Testing Herbrand Equalities and Beyond

Markus Miiller-Olm!*, Oliver Rithing?, and Helmut SeidI®

L FernUniversit at Hagen, FB Informatik, LG PI 5, Universit atsstr. 1, 58097 Hagen, Germany
mo@ s5. i nformati k. uni -dort nund. de
2 Universit'at Dortmund, FB 4, LS V, 44221 Dortmund, Germany
ruet hi ng@ s5. cs. uni - dor t nund. de
3 TU M unchen, Informatik, 12, 85748 M inchen, Germany
seidl @n.tum de

Abstract. A Herbrand equality between expressions in a program is an equality
which holds relative to the Herbrand interpretation of operators. We show that the
problem of testing validity of positive Boolean combinations of Herbrand equal-
ities at a given program point is decidable — even in presence of disequality
guards. This result vastly extends classical results which cannot deal with dis-
junctions and are always based on an abstraction of conditional branching with
non-deterministic choice. We also show that in the classic setting where all guards
are ignored conjunctions of Herbrand equalities can be tested in polynomial time.
As an application of our method, we show how to derive all valid Herbrand con-
stants in programs with disequality guards.

Finally, we show that in presence of equality guards instead of disequality guards,
testing of a given Herbrand equality becomes undecidable.

1 Introduction

Analyses for finding definite equalities between variables or variables and expressions
in a program have been used in program optimization for a long time where this infor-
mation can be used for performing and enhancing powerful transformations like (par-
tial) redundancy elimination including loop invariant code motion [19, 21, 12], strength
reduction [22], constant propagation and branch elimination [3, 7].

Since determining whether two variables always have the same value at a pro-
gram point is an undecidable problem even without interpreting conditionals [18], anal-
yses are usually restricted to detect only a subset, i.e., a safe approximation, of all
equivalences. Analyses based on Herbrand interpretation of operators consider two val-
ues equal only if they are constructed by the same operator applications. Cocke and
Schwartz [4] presented the earliest such technique for finding equalities inside basic
blocks. Since their technique operates by assigning hash values to computations, the
detection of (Herbrand-)equivalences is often also referred to as value numbering. In
his seminal paper [11], Kildall presents a technique for global value numbering that
extends Cocke’s and Schwartz’s technique to flow graphs with loops. In contrast to a
number of algorithms focusing more on efficiency than on precision [18, 1, 3,20, 7, 8],

* On leave from Universit at Dortmund.

2 Markus M ller-Olm, Oliver R Gthing, and Helmut Seidl

Kildall’s algorithm detects all Herbrand equalities in a program. However, the repre-
sentation of equalities can be of exponential size in terms of the argument program.
This deficiency is still present in the algorithm for partial redundancy elimination of
Steffen et al. [21] which employs a variant of Kildall’s algorithm using a compact rep-
resentation of Herbrand equivalences in terms of structured partition DAGs (SPDAGS).
Recently, Gulwani and Necula proposed a polynomial time variant of this algorithm
exploiting the fact that SPDAGs can be pruned, if only equalities of bounded size are
searched for [9].

The analyses based on Herbrand interpretation mentioned above ignore guards in
programs.* In this paper, we present an analysis that fully interprets besides the assign-
ments in the program also all the disequality guards with respect to Herbrand interpre-
tation. More specifically, we show that the problem of testing the validity of positive
Boolean combinations of Herbrand equalities at a given program point is decidable —
even in presence of non-equality guards. (A Herbrand equality between expressions in
a program is an equality which holds relative to Herbrand interpretation of operators; a
positive Boolean combination of Herbrand equalities is a formula constructed from Her-
brand equalities by means of disjunction and conjunction.) We also present a PSPACE
lower bound for this problem. This result vastly extends classical results which cannot
deal with disjunctions and are always based on an abstraction of conditional branching
with non-deterministic choice. As an application of our method, we show how to derive
all valid Herbrand constants in program with non-equality guards.

In order to show the decidability result, we rely on effective weakest precondition
computations using a certain lattice of assertions. While we have used the idea of effec-
tive weakest precondition computations before [13-16], the type of assertions and the
kind of results exploited is quite different here. In [13—-16] assertions are represented
by bases of vector spaces or polynomial ideals and results from polynomial and linear
algebra are exploited. Here we use equivalence classes of certain types of formulas as
assertions and syntactic techniques from automatic theorem proving. In order to intro-
duce our technique in a simpler scenario and as a second application we show that in
the classic setting where all guards are ignored conjunctions of Herbrand equalities can
be tested in polynomial time.

The considerations of this paper belong to a line of research in which we try to iden-
tify smoothly defined classes of (abstractions of) programs and analysis problems for
which complete analyses are possible. Here, we abstract from the equality guards —
and rely on Herbrand interpretation. There are two reasons why we must ignore equal-
ity guards. The first reason is that we cannot hope for a complete treatment of equality
guards; c.f. sect. 5, theo. 6. The second reason is subtle but even more devastating: using
Herbrand interpretation of programs with equality guards for inferring definite equali-
ties w.r.t. another interpretation — which is what we are up to when we use Herbrand
interpretation in program analysis — is unsound. The reason is that an equality might
be invalid w.r.t. Herbrand interpretation but valid w.r.t. the “real” interpretation. Thus,

4 The branch sensitive methods [3, 7, 2] based on the work of Click and Cooper [3] unify value
numbering with constant propagation and elimination of dead branches. However, the value
numbering component of these methods is based on the work of Alpern, Wegman and Zadeck
[1] which is restricted to the detection of a small fragment of Herbrand equalities only.

Testing Herbrand Equalities and Beyond 3

it can happen that a Herbrand interpretation based execution would not pass an equal-
ity guard while executions based on the real semantics would do so. In this case, the
Herbrand interpretation based analysis would consider too few executions, making it
unsound. Note that this problem does not occur for disequality guards, because, when-
ever an equality is invalid w.r.t. the “real” interpretation it is also invalid w.r.t. Herbrand
interpretation.

In Section 2 we introduce Herbrand programs as an abstract model of programs
for which our analyses are complete. Moreover, we analyze the requirements a lattice
of assertions must satisfy in order to allow weakest precondition computations. In Sec-
tion 3 we present an analysis that tests conjunctions of Herbrand equalities in Herbrand
programs without disequality guards in polynomial time. This analysis is extended in
Section 4 to an analysis that tests arbitrary positive Boolean combinations of Herbrand
equalities in Herbrand programs with disequality guards. For this analysis we can show
termination but we do not have an upper bound for its running time. In Section 5 we
show that there are no effective and complete analysis procedures for Herbrand pro-
grams with equality instead of disequality guards. Also we provide a PSPACE lower
bound for testing of Herbrand equalities in Herbrand programs with disequality guards.

2 Herbrand Programsand Weakest Preconditions

Let X = {x1,...,X} be the set of variables the program operates on. We assume that
the variables take values which are constructed from variables and constants by means
of operator application. Let (2 denote a signature consisting of a set (29 of constant
symbols and sets (2., > 0, of operator symbols of rank r. Note that in examples,
we will omit brackets around the arguments of unary operators and often write binary
operators infix. Let 7, be the set of all formal terms built up from 2. For simplicity, we
assume that the set 2y is non-empty and that there is at least one operator. Given this,
the set 7y, is infinite. Let 7¢, (X) denote the set of all terms with constants and operators
from (2 which additionally may contain occurrences of variables from X. In the present
context, we will not interpret constants and operators. Thus, a state assigning values to
the variables is conveniently modeled by a ground substitution o : X — Tg,.

As usual, we assume that programs are given as control-flow graphs. An example
of such a graph is shown in fig. 1. We assume that the basic statements in the pro-
gram are either assignments of the form x; := ¢ where ¢ € 7(X) or nondeterministic
assignments x; :=? modeling, e.g., input statements which return unknown values,
and that branching in general is non-deterministic. The only control statements that we
handle are disequality guards of the form ¢; # t,. Note that positive Boolean combi-
nations of disequality guards can be coded by small flow graphs as shown in fig. 2 for
(t1 #) Nto # th) V t3 # t5. Assignments x; := x; have no effect onto the program
state. They can be used as skip statements and for abstraction of guards that are not
disequality guards. Let Stmt be the set of assignments and guards. Each statement s
induces a transformation, s], on sets of program states given by

[x; :=t]S = {o[x; = o(t)] | o €S},
[x; :=7]S = {o[x; »t]|oe€St e€Ta}, and
[[t]_?étQ]]S {UES|0’(t1)750'(t2)}.

4 Markus M ller-Olm, Oliver R Gthing, and Helmut Seidl

) —
X3 1= X3 —/&7& x2 t1 ;ét'l?
X1 1= X2 t3 £ th
x3 1= X2 % %1 to ;ﬁt’2

Fig. 1. An example program. Fig. 2. Boolean combinations of guards.

Here o (t) is the term obtained from ¢ by replacing each occurrence of a variable x; by
o(x;) and o[x; +— t'] is the ground substitution that maps x; to ¢ € 7T, and variables
x; # X; 10 o(x;). Note that for s = x; :=?, the variable x; may receive any value.

A Herbrand program is given by a control flow graph G = (N, E, st) that consists
of a set IV of program points; a set of edges £ C N x Stmt x N; and a special entry
(or start) point st € N. As common in flow analysis, we use the program’s collecting
semantics as primary semantic reference point. For a given set of initial states S, the
collecting semantics assigns to each program pointu € NNV the set of all those states that
occur at « in some execution of the program from a state in S. It can be characterized
as the least solution of the following constraint system, Vg, on sets of states, i.e., sets
of ground substitutions:

[V1] Vg[st]2 S
[V2] Vg[v] D[s](Vs[u]), foreach (u,s,v) € E

By abuse of notation we denote the components of the least solution of the constraint
system Vg (which exists by Knaster-Tarski fixpoint theorem) by V g[v], v € N. Often
if we have no knowledge about possible initial states we choose S = (X — Tg).

An equation t; = ¢ is valid for a substitution o : X — To(X) iff o(t1) = o (t2).
Accordingly, an equation t; = t5 is valid at a program point v from a set S of initial
states iff it is valid for all & € Vg[v]. Itis called valid at a program point v if it is valid
at v from (X — Tg). These definitions are straightforwardly extended to predicate-
logical formulas over equations as atomic formulas. We write o |= ¢ if ¢ is valid for a
substitution o. We call two formulas ¢, ¢2 equivalent (and write ¢, < ¢-) if they are
valid for the same substitutions. We write ¢1 = ¢» if o |= ¢y implies o = ¢o.

For every assignment or disequality guard s, we consider the corresponding weak-
est precondition transformer [[s]* which takes a formula ¢ and returns the weakest pre-
condition of ¢ which must hold before execution of s such that ¢ holds after s. This
transformation is given by the well-known rules:

[x; == t]'¢ = lt/x;], [x; :=?'¢ =Vx;.¢, and [t1 #12]" ¢ = (t1 =t2) V ¢.

Testing Herbrand Equalities and Beyond 5

Here ¢[t/x;] denotes the formula obtained from ¢ by substituting ¢ for x;. The key
property which summarizes the relationship between the transformation [s] and the
weakest precondition transformation [s]* is given in the following lemma.

Lemma 1. Forevery set S C X — Tg of ground substitutions and any formula ¢, o
satisfies ¢ for all o € [s] S iff T satisfies [s]'¢ for all 7 € S. |

We identify the following desirable properties of a language L of formulas to be used
for weakest precondition computations. First, it must be (semantically) closed under
[s]*, i.e., under substitution, universal quantification, and, if we want to handle dise-
quality guards, disjunction. More precisely, this means that L must contain formulas
equivalent to ¢[t/x;], Vx;.¢, and ¢ V ¢', respectively, for all ¢, ¢’ € L. Moreover, we
want the fixpoint computation for characterizing the weakest pre-conditions at every
program point to terminate. Therefore, we secondly demand that L is closed under fi-
nite conjunctions, i.e., that it contains a formula equivalent to true as well as a formula
equivalentto ¢ A ¢' for all ¢,¢' € L, and that L is compact, i.e., for every sequence
G0, ¢1,...of formulas, A, b & AL, ¢i for somem > 0.

In order to construct a lattice of properties from L we consider equivalence classes
of formulas, which, however, will always be represented by one of their members. Let
LL denote the set of all equivalence classes of formulas. Then this set is partially ordered
w.r.t. “=" (on the representatives) and the pairwise lower bound always exists and is
given by “A”. By compactness, all descending chains in this lattice are ultimately stable.
Therefore, not only finite but also infinite subsets X C E have a greatest lower bound.
This implies that L is a complete lattice.

Assume that we want to check whether a formula ¢ holds at a specific program
point v;. Then we put up the following constraint system over IL:

[E2] WP[u] = [s]*(WP][v]), foreach (u,s,v) € E

Since IL is a complete lattice, a greatest solution of the constraint system exists again by
Knaster-Tarski fixpoint theorem. This solution is denoted by WP[v], v € N, as well.
We have (c.f. App. A):

Lemma 2. Suppose ¢, is a pre-condition, i.e., a formula describing initial states, and
let So = {0 : X = Ta | ¢ = ¢o} be the corresponding set of initial states. Then,
formula ¢ € L is valid at program point v; from Sy iff ¢o = WP][st]. O

3 Conjunctions

We first consider conjunctions of equalities. Clearly, conjunctions of equalities are not
closed under “Vv”. Therefore, this assertion language is not able to handle disjunctions
and disequality guards precisely. For closure under universal quantification, we find the
following equivalence for a single equality x; = s

x; =s ifi# jand x; does not occur in s
Vxj.x;=5 & [true ifi=jands=x;
false otherwise

6 Markus Mlller-Olm, Oliver R thing, and Helmut Seidl

Thus, since Vx;. (e1 A ... Aew) & (VX;.e1) A...A(VX;. en), CONjunctions
are closed under universal quantification. Also, in absence of disequality guards, the
weakest precondition of a conjunction w.r.t. a statement always is again a conjunction
— or false. We collect some basic facts about conjunctions of equalities.

A substitution o : X — T(X) (possibly containing variables in the image terms)
satisfies a conjunction of equalitiessc = s1 = t1 A ... A Sy =t iff 0(s;) = o ()
fori = 1,...,m. We then also write ¢ |= ¢. We call ¢ satisfiable iff o = ¢ for at
least one o. Otherwise, i.e., if ¢ is unsatisfiable, ¢ is equivalent to false (the Boolean
value ’false’). This value serves as the bottom value of our lattice. The greatest value
is given by the empty conjunction which is always true and therefore also denoted by
true. Whenever the conjunction c is satisfiable, then there is a most general satisfying
substitution o, i.e., o |= ¢ and for every other substitution 7 satisfying ¢, 7 = 71 o &
for some substitution ;. Such a substitution o is also called most general unifier of
the equations in ¢ [5]. Recall that most general unifiers ¢ can be chosen idempotent
meaning that o = o o o or, equivalently, no variable x; with o(x;) #Z x; may occur in
the image o(x;) of any variable x;.

We consider compact representations of trees. In particular, we assume that identical
subterms are represented only once. Therefore, we define the size of a term ¢ as the
number of distinct subtrees of ¢. Thus, e.g., the size of t = a(bx1, bc) equals 5 whereas
the size of t' = a(bc¢, bc) equals 3. The size of aterm ¢ is also denoted by |¢|. According
to this definition, the size of ¢[s/x;] is always less than |¢| + |s|. A conjunction ¢ is
reduced iff cequals x;, =1 A...Ax;,, =t for distinct variables x;,, ..., x;,, such
that ¢; # x;, for all j. Let the size |c| of a finite conjunction ¢ be the maximum of 1
and the maximal size of a term occurring in c. We show that every finite conjunction of
equalities is equivalent to a reduced conjunction of at most the same size:

Lemma 3. Every satisfiable conjunction ¢ is equivalent to a reduced conjunction ¢’
with |¢'| < |¢|. The conjunction ¢’ can be constructed in polynomial time.

Proof. It is not hard to show that a reduced conjunction equivalent to ¢ is obtained
by taking a most general unifier o of ¢ and returning the conjunction of equalities
x; = o(x;) for the variables x; with x; # &(x;). This reduced conjunction, however,
may not satisfy the condition on sizes. The equation a(x1,bbbx1) = a(bbc,x3), for
example, has size 5. The most general unifier is the substitution o = {x; — bbc,x2 —
bbbbbc}. The corresponding reduced equation system therefore would have size 6 —
which does not conform to the assertion of the lemma. The reason is that most general
unifiers typically are idempotent. If we drop this assumption, we may instead consider
the substitution 7 = {x; — bbc,x2 — bbbx;} — which is neither idempotent nor
a most general unifier, but yields the most general unifier after two iterations, namely,
o = 7 o 7. The reduced system corresponding to 7 has size 4 and therefore is small
enough. Our construction of the reduced system thus is based on the construction of a
substitution 7 such that k-fold composition of & results in the most general unifier of
c. Let o denote an idempotent most general unifier of c¢. We introduce an equivalence
relation =, on the set of variables X and subterms of cby s1 =, 82 iffo(s1) = o(s2).
Then there is a partial ordering “<” on the variables X such that wheneverx; =, ¢ for
some subterm ¢ ¢ X of ¢, then x; < x; for all variables x; occurring in ¢t. Moreover:

Testing Herbrand Equalities and Beyond 7

- ifo(x;) € X thent € X forevery t withx; =, t.
- ifo(x;) ¢ X, thenx; =, ¢ for some subterm¢ ¢ X of c.

for every variable x;. Let us w.l.0.g. assume that ¢ < j implies x; < x;. Then we define
substitutions 7, ..., 7, by 71 = o, and fori > 1,

ey [t it i=j
i) = {n_l(xj) it i3

where t; = o(x;) if o(x;) € X. Otherwise, we choose ¢; = t for any ¢ ¢ X with
X; =, t.By induction on i, we then verify that 7! = o. We conclude that ¢/ =
A{x: = 7 (x:) | 7(x;) # x;} is a conjunction which is equivalent to ¢ whose non-
variable right-hand sides all are sub-terms of right-hand sides of ¢. Since a most general
unifier can be constructed in polynomial (even linear) time, the assertion follows. O

Lemma 4. If ¢ = ¢, where ¢ is satisfiable and ¢; is reduced, then ¢ is equivalent to a
reduced conjunction ¢; A ¢'. In particular, ¢’ can be computed in polynomial time. O

Proof. Leto, o, denote idempotent most general unifiers of ¢ and ¢1, respectively. Since
¢ = ¢1,0 = ¢' o gy for some o', which can be chosen idempotent as well, where the
domains of oy and o' are disjoint. Then we simply choose ¢’ as the reduced conjunction
constructed from o' along the same lines as in lemma 3. O

As a corollary, we obtain:

Corollary 1. For every sequence ¢y < ... < ¢, Of pairwise inequivalent conjunc-
tionsc;, m <k + 1. a

Corollary 1 implies compactness of the language of conjunctions of equalities. Let E
denote the set of all equivalence classes of finite conjunctions of equalities s = ¢,
s,t € Tu(X). In order to check validity of a conjunction ¢ at a program point v, we
choose L = E, compute the weakest solution of the constraint system for WP by fix-
point iteration, and check, if WP(st] is equivalent to true. The latter is equivalent to
validity of ¢ at v; by lemma 2. Let us estimate the running time of the fixpoint compu-
tation. By corollary 1, each variable in the constraint system may be updated at most
k+1 times. The application of a transformer [s]* as well as conjunction can be executed
in time polynomial in their inputs. In order to obtain a polynomial time algorithm for
computing the values WP[v], it therefore remains to prove that all conjunctions which
are intermediately constructed during fixpoint iteration have polynomial sizes. For this,
we recall the following two facts. First, a standard worklist algorithm for computing
the least fixpoint will perform O(n - k) evaluations of right-hand sides of constraints.
Assuming that w.l.0.g. all right-hand sides in the program have constant size, each eval-
uation of a right-hand side may increase the maximal size of an equation at most by a
constant. Since the greatest lower bound operation does not increase the maximal size,
we conclude that all equalities occurring during fixpoint iteration, are bounded in size
by O(n - k + m) if m is the size of the initial equation c.
Summarizing, we obtain:

8 Markus Mlller-Olm, Oliver R thing, and Helmut Seidl

Theorem 1. Assume p is a Herbrand program without disequality guards, v; is a pro-
gram point and ¢ is a conjunction of equalities. Then it can be decided in polynomial
time whether or not ¢ is valid in p at v;. O

In practice, we can stop with the fixpoint iteration for WP as soon as we find the value
false at some reachable program point or change the value stored for the start point st
because this implies that WP[st] cannot be true. A worklist algorithm that integrates
this test can be seen as a demand-driven search for a reason why ¢ fails at v;.

As an example, consider the program from section 2. Since we use conjunctions
of equalities only, we must ignore the disequality guard. The weakest pre-conditions
computed for the equality x3 = x2 % 2 at program point 3 then are shown in figure 3.
Since the weakest pre-condition for the start node 0 is different from true, we cannot

(X3:X2%2)/\(X2:2)

X1 = X3

X3 =% % X1

GF—

(Xl = 2)/\()(2 = 2)

Fig. 3. The pre-conditions computed for xs = x2 % 2 at program point 3.

conclude that the tested equality holds.
As a second application of wp-computations with the lattice E we obtain:

Theorem 2. Assume p is a Herbrand program without disequality guards and v, is a
program point of p. Then it can be determined in polynomial time whether or not a
variable x; is constant at v, i.e., has always the same value ¢ when program execution
reaches v;.

Proof. We introduce the equality x; = y for some fresh variable y. Then x; is constant
at program point v, iff the weakest precondition WP(st] of this equality at program
entry is implied by y = ¢ for some ground term ¢ € Tg. In this case WP(st] either is
equivalent to true — implying that v; is not reachable, or equivalentto y = c. In the
latter case, the value ¢ constitutes the constant value of x; at program point v. Since
WP|st] for the given equality can be computed in polynomial time, we conclude that
all program constants can be computed in polynomial time as well. O

Testing Herbrand Equalities and Beyond 9

4 Digunctions

In this section, we consider disjunctions of conjunctions of equalities which we call
DC-formulas. Note that every positive Boolean combination of equalities, i.e. each for-
mula which is built up from equalities by means of conjunctions and disjunctions can
be written as a DC-formula by the usual distributivity laws. Clearly, the language of
DC-formulas is closed under substitution and disjunction and, again by distributivity,
also under conjunction. First, we convince ourselves that it is indeed also closed under
universal quantification.

Lemma 5. Assume that 7, is infinite. Then we have:

1. For every conjunction ¢ of equalities, Vx;. ¢ & c[t1/x;] A c[t2/x;] for any
t1,t2 € T with 1 ;é to.
2. For every disjunction ¢ = c¢1 V...V ¢y, Of conjunctions ¢; of equalities,

Vxj. ¢ & (Vxj.¢1)V...V(VXj. ¢r) O

A DC-formula d need no longer have a single most general unifier. The disjunction
ax; = abV ac = ax;, for example, has two maximally general unifiers {x; — b}
and {x; — c}. By lemma 3, however, each conjunction in a DC-formula d can be
brought into reduced form. Let us call the resulting formula a reduced DC-formula.
Our further considerations are based on the following fundamental theorem.

Theorem 3. Letd;,j > 0, be a sequence of DC-formulas such that d; < d; for all
j > 0. Then this sequence is ultimately stable, i.e., there is some m € N such that for
allm' > m, dy,, © dm.

Proof. If any of the d; is unsatisfiable, i.e., equivalent to false, then all positive Boolean
combinations of greater index also must be unsatisfiable, and the assertion of the the-
orem follows. Therefore let us assume that all d; are satisfiable. W.l.0.g. all d; are
reduced. We successively construct a sequence I';, j > 0, where Iy = dp and Ij44 is
a reduced DC-formula equivalent to I'; A djy1 for j > 0. Since d; < dj1 for all j,
I'; is equivalent to d;. For a reduced DC-formula I, we maintain a vector v[I'] € N
where the 4-th component of v[I"] counts the number of conjunctions in I" with exactly
i equalities. On N* we consider the lexicographical ordering “<” which is given by:
(n1,...,n) < (nf,...,n}) iff either n; = nj forall I, or there is some 1 < ¢ < k
such that n; = nj forall I < 4, and n; < n}. Recall that this ordering is a well-ordering,
i.e., it does not admit infinite strictly decreasing sequences.

Now assume that I'; equals ¢; V...V ¢p, for reduced conjunctions c;. Assume that
dj41 equalsci V. ..V, for reduced conjunctions ¢;. Then by distributivity, I'; Ad; 41 is
equivalentto \/7", ¢;A(c} V. ..Vcl,). First, assume that for a given i, ¢; Acj is equivalent
to ¢; for some . Then also ¢; A (¢} V ...V ¢},) is equivalent to ¢;. Let V' denote the
subset of all ¢ with this property. Thus for all ¢ ¢ V, ¢; is not equivalent to any of the
conjunctions ¢; A ¢;. Let J[i] denote the set of all I such that c; A ¢; is satisfiable. Then
by lemma 3, we can construct for every I € .J[i], a non-empty conjunction c;; such that
¢i A ¢ is reduced and equivalent to ¢; A ¢j. Summarizing, we construct the reduced
DC-formula I';4 equivalentto I'; A dj4q as:

10 Markus M ller-Olm, Oliver R Gthing, and Helmut Seidl

(Viev i) v <Vi€V Viesg ¢ A Cil)

According to this construction, v[I;] = v[[}4;] implies that V = {1,...,k} and
therefore that I'; is equivalent to I';;;. Moreover, if I'; is not equivalent to I’ 1, then
v[I;] > v[Ij41]. Accordingly, if the sequence I';,j > 0, is not ultimately stable, we
obtain an infinite sequence of strictly decreasing vectors — contradiction. O

In particular, theorem 3 implies that compactness holds for DC-formulas as well. Note
that if we consider not just positive Boolean combinations but additionally allow nega-
tion, then the compactness property is immediately lost. To see this, consider an infinite
sequence tq, to, . . . Of pairwise distinct ground terms. Then obviously, all conjunctions
Nty (x1 # t;), m > 0, are pairwise inequivalent.

In order to perform effective fixpoint computations, we need an effective test for
stability.

Lemma 6. It is decidable for DC formulas d, d’ whether or notd = d'.

Proof. Assumed = c;V...Ve,andd' = ¢} V...V forconjunctions ¢;, ¢;. W.l.0.g.
we assume that all conjunctions c; are satisfiable and thus have a most general unifier
o;. Thend = d' iff o = dimplies o |= d' for all substitutions o. The latter is the case
iff for every i we can find some j such that o; | c;-. Since it is decidable whether or
not a substitution satisfies a conjunction of equalities, the assertion follows. Note that
this decision procedure for implications requires polynomial time. O

We now extend the lattice [E to a lattice D of equivalence classes of DC-formulas. Again,
the ordering is given by implication “=-" where the binary greatest lower bound opera-
tion is “A”. By theorem 3, all descending chains in D are ultimately stable. Similar to E,
we deduce that D is in fact a complete lattice and therefore amenable to fixpoint com-
putations. Note however that, opposed to the complete lattice [, the new lattice does
not have finite height, i.e., there exist strictly descending chains of arbitrary lengths.
This more general lattice also allows us to treat disjunctions and hence also Herbrand
programs which, besides assignments, contain disequality guards ¢; # t». In particular
by lemma 6, we can detect when stability has been reached. We obtain the main result
of this section:

Theorem 4. Assume p is a Herbrand program, possibly with disequality guards. For
every program point v of p and every positive Boolean combination of equalities d, it
is decidable whether or not d is valid at v;. |

Consider again the example program from section 2. Assuming that we want to test
whether x5 = x2 % 2 holds at program point 3, we compute the weakest pre-conditions
for the program points 0, ...,3 as shown in figure 4. Now, we indeed find the pre-
condition true for the start node of the program implying that the tested equality is valid
at program point 3.

Generalizing the idea from Section 3 for constant propagation, we obtain:

Theorem 5. For a Herbrand program p possibly with disequality guards and a pro-
gram point v; of p, it can be decided whether a variable x; is constant at vy. O

Testing Herbrand Equalities and Beyond 11

true X1 =2
xq1 1= 2
v a— x3 = x2%2

X1 := X2
X3 1= XQ%Xl

(X1 = 2) Y (X1 = xz)

Fig. 4. The pre-conditions computed for x5 = x2 % 2 at program point 3.

5 Limitationsand Lower Bounds

In [17], we showed for affine programs, i.e., programs where the standard arithmetic
operators except division are treated precisely, that equality guards allow us to encode
Post’s correspondence problem. In fact, multiplication with powers of 2 and addition
of constants was used to simulate the concatenation with a given string. For Herbrand
programs, we simply may encode letters by unary operators. Thus, we obtain:

Theorem 6. Testing whether a given equality holds at some program point in a Her-
brand program with equality guards of the form x; = x; is undecidable. O

We conclude that precision cannot be achieved if we do not ignore equality guards.
Turning to our algorithm for testing disjunctions, we recall that termination of the fix-
point algorithm is based on an argument on the well-foundedness of the lexicographical
ordering. Sadly enough, this argument does not provide any clue to derive an explicit
complexity bound for the algorithm. We at least can show, however, that an algorithm
with polynomial worst case runtime cannot be hoped for.

Theorem 7. It is at least PSPACE-hard to decide in a Herbrand program with dise-
quality guards whether a given Herbrand relation is true or not.

We prove Theorem 7 by means of a reduction from the language-universality problem
of non-deterministic finite automata (NFA), a well-known PSPACE-complete problem.
Due to lack of space this proof is deferred to App B.

6 Conclusion

We presented an algorithm for testing equalities in Herbrand programs. In absence of
disequality guards, our algorithm runs in polynomial time. By using positive Boolean
combinations of equalities, we generalized this base algorithm to deal with programs

12 Markus M ller-Olm, Oliver R Gthing, and Helmut Seidl

containing disequality guards and to a test of positive Boolean combinations of equal-
ities. We then showed that the algorithm is sufficient to find all Herbrand constants in
such programs. Many challenging problems remain. First, termination of the general-
ized algorithm is based on well-founded orderings. We provided only a first step to a
complexity analysis by establishing a PSPACE lower bound. This proof, however, did
not exploit the full strength of Herbrand programs. Therefore it still leaves room for,
perhaps, larger lower bounds. On the other hand, a more constructive termination proof
could help to derive explicit upper complexity bounds.

Finally, we note that any validity test can be used to infer all valid assertions up to
a given size. It is still unclear, though, how to decide whether or not there is any finite
disjunction of equalities that holds at a given program point of a Herbrand program.

References

1. B. Alpern, M. Wegman, and F. K. Zadeck. Detecting equality of variables in programs. In
Conf. Record of the 15th ACM POPL, Jan. 1988.

2. P. Briggs, K. D. Cooper, and L. T. Simpson. Value numbering. Software- Practice and
Experience, 27(6):701-724, June 1997.

3. C. Click and K. D. Cooper. Combining analyses, combining optimizations. ACM Transac-
tions on Programming Languages and Systems, 17(2):181 — 196, 1995.

4. J. Cocke and J. T. Schwartz. Programming languages and their compilers. Courant Institute
of Mathematical Sciences, NY, 1970.

5. D. Duffy. Principles of Automated Theorem Proving. Wiley, 1991.

6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1978.

7. K. Gargi. A sparse algorithm for predicated global value numbering. In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and implementation,
pages 45-56. ACM Press, 2002.

8. S. Gulwani and G. C. Necula. Global value numbering using random interpretation. In
Proceedings of the 31st ACM S GPLAN-S GACT symposium on Principles of programming
languages, pages 342—352. ACM Press, 2004.

9. S. Gulwani and G. C. Necula. A polynomial-time algorithm for global value numbering. In
Proc. Int. Static Analysis Symposium (SAS 2004),. Springer Verlag, 2004. To appear.

10. J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Technical Report
169, Department of Electrical Engineering, Princeton University, Princeton, NJ, 1975.

11. G. A. Kildall. A unified approach to global program optimization. In Conf. Record of the
fi rst ACM POPL, pages 194 — 206, Boston, MA, 1973.

12. J. Knoop, O. R'uthing, and B. Steffen. Code motion and code placement: Just synonyms?
In Proc. 6th ESOP, Lecture Notes in Computer Science 1381, pages 154 — 196, Lisbon,
Portugal, 1998. Springer-Verlag.

13. M. Mller-Olm and O. Ruthing. The complexity of constant propagation. In 10th European
Symposium on Programming (ESOP), pages 190—205. LNCS 2028, Springer-Verlag, 2001.

14. M. Mller-Olm and H. Seidl. Polynomial constants are decidable. In 9th Satic Analysis
Symposium (SAS), pages 4-19. LNCS 2477, Springer-Verlag, 2002.

15. M. M-ller-Olm and H. Seidl. Precise interprocedural analysis through linear algebra. In
Proceedings 31st POPL, pages 330—341, 2004.

16. M. Mlller-Olm and H. Seidl. Computing polynomial program invariants. Information Pro-
cessing Letters, to appear.

17.

18

19.

20.

21.

22.

Testing Herbrand Equalities and Beyond 13

M. Mller-Olm and H. Seidl. A note on Karr’s algorithm. In ICALP 2004, to appear.

. J. H. Reif and R. Lewis. Symbolic evaluation and the gobal value graph. In Conf. Record of
the 4th ACM POPL, pages 104 — 118, Los Angeles, CA, 1977.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant com-
putations. In Conf. Record of the 15th ACM POPL, pages 12 — 27, San Diego, CA, 1988.

O. RUthing, J. Knoop, and B. Steffen. Detecting equalities of variables: Combining efficiency
with precision. In Proc. 6th Int. Satic Analysis Symposium (SAS 99), Lecture Notes in
Computer Science 1694, pages 232—247, Venice, Italy, 1999. Springer-Verlag.

B. Steffen, J. Knoop, and O. R'uthing. The value flow graph: A program representation
for optimal program transformations. In Proc. Third ESOP, Lecture Notes in Computer
Science 432, pages 389 — 405, Copenhagen, Denmark, 1990. Springer-Verlag.

B. Steffen, J. Knoop, and O. R'Uthing. Efficient code motion and an adaption to strength
reduction. In Proc. 4th International Joint Conference on the Theory and Practice of Soft-
ware Development (TAPSOFT), Lecture Notes in Computer Science 494, pages 394 — 415,
Brighton, UK, 1991. Springer-Verlag.

14 Markus Mlller-Olm, Oliver R thing, and Helmut Seidl

A Proof of Lemma 2

Consider a single program execution path = € Stmt*. Define the collecting semantics
[#] S of = relative to S by: [e] S = S and [x's] S = [s] ([#'] S). Accordingly, define
the weakest precondition [7]* of ¢ along 7 by: [e]* ¢ = ¢ and [7's]* ¢ = [#']* ([s]* ¢)-
Claim 1: For every path m, set of states .S and formula ¢, o |= ¢ forall o € [x] S iff
TE [r]t¢forallr € S.

For a proof of claim 1, we proceed by induction on the length of 7. Obviously, the
claim is true for 7 = €. Otherwise, m = «'s for some shorter path 7’ and a statement s.
Define S' = [#'] S and ¢' = [s]* ¢. By lemma l,o |= ¢ forall o € [s] S iff o’ = ¢
for all ¢/ € S'. By inductive hypothesis for «' and ¢', however, the latter statement
is equivalent to 7 = [#']* ¢’ for all 7 € S, Since by definition, [s] S’ = [] S and
[#'Tt ¢' = [7] ¢, the assertion follows. O
Claim 2: Let IT denote the set of paths from st to v;. Then

1. Vslve] = U{[r] S | 7 € IT};
2. WP[st] = A{[7]t¢ | € IT}.

Note that the second statement of claim 2 is in fact well-defined as IL is a complete
lattice. Claim 2 follows from Kam and Ullman’s classic MOP=MFP theorem [10] since
both the transfer functions [s] of the constraint system for the collecting semantics as
well as the transfer functions [s]* of the constraint system for the weakest precondition
distribute over union and conjunction, respectively. O

By the first part of claim 2, ¢ is valid at v, from S, iff o = ¢ forall 7 € II,
o € [r] So. By claim 1, this is the case iff 7 = [#]t ¢ forall # € II, T € Sp. By the
second part of claim 2, this is true iff 7 = WP/[st] for all 7 € So. The latter is true iff
¢ = WP|[st]. |

B Proof of Theorem 7

As mentioned, we prove Theorem 7 by means of a polynomial-time reduction from
the language-universality problem of non-deterministic finite automata (NFA). This is
known to be a PSPACE-complete problem (cf. the remark to Problem AL1 in [6]). An
instance of the problem is given by an NFA A over an alphabet X. The problem is to
decide whether A accepts the universal language, i.e., whether L(A) = X*.

Without loss of generality, we may assume that >’ = {0,1}. So suppose given
an NFA A = (X, S,4,s1,F), where ¥ = {0,1} is the underlying alphabet, S =
{s1,-..,8} is the set of states, § C S x X x S is the transition relation, s; is the
start state, and F' C S is the set of accepting states. From this NFA, .4, we construct a
Herbrand program = which uses & variables x, . . . , x;, that correspond to the states of
the automaton and another set y, . ..,y of auxiliary variables. These variables hold
the values 0 or 1 only in executions of 7. Consider first the programs #¢ for o € X,
i € {1,...,k} pictured in Fig. 5 that are used as building blocks in the construction
of 7. As mentioned in sect. 2, the finite disjunctions and conjunctions of disequality
guards used in 7. (and later in 7) can be coded by simple disequality guards. It is not
hard to see that the following is valid:

Testing Herbrand Equalities and Beyond 15

Lemma 7. For each initial state, in which the variables x; . .., x; hold only the values
0and 1, 72 has a unique execution. This execution sets y; to 1 if and only if x; holds 1

for some o-predecessor s; of s;. Otherwise, it sets y; to 0. O
)
e =1
(D
Yo =0
O
¥
g, 1=

>
~~—
o
LS
-
=
q
»
m
O\z
>
,\‘><
LS
o
=
Q
»
m
(=2}
e
O50O-05®
= -
i i
s b

K

Fig.5. The program 7% . Fig. 6. The program .

Consider now the program 7 shown in Fig. 6. Intuitively, each path from the initial
program point 0, to the program point 2 corresponds to a word w € X* and vice versa.
Execution of the initializing assignments on the direct path from 0 to 2 corresponds to
the empty word, e. Each execution of the loop body amounts to a prolongation of the
corresponding word by one letter. If the left branch is taken in the loop body (the one
via program point 3) then the word is extended by the letter O; if the right branch is
taken (the one via program point 4), the word is extended by the letter 1. Let p,, be the
path from program node 0 to node 2 that corresponds to the word w. We prove:

Lemma 8. After execution of p,, variable x; (for i = 1,...,k) holds the value 1 if
state s; is reachable in the automaton under the word w. Otherwise, x; holds 0. O

Proof. We prove Lemma 8 by induction on the length of w.

Base Case: Under the empty word, just the initial state s; is reachable in A. As the
initialization sets x; to 1 and the variables x», ..., xy to 0, the property claimed in
the lemma is valid for the empty word.

Induction Step: Suppose w = w'0 with w’ € X*; the case w = w'1 is similar. Let p
be the cycle-free path from 2 to itself via 3. Then p,, = pyp.

Assume s; is reachable under the word w in A. Then, clearly, there is a 0-predecessor
s;j of s; in A that is reachable under w'. Thus, by the induction hypothesis, x;

16 Markus M ller-Olm, Oliver R Gthing, and Helmut Seidl

holds 1 after execution of p,,r. Consider executing p. The programs «§, ..., 74 "

do not change x;. Thus, by Lemma 7, the program 7§ sets y; to 1 and thls value
is copied to xz in the i-th assignment after program point 5 because the programs
mgtt, ...,k donot change y;.

Finally, assume that s; is not reachable under the word w in .A. Then, clearly, no o-
predecessor s; of s; in A is reachable under w'. Thus, by the induction hypothesis,
for all 0- predecessors s; of s;, x; holds 0 after execution of p,,. The programs
o, - ~! do not change these values. Thus, by Lemma 7, the program § sets
Vi to 0 and this value is copied to xZ in the ¢-th assignment after program point 5
because the programs 7r’+1, ..., do not change y;. O

It is not hard to see from this property that there is an execution of = that passes the
guard at the edge between the nodes 7 and 8 if and only if L(A) # X*. This implies:

Lemma 9. The relation x; = 0 is valid at node 9 of program = iff L(A) = X*. |
Proof. We prove both directions of the equivalence claimed in Lemma 9 separately:

=": The proof is by contraposition. Assume L(A) # X*. Let w € X* such that
w ¢ L(A). This implies that no state s; € F'is reachable in A under w. Therefore,
after executing p,, all variables x; with s; € F' hold 0 by Lemma 8 such that the
condition A{x; # 1| s; € F'} is satisfied. Hence, we can proceed this execution
via the nodes 7, 8, and 9. After this execution, however, x; holds 1 such that the
relation x; = 0 is invalidated.

“<": Assume L(A) = X*. Then after any execution from the initial program node 0
to node 2 one of the variables x; with s; € F holds the value 1 because the word
corresponding to this execution is accepted by .4. Therefore, the path 2,7, 8, 9 is not
executable, such that x; is set of 0 whenever 9 is reached. Therefore, the relation
x1 = 0 is valid at program point 9. O

Note that our PSPACE-hardness proof does not use the full power of Herbrand programs
and Herbrand relations. We just use constant assignments of the form x := 0 and
x := 1, copying assignments of the form x := y, and disequality guards of the form
x # 0and x # 1, where 0 and 1 are two different constants. Moreover, we just need to
check whether a relation of the form x = 0 is valid at a given program point.

