
Conflict Analysis of Programs with Procedures,

Dynamic Thread Creation, and Monitors

Peter Lammich and Markus Müller-Olm

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

peter.lammich@uni-muenster.de and mmo@math.uni-muenster.de

Abstract. We study conflict detection for programs with procedures,
dynamic thread creation and a fixed finite set of (reentrant) monitors.
We show that deciding the existence of a conflict is NP-complete for our
model (that abstracts guarded branching by nondeterministic choice)
and present a fixpoint-based complete conflict detection algorithm. Our
algorithm needs worst-case exponential time in the number of monitors,
but is linear in the program size.

1 Introduction

As programming languages with explicit support for parallelism, such as Java,
have become popular, the interest in analysis of parallel programs has increased
in recent years. A particular problem of parallel programs are conflict situations,
where a program is simultaneously in two states that should exclude each other.
An example is a data race, where a memory location is simultaneously accessed
by two threads, at least one of the accesses being a write access. Particular
challenges for analyzing conflicts in a language like Java are dynamic creation
of an unlimited number of threads, synchronization via reentrant monitors, and
indirect referencing of monitors by their association to objects. It’s unrealistic to
design an interprocedural analysis that meets all these challenges and is precise.
Therefore, this paper concentrates on the first two challenges. More specifically,
we develop an analysis that decides the reachability of a conflict situation in
(nondeterministic) programs with recursive procedure calls, dynamic thread cre-
ation and synchronization via a fixed finite set of reentrant monitors that are
statically bound to procedures. We also show this problem to be NP-complete.

Many papers on precise program analysis, e.g. [16, 13, 5], model concurrency
via parbegin/parend blocks or parallel procedure calls or assume a fixed set
of threads. However, thread-creation cannot be simulated by parbegin/parend
for programs with procedures [3]. Precise analysis for programs with thread-
creation is treated e.g. in [3, 11]. All the papers mentioned above completely
abstract away synchronization. Due to a well-known result of Ramalingam [15],
context- and synchronization-sensitive analysis is undecidable. However, Rama-
lingam considered rendezvous style synchronization which is more powerful than
synchronization via monitors studied in this paper. The undecidability border

2 Peter Lammich and Markus Müller-Olm

for various properties and synchronization primitives in models with a fixed set
of threads is studied more closely in [8]. An interesting approach to address the
indirect referencing of monitors extends shape analysis techniques to a concur-
rent scenario (e.g. [17]). However, this approach does not come with a precision
theorem but assesses precision empirically.

The work that comes closest to our goals is by Kahlon et al. [9, 7]. They
study analyses for a fixed set of threads communicating via (statically referenced)
locks, where each thread is modeled by a pushdown system (which corresponds
to programs with recursive procedures). In their model, threads can execute
lock/unlock statements for a fixed finite set of locks in a nested fashion, i.e.
each thread can only release the lock it acquired last and that was not yet
released. Without this nestedness constraint data race detection is undecidable
[9, 8]. Moreover, locks are not reentrant in their model, i.e. a thread may not
reacquire a lock that it possesses already1. In contrast, our model uses reentrant
monitors (i.e. ,,synchronized”-blocks). Monitors correspond to a structured use
of nested locks. A monitor can be interpreted as a lock that is acquired upon
entering a synchronized block and released when leaving the synchronized block.
While synchronized blocks start and end in the same procedure, the lock and
unlock statements in [9, 7] can occur anywhere in the program. However, since
languages like Java also use synchronized blocks, we believe this restriction being
rather harmless.

Our contributions beyond the work of [9] are as follows: We handle thread
creation instead of assuming a fixed set of threads; we handle reentrant moni-
tors instead of non-reentrant nested locks; and we use fixpoint based instead of
automata based techniques. The running time of our algorithm depends only
linearly from the program size, independently of the number of threads ac-
tually created. In contrast, the running time of the algorithm of [9] grows at
least quadratically with the (statically fixed) number of threads. Moreover, we
show conflict analysis to be NP-complete for our model, where NP-hardness also
transfers to models with a fixed set of threads including the one of Kahlon et al.,
which justifies the exponential dependency of the running time of the analysis
algorithms from the number of monitors.

This paper is organized as follows: In Section 2 the program model and its se-
mantics is defined. In Section 3, we define an alternative operational semantics
that captures only particular schedules, called restricted executions. We show
that any reachable configuration is also reachable by a restricted execution. In
Section 4, we characterize restricted executions by a constraint system. In Sec-
tion 5, we interpret this constraint system over an abstract domain, obtaining a
fixpoint based conflict analysis algorithm needing exponential time in the num-
ber of monitors and linear time in the program size. As part of the abstract
domain, we use the concept of acquisition histories [9], adapted to reentrant
monitors and to a fixpoint based analysis context. Additionally, we show that
the conflict analysis problem is NP-complete by reducing 3SAT to the single

1 One can simulate reentrant locks by non-reentrant ones, but at the cost of a worst-
case exponential blowup of the program size

Conflict Analysis 3

node reachability problem (which obviously can be reduced to conflict reacha-
bility) and describing a polynomial time nondeterministic algorithm to decide
the reachability of a conflict. Finally, in Section 6, we give a conclusion and an
outlook to further research.

2 Program Model

Flowgraphs. We describe programs by nondeterministic interprocedural flow-
graphs with monitors. A program Π = (P,M, (Gp, m(p))p∈P) consists of a finite
set P of procedure names with main ∈ P and a finite set M of monitor names.
Each procedure p ∈ P, is associated with a flowgraph Gp, describing the body
of the procedure, and a set of monitors m(p) ⊆ M describing the monitors the
procedure synchronizes on, i.e. the monitors in m(p) are acquired upon entering
p and released upon returning from p. A flowgraph Gp = (Np, Ep, ep, rp) consists
of a finite set Np of control nodes, a set Ep ⊆ Np×LEdge×Np of labeled edges, and
distinguished entry and return nodes ep, rp ∈ Np. Edges are labeled with either
base, call, or spawn labels: LEdge = {base} ∪ {call p | p ∈ P} ∪ {spawn p | p ∈ P}.
Intuitively, base edges model basic instructions. We leave there structure unspec-
ified as we will define conflicting situations on the basis of the control state of the
program rather than by the executed instructions. Call edges model (potentially
recursive) procedure calls and spawn edges model thread creation. As usual, we
assume Np ∩ Np′ = ∅ for p 6= p′ ∈ P and define N :=

⋃
p∈P Np and E :=

⋃
p∈P Ep.

We call a procedure p ∈ P initial, if it is the main procedure (p = main) or a pro-
cedure started by a spawn edge (∃u, v.(u, spawn p, v) ∈ E). In order to avoid the
(unrealistic) possibility that a thread can allocate monitors in the moment it is
created, we assume that initial procedures do not synchronize on any monitors.
Otherwise, the analysis problem would be more complex (PSPACE-hard). For
the rest of this paper, we assume a fixed program Π = (P,M, (Gp, m(p))p∈P).

In order to simplify the definition of restricted execu-
tions in Section 3, we agree on some further conventions:
For each initial procedure p we have ep 6= rp and there is
a procedure q such that Ep = {(ep, call q, rp)}, eq 6= rq,
and Eq ∩ {(u, l, rq) | u ∈ Nq ∧ l ∈ LEdge} = ∅, i.e. the
return node of q is isolated. These syntactic restrictions
guarantee that the execution of any thread starts with
a call to a procedure that will never return. However,

e

r

 call x

x : {}

x

x t

 call x

x : {}

xe

xr x

0

0

0

1

1

1

1

Fig. 1: Starter proce-
dures.

they do not limit the expressiveness of our model, since we can always rewrite
a program to one with the same set of conflicts that satisfies these restrictions,
e.g. by introducing starter procedures x0 and x1 for every initial procedure x
as illustrated in Fig. 1 and replacing spawn x by spawn x0, as well as main by
main0. Note that reaching control node tx models termination of a thread: Ar-
rived there, it holds no monitors and cannot make any steps.

The flowgraph depicted in Fig. 2 is used as a running example throughout
this paper. Its main procedure is a0. For better readability, the x0 and x1 proce-
dures (for x ∈ {a, p, r}) as well as the base edge labels are not shown. First of all,

4 Peter Lammich and Markus Müller-Olm

let us illustrate some effects our analysis has to cope with. Consider nodes 5 and
9. In order to reach 5, we have to call p and then pass through t and in order to
reach 9, we have to call q and then pass through s. If one thread calls p first, it is
in monitor m1, and no other thread can pass through s any more. Vice versa, if q
is called first, no other thread can pass through t any more. Hence nodes 5 and 9
are not simultaneously reachable, although the sets of monitors held at 5, {m1},
and 9, {m2}, are disjoint. We will use the concept of acquisition histories [9]
to handle this effect. Now
consider nodes 3 and C.
They are simultaneously
reachable, because proce-
dure q can create a thread
starting with r0, and after
q has returned to node 3,
the new thread can pass
through procedure t and
reach node C. This illus- Fig. 2: Example flowgraph with main = a0.

trates that a thread survives the procedure it is created in. In order to cope with
this, we need complex procedure summaries. Finally, consider nodes 8 and C.
They are not simultaneously reachable, as the thread starting at r0 cannot pass
through procedure t until the initial thread has released monitor m2. However,
if we had no thread creation, but two initial threads of type main and r, the
nodes 8 and C would be simultaneously reachable. This illustrates that conflicts
in our model with thread creation cannot (easily) be reduced to models with a
fixed set of initial threads (as covered by Kahlon et al. [9, 7]).

Operational Semantics. We use the following multiset and list notations: mset(R)
is the set of multisets of elements from R, ∅ is the empty multiset, {x} is the
multiset containing x once and R1 ⊎R2 is the union of the multisets R1 and R2.
The ambiguity between set and multiset notation is resolved from the context.
R∗ is the set of lists of elements from R, ε is the empty list, [e1, . . . , ek] is the
list of elements e1, . . . , ek, and w1w2 is the concatenation of the lists w1 and w2.

The operational semantics is described as a labeled transition system
·

−→ ⊆
Conf × LLE × Conf, where Conf := {〈s, c〉 | s ∈ N∗, c ∈ mset(N∗), cons({s} ⊎ c)}
is the set of monitor consistent program configurations and LLE := {lx|l ∈ L ∧
x ∈ {L, E}} with L := LEdge ∪ {ret} is the set of transition labels. A program
configuration 〈s, c〉 ∈ Conf is a pair of a local thread’s configuration s and a
multiset c of environment threads’ configurations. A thread’s configuration is
modeled as a stack of control nodes, the top element being the current control
node and the elements deeper in the stack being stored return addresses. We
model stacks as lists with the top of the stack being the first element of the
list. For a control node u ∈ Np, we define m(u) := m(p). For a stack s ∈ N∗ we
define m(s) :=

⋃
n∈s m(n), for c ∈ mset(N∗), we define m(c) =

⋃
s∈c m(s) and for

〈s, c〉 ∈ Conf we define m(〈s, c〉) := m({s}⊎ c). A multiset of stacks c ∈ mset(N∗)
is monitor consistent, if no two threads are inside the same monitor. This is
expressed by the predicate cons(c) :⇔ ∄s1, s2, ce. c = {s1} ⊎ {s2} ⊎ ce ∧ m(s1) ∩

Conflict Analysis 5

m(s2) 6= ∅. Transitions are labeled with the edge that induced the transition or
with the ret label for a procedure return. Additionally, we record whether the
transition was made on the local thread (·L) or on some environment thread
(·E). This distinction is needed when characterizing certain sets of executions by
a constraint system in order to distinguish the monitors used by the environment
threads from the monitors used by the local thread. We define

·
−→ to be the

least set satisfying the following rules:

[base] (u, base, v) ∈ E : 〈[u]r, c〉
baseL

−→〈[v]r, c〉

[call] (u, call q, v) ∈ E : 〈[u]r, c〉
(call q)L

−→ 〈[eq, v]r, c〉 if m(q) ∩ m(c) = ∅

[ret] q ∈ P : 〈[rq]r, c〉
retL

−→〈r, c〉

[spawn] (u, spawn q, v) ∈ E : 〈[u]r, c〉
(spawn q)L

−→ 〈[v]r, {[eq]} ⊎ c〉

[env] 〈s, {r} ⊎ c〉
lE

−→〈s, {r′} ⊎ c′〉 if 〈r, {s} ⊎ c〉
lL

−→〈r′, {s} ⊎ c′〉

The [base], [call], and [spawn]-rules model the behavior of the corresponding
edges. Returning from procedures is modeled by the [ret]-rule. Note that there is
no flowgraph edge corresponding to a return step. Finally, the [env]-rule defines
the environment steps.

We overload
·

−→ with its reflexive transitive closure (〈s, c〉
w

−→〈s′, c′〉 with

w ∈ LLE
∗) and write

∗
−→ for the execution of an arbitrary path. For x ∈ {L, E}

and w = [l1, . . . , ln] ∈ L∗ we define wx := [lx1 , . . . , lxn] and write c
w

−→c′ as a

shorthand notation for 〈ε, c〉
wE

−→〈ε, c′〉. As the empty stack cannot make any

steps and holds no monitors, it does not influence the execution. Thus c
l

−→c′

simply is a transition without explicit local thread. Our semantics preserves
monitor consistency of the configurations as the monitor side condition in the
[call]-rule ensures that a thread can only enter a procedure if no other thread is
inside a monitor the procedure synchronizes on.

The monitors used by a path are the monitors of all procedures that are called
on steps of this path: For l ∈ L, we define m(l) := m(p) if l = call p and m(l) = ∅
otherwise. We overload this definition for sequences of labels (m(w) :=

⋃
l∈w m(l)

for w ∈ L∗). For sequences with L/E-labeling w ∈ LLE
∗, we define mL(w) to be

the set of monitors used by local steps and mE(w) to be the set of monitors used
by environment steps.

Reachability of a Conflict. For a multiset C = {U1, . . . , Un} ∈ mset(2N) of
sets of nodes and a multiset of stacks c ∈ mset(N∗), we define atC(c) if and
only if c = ce ⊎

⊎
i=1...n{[ui]ri} for some ce ∈ mset(N∗), (ri ∈ N∗)i=1...n, and

(ui ∈ Ui)i=1...n, i.e. for each i, c contains an own thread with current control
node in Ui. We also define atC(〈s, c〉) :⇔ atC({s} ⊎ c). The conflict analysis
problem for two sets of control nodes U, V ⊆ N is to decide the question: Is there
an execution {[emain]}

∗
−→c with at{U,V }(c)? The reachability problem for a single

set U is to decide: Is there an execution {[emain]}
∗

−→c with at{U}(c)?

6 Peter Lammich and Markus Müller-Olm

Example 1. In the following example executions, we abbreviate call p by p and
spawn p by +p. Fig. 3a illustrates an execution of the flowgraph from Fig. 2. The
execution starts with a single thread at the entry point of a0. It calls procedures
a1, a, and then passes through procedure q. On its way, it spawns two other
threads p0 and r0. Their steps are interleaved with the initial thread’s ones. This
execution can be formally described as 〈ea0

, ∅〉
w

−→c′ with transition labels w =
[a1

L, aL, +p0
L, qL, p1

E, +r0
L, r1

E, rE, baseL, retL, tE, pE, retE] and end configuration
c′ = 〈[3, ta, ra0

], {[C, tr, rr0
], [4, tp, rp0

]}〉. Note that this execution witnesses the
conflict between nodes 3 and C mentioned above.

a
a1 a q+p

0 +r
0

p
1[e]

0

r1 r

base ret

t

p

ret
[e]

0

[3,t ,r]a 0

[C,t ,r]r r0

[4,t ,r]p p0

0
[e]a

p

r

a 1 a q+p
0

+r
0

p 1

r

base ret

t

p

ret

0
[e]a

[e]
0r

[e]
0

p

r1

a)

b)

a[3,t ,r]a 0

[C,t ,r]r r0

[4,t ,r]p p0

Fig. 3. Sample execution and corresponding restricted execution.

3 Restricted Schedules

In this section we define a restricted operational semantics that only allows a
subset of the executions of the original semantics, but preserves the set of reach-
able configurations, and thus the reachable conflicts. The restricted semantics
is better suited for characterization by a constraint system than the original
semantics (cf. Section 4).

While in an execution of the original semantics, context switches may occur
after each step, the restricted semantics only allows context switches after a
thread’s last step and before procedure calls that do not return for the rest of
the execution. Due to the syntactic convention that assures that the execution of
any thread starts with a non-returning call, an atomically scheduled sequence,
called a macrostep, consists of an initial procedure call, followed by a same-
level path. A same-level path is a path with balanced calls and returns, i.e. its
execution starts and ends at the same stack level, and does not fall below the
initial stack level at any point. We define the transition relation of the restricted
semantics

·
=⇒ ⊆ Conf × MStep × Conf with MStep := {([call p]w̄)x | p ∈ P, w̄ ∈

L∗, x ∈ {L, E}} as the least set satisfying the following rules:

[macro] 〈s, c〉
([call p]w̄)L

=⇒ 〈[v]r′, c′〉 if 〈s, c〉
(call p)L

−→ 〈[ep]r
′, c〉 ∧ 〈[ep], c〉

w̄L

−→〈[v], c′〉

[env] 〈s, {r} ⊎ c〉
lE

=⇒〈s, {r′} ⊎ c′〉 if 〈r, {s} ⊎ c〉
lL

=⇒〈r′, {s} ⊎ c′〉

Conflict Analysis 7

The [macro]-rule captures the intuition of a macrostep of the local thread as
described above and the [env]-rule infers the environment steps. Note that a

same-level execution is written as 〈[u], c〉
w̄L

−→〈[v], c′〉. As monitors are reentrant,

it also implies the executions 〈[u]r′, c〉
w̄L

−→〈[v]r′, c′〉 for any stack r′, s.t. 〈[u]r′, c〉

is monitor consistent. We extend
·

=⇒ to its reflexive transitive closure, write
∗

=⇒

for the execution of an arbitrary path, and define c
w

=⇒c′ := 〈ε, c〉
wE

=⇒〈ε, c′〉. Note
that a transition is then labeled by a sequence of macrosteps w = [lx1

1 , . . . , lxn
n] ∈

MStep∗ with x1, . . . , xn ∈ {L, E} where each macrostep li ∈ MStep (1 ≤ i ≤ n)
is labeled as either a local (lLi) or an environment (lEi) step.

As macrosteps always start with a call that does not return for the rest of the
execution, the set of allocated monitors does not decrease during an execution:

Theorem 2. An execution 〈s, c〉
w

=⇒〈s′, c′〉 implies m(〈s, c〉) ⊆ m(〈s′, c′〉).

Starting with an initial procedure, the sets of configurations reachable by exe-
cutions of the original semantics and of the restricted semantics are the same:

Theorem 3. Let p ∈ P be an initial procedure. A configuration can be reached
from p by an execution of the original semantics if and only if it can be reached
by an execution of the restricted semantics. Formally: {[ep]}

∗
−→c′ ⇔ {[ep]}

∗
=⇒c′.

The proof of this theorem is done in Appendix A.

Example 4. Fig. 3b illustrates a restricted execution that reaches the same con-

figuration c′ as the execution from Fig. 3a. It is described as 〈ea0
, ∅〉

w′

=⇒c′ with
w′ = [[a1]

L, [a, +p0, q, +r0, base, ret]L, [r1]
E, [r, t, ret]E, [p1]

E, [p]E].

Monitor Consistent Interleaving. For a single macrostep l = [call p]w̄, we define
ent(l) := m(p) and pass(l) = m(w̄), i.e. the monitors that are entered and never
exited by a macrostep and the monitors that are passed (entered and exited
again), respectively. We inductively define the monitor consistent interleaving
operator ⊗ : MStep∗ × MStep∗ → MStep∗ by ε ⊗ w = w ⊗ ε = {w} and [l1]w1 ⊗
[l2]w2 :=

⋃
i=1,2{[li]w | w ∈ wi ⊗ [l3−i]w3−i ∧ ent(li) ∩ m([l3−iw3−i]) = ∅}. Note

that the ⊗-operator is not aware of the L/E-labeling of its operands, it just copies
the labeling to the result. Monitor consistent interleaving is a restriction of the
usual interleaving to those interleavings where no monitor is used by one path if
it has been entered by the other path. For example, in the flowgraph of Fig. 2, we
have [[r, t, ret]E] ⊗ [[q]L] = {[[r, t, ret]E, [q]L]}. Note that the macrostep sequence
[[q]L, [r, t, ret]E] is not a monitor consistent interleaving, as q enters monitor m2

that inhibits execution of the macrostep [r, t, ret]E. We show that the ⊗-operator
captures the behavior of our interleaving semantics:

Theorem 5. For configurations 〈s, c1 ⊎ c2〉, 〈s′, c′〉 ∈ Conf and a macrostep

path w ∈ MStep∗, we have 〈s, c1 ⊎ c2〉
w

=⇒〈s′, c′〉 if and only if there exist w1, w2 ∈

MStep∗ with w ∈ w1⊗wE
2 and c′1, c

′
2 ∈ mset(N∗) with c′ = c′1⊎c′2, 〈s, c1〉

w1=⇒〈s′, c′1〉,

c2
w2=⇒c′2, m(〈s, c1〉)∩m(c2) = ∅, m(〈s, c1〉)∩m(w2) = ∅, and m(c2)∩m(w1) = ∅.

8 Peter Lammich and Markus Müller-Olm

A proof sketch of this Theorem is given in Appendix B. Intuitively, this theorem
states that we can split an execution by the threads in its starting configuration
into interleavable executions, and, vice versa, can combine interleavable execu-
tions into one execution. Note that the interleaving operator ⊗ only ensures that
monitors allocated by one execution do not interfere with the monitors used by
the other execution, but is not aware of the monitors of the start configura-
tions. Hence, the last three conditions in this theorem ensure that the resulting
combined configuration is monitor consistent and that the monitors of the start
configuration of one execution do not interfere with the monitors used by the
other execution.

Example 6. Consider the executions 〈[7], ∅〉
[s]L

=⇒〈[D, 9], ∅〉 and {[4]}
[t]E

=⇒{[E, 5]} of
the flowgraph in Fig. 2. Although w := [[s]L, [t]E] ∈ [[s]L] ⊗ [[t]E], there is no

execution 〈[7], [4]〉
w

=⇒〈[D, 9], {[E, 5]}〉, as m({4}) ∩ m([[s]L]) = {m1} 6= ∅.

Note that Theorem 5 is asymmetric in the sense that it relates a path w1 from
a configuration with explicit local thread 〈s1, c1〉 and a path w2 from a configu-
ration without explicit local thread c2. By setting s1 = ε, one gets a symmetric
version for two paths without explicit local threads.

4 Constraint Systems

In this section we develop a constraint system based characterization of restricted
executions starting at a single control node. For a procedure p ∈ P, we want to
represent all executions starting with a call of p and reaching some configuration
〈s, c〉. However, we omit the initial procedure call in order to make the execution
independent from the monitors held at the call site. The representation of such
an execution, called a reaching triple, is a triple of the first macrostep’s same-level
path, the remaining macrosteps, and the reached configuration:

Rop[p] := {(w̄, w, 〈s, c〉) | ∃ũ, c̃. 〈[ep], ∅〉
w̄L

−→〈[ũ], c̃〉
w

−→〈s, c〉}

The procedure summary information Sop[u] is collected for each control node
u in a forwards manner; thus the actual summary for procedure p is Sop[rp].
It contains triples of a same-level path w̄ from the procedure’s entry node to
u, a macrostep path w of the threads spawned during the execution of the
same-level path and the configuration c reached by those threads: Sop[u] :=

{(w̄, w, 〈ε, c〉) | ∃c̃. 〈[ep], ∅〉
w̄L

−→〈[u], c̃〉 ∧ 〈ε, c̃〉
w

−→〈ε, c〉}. Note that an artificial
ε-component is included in the entries of Sop[u] in order to have entries of the
same form in Sop and Rop. Thus we have Rop[p], Sop[u] ⊆ D for D := L∗ ×
MStep∗×Conf. This allows us to handle these sets more uniformly. The last two
elements of a procedure-summary triple collect information about steps that
may be executed after the procedure has returned. This accounts for the fact
that spawned threads survive the procedure they where created in. Note how
restricted schedules reduce the complexity here: If we would collect arbitrarily

Conflict Analysis 9

scheduled executions, we would have to interleave a prefix of the steps of the
created threads with the same-level path and record the suffix in the second
component. This would complicate the constraint system and also the monitor
consistent interleaving operator.

Both, the reaching and the same-level information have a closure property,
that results from the fact that the empty path is always executable. Formally,
Rop[p], Sop[u] ∈ LR ⊆ 2D with LR := {X | ∀(w̄, w, 〈s, c〉) ∈ X. ∃s̃, c̃. (w̄, ε, 〈s̃, c̃〉) ∈
X}. This closure property is important for the abstraction done later, as it allows
us to ignore steps that are not necessary to reach the conflict. Moreover, we have
Sop[u] ∈ LS ⊆ LR for LS := {X ∈ LR | ∀(w̄, w, 〈s, c〉) ∈ X. s = ε}. Both LR and
LS ordered by set inclusion are complete sub-lattices of (2D,⊆).

Example 7. The executions 〈[7], ∅〉
w̄L

1−→〈[9], ∅〉, 〈[1], ∅〉
+p0

L

−→〈[2], {[ep0
]}〉, and {[ep0

]}
w2=⇒{[5, tp, rp0

]} with w̄1 := [s, ret] and w2 := [[p1]
E, [p, t, ret]E] of the flowgraph

from Fig. 2 give rise to the reaching triples Tr1 := (w̄1, ε, 〈[9], ∅〉) ∈ Rop[q] and

Tr2 := ([+p0], w2, 〈ε, {[5, tp, rp0
]}〉) ∈ Sop[2]. Moreover, as {[ep0

]}
ε

=⇒{[ep0
]} is

also a valid execution, we have ([+p0], ε, 〈ε, {[ep0
]}〉) ∈ Sop[2], witnessing the

closure property.

We characterize Rop and Sop as the least solution of the following system of
inequations (constraint system), where the variables (R[p])p∈P range over LR

and (S[u])u∈N range over LS .

[REMPTY] u ∈ Np : R[p] ⊇ S[u]|¬m(p) ∗ {(ε, ε, 〈[u], ∅〉)}
[RCALL] (u, call q, v) ∈ Ep : R[p] ⊇ S[u]|¬m(p) ∗ ((u, call q, v); R[q])
[SEMPTY] p ∈ P : S[ep] ⊇ {ε, ε, 〈ε, ∅〉}
[SBASE] (u, base, v) ∈ Ep : S[v] ⊇ S[u] ∗ base

[SCALL] (u, call q, v) ∈ Ep : S[v] ⊇ S[u] ∗ call q ∗ S[rq] ∗ ret

[SSPAWN] (u, spawn q, v) ∈ Ep : S[v] ⊇ S[u] ∗ spawn q ∗ env(R[q])

Here l is an abbreviation of {([l], ε, 〈ε, ∅〉)} for l ∈ {base, call q, ret, spawn q}. The
operator ·|¬M : LS → LS is defined by X |¬M := X∩{(w̄, w, 〈s, c〉) | mE(w)∩M =
∅}. The operators (u, call q, v); · : LR → LR, env(·) : LR → LS , and ∗ : LS ×LR →
LR are the natural extensions to sets of the following definitions:

(u, call q, v); (w̄, w, 〈s, c〉) := {(ε, ε, 〈[u], ∅〉)}∪
{(ε, [([call q]w̄)L]w, 〈s[v], c〉)}|¬m(v)

env(w̄, w, 〈s, c〉) := (ε, w!E, 〈ε, {s} ⊎ c〉)
(w̄1, w1, 〈ε, c1〉) ∗ (w̄2, w2, 〈s2, c2〉) := {(w̄1w̄2, w, 〈s2, c1 ⊎ c2〉) | w ∈ w1 ⊗ w2}

Here, the expression w!E is defined as the relabeling of all steps in w to environ-
ment steps. It is straightforward to see that the operators are well-defined w.r.t.
their specified signatures and that they are monotonic. Moreover, it is easy to
see that X ∗ Y ∈ LS for X, Y ∈ LS . Therefore, we can use ∗ also as an operator
of type LS × LS → LS as done in the constraints for S.

Now we explain the constraints and operators: The main work is done by the
∗-operator which is generalized concatenation. It concatenates the same-level

10 Peter Lammich and Markus Müller-Olm

components of its operands, interleaves the macrostep components, and joins
the reached configurations. A reaching triple in R[p] is constructed by regard-
ing a same-level path to some node u ∈ Np, represented by a summary triple
from S[u].2 We distinguish the cases whether the local thread stays at node u
([REMPTY]) or whether it performs further macrosteps ([RCALL]). In the for-
mer case, we append the triple (ε, ε, {[u], ∅}). This sets the stack reached by
the local thread to [u]. As we are not going to return from procedure p any
more, we have to filter out triples that use monitors of procedure p in steps from
spawned threads (environment steps). This is done by the ·|¬m(p)-operation. Note
that these monitors may be used in local steps, as prepending the call renders
the subsequent uses to be reentering. In the latter case, we find a call edge of
the form (u, call q, v), as macrosteps always start with a procedure call. The
(u, call q, v); R[q]-operation constructs a macrostep path from a reaching triple
in R[q], by adding the call edge and filtering out triples whose monitors con-
flict with the monitors m(v) held at the call site. Note that we also include a
triple for the empty path in the result of the (u, call q, v); ·-operator, in order
to make it preserve the closure property. The [SEMPTY]-constraint accounts
for the empty path from the beginning of a procedure and the [SBASE]- and
[SCALL]-constraints propagate information over base and call edges respectively.
The [SSPAWN]-constraint describes the effect of a spawn edge. The steps of the
spawned thread are constructed from the R[q]-information. From the point of
view of the thread executing the spawn edge, they are environment steps. The
env-operation does the necessary L/E-relabeling. Note that the same-level com-
ponents of triples in R[q] are always empty, because due to our conventions a
spawned procedure begins with a non-returning call. Hence, the env-operator ig-
nores the same-level path component of its operand. By the well-known Knaster-
Tarski fixpoint theorem the above constraint system has a least solution. In the
following, R and S refer to the components of the least solution.

Theorem 8 (Correctness). The least solution (R, S) is equal to the opera-
tional characterization, i.e. R[p] = Rop[p] and S[u] = Sop[u] for p ∈ P, u ∈ N.

The proof is done by showing that (for each variable) the operational character-
ization is a subset of the least solution of the constraint system, and, vice versa,
that the least solution of the constraint system is a subset of the operational
characterization. The former direction is done by showing that the operational
characterization is also a solution of the constraint system, the latter direction is
shown by induction on the length of the paths in a reaching triple. Appendix C
sketches the proof in more detail.

5 Abstractions

In this section, we develop an abstract interpretation of the constraint system
over a finite domain that allows us to do conflict analysis by effective fixpoint

2 Re-using the procedure summary information to describe initial segments of paths
is a common technique to save redundant constraints.

Conflict Analysis 11

computation. First, we briefly recall the concept of acquisition histories and
describe our abstract domain and the abstract operators. We then analyze the
running time of the resulting algorithm and show that the conflict detection
problem is NP-complete.

Acquisition Histories. The concept of acquisition histories was introduced by
Kahlon, Ivancic, and Gupta [9, 7] to decide the interleavability of executions
allocating locks in a well-nested fashion, but can also be applied to our reentrant
monitors. The idea of acquisition histories is that two executions w1 and w2 are
interleavable if and only if there is no conflicting pair of monitors m1, m2, that is
w1 enters m1 and then uses m2 and, vice versa, w2 enters m2 and then uses m1.
We define the set of acquisition histories by H := {h : M → 2M | ∀m. h(m) =
∅ ∨ m ∈ h(m)}. Intuitively, an acquisition history maps all monitors m that
are entered during an execution to the set of all monitors that are used after
or in the same step as entering m. Hence we can define interleavability of two
acquisition histories as h1 ∗ h2 :⇔ ∄m1, m2. m2 ∈ h1(m1) ∧ m1 ∈ h2(m2).
In order to construct the acquisition history of a path backwards, we define
the operator ·; · : 2M × 2M × H → H, that prepends a macrostep to an
acquisition history: ((Me, Mp); h)(m) := if m ∈ Me then Me ∪ Mp else h(m).
Intuitively, Me is the set of monitors entered by the prepended macrostep and
Mp is the set of monitors used in the whole path, including the prepended
step. We define the acquisition history of a macrostep path by: αah(ε) := λm.∅
and αah([l]w) := (ent(l), pass(l) ∪ m(w)); αah(w). We define a pointwise subset
ordering on acquisition histories by h � h′ :⇔ ∀m. h(m) ⊆ h′(m). Obviously,
this is an ordering and we have h � h′∧h′ ∗h2 ⇒ h∗h2, i.e. a smaller acquisition
history is interleavable with everything a bigger one is. The following theorem
states that acquisition histories can be used to decide whether two paths are
interleavable. It can be proven along the lines of [9].

Theorem 9. For macrostep paths w1, w2 ∈ MStep∗ we have w1 ⊗w2 6= ∅ if and
only if αah(w1) ∗ αah(w2).

Abstract Domain. Let U, V ⊆ N be the two sets defining the conflict of interest.
For a reaching triple, we record up to four abstract values from the set D♯ :=
D

♯
0 ∪ D

♯
1 ∪ D

♯
2, where D

♯
0 := 2M, D

♯
1 := C1 × (2M)3 ×H with C1 := {{U}, {V }},

and D
♯
2 := (2M)3. While entries from D

♯
0 are recorded for every reaching triple,

entries from D
♯
1 are recorded only for triples reaching one of the given sets U or

V as specified by the first component, and entries from D
♯
2 are recorded only for

triples reaching a conflict. More specifically, the recorded information is specified

by the abstraction functions (αi : D → 2D
♯
i)i=0,1,2:

α0(w̄, w, 〈s, c〉) := {m(w̄)}
α1(w̄, w, 〈s, c〉) := {(C, m(w̄), mL(w), mE(w), αah(w)) | C ∈ C1, atC(〈s, c〉)}
α2(w̄, w, 〈s, c〉) := {(m(w̄), mL(w), mE(w)) | at{U,V }(〈s, c〉)}

For X ⊆ D, we define αi(X) :=
⋃
{αi(x) | x ∈ X}. In order to treat entries

from D
♯
0,D

♯
1,D

♯
2 uniformly, we sometimes identify entries M ∈ D

♯
0 with the tuple

12 Peter Lammich and Markus Müller-Olm

(∅, M, ∅, ∅,−) and entries (M̄, ML, ME) ∈ D
♯
2 with ({U, V }, M̄ , ML, ME,−) and

define C := C1 ∪ {∅, {U, V }}. The symbol − is a substitute for an acquisition
history and we define (Me, Mp);− := − and agree that − � −. Note that we
never compare acquisition histories with −.

On D♯ we define an ordering ≤ by (C, M̄, ML, ME, h) ≤ (C′, M̄ ′, M ′
L, M

′
E, h′)

if and only if C = C′, M̄ ⊆ M̄ ′, ML ⊆ M ′
L, ME ⊆ M ′

E, and h � h′. Intuitively,
d < d′ means that d reaches the same set C ∈ C of interesting nodes as d′,
but with weaker monitor requirements. Thus d′ can be substituted by d in any
context, and it is sufficient to collect the minimal elements when abstracting a set
of reaching triples. Therefore we work with antichains. Formally, for an ordered
set (X,≤) we write (ac(X),⊑) for the complete lattice of antichains of X , i.e.
ac(X) := {M ⊆ X | ∀m, m′ ∈ M. ¬m < m′} and M ⊑ M ′ :⇔ ∀m ∈ M.∃m′ ∈
M ′. m ≤ m′. For an arbitrary set M ⊆ X , we write M ac for the antichain
reduction of M , i.e. the set of minimal elements of M . Note that ·ac distributes
over union and for X ⊆ ac(X), the supremum of X is

⊔
X = (

⋃
X)ac. Now we

define our abstract domain by L♯ := ac(D♯) and our abstraction α : LR → L♯ by
α(X) = (α0(X) ∪ α1(X) ∪ α2(X))ac. The abstraction α distributes over union,
i.e. α(

⋃
X) =

⊔
{α(X) | X ∈ X} for all X ⊆ LR. Hence it is the lower adjoint of

a Galois connection [12].

Example 10. Consider the reaching triples Tr1 and Tr2 introduced in Example 7.
For U := {5} and V := {9}, we have α({Tr1}) = {{m1}}∪{Tr

♯
1} with α1(Tr1) =

{({V }, {m1}, ∅, ∅, λm.∅)} =: {Tr
♯
1} and α({Tr2}) = {∅} ∪ {Tr

♯
2} with α1(Tr2) =

{({U}, ∅, ∅, {m1, m2}, (m1 7→ {m1, m2}))} =: {Tr
♯
2}.

The X ∗ Y -operation combines two reaching triples t1 := (w̄1, w1, 〈ε, c1〉) ∈
X and t2 := (w̄2, w2, 〈s, c2〉) ∈ Y . The reached configuration of the resulting
triples is 〈s, c1 ⊎ c2〉. For C ∈ C, there are four cases for atC(〈s, c1 ⊎ c2〉). Either
atC(c1), or atC(c2), or C = {U, V } and at{U}(c1) ∧ at{V }(〈s, c2〉) or at{V }(c1) ∧
at{U}(〈s, c2〉). In the first case the interesting nodes are all reached by t1. We then

consider the triple t̃ := (w̄2, ε, 〈s̃, c̃〉) ∈ Y that exists due to the closure property
of LR. We have α(t1 ∗ t̃) = α(w̄1w̄2, w1, 〈s̃, c1 ⊎ c̃〉) ⊑ α(t1 ∗ t2). Thus for the
abstraction of the result, we have to only consider α(t1 ∗ t̃), which has the same
acquisition history as t1. Analogously, in the second case we only need to consider
interleavings of the form t̃ ∗ t2 for some t̃ = (w̄1, ε, 〈ε, c̃〉) ∈ X . In the last two
cases, the abstractions of both t1 and t2 contain the acquisition histories of w1

and w2, respectively. These can be used to check whether an interleaving exists.
The abstraction of the resulting triples is then in D

♯
2 (i.e. reaching a conflict)

and thus contains no acquisition history. The operator ∗♯ : L♯×L♯ → L♯ captures
the ideas described above and is defined as the natural extension to antichains
of the following definition: (C1, M̄1, ML1, ME1, h1) ∗♯ (C2, M̄2, ML2, ME2, h2) :=
{(Ci, M̄1∪ M̄2, MLi, MEi, hi) | i = 1, 2}ac⊔{({U, V }, M̄1∪ M̄2, ML1∪ML2, ME1 ∪
ME2,−) | Ci = {U} ∧ C3−i = {V } ∧ h1 ∗ h2 ∧ i = 1, 2}ac. The definitions of
the other abstract operators are straightforward (extended to antichains where

Conflict Analysis 13

necessary):

X |♯¬M := X ∩ {(·, ·, ·, ME, ·) ∈ D♯ | ME ∩ M = ∅}
env♯((C, M̄ , ML, ME, h)) := {(C, ∅, ∅, ML ∪ ME, h)}
(u, call q, v);♯ (C, M̄ , ML, ME, h) := α(ε, ε, 〈[u], ∅〉)⊔

{(C, ∅, m(q) ∪ M̄ ∪ ML, ME, (m(q), M̄ ∪ ML ∪ ME); h) | C 6= ∅}|♯¬m(v)

Example 11. We show how our analysis utilizes acquisition histories to prevent
detection of a spurious conflict between nodes 5 and 9 in the flowgraph of Fig. 2.
So let us assume U := {5} and V := {9}. The combination of the paths to U
and V is done by the [RCALL]-constraint for the edge (2, call q, 3). We consider

the reaching triples Tr
♯
1 ∈ R♯[q] and Tr

♯
2 ∈ S♯[2] from Example 10. We have

Tr
♯
2 = ({U}, ∅, ∅, {m1, m2}, (m1 7→ {m1, m2})) ∈ S♯[2]|♯¬m(2) as m(2) = ∅ and

from Tr
♯
1 we get ({V }, ∅, {m1, m2}, ∅, (m2 7→ {m1, m2})) ∈ (2, call q, 3);♯ R♯[q].

However, the acquisition histories h1 := (m1 7→ {m1, m2}) and h2 := (m2 7→
{m1, m2}) are not interleavable (¬h1 ∗ h2) because of the conflicting pair of
monitors m1, m2 (i.e. m2 ∈ h1(m1) and m1 ∈ h2(m2)). Therefore, these two
entries are not combined by the ∗♯-operator.

Lemma 12. The abstract operators mirror the corresponding concrete operators
precisely, i.e. for XR ∈ LR and XS ∈ LS the following holds:

α(XS |¬M) = α(XS)|♯¬M α((u, call q, v); XR) = (u, call q, v);♯ α(XR)
α(env(XR)) = env♯(α(XR)) α(XS ∗ XR) = α(XS) ∗♯ α(XR)

The proof for the ∗-operator follows the ideas described above and is omitted here
due to the limited space. The proofs for the other operators are straightforward.

Theorem 13. Let (R♯,S♯) be the least solution of the constraint system in-
terpreted over the abstract domain L♯ using the abstract operators and replac-
ing the constants by their abstractions. It exactly matches the least solution
(R, S) of the concrete constraint system, i.e. ∀p ∈ P. α(R[p]) = R♯[p] and
∀u ∈ N. α(S[u]) = S♯[u]. It can be computed in time O((|N| + |E|) · 2poly(|M|)).

Theorem 13 follows from Lemma 12 by standard results of abstract interpreta-
tion, see, e.g. [4, 6]. It is sketched in Appendix D.

Corollary 14. Conflict analysis can be done in time O((|N| + |E|) · 2poly(|M|)),
i.e. linear in the program size and exponential in the number of monitors.

Proof. From Theorems 3, 8, 13, the definitions of Rop and α, and the convention
that the main-procedure starts with a non-returning call, it is straightforward to
show that ∃c. {[emain]}

∗
−→c ∧ at{U,V }(c) if and only if R♯[emain] ∩ D

♯
2 6= ∅. Thus,

an algorithm for conflict analysis can compute the least solution of the abstract
constraint system and check whether R♯[emain] contains an entry from D

♯
2. ⊓⊔

Theorem 15. Deciding whether a given flowgraph has a conflict is NP-complete.

14 Peter Lammich and Markus Müller-Olm

Proof. A proof sketch for the NP-easiness direction is given in Appendix E.
We sketch the NP-hardness direction here, that justifies the exponential run-
ning time of our algorithm. We show NP-hardness of the reachability problem
for a single control node (that can obviously be reduced to conflict detection)
by a reduction from 3SAT. For a formula in conjunctive normal form (CNF)∧

1≤i≤n

∨
1≤j≤3 lij with lij ∈ {x1, x̄1, ..., xm, x̄m}, we construct the following pro-

gram3 with the procedures main, p1, ..., pm+1,c and monitors x1, x̄1, ..., xm, x̄m:
proc main {call p1}

proc pi /* 1 ≤ i ≤ m */ {

{sync (xi) {call pi+1}} OR {sync (x̄i) {call pi+1}} }

proc pm+1 {spawn c; loop forever}

proc c {

{sync (l11){skip}} OR {sync (l12){skip}} OR {sync (l13){skip}};

...

{sync (ln1){skip}} OR {sync (ln2){skip}} OR {sync (ln3){skip}};

u: // Control node that is checked to be reachable }

The statement sync (m) { ... } denotes a block synchronized on monitor m
and OR denotes nondeterministic choice. Intuitively, the procedures p1 to pm

guess the values of the variables, where sync (xi) corresponds to setting xi

to false, and vice versa, sync (x̄i) corresponds to setting xi to true. Finally,
procedure q checks whether the clauses are satisfied. Control node u is reachable
if and only if the formula is satisfiable.

This construction exploits dynamic thread creation and uses a procedure
that cannot terminate. One can do similar constructions for the simultaneous
reachability of two control nodes in a setting with two fixed threads where all
procedures eventually terminate. Thus conflict analysis is also NP-hard for mod-
els like the one used in [9]. However, for the model of [9] reachability of a single
program point is decidable in polynomial time which highlights the inherent
complexity of thread creation.

6 Conclusion

In this paper we studied conflict analysis for a program model with procedure
calls, dynamic thread creation and synchronization via reentrant monitors. We
showed that conflict analysis is NP-complete. We then used the concept of
restricted schedules to come to grips with the arbitrary interleaving between
threads. We showed that every reachable configuration is also reachable by an
execution with a restricted schedule. We developed a constraint system based
characterization of restricted executions, and used abstract interpretation to de-
rive an algorithm for conflict checking that is linear in the program size and
exponential only in the number of monitors.

We have developed a formal proof of a similar approach to conflict analy-
sis [10] in Isabelle/HOL [14]. The formalization of the flowgraphs, operational

3 The translation of this textual representation to our model is straightforward.

Conflict Analysis 15

semantics, restricted schedules and acquisition histories are the same as in this
paper. The constraint systems follow similar ideas but the abstract constraint
systems there are justified directly w.r.t. to the operational semantics instead
of using abstract interpretation. Moreover, the height of the abstract domain
quadratically depends on the number of procedures. The NP-completeness re-
sult has not been formalized in Isabelle/HOL.

Further research required on this topic includes the following: Our algorithm
is exponential in the number of monitors. However, for real programs, the nest-
ing depth of monitors is usually significantly smaller than their number. There is
strong evidence that this observation can be exploited to design a more efficient
analysis. A similar effect was also described in [9] for a model with a fixed set of
threads. Furthermore, our algorithm is only able to check for conflicts — while
this is an important practical problem, there are other interesting problems like
bitvector analysis or high-level data races [2], which may be tackled by general-
izing our approach. In order to apply our algorithm to languages with dynamic
referencing of monitors (like Java), a preceeding pointer analysis is required. The
combination of our analysis with such analyses has to be investigated.

Acknowledgment. We thank Ahmed Bouajjani, Javier Esparza, Nicholas Kidd,
Thomas Reps, Helmut Seidl, Bernhard Steffen, Dejvuth Suwimonteerabuth, and
Tayssir Touili for interesting discussions, and the anonymous referees for very
helpful comments.

References

1. K. R. Apt and G. D. Plotkin. Countable Nondeterminism and Random Assign-
ment. Journal of the ACM, 33(4):724–767, 1986.

2. C. Artho, K. Havelund, and A. Biere. High-level data races, 2003.
3. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic

networks of pushdown systems. In Proc. of CONCUR’05. Springer, 2005.
4. P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System

by Abstract Interpretation. Electronic Notes in Theoretical Computer Science, 6,
1997. URL: www.elsevier.nl/locate/entcs/volume6.html.

5. J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interproce-
dural parallel flow graphs. In Proc. of POPL’00, pages 1–11. Springer, 2000.

6. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-
plete. Journal of the ACM, 47(2):361–416, 2000.

7. V. Kahlon and A. Gupta. An automata-theoretic approach for model checking
threads for LTL properties. In Proc. of LICS 2006, pages 101–110. IEEE Computer
Society, 2006.

8. V. Kahlon and A. Gupta. On the analysis of interacting pushdown systems. In
POPL, pages 303–314, 2007.

9. V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating
via locks. In Proc. of CAV 2005, pages 505–518. Springer, 2005.

10. P. Lammich and M. Müller-Olm. Formalization of conflict analysis of
programs with procedures, thread creation, and monitors. In G. Klein,
T. Nipkow, and L. Paulson, editors, The Archive of Formal Proofs.
http://afp.sf.net/entries/DiskPaxos.shtml, Dec. 2007. Formal proof development.

16 Peter Lammich and Markus Müller-Olm

11. P. Lammich and M. Müller-Olm. Precise fixpoint-based analysis of programs with
thread-creation. In Proc. of CONCUR 2007, pages 287–302. Springer, 2007.

12. A. Melton, D. A. Schmidt, and G. E. Strecker. Galois connections and computer
science applications. In D. Pitt, S. Abramsky, A. Poigné, and D. Rydeheard,
editors, Category Theory and Computer Programming, volume 240 of LNCS, pages
299–312. Springer-Verlag, 1985.

13. M. Müller-Olm. Precise interprocedural dependence analysis of parallel programs.
Theor. Comput. Sci., 311(1-3):325–388, 2004.

14. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

15. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. TOPLAS, 22(2):416–430, 2000.

16. H. Seidl and B. Steffen. Constraint-Based Inter-Procedural Analysis of Parallel
Programs. Nordic Journal of Computing (NJC), 7(4):375–400, 2000.

17. E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued
logic. ACM SIGPLAN Notices, 36(3):27–40, 2001.

Conflict Analysis 17

A Proof of Theorem 3

Proof. The ⇐-direction directly follows from the definition of
·

=⇒. For the ⇒-
direction, i.e. converting an execution of the original semantics to a restricted
execution reaching the same configuration, we first show an auxiliary lemma
about appending a same-level or returning execution to a restricted execution:

Lemma 16. Let p ∈ P be an initial procedure, {[ep]}
∗

=⇒{[u]r}⊎ce be a restricted

execution and 〈[u], ce〉
w̄L

−→〈r′, cs ⊎ ce〉 with |r′| ≤ 1 be a same-level or returning

execution, then there exists a restricted execution {[ep]}
∗

=⇒{r′r} ⊎ cs ⊎ ce.

Proof. If w̄ is the empty sequence, the lemma is trivial. Otherwise, we perform
an induction on the length of the restricted execution. Due to our conventions
for flowgraphs, the first step of any thread must be a non-returning call. Hence
the same-level or returning path cannot be the first steps of a thread, and we
can find the last macrostep of that thread: We get {[ep]}

∗
=⇒{[ũ]r̃} ⊎ c̃e and

〈[ũ]r̃, c̃e〉
([call p]w̃)L

=⇒ 〈[u]r, ĉe〉
wE

2=⇒〈[u]r, ce〉. By Theorem 2 we get m(ĉe) ⊆ m(ce) and

hence can execute w̄ also with ĉe in the environment: 〈[u]r, ĉe〉
w̄L

−→〈r′r, cs ⊎ ĉe〉.
As cs only contains stacks of freshly spawned threads, we have m(cs) = ∅. Since
the execution of a same-level path does not change the monitors allocated by a
thread and the execution of a returning path does not increase them, we have

m(r′r) ⊆ m([u]r) and thus can execute 〈r′r, cs ⊎ ĉe〉
wE

2=⇒〈r′r, cs ⊎ ce〉 (*).

If w̄ is a same-level path (|r′| = 1), 〈[ũ]r̃, c̃e〉
([call p]w̃w̄)L

=⇒ 〈r′r, cs ⊎ ĉe〉 is a valid
macrostep and we get the proposition.

If w̄ is a returning path (|r′| = 0), 〈[ũ], c̃e〉
([call p]w̃w̄)L

−→ 〈[û], cs ⊎ ĉe〉 with r =
[û]r̂ is a valid same-level execution, and by the induction hypothesis we get

{[ep]}
∗

=⇒{r} ⊎ cs ⊎ ĉe, and the proposition follows with (*). ⊓⊔

The ⇒-direction is now proven by induction over the length of the execution.
For {[ep]}

ε
−→c′, we get c′ = {[ep]} by the definition of the reflexive transitive

closure, and thus {[ep]}
ε

=⇒c′. Now assume we have an execution of the form

{[ep]}
w

−→c̃
l

−→c′, i.e. l ∈ L is the last step. By the induction hypothesis, we also

have the execution {[ep]}
∗

=⇒c̃. If l is a call step, c̃
[l]

=⇒c′ is a valid macrostep, and

the proposition follows. Otherwise, c̃
[l]
−→c′ is a same-level or returning execution,

and the proposition follows by Lemma 16. ⊓⊔

B Proof of Theorem 5

Proof (Sketch). The ⇒-direction is shown by induction on the path length. A
non-empty path is decomposed after the first step, and the tail of the path is
split by the induction hypothesis. The first step is then prepended to the proper
path (w1 or w2, depending on which thread did the first step). If the first step

18 Peter Lammich and Markus Müller-Olm

enters a monitor, it remains allocated for the rest of the execution (Theorem 2)
and thus is not used by steps of other threads, especially not by steps of the
other path (w2 or w1). Thus the first step satisfies the monitor conditions in the
definition of ⊗ and can be prepended.

The ⇐-direction is done by induction on the definition of the interleaving
operator. The cases where one of the operands is empty are trivial, in the re-
maining case, we have to prepend a macrostep to a combined execution. This
macrostep is already the first step of one execution, hence it does not interfere
with its monitors. Because we have a monitor consistent interleaving, we know
that this macrostep also does not enter monitors that are used in the other ex-
ecution. Thus we can prepend the macrostep to the combined execution. ⊓⊔

C Proof Sketch of Theorem 8

Proof (Sketch). We show that (for each variable) the least solution is a subset of
the operational characterization and, vice versa, the operational characterization
is a subset of the least solution. For the former direction, we show that the
operational characterization is a solution of the constraint system. We sketch
the proof for the [RCALL] constraint:

Assume we have an edge (u, call q, v) ∈ Ep. We have to show Rop[p] ⊇
Sop[u]|¬m(p) ∗ ((u, call q, v); Rop[q]). We first show an auxiliary lemma:

Lemma 17. (ε, w, 〈s, c〉) ∈ ((u, call q, v); Rop[q]) implies 〈[u], ∅〉
w

=⇒〈s, c〉.

Proof. We obviously have 〈[u], ∅〉
ε

=⇒〈[u], ∅〉. So assume w = [([call q]w̄)L]w̃ and
s = r[v] for some (w̄, w̃, 〈r, c〉) ∈ Rop[q] with mE(w̃)∩m(v) = ∅. By the definition

of Rop, we obtain c̃, ũ with 〈[eq], ∅〉
w̄L

−→〈[ũ], c̃〉
w̃

=⇒〈r, c〉. By the definition of
·

=⇒ we

get a macrostep 〈[u], ∅〉
([call q]w̄)L

=⇒ 〈[ũ, v], c̃〉. Because w̃ does not use any monitors

from v in environment steps, we also get 〈[ũ, v], c̃〉
w̃

=⇒〈r[v], c〉. Thus we get the
proposition. ⊓⊔

A triple in Sop[u]|¬m(p) ∗ ((u, call q, v); Rop[q]) has the form (w̄, w̃, 〈s′, c ⊎ c′〉)
for some (w̄, w, 〈ε, c〉) ∈ Sop[u], (ε, w′, 〈s′, c′〉) ∈ (u, call q, v); Rop[q] with m(w) ∩
m(p) = ∅ and w̃ ∈ w ⊗ w′. By the definition of Sop and the auxiliary lemma we

obtain c̃ with 〈[ep], ∅〉
w̄L

−→〈[u], c̃〉, 〈ε, c̃〉
w

=⇒〈ε, c〉, and 〈[u], ∅〉
w′

=⇒〈s′, c′〉. Because
c̃ consists of freshly spawned threads that have not yet made any steps, we
have m(c̃) = ∅ and thus m(〈[u], c̃〉) = m(u) = m(p). Hence we can use Theo-

rem 5 to combine the two executions and get 〈[u], c̃〉
w̃

=⇒〈s′, c ⊎ c′〉. Thus we have
(w̄, w̃, 〈s′, c ⊎ c′〉) ∈ Rop[p]. The other constraints can be shown using similar ar-
guments and some rather obvious facts about combining same-level executions.

For the latter direction, we prove that for all n ∈ N we have (∀X, p. |X | =
n ∧ X ∈ Rop[p] ⇒ X ∈ R[p]) and (∀X, u. |X | = n ∧ X ∈ Sop[u] ⇒ X ∈ S[u]),
where |(w̄, w, 〈s, c〉)| := |w̄|+ |w|. The proof is done by induction on n. For n = 0,
the proposition trivially follows with [REMPTY] and [SEMPTY].

Conflict Analysis 19

For n > 0, we show the proposition under the assumption that it holds for
all n′ < n. We sketch the proof for R here: Assume we have (w̄, w, 〈s′, c′〉) ∈

Rop[p] with |w̄| + |w| = n. We obtain u, c with 〈[ep], ∅〉
w̄L

−→〈[u], c〉
w

=⇒〈s′, c′〉.
With Theorem 5 we obtain c′1, c

′
2, w1, w2 with c′ = c′1 ⊎ c′2, w ∈ w1 ⊗ wE

2 ,

〈[u], ∅〉
w1=⇒〈s′, c′1〉, and c

w2=⇒c′2 with m(w2) ∩ m(u) = ∅ (Note that m(c) = ∅). We
now distinguish whether w1 is empty. In the case w1 = ε, we have s′ = [u] and
(w̄, wE, 〈ε, c′〉) ∈ Sop[u]. In the other parts of this proof (not sketched here) we
have already shown (∀X, u. |X | = n∧X ∈ Sop[u] ⇒ X ∈ S[u]), and thus we have
(w̄, wE, c′) ∈ S[u], and the proposition follows with the [REMPTY]-constraint.

Otherwise, assume that w1 = [([call q] ˜̄wL]w̃. By the definitions of
·

=⇒ and
·

−→, we

obtain v, ũ, c̃ with (u, call q, v) ∈ Ep, 〈[eq], ∅〉
˜̄wL

−→〈[ũ], c̃〉, and 〈[ũ, v], c̃〉
w̃

=⇒〈s′, c′1〉.
Because macrosteps do not return from procedures, we can remove the stored

return address v from the stack and get r with s′ = r[v], 〈[ũ], c̃〉
w̃

=⇒〈r, c′1〉, and
mE(w̃) ∩ m(v) = ∅. With the induction hypothesis and the definitions of Rop

and Sop, we have (˜̄w, w̃, 〈r, c′1〉) ∈ R[q] and (w̄, wE
2 , 〈ε, c′2〉) ∈ S[u]. Hence we

have (ε, w1, 〈s′, c′1〉) ∈ (u, call q, v); R[q] and with the [RCALL]-constraint we get
(w̄, w, 〈s′, c′〉) ∈ R[p]. ⊓⊔

D Proof of Theorem 13

Proof (Sketch). The first statement is shown by applying the Transfer Lemma
of general fixpoint theory (see, e.g., [1, 4]):

Lemma 18 (Transfer Lemma). Suppose C, C♯ are complete lattices, f : C →
C and g : C♯ → C♯ are monotonic functions and α∗ : C → C♯ is a function that
distributes over union. If α∗ ◦ f = g ◦ α∗ then α∗(µf) = µg, where µf and µg
are the least fixpoints of f and g, respectively, that exist by the Knaster-Tarski
fixpoint theorem.

In our application C and C♯ are the complete lattices of valuations of the
constraint variables R[p] and S[u] by values from LR (or LS) and L♯, respectively;
f and g are the functions induced by the concrete and abstract constraint sys-
tems; and α∗ is the abstraction function α lifted to valuations. From Lemma 12
and the fact that α distributes over joins, we get α∗ ◦ f = g ◦ α∗ such that the
first proposition follows.

For the second statement, let n = |N|, e = |E|, and m = |M|. The height of
the abstract domain (L♯,⊑), i.e. the number of elements in the longest strictly
ascending chain, is O(2poly(m)). The number of constraints is O(n + e) and there
are O(1) variables on the right hand side of a constraint. An element of D♯ can be
represented by poly(m) bits, an element of L♯ by O(2poly(m)) bits. An operation
on L♯ can be implemented in time O(2poly(m)). Thus, the least solution of the
abstract constraint system can be computed in time O((n + e) · 2poly(m)), e.g. by
a worklist algorithm. ⊓⊔

20 Peter Lammich and Markus Müller-Olm

E Proof of Theorem 15 (NP-Easiness Direction)

We argue that the problem of deciding whether a program can reach a configu-
ration that is simultaneously at U and V is in NP. First we argue that it suffices
to consider executions with at most 3 · |P| macrosteps. Consider a macrostep
path reaching a conflict. In a prefix of the path, the conflict is reached from a
single thread after each macrostep until eventually, one thread reaching U and
one thread reaching V is found after each macrostep. Only macrosteps of those
threads need to be considered in the path and steps of other threads can be
erased, yielding a shorter execution still reaching the conflict. The reason is that
macrosteps do never release monitors and thus erasing the macrosteps of the
other threads will not decrease the set of monitors available at any point of the
execution. Formally, this can be shown as a consequence of Theorem 5. Thus we
may assume that the path to the conflict is composed of three sub-paths. The
first sub-path, in which each step is taken by a thread from which the conflict
is reached, is followed by an interleaving of two sub-path in which each step is
taken by a thread reaching U or V respectively. We argue that in each of these
three sub-paths each procedure p needs to be called at most once. Assume one
of the sub-paths makes two macrosteps each starting with call p. In this case, we
can erase the segment of the sub-path starting with the first call p up to the point
before the macrostep starting with the second call p. This again yields a valid
execution, because all the monitors available at the second call are available also
at the first call (cf. Theorem 2). Thus, we can construct a path to the conflict
consisting of three segments, where each segment does not consist of more than
|P| macrosteps.

A nondeterministic algorithm can simulate the execution of such a macrostep
path in polynomial time. It keeps track of the available monitors and the current
control nodes of the sub-paths. To execute each of the O(|P|) macrosteps, it
guesses the initial call edge, the new node of the current thread and which
threads need to be spawned (at most two) in order to complete the path. Given
the set of available monitors, the existence of such a macrostep can be checked
in polynomial time by standard reachability analysis on a program where all call
edges to procedures that require unavailable monitors are removed.

