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Abstract

We consider a procedural language with assignments
and C-like functions with call-by-value parameters and
single return values and present the first algorithm for
precise inter-procedural value-numbering. The algo-
rithm is precise in that it infers for all program points all
inter-procedurally valid Herbrand equalities. Moreover,
it is asymptotically no more expensive than the best
known algorithm for the same intra-procedural prob-
lem. Instead of un-interpreted operator symbols in as-
signments, we also consider affine assignments and the
problem of inferring all inter-procedurally valid affine
relationships between program variables. For this prob-
lem, we obtain a new polynomial algorithm whose com-
plexity matches the complexity of the intra-procedural
analysis in [21] and thus improves on the correspond-
ing inter-procedural algorithm in [20] by a factor of k5
where k is the number of variables.

1 Introduction

Classically, inter-procedural analyses have invested
much effort into dealing with global variables precisely.
For example, the seminal paper by Sharir and Pnueli
[27] about the functional and the call-string approach
to inter-procedural analysis deals (as they say, for ex-
positional reasons) with parameterless procedures and
global variables only. Cousot and Cousot’s fundamen-
tal work [7] on inter-procedural analysis does not deal
with global variables explicitly but considers multiple
call-by-value parameters together with multiple result
parameters which easily allow to simulate effects onto
globals. Essentially the same class of procedures has
been considered by Knoop and Steffen [15]. The key
idea in these papers for obtaining maximally precise in-
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formation about procedures is to describe the effect of
a procedure call by a transformation of the local and
global (abstract) state. In comparison, corresponding
intra-procedural analyses avoid the use of second-order
objects like functions and compute on data-flow facts
directly. Thus, intra-procedural analyses are typically
much more efficient.

In this paper, we suggest a light-weight approach to
inter-procedural analysis where we consider C-like func-
tions only. By this we mean functions with local vari-
ables, call-by-value parameters and single return val-
ues. Thus we abandon global variables. This is still an
adequate setting for certain practical programming sce-
narios. For example, in system programming in C or in
the development of multi-threaded applications, global
variables often must be considered as volatile meaning
that their values potentially are changed by the environ-
ment. Volatile variables cannot be handled easily within
a transformer-based approach to inter-procedural anal-
ysis.

Here we present two instances of the light-weight ap-
proach. First, we present an inter-procedural inference
algorithm which determines, for every program point,
all valid Herbrand equalities. In fact, our algorithm is
the first complete inter-procedural analysis of Herbrand
equalities. Moreover, its running time asymptotically
coincides with that of the best intra-procedural algo-
rithms for the same problem [29, 11]. Secondly, we
present an inter-procedural inference algorithm which
determines for every program point in an affine pro-
gram all valid affine relations. This algorithm also has
essentially the same asymptotic running time as the
fastest known intra-procedural inference algorithm [21]
and thus beats the corresponding inter-procedural al-
gorithm [20] by a factor k5 where k is the number of
variables.

Analyses for finding definite equalities between vari-
ables or variables and expressions in a program have
been used in program optimization since long. Knowl-
edge about definite equalities can be exploited for per-



forming and enhancing powerful optimizing program
transformations. Examples include constant propaga-
tion, common subexpression elimination, and branch
elimination [12, 4, 8], partial redundancy elimina-
tion and loop-invariant code motion [24, 29, 14], and
strength reduction [30].

Clearly, it is undecidable whether two variables al-
ways have the same value at a program point even with-
out interpreting conditionals [22]. Therefore, analyses
are bound to detect only a subset, i.e., a safe approxima-
tion, of all equivalences. Analyses based on Herbrand
interpretation of operators consider two values equal
only if they are constructed by the same operator ap-
plications. Such analyses are said to detect Herbrand
equalities. Another approach is to abstract programs
with affine programs by interpreting affine assignments
such as x3 := 2x; — X2 + 42 precisely while approximat-
ing more complex assignments conservatively as assign-
ing any value. These analyses typically compute valid
affine relationships between program variables.

The key technical result onto which our new inter-
procedural analyses are based is that the abstract effect
of a function call x; := f(x1,...,X)) can either be de-
scribed by an assignment of an unknown value to x; or
by a conditional assignment, i.e., a pair (¢, x; := t) con-
sisting of a precondition ¢ together with an assignment
x1 := t. In the Herbrand case, ¢ is a conjunction of Her-
brand equalities whereas in the affine case, ¢ is given by
a vector space of affine relations. If the precondition is
satisfied, the function call behaves like the assignment
x1 := t, otherwise, like an assignment of an unknown
value. The interesting observation is that in the Her-
brand as well as in the affine case, this is both sound and
complete. Technically, the conditional assignments for
functions are determined by effective weakest precondi-
tion computations for a particular postcondition. More
specifically, this postcondition takes the form y =x;
where y is a fresh variable and x; is the variable that
receives the return value of the function.

Related Work. The earliest work on detecting Her-
brand equalities dates back to Cocke and Schwartz [5].
While Cocke and Schwartz aimed at finding equalities
inside basic blocks, the technique has been generalized
to arbitrary control-flow graphs with branching and
loops by Kildall [13]. For historical reasons, Kildall’s
technique is known as global value numbering. In con-
trast to a number of algorithms focusing more on ef-
ficiency than on precision [22, 1, 4, 25, 8, 10], Steffen
[28] and Steffen et al. [29] concentrate on maximal pre-
cision. They employ a variant of Kildall’s algorithm us-
ing a compact representation of Herbrand equivalences
in terms of structured partition DAGs (SPDAGs). How-
ever, the representations of equalities still can be of ex-

ponential size in terms of the argument program [11].
Recently, Gulwani and Necula modified this algorithm
to obtain a polynomial time algorithm by exploiting the
fact that SPDAGs can be pruned, if only equalities of
bounded size are searched for [11].

For affine programs, a first intra-procedural algo-
rithm for inferring all valid affine relations has been
presented by Karr [12]. In earlier work, we have gener-
alized Karr’s ideas to affine programs with procedures
[20]. This analysis can handle both local and global
variables and has a running time which is linear in the
program size and polynomial in the number of variables
of degree 8. Extensions and implementations of this al-
gorithm have been provided by Reps et al. [23, 3]. A
probabilistic variant of Karr’s algorithm has been sug-
gested by Gulwani and Necula [9]. Their algorithm de-
termines affine relations modulo some prime number
which hold with a certain probability. Another variant
of Karr’s intra-procedural algorithm has been presented
in [21] which computes all valid affine relations in time
O(n - k3). Let us finally mention that all this work
abstracts conditional branching by non-deterministic
choice. In fact, if equality guards are taken into account
then both in the Herbrand and in the affine case, deter-
mining whether a specific equality holds at a program
point becomes undecidable [17, 21]. Disequality con-
straints, however, can be dealt with intra-procedurally
[17, 18]. No inter-procedural extensions could be de-
signed by now.

The current paper is organized as follows. In Sec-
tion 2 we introduce un-interpreted programs with C-
like functions as the abstract model of programs for
which our Herbrand analysis is complete. In Section 3
we collect basic facts about conjunctions of Herbrand
equalities. In Section 4 we present the weakest precon-
dition computation to determine the effects of function
calls. In Section 5 we use this description of effects to
extend an inference algorithm for intra-procedurally in-
ferring all valid Herbrand equalities to deal with C-like
functions as well. In Section 6 we then turn to affine
programs with C-like functions, i.e., now we analyze
affine assignments precisely. We show in Section 7 that
as in the Herbrand case, the effects of function calls
can be described by a suitable weakest precondition. In
Section 8 we show how this observation can be used to
speed up the inter-procedural inference algorithm from
[20]. Finally, in Section 9 we summarize and describe
further directions of research.

2 Herbrand Programs

We model programs by systems of non-deterministic
flow graphs that can recursively call each other as in



Main :

x3 := a(x3)

X1 = f(Xl,Xz,X;;)

©

X1 1= a(XZ) X1 = f(X1,X2,X3)

X1 ‘= X3

©)
Figure 1: A small Herbrand program.

Figure 1. Let X = {xi,...,X;} be the set of vari-
ables the program operates on. We assume that the
basic statements in the program are either assignments
of the form x; := ¢ for some expression ¢ possibly in-
volving variables from X or nondeterministic assign-
ments x; :=7 and that branching in general is non-
deterministic. Assignments x; := x; have no effect onto
the program state. They can be used as skip statements
as, e.g., at the right edge from program point 4 to pro-
gram point 5 in Figure 1 and also for the abstraction
of guards. Non-deterministic assignments x; :=7 rep-
resent a safe abstraction of statements in a source pro-
gram our analysis cannot handle precisely, for example
input statements.

A program comprises a finite set Funct of function
names that contains a distinguished function Main.
Here, we consider C-like functions only with call-by-
value parameters and return values. In this paper,
we do not consider global variables. Without loss of
generality, every call to a function f is of the form:
x; := f(X1,...,Xg) — meaning that the values of all
variables are passed to f as actual parameters, and that
the variable x; always receives the return value of f
which is the final value x; has received during the eval-
uation of f.! Note that more refined calling conventions
of passing the values, e.g., by using designated argument
variables or passing the values of arbitrary expressions

I Alternatively, we could view the variable x; as one global
variable which serves as scratch pad for passing information from
a called procedure back to its caller.

into formal parameters can easily be reduced to our
case. Due to our simple standard layout of calls, each
call is uniquely represented by the name f of the called
function. Let Stmt be the set of assignments and calls.
Program execution starts with a call to Main. Each
function name f € Funct is associated with a control
flow graph G¢ = (Ny¢, Ey,sty, rety) that consists of:

e a set Ny of program points;

e aset of edges £y C Ny x Stmt X Ny;

e a special entry (or start) point sty € N¢; and
e a special return point rety € Ny.

We assume that the program points of different func-
tions are disjoint: Ny N N, = @ for f # g. This can
always be enforced by renaming program points. More-
over, we denote the set of edges labeled with assign-
ments by Base and the set of edges calling function f
by Callf.

For describing program executions in presence of
functions with local variables, it does not suffice to con-
sider execution paths. Instead, we have to take the
proper nesting of calls into account. Thus, we follow
the approach taken, e.g., in [20] and represent execu-
tions as sequences 7 of (unranked) trees:

rn o= x;:=t | callr)
r rty;...;r, (n>0)

Each individual tree rt in a sequence represents a base
action or complete execution of a call. Let Runs denote
the set of all runs. The set of runs reaching program
point u € N can be characterized as the least solution
of a system of subset constraints on run sets. For as-
signments we define: S(x; :=t) = {x; := t}. Similarly
for nondeterministic assignments,

S(xj:=?)={x;:=c|ceTa}.

The same-level runs of functions and program nodes are
the smallest solution of the following constraint system
S:

[S1] S(
[S2] S(
[S3] S(u) D S(s);S(v) if (u,s,v) € Base
[S4] S(u) D call(S(f)); S(v) if (u, f,v) € Cally

Note that, for convenience, the application of the con-
structor call to all sequences of a set S is denoted by
call(S). Also, we accumulate execution trees from the
rear, i.e., starting from the return points. It is the con-
straint [S4] which deals with calls. If the ingoing edge
(u, f,v) is a call to a function f, we concatenate the



trees constructed from same-level runs of f by applying
the constructor call with the same-level runs starting
from v.

Using the sets of same-level runs of functions, we can
characterize the runs reaching program points and func-
tions as the smallest solution of the following constraint
system R:

[R1] R(Main) D {e}

[R2] R(f) D R(u), if (u, f,-) € Call
R3] R(sty) 2 R(f)

[R4] R(v) D R(u); S(s), if (u, s,v) € Base
[R5] R(v) D R(u); cal{S(f)), if (u,s,v) € Call

3 Conjunctions of Herbrand Equalities

We first consider the case where we maintain the struc-
ture of expressions but abstract from the concrete
meaning of operators. This is also known as the Her-
brand interpretation of terms. Let () denote a signa-
ture consisting of a set {2y of constant symbols and sets
Q.,r > 0, of operator symbols of rank r which possibly
may occur in right-hand sides or values. Let 7q the set
of all formal terms built up from 2. For simplicity, we
assume that the set Qg is non-empty, and there is at
least one operator. Note that under this assumption,
the set Tq is infinite. Let 7o(X) denote the set of all
terms with constants and operators from 2 which ad-
ditionally may contain occurrences of variables from X.
Since we do not interpret constants and operators, a
state assigning values to the variables is conveniently
modeled by a mapping ¢ : X — Tq. Such mappings
have also been called ground substitutions.

Every assignment statement x; := ¢ induces a trans-
formation, [x; := ], on a given program state o given
by:

[xj :=tluo =o[x; = o(t)]

Here o(t) is the term obtained from ¢ by replacing each
occurrence of a variable x; by o(x;) and o[x; — t'] is
the ground substitution that maps x; to t' € To and
variables x; # x; to o(x;).

The transformation [call(r)]s is more complicated.
It must pass the values of the variables into the execu-
tion of the called function. Then it must update the
value of the variable x; of the state before the call.
Thus, we define:

[cal{r)]no = o[x1 = ([r]n o x1)]

Here we already use the straightforward inductive ex-
tension of [-]y to runs which is defined by [e]y o =0
and [ri;r2]y = [r2]m o[r1]n- The transformation [r]4
can be described by a substitution 7. : X — Tq(X)

which maps the variables after the run to their values
depending on the variables before the run:

Te = Id

Txji=t = {Xj — t}
Taallry) = 1X1 > (7r, X1)}
Tri;re = Try ©Tpry

Here {x; ~— t} is the substitution that maps x; to t
and, for ¢ # j, x; to itself; 75 o 7y is the substitution
that maps x; to 72(71(x;)). We then have for every
ground substitution o:

[rluo=com

A substitution o : X — Tq(X) (possibly containing
variables in the image terms) satisfies a conjunction of
equations ¢ = s1 =t1A. .. Asy =t i 0(s;) = o(¢;) for
i =1,...,m. We then also write o |= ¢. In particular,
¢ is valid at a program point v iff it is valid for all
states [r]y o with r € R[v], 0 : X — Tq a ground
substitution.

Let us briefly recall some basic facts about conjunc-
tions of equations. A conjunction ¢ is satisfiable iff
o [ ¢ for at least one 0. Otherwise, i.e., if ¢ is unsatis-
fiable, ¢ is logically equivalent to false. This value serves
as the bottom value of our lattice. The greatest value is
given by the empty conjunction which is always true and
therefore also denoted by true. Whenever the conjunc-
tion ¢ is satisfiable, then there is a most general satisfy-
ing substitution o, i.e., o = ¢ and for every other sub-
stitution 7 satisfying ¢, 7 = 1 oo for some substitution
71. Such a substitution is often also called a most gen-
eral unifier of ¢. In particular, this means that the con-
junction ¢ is equivalent to A, ., (x,) Xi =0(x;). Thus,
every satisfiable conjunction of equations is equivalent
to a (possibly empty) finite conjunction of equations
Xj; =1; where the left-hand sides x;; are distinct vari-
ables and none of the equations is of the form x; =x;.
Let us call such conjunctions reduced. The following
fact is crucial for proving ternimation of our proposed
fixpoint algorithms.

Proposition 1 For every sequence ¢g < ... < ¢, of
pairwise inequivalent conjunctions ¢; using k variables,
m<k+1. O

Proposition 1 follows since for satisfiable reduced non-
equivalent conjunctions ¢;, ¢;11, ¢; < ¢;41 implies that
¢; contains strictly more equations than ¢;;.

In order to construct an abstract lattice of proper-
ties, we consider equivalence classes of conjunctions of
equations which, however, will always be represented by
one of their members. Let E(X') denote the set of all
(equivalence classes of) finite reduced conjunctions of



equations with variables from X'. This set is partially
ordered w.r.t. “=" (on the representatives) where the
pairwise lower bound always exists and is given by con-
junction “A”. Since by Proposition 1, all descending
chains in this lattice are ultimately stable, not only fi-
nite but also infinite subsets X C E(X’) have a greatest
lower bound. Hence, E(X') is a complete lattice.

4 ‘Weakest Preconditions

For reasoning about return values of functions, we intro-
duce a fresh variable y and determine for every func-
tion f the weakest precondition [f]}, of the equation
y=x; wrt. f. We will work with the subset E, of
E(X U {y}) of (equivalence classes of) conjunctions of
equalities with variables from X U {y} which are either
equivalent to true or false or contain an equality y =t for
some t € To(X). Note that this subset is indeed closed
under weakest preconditions for assignments and also
under conjunction. In particular, it is a sublattice of
E(X U {y}).

The weakest precondition [x; := t]}, ¢ of a conjunc-
tion of equalities ¢ for an assignment x; := t is given
by the well-known rule:

[x; = t]5¢ = ot/x;]

where ¢[t/x;] denotes the formula obtained from ¢ by
substituting ¢ for x;.

In order to deal with calls, we introduce a binary
operator [call]},. In the first argument, this operator
takes a weakest precondition ¢; of a function body for
the equation y =x;. This formula should be in E; and
thus is either equivalent to true, false or to a conjunction
@' A(y =t) for some ¢’ and ¢ not containing y. The sec-
ond argument of [call]}, is a postcondition ¢, after the
call. Since the weakest precondition of y = x; is equiva-
lent to true if and only if there is no executable program
path, we set [call]}, (true, ¢3) = true. For ¢; not equiv-
alent to true we distinguish two cases. If ¢5 does not
contain x1, we set [call]}; (41, ¢2) = ¢2. Finally, assume
that ¢, is not equivalent to true and ¢, contains x;.
If ¢, is equivalent to false, then [call]},(¢1, ¢2) = false.
Otherwise, we can write ¢ as ¢' A (y =t) where ¢t and
¢' do not contain y and define:

[call]3;(h1,h2) = @' A ¢oft/x1]

This definition is indeed independent of the chosen rep-
resentation of ¢;. To see this, assume that ¢; is also
equivalent to ¢} A (y =t1) for some ¢],t; not contain-
ing y. Then in particular, ¢' A (y =t) implies y =t¢; as
well as ¢} from which we deduce that ¢' also implies
t=t;. Therefore, ¢' A ¢o[t/x1] implies ¢} A pa[t1/x1].
By exchanging the roles of ¢',¢ and ¢!,t; we also find
the reverse implication and the equivalence follows.

Next, we determine the weakest preconditions of
runs. Sequential composition “;” is interpreted as com-
position of the individual transformers. Accordingly, we
define:

[el3¢ = ¢ and [ri;rely¢ =[5 (Ir2]5¢)
Applying the operator [call]},, we write:

[call(r)lye = [callly ([T (y =x1), ¢)

The following proposition states that the transforma-
tion [r]}, indeed transforms a conjunction ¢ after the
run r into the weakest precondition of ¢ before 7.

Proposition 2 If r is a Tun, then for every conjunc-
tion ¢ of equations (over X U {y}),

1L.oE[ly ¢ iff [rluo | ¢ for every substitution
o:XU{y} = Ta(X).

2. [1l5y6 = (8-

Proof: The first assertion follows by induction over
r. Since o = 7(¢) iff 0 o T = ¢, the second assertion
follows as [r]y is given by [r]y o =0 o 7. O

In order to use weakest precondition transformations
for precise program analyses, we establish the following
distributivity properties:

Proposition 3 1. For every assignment x; := t,
[x; := t]}, preserves true and distributes over “A”.

2. In each argument, the operation [call]}, preserves
true and distributes over “A”.

Proof: The first assertion holds since substitutions
preserve true and commute with “A”.

For the second assertion, the statement concerning
the second argument of [call]}, is straightforwardly veri-
fied from the definition. The same is true for the preser-
vation of true in the first argument. Hence, it remains
to verify that

[calll3(¢1 A @2, 6) = [calllyy(¢1, ¢) A [calll3y (2, 6)

If either ¢, or ¢ equal false, the assertion is obviously
true. The same holds if either ¢; or ¢» equal true.
Otherwise, we can assume w.l.o.g. that for ¢ = 1,2,
¢; is satisfiable, reduced and of the form: ¢} A (y =t;)
for some ¢; not containing y. If ¢ does not contain
x1, the assertion is again trivially true. Therefore, we
additionally may assume that ¢ contains at least one
occurrence of x;1. Then by definition, [call]},(¢:, ¢) =
@ A @[ti/x1]. Thus, we obtain:

[call]%;(¢1, ¢) A [call] (2, )
= ¢y AP[t1/xa] A gy A @lta/x1]
= ¢1 Aoy A (B =t2) A @lt1/x1]



since ¢ contains an occurrence of x;. On the other
hand, we may also rewrite ¢4 Ago to: ¢} AdLA(t1 =t2)A
(y =t1) where only the last equation contains y. There-
fore also:

[call]5;(d1 A @2, 0) = @1 APy A (t1 =t2) A p[t1 /%]

which completes the proof. O

We introduce an abstraction function af, : 2R — E,
by:
oy (B) = N\ Il (y =x1)
rER

By Propositions 2 and 3, the mapping o}, has the fol-
lowing properties:

L oy ({e}) = (y=x1);
2. o, (x; = t; R) = [x; := t]5, (e}, (R));
3. o, (call(Ry); Ry) = [calllt, (o, (R1), o, (Ro)).-

Based on these properties, we put up a constraint sys-
tem for computing the weakest preconditions of func-
tions by applying the abstraction function «f, to the
corresponding system S for the same-level runs of func-
tions and program nodes. In particular, we replace
the set {€} with (y =x;); and precomposition of as-
signments or calls with the corresponding operators for
weakest preconditions. Thus, we obtain the constraint
system WPy:

[WP1]
[WPy,2]
[WP;,3]

WPy (f) = WPy(sty)
WPH(retf) = (y=x1)
WPy (u) = [s]5(WPy(v)),
if (u,s,v) € Base
= [callly,(WPy(f), WPy (v)),
if (u, f,v) € Call

[WPy4] WPy (u)

where for s = x; :=?, we have:

[sI50 = N\ olc/x;))

ceTa

By assumption, 7o contains at least two elements t1 #

to. If ¢ contains x;, then ¢[t;/x;] A ¢[t2/x;] implies

t1 =t which is false by the choice of ¢1,%2. Therefore,
if x; occursin ¢

false
10) otherwise
= oltr/x;] A lt2/x;]

The last equality means that x; :=? is semantically
equivalent (w.r.t. weakest preconditions of Herbrand
equalities) to the nondeterministic choice between the

[s]0

two assignments x; := ¢; and x; := ¢ and hence dis-
tributes over conjunctions as well.

By Knaster-Tarski fixpoint theorem, the constraint
system WPy, has a greatest solution which we again de-
note with WPy (f), WPy (u), f € Funct,u € N. From
Propositions 2 and 3, we obtain by the Transfer Lemma
from fixpoint theory (c.f., e.g., [2, 6]):

Theorem 1 Assume p is a program of size n with k
variables.

1. For every function f of p,
MNMIrl5(y =x1) | 7 € S(f)}; and
for every program point u of p, WPy(u) =

Nl (y=x1) | r € S(u)}-

2. The greatest solution of the constraint system
WPy, can be obtained with at most (k+2)-n eval-
uations of right-hand sides. The fixpoint iteration
can be performed in time O(n - k- A) where A is
the mazimal size of a dag representation of an oc-
curring conjunction. O

WPy (f) =

Note that each application of “A” as well of any right-
hand side in the constraint system WPy may at most
double the sizes of dag representations of occurring

conjunctions. Thus, the value A can be bounded by
20(nk)

Example 1 Consider the function f from Figure 1.
First, f and every program point is initialized with the
top element of the lattice Ky, i.e., with true. The first
approzimation of the weakest precondition at program
point 4 for the postcondition y =x; at 5, then is com-
puted as:

WPy (4) = (y=x1)A([x1:=xs]} (y=%1)
= (y=x1)A(y=x3)

Accordingly, we obtain for the start point 3,

WPy (3) = [call] (true, WPy (4)) A
(Ix1 = a(x2)[% (WPx(4)))
true A (y =a(x2)) A (y =x3)

; (xs=a(x2)) A (y =x3)

Thus, we obtain as a first approzimation: WPy (f) =
(x3 =a(x2)) A (y =x3). Since the fizpoint computation
already stabilizes here, we have found that

[x1 = f(x1,%2,%3) ] (¥ =%1) = (%3 = a(x2))A(y = x3)

O



5 Inferring Herbrand Equalities

For computing weakest preconditions, we have relied on
conjunctions of equations, (pre-) ordered by “=” where
the greatest lower bound was implemented by the log-
ical “A”. For inferring Herbrand equalities, we again
may use conjunctions of equations, now over the set of
variables X alone, i.e., we use E = E(X) — but instead
to greatest lower bounds, we now resort to least upper
bounds. Conceptually, the least upper bound ¢; LI ¢o
of two elements in E corresponds to the best approx-
imation of the disjunction ¢; V ¢. More precisely, it
is the conjunction of all equations implied both by ¢;
and ¢2. Clearly, we can restrict ourselves to equations
of the form x; =t (x; € X,t € Ta(X)). Thus,

prUgy = A{xj=t|(41V )= (x;=0)}

= Nxj=t] (1= (x; =) A (g2 = (x;=1))}

Consider, e.g.,

ol
P2

Then ¢; U ¢2 is equivalent to x; = g(x2).

An efficient implementation of the operation “LI”
can, e.g., be obtained by using partition dags as in [29].
We recall from there that the least upper bound of two
conjunctions with dag representations of sizes nq, no can
be performed in time O(ny + n2) resulting in (a dag
representation of) a conjunction of size O(ny +nsy). We
must provide abstract definitions for the abstract effects
of assignments and calls. In particular, we define:

(x1 =g(a(x3))) A (x2 =a(x3))
(x1=9g(b)) A (x2 =b)

[x; == 16 = Ao o= [x; =]y}
= ANv| o= vt/x]}
[x =l = LHIxj=dig|ceTo}
= A{¢ without x; | ¢ = ¢}
Thus, e.g.,

[x1 := xs]§, (x3 =a(x2)) = (x5=a(x2))A(x1 =a(xz))
and:
[xs :=7T%, (xs = a(x2)) A (x1 =a(x2)) = (x1=a(xs))

Note that we have introduced here a specific opera-
tor [x; ::?]]2{ for nondeterministic assignments which is
meant to abstract the effect of a nondeterministic choice
between the assignments x; := ¢, ¢ € 7. Also note that
our definitions are effective. Efficient implementations
again can be obtained by resorting to partition dags.
From [29], we recall that the effect of an assignment
x; :=t can be computed in time polynomial in the size
ny of the argument and the size ny of (a dag represen-
tation of) ¢t. Moreover, the dag representation of the

result is again of size O(ny + n2). A similar estimation
also holds for nondeterministic assignments.

The crucial step in the derivation of our analysis is
the construction of an abstract operator [[call]]g{ for func-
tion calls. The first argument of this operator is meant
to denote the weakest precondition ¢; of (y =x;) for
a (possibly empty) set of runs through some function.
The second argument ¢, then is a conjunction of equa-
tions which are valid before the call.

If ¢, is equivalent to true, the set of computations
is empty. Therefore, we define: [[call]]g{(true, ¢2) = false
(everything is true after the call).

If ¢, is equivalent to false, then nothing can be said
about the value of x; after the call. Therefore, we de-
fine: [call]]g{(false, ¢2) = [x1 ::?]]g_t(bQ. Otherwise, we
assume that we can write ¢; as ¢’ A (y =t) where ¢'
and t do not contain y. Then:

[calll?, (61, 42) = { [x1 :=t]ydo if o= ¢

[x1 ::?]]ging otherwise

We can apply this definition to inductively define the
abstract semantics of a single run r:

[eall(r) 5,6 [ealll}, ([T, (y = x1), 9)

[}, = ¢
[ri; ralfy6 = [l (I 1fy9)
We have:

Proposition 4 For every run r and conjunction ¢,

L [rle = NMvl¢=n@)}:
2. [[r]]ﬁﬁ) =9 iff ¢ = [r]5 for every conjunction
Wb O

Whenever a substitution ¢ satisfies ¢ before the run r,
then by Proposition 2, [r]y o = o o 7. will satisfy any
equation v after the run whose weakest precondition
is implied by ¢. Thus by statement 2 of the proposi-
tion, o satisfies also the conjunction [[r]]fﬁH ¢. Moreover,
whenever an equation 1) is satisfied by all substitutions
[r]#,0 = o o 7, where o = ¢, then by Proposition 2,
7-(1) is satisfied by all o which also satisfy ¢. Hence,
¢ = 7-(¢) and therefore by statement 1, [[r]]g{gb implies
. In conclusion, [[r]]g{q) is precisely the conjunction of
all equalities which are valid after the run r given that
¢ is valid before r.

For constructing a precise algorithm for inferring
Herbrand equalities, we rely on the following key dis-
tributivity property:

Proposition 5 1. [x; := t]]g-t and [x; ::?]]g-t pre-
serve false and commute with “U”.



2. In the first argument, [[call]]g{ maps true to false and
translates “A”into “U7”, i.e.,

|[ca||]]§{(true, ) = false
[calll3y(d1 A ¢2,8) = [callly, (61, 9) U [call, (42, ¢)
fOT ¢17 ¢2 € IEy .

In the second argument, [[call]]g_t preserves false and
commutes with “U”, i.e.,

|[ca||]]gi(¢,fa|se) = false
[calllsy (6,61 Ugs) = [callly, (¢, ¢1) U [calll3, (4, 62)

Proof: Assertion 1 easily follows from the definitions.
Therefore we only prove the statement 2 about the
properties of ﬂcall]]gi. The assertion concerning the sec-
ond argument easily follows from the assertions con-
cerning assignments. The assertion about the transfor-
mation of true in the first argument follows from the def-
inition. Therefore, it remains to consider a conjunction
¢1 A @2 in the first argument of [[call]]gi. We distinguish
two cases.

Case 1: ¢1 N2 is not satisfiable, i.e., equivalent to false.
Then [calll%, (61 Ao, ) = [x1 :=7]%, 6. If any of the ¢;
is also not satisfiable, then [[call]]g{(@, ®) = [x1 ::?]]g1£ @
which subsumes the effect of any assignment x; := ¢
onto ¢, and the assertion follows. Therefore assume
that both ¢; and ¢- are satisfiable. Each of them then
can be written as ¢; A (y =t;). If any of the ¢} is not
implied by ¢, then again [call]% (¢s,¢) = [x1 :=7]%, ¢
which subsumes the effect of the assignment x; :=t5_;
onto ¢. Therefore,

[calll}, (61, ¢) U [calll}, (d2,¢) = [calll},(4:, 9)
= [x1:="n ¢
= [[C3”]]g{(¢1 A b2, )

If on the other hand, both ¢} are implied by ¢, then
@1 A @5 is satisfiable. Thus, o(t1) # o(t2) for any
o = ¢ A ¢y In particular, ¢t; =t» cannot be im-
plied by ¢. Since ¢} is implied by @, [call]]g_l(qﬁ,-,(b) =
[x1 := t,]]gi ¢. On the other hand, for every 1 contain-
ing x1, it is impossible that both ¢ = ¥[t;/x1] and
¢ = 9[t2/x1] holds. Therefore, the least upper bound
of [[call]]g_l(¢1, ¢) and [[call]]g_l(@, @) is given by the con-
junction of all 9 implied by ¢ which do not contain

. . . . ot -
x;. This conjunction precisely equals [x; :=?]3, ¢ =

|[ca||]]§{(fa|se, ¢), and the assertion follows.

Case 2: ¢1 A ¢o is satisfiable. Then also both of the
¢; are satisfiable and can be written as conjunctions
¢t A (y =t;) for some ¢} and t; not containing y. If ¢
does not imply ¢} A ¢}, then both sides of the equa-
tion are equal to [x1 :=?]x ¢ and nothing is to prove.
Therefore, assume that ¢ = ¢} A ¢h. If ¢ also implies

t1 =ta, then for every ¢, ¢ = Y[ty /x1] iff ¢ = Y[ta/x1].
Therefore in this case,

[callliy(¢1,6) = [xi:=tly ¢
= [xi:=t]¢
= [calll}y(é1 A 2, 9)
and the assertion follows. If ¢ does not imply t; =ts,
the least upper bound of [x; := tl]]g-t ¢ is the conjunc-

tion of all ¥ not containing x; which are implied by ¢.
This precisely equals:

[x1 3=?]]2{ ¢

[calll3, (¢' A (y =t1), )
= [call]3,(¢1 A ¢2,9)

for ¢' = ¢} A ¢4 A (t1 =t2), and the assertion follows. O

iaia

Propositions 4 and 5 motivate the definition of an ab-
straction of (reaching) run sets by means of the function
ay : 2R 5 | defined by:

an(R) = | {[rlitrue | r € R}

Thus, a(R) describes the maximal conjunction of
equations guaranteed to hold after execution of runs
in R — given that only the trivial assertion true holds
at program start. In particular, if R is the set of
runs reaching a program point v, then ay;(R) precisely
equals the conjunction of all equalities which are valid
when reaching u. By construction, a4 distributes over
arbitrary unions and therefore is indeed an abstraction.
Moreover by Proposition 4, we have:

1. ay({€}) = true;
2. ay(R; xj :=t) = [x; := t]}, (an(R));
3. ay(R; cal(R')) = [call]]gi([R’]]gi(yixl),aH(R)).

Applying the abstraction ay to the constraint system
R of reaching runs, we obtain the constraint system H:

[H1] H(Main) < true

[H2] H(f) < H(u), if (u, f,-) € Call
[H3] H(st;) < H(/f)

[H4] H(v) < [s]4,(H(w)), if (u,s,v) € Base
[H5] H(v) < [calllh, (WPy(f), H(u))

if (u, f,v) € Call

Again by Knaster-Tarski fixpoint theorem, the con-
straint system H has a least solution which we again
denote with H(f), H(u), f € Funct,u € N. We obtain
the following theorem:

Theorem 2 Assume p is a program of size n with k
variables.



1. For every function f, H[f] = U{[[r]]g{true | r €
R(f)}; and for every program point u, H[u] =

LI{[u]l,true | r € R(u)}.

2. Given the values WPy(f), f € Funct, the least
solution of the constraint system H can be obtained
with at most (k + 1) - n evaluations of right-hand
sides. The fixpoint iteration can be performed in
time O(n - k- A) where A is the mazimal size of a
dag representation of an occurring conjunction.

By statement 1 of the theorem, we precisely compute
for every program point u and for every function f, the
conjunction of all equalities which are valid when reach-
ing u and a call of f, respectively. Fach application of
“U” as well as of any right-hand side in the constraint
system H may at most double the sizes of dag repre-
sentations of occurring conjunctions. Together with the
corresponding upper bound for the greatest solution of
the constraint system WPy, the value A therefore can
be bounded by 29(™*)  Indeed, this upper bound is
tight in that it matches the corresponding lower bound
for the intra-procedural case [11].

Example 2 We consider again the program from Fig-
ure 1. For the start point O of the main function Main,
no non-trivial equation holds. Therefore, H(0) = true.
For program point 1, we have:

H(1) [x3 := a(x2)]% true
x3 = a(xz)

In Section 4, we have computed the weakest precondition
of y =x1 for the function f as (x3 =a(x2)) A (y =x3).
Since H(1) implies the equation x3 =a(x2), we obtain
a representation of all equalities valid at program exit 2
by:

H(2) [call]%, (WP (f), H(1))
[x1 = x3]%, (x3 = a(x2))

(x3 =a(x2) A (x1 =a(x2))

Thus at the return point of Main both the equalities
x3 =a(x2) and x1 =a(x2) hold. O

6 Affine Relations

We now turn to affine programs. Thus, we now take
meanings of operators into account — but restrict right-
hand sides ¢ of assignments to affine combinations. An
example of such a program is shown in Figure 2. It
is obtained from the example in Figure 1 by replacing
all occurrences of the expression a(xz2) with 3 - x5 — 2.
Also for affine programs, we observe that the effect of a
function can be described by means of the weakest pre-
condition of the equation y =x;. Thus, we can use the

Main :

X3 ::3'X2—2

X1 = f(Xl, X, X3)

©

3)
X1 Z:3'X2—2 I Xq = f(X17X2;X3)
(4)

X1 ‘= X3
®

Figure 2: A small affine program.

same idea for analyzing affine programs as for Herbrand
programs without global variables. In order to obtain a
perfect match, we here only present in detail how Karr’s
original intra-procedural inference algorithm can be ex-
tended to affine programs with C-like functions. The
corresponding extension of our improvement of Karr’s
algorithm in [21] which saves another factor k (k the
number of variables) in the complexity is then explained
through an example.

Here, we assume that the variables in the program
take values in a field, namely the field Q of rational num-
bers. In an affine program, program states are given by
mappings o : X — Q which for convenience are denoted
by vectors £ = (x1,...,7;) € QF. Each assignment
statement x; :=t, t = o + t1X1 + ... + txXy, induces
an affine transformation of the program state:

[xj :=tlaz =z[x; = (to + t1z1 + ... + tpxy)]

where z[x; — ¢] denotes the vector obtained from z
by replacing the j-th component (corresponding to the
value of x;) with c. The affine transformations of as-
signments can be extended to affine transformations
[r]a for program runs r. In particular, the transfor-
mation [call{r)] 4 passes the values of the variables into
the execution of . Then it updates the value of the
variable x; of the state before execution of r with the
result provided by r for x;. Thus, if ([r]4 2)1 denotes
the first component of [r] 4 z, then

[call{r)]a = = z[x1 = ([r].a 2)1]



7 Weakest Preconditions

We are interested in affine relations. An affine relation
a is an equation ag+a1x1 +. . .+apxy =0fora; € Q As
usual, we say that a state z = (z1,...,7;) € QF satis-
fies a (denoted by z = a) iff ag + a1z + ...+ agzr =0
holds. Following [20, 21], we represent an affine rela-
tion by the vector a = (ag,...,ax) of its coeflicients.
As in Section 3, we want to determine for every func-
tion f the weakest precondition of the equation y =x;
for some fresh variable y. In order to conveniently add
the coefficient for y into vectors representing affine re-
lations, we prefer to rename the variable y to Xg4+1. In
particular, the relation y =x; then is represented by
the vector: (0,1,0,...,0,—1).

We now introduce the required transformations for
computing weakest preconditions.

For an assignment x; :=t, t = o + t1X1 + ... g Xy,
the weakest precondition of the affine relation a is given
by: [x; :=t]%4a = (ap,- .. ,a},,), where

a;+a;-t; if i#j
a; =< a;-t; if i=j
Qg1 if i=k+1

Note that the vector a’ = (ag,...,art+1) represents the
affine relation obtained by substituting t for x; in the
affine relation represented by a. As already observed in
[20], this transformation is linear.

For calls, we introduce a binary operator [call]}; de-

fined by [call]*;(b,a) = (ag, - - -,a},,), Where
bi-al—bk+1-a,~ if 175’&'#k+1
a; = bl -ap if =1
—bp41 - Gt if i=k+1

Remark that this transformer is multilinear, i.e., linear
in each of its arguments. To understand this defini-
tion, consider the special case where b1 = —1. Then
the definition has the same effect as the assignment
X; := bo+ Zle b;x;. The general definition arises from
this special case by appropriate scaling with the factor
—bg41. As in the case of uninterpreted operators, we
can combine these transformations to obtain, for every
run r, a linear transformation [r]%. In the following,
we consider the natural extension of the transforma-
tions [r]% to subspaces of Q2. Recall that the set of
subspaces of a finite-dimensional vector space V forms a
complete lattice (w.r.t. the ordering set inclusion) where
the least element is given by the 0-dimensional vector
space consisting of the zero vector 0 only. The least
upper bound of two spaces V1, Vs is given by:

ViU Vs Span(V; U V3)

= {U1+U2|U,‘€Vi}.
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Here, Span(X) denotes the sub-space generated by a
subset X C V, i.e., the vector space of linear com-
binations of elements from X. Note that (w.r.t. the
interpretation of vectors as affine relations), the least
upper bound operation implements the logical conjunc-
tion, i.e., corresponds to the greatest lower bound op-
eration for conjunctions. Accordingly, when we com-
puted greatest solutions for determining weakest pre-
conditions in Herbrand programs, we now compute least
solutions. The height of the lattice, i.e., the maximal
length of a strictly increasing chain, equals the dimen-
sion of V. Here, we will work with the subset Vy of
subspaces of Q**? which either are equal to the zero
space {0} or contain at least one vector (ag,...,art1)
where a1 # 0. Note that this subset is indeed closed
under “LI” and therefore a complete sublattice of vector
spaces.

Proposition 6 summarizes the properties analogous
to those from the Propositions 2 and 3 for Herbrand pro-
grams. For convenience, we use the notation (z,zg41)
to represent the vector obtained from z by appending
the value z41 as additional component.

then for every
€ Q and ev-

':

Proposition 6 1. If r is a runm,
state x € QF, walue zpyq
ery affine relation a € Q2% (2,2k41)

[rlaa iff ([rlaz,ze41) Fa.

2. For every assignment X; :=t, [x; := t] preserves
the empty vector space {0} and commutes with bi-
nary ‘U7.

3. In each argument, the operation [call]}y preserves
{0} and commutes with “U”. O

Accordingly, we introduce an abstraction function o :
QRuns _, Vy by:

ay(R) = Span({[r]4(0,1,0,...,0,=1) | r € R})

By Proposition 6, the mapping o' has the following
properties:

1. a_tA({e}) = Span({(O, 17 0; ey 07 _1)})7
2. aY(xj :=t; R) = [x; :=t]% (a4 (R));
3. aly(cal{Ry); Ry) = [call]y (a4 (R1), a4 (R2))-

Based on these properties, we put up a constraint sys-
tem for computing the weakest preconditions for the
functions in Funct by applying the abstraction function
a'y to the constraint system S for the same-level runs
of functions and program nodes. In particular, we re-
place the set {e} with Span({(0,1,0,...,0,—1)}), and
precomposition of assignments or calls with the corre-
sponding operators for weakest preconditions. Thus, we



obtain the constraint system WP, over the complete
lattice Vy:

[WEal] WEA(f) 2 WPy(sty)
[WPB42] WRy(rety) O Span({(0,1,0,...,0,—1)})
[WE43] WPRy(u) 2 [s]%(WPs(v)),

if (u,s,v) € Base
[WEB44] WPa(u) 2O [callly(WE4(f), WPa(v)),

if (u, f,v) € Call

where for a nondeterministic assignment s = x; :=?,
we find as in [20] that it equivalently can be replaced
with the nondeterministic choice between the assign-
ments x; := 0 and x; := 1:

[x; =14V = ([xj = 014V) U ([x; = 1]4V)
By Knaster-Tarski fixpoint theorem, the constraint sys-
tem WP, has a least solution which we again denote
with WPRy(f), WPs(u), f € Funct,u € N. By the
Transfer Lemma we obtain:

Theorem 3 Assume p is a program of size n with k
variables.

1. For every function [ of p, WP(/f)

LH[4(Span({(0,1,0,...,0,-1)})) | r € S(f)};
and for every program point u of p, WP(u) =

L{Iul(Span({(0,1,0,...,0,—1)})) | r € S(u)}.

2. The least solution of the constraint system WPy
can be obtained with at most (k+2) -n evaluations
of right-hand sides. Using semi-naive iteration, the
least fizpoint can be computed in time O(n - k®). O

In the complexity estimation, we here have assumed
that arithmetic operations can be performed in constant
time.

Example 3 Let us consider the function f from the
program of Figure 2. We first initialize all fixpoint vari-
ables with the zero vector space (representing the precon-
dition true). Then the first approximation of WPy (4)
for program point 4 is given by:

WP4(4) = Span({(0,1,0,0,-1),(0,0,0,1,-1)})
Accordingly, we obtain for program point 3:
WEa(4) = [calll4({0}, WRs(4)) U

[x1:=3-x2 — 2]]54 (WPa(4))

= Span({O} U {(_27 Oa 3) 07 _1)7 (01 Oa 03 ]-7 _1)})

= Span({(—2, 0: 35 0) _1)7 (0: 03 0) 13 _1)})

Since these are already the final values, we obtain for
the function f:

0,-1) =

|[X1 = f(x17x27 X3)]]§4 (07 1,0,
3 0),(0,0,0,1,-1)})

Span({(-2,0,3,-1,
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8 Inferring Affine Relationships

In order to obtain an inter-procedural algorithm for in-
ferring all affine relationships, we now extend Karr’s
intra-procedural analysis [12]. In Karr’s approach, the
set of affine relations valid at a program point is repre-
sented by a vector space V C Q¥+, Let V denote the
complete lattice of all these subspaces. Since we are
interested in definitely valid relations, the ordering in
subspaces now is “D” where the greatest lower bound
of two vector spaces Vi,,Vo C Q*t! is given by their
intersection V4 N Va. Recall from linear algebra that,
given the bases B; of V;, a basis for the intersection can
be determined in time O(k?).

Again, we must provide abstract definitions for the
abstract effects of assignments and calls on vector

spaces of affine relations. For an assignment x; := ¢,
we define:
[xj =14V = {a€ Q@ |[x;:=t]aeV}

(l[Xj = t]]tA)‘IV

Since [x; :=t]Y is a linear transformation of vector
spaces, also the inverse image of [x; := t]% maps vec-
tor spaces of affine relations to vector spaces. Thus for
example,

[x1 == xs]’y (Span({(~2,0,3,-1)}))
= Span({(_27 07 37 _1)7 (_27 _17 37 0)})

For convenience, we also introduce the transformation
of nondeterministic assignments:

[x; ="V = {(ao,...,ar) €V |a; =0}
= VN(Q x {0} x Qt)

Thus, the effect of x; :=? amounts to restricting the
set of argument relations to those not depending on the
variable x;. For example,

[[X3 ::?]]A (Span({(—?, 07 37 _1)7 (_27 _17 37 0)}))
= Span({(07 ]'7 07 _1)})

Karr shows in [12] that the effect of assignments can
be computed in time O(k?) given a basis of the argu-
ment vector space. The same holds true also for non-
deterministic assignments. The crucial new point is the
construction of an abstract operator [[call]]f4 for function
calls. As its first argument, this operator takes a vec-
tor space representing the weakest precondition of the
affine relation (0,1,0,...,0,—1) whereas the second ar-
gument is the vector space of relations which hold when
reaching the program point before the call. For defining
[[caII]]&(Vl,Vé), we distinguish several cases. First, we
set [call]’(0,V5) = Q! for all V5. Since the precon-
dition 0 in the first argument corresponds to the empty



set, of program executions, this definition means that ev-
erything is true at an unreachable program point. Now
assume V; # {0}. Under this assumption, V; can be
written as Vi = Span(G U {(ay,...,a},—1)}) where
ag+1 = 0 for all (ag, - ..,arr1) € G. Then we define:

[xi =t} V2 if GCV

ol 5.1 = { G

otherwise

where t = aj + ajx; + ... + aj,x;. We can use these
rules to inductively define the abstract semantics of a
single run r:

[call(r)]%, V
[calll% ([*']% (Span({(0, 1,0, ...,0,=1)}),V)

S A
[ri; 5V = [l ([r] V)
We have:

Proposition 7 For every run r and linear space V C
Q! of affine relations and a € Q¥ a € I[T]]&V iff
[r]i4(a,0) € V x {0}. 0

Note that to the right of the equivalence stated in
Proposition 7, we have tagged the affine relation a with
an extra component 0 corresponding to the coefficient of
the variable x41. This is necessary since in Section 7,
we have defined formally only the weakest precondition
of relations in k + 1 variables, i.e., the k program vari-
ables plus the additional variable for the return value
(which is no longer needed here). Analogous to Propo-
sition 4, Proposition 7 allows us to conclude that I[T]]& |4
precisely consists of all affine relations which are valid
for states after the run iff the corresponding states be-
fore the run satisfied the relations in V. The following
proposition is the analogue of Proposition 3 for Her-
brand programs.

Proposition 8 1. [x; := 15]]%4 and [x; ::?]]ﬁ4 preserve
{0} and commute with ‘N”.

2. In the first argument, [[call]]ﬁt maps {0} to QF*!
and translates “U” into ‘N7, i.e.,

[call]l®, ({0}, V) Qrtt
[calll’ (V2 U V2, V) [calll’y (V4, V) N [call]’y (V2, V)

for Vi,Va € Vy,.

In the second argument, [call]]& preserves {0} and
commutes with ‘N7, i.e.,

[call]’, ({0}, V) {0}
[calll’, (V, Vi N Va) [calll’y (V; Vi) N [call]% (V, Va)

Il
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Proof: We only prove the assertion about the distribu-
tivity in the first argument of [call]]il from the second
statement. The assertion about the transformation of
the zero vector space into QFt! follows from the defi-
nition. Therefore, consider a sum V; Ll V5 of two vec-
tor spaces V; from Vy. Clearly, the assertion is true if
any of the V; is the zero vector space. Therefore, as-
sume that both V; # {0}. Then for each ¢, V; contains
a vector a¥) whose (k + 1)-th component is nonzero
and therefore (w.l.0.g.) equal to —1, and let G; denote
a (finite) set of vectors whose (k + 1)-th components
are all 0 such that V; = Span(G; U {a?}). Assume
a® = (t(()z), . ,ts), —1). Then in particular, V; U Vs
Span(G U {aM}) for G = G; UGy U {a® —a(V}. We
distinguish two cases.

Case 1: G1 UGy € V. Then for some i, G; € V.
Since [x; :=?]]g4 V is included in [x; := t]]&tV for any t,
we have:

[calll’, (V;, V)

[xi :=?]aV
= [calll% (1, V) N [call]% (Va, V)

which equals [call]]ﬁA(Vl UV4, V) since G is not subsumed
by V as well.
Case 2: Gy UGy CV. Then fori =1,2,

[call’ (Vi, V) = [x1 := t;]4 V

for t; = t(()i) + tgi)xl +... +t§j)xk. If also t©) —tM) € V,
then

[x1 :=t:1]aV [x1:=t2]uV

[calll’, (Vi UV, V)

and the assertion follows. If on the other hand,
2 — () ¢ V then the intersection [call]%(Vi,V) N
[call]]&(Vg, V') can only consist of vectors (ag,...,a) €
V where a; = 0. Note that here we rely on the fact
that bg+byz1 = 0 and by + b1zo = 0 for x; 75 To implies
that bo =0 and bl =0.

Summarizing, we obtain:

[call), (v, V) N [call]?y (Va, V) VN (Qx {0} x Q1)
[x1:=714 V

[calll’, (Vi L V3, V)

This completes the proof. |
Propositions 7 and 8 allow us to define an abstraction
function a4 : 28" — V by:

aa(R) = Ir14{0} | r € R}

In particular, if R is the set of runs reaching a pro-
gram point v, then a4(R) precisely equals the set of
all affine relations valid at u. By construction, a4 dis-
tributes over arbitrary unions and therefore is indeed
an abstraction. By Proposition 7, we have:



L aa({e}) = {0}
2. au(R; x5 :=1t) =[x; := t]]&(aA(R));
3. ayx(R;cal(R)) =

[calll? (LR, (Span({(0,1,0,...,0,=1)})), aa(R)).

Applying the abstraction a4 to the constraint system
R of reaching runs, we obtain the constraint system A:

[Al] A(Main) C {0}

[A2] A(f) C Au), if (u, f,_) € Call
[A3] A(sty) C A())

[A4] A(v) C [s]%(A(u)), if (u,s,v) € Base
[A5] A(v) C [calll’, (WP4(f), A(u)),

if (u, f,v) € Call

Again by Knaster-Tarski fixpoint theorem, the con-
straint system A has a greatest solution which we de-
note by A(f),A(u), f € Funct,u € N. Summarizing,
we obtain the following theorem:

Theorem 4 Assume p is an affine program with C-link
functions of size n with k variables.

1. For every function f of p, A(f) = ﬂ{[[r]]il{()} |
r € R(f)}; and for every program point u of p,

A(u) = N{[r1%{0} | r € R(w)}.

2. Given the values WPy (f), f € Funct, the greatest
solution of the constraint system A can be obtained
with at most (k + 1) - n evaluations of right-hand
sides in time O(n - k*). O

Thus, we can determine for every program point u and
function f, the vector space of all affine relations valid
when reaching u and a call of f, respectively. For the
complexity estimation of Theorem 4 we argue as follows:
Firstly by Theorem 3, the values WP4(f), f € Funct,
can be computed in time O(n - k%); given these, the
fixpoint iteration for computing the least solution of
constraint system A amounts to (k + 1) - n evaluations
of right-hand sides and intersections — each of which
can be done in time O(k?).

Example 4 Consider again the example program from
Figure 2. At the start node of the function Main, no
affine relation is valid. Therefore, A(0) = {0}. For
program point 1, we obtain:

A(]_) = |[X3 =3-%x9 — 2]]%4 {0}
= Span({(-2,0,3,-1)})

Thus, using the weakest precondition of a call to func-
tion f as computed in Example 3, we obtain for program
point 2:

A(2)

[x1 = xs]%(A(1))
Span({(-2,0,3,-1),(-2,-1,3,0)})
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where the first equality holds since the precondition
(—2,0,3,—1) is satisfied in A(1). Accordingly, we find
that at program point 2, —2 4+ 3 - xo — x3=0 and
—2 —x1 +3-%x2=0 are valid. O

The fixpoint algorithm which we have presented has
the same running time as the intra-procedural infer-
ence algorithm of Karr [12]. We can improve on this by
splitting the forward propagating second phase into two
stages. In the first stage, we only determine the affine
hull of the states reaching program points u or calls of
functions f. In the second stage then the vector spaces
of valid affine relations are obtained by computing the
duals of these affine spaces. The latter can obviously be
done in time O(n - k?) by solving appropriate systems
of linear equations. Intra-procedurally, this approach
has been suggested in [21] where it is also shown that
intra-procedurally computing the affine hull of reach-
able states is amenable to a semi-naive fixpoint itera-
tion strategy and therefore can be done in time O(n-k?)
as well.

Example 5 Consider again the example program from
Figure 2. For computing the affine hulls of reachable
state sets, we initialize the corresponding sets for all
program points and functions with the empty set. Then
we start the fixpoint computation by considering the
start point of Main, here program point 0. At the
start point every state is potentially reachable. A fi-
nite set of generators for this universal affine space
is given by the state (0,0,0)% together with the states
(1,0,0)%,(0,1,0)* and (0,0,1). Applying the assignment
x3 := 3 - X2 — 2 to this set of generators, we obtain for
program point 1, a set of generators consisting of the
states (0,0,—2), (1,0,—2) and (0,1,1). All three states
satisfy the precondition —2 + 3 - xo — x3=0 for the
function f. Therefore, f behaves like the assignment
Xy = X3 — giving us the two states (—2,0,—2) and
(1,1,1) as set of generators for the affine hull of the
reachability set for program point 2. So, the set of all
affine relations valid at program point 2 are obtained as
the set of solution of the following homogeneous system
of equations:

ag+a-(—2) + az-(—2) = 0
ap + a; + ay +ag =0

The wvector space of solutions of this system 1is in-
deed spanned by the two wvectors (—2,0,3,—1)' and
(—2,-1,3,0)* — the same which we have found in our
example calculation 4. O

Thus, by combining the weakest precondition approach
to describing the effects of function calls with the semi-
naive strategy for computing the affine hulls of reach-
able state set, we finally obtain:



Theorem 5 Assume p is an affine program with C-like
functions of size n with k variables. Then the sets of
all affine relations valid at program points and calls of
functions can be computed in time O(n - k?). O

The inter-procedural analysis of integer arithmetic
which we have presented here assumes infinite precision
arithmetic. In particular, it relies on the embedding
of integers into the field Q of rationals. This idealized
assumption clearly does not always mirror the integer
arithmetic provided by the programming language in
question. In languages like C or Java, integers have a
fixed bit length and arithmetic on them is modulo some
power of 2. This implies that the arithmetic domain
may have zero divisors and thus can no longer be em-
bedded into a field. In a very recent paper we show how
nonetheless the methods for integers can be adapted to
work for modular arithmetic as well [19]. Indeed, this
also holds for the algorithm of Theorem 5.

9 Conclusion

We have presented an inter-procedural algorithm for in-
ferring all valid Herbrand equalities that is both precise
and efficient. The key observation has been that the
effects of a C-like function can be precisely determined
by computing the weakest precondition of the equality
y =x3. We have shown that the same ideas can also be
used to analyze affine relations in programs with integer
arithmetic. The running-time estimations of our new al-
gorithms essentially match those of the corresponding
intra-procedural algorithms. In particular when ana-
lyzing affine programs, this results in a speedup of a
factor k° (k the number of program variables) over the
corresponding inter-procedural analysis from [20]. The
improvement in the complexity could be obtained since
we restricted the programs to be analyzed to use func-
tions with local variables only and single return values.
In practice this may be combined with an approxima-
tive treatment of globals. Though this restriction is
severe, there are application scenarios where it still is
fully adequate. In [3], e.g., Balakrishnan and Reps use
an inter-procedural analysis of affine relations to detect
induction variables — which typically are local. In [26]
we report on a framework for analyzing multi-threaded
C programs. The idea for decoupling the analysis of
multiple threads there is to track local information pre-
cisely while global data, which potentially can be ac-
cessed by other threads, is approximated through a sin-
gle rough invariant. Obviously, in both contexts our
new inter-procedural analysis is the method of choice
for computing Herbrand equalities or affine relations.
It remains as an interesting problem to find out which
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other inter-procedural analyses could take advantage of
our restriction to functions without globals.

Other questions remain as well. We still do not
know how, in presence of global variables, a precise
and inter-procedural analysis of valid Herbrand equal-
ities can be constructed. In [17] we have presented an
analysis of Herbrand equalities which takes disequality
guards into account. It is completely open in how far
this intra-procedural analysis can be generalized to any
inter-procedural setting.
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