Interprocedural Analysis of Modular Arithmetic

Markus Miiller-Olm*
FernUniversitat Hagen
LG Praktische Informatik 5
58084 Hagen, Germany

Abstract

We consider integer arithmetic modulo a power of 2 as
provided by mainstream programming languages like C
or Java. The difficulty here is that the ring Z,, of inte-
gers modulo m = 2%, w > 1, may have zero divisors and
thus cannot be embedded into a field. Not withstand-
ing that, we present precise intra- and inter-procedural
algorithms for inferring for every program point w, all
affine relations between program variables valid at w.
Our algorithms run in time linear in the program size
and polynomial in the number of program variables.
Moreover, these algorithms can be implemented by us-
ing the same modular integer arithmetic as the target
language to be analyzed. We also explain how the meth-
ods can be extended to arithmetic w.r.t. rings Z,, for
arbitrary m > 1.

1 Introduction

Analyses for automatically finding linear invariants in
programs have been studied for a long time [8, 7, 9,
14, 11, 10]. None of these analyses, however, can find
out, that the linear invariant n — 1 = 0 holds upon
termination of the following simple Java program, i.e.,
that n is actually a constant of value 1 at program exit:

class Eins {
public static void main(String [] argv) {
int n = 21;
if (argv.length > 0) {
n = n¥1022611261;
}
else {
n = n-20;
}

System.out.println("n="+n);
}

In order to convince yourself that this is indeed the case,
run the program twice, with and without a parameter.

*On leave from Universitdt Dortmund, FB 4, LS 5, 44221 Dort-
mund, Germany.

Helmut Seidl

TU Miinchen
Lehrstuhl fur Informatik 11
80333 Miinchen, Germany

Figure 1: Z, interpretation is unsound.

Why is this? In order to allow implementing arith-
metic operations by the efficient instructions provided
by processors, Java, like other programming languages,
performs arithmetic operations for expressions of the
integer types modulo m = 2% where w = 32, if the
result expression is of type int, and w = 64, if the
result expression is of type long [6, p. 32]. Vari-
able n is a constant of value 1 because the equation
21 %1022611261 = 21 — 20 is valid modulo 232. In order
to work with mathematical structures with nice prop-
erties, however, analyses for finding linear invariants
typically interpret variables by members from a field,
often from Q the set of rational numbers [8, 11, 12],
or Z, = Z/(pZ) where p is a prime number [7]. Note
that even an analysis that interprets variables by inte-
gers, i.e., by members from Z, cannot detect that z is
a constant, because 21 x 1022611261 # 1. Thus, such
analyses are inherently incomplete with respect to the
modulo interpretation used in practice. Even worse:
analyses based on Z, may yield unsound results. In the
small flow graph in Fig. 1, for instance, z is a constant
at program point 2 if variables take values in Z, for a
prime number p > 2, but it is not a constant if variables
take values in Z,,.

In this paper we present intra- and inter-procedural
analyses that are sound and, up to the common abstrac-
tion of guarded to non-deterministic branching, com-
plete with respect to modulo arithmetic. Our analyses
are thus more precise than analyses based on computing

over Z, Q, or Z, and, in contrast to analyses based on
computing over Zp, they are sound w.r.t. the arithmetic
used in mainstream programming languages.

We generalize our analyses based on techniques from
linear algebra that we have studied previously [12, 11].
The major new difficulty is that unlike Q and Z,, Z,
is not a field. In particular, Z,, now may have zero
divisors implying that no longer every non-zero element
is invertible. Therefore, standard results from linear
algebra over fields do not apply to sets of vectors and
matrices over Z,,. However, these sets are still modules
over Z. We establish the properties of Z,, that still
enable us to implement similar algorithms as in [12, 11]
and show how this can be done.

Besides the soundness and completeness issues dis-
cussed above, there is another advantage of our analy-
ses that is perhaps even more important from a practi-
cal point of view: they can straightforwardly be imple-
mented using modulo arithmetic. Clearly, if we imple-
ment an algorithm based on computing in @, we must
use some representation for rational numbers. If we use
floating point numbers, we must cope with rounding
errors and numerical instability. Alternatively, we may
represent rational numbers as pairs of integers. Then
we can either use integers of bounded size as provided
by the host language. In this case we must cope with
overflows. Or we represent integers by arbitrarily long
bit strings. In this case the size of our representation
might explode. If we compute over Z, also special care
is needed to get the arithmetic right. The algorithms
proposed in this paper, however, can simply be imple-
mented using the modulo arithmetic provided by the
host language itself. In particular, without any addi-
tional effort this totally bans the danger of explosion of
number representations, rounding errors, and numerical
instability.

Our paper is organized as follows. In section 2, we in-
vestigate the properties of the ring Z,, for prime powers
m and provide basic technology for dealing with gener-
ating systems of Z,,-modules. In particular we show
how to compute a (finite description of) all solutions of
a system of linear equations over Z,,. In section 3, we
introduce our basic notion of programs together with
their concrete semantics. In section 4, we introduce
affine relations and show how the basic technology pro-
vided in [11] for fields can be adapted to work also for
rings Z,, where m is a prime power such as 2°2. In
section 5, we generalize these results to rings Z,, for
arbitrary m > 1. In section 6, we explain how to com-
pute all valid affine relations over Z,, in absence of pro-
cedures. Here, it suffices to show how to modify the
algorithm from [12] to work with modular arithmetic.
Finally in section 7 we summarize and explain further
directions of research.

2 The Ring Z,, for Prime Powers m = p¥*

In this section we collect basic facts about the residue
class ring Z,, for m = 2%, w > 1. Similar properties
hold for arbitrary prime powers instead of 2%. Since we
will use the more general results in section 5, we present
our results for m = p" where p is any prime and w > 1.

Lemma 1 Assume a € Z,, is different from 0. Then
we have:

1. If p| a, i.e., p divides a, then a is a zero divisor,
i.e., a-b =0 modulo m for some b € Z,, different
from 0.

2. If pt a, then a is invertible, i.e., a-b = 1 mod-
ulo m for some b € Z,,. Moreover, the inverse
b can be computed using arithmetic modulo m in
time O(log(m)).

Proof: Assumea=p-a’. Thena-p* 1 =p%.a' =0
modulo m. If, on the other hand, p does not divide a,
then a and m are relative prime. Therefore, we can use
the Euclidean algorithm to determine integers z and
y such that 1 = a-x +m -y. Accordingly, b = z
(modulo m) is the inverse of a. Note, however, that
this algorithm cannot be executed modulo m. In the
case where w = 1, we know that Z,, is in fact the field
Zp. The invertible elements of Z, form a cyclic group
of order p — 1. Thus, the inverse of a is simply given
by aP~2. If on the other hand w > 1, we may use the
FEuclidean algorithm to determine integers z; and y;
with 1 = a-z; + p¥~!-y;. By computing the p-th
power of both sides of this equation, we obtain:

1 = aPal +p-aP ol Ipu Tty T L peTryd

Every summand of the right-hand side except of the
very first contains p” as a factor and equals thus 0
modulo m. Therefore, b can be chosen as a?~'z¥ (mod-
ulo m). Powers p — 2, p — 1 or p can be computed
with O(log(p)) operations. Since the Euclidean algo-
rithm uses at most O(log(m)) operations, the complex-
ity statement follows.

Example 1 Consider p =2, w = 32 and a = 21. We
use the familiar notation of Java int values as elements
in the range [—23!,231 — 1]. The Euclidean algorithm
applied to a and m' = 23! (or: =231 in signed notation)
gives us x1 = —1124872387 and y; = 11. Then b =
21 - x?2 = 1022611261 modulo 232 is the inverse of a. O

Since computing of inverses can be rather expensive,
we will avoid these whenever possible. For a € Z,,, we
define the rank of a as r € {0,...,w} iff a =p" - o' for
some invertible element a'. In particular, the rank is

0 iff a itself is invertible, and the rank is w iff a = 0
(modulo m). Note that for p = 2, the rank of a can be
computed by determining the length of suffix of zeros
in the bit representation of a. If there is no hardware
support for this operation, it can easily be computed
with O(log(w)) = O(loglog(m)) arithmetic operations
using a variant of binary search.

A subset M C ZE of vectors' (zy,...,z;)t with
entries z; in Z,, is a Z,,-module iff it is closed under
vector addition and scalar multiplication with elements
from Z,,. A subset G C M is a generator of M iff
M =Y. rgi| 7> 0,1 € Lp,g; € G}. In this
case, we also say that M is generated by G and write
M ={G).

For a non-zero vector x = (z1,...,x)t, we call i the
leading index iff z; # 0 and z; = 0 for all ¢/ < i. In
this case, we also call x; the leading entry of z. A set
of non-zero vectors is in triangular iff for all distinct
vectors x,z' € G, the leading indices of x and z' are
pairwise distinct. Note that every set G in triangular
form contains at most k elements. Accordingly, we de-
fine the rank of a triangular set G of cardinality s as the
sum of the ranks of the leading entries of the vectors of
G plus (k —s) - w.

Assume that we are given a set G in triangular form
together with a new vector . Our goal is to construct
a set G in triangular form generating the same Z,,-
module as G U {z}. If z is the zero vector, then we
simply can choose G' = G. Otherwise, let i and p"d (d
invertible) denote the leading index and leading entry
of z, respectively. We distinguish several cases:

1. The i-th entry of all vectors z' € G are 0. Then we
choose G = G U {z}.

2. i is the leading index of some vector y € G where
the leading entry equals p™ d'.

(a) If ' < r, then we compute ' =d'-z—p"~" d-
y. Thus, the i-th entry of 2’ equals 0, and we
proceed with G and z'.

(b) If ' > r, then we construct a new set G' by
replacing y with the vector x. Furthermore,
we compute y' =d-y—p" ~"d'-z'. Thus, the
i-th entry of 3’ equals 0, and we proceed with
G' and v'.

It should be clear that eventually, we arrive at a set
G having the desired properties. Moreover, either G
equals G or the rank of G is strictly less than the rank
of G.

Overall, computing a triangular set for a given tri-
angular set and a new vector amounts to at most O(k)

IThe superscript “t” denotes the transpose operation which
mirrors a matrix at the main diagonal and changes a row vector
into a column vector (and vice versa).

computations of ranks together with O(k?) arithmetic
operations. On the whole, it therefore can be done with
O(k - (k +loglog(m))) operations. Accordingly, we ob-
tain the following theorem:

Theorem 1 1. FEvery Z.,-module M C an s gen-
erated by some set G generators of cardinality ot
most k.

2. Given any finite set G' of generators of cardinality
n, we can compute in time O(n-k-(k+loglog(m)))
a set G of cardinality at most k such that (G) =
(G".

3. Every strictly increasing chain of Z,-modules
My C My C ... C My C Z’fn, has length s <
k-w=k-log(m).

Proof: The second statement follows from our con-
struction of triangular sets of generators. Starting from
the empty set, which is in triangular form for trivial
reasons, we add the n vectors in G' one after the other
with the procedure described above. The complexity es-
timation follows by summing up the operations of these
n inclusions.

Since Z£, is finite, the first statement trivially follows
from the second statement. Therefore, it remains to
consider the third statement. Assume that M; C M;;
fori =0,...,s—1. Consider finite sets G; of generators
for M;. Then we construct a sequence of triangular sets
generating the same modules as follows. GY is the tri-
angular set constructed for Gy whereas for ¢ > 0, G/ is
obtained from G)_; by successively adding the vectors
in G; to the set G_,. Since M;_; # M;, the triangu-
lar set Gj_; is necessarily different from the set G for
all 4 = 1,...,s. Therefore, the ranks of the triangular
sets G are strictly decreasing. Since the maximal pos-
sible rank is k - w and ranks are non-negative, the third
statement follows. |

Example 2 Assume again p = 2. In order to keep
the numbers small, we choose here and in the following
ecxamples of this section w = 4, i.e., m = 16. Then
consider the vectors x = (2,6,9) and y = (0,2,4)" with
leading indices 1 and 2 and both with leading entry 2.
Thus, the set G = {z,y} is triangular. Let z = (1,2,1)".
We construct a triangular set of generators equivalent
to {z,y,2} from G and z as follows. Since the leading
index of z equals 1, we compare the leading entries of
z and z. The ranks of the leading entries of x and z
are 1 and 0, respectively. Therefore, we exchange T in
the generating set with z while continuing with ' =
x—2-2=1(0,2,7). The leading index of x' has now
increased to 2 . Comparing ¢’ with the vector y, we
find that the leading entries have identical ranks. Thus,

we can subtract a suitable multiple of y to bring the
second component of x' to 0 as well. We compute "' =
' —1-y=(0,0,3)'. As triangular set we finally return
G =1{z,y,2"}. O

Note that for a set of generators G being triangular,
does not imply being a minimal set of generators. For
p = 2 and w = 3 consider, e.g., the triangular set G =
{z,y} where z = (4,1)',y = (0,2)". Multiplying = with
2 results in: 2-z = (8,2)' = (0,2)' = y. Thus as a
multiple, the second vector y in G is redundant implying
that G is not a minimal set of generators.

It is well-known that the submodules of ZF are
closed under intersection. Ordered by set inclusion they
thus form a complete lattice Sub(Z¥), like the linear
subspaces of F* for a field F. However, while the height
of the lattice of linear subspaces of F* is k for dimension
reasons, the height of the lattice of submodules of Z¥, is
precisely k- w. By Theorem 1, k - w is an upper bound
for the height and it is not hard to actually construct a
chain of this length. The least element of Sub(ZF) is
{0}, the greatest element is Z¥, itself. The least upper
bound of two submodules M7, M is given by

M UMy, = (MlUMQ)
= {m1+m2|m,~€Mi}.

We turn to computing the solutions of systems of
linear equations in k variables over Z,,. Here, we con-
sider only the case where the number of equations is at
most as large as the number of variables. By adding ex-
tra equations with all coefficients equal to zero, we may
w.l.0.g. assume that every such system has precisely &
equations. Such a system can be denoted as Ax = b
where A is a square (kx k)-matrix A = (a;;)1<s,j<r With
entries a;; € Zp, x = (X1,...,X;)" is a column vector
of unknowns and b= (by,...,bx)" is a column vector of
elements b; € Z,,. Let L. denote the set of all solutions
of Ax = b. Let Ly denote the set of all solutions of
the corresponding homogeneous system Ax = 0 where
0 = (0,...,0)%. Tt is well-known that, if the system
Ax = b has at least one solution z, then the set of all
solution can be obtained from z by adding solutions of
the corresponding homogeneous system, i.e.,

L={z+y|y€lo}

Let us first consider the case where the matrix A is
diagonal, i.e., a;; = 0 for all i # j. The following lemma
deals completely with this case.

Lemma 2 Let A denote a diagonal (k x k)-matriz over
Z., where the diagonal elements are given by a; = p*id;
for invertible d; (w; = w means a;; = 0). Then we have:

1. The system Ax = b has a solution iff for all i, the
rank w; of a;; does not exceed the rank of b;.

2. If Ax = b is solvable, then one solution is given by:
z = (21,...,7%)" with ; = p¥i~% - d; 'b, where
b = p¥ib) for invertible elements b.

3. The set of solutions of the homogeneous system
A x = 0 is the Z,-module generated from the
vectors: e) = (eqj,...,ex;)t, 5 = 1,...,k, where
eij =p¥ i ifi = j and e;; = 0 otherwise. |

In contrast to the situation for equation systems over
fields, a homogeneous system Ax = 0 thus may have
non-trivial solutions — even if all entries a;; are different
from 0. Note, however, that in contrast to inhomoge-
neous systems, a set of generators for the homogeneous
system can be computed without ever computing in-
verses.

Example 3 Letp =2, w =4, i.e., m = 16, and

2 0
4=(5 %)
Then the Zp,-module of solutions of Ax = 0 is gen-

erated from the two vectors e') = (8,0) and e® =
(0,2)t. O

For the case where the matrix A is not diagonal, we
adapt the concept of invertible column and row trans-
formations known from linear algebra to bring A into
diagonal form. More precisely, we have:

Lemma 3 Let A denote an arbitrary (k x k)-matriz
over Zy,. Then we have:

1. A can be decomposed into matrices: A=L-D-R
where D is diagonal and L, R are invertible (kX k)-
matrices over Ly,

2. W.r.t. this decomposition, is a solution of A x =
b iff t = R~ '2' for a solution =' of the system
Dx =0V forb =L 'b.

3. The matriz D together with the matrizx R~ and
the vector ¥ = L~' b can be computed in time
O(loglog(m) - k3). In particular, computation of
inwverses is not needed for the decomposition.

Proof: In order to prove that every matrix A can in-
deed be decomposed into a product A = L-D - R for a
diagonal matrix D and invertible matrices L, R over Z,,,
we recall the corresponding technique over fields from
linear algebra. Recall that the idea for fields consisted
in successively selecting a non-zero Pivot element (i, j)

in the current matrix. Since every non-zero element in
a field is invertible, the entry d at (7,j) has an inverse
d—'. By multiplying the row with d !, one can bring the
entry (i,7) to 1. Then one can apply column and row
transformations to bring all other elements in the same
column or row to zero. Finally, by exchanging suitable
columns or rows, one can bring the former Pivot entry
into the diagonal. In contrast, when computing in the
ring Z.,, we do not have inverses for all non-zero ele-
ments, and even if there are inverses, we would like to
avoid their construction. Therefore, we refine the se-
lection rule for Pivot elements by always selecting as
a Pivot element the (i,) where the entry d = p"d' of
the current matrix has minimal rank r, and d' is invert-
ible over Z,,. Since r has been chosen minimal, still all
other elements in row ¢ and column j are multiples of p".
Therefore, all these entries can be brought to 0 by mul-
tiplying the corresponding row or column with d' and
then subtracting a suitable multiple of the i-th row or
j-th column, respectively. These elementary transfor-
mations are invertible since d' is invertible. Finally, by
suitable exchanges of columns or rows, the entry (i, j)
can be moved into the diagonal. Proceeding with the
classical construction for fields, the inverses of the cho-
sen elementary column transformations are collected in
the matrix R while the inverses of the chosen elemen-
tary row transformations are collected in the matrix L.
Since the elementary transformations which we apply
only express exchange of columns or rows, multiplica-
tion with an invertible element or adding of a multiple
of one column / row to the other, these transformations
are also invertible over Z,,.

Now it should be clear how the matrix D together
with the matrix R~! and the vector ' = L~1b can be
computed. The matrix R~ is obtained by starting from
the unit matrix and then performing the same sequence
of column operations on it as on A. Also, the vector b’ is
obtained by performing on b the same sequence of row
transformations as on A. In particular, this provides us
with the complexity bound as stated in item (3). O

Putting lemmas 2 and 3 together we obtain:

Theorem 2 1. A representation of the set Ly of a
homogeneous equation system A x = 0 over Z,, can
be computed without resorting to the computation
of inverses in time O(loglog(m) - k®).

2. A representation of the set L of all solutions of an
equation system A x = b over Z,, can be computed
in time O(log(m) - k + loglog(m) - k3).

Example 4 Consider, for p =2 and w = 4, i.e., m =
16, the equation system with the two equations

12X1 + 6X2 = 10
].4X1 + 4X2 = 8

We start with

12 6 10 10
w=(i 1) = (V) m= (o)

We cannot use (1,1) with entry 12 as a Pivot, since the
rank of 12 exceeds the ranks of 14 and 6. Therefore we
choose (1,2) with entry 6. We bring the entry at (2,2)
to 0 by multiplying the second row with 8 and subtracting
the first row twice in Ay and in by:

12 6 10 10
a=(5p) m= (V) m=(o)

By subtracting twice the second column from the first in
Ay and Ry, we obtain:

06 10 10
w=(50) = (1) m= (i 7)

Now, we exchange the columns 1 and 2 in A3z and R3:

6 0 10 0 1
=) m= (V) m=(10)

Since 3 -11 = 1mod 16, we can easily read off z, =
(112'5) = (;) as a solution of A3x = bz. We also see
that the two vectors x| = (g) and x| = (g) generate the
module of solutions of the homogeneous system Azx =
0. Consequently, vo = Rzzly = (3) is a solution of
Aogx = by and the two vectors ; = Rz x] = (g) and
x1 = Rzl = (g) generate the module of solutions of
the homogeneous system Agx = 0. We conclude that
the set of solutions of Agx = by (over Zig) is

L= {(ﬁiﬁi) |a,b€ ZIG} = {(g) ’ (121) ’ (130)) (}(1))}

O

3 Affine Programs

For a better comparison with the related work [11] on
the inter-procedural analysis of programs whose vari-
ables take values in a field, we use the same conven-
tions as there which we recall here for reasons of self-
containedness. In particular, we model programs by
systems of non-deterministic flow graphs that can re-
cursively call each other as in Figure 2. Let X =
{x1,...,X} be the set of (global) variables the pro-
gram operates on. We use x to denote the column vec-
tor of variables x = (x1,...,%;)". In this paper, we
assume that the variables take values in the ring Z,,.
Thus, a state assigning values to the variables is con-
veniently modeled by a k-dimensional (column) vector
T = (x1,...,7k)" € ZE; x; is the value assigned to vari-
able x;. For convenience, we distinguish variables and

X1 := 7654321 * x3
X2 1= X1 + X2

X1 1= 69246289 * x1
X2 1= X1 + X2

Figure 2: An inter-procedural program.

their values by their fonts. For a state x, a variable x;
and a value ¢ € Z,,, we write z[x; — | for the state
(T1,...,%i 1,¢ Ti11,---,Tk)" as usual.

In the programs we are going to analyze, we as-
sume the basic statements either to be affine assign-
ments of the form x; := to + Ele tix; (with t; € Z,
for i = 0,...,k and x; € X) or non-deterministic as-
signments of the form x; :=? (with x; € X). It is to
reduce the number of program points in the example,
that we annotated the edges in Figure 2 with sequences
of assignments. Since assignments x; := x; have no
effect onto the program state, they are also called skip-
statements and omitted in the picture. Skip-statements
can be used to abstract guards. Non-deterministic as-
signments x; :=? can be used as a safe abstraction
of statements in a source program which our analy-
sis cannot handle precisely, for example of assignments
x; := t with non-affine expressions ¢ or of read state-
ments read(x;). By Stmt we denote the set of all basic
statements.

In this setting, a program comprises a finite set Proc
of procedure names together with one distinguished pro-
cedure Main. Execution starts with a call to Main.
Each procedure name ¢ € Proc is associated with a
control flow graph G, = (Ng, Eq, Ay, sty, rety) consist-
ing of:

o a set N, of program points;

a set of edges E;, C N, x Ny;

e 3 mapping A, : B, — Stmt U Proc that annotates
each edge with a basic statement of the form de-
scribed above or a procedure call;

a special entry (or start) point sty € Ny; and

a special return point rety € N,.

We assume that the program points of different proce-
dures are disjoint: Ny N Ny = 0 for ¢ # ¢'. This can
always be enforced, e.g., by renaming program points.

We write N for U, cproc Ng> E for U, cpoc Fq; and A
for U, eproc Ag- We agree that Base = {e | A(e) € Stmt}
is the set of base edges and Call; = {e | A(e) = ¢} is
the set of edges that call procedure gq.

The key idea of [11] which we take up here for the
analysis of modular arithmetic, is to construct a pre-
cise abstract interpretation of a constraint system char-
acterizing the program executions that reach program
points. For that, program executions or runs are rep-
resented by sequences r of affine assignments:

r=381;.--38m

where s; are assignments of the form x; :=¢, x; € X
and t = to + Ele t;x; for some tg,...,tx € Z,. We
write Runs for the set of runs. The set of runs reaching
program point u € N is characterized as the least solu-
tion of a system of subset constraints on run sets. First,
the set of executions of base edges e are defined. If e is
annotated by an affine assignment, i.e., A(e) = x; :=t,
there is just one single execution: S(e) = {x; := t}.
Base edges e annotated by a non-deterministic assign-
ment x; :=7 are meant to assign any value. Therefore,
they give rise to the set of all constant assignments:

Sle) ={xj:=c|c€Zn}.

In order to cope with procedure calls, we proceed in two
steps. First, we characterize same-level runs. Same-
level runs of procedures capture complete runs of pro-
cedures in isolation. In order to accumulate these sets,
we also consider same-level runs of program nodes wu,
i.e., runs reaching u in a procedure g from a call to ¢
on same-level, i.e., after all procedures called by ¢ have
terminated. The sets of same-level runs of procedures
and program nodes are the smallest solution of the con-
straint system S:

S1] S(g) D Sret,)

S2] S(sty) 2 {e)

[S3] S(v) D S(u);S(e) if e = (u,v) € Base
[S4] S(v) 2 S(u);S(g) ife= (u,v) € Call,

@,
)

Here, “¢” denotes the empty run, and the operator
denotes concatenation of run sets. By [S1], the set of
same-level runs of a procedure ¢ comprises all same-
level runs reaching the return point of q. By [S2], the
set of same-level runs of the entry point of a procedure
contains the empty run. By [S3] and [S4], the same-level
runs for a program point v are obtained by considering
all ingoing edges e = (u,v). In both cases, we con-
catenate the same-level runs reaching u with all runs

corresponding to the edge. If e is a base edge, we con-
catenate with the edges from S(e). If e is a call to a
procedure ¢, we take all same-level runs of q.

In the second step, the runs reaching program points
are characterized. They are the smallest solution of the
constraint system R:

[R1] R(Main) D {e}
[R2] R(q) D R(u) if (u,-) € Call,
2 R(q); S(u) ifueN,

By [R1], the procedure Main is reachable by the
empty run. By [R2], every procedure ¢ is reachable
by a run reaching a call of ¢. By [R3], we obtain a
run reaching a program point v in some procedure g,
by composing a run reaching ¢ with a same-level run
reaching u.

Sets of program executions can be seen as a symbolic
operational semantics of procedural flow graphs which
describes all sequences of assignments possibly reaching
program points. Obviously, each of these runs gives
rise to a transformation of the underlying program state
z € ZF . Every assignment statement x; := ¢ induces a
state transformation [x; := t] : Zk — Zk, given by

[x; :=t]lz = z[x; = t(x)],

where t(z) is the value of term ¢ in state z. This defi-
nition is inductively extended to runs: [¢] = Id, where
Id is the identical mapping and [ra] = [a] o [r]-

A closer look reveals that the state transformation
of an affine assignment x; :=¢o + Zle t;x; in fact is an
affine transformation. Hence, it can be written in the
form [x; := t]Jz = Az + b with a matrix A € Z¥X* and
a (column) vector b € Z% where A and b are indicated
below:

L] O 0
A=t ... t; b= to (1)
0 | Ir, 0

Here, I; is the unit matrix with ¢ rows and columns
and 0 denotes zero matrices and vectors of appropriate
dimension. In b, ¢y appears as j-th component. Note
that this observation is independent of whether the do-
main of values of variables is a field or just a ring. As a
composition of affine transformations, the state trans-
former of a run is therefore also an affine transformation
— no matter whether we compute over fields or some
Zn. For any run r, let A, € ZX** and b, € ZF, be such
that [r]z = A2 + b,.

4 Affine Relations and Weakest Preconditions

We now turn to the definition of affine relations over
Z, which is completely analogous to affine relations

over fields. So, an affine relation over Z¥, is an equation
ap + ai1xy + ...+ apxy = 0 for some a; € Z,,. As for
fields, we represent such a relation by the column vector
a = (ao,-..,ar)". Instead of a vector space, the set of
all affine relations now forms a Z,,,-modul isomorphic to
Zk+L. We say that the vector y € Z%, satisfies the affine
relation a iff ag +a’ -y = 0 where a’ = (ay,...,ax)" and
“” denotes scalar product. We write y |= a to denote
this fact.

We say that the affine relation a is valid after a single
run 7 iff [r]z | a for all z € ZF, ie., iff ag + o' -
[rlz = 0 for all x € ZF; z represents the unknown
initial state. Thus, ag + a’ - [r]x = 0 is the weakest
precondition for validity of the affine relation a after
run 7. In [11], we have shown in the case of fields, that
the weakest precondition can be computed by a linear
transformation applied to the vector a. Literally the
same argumentation works as well in the more general
case of arbitrary rings. More specifically, this linear
transformation is given by the following (k+1) x (k+1)

matrix W,:
1|08t
W, = 2
o] a (2)

Note that the only operations we have to apply to A,
and b, are transposition and combination into a (k +
1) x (k + 1)-matrix. We find that for every z € Z

[rleEa iff zEW,a. (3)

Consequently, the matrix W, provides us also over Z,,
with a finite description of the weakest precondition
transformer for affine relations of a single program exe-
cution r.

Recall that also over Z,,, the only affine relation
which is true for all program states is the relation
0 = (0,...,0)t. Thus, the affine relation a is valid
after run r iff W,.a = 0, because the initial state is
arbitrary. Moreover, the affine relation a is valid at a
program point u, iff it is valid after all runs r € R(u).
Summarizing, we obtain here:

Lemma 4 The affine relation a € Z¥} is valid at pro-
gram point u iff Wra = 0 for all v € R(u). m|

This is good news, since this shows that as in the case of
fields, we may use the set W = {W, | r € R(u)} to solve
the validity problem for affine relations. While in our
case this set is finite because Z,, is finite, it can be very
large. We are thus left with the problem to represent W
compactly. In the case of fields, we could observe that
the set of (k+1) x (k+ 1) matrices forms a vector space.
Over Z,, this is no longer the case. However, this set
at least can be considered as a Z,,-module isomorphic

to Zg,’fﬂ)z. We observe:

Lemma 5 Let M denote a set of n X n matrices from

nxXn
Znxn,

a) For every W € M, the set {a € Z7, | Wa = 0
forms a submodule of Z7},.

b) As an intersection of Zpy-modules, the set {a €
ZM |VW € M : Wa = 0} forms a submodule of
zn

¢) For every a € Z7, the following three statements
are equivalent:

—Wa=0 foral W e M;
— Wa=0 for ol W e (M).

— Wa =0 for oll W in a generating system of
(M). |

We conclude that we can work with (W), i.e., the sub-
module of Z%H)X(Hl) generated by W without losing
interesting information. By Theorem 1, (W) can be de-
scribed by a generating system of at most (k + 1)? ma-
trices. Based on these observations, we can determine
the set of all affine relations at program point u from a
generating system of the Z,-module ({W, | r € R(u)}).

Theorem 3 Assume we are given a generating sys-
tem G of cardinality at most (k + 1) for the set
{W, | r € R(u)}). Then we have:

a) Affine relation a € Z%F is valid at program point
wiff Wa=0 for all W € G.

b) A generating system for the Zp-submodule of all
affine relations wvalid at program point u can be
computed in time O(k* - (k + loglog(m))).

Proof: Statement a) follows directly from Lemma 4
and Lemma 5,c).

For seeing b), consider that by a) the affine relation
a is valid at w iff a is a solution of all the equations

k
E wija; = 0
=0

for each matrix W = (w;;) € G and i =0,...,k.

The generating system G contains at most (k + 1)2
matrices each of which contributes & + 1 equations.
First, we can bring this set into triangular form. By
Theorem 1, this can be done in time O(k* - (k +
loglog(m))). The resulting system has at most k + 1
equations. By Theorem 2, a generating system for the
Z.p-module of solutions of this system can be computed
with O(loglog(m) - k3) operations. The latter amount,
however, is dominated by the former, and the complex-
ity statement follows. O

As in the case of fields, we are left with the task
to compute, for every program point u, a generating
system of ({W, | r € R(u)}). Following the approach
there, we try to compute this submodule of Zs,lfﬂ) x(k+1)
as an abstract interpretation of the constraint system
for R(u) from Section 3. From Section 2 we know
that Sub(Zgﬁ+l)X(k+l)) is a complete lattice of height
O(k?-w) such that we can compute fixpoints effectively.
The desired abstraction of run sets is described by the
mapping a : 2RU"s — Sub(Zg,’f"_l)x(k'H)) :

a(R) = ({W, |r € R}).
where:

a®) = @ = {0}
a({r}) = {W:}h

for a single run r. By Equation (2) we get for the empty
run,

a({e}) = ({Let1})

because A, = I}, and b, = 0.

We also verify that the mapping a is monotonic
(w.r.t. subset ordering on sets of runs and submod-
ules) and commutes with arbitrary unions. In order
to solve the constraint system for the run sets R(u)
over abstract domain Sub(ZgﬁH)x(kH)), we now must
provide adequate abstract versions of the operators and
constants in this constraint system. In the case of fields,
we have provided matrix multiplication (lifted to vec-
torspaces of matrices) as abstraction of the concatena-
tion of run sets. Since matrix multiplication does not
involve computation of inverses, we may use the same
idea for Z,, as well. Thus, for My, Ms C ngﬂ)x(’”l),
we define:

Ml o MQ = <{A1A2 | Az € Mz}> -

The following lemma and its proof is literally identical
to the corresponding lemmas for fields. We have in-
cluded it for completeness in order to demonstrate that
the techniques directly carry over.

Lemma 6 For all sets of matrices My, M,
(M) o (My) = My 0o M,.

Proof: Observe first that (M;) D M; and therefore,
(M) o (M3) D My o M,

by monotonicity of “o”.

For the reverse inclusion, consider arbitrary elements
B; =Y, A\~ AY in (M;) for suitable A" € M;. Then

BB, = Z Z)\g))\?) -A%)A?)

J

by linearity of matrix multiplication. Since each
A%)Agz) is contained in M; o My, By B> is contained
in M; o My as well. Therefore, also the inclusion “C”
follows. U

Lemma 6 implies that a generating system for M; o Mo
can be computed from generating systems Gp,G» for
M, and M, by multiplying each matrix in G with each
matrix in G,.

The following lemma that ensures that precisely
abstracts the concatenation of run sets is proved as for
fields:

“O”

Lemma 7 Let Ry, Ry C Runs. Then

Oé(Rl) o Oé(Rz) = a(R1 H Rz) .

The abstractions of base edges are also very similar to
the field case. For a base edge e € Base annotated
by an affine assignment, i.e., A(e) = z; := t where
t = to+ Y., tix;, we have S(e) = {x; := t}. The
weakest precondition for an affine relation a € ZF+! is
computed by substituting ¢ into x; of the corresponding
affine combination. Thus, the corresponding abstract
transformer is given by

I |t 0
a(S(e) = < B I >
0 tr

I

For a base edge e € Base annotated by x; :=7 we
have S(e) = {x; := ¢ | ¢ € Z,,} by definition. In order
to abstract this set of m = p* runs, we observe that
a(S(e)) is in fact generated by just two matrices:

Lemma 8

a(S(e) = a({x;:=c|c€Ln))

= ({To,T1}),

where T, = Wx,.—. is the matriz obtained from I 1 by
replacing the j + 1-th column with (c,0,...,0)".

Proof: Only the second equation requires a proof.
From Equations (1) and (2) we get a({x; :=c | ¢ €
Zm}) = {Te|c€Zy}). We verify: T, = (1 —¢) -
To + ¢+ Ty. Hence, T, € ({Tp,T1}) and we conclude
({Te | c € Zm}) = ({To, T1 }). O

Thus, as in the case of fields, we obtain the abstrac-
tion by taking the matrices for just two different values.
Note, however, that other than in the case of fields, we
cannot choose these values arbitarily. For example for
p = 2, Ty and T3 are not sufficient to combine 77 .

Proceeding as in the case of fields, we take the con-
straint systems S and R for run sets and construct the
constraint systems S, and R, by the application of a.
The variables in the new constraint systems now take
submodules of Z%H)x(kﬂ) as values. We apply a to
the occurring constant sets {€} and S(e) and replace
the concatenation operator “;” with “o”:

Sa(q) 2 S, (rety)

Sa(sty) 2 ({Ip+1})

Sa(v) D Sa(u) o a(S(e)) if e = (u,v) € Base
Sa(v) D Sa(u) o Sag) if e = (u,v) € Call,
Ro(Main) O ({Ix+1})

Ro(g) 2 Ralu) if (u,.) € Call,
Ro(u) D Ru(g) o Sa(u) ifue N,

Again as in the case of fields, the resulting constraint
system can be solved by computing on generating sys-
tems. In constrast to fields, however, we do no longer
have the notion of a basis available. Instead, we rely on
sets of generators in triangular form. In order to avoid
full solving of a system of equations over Z,, whenever
a new vector is going to be added to a set of gener-
ators, we use our algorithm from Theorem 1 to bring
the enlarged set again into triangular form. A set of
generators, thus, may have to be changed — even if
the newly added vector is implied by the original one.
The update, however, then decreases the rank of the
set of generators implying that ultimately stabilization
is detected.

As usual, we assume that the basic statements in the
given program have size O(1). Thus, we measure the
size n of the given program by |N|+|E|. If all program
nodes have bounded out-degree (which is typically the
case), this implies that n = O(|N|).

Theorem 4 For every program of size n with k vari-
ables the following holds:

a) The values:
(W, | T € S@)), ue N,
({W, | r €8(q)}), q € Proc,
{W, | r € R(q)}), q € Proc, and
(W, [reR(w)}), ueN,
are the least solutions of the constraint systems S,
and R, respectively.

b) These values can be computed in time O(log(m) -
n - k- (k? 4 loglog(m))).

¢) The sets of all valid affine relations at program
point u, u € N, can be computed in time O(log(m)-
n - kS - (k% + loglog(m))).

In our main application, m = 2% where w = log(m)
equals 32 or 64. The term loglog(m) in the complexity
estimation accounts for the necessary rank computa-
tions. In our application, loglog(m) equals 5 or 6 and
thus is easily dominated by k?. We conclude that the
extra overhead over the corresponding complexity from
[11] for the analysis over fields (w.r.t. unit cost for basic
arithmetic operations) essentially consists in one extra
factor log(m) = 32 or 64 which is due to the increased
height of the lattice used. We expect, however, that
fixpoint computations in practice will not exploit full
maximal lengthes of ascending chains in the lattice but
stabilize much earlier.

Proof: Statement a) asserts that the least solution of
constraint systems S, and R, is obtained from the least
solution of S and R by applying the abstraction a. Asin
the case of fields, this follows from the Transfer Lemma
known in fixpoint theory (see, e.g., [1, 3]), which can
be applied since a commutes with arbitrary unions, the
concatenation operator is precisely abstracted by the
operator o (Lemma 7), and the constant run sets {¢}
and S(e) are replaced by their abstractions a({e}) =
({Ir+1}) and a(S(e)), respectively.

In order to argue about the complexity of the analy-
sis, we will not analyze an ordinary worklist-based fix-
point algorithm, since this would result in much too
conservative estimations. Instead, we prefer to consider
a semi-nagve iteration strategy here [13, 2, 5]. The cor-
responding semi-naive fixpoint algorithm for computing
Sa(r) for all program points or procedures r is shown in
Figure 3. In order to deal uniformly with deterministic
and non-deterministic assignments e, we introduce sets
M(e) where M(e) = {Ty,T1} if e € Base is annotated
by x; :=? and M(e) = {T'} if e is nnotated by x; :=t,
t = to+ > ., tiXi, where T is obtained from Ij;; by
replacing the j + 1 column by (to,...,t).

Informally, the algorithm works as follows. It main-
tains a workset W holding pairs (r, M) where r is a
node or procedure whose set of generators has changed
through addition of the matrix M. The fixpoint vari-
ables are initialized by setting all entry nodes of pro-
cedures to the sets {Iyi} and all other variables to
@. Accordingly, the workset receives the elements
(stg, Ix+1),q € Proc. In the main loop, the algorithm
successively takes pairs (r, M) out of the workset and
propagates the new value for r to all uses of the variable
Sa(r) until the workset is empty.

If r is a procedure, then the new matrix M must be
propagated to all edges (u,v) at which r is called. At
every such edge, the algorithm computes the set new =
{M;-M | My € Sq(u)} consisting of all products of M
with matrices in the current set for the entry point of
the edge u. This set consists of all candidate matrices
potentially to be added to the set S,(v). Thus, we

10

W=0;
forall (u € N) Su(u) =0;
forall (q € Proc) {
Sa(q) =
Sa(sty) = {Ik+1}
W =W U{(sty, Ir+1)};

}

while (W # 0) {
(r, M) = Extract(W);
if (r € Proc) {
forall ((u,v) € Call,) {
new = {M; - M | My € Sp(u)};
forall (Ms € new)
if (M ¢ (Sa(v))) {
Sa(v) = Add(S4(v), M>);
W=WwWu {(’U,MQ)}
}

}
} else{//ie,ifreN
if (r = rety)
(@) {

if (M ¢ (S
Sa(q) = Add(Sa(q), M);
} W =W u{(g,M)};
forall ((r,v) € E) {
if (e = (r,v) € Cally)
new = {M - M; | M1 € Sa(q)};
else //1ie., if e € Base
new = {M - M; | M1 € M(q)};
forall (M, € new)
if (M ¢ (Sa(v))) {
Sa(v) = Add(S4(v), Ma);
W =W U{(v,M)};
}

Figure 3: The semi-naive fixpoint algorithm for S,,.

successively check for every Ms € new whether or not
it is contained in the module generated by S,(v). If
not, then we add it to S, (v) and insert the pair (v, M)
into the workset.

Now assume that 7 is not a procedure but a pro-
gram point. First, we consider the case where r is the
return point of some procedure q. Then the new ma-
trix M for r must be added to the set S,(q), if M is
not subsumed by the matrices in S,(g). In this case
the pair (g, M) is inserted into the workset. Second,
we consider all out-going edges (r,v) of r. If (r,v) is

a call to some procedure ¢, then we compute the set
new = {M - My | My € S,(g)} consisting of all candi-
date matrices potentially to be added to the set S, (v).
If on the other hand, e = (r,v) is a basic edge, then the
set new is determined as new = {M-M; | M; € M(e)}.
With this set new, we then proceed as above, i.e., we
iteratively check for every My in new whether or not it
is contained in the module generated by Sy (v). If not,
then we add it to S, (v) and insert the pair (v, M») into
the workset.

We make three technical remarks. First, in the real
implementation we do not need to resort to some kind
of set implementation for the workset W. Instead, an
ordinary list will do for W, since the same pair (r, M)
is never be inserted into W twice. Second, the Z,,-
modules S, (r) for every program point or procedure r
are represented as a set of generators (of cardinality at
most (k + 1)?). Finally, we do not perform an exact
check whether or not a new matrix M is subsumed by
a set of matrices. Instead, we keep the sets S,(r) in
triangular form. Whenever a new matrix M is checked
for containment in (S, (r)), we compute a triangular set
G of generators for S, (r) U {M} by means of the algo-
rithm from Theorem 1. If the new set equals the old
one, we know for sure that M is contained in S,(r).
Otherwise, the new set at least comprises both all old
vectors together with the new one (i.e., is safe) and has
lower rank. Since the maximal rank of a triangular set
of vectors (with (k + 1)? components) is (k + 1)? - w,
we conclude that the number of insertions of pairs into
W is bounded by n - (k + 1)2 - w. In particular, this
implies that the algorithm always terminates. More-
over, for every edge it performs at most 2 - w - (k + 1)*
matrix multiplications and at most as many additions
of a vector to a triangular set. The matrix multipli-
cations can be performed in time O(log(m) - k7). By
our considerations for Theorem 1, the insertions need
O(log(m) - k% - (k* +1loglog(m))) arithmetic operations.
Multiplying that with the number of fixpoint variables,
we arrive at the complexity stated in statement b).

Having thus computed the values, S, (r), r a proce-
dure name or program node, it remains to determine
the values R,(r). Again we use semi-naive iteration
to compute the least solution of R,. The algorithm is
shown in Figure 4. It proceeds in the same spirit as
the algorithm for computing the values S,(r). Now,
the set R, (Main) for the main procedure is initialized
with {I;41}. The new matrices in the reachability set
of a procedure q are then propagated to every program
point u of ¢ by multiplying with all matrices in the set
Sa(u). Moreover, whenever a new matrix arrives at the
start point of an edge calling some procedure ¢, then
this matrix must be added to the set R, (gq'). An analo-
gous argument shows that this algorithm has essentially

11

W=0;

forall (u € N) a()=
forall (g € Proc) Rq(q)
R,(Main) = {Ij41};

W =W uU{(Main, I;;1)};

(0

while (W # 0) {
(r, M) = Extract(W);
if (r € Proc) {
forall (u € N,) {
new = {M - My | M1 € Sa(u)};
forall (M, € new)

if (M> ¢ (Ra(u))) {
R, (u) = Add(R, (u), Ma);
W =W U{(u, M2)};
}
} else{ //ie,ifreN
forall ((r,v) € E)
1f(e—() € Cally)
if (M ¢ (Ra(9))) {
Ra(g) = Add(Ra(g), M);
W =Wu{(g, M)}

Figure 4: The semi-naive fixpoint algorithm for R,,.

the same complexity as our algorithm for computing the
least solution of S,. This proves b).

Finally, for ¢) we recall that we know from Theo-
rem 3 that, from generators for ({W,. | r € R(u)}) for all
program points u, we can compute the sets of all valid
affine relations within the stated complexity bounds. O

Example 5 Consider again the inter-procedural pro-
gram from Figure 2 and assume that we want to infer
all valid affine relations modulo Z,, for m = 232, and let
¢ abbreviate 7654321. The weakest precondition trans-
formers for s1 = x1 := 7654321 - X1; X5 := X1 + Xo and
s9 = X1 := 69246289 - x1; X3 := X1 + X2 are given by:

1 0 0 1 0 0
Bi=|0 ¢ ¢ By=| 0 ¢t ¢!
0 0 1 0 0 1

since c - 69246289 = 1 mod 232. For R,(q), the algo-
rithm successively finds the matrices I +1 and

10 O
0 1 c+1

P1=B1-BQ=<
00 1

None of these is subsumed by the other where the corre-
sponding triangular set of generators is given by Gy =

{It+1, P} where
00 0
0 0 c+1

p:(
00 O

The next iteration then results in the matriz

10 0
0 1 (c+1)?

P,=B;-P,-By = (
0 0 1

Since Py = Ijy1 + (¢ + 1) - P, computing a triangular
set G of generators for Gy together with Py will result
in G2 = G1, and the fixpoint iteration terminates.

In order to obtain the weakest precondition trans-
formers, e.g., for the endpoint 6 of Main, we addition-
ally need the transformation By for x1 := 5;%x2 :=0:

150
Bo=|(0 0 0
000

Using the set {Ix1, P} of generators for S,(q), we thus
obtain for R, (6) the generators:

0

0

0

1
<0
0
0 5c+5
(£e0)
0 0

This gives us the following equation system for the affine
relations valid at the exit of main:

Wi = Bo-Ix1 =

W2 = B()P

S OO O oot

ag + 531 =0
(5¢ + 5)ay 0

Solving this equation system over Z,, according to The-
orem 2 shows that the set of all solutions is generated

by:
-5 0
a= (1) a = (0)
0 231

The vector a means —5 + x1 = 0 or, equivalently, x; =
5. The vector a' means that 23! -x5 = 0 or, equivalently,
Xo 48 even. Both relations are non-trivial and could
not have been derived, e.g., by using the corresponding
analysis over the field Q. O

5 Extension to Arbitrary Rings Z,,

In this section we generalize our results to the analysis
of linear arithmetic modulo an arbitrary m > 1. The

12

crucial point here is to explain how systems of equations
over the residue class ring Z,,, can be solved. So assume
that m = my-....-m,., 7 > 1, for pairwise relatively prime
m;. The key observation is that every element z € Z,,
is uniquely determined by the values z; = x modm;,
1 =1,...,r. This result is known as Chinese Remainder
Theorem. More precisely by Euclid’s algorithm, we can
find numbers y;,2; such that m; - y; + 7= - z; = 1. For

i =1,...,r, we define s; = ™ - zmodm. Thus for
every i,7J,
1 if i=j
s,-modmj—{o it i (4)
Since every element in Z,, is uniquely determined by
its residues modulo the m;, we obtain x = xys7 +

...+ z,s, modm. Note that the coefficients s; can
be constructed once and for all from the factorization
m =my - ... -my. Given these coefficients, the recon-
struction of z needs just O(r) arithmetic operations.
Let us call this operation Chinese remainder reconstruc-
tion and denote it by x; * ... * x,. This operation has
interesting properties. We have:

Lemma 9 The Chinese remainder reconstruction com-
mutes with componentwise addition and multiplication:

L (.. xx)+H(yr*. . oxyr) = (214y1) *. . % (20 +yr)

2. (wy*...xz.) (Y1 *...xyy) = (T1-y1) * .. - x (T - Yy)
for all x;,y; € Zp,-

Proof: The assertion for addition immediately follows
from the definition. For second assertion, it suffices to
prove that the left-hand side modulo m; equals z; - y;
for all i. We have modulo m;:

(1 %...xx.) - (Y1 % ... %xyy) (>, sizi) - (E] Sjyj)
= Zi,j 8iSjTiY;
= TiYi

where the last equality follows from equation (4). O

For the following, we extend the modulo operation to
vectors. Thus for a vector z = (z1,...,7)", we de-
note by mod ¢ the vector (z; mod g,. ..,z mod q)*.
Moreover, for vectors z; € Z’ﬁm, we denote by x1 *. . .xx
the vector in Z,, whose j-th component is obtained
from the j-th components of the vectors z; by applying
the Chinese remainder reconstruction. We show that
this reconstruction can be generalized to modules. As-
sume M C ZF is a Z,-module and for i = 1,...,r,
M; = {zmodm; | z € M} C Z% . Then we have:

Theorem 5 1. IfG is a set of generators of M, then
G; = {zxmodm; | x € G} is a set of generators of
M.

2. Fori=1,...,r, let G; = {gy),...,gg)} denote a
set of generators for M;. Then G = {g1,...,9n} is
a set of generators of M for g; = g](.l) * ..k gj").

Proof: We only prove the second statement. First, we
prove that G C M and therefore also (G) C M. Let
m; = 0*...x0%1%0x...%0 be the Chinese reconstruction
of r—1 zeros together with a single 1 at position 7. Now
consider any Chinese reconstruction g = gy * ... x g,
where g; € M;. Then there are x; € M such that
g; = ;mod m;. Hence by lemma 9,

mi-x; = 7 ((x;modmy) *...% (z; modm,))
= 0x...x0%g; *0x...%x0

(i.e., the Chinese reconstruction of r — 1 zero vectors
together with g; at position 7). Again by lemma 9, we
have (modulo m),

T T
g=20*...*0*g,~*0*...*0=mei
i=1 i=1

As a linear combination of x1,..., ., g therefore must
also be contained in M. In particular, this proves G C
M.

It remains to prove the reverse inclusion. Assume
x € M. Then for all i, z; = x mod m; € M;. There-
fore, x; = >0, /\z-jg](-’) for suitable A;; € Z,;. Con-
sequently, we can define values A\; = Ag; * ... % Ay,
j=1,...,n. Let 2’ = 3%, Aj - gj- Then by con-
struction, 2’ mod m; = z;. Therefore by the Chinese
Remainder Theorem, ' = £ — implying that z € (G).
O

Theorem 5 implies that the reconstruction always
results in sets of generators for M — no matter how
the sets G; of generators for the M; are chosen or their
elements are ordered. In particular, if the m; are prime
powers, the sets G; may be chosen triangular and of
cardinality at most k. Therefore we conclude:

Corollary 1 1. Every Z,-module M C ZF, is gener-
ated by at most k vectors.

2. Assume thatm = p*-...-p¥" for pairwise different
prime numbers p;. Then every strictly increasing
chain of Z-modules My C ... C M, C an has
length at most k - (w1 + ...+ w,). m|

We turn to computing the solutions of systems of
equations. Let A x = b denote a system of equations
over Z,, where A is a (k x k)-matrix with entries in

Zimy X = (X1,...,Xg)" is a column vector of unknowns,
and b € ZF, is a column vector of values in Z,,. Assume
again that m = my -...-m, for pairwise relatively prime

13

numbers m;. Foreveryi =1,...,r, let A;, b; denote the
matrix A and vector b with entries modulo m;. Then
we have:

Lemma 10 1. Assume z € ZF, is a solution of
A x = b, then for every i, x; = © mod m; is a
solution of the system A; x = b;.

2. Assumethat fori=1,...,r,2; € Z’fni 1s a solution
of the system A x = b;. Then the vector x = x; *
... %X 1S a solution of Ax =0. a

Lemma 10 allows us to reduce solving of systems of
equations over Z,, to solving equations over the Z,,,.
We obtain:

Theorem 6 Assume m =my - ... -m, and m; = p}"
for pairwise different prime numbers p;.

1. Ax = b has a solution over Z., iff A; x = b; has a
solution over Zy,, for alli=1,...,r.

2. If fori =1,...,r, G; is a set of generators of the
Zm;-module of solutions of the homogeneous sys-
tem A; x = 0, then every combination of the G;
to a set of Z,-vectors is a set of generators of the
Z-module of solutions of the homogeneous system
Ax=0.

3. The set of solutions of a linear system A x = b
over Z., can be computed in time O(log(m) - k?).
O

Now we have the necessary tools at hand to general-
ize the computation of valid affine relations over rings
Zpw (p prime) to general rings Z,. In essence, we per-
form the same analysis for each prime power p;" of m
separately. Then we combine the resulting modules by
means of Chinese remainder reconstruction. By theo-
rem 5, this gives the desired results. Taking into ac-
count that we have to add up the work to be performed
for each prime power, we therefore obtain:

Theorem 7 For every program of size n with k vari-
ables, the sets of all valid affine relations at program
point u, u € N, can be computed in time O(log(m) -n -
Kk - (k? 4 log(m))). i

6 The Intra-Procedural Case

The runtime of our inter-procedural analysis is linear in
the program size n — but polynomial in the number of
program variables k of a rather high degree. In [12], we
have presented an efficient algorithm which computes

all intra-procedurally valid affine relations in time O(n -
k3) where every arithmetic operation is counted for 1.
This algorithm improves on the original algorithm by
Karr [8] by a factor of k. It assumes that the program
variables to be analyzed take values in a field, namely
Q — but any other field Z,, (p prime) would do as well.

We will not rephraze this algorithm in all details
but just remark that the key idea is to compute, for
every program point u, the affine hull of all program
states reaching u where the affine hull (if non-empty)
is represented by one vector v together with (a basis
of) a linear vector space V. In a second phase then
(a basis of) the vector space of affine relations valid
at u is computed as the solution of a linear system of
equations. Note that the much better complexity of the
intra-procedural analysis is possible since in absence of
procedures, it suffices to compute with vector spaces
of states, i.e., vectors with k¥ components — instead of
vector spaces of weakest precondition transformers, i.e.,
matrices with (k + 1)? entries.

From this toplevel description it should be clear how
the intra-procedural algorithm from [12] must be mod-
ified in order to work for rings Z,,. First, for every
program point u, the non-empty affine hull of reachable
states now is described by one vector together with a
reduced triangular set of generators of a Z,,-module
where the containment test of a newly occurring state
at u is replaced with a subsumption test based on The-
orem 1. Finally in the second phase, we replace solving
of systems of equations over a field with our method
from Theorem 2 for rings.

Example 6 As an example, assume again m = 2% for
some w > 0 and consider the control-flow graph from
Figure 5. The fizpoint iteration starts by setting the

x1:=1
X9 1= 2X1
S @
x1:=25

Figure 5: A small program without procedures.

computed approzrimation of the set of reachable states
for the start point 0 to Z2,. This affine space is rep-
resented by one vector, e.g., the zero wvector together
with the Z,-module generated by the vectors (1,0)t and
(0,1)t. Propagating these two states along the edges
from 0 to 1, we obtain the four states:

(o) () (B) (5)

whose affine hull can be represented by the first state

14

together with the Z,,-module generated by the vectors:

(1)-G)=() (5)-(e)=()

Since the state (5,1)* is subsumed by the other three,
only the first three are propagated to program point 2.
This gives us the states (1,2)% and (5,10)% for program
point 2 whose affine hull is represented by the state
(1,2)% together with the Z.,-module generated by the
vector (4,8)".

In order to determine the set of all affine relations
ag + a1x1 + asxs = 0 wvalid, e.g., at program point 2, we
use the (representation of the) states for program point
2 to put up the following linear equation system:

ag + a +ax-2 = 0
a1-4+a2-8 =0

Using our technique from Theorem 2, we can compute
the reduced diagonal matrix D corresponding to the ma-
trix of coefficients of the equation system together with
the inverse R™1 of the right transformation matriz:

100 1 -1 0
D=0 40 R'=]10 1 -2
000 0 0 1

The Z-module of solutions of the transformed equation
system D a = 0 is generated by the vectors (0,2¥~2,0)*
and (0,0,1)*. Be applying the transformation R™!, we
arrive at the following two generators of all valid affine
relations (modulo m) at program point 2:

a = (0,-2,1)
al — (_Qw—272w—270)t

The affine relation a means 2 - x; — xo = 0 and could
have been found also by performing program analysis
over Q. The affine relation o', however, is due to the
refined computation over Zy, It amounts to the state-
ment: —2¥"242v"2.x; =0 0or2¥2.(x; —1) =0,
which means that X1 equals 1 modulo 4. O

Summarizing, we obtain the following Theorem:

Theorem 8 Consider an affine program of size n with
k variables but without procedures. Then for every m >
1, the set of all affine relations at all program points
which are valid over Z,, can be computed in time linear
in n and polynomial in k and log(m). More precisely:

1. If m is a prime power, then the complezity of
the analysis is bounded by O(log(m) -n - k? - (k +
loglog(m))).

2. If m is a product of several prime powers, then

the complexity of the analysis can be bounded by
O(log(m) - n - k? - (k + log(m))). O

7 Conclusion

We have presented intra- and inter-procedural algo-
rithms for computing all valid affine relations in affine
programs over rings Z,,. In particular, these techniques
allow to analyze integer arithmetic in programming lan-
guages like C or Java precisely. All these algorithms
were obtained from the corresponding algorithms in [11]
and [12] by replacing techniques for vector spaces with
corresponding techniques for modules over rings. The
key difficulty here is that the ring Z,, may have zero
divisors — implying that not every element in the ring
is invertible. Also the notion of a vector space had to
be replaced with the weaker concept of a Z,,-module.
Since we succeeded in maintaining the toplevel struc-
ture of the analysis algorithms, we could essentially
achieve the same complexity bounds as in the case of
fields — upto one extra factor log(m) which was due
to the increased height of the complete lattice of sub-
modules of ZF,. Beyond that, our algorithms have the
clear advantage that their arithmetic operations can
completely be performed within the ring Z,, of the tar-
get language to be analyzed. All problems with exces-
sively long numbers or numerical instability are thus
resolved.

We remark that in [11], we also have shown how the
linear algebra methods over fields can be extended to
deal with local variables and return values of procedures
besides just global variables. These techniques imme-
diately carry over to arithmetic in Z,,. The same is
true for the generalization to the inference of all valid
polynomial relations up to a fixed degree bound.

More work remains to be done. For example, one
method to extend the linear algebra approach to deal
with inequalities in conditions is to use polyhedra for
abstracting sets of vectors [4]. It is a challenging ques-
tion what kind of impact modular arithmetic has on
this abstraction.

Acknowledgments We thank Martin Hofmann for
pointing us to the problem of analysis for modular arith-
metic.

References

[1] K. R. Apt and G. D. Plotkin. Countable Nondeter-
minism and Random Assignment. Journal of the
ACM, 33(4):724-767, 1986.

[2] I. Balbin and K. Ramamohanarao. A General-
ization of the Differential Approach to Recursive
Query Evaluation. Journal of Logic Programming
(JLP), 4(3):259-262, 1987.

15

[3]

[9]

[10]

[11]

[12]

[13]

[14]

P. Cousot. Constructive Design of a Hierar-
chy of Semantics of a Transition System by
Abstract Interpretation. Electronic Notes in
Theoretical Computer Science, 6, 1997. TURL:

www.elsevier.nl/locate/entcs/volume6.html.

P. Cousot and N. Halbwachs. Automatic Discovery of
Linear Restraints among Variables of a Program. In
5th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL), pages 84-97, 1978.

C. Fecht and H. Seidl. Propagating Differences: An Ef-
ficient New Fixpoint Algorithm for Distributive Con-
straint Systems. Nordic Journal of Computing (NJC),
5(4):304-329, 1998.

J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

S. Gulwani and G. Necula. Discovering Affine Equali-
ties Using Random Interpretation. In Proceedings 30th
POPL, pages 74-84, 2003.

M. Karr. Affine Relationships Among Variables of a
Program. Acta Informatica, 6:133-151, 1976.

J. Leroux. Algorithmique de la Vérification
des Systémes d Compteurs: Approzimation et
Accélération. PhD thesis, Ecole Normale Supérieure
de Cachan, 2003.

M. Miiller-Olm and H. Seidl. Computing Polynomial
Program Invariants. Information Processing Letters,
91(5):233-244, 2004.

M. Miiller-Olm and H. Seidl. Precise Interprocedural
Analysis through Linear Algebra. In Proceedings 31st
POPL, pages 330341, 2004.

M. Miiller-Olm and H. Seidl. A Note on Karr’s Al-
gorithm. In ICALP 2004, to appear. Available from
http://1sb-www.cs.uni-dortmund.de/ mmo.

B. Paige and S. Koenig. Finite Differencing of Com-
putable Expressions. ACM Trans. Prog. Lang. and
Syst., 4(3):402-454, 1982.

T. Reps, S. Schwoon, and S. Jha. Weighted Push-
down Systems and their Application to Interprocedural
Dataflow Analysis. In Int. Static Analysis Symposium
(SAS), pages 189-213. LNCS 2694, Springer-Verlag,
2003.

