretic techniques [5,6]. The most
far-reaching result is due to Seidl and Steffen [4] who show that all so-called
gen/kill problems can be solved interprocedurally in fork/join parallel pro-
grams efficiently and precisely. This comprises the important class of bit-vector
analyses, e.g., live/dead-variables analysis, available-expressions analysis, and
reaching-definitions analysis [7].

In view of these results it is interesting to ask whether there are other dataflow
problems that can precisely be solved for parallel programs. Natural candidates
are problems related to transitive variable dependences, like detection of copy
constants [8], elimination of faint code [9], and program slicing [10,11]. For
sequential languages these problems give rise to simple distributive dataflow
frameworks and may be seen as representatives of the next level of difficulty
beyond gen/kill problems.

In [12,13] we show that all the problems mentioned in the previous paragraph
are undecidable in parallel programs with procedures (parallel interprocedural
analysis). Moreover, we show that these problems are PSPACE-complete in
case that there are no procedure calls (parallel intraprocedural analysis), and
still (co-)NP-complete if also loops are abandoned (parallel acyclic analysis).
Unlike previous undecidability results for parallel languages obtained by Boua-
jjani and Habermehl [14] and Ramalingam [15] these results are independent
of explicit synchronization mechanisms.? At first glance this seems to imply
that precise program analysis of parallel languages beyond gen/kill problems
is hopeless.

There is, however, an assumption in this work that is not that innocent as it
may seem: the assumption that base statements of the parallel programs (e.g.
assignment statements) execute as atomic steps. While this idealized assump-
tion is not uncommon in the literature, it is hardly realistic in multi-processor
environments where a number of concurrently executing processors access a
shared memory, because assignments are broken into smaller instructions prior
to execution.

Surprisingly, the reductions of [12] break down when the atomic execution as-
sumption for assignment statements is abandoned. Without assuming atomic
execution of assignments the subtle game of re-initialization of variables that
is crucial for putting the reductions to work can no longer be played.

2 Bouajjani and Habermehl who show undecidability of LTL model-checking for
parallel languages without synchronization primitives use the LTL formula to syn-
chronize the runs of two parallel threads that simulate a two-counter machine.

In this paper we show that interprocedural detection of copy constants and
interprocedural faint code elimination become indeed decidable (in exponen-
tial time) if the atomic execution assumption is abandoned. More generally,
we show how to do precise interprocedural analysis of variable dependences in
parallel programs; here precise means precise with respect to non-atomic pro-
gram executions. So, the (unrealistic) idealization from program verification
“atomic execution of assignment statements” intended to simplify matters ac-
tually increases the difficulty of these problems from the program analysis
point of view: amazingly these problems become more tractable if we adopt a
less idealized, more realistic view of execution. This opens up new potential
for analysis of parallel programs.

The paper is organized as follows. In Section 2 we define parallel flow graphs
as our model of concurrent programs. We furnish them with an operational
semantics and define constraint systems that characterize various sets of pro-
gram executions of interest. For the moment, we still assume atomic execution
of base statements.

In Section 3 we explain, why atomic execution of base statements is an unre-
alistic assumption in a multi-processor environment. In order to capture the
semantics of non-atomic execution we re-interpret the operations and con-
stants used in the constraint systems of Section 2. The idea is to break base
statements into atomic actions of smaller granularity and to use an interleav-
ing semantics on these atomic actions. The solution of the constraint systems
with respect to this new interpretation is taken as the semantic reference
point for analysis of parallel programs when the atomic execution assumption
is abandoned.

In Section 4 we introduce a domain of antichains of dependence traces. We
define operations on this domain and show that these operations precisely
abstract the corresponding operations on sets of non-atomic program execu-
tions. Thus, we can perform precise interprocedural analysis of variable de-
pendences by solving the constraint systems developed in Section 3 over the
dependence traces domain. This information can in turn be used to detect copy
constants and eliminate faint code. Corresponding algorithms are developed
in Section 5. While the run-time of these algorithms is exponential in the num-
ber of program variables, it is polynomial in the program size. Hence, they are
polynomial-time algorithms if the number of program variables is bounded. In
order to justify their overall exponential run-time, we show in Section 6 that
both detection of copy constants and elimination of faint code are intractable
(NP-hard) even when the atomic execution idealization is abandoned. This
holds already for parallel programs without loops or procedures.

Throughout this paper we assume that the reader is familiar with the basic
techniques and results from the theory of computational complexity [16,17],

program analysis [18-20,7], and abstract interpretation [21,22].

2 Parallel Flow Graphs

In this section, we introduce a flow graph model for parallel programs (cf.
[4,2,23]). Edges in the flow graph are annotated with a base statement, a call of
a single procedure, or a parallel call of two procedures. As base statements we
allow assignment statements and the do-nothing statement skip. We assume
that branching is non-deterministic, a common abstraction in flow analysis.

2.1 Parallel Flow Graphs

Let X be a finite set of (global) program variables and Expr a set of expressions
(or terms) over X. The precise nature of expressions is immaterial for the
moment; we only need that each variable x € X is also an expression: X C
Expr, and that we can determine for an expression ¢ € Expr the set of variables
occurring in ¢, var(t) C X. Let Stmt := {z:=t¢ | x € X,t € Expr} U {skip} be
the set of base statements. We use stmt to range over base statements.

Formally, a parallel flow graph comprises a finite set Proc of procedure names
that contains a distinguished procedure Main. Intuitively, Main is the proce-
dure with which execution starts. For simplicity, we assume that all procedures
work on the same set X of global program variables and do not have local
variables. Each procedure name p € Proc is associated with a control flow
graph G, = (N,, E,, A,, e,,7,) that consists of:

e aset N, of program points;

e aset of edges E, C N, X Ny;

e a mapping A, : £, — Stmt U Proc U Proc? that annotates each edge with
a base statement, a call of a single procedure, or a parallel call of two
procedures; and

e a special entry (or start) point e, € N, and a special return point r, € N,,.

We assume that the program points of different procedures are disjoint: NV, N
N, =0 for p # ¢. This can always be enforced by renaming program points.

We write N for Upeproc Np; E for U,eproc £p, and A for Upeproc Ap- We also agree
that Base = {e | A(e) € Stmt} is the set of base edges, Call, = {e | A(e) = p}
is the set of edges that call procedure p, and Pcall,, = {e | A(e) = (p,q)} is
the set of edges that call procedure p and ¢ in parallel. Moreover, we write

Call for Upeproc Call, and Pcall for U Pcall, ,.

'p,q€Proc

y=y+1

Fig. 1. An example of a parallel flow graph.

Example 1 Figure 1 shows an example parallel flow graph with three proce-
dures, Main, p, and q. The entry state of each procedure is marked by an arrow
and the return state is indicated by a doubly circled state. The edge annotation
skip is suppressed for clarity.

The main procedure of the example flow graph sequentially starts procedures
p and q. Procedure p sets variable y to an arbitrary non-negative value and
wnitializes x by 0. Procedure q has a choice: it can execute either the upper
path, where it starts two new instances of q in parallel or the lower path,
where it increments x by 2. Note that arbitrarily many instances of q can run
in parallel. Upon termination y can hold an arbitrary non-negative number
and x can hold an arbitrary non-negative number that is even. O

The purpose of the remainder of this section is to set up a number of constraint
systems, the solutions of which capture certain sets of program executions. In
the next section we define an operational semantics that is useful as a reference
point for setting up these constraint systems correctly.

2.2 Operational Semantics

We define a symbolic operational semantics of parallel flow graphs that spec-
ifies possible sequences of atomic actions. The evaluation of base statements
is not described in this semantics. Thus, the configurations of the operational
semantic represent control information only. In a sequential flow graph control
information is simply given by a single flow-graph node. In a sequential pro-
gram with procedures configurations would consist of sequences of flow-graph
nodes. Such a sequence would model a stack of return addresses (or rather
return nodes). In parallel flow graphs procedures can also be called in par-
allel. We model this by generalizing configurations from sequences to trees.
Each node of the tree is labeled by a flow-graph node. Each inner node of the
tree has either degree one—such nodes correspond to return addresses from
simple calls or to return addresses from parallel calls where one of the par-
allel threads has terminated already—or degree two—such nodes correspond
to return addresses from parallel calls. The active control points are given by

the leaves of the tree. Correspondingly, transitions are induced by the leaves.
Transitions are labeled by base edges e, procedure names p, pairs of procedure
names po||p1, or the symbol ret. There are four transition rules:

Base Step Rule: ¢ —— ¢, if e = (u,v) € Base and ¢ results from ¢ by
replacing a leaf labeled u by a leaf labeled v.

e

Simple Call Rule: ¢ -2 ¢, if there is an edge ¢ = (u,v) € Call, such that
c results from ¢ by replacing a leaf labeled u by a tree consisting of two
nodes, a root labeled v and a successor node of the root labeled e,,.

Q Py @ if e = (u,v) € Call,
€p

Parallel Call Rule: ¢ 2% d, if there is an edge e = (u,v) € Call,, ,, such
that ¢ results from ¢ by replacing a leaf labeled u by a tree consisting of
three nodes, a root labeled v with two successor nodes labeled e,, and e, .

PollP1
Q L % if e = (u,v) € Pcally, p,
€po €ps

Return Rule: ¢ =% ¢/, if ¢ results from ¢ by removing a leaf labeled by Tp
for some p € Proc.

ret
—_—

When the Return Rule is applied the father of the node labeled r, may be-
come a leaf and thus become active. This models a return to a stacked return
address. Just as well, however, the father may still have a child if it has degree
two in ¢ as indicated by the dotted line in the picture. In this case it becomes
active only after the second leaf also vanishes. This models synchronized ter-
mination of threads started by a parallel call.

Tp

Note that the application of the Return Rule to a tree consisting of just a root
results in the empty tree. Such a step models overall termination.

Let Conf be the set of configurations, i.e., trees the degree of which is bounded
by two and in which each node is annotated by a program point u € N. We
identify each program point u € N with the tree consisting of just a root
labeled with u. We also write nil for the empty tree. A program point u € N
is active in a configuration c, if it labels one of the leaves of ¢. The predicate
Aty (c) is true if u is active in ¢ and false otherwise.

Let Label = Base U Proc U Proc” U {ret} be the set of transition labels and
—— C Conf x Label x Conf be the transition relation defined by the rules
above. We define the transitive generalization =C Conf x Label® x Conf of
— by
= |d oy oy L,

where ¢;” denotes relational composition, and write = for U,¢apei- ==. Here
and in the following we write e for the empty sequence, (ey,...,ex) for the
sequence of the elements ey, ..., e, and - for the concatenation operator.

2.8 Atomic Runs

As procedures do not have local variables, only the base edge labels in a
transition sequence are of interest for dependence analysis. The other labels
(calls, parallel calls, and returns) that appear between these labels can be
ignored without losing interesting information. Therefore, we can abstract
transition sequences to sequences of base edges safely. We call a sequence
of base edges an (atomic) run; the set of atomic runs is Runs = Base®. The
classification ‘atomic’ refers to the fact that flow graph edges constitute atomic
entities of execution; in Section 3 we consider ‘non-atomic runs’. We define for
a label sequence [, [to be the run obtained from [by retaining just the base
edges and removing everything else:

7-(l) if [€ Base

A ‘ for r € Label”, [€ Label.
T otherwise

€ =¢ and 7’/<\l>:{

In the following we are going to set up constraint systems for a variety of run
sets. These constraint systems use the following small number of operators
and constants on run sets.

Semantics of base edges: [e] = {(e)} for e € Base. This characterizes the
run induced by a base edge in isolation.

Sequential composition operator: R;S = {r-s | r € R,s € S}. This
characterizes the sequential composition of run sets.

Interleaving operator: In order to define the interleaving (or parallel com-

position) operator some notation is needed. Let r = (e, ...,e,) be a se-
quence and I = {iy,...,i;} a subset of positions in r such that 1 < i; <
ip < --- < ix < n. Then r|I is the sequence (e;,,...,e;). We write |r| for

the length of r, viz. n.
Then the interleaving of R and S is defined by

R®S ={r|3Ig,Is: IgUls={1,...|r]},IrN1Is =0,
T|]R€R,T|]S GS}

Prefix operator: pre(R) = {r | 3s:r-s € R}. This captures prefixes of the
runs in R.

Postfix operator: post(R) = {r | 3s: s-r € R}. This captures postfixes of
the runs in R.

Atomic runs may also be defined as sequences of base statements instead of
base edges. For this we only need to redefine Runs as Stmt™ instead of Base™ and
[e] by [e] = {(A(e))}. In this setting we should also redefine the hat-operator
to incorporate the transition from base edges to base statements:

3>

-(A(l)) if | € Base

A _ for r € Label*, [€ Label.
T otherwise

€ =¢ and T/<\l>:{

The remainder of this section can be read with both interpretations.

Non-standard semantics can be obtained by redefining the above operators.
This is used in Section 3 for defining a semantics for parallel flow graphs in
which execution of base edges is no longer assumed to be atomic. If we rede-
fine the operators on an abstract domain with a finite chain height, we can
effectively solve the constraint systems to be introduced soon by fixpoint it-
eration. If all these operators are correct or even precise abstractions of the
concrete operators on atomic or non-atomic run sets, standard abstraction
theorems from abstract interpretation ensure that the solution we get is a cor-
rect or even precise abstraction of the run sets characterized by the constraint
systems. This is the idea of constraint-based program analysis.

2.4 The Run Sets of Ultimate Interest

We are ultimately interested in setting up constraint systems that characterize
for each u € N the following sets of runs:

Reaching runs: R(u) = {7 | euain = ¢, At,(c)}.
Terminating runs: T(u) = {7 | epain = ¢ = nil, At,(c)}.

10

In dataflow analysis one considers forward- and backward-analyses. Forward-
analyses calculate abstractions of the reaching runs and backward-analyses
abstractions of the terminating runs.

We are also interested for all program points u,v € N in the set of those runs
that potentially transfer information from u to v. We call these the bridging
runs from u to v.

Bridging runs: B,(u) = {7 | epein = 4 = ¢,, Aty (cy), Aty(cy)}-

In the sections that follow, we present constraint systems that characterize the
above run sets. That is: the smallest solution of these constraint systems con-
sists of the run sets defined above. In addition to the above run sets, auxiliary
run sets are necessary in order to formulate these constraint systems. These
auxiliary run sets are stepwise introduced. We always explain the underlying
intuition and outline the correctness proof but leave the details of the proof
to the reader. The constraint systems for same-level, reaching and terminat-
ing runs are essentially taken from [4] where, however, they are not justified
with reference to an explicitly given underlying operational semantics. The
constraint system for bridging runs is new.

2.5 The Constraint Systems

2.5.1 Same-Level Runs

First of all, we characterize so-called same-level runs. Same-level runs of pro-
cedures capture complete runs of procedures in isolation.

Same-level runs of procedures: S(q) = {7 | e, = nil} for ¢ € Proc.
As auxiliary sets we consider same-level runs to program nodes.

Same-level runs to program nodes: S(u) = {7 | ¢, = u} for u € N,
q € Proc.

Same-level runs of procedures form an important building block for the other
constraint systems. Note that the complete effect of a parallel call edge e €
Pcall,, , is obtained easily from the same-level runs of procedures py and p;:

it is given by S(po) ® S(p1)-

11

The same-level runs of procedures and program nodes are the smallest solution
of the following constraint system:

[S1] S(q) 2 S(ry)

[52] S(eq) 2 {e}

[S3] S(v) 2 S(u);[e], if e = (u,v) € Base
[S4] S(v) 2 S(u);S(p), if e = (u,v) € Call,
[S5] S(v) 2 S(u);[S(po) @ S(p1)], if e = (u,v) € Pcally,, ,,

It is easy to see that the same-level runs satisfy all constraints:

[S1]: A same-level run of the return point of procedure ¢ gives rise to a same-
level run of ¢ by the Return Rule.

[S2]: It follows trivially from the definition that € is a same-level run of the
entry point of a procedure.

[S3]: If e = (u,v) is a base edge, we get a same-level run to v by extending a
same-level run to u with e by the Base Steps Rule.

[S4]: If e = (u,v) is an edge that calls p, we get a same-level run to v if we
extend a same-level run to u by a same-level run of p: we follow the execution
underlying the same-level run to v and then call p according to the Simple
Call Rule; we then follow the execution underlying the same-level run of p
(with v waiting on the stack to become active) and return to v according
to the Return Rule.

[S5]: Similarly, if e = (u,v) is an edge that calls py and p; in parallel, we
can—after seeing a same-level run to u—follow this edge; then py and p;
are performed to completion in parallel, which results in an interleaving of
a same-level run of py and p;; after that, execution returns to v. We thus
obtain a same-level run to v by extending a same-level run of u with an
interleaving of same-level runs of py and p;.

On the other hand, we can easily prove by induction on the length of the
transition sequences inducing same-level runs, that each same-level run lies
in any solution of the constraint system, in particular in the smallest one: in
the base case we consider the empty execution ¢. It can only give rise to the
same-level run ¢ to e, for some procedure g. But ¢ is enforced to lie in any
solution of S(r,) explicitly by constraint [S2].

In the induction step, we consider longer executions leading to same-level
runs. The execution underlying a same-level run of a procedure g necessarily
involves a final return from r, after an execution that gives rise to a same-level
run of ;. The latter execution is one step shorter and thus the same-level run
of r, is contained in any solution of S(r,) by the induction hypothesis. Now,
the constraint [S1] ensures that it is also contained in the set assigned to S(q)
in a solution.

12

The last step of a non-empty execution r inducing a same-level run 7 to a
program point v must be induced either by the Base Rule or the Return Rule
because the Simple and Parallel Call Rule never lead to a configuration which
consists of just a single state. If the last step is induced by the Base Rule,
the previous configuration is a program point u. Then 7 is composed of a
same-level run to u and the base edge e = (u,v). The same-level run to u
is induced by a shorter execution and hence contained in the set associated
with S(u) in any solution by the induction hypothesis. Thus, 7 is in S(v) by
the constraint [S3]. If the last step is induced by the Return Rule, then there
must be a simple or parallel call from which this step returns. The constraints
for simple and parallel call edges ([S4] and [S5]) together with the induction
hypothesis then ensure that 7 is contained in S(v).

2.5.2 Inverse Same-Level Runs

We also consider a kind of dual to same-level runs of program points: runs
from a program point to the return point of the corresponding procedure. We
call these inverse same-level runs of program point. They are needed in order
to capture terminating runs.

Inverse same-level runs of program points:
Si(u) = {# | u == nil} for u € N.

Inverse same-level runs of procedures and program nodes are obtained by
backwards accumulation as the smallest solution of the following system of
constraints:

ST S(ry) 2 {2}
[S12] S'(u) 2 [e]; Si(v), if e = (u,v) € Base
[SI3] Si(u) 2 S(p);Si(v), if e = (u,v) € Call,
[SI4] Si(u) 2 [S(po) ® S(p1)]; S (v), if e = (u,v) € Pcally, ,,

The last two constraints refer to same-level runs of procedures. Therefore,
it appears that we need to calculate same-level runs before we can calculate
inverse same-level runs by the above constraint system. However, by adding
for each procedure ¢ € Proc the constraint

[SI5] S(q) 2 S'(eq)

we can calculate same-level runs of procedures simultaneously with inverse
same-level runs. Thus, we can also calculate inverse same-level runs in isola-
tion.

It is easy to see that the sets of inverse same-level runs satisfy all constraints:

13

[SI1]: By the Return rule, € clearly is an inverse same-level run of the return
point 7, of a procedure.

[SI2]: If e = (u,v) is a base edge, we get an inverse same-level run of u by
prefixing a same-level run of v with e.

[SI3]: If e = (u,v) is an edge that calls p, we can follow this edge in an
execution from u; then p is performed until termination, which results in a
same-level run of p; after that execution proceeds at v. We thus obtain an
inverse same-level run of u by prefixing an inverse same-level run of v by a
same-level run of p.

[SI4]: Similarly, if e = (u, v) is an edge that calls py and p; in parallel, we can
follow this edge in an execution from u; then py and p; are performed to
completion in parallel, which results in an interleaving of a same-level run
of po and pq; after that execution returns to v. We thus obtain an inverse
same-level run of u by prefixing an inverse same-level run of v with an
interleaving of same-level runs of py and p;.

On the other hand, we can easily prove by induction on the length of the
transition sequences inducing inverse same-level runs, i.e. those that lead to
nil, that each inverse same-level run is in the smallest solution of the constraint
system: in the base case we consider the shortest executions that lead to same-
level runs. These are executions of the form r, L% nil for some procedure p.
They witness that ¢ € S(r,). But ¢ is enforced to be in a solution of S(r,)
explicitly by constraint [ST1].

In the induction step, we consider longer executions leading to same-level runs.
These necessarily start with a transition induced by a base edge, a simple, or
a parallel call edge. The resulting run is then composed from shorter runs
as specified in the constraints for base edges ([SI2]), simple calls ([SI3]), and
parallel calls ([SI4]), respectively.

2.5.8 Two Assumptions and a Simple Analysis
The following two assumptions simplify the constraint systems that follow:

ASS1: every program point v € N, in a procedure ¢ can be reached by a
same-level run from the entry point e, of ¢:

Vg € Proc,u € N, :S(u) # 0.

ASS2: from every program point v € N, the return point r, can be reached
by a same-level run:

Vq € Proc,u € N, : S'(u) # 0.

These assumptions are not as innocent as they may seem at first glance. In
particular it does not suffice to require that there are paths from e, to u and

14

from wu to r, in the flow graph G|, for ¢q. The paradigmatic counter-example is
a procedure that calls itself and has no bypassing terminating branch:

Although there is a path from e, to r, in the flow graph, no execution can
reach r, from e,, as there is no terminating bypass of the recursive call of g.
Hence both S(r,) and S'(e,) are empty. Examples like this show that we cannot
assume without loss of generality that practical flow graphs satisfy ASS1 and
ASS2.

While assumptions ASS1 and ASS2 simplify the presentation and justifica-
tion of the constraint systems in the remainder of this section, they are not
strictly necessary. We explain the necessary changes for the general case in
Section 2.5.7.

In order to compute the information needed to decide ASS1 and ASS2, we
design a simple analysis procedure. It is based on an abstract interpretation
of the operators and constants used in the constraint systems. We work with
a two point domain (D = {1, T}, <) ordered as 1. < T. The idea is that L
represents definite emptiness and T potential non-emptiness of a run set. Cor-
respondingly, we define the abstraction mapping « : 2R — D by a(0) = L
and a(R) = T for R # (. The fact that the abstract interpretation developed
below is precise guarantees that is computes indeed L for all empty run sets
and T just for non-empty run sets. Obviously, « is universally disjunctive. We
define the abstract interpretation of the operators by

vty=a@®y=any, pre?(z)=postt(z)=xa, [e]f ={e}¥=T

for x,y € D, e € E. 1t is easy to see that the abstract operators are precise
abstractions of the corresponding operators on run sets: a sequential or parallel
composition of two run sets is non-empty iff both arguments are non-emptys;
the set of prefixes and the set of postfixes of a run set R are non-empty iff R is;
and each base edge gives rise to a non-empty run set. Therefore, by computing
the least solution of the constraint systems for same-level and inverse same-
level runs over the abstract interpretation we get precise information about
the emptiness of the sets of same-level and inverse same-level runs of program
points.

This analysis is cheap: as (D, <) has chain height two, the information for each
constraint variable can change at most once in the fixpoint iteration. By stan-
dard demand-driven fixpoint evaluation, we can organize the computation of
the least solution such that each operator in the constraint system is evaluated
at most once. Thus, the computation can be done in time O(|E|+ |Proc]), the

15

number of operators in the constraint systems. As in all practical flow graphs
out-degrees of program nodes are bounded, typically by 2, and |Proc]| is triv-
ially bounded by |N| as each procedure has a distinguished entry node, this
typically is O(|N]). In the following we assume that this analysis has been
done such that for each program node w and procedure ¢ the information
whether S(u), S'(u), S(g), or S'(¢) is empty or not is readily available.

Another analysis that can determine information about reachability of pro-
gram points in parallel flow graphs has been described by Seidl and Steffen [4]
as an instance of their generic analysis framework for solving gen/kill dataflow
problems for parallel programs.

2.5.4 Reaching Runs

As auxiliary sets for characterizing the runs that reach a program point u, we
consider the runs that reach v from a call to procedure q.

Reaching runs from procedures: R(u,q) = {7 | e, = ¢, At,(c)} for u €
N, q € Proc.

With this definition, we obviously have R(u) = R(u, Main). Hence we are done
with characterizing reaching runs if we succeed in characterizing reaching runs
from procedures. The latter can be done by the following constraint system:

[R1] R(u,q) 2 S(u), if ue N,
[R2] R(u,q) 2 S(v); R(u,p), if (v,-) € E,NCall,
R3] R(u,q) 2 S(v);[R(u,p;) ® pre(S(p1-i))], if (v,-) € E, N Pcally, ,,

The last clause is meant to specify two constraint for ¢ = 0 and ¢+ = 1.
The reaching runs satisfy the constraints:

[R1]: Firstly, each same-level run of u clearly is also a reaching run of w.

[R2]: Secondly, if we have a program point v in ¢ that has an outgoing edge
calling p—the situation described in the second constraint—we obtain a run
that reaches u from ¢ when we extend a same-level run # to v with a run 7’
that reaches u from p (where r and 7’ are the underlying executions).

[R3]: Thirdly, consider a program point v in ¢ that has an outgoing edge
calling py and p; in parallel, the situation described in the third constraint.
Similar to the second case, we get a run reaching u by extending a same-
level run of v with a run that reaches u in the parallel call. The latter can
happen either in py or p; hence the two cases with ¢ = 0, 1. Now until p; has
reached u in p; the other procedure p;_; can perform a prefix of a same-level
run.

16

On the other hand, the constraint system captures all the ways how u may
be reached from e,. There are just three possibilities: either u is on the same-
level, in a simple call, or in a parallel call. These case are completely covered
by the constraints.

Note that assumption ASS2 is crucial for making the constraint for parallel
calls sufficiently rich. If it is violated, the partial run exhibited by p;_; while
p; is in the process of reaching u need not be a prefix of a same-level run.
For example, the following procedure ¢ might execute x := e arbitrarily often,
although S(¢) and hence pre(S(q)) is empty.

A possible remedy is described in Section 2.5.7.

2.5.5 Terminating Runs

The approach for capturing terminating runs is dual to the one for reaching
runs. As auxiliary sets we consider terminating runs of u in a call to procedure

q.

Terminating runs in procedures: T(u,q) = {7 | ¢, = ¢ == nil, At,(c)}
for u € N, g € Proc.

Obviously we have T(u) = T(u, Main) such that it suffices to capture termi-
nating runs in procedures in the constraint system. The constraint system is
dual to the one for reaching runs:

[T1] T(u,q) 2 Si(u), if ue N,
[T2] T(u,q) 2 T(u,p);SH(w), if (_,w) e E,NCall,
(T3] T(u, q) 2 [T(u, ps) @ post(S(p1-i))]; S'(w) , if (-, w) € Ey N Peally, p,

Again, ¢ = 0, 1 in the last constraint. The justification of this constraint system
is similar to reaching runs; therefore, the details are left to the reader. We
should mention, however, that assumption ASS1 is crucial here, like ASS2 in
the case of reaching runs, but for a quite different reason. The difference is
the requirement that the configuration ¢ with At,(c) is reachable (e, = ¢)
in terminating runs, a requirement that has no analogue for reaching runs.
As a consequence, post(S(p;_;)) is now sufficient to capture the interleaving
potential in the constraint for parallel calls even in the general case, in contrast
to pre(R(p1—;)) in the corresponding constraint for reaching runs.

17

However, the reachability requirement for configuration ¢, implies that some
of the constraints are not satisfied by the sets T(u, ¢) in the general case. For
example, an inverse same-level run r from a program point u € N, is not
always a terminating run. Being an inverse same-level run just means that
u == nil holds, but for a terminating run we additionally need e, = u. This
is automatically true if ASS1 is valid but can be wrong in the general case.
Similarly, we need that the start node of the edge e in the second and third
constraint can be reached for making the constraints valid for the operationally
defined sets. A possible remedy is to remove the constraints induced by non-
reachable program points. This is detailed in Section 2.5.7.

2.5.6 Bridging Runs

Let v € N be a fixed program point. We want to determine the bridging runs
B,(u) for each uw € N as defined in Section 2.4. As a first step we capture
for each program points u the runs that reach v, when execution is started
directly with u. We call these the simple bridging runs of u w.r.t. v.

Simple bridging runs: BS(u) = {7 | u == ¢, At,(c)} for u € N.

The simple bridging runs can be characterized as the smallest solution of the
following constraint system:

[BS1] By(v) 2 {e}

[BS2] Bi(u) 2 [e] ; B (w), if e = (u,w) € Base
[BS3] Bi(u) 2 S(p); Bi(w), if e = (u,w) € Call,
[BS4] Bs(u) 2 Bsi(e,), if e = (u,-) € Call,
[BS5] By(u) 2 [S(po) ® S(p1)]; Bi(w) , if e = (u, w) € Pcally,
[BS6] Bi(u) D Bi(ey,) @ pre(S(pi1—;)), if e = (u,-) € Pcally, ,,

The last constraint is again included for ¢ = 0, 1.

Let us explain why these constraints cover all the ways how v can be reached
from u. If u = v then there is the trivial way to reach v from u: by the empty
execution; this is covered by Constraint [BS1]. Otherwise, we must proceed
via an outgoing edge (u,w) of w. If this is a base edge e = (u,w), we first see
e and then a run that reaches v from w; this is covered by Constraint [BS2].
If e is an edge that calls a procedure p, we distinguish two cases: either v is
reached after p has terminated—this case is covered by Constraint [BS3]—or v
is reached during the execution of p—this case is covered by [BS4]. Similarly, if
e is a parallel call of two procedures py and p;, we can reach v either after both
procedures have terminated, which is covered by [BS5]. Or we can reach v in
one of the called procedures p;. In this case we see a run from e, that reaches v
interleaved with a prefix of a same-level run of procedure p;_;. If assumption

18

ASS2 is violated we must again reckon with procedure p;_; providing runs
that are not prefixes of same-level runs, as was the case for reaching runs. We
can solve this problem as for reaching runs, cf. Section 2.5.7.

The reader should face no difficulties in persuading himself, that the BS(u)
sets indeed solve all constraints.

As a second step we determine the bridging runs in a call to a procedure:

Bridging runs in procedure calls:
B,(u,q) = {f | e, = ¢, = ¢, At,(c), At,(c)} for u € N.

Clearly, we have B,(u) = B,(u, Main) such that we are done, when we have
successfully captured B, (u, q) for all u, q.

Basically, there are two ways how a bridging run may occur in a call to ¢q. One
possibility is that both u and v are reached in the same simple or parallel call
in ¢. This case is captured by the following three types of constraints:

[B1] B,(u,q) 2 By(u,p), if e e E, N Call,
[B2] B,(u,q) 2 By(u,p;) ® post(pre(S(p1-i))), if e € E,NPcally,
B3] B,(u,q) 2 pre(T(u,p;)) @ post(R(v,p1-i)), if e € E, N Pcally, ,,

—

[B2] and [B3] apply for ¢ = 0, 1.

Constraint [B1] captures the case that u and v are reached in the same simple
call. Constraint [B2] is concerned with the case that «w and v are reached in
the same procedure p; of a parallel call. Before w is reached in p; the other pro-
cedure can already perform certain actions and it need not run to completion
until v is reached. Therefore, p;_; contributes a middle piece of a same-level
run. Potential middle pieces can be characterized by pre(post(S(p1—;)) as cap-
tured by the second constraint. Constraint [B3] captures the case that w is
reached in procedure p; and v in procedure p;_;. After p; has reached wu it can
further proceed; specifically p; contributes a prefix of a run from T(u) until v
is reached in p;_;. In order to reach v, p;_; must execute a run from R(v, p;_;).
It can execute a prefix of this run before p; leaves u. Therefore, we see a postfix
of a run from R(v,p;_;) as part of the bridging run.

The second possibility is that © and v are not reached in the same simple or
parallel call. This gives rise to the following constraints:

[B4] B,(u,q) 2 B3(u), if u e N,
[B5] By(u,q) 2 T(u,p); B (w), if (L,w) € E,NCall,
[B6] Bu(u,q) 2 [T, p) @ post(S(m)] Ba(w), if (- w) € E, (1 Pcally

where ¢ = 0, 1 in the last constraint.

19

The first subcase is that u is reached on same-level, i.e. in the current instance
of g. Then we see a simple bridging run of u (Constraint [B4]). The second
subcase is that u is reached in a procedure p called by a simple call edge
e = (,v) € E,;. Then we see a run from T'(u, p) followed by a simple bridging
run from w (Constraint [B5]). The third subcase is that u is reached in a
procedure p; called by a parallel call edge e = (_,v) € E,. Then we see a
run from 7'(u, p;) ® post(S(p1—;)) followed by a simple bridging run from w
(Constraint [B6]).

2.5.7 The General Case

In this section we describe the changes that are necessary in the general case,
i.e., if assumptions ASS1 and ASS2 are potentially violated.

As explained in connection with constraint [R3] one of the problems is that
in the general case pre(S(q)) does not capture all partial runs of procedure q.
Thus, interleaving R(u, p;) with pre(S(p1_;)) does not capture all possible run
that reach u in a parallel call. This problem also arises in constraints [BS6]
and [B2]. A possible remedy is to introduce new variables P(q), ¢ € Proc, that
characterize finite prefixes of (finite or infinite) runs, i.e. P(¢) = {7 | e, = ¢},
and to use P(p;_;) instead of pre(S(p;—;)) in [R3], [BS6], and [B2]. A simple
way to calculate P(q) is to add a constraint of the following form for each
procedure g and program point u to the constraint system for reaching runs: 3

[P] P(q) 2 pre(R(u,q)).

While this way of calculating P(q) is easy to specify it has the disadvantage of
introducing |N|-|Proc| new constraints, i.e. quadratically many. Although this
does not spoil the overall asymptotic complexity—already the constraint sys-
tem for reaching runs has O(|N|-|Proc|) constraints—we should mention that
P(g) can be calculated also by O(|N|) constraints. A corresponding constraint
system is given in Fig. 2. It determines as auxiliary information finite prefixes
of (finite or infinite) runs from program points, defined by P(u) = {# | u == ¢}
by backwards accumulation and is similar to the constraint system for simple
bridging runs.

A similar problem arises in constraint [B3]: if assumption ASS2 is violated,

3 For the atomic case the pre-operator may be omitted as any configuration ¢ sat-
isfies At,(c) for at least one program point u. In the non-atomic interpretation,
however, there are (implicitly) transient configurations that correspond to interme-
diate stages of executions in which no program point is active. Fortunately, from
all transient configurations c¢ a configuration ¢’ with some active program point is
reachable. Therefore, we can capture the runs to transient configurations by means
of the pre-operator.

20

[P1] P(q) 2 P(ey)

[P2] Pu) 2 {e}

[P3] P(u) 2 [e]; P(v), if e = (u,v) € Base
[P4] P(u) 2 P(p), if(_) € Call,
[P5] P(u) 2 S(p); P(v), if (u,v) € Call,

[P6] P(u) 2 [P(po) ® P(p1)], if (u,v) € Pcally, 5,
[P7] P(u) 2 [S(po) @ S(p1)]; P(v) , if (u,v) € Pcally, p,

Fig. 2. A constraint system characterizing finite prefixes.

Q1] Q(u,q) 2 P(u), if ues,

Q2] Q(u, q) 2 Q(u,p), if (v,) € B, N Call,
[Q3] Q(u,q) 2 T(u,p); P(w), (v,w) € E,NCall,
[Q4] Q(u,q) 2 Q(u,p;) ® post(P(pi-i)), if (v,-) € £y N Callyy p,
[Q5] Q(u, q) 2 [T'(u, pi) @ post(S(p1-i))]; P(w) , if (v,w) € By N Cally,

Fig. 3. A constraint system for partial runs that can be exhibited in a procedure
after a given program point has been reached. All constraints [Q1]-[Q5] are only for
program points v with S(v) #). In [Q4] and [Q5], i =0, 1.

pre(T'(u, p;)) does not necessarily capture all partial runs exhibited by p; after
reaching u because u could be reached at a configuration from which termina-
tion is impossible. The information needed in place of pre(T'(u,p;)) is Q(u, p;)
where Q(u,q) = {7 | e, = ¢ == ¢, At,(c)} for u € N, q € Proc. These sets
can be characterized by the constraint system in Fig. 3

The above changes ensure that the run sets characterized by the constraint
systems are sufficiently large. They are necessary to make flow analysis based
on abstract interpretation of the constraint systems sound. The changes de-
scribed now ensure that the run sets do not become too large. Thus, they are
necessary to make analyses based on a precise abstract interpretation com-
plete.

As explained in connection with terminating runs, constraints induced by
unreachable program points are not satisfied by the run sets (defined from the
operational semantics) that we intend to characterize. As these constraints
pose unnecessary additional requirements they make the solutions larger than
necessary. Fortunately, such constraints are also unnecessary for soundness
and can simply be removed. Specifically, we must include the constraints [T1],
[B1], and [B4] only for program points u with S(u) # 0, and the constraints
[T2], [T3], [B2], [B3], [B5], and [B6] only for edges e = (v, w) with S(v) # 0.

21

We have seen in Section 2.5.3, that we can determine this information with a
very simple and cheap analysis.

With the changes described in this section we obtain constraint systems that
are both sound and complete for the general case.

2.6 Discussion

In this section we have introduced parallel flow graphs. After that we defined a
symbolic operational semantics. It works on configurations that take the form
of a tree, the nodes of which are annotated by program points. Such a tree
models a generalization of a run time stack that may branch to parallel stacks
in addition to the common stack operations. We have described the transitions
of the operational semantics by rules that work directly on configurations of
this form.

Alternatively, we could have used the approach of Esparza, Knoop, and Podel-
ski [5,6]. They map a parallel flow graph to a so-called PA-processes; PA is
a process algebra which has both a sequential and a concurrent composition
operator [24,25]. Execution of PA-processes in turn is described by a struc-
tured operational semantics (SOS) [26]. This enable them to apply results
about model-checking of PA-processes to flow analysis. For our purposes the
approach chosen here is sufficient and produces less notational overhead.

Based on the operational semantics we have defined some run sets of interest
and developed constraint systems that characterize these run sets. The con-
straint systems for same-level runs and reaching runs are essentially the ones
used by Seidl and Steffen [4]. Also the constraint systems for inverse same-level
runs and terminating runs are indicated in their work. The constraint system
for bridging runs, however, is new. Seidl and Steffen postulate their constraint
systems, while we use an operational semantics as a reference point. While
this might be considered a minor or even trivial difference, in our opinion an
operational justification of the constraint systems increases our understanding
of what exactly is specified by the constraint systems.

Many reasonable variants of the run sets in question may be considered. For
example, one could define reaching runs by

R'(u) = {i* | enain == ¢ => ¢, At (c)} .

This definition deviates from our previous definition in that it considers only
configurations ¢ from which termination is possible, i.e., it characterizes the
runs that both reach v and can be completed to a terminating run. If assump-
tion ASS2 is violated, the new definition gives rise to smaller run sets. Sim-

22

ilarly, many reasonable variants of the other run sets are conceivable and by
techniques similar to the ones of Section 2.5.7 sound and complete constraint
systems for these variants can be constructed. Operational specifications of
the run sets in question allow to distinguish these variants much more clearly
than implicit specifications by means of constraint systems.

Validating constraint systems with respect to an operational semantics has
another advantage: it helps to uncover subtle bugs. In the absence of an oper-
ational semantics Seidl and Steffen, for instance, fail to notice that constraint
[R3] in the constraint system for reaching runs is not rich enough to char-
acterize all reaching runs in a parallel composition if assumption ASS2 does
not hold. We detected this error while trying to justify the soundness of the
constraint system. As a consequence their constraint system for reaching runs
is unsound in the general case. To be fair, we should note that this does not
affect the soundness of their analysis procedure that is not directly based on
the constraint system for reaching runs. We should also say that they solve
the problems that arise when assumption ASS1 is violated correctly. Here they
validly propose to remove edges leaving unreachable program points before the
analysis. This has essentially the same effect as the side conditions of the form
S(u) # () added to the various constraints in Section 2.5.7.

3 Non-Atomic Execution

The idealization that assignments execute atomically is quite common in the
literature on program verification as well as in the theoretical literature on
flow analysis of parallel programs. However, in a multi-processor environment
where a number of concurrently executing processors share a common mem-
ory this assumption is hardly realistic. In such an environment two threads
of control may well interfere while each of them is in the process of execut-
ing an assignment. The reason is that assignments are broken into smaller
instructions before execution.

As a simple example, consider a program in which a shared variable z is
incremented by two threads in parallel:

r=z+1||lz:=z+1.

Let us assume that x holds 0 initially. If assignments execute atomically, this
program clearly will increment x twice and so terminate in a state in which
variable x holds 2. However, in a multi-processor environment this program
may well set x to 1. For example, the following execution may happen: first,
one of the processors accesses the memory in order to get the value of x. While
it is in the process of incrementing this value, but before it has written back

23

the result, the second processors may access the memory, too, in order to get
the value of z. In such a run, both processors read the initial value 0 for z, both
will increment just this value, and both will write back 1 for x. Consequently,
the program will terminate in a state where = holds 1 instead of 2.

The moral of this discussion is that, in the real world of multi-processor exe-
cution, we cannot assume atomic execution of assignments. What we typically
may safely assume, however, is that single reads of variables and single writes
of variables are atomic, because the access to the memory is usually synchro-
nized, e.g., through a common bus. We can develop an interleaving semantics
for parallel programs that adequately models non-atomic execution of assign-
ments by means of breaking assignments into more fine-grained atomic actions,
an observation that is exploited in a moment.

This said, we should mention that there are indeed execution scenarios for con-
current programs that guarantee atomic execution of assignments. In partic-
ular in a time-shared multi-tasking environment, where concurrent execution
of threads is simulated by a single processor that switches between execution
of code pieces implementing the different threads, assuming atomic execution
of assignments may be safe, if context switches happen only between assign-
ments, but not in the process of executing the code implementing a single
assignment. The built-in scheduler of the Transputer, for instance, performs
context switches only after certain types of instructions that typically end
execution of assignment code [27].4

In this section we provide parallel flow graphs with an interleaving semantics
that models non-atomic execution of assignments adequately. For this purpose
we define a domain NR of sets of (non-atomic) runs and provide adequate
definitions for the constants and operators used in the constraint systems in
Section 2.5. Specifically, we provide

e an interpretation [e] € NR for the non-atomic runs of a base edge; and
e interpretations for the operators ;, ®, pre, and post used in the constraint
systems.

Solving the constraint systems from Section 2.5 over this new interpreta-
tion immediately gives us adequate definitions for the reaching, terminating,
and bridging runs of a parallel flow graph when assignments execute non-

4 The Transputer designers chose this strategy in order to make context switches
cheap and fast. In typical code, the contents of certain registers used for expression
evaluation is no longer needed after such instructions. Therefore, these registers are
not stored during context switches, which makes context switches fast. Actually,
it is the compiler writer’s task to ensure that the generated code does not rely
on the registers keeping their contents after such instructions. Atomic execution of
assignments in typical code is a neat side-effect of this design.

24

atomically.

3.1 Modeling Non-Atomic Fxecution by Virtual Variables

Suppose given a parallel flow graph and let X be the set of program variables
which the statements of the flow graph refer to. In order to explain the meaning
of non-atomic statements appropriately suppose furthermore given an infinite
set V' of wirtual (or internal) variables disjoint from X. Intuitively, virtual
variables are used to store intermediate results that are private to the threads.
The parallel composition (or interleaving) operator defined later ensures that
parallel threads do not interfere on virtual variables. We use the letters x, y to
range over X, u,v to range over V', and the letters a, b to range over X U V.

For the purpose of the semantics, assignments are split into atomic operations.
As an example consider an assignment statement x := e(yi,...,y,) in the
program where yi, ...,y refer to the occurences of (program) variables in
expression e. There are many sensible atomicity assumptions. For example,
we could work with the rather pessimistic assumption that just reads and
writes of variables are atomic and that variables appearing more than once
in e are re-read for every occurences. Then x := e(y,...,yx) is replaced by a
sequence of assignments

<U7T(1) = Yr@)y -5 Un(k) = Yn(k), T = 6(?}1, oo 7Uk)> ;

where vy, ..., v, are arbitrary distinct virtual variables and 7 is a permutation
of {1,...,k}. The idea is that the other threads can execute atomic operations
between these assignments.

More coarse-granular atomicity assumptions can be captured in a similar way.
E.g. if we assume that the evaluation of the right-hand-side expression is
atomic then we would replace x := e(y1,...,yxr) by

(vi=-e(yr,...,Yp), T :=0).

The important point to notice is that—whatever the specific atomicity as-
sumption may be—if we assume that the execution of all assignments is non-
atomic, then all assignments in a run that refer to a program variable on the
left hand side have only wirtual variables on the right hand side. Thus, all
assignments belong to the set

Asg = {a:=e(by,...,b;) |a€ X = by,...,b, €V}.

One way of obtaining a semantics for non-atomically executing assignments is
to transform the assignments in the program prior to semantic interpretation.

25

pllq pllq
Main: \‘Oi>@ Main: \‘Oi>@
T.=x+1 w=zx+1 x=u
p: O—’C> p: O—’O—’C}
T.=x+1 v=x+1 x=v
q: O—’C> q: O—’O—’C}

a) Original program. b) Transformed Program.

Fig. 4. Introduction of virtual variables.

plp plp
Main: \‘Oi>@ Main: \‘Oi>@
T.=x+1 w=zx+1 x=u
p: O_’(:> p: O—’0—’(:>

a) Original program. b) Transformed Program.

Fig. 5. Confusion of virtual variables.

As an example consider the program in Fig. 4(a) which corresponds to the
example discussed in the introduction. We could transform it to the program
in Fig. 4(b) and then apply the standard interpretation.

The problem with this approach is that we must be careful not to confuse
virtual variables of different threads. This is simple if only instances of differ-
ent procedures run in parallel: then we can simply use different names for the
virtual variables in different procedures. However, it becomes problematic if
different instances of the same procedure may run in parallel like in the pro-
gram in Fig. 5. Then we must model the virtual variables by local variables
of the procedures which is not supported by the flow graph model developed
up to now. Therefore, we use a different approach: instead of transforming
flow graphs we incorporate the transformation implicitly into the semantic
interpretation of assignments.

Before we turn to the technical details of the new semantic interpretation
we present an example where the answer to the constant detection problem
depends on the atomicity assumption for base statements. This example il-
lustrates that the main mechanism underlying the undecidability proof of
interprocedural parallel constant detection [12] does not carry over to the
non-atomic case.

26

Fig. 6. Introduction of a virtual variable.

3.2 A Motivating Fxample

Consider the following program for which a control flow graph-like represen-
tation is shown in Figure 6, left:

a:=1;[(a:=0;b:=0) || b:= a];write(b).

Assume first that assignment statements execute atomically. It is not hard to
show that under this assumption variable b is a (copy) constant of value 0 at
the write instruction. In order to see this, note that in any execution b := 0
must be executed either after or before b := a in the parallel thread. If it is
executed after b := a then b holds 0 at the write statement because the value
0 is assigned to b in the last executed assignment, b := 0. On the other hand,
if b := 0 is executed before b := a then also the reinitialization of a, a := 0,
must have been executed before b := a such that b := a also loads the value 0
to b.

The situation is dramatically different, if assignment statements may execute
non-atomically. In particular, if the assignment b := a in the second thread
is executed non-atomically, the first thread may execute the two statements
a:= 0 and b := 0 that kill a and b after a is loaded from the common memory
but before the loaded value is stored to b. This results in a run of the program
that propagates the value 1 from the initialization a := 1 to the final write-
statement.

As explained in the previous section, we may model the two stage non-atomic
execution of b := a by splitting it into two assignments v := a and b := v,
where v is a new virtual variable that cannot be accessed by the first thread (cf.
Figure 6, right). Because of this we can consider each of the virtual assignments
v:=a and b := v to be atomic. The resulting program has the run

<a =1,v:=a, b= 0,c:=0, b= U,WI‘itG(b)) ,

27

which—as the reader will have no difficulties to verify—propagates the value 1
from the initialization a := 1 to the write-statement. Thus, this run witnesses
that b is not a copy constant at the write statement, in sharp contrast to the
state of affairs under the assumption that assignments execute atomically.

3.8 The Domain of Non-Atomic Run Sets

A (non-atomic) run r is a sequence of assignments from the set Asg defined
above: Runs = Asg™. We write virtual(r) for the set of virtual variables appear-
ing in run 7. As the specific choice of virtual variables is immaterial, we assume
that all considered sets of runs are closed under bounded renaming of virtual
variables. This enables a simple and adequate definition of the composition
operators. In order to allow a technically clean treatment of this assumption,
let = C Runs x Runs be the equality of runs up to bounded renaming of virtual
variables, i.e. » = 7’ hold if and only if 7’ can be obtained from r by bounded
renaming of virtual variables.

Proposition 2 = is an equivalence. O

For a set of runs R C Runs we write R= for the closure of R w.r.t. =:
R=={reRuns| I e R:r=1r'}.

Obviously, this defines a closure operator.

Proposition 3

(1) RC R=.

(2) (R)- = R~

(3) R C S implies R= C S=. O

The domain NR is given by the sets of runs that are closed under =:

NR={RCRuns| R=R~}.

The members of NR model sets of runs in a scenario where assignments execute
non-atomically:.

Lemma 4 (NR, Q) is a complete lattice with least element Lyg = 0 and great-
est element Tyr = Runs.

PROOF. (NR,C) is a sub-lattice of the power set lattice (2R""s, C). To show
this, we have to check, that NR is closed under arbitrary intersections and
unions.

28

Here is the proof for intersection. Suppose R C NR and 7,7’ € Runs with
r = r’. We have to show that » € MR if and only if ' € NR which is
simple:

re (R
iff ~ [Definition of NR]
VReR:re€R

iff [R C NR, hence all R € R are closed under =]
VReR:"" €R

iff ~ [Definition of NR]
’e(R.

The proof for unions is just as simple and, therefore, omitted.

The least and greatest element of (2RU"s, C) are () and Runs, respectively. It
is obvious that both of them are closed under = and hence are also the least
and greatest elements, respectively, of (NR,C). O

In the sections that follow we provide definitions for the operators and con-
stants appearing in the constraint systems and show their well-definedness.

3.3.1 Base Statements

We can work with various atomicity assumptions as discussed above. The most
natural and conservative one is that just single reads and writes of variables
are atomic and that variables appearing more than once in an expression are
re-read for every occurence. This is captured by defining the semantics of an
assignment statement, [z := e(y1,...,yx)] € NR, where yy, ...,y refer to the
variable occurences in e, as the set of runs of the form

<U7r(1) = Yr)y - Un(k) = Yn(k), T = 6(?]1, cee ,Uk)) 3

where 7 is a permutation of {1,...,k} and vy,...,v; are arbitrary distinct
virtual variables. It is readily verified that [z := e(yi, ..., yx)] is well-defined,
i.e., that it is a member of NR. We have to show that [z :=e(y1,...,yx)] is
closed under = which is obvious as we admitted an arbitrary choice of virtual
variables.

We may also work with more coarse-grained semantics of assignments. For

our purposes the choice is arbitrary, as the dependence trace abstraction of
an assignment will be precise with respect to any of these definitions.

29

Obviously, the only non-atomic run of statement skip is the empty run. Hence,

[skip] = {¢}. Obviously, [skip] € NR.

The non-atomic runs induced by a base edge e € Base are the non-atomic
runs of the statement associated with e: [e] = [A(e)], where A(e) is the base
statement associated with base edge e in the underlying flow graph.

3.3.2 Sequential Composition

The sequential composition operator, - ;- : NR x NR — NR, which is written as
an infix operator, is defined by

R;S={r-s|reR,se S virtual(r) Nvirtual(s) = 0}~ .

The condition about the local variables ensures that runs composed sequen-
tially do not interact on local variables. The outer closure operator ensures
that ; is well-defined

3.3.8 Interleaving Operator

The interleaving operator, ® : NR x NR — NR, which we write in an infix
form, is defined by

R®S:{T|3]R7IS IRUIS:{177|T|}7]RHIS:®,
r|Ir € R,r|Is € S, virtual(r|Ig) Nvirtual(r|Is) = 0}=.

The condition about the local variables in r|Ir and r|lg ensures that parallel
threads do not exchange values via local variables. The application of the
closure operator (-)= guarantees well-definedness: R ® S € NR for R, S € NR.

Suppose 7, s,t € Runs with virtual(r) Nvirtual(s) = (. We call ¢ an interleaving
of r and s if

AL L UL ={1,.. |r|}, LN I, = 0,1, = r t|,=s

and denote the set of interleavings of r and s by r ® s.

3.8.4 Pre-Operator

The pre-operator, pre : NR — NR is defined as follows:

pre(R)={r € Runs | 3r' € Runs: r -7’ € R}.

30

Lemma 5 pre is well-defined.

PROOF. We have to show that, for any R € NR, pre(R) is closed under =.
So suppose given r,s € Runs with s = r € pre(R). Then there is ' € Runs
with -7 € R. By bounded renaming of local variables in 7’ we can construct
a run s’ such that s- s’ =r-r'. As R is closed under =, s- s’ € R and hence
s € pre(R). O

3.8.5 Post-Operator

Analogously to the pre-operator, the post operator post : NR — NR is defined
as follows:

post(R)={r € Runs | 3r' € Runs : ' - r € R}.

Lemma 6 post is well-defined. O
3.4 Discussion

We have defined a complete lattice (NR, C) the members of which model sets
of runs in a scenario in which assignment statements execute non-atomically.
In order to enable an interleaving semantics to adequately capture the effect
of non-atomic execution of assignments, we resorted to virtual variables that
model storage locations that are private to threads. The members of NR are
those sets of runs that are closed under bounded renaming of virtual variables.
We have provided definitions for the operators and constants appearing in the
constraint systems of Section 2. The (smallest) solution of these constraint
systems over this new interpretation induces a semantics of parallel flow graphs
that captures non-atomic execution of assignments. Thus, it provides another
reference point for assessing flow analyses. This is put to advantage in the next
section where we show that the dependence-traces interpretation developed
there is a precise abstraction of the non-atomic interpretation of parallel flow
graphs.

4 Dependence Traces

We can indirectly detect copy constants and eliminate faint code on the basis
of the following information: given a program point v and a variable x of
interest; when control is at another program point v, which variables y may

31

influence the value of x at u? Clearly, this information can be derived from the
set of bridging runs from u to v and we have a constraint system characterizing
this set (cf. Section 2.5). We would like to compute the above information by
means of a precise and effective abstract interpretation.

In this section, we develop an adequate abstract domain and adequate abstract
operations for this. Our development will be guided by the requirements this
domain must satisfy: (1) it must allow us to infer the above information easily;
(2) it must allow us to define abstract operations that mirror precisely the
corresponding operations on sets of (non-atomic) runs; and (3) it must allow
us to compute fixpoints effectively.

Let us start with some definitions.
4.1 Transparency and Dependences

A run r is called transparent for a variables a if it does not contain an assign-
ment with a as left hand side variable. Thus, a run is transparent for a if its
execution is guaranteed not to change the value held by a.

Example 7 The run (a :=0,b:= c) is transparent for all variables except a
and b, in particular for c. O

A dependence is a pair d = (x,y) of program variables x,y € X. We call x the
source variable and y the destination variable of d. A run r is said to exhibit
dependence (z,y), if there are variables aq, ..., a;, [> 0, expressions ey, .. ., e,
and (sub-) runs 7, ..., such that

(1) r=ro-(a;:=e1) -r1-{ag:=eg) 1o+ ... - (a: =€) - 17;
(2) ao—x a; = y;

(3) e; contains a; 1 fori =1,...,1; and

(4) 7; is transparent for a; for 1=0,...,1

We also say “(x,y) is a dependence of r” in this case.

Example 8 The run (b:=a,c:=b,e:=0, f:=e) exhibits the dependences
(a,b), (a,c), and (b,c) but not the dependence (e, f) because e is killed by the
assignment e := 0 before it is read. O

4.2 Dependence Traces

Unfortunately, we cannot use dependences themselves as abstract domain be-
cause, in general, the dependences of the interleavings of two runs (or runs

32

sets) cannot directly be inferred from the dependences of these runs (or run
sets). As an example, consider the two runs r = (b:=a,b:=0,d := ¢) and
ro = (d := c¢). Both exhibit just the dependence (c,d). But r; can be inter-
leaved with 73 = (c:=b) to (b:=a,c:=b,b:=0,d := ¢), a run that exhibits
(a,d) while o cannot. Thus, an abstraction of run sets that faithfully mir-
rors dependences must collect more information than just dependences. We
propose to employ dependence traces that are defined in the following.

The basic idea is to collect not only dependences but sequences of depen-
dences that can successively be exhibited by a run. For example, we record
the sequence ¢ = ((a,b), (c,d)) for the run r; but not for re. Intuitively, ¢
plays a dual role: on the one hand, it captures the potential of r; to exhibit
dependence (a,d) if a run of a parallel thread fills the gap between b and ¢
(like run r3) and, on the other hand, its potential to successively fill the gaps
(a,b) and (¢, d) in a parallel run (like in (a = x,c:=b,y := d)).

A dependence sequence is a sequence ¢ = ((x1,Y1),- .-, (Tk, Yr)), k > 0, of
dependences. Note that we allow the empty dependence sequence . We write
© for x1 and ¢ for Y, if @ £ e;if p = ¢, © and ¢ are undefined. We denote
the set of dependence sequences by DS.

Example 9 ¢ = ((a,b), (c,d)) is a dependence sequence with ©=a and P=
d. O

Further information must be collected. To see why, compare the run ry, =
(a:=0,b:=a,b:=0,d:= c) with r1. Unlike rq, r4 does not have the potential
to exhibit dependence (a, d) if a parallel run fills the gap between b and ¢, but
like 71 it can successively fill the gaps (a,b) and (c¢,d) in a parallel run. The
crucial difference is that in r4 the part of the run before a is read is not
transparent for the source variable of the first dependence, viz. a. A similar
difference can arise for the target variable of the final dependence. Therefore,
we refine dependence sequences to dependence traces.

A dependence trace is a triple 7 = (¢, ¢, k) consisting of Boolean values ¢, s €
B = {0,1} coding initial and final transparency and a dependence sequence
. We assume that + = 0 and x = 0 if ¢ = €. The set of dependence traces is
denoted by DT:

DT ={(¢,p,k) EBXxDSxB|p=c=(t=0AKk=0)}.

A run r is said to ezhibit dependence trace T = (¢, ((x1,y1), .-, (Tk, Yk)), K),
r b 7 for short, if there are sub-runs tq,...,ts, r1,..., 7, such that

(1) r=to-ry -ty 1o 1) - tr;

(2) r; exhibits dependence (x;,y;) fori=1,... k;
(3) ¢ =1 implies that ¢, is transparent for z; and

33

(4) k =1 implies that ¢, is transparent for yy.

In this case, we call tg-ry -ty -ro-- -1 -ty a decomposition of r that witnesses
r = 7. Note that r F (0,¢,0) holds for all runs r as witnessed by the triv-
ial decomposition ¢ty = r. The trivial dependence trace (0,¢,0) allows us to
distinguish the dependence trace abstraction of the empty run set from the
abstraction of non-empty run sets.

Instead of saying “r exhibits 77 we often use the phrase “7 is a dependence
trace of r”.

Example 10 Run ry exhibits the dependence trace (1, {(a,b), (c,d)), 1) in con-
trast to r4. However, both runs share the dependence trace (0, {(a,b), (¢, d)),0).

=a,c
a,c), (e,), 1) as witnessed by

Example 11 Consider the runrs = (a :=0,b: :
One of the dependence traces of r5 is 7 = (0, {(

the decomposition r =ty -1y -ty - o - to where

(a:=0,b:=a,c:=b,c:=0,f :=e,e:=0).
— ") N —
to 1 t1 ro to

Another decomposition witnessing T is

(a:=0,b:=a,c:=b , ¢c:=0,f:=e,e:=0_).
—" , ~—
to T1 t1=¢ T2 to=e

Run 15 has also many other dependence traces, e.g., (1,((b,c), (e, f)),1) and
(1,{(e, /)),1). O

Ultimately, we are interested in dependence traces without gaps that code
complete transfers from one variable to another one, where a gap can either
be a lack of initial or final transparency or a hole from y; to x;,1. Thus, the
dependence traces of ultimate interest are those of the form (1, {(z,v)),1).
They correspond to dependences.

Proposition 12 r+ (1, {(z,y)), 1) if and only if r exhibits dependence (x,y).

The abstraction of run sets must allow us to propagate the transparency bit of
dependence traces through sequential contexts. For this purpose we collect in
addition to a set of dependence traces a set of variables for which a transparent
run exists. According to these ideas, we may abstract a set of (non-atomic)
runs R to a pair (Tg, Dg) consisting of the set of variables

Tr :={x|3Ir € R:ris transparent for x}

and the set of dependence traces

Dr:={r|3IreR:rkr1}.

34

|

=bc:=0,f:=e,e:=0).
)

Indeed, on this abstraction of run sets, we can define abstract operators that
precisely mirror the operators on sets of non-atomic runs. Still we are not yet
done. The problem is that we do not know how to represent Dpg finitely.

Fortunately, it is not necessary to collect all dependence traces in the ab-
straction, in order to describe the potential for forming dependences with a
parallel context. It suffices to retain only certain “short” dependence traces
in the abstraction that subsume the potential of all the other ones. Before we
turn to the technical development, let us illustrate this kind of subsumption
by a small example.

Consider the two dependence traces 7 = (1, ((a,b), (¢, d), (e,)),1) and 75 =
(1,{(a,d), (e, f)),1). Both share the gap (d,e) but 7; has the additional gap
(b, ¢). If a run of a parallel context can successively fill the two gaps in 7—i.e.
if it exhibits the dependence trace 75 = (0, ((b,¢), (d, €)),0)—it can also fill
the single gap in m—i.e. it also exhibits 7, = (0, ((d, €)),0). Two interesting
relationships between dependence traces popped up in this discussion. On the
one hand, 7 is “subsumed” by 75. On the other hand 74 is “implied” by 73
as it has less dependences: any run having 73 as a dependence traces also has
7, as a dependence trace. We now define two orders on the set of dependence
traces that capture these two relationships, the “implication order” and the
“subsumption order”.

4.3 Implication Order

Let <C DT x DT be the smallest reflexive and transitive relation on the set
of dependence traces that satisfies

(1) (e A(@y) ¥,k < (Lo ¥,k),ifpFeVi=0and ¢ #eVr=0;
(2) (1,¢,k) <(0,¢,k); and

(3) (1, ,1) < (1,0, 0).
Proposition 13 < is a partial order on DT called the implication order. O

The implication order < allows us to weaken the information in a dependence
trace in two ways. First of all, we can omit dependences (1); here we must
be careful not to omit the first or last dependence if the corresponding trans-
parency bit is set, as otherwise the transparency bit might become invalid.
Secondly, we can weaken the information about transparency of the inital or
final part of the run, by changing the transparency bits from 1 to 0 (2 & 3).

The most appealing fact about < is that it preserves compatibility, which
justifies the name “implication order”.

35

Fig. 7. Hlustration of implication and subsumption order.

Proposition 14 (< preserves compatibility) Suppose r = 7 and 7 < 7'.
Thenrt 7. O

Example 15 Consider the dependence trace T = (1,{((a,b), (c,d)),0) of the
run T = (b:=a,c:=0,d:=c,d:=0). Here is a list of the dependence traces
implied by T:

71 = (0,{(a,b), (¢, d)),0)
7 = (1,{(a,b)),0)
73 = (0,((a,0)),0)
74 = (0, {(¢,d)),0)
75 = (0,¢,0)
i.e., we have T < 1; fori =1,...,5. All of them are dependence traces of r.

But we do not have T < 15 for 6 = (1,((c,d)),0). And indeed, T4 is not a
dependence trace of v because variable ¢ is killed before it is read in r. O

4.4 Subsumption Order

We now define the subsumption order & C DT x DT. Intuitively, 7 C 7’
captures that 7/ has fewer gaps than 7 and thus subsumes the potential of 7
for forming dependences with a cooperating parallel context. We define C as
the smallest transitive and reflexive relation that satisfies

(- ((z,y) - - (@) - 0" k) E (Lo ((2,9) - ¢, k) .

Fig. 7 illustrates the difference between the implication and the subsumption
order. For simplicity, we only show the dependence sequences and omit the
transparency bits. In the top row we show a dependence trace 7, in the middle
row a dependence trace 7' that is implied by 7, and in the bottom row a
dependence trace 77 that subsumes 7. The implication order allows us to omit
dependences (and weaken transparency bits). In contrast the subsumption
order allows us to remove gaps.

It is obvious from the defining rule that a dependence trace 7/ that properly
subsumes another dependence trace 7 embodies a strictly shorter dependence
sequence. Therefore, C satisfies the ascending chain condition.

36

Proposition 16 C is a partial order on DT that satisfies the ascending chain
condition: every strictly increasing sequence T, C 7o T - -+ 18 finite. O

Note that dependence traces of the form (1, ((x,y)), 1), which correspond to
dependences by Proposition 12, are maximal w.r.t. C. This simple observation
is important, as it implies that we cover all dependences even when we only
consider C-maximal dependence traces.

4.5 A Lattice of Antichains

An antichain with respect to C (or C-antichain for short) is a set D C DT of
dependence traces satisfying

-dr,reD:rC 7.

We denote the set of C-antichains by AC. We can lift the subsumption order
to AC as follows:

DC D = VreD3IreD :.7rC 7.

Thus, D’ subsumes D, if every dependence trace in D is subsumed by some
dependence trace in D’. We call C the antichain order. This is justified by the
following lemma.

Lemma 17 C is a partial order on AC.

PROOF. It is straightforward to show that C is reflexive and transitive. Let
us show that C is also antisymmetric and hence a partial order.

Suppose D C D' & D. We show that D C D', the reverse inclusion follows
analogously. Suppose 7 € D. Then there is 7/ € D' with 7 C 7 as D C D'.
Because of D' T D, there is 77 € D with 7/ C 7”. Thus, we have

D>rCc7CreD.

As D is an antichain, this implies that 7 = 7”. Consequently, all these three
dependence traces must be equal: 7 =7 =7". But then 7 =7 € D’. O

A simple way to form an C-antichain out of an arbitrary subset D C DT is to
consider the set of C-maximal elements in D. We denote this set by D':

D'={reD|-37eD:7C7}.

37

The dependence traces in D! subsume all dependence traces in D. In this
sense, no interesting information is lost when going from D to DT.

Lemma 18 (! subsumes) For any 7 € D there is a 7 € D' such that
TC 7.

PROOF. The lemma follows easily with the ascending chain condition. O

The operator ! is a co-closure operator that yields C-antichains:
Lemma 19 (! is a co-closure operator)

(1) D' C D.

(2) (D)l =D'.

(3) D' is an C-antichain.

(4) ()1 is monotonic: D C E implies D' C ET.

PROOF. The proof of these properties is straightforward. O

The C-antichains together with the lifted subsumption order form a complete
lattice.

Lemma 20 (AC,C) is a complete lattice. The least upper bound (lub) of a
subset D C AC is ||D := (UD)! and the least element of (AC,C) is Lac := 0.

PROOF. In order to show that (AC,C) is a complete lattice, it suffices to
demonstrate that any subset D C AC has a least upper bound. We show that,
as claimed in the lemma, E := (UD)' is indeed the least upper bound of D.

Firstly, F is an upper bound of D: we have to show that D C E for any
D € D, which is seen as follows:

TeD

= [D € D, definition of J D]
reJD

= [Lemma 18, definition E|
I eE . 1CT.

38

Secondly, F is smaller than any other bound D. Suppose F' is an arbitrary
upper bound of D. Then E C F follows from the following chain of implica-
tions:

Tekl

= [Definition E, Lemma 19(1.)]
reJD

= [Definition of D]
iDeD:7e€D

= [D C F as Fis an upper bound of D, definition C|
I eF:7CT.

The least element of (AC,C) is Lac =110=(0)'=0. O

Let us consider another operator on sets of dependence traces, the downwards
closure operator (-)!. It is defined for sets D € DT by

D ={reDT |37 ecD:7C7}.

We can apply ()" in particular to antichains. Thus, we may consider (-)! as
an operator (-)! : AC — 2PT. It is not hard to see that (-)! is monotonic.

Proposition 21 Suppose A, B € AC. Then AC B implies A C B!. O
()" and (-)! are approximate inverses of each other.

Lemma 22 For any D € DT, we have D! O D and D! C D. For any
A € AC, we even have A'' = A. As a consequence, ()T, ()Y is a Galois

surjection from 2PT to AC:
)

oPT — AC
()

PROOF.

D > D: By Lemma 18, there is, for any 7 € D, a dependence trace 7' € D!
such that 7 C 7/. This implies that 7 € D,

D! CD: It e DlT, then 7 is a maximal element in D!. The maximal
elements in D!, however, must already be in D, as they cannot be added to
D by lying strictly below another element of D.

A" = A: Tt remains to show that A'' D A, Any 7 € A is maximal in Al
Therefore, any such 7 is also in A!'. O

39

The fact that ((-)T,(-)!) is a Galois surjection from 2PT into AC shows us
that C-antichains form a reasonable abstraction of sets of dependence traces.
It also has other interesting consequences. First of all, it implies that (-)! is
universally disjunctive, which is important for ensuring that the abstraction
mapping and the abstract operators defined later are universally disjunctive
as well.

Proposition 23 (-)!: 2PT — AC is universally disjunctive (‘distributive’). O

Secondly, it shows us that we can present (AC,LC) isomorphically by down-
wards closed sets of dependence traces. From the theory of Galois connections,
we know that the images of the upper and lower adjoint are isomorphic. This
implies that (AC,C), the image of (-), is isomorphic to the image of (-)!,
which is the set of downwards closed sets of dependence traces ordered by
set inclusion. Note that this isomorphism depends on the fact that the under-
lying subsumption order on dependence traces satisfies the ascending chain
condition. Otherwise, Lemma 18 would fail and we would not have the prop-
erty pit O D that is crucial for the isomorphism between antichains and
downwards closed sets.

For our purpose it is more convenient to work with antichains, because this
leads to a more natural definition of the interleaving operator. If we work with
downwards closed sets we may add dependence traces by means of downwards
closure that are not exhibited by any run in the abstracted run set. These
additional dependence traces do not represent actual potential of the run set
and in order to avoid imprecision, we must ensure that they are not considered
for inferring dependence traces of interleavings.

4.6 Short Dependence Traces

A dependence sequence ¢ = ((x1,41), ..., (zk, yx)) is called short if

(1) all destination variables of dependences not counting the last one are
distinct: for all 1 <7 < j <k, y; # y;; and

(2) all source variables of dependences not counting the first one are distinct:
forall 1 <i<j <k, x; # ;.

A dependence trace T = (i, p, k) is called short if the embodied dependence
sequence ¢ is short. We write DTS for the set of short dependence traces:

DTS = {7 € DT | 7 is short}.

Example 24 Consider the run r = (¢ := a,c:=b,e :== d). One of its depen-
dence traces is T = (1, ((a,c), (b, ¢),(d,e)),1), which is not short due to the

40

repetition of variable ¢ as a target variable. But run r has also the dependence
trace 7' = (1, {(a,c), (d,e)), 1) which is short and subsumes 7. This is not a
coincidence as we will see in a moment (Lemma 26). O

We are interested in short dependence traces for two reasons. Firstly, there are
only finitely many short dependence traces. This makes the abstract domain
introduced in the next section finite as well and ensures that fixpoints for
monotonic functions on this domain can be calculated effectively. The follow-
ing lemma provides a formula for the cardinality of DTS and an asymptotic

bound.

Lemma 25 Let n = |X|. Then [DTS| =1+ 4n’n!> 3", % = O(n2m+2).

PROOF. By the pigeonhole principle, a dependence sequence cannot contain
more than n + 1 dependences without violating the condition of shortness.

Let ¢ € {0,...,n}. For forming a dependence sequence (dy,...,d;) of length
1+ 1 in a dependence trace, we can choose arbitrary program variables as
source variable of dy and as destination variable of d;; there are n? ways of
doing this. We can choose the remaining source variables of dy,...,d; as an
arbitrary i-permutation of the variables in X. (Recall that an i-permutation
of X is an ordered sequence of i elements of X, with no element appearing
more than once in the sequence). The same holds for the remaining destination
variables of dy, ..., d;_1. As there are (ik permutations [28], there are thus

n?((nﬁ!i)!)2 short dependence sequences of length ¢ + 1. There are four possible
choices for the transparency bits in a dependence trace with a given non-empty
dependence sequence. In addition we have a single dependence trace with an
empty dependence sequence, viz. (0,¢,0). Summing up, the number of short

dependence traces is thus

1=0

n! ? - 1 "1
_ 2,12 _ 2,12
1+4E (<7n_l)‘>>—l+4nn. > 7(n_i)!2—1+4nn. ;:0—“2.
Using the well-known fact that n! < n™ and bounding the sum by

the asymptotic bound O(n*'*?) follows. O

n 1 n
OETED SF
=0

=0

1 1
2! il

The asymptotic bound O(n?"*2) for |DTS| is rather rough as it involves the
rather bad estimate n" for n! but suffices for our purposes. Using for instance
Stirling’s approximation [28] for the factorial function, we could obtain tighter
bounds.

41

The second reason why we are interested in short dependence traces is that
they suffice to capture the potential of runs to aid in forming dependences ‘up
to subsumption’ as the following lemma shows.

Lemma 26 (Short dependence traces subsume) Suppose r + 7. Then
there is a short dependence trace T with r =7 and 7 C 7.

PROOF. Suppose r =7 = (¢, {(x1,21), - - -, (T, Yx)), k). We describe a short-
ening procedure that can be iterated until a short dependence trace is ob-
tained.

Suppose 7 is not already short. Let us assume that Condition 1. is violated; if
Condition 2. is violated we can proceed analogously. Then there are indices ¢, 7,
1 <i<j <k, with y; = y;. Consider the dependence trace 7" obtained from
7 by removing the middle part ((@it1,%it1),--.,(x;,y;)) of the dependence
sequence:

/

T = (Lv <(I17 yl)? B (:L‘iayi)v (xj+1v yj-l—l)v SRR (l‘k, yk))? K“) .

It is not hard to see that both 7 C 7" and 7 < 7’. By Proposition 14 the latter
implies r = 7/. O

We still have to see that we can obtain the short dependence traces of a
composed set of runs from the short dependence traces of the argument run
sets. This is particularly challenging for run sets obtained by interleaving and
will be the topic of Sections 4.8-4.12.

Shortening a dependence trace w.r.t. either < or C results again in a short
dependence trace.

Lemma 27 (< and C preserve shortness) If 7 is short and 7 < 7' or
T C 7/, then 7' is short.

PROOF. All pairs of source or target variables in 7/ are also pairs of target
variablesin 7if 7 <7 or 7 C 7. O

We denote the set of antichains of short dependence traces by ACS:
ACS ={D e AC| D CDTS}.

Lemma 26 implies that C-maximal dependence traces of a run (or run set) are
always short. Therefore, if we restrict attention to short dependence traces of
a run or run set, we still capture all maximal dependence traces. By working

42

with ACS instead of AC, we code this knowledge into the domain. In partic-
ular, we do not lose dependences because the dependence traces of the form
(1,{(a,b)),1) that correspond to dependences are trivially short.

Lemma 28 (ACS,C) is a complete sub-lattice of (AC,C). Its height is |DTS|+
1= 0O(n*"2) where n = |X]|.

PROOF. Suppose D C ACS. In order to prove that (ACS,LC) is a complete
sub-lattice of (AC,C) we have to show that ||D € ACS, i.e. that D C
DTS:

UDp = (UD) < UD < DTS.
T T T
[Lem. 20] [Lem. 19] [D C ACS]

We can restrict the downwards closure operator to short dependence traces,
i.e. redefine it by D! = {7 € DTS |37/ € D : 7 C 7'} for D C DTS. It follows
as in Lemma 22 that ((-)T, (-)!) is a Galois surjection from 2P into ACS:

O
2PTS — ACS
()

As a consequence (ACS,C) is isomorphic to the lattice of downwards closed
subsets of DTS, ordered by set inclusion. The latter is a sub-lattice of (2075, C).
Hence its height (and thus the height of (ACS,C)) cannot be larger than the
height of (2PT5, C) which is [DTS| + 1.

On the other hand, we can construct an ascending chain of size |DTS| + 1.
Let (z1,...,zpTs)) be a topological sort of (DTS, E), i.e., a list containing all
elements of DTS such that x; C z; implies ¢ < j for all 4,j € {1,...,|DTS|}.
Then we can define a chain of length DTS + 1 by choosing Ay = () and A; =
(A U{z;}) fori=1,...,|DTS|. A;_; C A; is obvious, and A; ; # A; holds
because A; 1 C {x1,...,x;_1}, which is seen by a straightforward induction.
Thus, z; is maximal in A; 1 U {z;} due to the topological sort property.

The asymptotic bound [DTS| + 1 = O(n***?) follows from Lemma 25. O

4.7 The Abstract Domain

Let us now define the abstract domain. The values of the abstract domain AD
are pairs (7', D) consisting of a set T'C X of variables and an C-antichain D

43

of short dependence traces:
AD = 2% x ACS.

T represents the variables for which a transparent run exists. This informa-
tion is necessary in order to allow a proper propagation of initial and final
transparency bits in sequential contexts. The order on the abstract domain,
which we also denote by the symbol C, is defined as the lift of the inclusion
order on the T' component and the antichain order C on the D component:
(T,D) C (1", D) iff

(1) T CT" and
(2) DCD'.

(AD,C) is the product lattice of the complete lattices (2%, C) and (ACS,C)
and hence also a complete lattice. Both of these lattices have () as their least
element. Hence, (0, () is the least element of C.

Lemma 29 (AD,C) is a complete lattice with least element (0, (). Its height
is O(n*"*2) where n = | X|.

PROOF. It only remains to prove the asymptotic bound for the height. The
height of AD is the sum of the height of (2%, C), which is n + 1, and the
height of (ACS, C), which is O(n**?) by Lemma 28. This implies the stated
bound. O

Let us now define an abstraction mapping o : NR — AD that captures the
intuition how non-atomic run sets are abstracted to values from AD:

a(R) = (Tr, Dr), where
Tr = {x € X |3Ir € R:r is transparent for z} and
Dp={reDT|IreR:r+r1}l.

Before we proceed, let us show that this is a proper definition.

Lemma 30 « is well-defined.

PROOF. We have to show two things for an arbitrary R € NR:

(1) Dg consists of short dependence traces.
(2) Dpg is an C-antichain.

44

To 1.: Assume there is 7 € Dp that is not short. Then there is r € R with
r = 7. By Lemma 26, there is a short dependence trace 7/ with r = 7
and 7 C 7'. In particular 7/ € {r € DT | 3r € R : r I 7} and, as 7’
is short and 7 is not, we even have 7 C 7’. But this shows that 7 is not
maximal in {7 € DT | Ir € R : r F 7} and hence is not a member of Dp, a
contradiction.

To 2.: This is ensured by Lemma 19(4.). O

The abstraction a(R) of a run set R is induced by the following abstraction
B(r) of the single runs r € R:

B(r) = (1,,D,), where
T, = {x € X | r is transparent for z} and
D, ={reDT|rk1}".

Lemma 31 Suppose R € NR. Then a(R) = |{B(r) | r € R}.

PROOF. We have | {3(r) | r € R} = (Urer Tr, Urer D»). It is obvious that
Tr = U,er Tr. On the other hand, we have |,cr D, = (Urer{7 | 7+ 7}1)T, by
Lemma 20. It is not hard to show that this equals Dg by considering the C-
and the J-direction separately. O

The fact that « is induced by an abstraction on single runs has nice conse-
quences.

Proposition 32 « is monotonic: R C R' implies a(R) C a(R'). O
Proposition 33 « is universally disjunctive. 0O

The latter property is crucial for precision of the abstract interpretation of
constraint systems, cf. Section 5, and shows us that « provides a proper ab-
straction of run sets by being the lower adjoint of a Galois connection. For com-
pleteness let us introduce the corresponding upper adjoint. It is v : AD — NR,
defined by

vT,D) ={r|T.CT, D.C D}.

Proposition 34 («,7) is a Galois connection between NR and AD: NR — AD.
Y

We leave the proof that v is well-defined and forms a Galois connection with
« to the reader.

45

In the sections that follow we define composition operators on AD and show
that they are precise abstractions of the corresponding operators on NR. We
start with the pre- and the post-operator that are rather simple. Then we dis-
cuss sequential composition. Afterwards we consider the most interesting and
challenging operator: interleaving. Finally, we discuss the abstract semantics
of base edges.

4.8 Pre-Operator

We define the (abstract) pre-operator, pre® : AD — AD, as follows:

pre? (T, D) =
(X, {(t,0,5) € DT | (1,,0) € D}),if D #.

Lemma 35 pre is well-defined: for any (T, D) € AD, pre” (T, D) € AD.

PROOF. The only property that is not obvious is that A := {(¢, 0, k) €
DT | (¢,0,0) € D} is an antichain of short dependence traces. First of all,
any dependence trace (¢, , k) € A inherits being short from the dependence
trace (¢,¢,0) € D that induces its inclusion in A. Secondly, assume that
there are distinct dependence traces 7,7 € A with 7 C 7/. By the definition
of the subsumption order, the transparency bits in 7 and 7/ must coincide,
i.e. we can write them in the form 7 = (1, ¢,k) and 7 = (1, ¢, k). From
7 C 7' it follows that also (¢, ,0) C (¢, ¢’,0). But then (¢, ¢,0) and (¢, ¢’,0)
are two distinct comparable dependence traces in D, which is a contradiction
to D being an antichain. Hence pre# (T, D) must be an antichain of short
dependence traces. O

The crucial observation for the adequacy of the definition of pre# is this.

Lemma 36 r F (¢, ,0) if and only if there is a preficr’ of r with ' & (¢, o, K).

PROOF. Let o = ((z1,11), -, (T, yr)).

‘=’: Suppose r F (¢,,0). If K = 0, we can choose " = r. So assume k = 1.
Choose a decomposition tg -7 - - - 1 - £, of r that witnesses r = (¢, ¢, 0). Let
" =to -1y 1rg. Then, clearly, r' is a prefix of r and ¢y - ry-- -7y - ¢}, with
t). = € is a decomposition of v’ that witnesses ' F (¢, ¢, 1).

‘<’: Suppose 1’ is a prefix of r with 7’ - (¢, ¢, k). Choose r” with r =" - 1"
and let to-ry -+ rg -ty be a decomposition of 7’ that witnesses ' F (¢, ¢, k).

46

Then to -7y -1 - t), with ¢}, =t - " is a decomposition of r that witnesses
rkE(,p,0). O

We can now show that the abstract pre-operator is a precise abstraction of
the concrete pre-operator.

Theorem 37 (Abstract pre-operator is precise) Suppose R € NR. Then
a(pre(R)) = pre*(a(R)).

PROOF. If R = (), then a(pre(R)) = a(0) = (0,0) = pre? (0, 0) = pre® (a(R)).
So let us assume R # ().

By unfolding the definitions, we see that a(pre(R)) = (Tpre(r)s Dpre(r)) With

T,

p

Dyrery = {7 | 3,7 €Runs:r- 1" € RAr 7},

re(r) = 12 | Ir,r" € Runs : r -7 € R A r is transparent for x}

In order to evaluate the right hand side, note first that Dg is non-empty: there
is a run r € R and any such run satisfies r F (0,¢,0); moreover, (0,¢,0) is
C-maximal and hence contained in Dg. Consequently, the second case applies
in the definition of pre# and we have pre# (a(R)) = pre® (T, Dr) = (X, D)
with

D = {(1,0,k) €DT| (1,¢,0) € Dg}'.

Thus, we have to show Tp..ry = X and Dp.r) = D.

Tyre(ry © X is trivial. In order to see the reverse inclusion, i.e. that T}, (r)

contains any x € X, choose an arbitrary » € R and observe that the empty
run ¢ is a prefix of r that is transparent for any variable x.

The following chain of implications shows D,..ry & D:

(¢, 0, K) € Dpre(ry
= [Equation above, Lemma 19(1.)]
Ir,r" € Runs:r-r" € RATF (1,90, k)
iff ~ [Lemma 36]
IreR:rF(1,0,0)
iff ~ [Set comprehension)]
(t,,0,0)€{T€DT |IreR:rkr71}
= [Lemma 18, definition D]
3" € Dr: (1,9,0) C 7

47

= [See below]
dreD: (oK) CT.

The reasoning for the last step is as follows. The subsumption order C is
concerned only with removing gaps from the dependence sequence ¢ in a
dependence trace but leaves the initial and final transparency information
untouched. Hence, the dependence trace 7/ € Dy with (¢, ¢, 0) C 7/ must have
the form 7/ = (¢,4,0). But then 7 := (1,9, k) € D and (¢, ¢, k) C (1,9, k).

Finally, we show D E D,.(r):

(t,p,k) €D
= [Above equation for D, Lemma 19(1.)]
(t,¢,0) € Dg
= [Definition of Dg, Lemma 19(1.)]
IreR:rF(1,0,0)
iff [Lemma 306]
Ir,r’ e € RATE(1,0,K)
iff ~ [Set comprehension]
(t,o,k) €{T DT |3r,r':r- e RATFT}
= [Lemma 18]
Jre{reDT| I :r- " eRATFTY (Lo, k) ET
iff [Above equation for Dp(r)]
37 € Dprery : (1, 0,6) E T

This completes the proof. O
4.9 Post-Operator

We define the (abstract) post-operator, post” : AD — AD, in complete analogy
to the pre-operator as follows:

post® (T, D) =
(X, {(t,0,c) € DT | (0,,k) € D}), it D#0.

By symmetry to the pre-operator we obtain that the post operator is well-
defined and a precise abstraction of the post-operator on non-atomic run sets.

Theorem 38 (Abstract post-operator is precise) Suppose R € NR. Then
a(post(R)) = post™ (a(R)). O

48

A sequentially composed run r:

1) oo Tk
How subruns mediating 2) r1 Tk
dependences in ¢ may 3) - o r; rien Tk
overlap with pieces of 7:

Fig. 8. Intuition of sequential composition.

4.10 Sequential Composition

The (abstract) sequential composition operator, ;* : AD x AD — AD, which
we write as an infix operator, is defined by

(T, D);#(T",D') = (TnT',(D; D)),

where

D;D' ={(1,0,K) €D | k=1 =pe T'} (1)
U{(,p,k) €D |1=1 =pe T} (2)
U{(t,p0-1,k) € DTS | (1,,0) € D, (0,4,x) € D'} (3)
U{(,-((x,2)) -9, x) € DTS | (4)

(- {(z,9),1) € D, (1,{(y,2)) -9, k) € D'} .

Before we explain the intuition underlying this definition we show well-definedness.

Lemma 39 The abstract sequential composition operator ;# is well-defined.

PROOF. We have to show that (D; D')! € ACS for all D, D’ € ACS, i.e. that
(D; D')! is an C-antichain of short dependence traces.

It is easy to see that D; D’ (and hence its subset D; D’)!) contains only short
dependence traces: the first two sets contain only dependence traces from D or
D', which consequently are short, and the constructions in the third and fourth
set are explicitly restricted to contain short dependence traces. The application
of the T-operator ensures that (D; D')! € ACS is an C-antichain. O

Obviously, a run r = 7’ - r” composed of two runs 7’ and 7" is transparent
for a variable x if and only if both ' and r” are. Therefore, transparency
information must be intersected in a sequential composition.

49

Let us explain the intuition underlying the definition of D; D’. Suppose given
arun r = r' - r” which is composed of two runs ' € D and r” € D’ that
use distinct virtual variables (virtual(r’) N virtual(r”) = (). Assume that 7 =
(t,0,k) with ¢ = (dy,...,dg) is a dependence trace of r. Each d; in ¢ is a
dependence of a sub-piece r; of r; we can choose the r; as short as possible
(i.e., such that it starts with an assignment that reads the source variable of
d; and ends with an assignment to the destination variable of d;). There are
four possibilities, how these sub-pieces can be situated in r as illustrated in
Fig. 8:

1) all of them can lie in r';

2) all of them can lie in 7”;

3) there is an i, 1 < i < k, such that r1,...,7; lie in 7" and riq,..., 7 lie
in r”;

4) there is an i such that r; overlaps with the join point of r" and r”.

These four cases are handled by the four sets appearing in the definition of
D: D"

1) in this case, 7 is also a dependence trace of r’. Vice versa, dependence
traces 7' = (', ¢, k') of ' give rise to dependence traces of r. However,
—

if ¥ = 1, no statement that kills ¢, the destination variable of the last
dependence in ', is allowed after rj. Therefore, " must be transparent

for ¢'; hence the side condition in set (1).

2) this case is symmetric to case 1).

3) in this case, r’ has the dependence trace (¢, (dy,...,d;),0) and 7" the
dependence trace (0, (d;i1,...,dy), k). Vice versa, dependence traces of
r’ and " of this form give rise to a dependence trace of r.

4) choose variables x,z € X such that d; = (z,2). Sub-run r; accomplishes
the transfer from x to z via certain intermediate variables. One of these
intermediate variables, say y, must bridge the joint point between ' and
r” (i.e., it is assigned to in 7/, read from in " and not killed in between).
As r and " use distinct virtual variables, y must be a program variable:
y € X. Then (s,({dy,...,d;_1,(x,y)),1) is a dependence trace of r’ and
(1,{(y, 2),diy1,-..,dr), k) is a dependence trace of . The bit 1 as final
component of 7/ and first component of 7" is justified, as y is not killed
from the place where it is assigned to in " and read in r”. Similarly,
dependences of ' and r” of the above form give rise to a dependence
trace of r.

It is not hard to see that in all four cases the dependence traces of " and/or r”
in question are short and C-maximal if 7 is and, vice versa, that each short and
C-maximal dependence trace of r can be composed of short and C-maximal
dependence traces of 7" and r” in the described way.

20

Lemma 40 (Abstract sequential composition operator is precise)
Suppose R, S € NR. Then a(R;S) = a(R);*a(S).

PROOF. By formalizing the intuition described above. O

4.11 Interleaving

Transparency information for the interleaving R®.S of two run sets R and S is
easy to obtain from transparency information of the components: a transparent
run for a variable x exists in R ® .S if and only if each component set contains
a transparent run. Therefore, the transparency information in T and Ts must
simply be intersected.

It is far more interesting to consider the dependence traces in Dggg as the two
threads modeled by R and S can cooperate in order to exhibit dependences.
More specifically, a dependence (u,v) can be composed of complementary
dependence sequences of two runs r € R and s € S, e.g., as illustrated here:

Transfers of r: u = x1—y1 Xo—Ys T3—Ys - Tp1—Yp-1 TE—Yp =0V

Transfers of s: Y1—To Yo—1T3 . Yk_1—Tk

Of course such a combination of complementary dependence sequences can
also start and/or end with a dependence of s. And, as a border case, one of
the dependence sequences can be empty; the other then just consists of a single
dependence. Before we define the abstract interleaving operator, we present
in the next section the general definition of when two dependence sequences
complement each other to a single dependence and introduce a relation C' that
extends this definition to dependence traces.

4.11.1 Complementary Dependence Traces

Let ¢, € DS be two dependence sequences (one of them can be empty) and
u,v € X. Choose variables such that ¢ = ((z1,v1),..., Tk, yx)), k > 0. We
say that ¢ complements ¢ to (u,v) if one of the following cases applies:

(1) o #e u=p,v=0, and ¥ = (1,72, ., (-1, 70));

(2) p#e, v #eu :g, v =1, and ¥ = ((y1,22), - -, (Wk-1, 1), (Y, V));
B)pFevFeu=p,v =p, and ¥ = ((u,21), (Y1, 22), - .., (Y1, 21)); OF
(4) o # e, u=1p, v=1p, and ¢ = ((u, 1), (y1,22), - - -, (Y—1, T), (Yk, v))-

o1

T: Ll —mY1 | .- Ti——mm—————Yi | oo | Tp—m Yk
T1: Tl—= —=Y1 || Tj—o —=UV —Yi|... —

T2 p—— e L v | T — Y

Fig. 9. Complementary dependence traces.

Intuitively,) complements ¢ to (u,v) if the two of them can alternately be
combined to a gap-free transfer from u to v. The different cases are distin-
guished by whether the first read in this gap-free transfer comes from ¢ (cases
1/2) or v (cases 3/4) and whether the last write is in ¢ (cases 1/3) or ¢ (cases

2/4).

Now, consider a dependence trace 7 of a run t € R ® S which is an in-
terleaving of the runs » € R, s € S. Then every single dependence in 7
must be obtained in the above described fashion from pieces of dependence
traces of r and s. We, therefore, generalize this notion of completion to de-
pendence traces as follows. Suppose given dependence traces 7,7y, 71, where
7= (1, {(z1,11), -, (T, Yx)), k), 70 = (Lo, ¥, Ko), 71 = (11,9, K1). Then we say
that 7 complements 7y to 7, C(79,71,7) for short, if there are dependence
sequences 1, ..., 0k, Y1, ..., Y such that

(1) p=wp1-...-opand ¢ =ty - ... - Py

(2) 1; complements ¢; to (z;,y;) fori=1,... k.

(3) ¢ = 1implies o = 1 and 1)y complements y; to (x1,y;) according to cases
1 and 2, or ¢v; = 1 and ¥; complements ¢; according to cases 3 and 4;
and

(4) £ = 1 implies kg = 1 and v, complements @y to (zx,yx) according to
cases 1 and 3, or k; = 1 and v, complements ¢, according to cases 2 and
4.

The typical situation of two dependence traces 7o and 77 that complement
each other to a dependence trace 7 is illustrated in Fig. 9. For clarity we omit
the transparency bits. The dashed vertical lines indicate equality of variables.

A number of elementary properties of the relation C' are collected in the fol-
lowing lemma.

Lemma 41 (Basic properties of C') Suppose 7,79, 71 € DT. Then
(1) C is symmetric in the first two parameters: C(ty,m1,7) if and only if
C(7y,70,7).

(2) (0,€,0) is a ‘neutral element’: C((0,¢,0),7, 7).
(3) In particular, C((0,¢,0),(0,¢,0),(0,¢,0)).

PROOF. Left to the reader. O

D2

4.11.2 Interleaving Operator

We are now in the position to define the (abstract) interleaving operator, @ :
AD x AD — AD, which we write again as an infix operator:

(T,D)@* (T',D") = (TNT' {r"e€DTS|3reD,7 D :C(r,7,7)}).

By restricting the set construction to short dependence traces and applying
the (-)! operator, the interleaving operator is trivially well-defined. The goal
of the remainder of this section is to show that it is a precise abstraction of
the interleaving operator on sets of non-atomic runs.

Theorem 42 (Abstract interleaving operator is precise)
Suppose R, S € NR. Then a(R® S) = a(R) @% a(S).

The proof is deferred to Section 4.11.5. Before that, we establish a number of
lemmas that capture the main insights underlying the proof.

4.11.83 Soundness Lemmas

The lemmas in this section are concerned with the soundness of the abstract
interleaving composition operator, i.e. they are crucial for the proof that o(R®
S) C a(R) ®" a(S) for any two run sets R, S. The critical point here is to
guarantee that our definition of the abstract interleaving operator includes
enough dependence traces.

As a first step, we show that each dependence trace of some interleaving of
two runs r, s can also be obtained by combining two dependence traces of the
component runs 7 and s via the relation C.

Let r, s,t € Runs with virtual(r) Nvirtual(s) =) and 7 € DT.

Lemma 43 Supposet € r ® s and t = 7. Then there are 7,,7s € DT with
rt1., sk, and C(1,., 75, 7).

PROOF. Assume that ¢ is an interleaving of r and s and 7 = (¢, (dy, ..., dg), K)
is a dependence trace of t. Each d; is a dependence of a certain sub-run ¢; of
t and each t; is an interleaving of certain sub-runs of r and s.

From ¢; we can construct dependence traces ; and v; of these sub-runs of
r and s such that ¢; complements 1); to dependence d;. This is described

below. Then ¢ - ... ¢, and ¥y - ... - 1 are dependence sequences of r and
s, resp., and we can choose transparency bits ¢,, k., ts, ks € B such that 7, =
(try @1k, k) and 75 = (ts, 01 - . . .- Uy, Ks) are dependence traces of r and

s, resp., such that C(7,, 7, 7) holds. Specifically, we choose ¢, = ¢ if the first

23

r ™ r2 3 T4 s
S S1 2. L 83 S4. .
. a t1 b c to
Ty a__e f _ b h i
: — : :
W o S

Fig. 10. Dependence traces of interleavings are induced by complementary depen-
dence traces of the components.

assignment instance involved in the mediation of d; belongs to r and ¢y = ¢
if it belongs to s, and similarly for the final transparency bits and the last
assignment instance involved in the mediation of dj. All other transparency
bits are chosen 0.

Let us now explain how to construct the dependence sequences ¢; and v,
mentioned above. Choose program variables x,y such that d; = (z,y). Sub-
run ¢; of ¢ exhibits d; via certain assignment instances a; :=e;, j = 1,...,L.
In particular, a; = y. Each of these assignment instances lies either in a sub-
piece of r or a sub-piece of s. Let us consider the case that the first assignment
instance a; := ey lies in a sub-piece of r; the case that it lies in a sub-piece
of s is analogous. We can then find indices 0 < jo < j; < ... < j, such that
a;j := e; lies in a sub-piece of 7 if j,,, < j < jy41 for an even m € {0,...,n—1}
and in a sub-piece of s otherwise. In particular, for any j € {j1,...,Jn_1} one
of the assignments instances a; := e; and a;4; 1= ¢;4; lies in a sub-piece of r
and the other one in a sub-piece of s. This implies that a; must be a program
variable, because it appears in e;1; and virtual(r) Nvirtual(s) = (. Choose now

Yi = <(SE, a’jl)’ (aj27 a’js)v R (a’jn—27 ajn—l)>)

wi = <(aj17 an)v (aj:w aj4)7 T (ajn—lvy»

if n is even and

Pi <(x7a’j1>7(ajma’js)v"'v(ajn—lvy))7

wi = <(aj17 an)v (ajzw a’j4)7 R (ajn—27 ajn—l))

if n is odd. Then ¢; and v; are dependence sequences of the sub-runs of r and
s that comprise t; and, obviously, ; complements ; to d;. O

Example 44 Fig. 10 illustrates the construction in the proof of Lemma 43.
The run t is an interleaving of the runs r and s. We can thus decompose r

o4

and s into sub-runs such that t is obtained by alternately shuffling these sub-
runs together; in the example r = ry -r9-1r3-74 75, S = 81 - Sg -+ S3 - S4, and
t=1T1-81:7T2:89:T3-83-T4"84"7T5.

Let us assume that T = (¢, {(a,b), (c,d)), k) is a dependence trace of t. Then
there are sub-runs t; and ty of t that exhibit the two dependences (a,b) and
(¢,d), e.g., as shown in the figure. These sub-runs overlap in a certain way
with the decompositions of v and s; in the example in the figure, for instance, t;
overlaps with a postfix of r1, all of s1,79, S2, and a prefiz of r3. The dependence
(a,b) is exhibited via certain intermediate assignments a; := e; (not shown in
the figure); we call these assignments crucial in the following.

There may be sub-runs of r and/or s that overlap with t; but do not contain
a crucial assignment. Such sub-runs must be transparent for the variable that
transfers the dependence at this moment and can be ignored. In our example,
ro is such a sub-run and g is the variable that transfers the dependence while
r9 18 executed.

Whenever two successive crucial assignments lie in sub-pieces of different runs,
the dependence must be transfered in a program variable between these assign-
ments because r and s do not share virtual variables. In the figure, e.g., e is
the variable that transfers the dependence from the last crucial assignment in
ry to the first crucial assignment in s; and f transfers it from the last crucial
assignment in sy to the first crucial assignment in ro. From these variables
we can construct dependence traces T, and 15 of r and s such that C (7, Ts, T)

holds. In Fig. 10, for instance, we have 1, = (¢, {(a,e), (f,b), (h,7), (j,d)), k)
and 75 = (0, {(e, f), (¢, h), (4,7)),0). DO

Lemma 43 ensures that combining dependence traces of component runs via C'
is fundamentally rich enough to give us all dependence traces of potential in-
terleavings. However, in our abstract domain, we do not collect all dependence
traces but only the mazimal ones. Therefore, we only combine the maximal
dependence traces of component runs in the definition of interleaving, which
is the best we can do with the available information. Can we really obtain all
the mazimal dependence traces just from the mazimal dependence traces of
the components?

The next lemma provides us with a kind of shortening rule that is crucial for
the proof that maximal dependence traces of component run sets suffice to
infer the maximal dependence traces of their interleaving.

Suppose 1o, 7, 71, T € DT.
Lemma 45 Suppose C(79,7,7) and 70 T 7). Then there are dependence

traces 1{, 7" € DT such that my < 7, 7 © 7', and C(7{,7{,7"). By symme-
try of C (Lemma 41(1)) an analogous property holds with the roles of 79 and

55

T vy p—— T T EPP [/7 —— | R EPPPRN [/7 p— | I PRI [1) ——)
T0- Ll —=Y1|... Lie U —Yi] - —U Y| —

T Lle——— Y1 | .- s Yj || Th—— Yk

To: Tl— —Y1 || Ti—u U UV Y| —

T L e L R I P

Fig. 11. Removing gaps in a component dependence trace

71 exchanged.

PROOF. The proof is illustrated in Fig. 11. In a) the typical situation of
dependence traces 79, 77 and 7 with C'(7g, 71, 7) is shown. For clarity the trans-
parency bits are omitted. In b) a typical dependence trace 7} with 75 C 7/ is
shown. It is obtained from 7y by removing all gaps between the target variable
u of a certain dependence d in 75 and the destination variable v of a later
dependence e. We can remove all the dependences from 77 that are used to fill
some or all of these gaps in C(7g, 71, 7). This results in a dependence trace 7|
with 77 < 7 as shown in b). Then the dependence traces 7} and 7{ complement
each other to a dependence trace 7" with 7 < 7/ as shown. As border cases, we
may have 7, = 79, if none of the gaps between d and e is filled in C(7, 71, 7),
or 7' = 7 if d and e are used in C(7y, 7, 7) in the same dependence of 7. But
this does not invalidate our reasoning as C and < are reflexive. O

By iteratively applying this shortening rule, we obtain the following lemma
that is of direct use in the proof of Theorem 42.

Lemma 46 Suppose 7, € {7 |Ir€ R:rt 7}, 7, €{r|Is€ S:st 7}, and
C(7,7s,7). Then there are 7. € Dg, 7, € Dg, and 7" € DT with C(7},7.,7")
and T C 7.

PROOQOF. The problem is that 7, and 7, need not be C-maximal in their
respective set. Hence they may not belong to Dy and Dg, respectively. By
iteratively applying Lemma 45, however, we can determine dependence traces
7! and 7] that are C-maximal in these sets (and hence belong to Dy and Dy,
respectively) as well as a dependence trace 7! with C(7}, 7!, 71) and 7 C 7':

) '8

We start with (7], 7], 71) := (7,,7,, 7). This initialization trivially ensures
rle{r|IreR:rbrhrle{r|3seS:sk7}, C(r),7l,71), and 7 C 7T,

which is an invariant of the loop we describe in the following.

56

If 7 is not C-maximal in {7 | 3r € R:r F 7}, we can choose a dependence
trace 7/ € {7 | Ir € R : r + 7} which is strictly larger: 7,/ C 7/. Then, by
Lemma 45, there are 7, and 7/ with 7] <7/, 7 C 7! C 7/, and C (7., 7., 7). By
Proposition 14, 7/ € {r | 3r € R : r I 7}, hence the invariant remains valid.
We then set (7,1, 7], 71) := (7/,7],7'). We can proceed analogously, if 7] is not

maximal in {7 | ds€ S: sk 1}

This shortening procedure is applied iteratively until both 7! and 7] are C-
maximal in their respective sets. Termination is guaranteed, because in each
step either the dependence sequence in 7 or in 7 becomes shorter and the de-
pendence sequence in the other dependence trace does not become longer. O

4.11.4 Completeness Lemmas

The lemmas in this section are concerned with completeness of the interleaving
operator, i.e. they are important for the proof that a(R® S) 3 a(R) @% a(9S)
for any two non-atomic run sets R, S. They crucially depend on runs being
non-atomic.

A dependence of a non-atomic run r must involve a virtual variable at a certain
stage as assignments that have program variables on both the left- and the
right-hand-side do not occur in non-atomic runs. But when the execution of r
is in such a stage, no parallel thread can disturb propagation of the dependence
because parallel threads do not interfere on virtual variables. This observation
underlies the proof of the following lemma.

Lemma 47 Suppose r, s are runs with virtual(r)Nvirtual(s) = 0, and x,y € X.
If r exhibits (x,y) then there is a runt € r ® s that exhibits (z,y).

PROOF. Suppose (z,y) is a dependence of r. This means that r can be
written in the form r = ro-{a; :=eq) -1y -(ag : =€) "To-...-r_1-{a; =€) -1
as in the definition of “r exhibits (z,y)”. Then in particular e; contains the
variable z. As x is a program variable, this implies by the form of assignments
appearing in runs that a; must be a virtual variable (cf. the definition of Asg).
As virtual(r) Nvirtual(s) = (), s must thus be transparent for a;. Hence the run
t € r ® s defined by

t:=r¢-{a1:=e1)-s-r1-{ag:=e€9) ro-...-1_1-{a :=¢€) -1

still exhibits dependence (z,y). O

Note that this argument crucially depends on the assumption about the form
of assignments in runs that derives from the assumption that assignments

27

execute non-atomically. If assignments execute atomically, the above lemma
is no longer valid.

Example 48 Consider the parallel execution of the two straight-line programs
m=(y:=x) and my = (x:=0;y:=0).

If assignment statements execute atomically, there are just three possible runs,

1) =0y =0y =2,
2) (x =0,y :=x,y:=0), and
3) (y :=z,2:=0,y :=0).

None of these runs exhibits dependence (x,y) because either x is killed before
y := x is executed as in 1) and 2), ory is killed after y := x is executed as in

2) and 3).

If, on the other hand, assignment statements may execute non-atomically, then
the two wnitialization statements in o could well be executed after x is read
but before y is written. This is witnessed by the run

where v is a virtual variable, in our model of non-atomic execution. In contrast
to the runs 1)-8), run 4) exhibits dependence (x,y). O

Lemma 47 provides an intuitive explanation why precise analysis of paral-
lel programs is simpler if we assume non-atomic execution of assignments.
Under this assumption dependences once generated by a thread cannot be
definitely destroyed by its environment. Thus, an analysis that collects posi-
tive information about potential dependences is precise. (In order to do this
in a | compositional fashion it must collect more information, namely (maxi-
mal, short) dependence traces. If we analyze with respect to the assumption
that assignments execute atomically, there is a complex interplay between the
way dependences are generated by a thread and the order of re-initializations
performed by its environment as illustrated by the above example. Therefore,
an analysis that just collects positive information is doomed to be imprecise.

Lemma 49 Suppose ro,r1 are runs with virtual(ro) N virtual(r;) = 0 and
To, T1, T are dependence traces with ro & 19, r1 & 1, and C(19,71,7). Then
there is a run r € ro ® r1 such thatrt t.

PROOF. For notational convenience, we discuss the case that the depen-
dence sequence in 7 consists of just a single dependence; the generalization to
arbitrary dependence sequences is left to the reader. Let 7 = (¢, ((u,v)), k).
Furthermore, let 79 = (1o, ¢, ko) and 71 = (11,9, K1).

o8

Let us assume that case 2 in the definition of C'(7y, 71, 7) applies; the other
cases are similar. Then we can choose variables u = 1, ..., 2511 = v such that

o= ((r1,91),- -, (@r,u)) and ¥ = ((y1,22), - -, (k> Tht1))

anditis =1ift=1and kg =1if k =1. Asrg F 79 and v - 74 we can
write ro and r; in the form

ro= e a8 rS 8 r et and = el g rhe g rd et
such that

1) 7Y exhibits (x;,y;) and 7} exhibits (y;, x;41) for i =1,... k;
2) 1) is transparent for u if t = 1 (and hence ¢y = 1); and
3) t; is transparent for v if kK = 1 (and hence k; = 1).

The run 70-r}-r§-rd - - 1.7l clearly exhibits dependence (u,v), but in order to

construct an interleaving of ro and 71, we must also execute the intermediate
code pieces t] Fortunately, each of the dependences realized by some 7/ must
involve a virtual variable; and, while the transfer is in such a stage, code
pieces of the other run, r;_;, can safely be executed without destroying the
dependence, due to the disjointness of the virtual variables used in ry and 7“1.
Thus, we can execute each code piece t} at such a stage of execution of 9, ,
and, similarly, t? during such a stage of r}. The rest of the proof pursues this
argument more formally.

By Lemma 47, there are interleavings s) € r @ ¢; | and s; € r} @ t) such
that, for i = 1,... k, s¥ still exhibits (z;,y;) and s} still exhibits (y;, ;1)

Then the run r :=tJ - sV - s} - s - sl---sY - s} - ¢4 is an interleaving of ro and

ry (i.e. 7 € 11 @ r9). On the other hand, r - 7 because s - s{ -89 - s+ s - st
exhibits dependence (u,v) and items 2) and 3) above give the transparency

properties. 0O

Like Lemma 47, Lemma 49 fails to hold if assignments execute atomically as
illustrated by the following example.

Example 50 Consider the two programs m = (y =) a
0;y := 0;z := y) and the three dependence traces 11 = (1,

(17 <(y7 Z)>7 1)7 and T = (17 <(l‘7 Z))? 1)'

If assignments execute atomically, m has only the run ry = (y := x) and o
has only the run ro = (x := 0,y := 0, z := y). Clearly, 71 is a dependence trace
of r1 and 15 1s a dependence trace of ro, independently of whether assignments
execute atomically or not. Moreover, C(7y, T2, T) holds.

nd m = (z :
(z,

y)1), m =

But only the following four runs are possible interleavings of r1 and ro:

29

~
N

S

i
@“@@m
1 I
OOE%@

)

)

)
)
), and
)-

N

)
i
il
Z\z N W Q@
i

I
SRS

8

I
8 ocooo
Bl e

I
ok OO

(
{
{
{

Y

N—

<
I

It is not hard to see that T is not exhibited by any of these runs.

If, on the other hand, assignments do not execute atomically, there are also
runs like

5) (vi=x,2:=0,y:=0,y :=v,u:=y,2z:=u),

where u,v are virtual variables, which exhibits dependence trace T. O

4.11.5 Proof of Theorem 42

We can now put the pieces together and prove Theorem 42. By unfolding the
definitions, we have

OZ(R@S) = <TR®S,DR®S) and
Oé(R) ®# Oé(S) = (TR N Ts, D) s

where D = {7 € DTS | 37 € Dg, 75 € Dg : C(7g,7s,7)}!. Consequently, we
have to show Trgs =Tr NTs and Dggs = D.

“Treos CTrNTs”: If © € Trgs, then there is a run t € R ® S that is trans-
parent for x. By definition, ¢ is an interleaving of runs r € R and s € S.
These runs r, s must then also be transparent for x. Thus, x € TR N Tg.

“Treos 2 TrNTs”: If v € Tr N Ts, then there are runs r € R and s € S
that are transparent for . By bounded renaming of virtual variables these
runs can be chosen such that they do not share virtual variables. Then all
interleavings of these two runs are in S ® R, and all of them are transparent
for z. Thus, © € Tges.

“Drgs C D”: In order to show this relationship, assume that we are given
T € Dpggs. Then we have, by the definition of Dggs and Lemma 19(1.):

JdeRRS:tHT
iff [Definition R ® 5]
JreRseSters:tkr

= [Lemma 43]
IreRseS 1,7, €DT rtr. ANsk1s AN C(1, 76, 7)

60

= [Shunting, set comprehension]
dr,e{r|IreR:rtrhr,e{r|IseS:st71}:C(1,,75,7).
= [Lemma 46]
7. € Dg,7s € Dg, 7 € DT : C(77, 75,7) AN TC 7'
iff [Set comprehension, see below]
i7" € {7 € DTS | It € Dg,7s € Ds : C(1r,75,7)} : TE 7T’
= [Definition D, Lemma 18]
I eD:rCT.

In the step marked “see below”, we must prove for “=" that 7’ can be
chosen as a short dependence trace, which is not true for this step in isola-
tion. But, it is true under the assumption that 7 € Dggg which underlies
the whole calculation: as a consequence of this assumption 7 is short and
this implies that any 7/ with 7 C 7/ must also be short (Lemma 27). A cal-
culation, in which this step is valid in isolation, requires to furnish each of
the preceeding predicates with the conjunct 7 € Dggg, which would clutter
the calculation.

“Dres = D”: This is shown by the following chain of implications:

TeD
= [Definition of D, Lemma 19(1.)]

drgp € Dg,7s € Dg : C(7R, 75, T)
= [Definition Dg, Dg, Lemma 19(1.)]

dreR,se S, mp,7s:7ETR AN skTs N C(TR, Ts, T)
iff ~ [By bounded renaming of virtual variables in s]

dre R,s€ S, mp, Ty :

rtTr A st1g A C(g,Ts,T) A virtual(r) Nvirtual(s) = 0

= [Lemma 49, definition R ® S|

HeceR®S:tkT

iff [Set comprehension]
Te{reDT|Ire RS :rk71}

= [Lemma 18, definition Dggg]
A7 € Dres : TET'.

This ends the proof of Theorem 42. O

61

4.12 Base Fdges

In Section 3 we discussed that the atomicity assumptions about assignments
may vary and that this gives rise to different definitions of the non-atomic
run sets [x := e] assigned to an assignment statement x := e. Fortunately,
all reasonable choices result in the same abstraction which is given by the
following definition:

[:=e]# = (X\ {z},{(+,{(y,2)),K) | t,x € B, y appears in e}).

Whatever atomicity assumption we are working with, all runs in [z := e] will
contain certain auxiliary assignments to virtual variables and a single assign-
ment to x. No program variable except x will ever be the target of an assign-
ment in a run in [z := ¢]. Hence, all non-atomic runs are transparent just for
the program variables in X \ {x}, which explains the adequacy of the first
component of [z := e]#. Moreover, it implies that no dependence trace of a
non-atomic run can embody a dependence sequence that is longer than one or
has a destination variable different from x. Each reasonable non-atomic run
induces the same dependences between program variables as x := e, hence the
induced dependences are (y,) where y is a variable appearing in e. Moreover,
no reasonable run Kkills a variable in e before it reads it or kills = after it has
written it, which implies that the transparency bits can be chosen arbitrarily.

All dependence traces included in the second component of [x := e]# are triv-
ially short and C-maximal, which implies well-definedness.

Proposition 51 Suppose x := e € Stmt. Then o[z :=¢]) = [z :=¢]*. O

Statement skip has just the single run e, which is obviously transparent for
all variables and has just the dependence trace (0,¢,0). Hence, we define

[skip]* = (X, {(0,,0)}).

Proposition 52 «([skip]) = [skip]#. O

We define the abstract interpretation of a base edge e of the underlying flow
graph as the interpretation of the statement A(e) associated with e: [e]# =

[Ae)]*.

Proposition 53 «a([e]) = [e]* for all base edges e. O
4.13 Run-Time

In this section we show that we can compute the abstract operations pre”,
post™, ;¥ and ®% in time 2PUXD | where p(x) is a polynomial. We emphasize

62

that we do neither intend to develop efficient implementations of the opera-
tions mor to present a very precise analysis. The results of this section will
mainly be used in order to establish the qualitative complexity statement that
the algorithms developed later run in exponential time. We are, however, in-
terested in uncovering the parameter of exponential growth: it is the number
of program variables | X| rather than the size of the parallel flow graph.

Let us investigate the most expensive operation, interleaving, to some detail.
First of all, we recall its definition from Section 4.11:

(T,D)®* (I',D') = (TNT',D"",

where D" = {7" € DTS | 3r € D,7" € D' : C(r,7',7")}. The sets T" and 1"
are subsets of X, the set of program variables. Computing the intersection of
T and T" is cheap: if we represent these sets as bit-strings (of length | X|), we
can clearly calculate the intersection in time O(|X|) by looking through the
bit-strings for 7" and 7" once.

D and D’ are antichains of short dependence traces, hence D, D’ C DTS. By
Lemma 25, the cardinality of DTS and hence of D and D’ is O(| X |#¥1+2). This
clearly is O(2P(XD) for some polynomial py(z). We can hence consider at most
O(22r0(XD) pairs of dependence traces 7 and 7/ when computing D”. For each
fixed pair of dependence traces 7,7’ all dependence traces 7" with C'(7, 7/, 7")
can be determined in time O(2P1UXD) for some polynomial p;(x). We leave it to
the reader to invent some procedure for this task that realizes this rather brutal
bound. Even a very naive procedure that lists all short dependence traces 7"
and then checks for each listed dependence trace whether C'(7, 7/, 7") holds will
do. The observation that 7, 7/, and 7" are short, and hence the length of their
dependence sequences is bounded by |X|+ 1 is helpful. As a consequence, we
can calculate D" in time O(22P0(XD+PLUXD) " Again O(270(XD) is an asymptotic
bound for the size of D” because D” C DTS. It is, therefore, not hard to see
that D", the second component of (T, D) ®# (T", D'), can be computed from
D" in time O(2P20XD) for some polynomial py(z). Hence the overall cost of
computing (T, D) @% (T, D') is O(2PUXD) for some polynomial p(z).

By similar considerations we can show that the other operations can be com-
puted in time O(2P(XD) too.

Lemma 54 The operations pre™, post™, ;% and ®% can be computed in time
O2PUXDY for some polynomial p(z). O

63

fOLLL'Og

Fig. 12. The situation in the transfer lemma

4.14 Discussion

In this section, we have defined an abstraction of sets of non-atomic runs from
which the exhibited dependences can be derived. Run sets are abstracted to
antichains of short dependence traces that capture the potential to exhibit
dependences in cooperation with a parallel environment. The abstraction also
records the set of program variables for which a transparent run exists in
the abstracted run set. This information is necessary to propagate the trans-
parency bits of the dependence traces properly in sequential contexts. We have
defined abstract interpretations of the operations and constants used in the
constraint systems of Section 2.5 and have shown that they precisely abstract
the corresponding operations on sets of non-atomic runs.

5 Detecting Copy Constants and Eliminating Faint Code

In this section we show that we can detect copy constants and eliminate faint
code in parallel flow graphs completely relative to the non-atomic semantics.
The basic idea is to evaluate the constraint system for bridging runs over the
abstract domain AD from the previous section and to exploit this information.

We have seen that the abstract counterparts of the operators and constants
appearing in the constraint systems in Section 2 abstract the corresponding
operators on non-atomic run sets precisely. Moreover, the abstraction mapping
a : NR — AD is universally disjunctive (Proposition 33). This implies that the
least solution of the constraint systems over domain AD consists just of the
abstractions of the least solution over domain NR. This is commonly known
in the area of abstract interpretation [21,22] and follows directly from the
following fixpoint-theoretic lemma known as Transfer-Lemma [29] or p-Fusion
Rule [30].

Lemma 55 (Transfer lemma) Suppose L, L’ are complete lattices, f : L —
L and g : L' — L' are monotonic functions and h: L — L' (Fig. 12).

If h is universally disjunctive and h o f = go h then h(uf) = pg, where uf
and pg are the least firpoints of f and g, respectively. O

The least solution of a constraint system over some domain corresponds in
a straightforward way to the least fixpoint of a function derived from the

64

constraints. The facts recalled above ensure that the premises of the Transfer-
Lemma hold for the functions f and ¢ derived from the concrete and abstract
interpretation of the constraint systems over non-atomic runs and over AD, re-
spectively, and the transfer function A that component-wise maps the concrete
interpretation x of each variable X of the constraint system to its abstraction
a(z). As AD is finite, we can compute the least solution of the constraint
system for (non-atomic) bridging runs over lattice AD effectively by fixpoint
iteration. From the computed values we can read off in particular all the de-
pendences of the bridging runs: if «(R) = (T, D) is the precise abstraction of
a set R of (non-atomic) runs then (z,y) is a dependence of a run in R if and
only if (1, ((x,v)),1) € D (Proposition 12).

Based on this information we can detect copy constants and eliminate faint
code. The corresponding algorithms run in exponential time. Indeed the point
here is not to develop efficient algorithms—we will see in the next section that
all these problems are intractable already for loop-free parallel programs—the
point is that these problems can be solved effectively at all! This comes as a
surprise, because the corresponding problems are uncomputable, if we assume
atomic execution of assignments [12].

Without further ado, we present, in the remainder of this section, the algo-
rithms for detection of copy constants (Section 5.1) and faint code elimina-
tion (Section 5.2). After the presentation of the algorithms, we analyze their
asymptotic run-time in Section 5.3 and finish the section with some concluding
remarks.

5.1 Copy Constant Detection

A variable = is a copy-constant at a program point wu if it gets assigned the
same value on all runs reaching u either through a constant assignment (like
in (z :=42)) or a constant assignment followed by copying assignments (like
in (z :=42,y := z,x := y)). Of course the runs may contain other assignments
also that do not influence the final value of x (like in (x : =42,y :=a+b)).
Thus, in copy constant detection only assignments of the simple form z := k,
where k is a constant or variable, are interpreted, all other forms of assignments
(e.g. z :=y+ 1) are (conservatively) assumed to make x non-constant [31].

Algorithm 1 in Fig. 13 reads a parallel flow graph, a program point v € N,
and a program variable y € X and decides whether y is a copy constant at v
or not. For this purpose it first computes (in Steps 1 and 2) for each program

point w the set

Tw] = {2 | eptain = o = ¢y, Aty(cw), Aty(c,), 7 exhibits dep. (x,y)} .

65

Algorithm 1
Input: A parallel flow graph as defined in Section 2, a program point v € N
and a program variable y € X.
Output: “yes” if y is a copy constant at v; “no” otherwise.
Method:
1) Compute—by standard fixpoint iteration—the least solution over do-
main (AD,C) of the constraint system for bridging runs to program
point v; this gives us a value B#[u] for each program point u; as a
by-product this computation determines R#[v].
2) Set Iw] = {z | (1,((z,y)),1) € B#[w].2} for each program point
w € N.
3) Set flag := false and val := unset.
4) If y € R#[v].1 or if there is + € X with (1,{(z,y)),1) € R#[v].2 then
flag = true.
5) For all base edges e = (u,w) annotated by an assignment statement
x = e with x € Tw]:
5.1) If e is a composite expression then flag := true;
5.2) If e is a constant expression then
if val = unset then val := e else if val # e then flag := true.
6) If flag then output “no” else output “yes”.

Fig. 13. An algorithm that detects copy constants in parallel programs.

Intuitively, I[w] is the set of variables that can influence the value of y at
v when some computation is at w. Clearly, in I{w] dependences of bridging
runs from w to v are considered. By solving the constraint system for bridging
runs from Section 2 over the domain (AD,C) (Step 1), we can compute the
dependence traces of bridging runs; they are given by the second component of
the value B#[w)] that is computed. From the dependence traces we can read off
the dependences by Proposition 12 and hence determine I[w] (Step 2). The
fixpoint computation in Step 1 determines as a by-product the abstraction
R#[v] of the runs reaching v because the constraint system for bridging runs
embodies the one for reaching runs.

The rest of the algorithm is based on the following observation: variable y is
not a copy constant at v if and only if one of the following is true:

a) there is a variable x the initial value of which can influence y at v;

b) there is a base edge e = (u, w) annotated by an assignment x := e with
a composite expression e on the right hand side such that z’s value at w
can influence y’s value at v;

c) there are two distinct base edges e = (u, w) and ¢’ = (v, w’) each of them
annotated by a constant assignment x := ¢ and 2’ := ¢, respectively, such
that both z at w and x’ at w’ can influence y at v and ¢ # ¢'.

66

In Step 3-6 we check whether one of these conditions is true. We use a Boolean
variable flag that is initialized to false and is set to true once we encounter a
reason for y not being a copy constant at v. Step 4 tests whether condition a)
is true: it sets flag if the initial value of y can flow to v (y € R#[v].1) or if the
initial value of some variable x can influence y at v via a chain of assignments
(1, {(z,y)),1) € R#[v].2). Step 5 is concerned with conditions b) and ¢). Each
base edge is examined in turn. Step 5.1 tests whether b) holds. In order to
check c), we memorize in a variable val the value of the constant assignment
that can influence y at w encountered first. In order to check ¢) we simply
compare the value of constant assignments encountered later with the value
memorized in wval. Variable val is initialized with a special value unset that
indicates that we have not seen a constant assignment so far. Finally, Step 6
outputs the answer.

Of course we could stop the algorithm immediately, once the flag is set to true.
Moreover, we can output the value stored in val as additional information, if
we have identified y as a copy constant at v. It is the value guaranteed for y
at v. It may happen that val has still the value unset; this indicates that v is
an unreachable program point.

We conclude:

Theorem 56 Algorithm 1 solves the interprocedural copy constant detection
problem in parallel flow graphs relative to non-atomic interpretation of base
statements.

5.2 Faint Code Elimination

A variable z is live at a program point p if there is a run from p to the end
of the program on which x is used before it is overwritten. By referring to
[9], Horwitz et. al. [32] define a variable z as truly live at a program point p
if there is a run from p to the end of the program on which x is used in a
truly live context before being defined, where a truly live context means: in a
predicate, or in a call to a library routine, or in an expression whose value is
assigned to a truly live variable. True liveness can be seen as a refinement of
the ordinary liveness property. We call a use of a variable x in a predicate or
call to a library routine a relevant use of x.

Assignments to variables that are not truly live at the program point just after
the assignment are called faint. Intuitively, faint assignments can not influence
any predicate in the program or call of a library routine. Thus, they cannot
influence the observable behavior of the program (except of producing run-
time errors) and may safely be eliminated from the program. This is called
faint code elimination.

67

Algorithm 2
Input: A parallel flow graph as defined in Section 2; a mapping R : N — 2%
that associates each program point u with the set of variables relevant at w.
Output: An updated edge annotation A, of the parallel flow graph in which
faint code is eliminated.
Method:
1) Initialize the new annotation of flow graph edges: Ay := A.
2) For each base edge e € Base: Aey[e] := skip.
3) For each v € N with R(v) # 0:

3.1) Compute—by standard fixpoint iteration—the least solution over
domain (AD, C) of the constraint system for bridging runs to pro-
gram point v; this gives us a value B#[u] for each program point
u.

3.2) Set I[w] := {z | Jy € R(v) : (1,{(z,y)),1) € B#[u].2} for each
program point w € N.

3.3) For each base edge e = (., w) € Base with Ale] = (z :=1):

if z € I[w] then Ayeyle] := (x :=1).
4) Output the new edge annotation A,ey-.

Fig. 14. An algorithm that eliminates faint code in parallel programs.

Fig. 15. A faint assignment that is not dead.

Faint code elimination is a stronger form of the classic transformation of dead-
code elimination [7]. Indeed, any assignment that is dead is also faint but not
vice versa. The paradigmatic example is shown in Fig. 15. The value computed
by z := x + 1 in the loop is immediately overwritten after the loop and thus
never used in a relevant context. Hence x := x + 1 is faint. However, it is not
dead because x is potentially (non-relevantly) used by the same statement
in the next iteration of the loop. Thus, faint code elimination in general can
eliminate more code from a program.

Faint code elimination is based on information about the relevant uses of
variables. Typically, this information is derived from the library calls and the
conditions in the program. As our view of a program, a parallel flow graph, is
an abstraction of the actual program in which library calls as well as conditions
are invisible, we assume that we are given this information explicitly in the
form of a mapping R : N — 2% for each program point u € N, R(u) is the
set of variables directly relevant at .

68

Example 57 In a given program we might find a printf statement, e.g.,

printf ("x+y=%d", x+y);

In the abstract flow graph view of the program this statement gives rise to a
skip edge e = (u,v). Then both x and y are relevant at u, hence R(u) = {x,y}.

Similarly, we might find a branching statement, e.g.,

if (z > xxy) then {...} else {...}

In the abstract flow graph view of the program this if-statement gives rise to
two skip-edges (u,v) and (u,w); u is the start node for the flow graph for the
whole if-statement; at v the flow graph for the then part and at w the flow
graph for the else part is found. In this case, we have R(u) = {x,y,z}. O

Algorithm 2 in Fig. 14 reads a parallel flow graph and a mapping R : N — 2%
as described above. Based on this information it calculates an updated version
of the edge annotation mapping of the given flow graph in which faint code is
eliminated, i.e., faint instances of base statements are replaced by skip.

First the new edge annotation mapping is initialized by the original edge
annotation (Step 1) and all annotations of base edges are removed, i.e. replaced
by skip (Step 2). The rest of the algorithm restores the original edge annotation
for the non-faint base edges. The algorithm is based on the simple idea that
an instance of a base statement is not faint if and only if it can influence a
relevant value.

We explore all program points v at which at least one variable is relevant
and restore the base edges that perform a computation that can influence a
variable y that is relevant at v (Step 3). For this purpose we calculate in Steps
3.1 and 3.2 for all program points w the set

Iw] = {z | eptain = o = ¢y, Aty(cy), Aty(c,), Iy € R(v) : 7 exhibits (x,7)} .

Intuitively, I[w] contains the variables that can influence the value of a relevant
variable y at v when some computation is at w. The computation is analogous
to the one of the similar set /[w] in Algorithm 1; therefore, we omit a detailed
explanation. Step 3.3 restores the annotation of those base edges that assign
to a variable that can influence a relevant variable at v from the target node
of the base edge. Finally, Step 4 outputs the computed new edge annotation

mapping.

We conclude:

69

Theorem 58 Algorithm 2 solves the interprocedural faint code elimination
problem in parallel flow graphs relative to non-atomic interpretation of base
statements.

5.8 Run-Time

In this section we analyze the asymptotic run-time of the algorithms from the
previous sections. We do not determine very sharp estimates but show that the
algorithms run in time exponential in the number of program variables, | X|,
and polynomial in the size of the parallel flow graph. The latter is measured by
the parameters |N|, the number of program points, |E|, the number of edges,
and |Proc|, the number of procedures.

In both algorithms the bulk of the work is done in the least fixpoint computa-
tion(s). Let us, first of all, determine an asymptotic bound for the complexity
of such a fixpoint computation. As we are heading only for a rough bound, we
can assume that the least fixpoint is computed naively by standard fixpoint
iteration: starting from an assignment of the bottom value to each variable
appearing in the constraint system we iteratively determine a new assignment
to the variables by re-evaluating all constraints until stabilization. Of course
the asymptotic complexity of this naive fixpoint algorithm is bounded by the
product of the maximal number of iterations and the maximal cost of a single
step.

In each iteration except of the last one, at least one constraint variable must
change its value. As values only increase during fixpoint iteration, each con-
straint variable can change its value at most O(|X2*X*2) times, because this
is a bound for the height of AD by Lemma 29. Moreover, it is a simple count-
ing exercise to show that the complete constraint system for bridging runs (it
comprises the constraint systems for same-level runs, inverse same-level runs,
reaching runs, etc.) has O(|Proc|-|N|) constraint variables. > Thus, we can have
at most O(|Proc|-| N|-| X |2**2) iterations. This clearly is O(|Proc|-| N|-2Po(XD)
for some polynomial py(z) in z.

Let us now bound the costs of a single iteration. In each iteration we must
reevaluate all constraints. It is again a simple counting exercise to show that
the complete constraint system for bridging runs has O(|N|-|E|) constraints. ®
From Lemma 54 we know that all operations can be computed in time O (2P11XD)
for some polynomial p;(z). As the number of operations in each single con-
straint is bounded, the cost of a single iteration is thus O(|N| - |E| - 2r+(XD),

5 This asymptotic bound holds in the special case where ASS1 and ASS2 are true
as well as in the general case.
6 Again this asymptotic bound holds for both the special and the general case.

70

Summarizing:

Lemma 59 The constraint system for bridging runs can be evaluated over
domain (AD,C) in time O(|Proc| - [N|? - |E| - 220XDY for some polynomial
p(z). O

Let us now turn attention to the algorithms. Clearly, in the copy constant
detection algorithm, Algorithm 1, the bulk of the work is done in Step 1 such
that the time taken for Step 1 majorizes the time taken for the other steps.
Hence this algorithm runs in time O(|Proc| - |N|?- |E| - 2P(XD) by Lemma 59.

In the faint code elimination algorithm, Algorithm 2, the work performed in
Step 3.1 majorizes the work done in the other steps. Step 3.1 is executed at

most |N| times. Consequently, Algorithm 2 runs in time O(|Proc| - [N|? - |E] -
2p(|X\)).

Clearly, only those program variables are of interest in the algorithms that
appear in the parallel flow graph. We can thus assume without loss of gen-
erality, that all program variables in X appear in the parallel flow graph. As
the latter constitutes part of the input to all algorithm, the input size cannot
be smaller than the size of X. Obviously, the same holds for Proc, N, and F
such that the size of the input clearly bounds all the parameters appearing in
above run-time estimations. Hence all algorithms run in time exponential in
the size of the input.

Theorem 60 Algorithms 1 and 2 run in exponential time. More precisely,
Algorithm 1 runs in time O(|Proc|-|N|?-|E|-2P0XD) and Algorithm 2 in time
O(|Proc| - |[N|? - |E| - 200XD), O

Corollary 61 If base statements are interpreted non-atomically, the following
two problems can be solved interprocedurally in parallel flow graphs in expo-
nential time: (1) copy constant detection and (2) faint code elimination. O

These results raise the question whether there are also efficient algorithms for
these problems. Sadly, the answer to this question is ‘no’, unless P=NP, as we
show in the next section.

6 Intractability

We exhibit a co-NP-hardness proof by means of a reduction from the well-
known SAT-problem [33,16] that applies to both flow analysis problems. This
reduction was first presented in [13] where atomic execution of base statement
has been assumed, but it remains valid if this assumption is abandoned. Unlike
the reductions in [12] it only relies on propagation along copying assignments

71

but not on re-initialization. For ease of presentation we represent parallel
programs in this section by syntactic programs rather than flow graphs.

6.1 The SAT-Reduction

An instance of SAT is a conjunction c; A. . .Acy, of clauses cq, . . ., ¢. Each clause
is a disjunction of literals; a literal [is either a variable x or a negated variable
T, where x ranges over some set of variables X. We write X = {Z7,...,T,}
for the set of negated variables. It is straightforward to define when a truth
assignment T : X — B, where B = {tt, ff} is the set of truth values, satisfies
c1A...Ncg. The SAT problem asks us to decide for each instance c¢; A ... A¢y
whether there is a satisfying truth assignment or not.

From a given SAT instance c; A ... A ¢, with k clauses over n variables X =
{z1,...,2,} we construct a loop-free parallel program. In the program we
use k + 1 variables zg, 21, . . ., zx. Intuitively, validity of clause ¢; is related to
propagation from z;,_; to z;. For each literal | € X UX we define a statement 7
that consists of a sequential composition of assignments of the form z; := z;_;
in increasing order of 7. The assignment z; := z;_1 is in m; if and only if the
literal [makes clause 7 true. Formally, m; = 7', where

0 def _y.+
m = skip
+ def 7t 2 = 21, if clause ¢; contains [
i =
! ,
it it clause ¢; does not contain [
fori=1,..., k. Now, consider the following program 7, where | denotes non-

deterministic choice:

procedure Main;
20:=1;21:=0;...;2,:=0;
[(7ay [mzz) (|-] (o, [7)) 5
(zr := 0] skip) ; write(zy)
end

Clearly, m can be constructed from the given SAT instance ¢; A ... A ¢ in
polynomial time or logarithmic space.

It is not hard to see that the value 1 from the initialization of zy can be
propagated to the final write statement if and only if the given SAT instance
is satisfiable:

“If”: On the one hand, we can construct from a satisfying truth assignment
T : X — B a run that propagates zy’s initialization to the write-statement.

72

|zl::0,22::0,23::0|

fork

Fig. 16. The flow graph for (z1 Va2 V 23) A (21 VT2 V T3) A (T1 V x2).

In each parallel component 7., | 7z we choose the left branch 7, if T'(z;) =
tt and the right branch 7z otherwise. As 7' is a satisfying truth assignment,
there will be, for any i € {1,...,k}, at least one assignment z; := z;_1 in one
of the chosen branches. We interleave the branches now in such a way that
the assignment(s) to z; are executed first, followed by the assignment(s) to
z5 ete. This results in a propagating run.

“Only if”: On the other hand, a run can propagate the initialization value
of zg to the write-statement only via copying it from zy to zy, from z; to
z9 etc., because all assignments have the form z; := z;_;. Such a run must
contain at least one assignment z; := z;_; forall: =1,..., k. From the way
in which the non-deterministic choices are resolved in such a run we can
easily construct a satisfying truth assignment.

The arguments for both directions hold independently from the atomicity
assumption for assignment statements.

Example 62 Fig. 16 shows an example clause and program for illustration.
Assignments to different variables are shown on different levels. Intuitively a
satisfying truth assignment corresponds to a way of resolving the non-deterministic
choices in the three threads such that at each level at least one assignment is
present in one of the chosen branches. This is the case if and only if the value

73

1 from zy’s initialization may propagate to the write instruction.

It is not hard to infer from this propagation property that the given SAT
instance is satisfiable if and only if any of the following two conditions holds:

(1) zo:=11is not a faint assignment.
(2) zx is not a copy constant at the write statement.

The second point deserves additional explanation. Observe first that z; can
hold only 0 or 1 at the write-statement because all variables are initialized
by 0 or 1 and the other assignments only copy these values. Clearly, due to
the non-deterministic choice just before the write-statement, z, may hold 0
finally. Thus, 2, is a constant at the write-statement if and only if it cannot
hold 1 there. The latter obviously holds if and only if the initialization value
of zy cannot be propagated.

The program constructed in the above reduction is loop-free and does not
employ procedures. Therefore, the reduction already applies to the intrapro-
cedural problems for loop-free programs. It is easy to see that the problems can
also be solved in non-deterministic polynomial time for loop-free programs: a
non-deterministic algorithms may guess two runs that witnesses non-constancy
or a single run that witnesses non-faintness, respectively. Each of these runs
can visit any program point at most once because the program is loop-free.
Hence it can be guessed even in time linear in the program size.

These considerations prove:

Theorem 63 Independently of the atomicity assumption for base statements,
detecting copy constants and detecting faint code in loop-free parallel programs
are co-NP-complete problems.

Corollary 64 Independently of the atomicity assumption, detecting copy con-
stants, and detecting faint code are co-NP-hard problems in arbitrary parallel
programs.

7 Conclusion

Statements of parallel programs are broken into instructions of the underlying
hardware architecture prior to execution. Hence it is unrealistic to assume that
statements execute as atomic steps. In this paper, we have shown that rela-
tive to non-atomic execution precise interprocedural dependence analysis of
parallel programs is possible in sharp contrast to the situation when base state-
ment are assumed to execute atomically. Specifically, we proposed an effective
abstract domain of antichains of dependence traces which enables a precise

74

abstract interpretation of constraint systems characterizing (non-atomic) run
sets of interest in parallel programs. From the values of this abstract domain
the exhibited dependences can be read off.

The dependence traces domain provides us with a means to perform precise in-
terprocedural dependence analysis in parallel programs. We have shown how
it can be used for interprocedural detection of copy constants and elimina-
tion of faint code. Our algorithms solve the problems completely relative to
the non-atomic semantics of parallel programs. Of course, the algorithms are
sound also under the stronger execution assumption that base statements ex-
ecute atomically. However, relative to atomic execution they are incomplete,
which is indispensable in view of known undecidability results. The algorithms
have exponential worst-case run-time. Indeed, we show that detection of copy
constants and faint code elimination remain intractable problems even when
the atomic execution idealization is abandoned. This holds already for parallel
programs without loops or procedures.

We believe that refinements of the technique underlying dependence traces can
lead to practically interesting algorithms that are much more precise than ex-
isting algorithms in which interference it treated rather pessimistically. While
the run-time of the algorithms is exponential in the number of program vari-
ables, it is polynomial in the program size. Hence, they are polynomial-time
algorithms if the number of program variables is bounded. An interesting di-
rection for future research is to extend the algorithms to treat local variables.
Such algorithms should use the expensive dependence traces technique only
for tracing propagation via global variables and combine this with a cheap se-
quential technique for propagation via (thread- or procedure-) local variables.
This seems promising because most variables are local in practice.

Acknowledgements

I thank Helmut Seidl for many discussions that stimulated the research re-
ported here and helped to clarify subtle points. He invited me to work for
half a year in his research group at the University of Trier which allowed
me to elaborate these ideas. Moreover, I am indebted to Jens Knoop, Oliver
Riithing, and Bernhard Steffen who shared part of their rich knowledge of
data-flow analysis with me.

I thank the anonymous referees of TCS for their very helpful feedback that
helped to improve upon the original submission.

75

References

1]

M. Rinard, Analysis of multithreaded programs, in: P. Cousot (Ed.), Static
Analysis of Systems (SAS 2001), Vol. 2126 of Lecture Notes in Computer
Science, Springer-Verlag, 2001, pp. 1-19.

J. Knoop, B. Steffen, J. Vollmer, Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs, ACM Transactions on Programming
Languages and Systems 18 (3) (1996) 268-299.

J. Knoop, Parallel constant propagation, in: D. Pritchard, J. Reeve (Eds.), 4th
European Conference on Parallel Processing (EURO-PAR ’98), Vol. 1470 of
Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 445-455.

H. Seidl, B. Steffen, Constraint-based inter-procedural analysis of parallel
programs, Nordic Journal of Computing 7 (4) (2001) 371 — 400.

J. Esparza, J. Knoop, An automata-theoretic approach to interprocedural data-
flow analysis, in: W. Thomas (Ed.), Foundations of Software Science and
Computation Structure (FoSSaCS’99), Vol. 1578 of Lecture Notes in Computer
Science, Springer-Verlag, 1999, pp. 14-30.

J. Esparza, A. Podelski, Efficient algorithms for pre* and post* on
interprocedural parallel flow graphs, in: 27th ACM International Conference
on Principles of Programming Languages (POPL), 2000, pp. 1-11.

S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan
Kaufmann Publishers, San Francisco, California, 1997.

C. Fischer, R. LeBlanc, Crafting a Compiler, Benjamin/Cummings Publishing
Co., Inc., Menlo Park, CA, 1988.

R. Giegerich, U. Moncke, R. Wilhelm, Invariance of approximative semantics
with respect to program transformations, in: GI 11. Jahrestagung, Vol. 50 of
Informatik Fachberichte, Springer-Verlag, 1981, pp. 1-10.

[10] M. Weiser, Program slicing, IEEE Transactions on Software Engineering 10 (4)

(1984) 352-357.

[11] F. Tip, A survey of program slicing techniques, Journal of Programming

Languages 3 (3) (1995) 121-189.

[12] M. Miiller-Olm, H. Seidl, On optimal slicing of parallel programs, in: 33th

Annual ACM Symposium on Theory of Computing (STOC), ACM SIGACT,
ACM Press, Hersonissos, Crete, Greece, 2001, pp. 647-656.

[13] M. Miiller-Olm, The complexity of copy constant detection in parallel programs,

in: A. Ferreira, H. Reichel (Eds.), 18th Annual Symposium on Theoretical
Aspects of Computer Science (STACS 2001), Vol. 2010 of Lecture Notes in
Computer Science, Springer, 2001, pp. 490-501.

76

[14] A. Bouajjani, P. Habermehl, Constrained properties, semilinear systems, and
Petri nets, in: U. Montantari, V. Sassone (Eds.), 7th International Conference
on Concurrency Theory (CONCUR ’96), Vol. 1119 of Lecture Notes in
Computer Science, Springer-Verlag, 1996, pp. 481-497.

[15] G. Ramalingam, Context-sensitive synchronization-sensitive analysis is
undecidable, ACM Transactions on Programming Languages and Systems
22 (2) (2000) 416-430.

[16] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[17] D. S. Johnson, A catalog of complexity classes, in: J. van Leeuwen (Ed.),
Handbook of Theoretical Computer Science. Volume A: Algorithms and
Complexity, Elsevier Science Publishers B.V., 1990, pp. 67-161.

[18] F. Nielson, H. R. Nielson, C. Hankin, Principles of Program Analysis, Wiley
Professional Computing, Springer-Verlag, 1999.

[19] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[20] M. S. Hecht, Flow Analysis of Computer Programs, Elsevier North-Holland,
1977.

[21] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints, in: 4th ACM
Symposium on Principles of Programming Languages (POPL), Los Angeles,
California, 1977, pp. 238-252.

[22] P. Cousot, R. Cousot, Abstract interpretation frameworks, J. Logic Computat.
4 (2) (1992) 511-547.

[23] D. Grunwald, H. Srinivasan, Data flow equations for explicitly parallel
programs, SIGPLAN Notices 28 (7).

[24] J. C. M. Baeten, W. P. Weijland, Process Algebra, Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 1990.

[25] D. Lugiez, P. Schnoebelen, The regular viewpoint on PA-processes, Theoretical
Computer Science 274 (1-2) (2002) 89-115.

[26] G. D. Plotkin, A structured approach to operational semantics, Tech. Rep.
DAIMI FN-19, Aarhus University, Comput. Sci. Dept. (1981).

[27] inmos limited, Transputer Instruction Set — A Compiler Writer’s Guide, 1st
Edition, Prentice Hall International, 1988.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, The
MIT Press, 1990.

[29] K. R. Apt, G. D. Plotkin, Countable nondeterminism and random assignment,
Journal of the ACM 33 (4) (1986) 724-767.

7

[30] Mathematics of Program Construction Group, Fixed-point calculus,

Information Processing Letters 53 (3) (1995) 131-136.

[31] M. Sagiv, T. Reps, S. Horwitz, Precise interprocedural dataflow analysis with
applications to constant propagation, Theoretical Computer Science 167 (1-2)

(1996) 131-170.

[32] S. Horwitz, T. Reps, M. Sagiv, Demand interprocedural dataflow analysis,
Tech. Rep. TR-~1283, Computer Sciences Department, University of Wisconsin,

Madison, WI (August 1995).

[33] S. A. Cook, The complexity of theorem-proving procedures, in: Proc. 3rd Ann.
ACM Symp. on Theory of Computing (STOC), 1971, pp. 151-158.

78

