
Isabelle Formalization of Hedge-Constrained pre*

and DPNs with Locks

Peter Lammich

January 30, 2009

Abstract

Dynamic Pushdown Networks (DPNs) are a model for concurrent
programs with recursive procedures and thread creation. We formalize
a true-concurrency semantics for DPNs. Executions of this seman-
tics have a tree structure. We show the relation of our semantics to
the original interleavings semantics. We then show how to compute
predecessor sets of regular sets of configurations w.r.t. tree-regular
constraints on the execution.

Acquisition histories have been introduced by Kahlon et al. to
model-check parallel pushdown systems with well-nested locks , but
without thread creation. We generalize acquisistion histories to be
used with DPNs. For this purpose, our tree-based semantics can be
naturally applied. Moreover, the generalized acquisition histories en-
able us to characterize the (tree-based) executions that have a schedule
that is valid w.r.t. locks, thus obtaining an algorithm to compute lock-
sensitive predecessor sets.

Contents

1 Introduction 3

2 Labeled transition systems 5
2.1 Definitions . 6
2.2 Basic properties of transitive reflexive closure 6

2.2.1 Appending of elements to paths 7
2.2.2 Transitivity reasoning setup 7
2.2.3 Monotonicity . 7
2.2.4 Special lemmas for reasoning about states that are pairs 8
2.2.5 Invariants . 8

3 Dynamic Pushdown Networks 8
3.1 Model Definition . 8

1

4 Semantics 9
4.1 Interleaving Semantics . 9
4.2 Tree Semantics . 10

4.2.1 Scheduler . 12

5 Predecessor Sets 15
5.1 Hedge-Constrained Predecessor Sets 15

6 DPN Semantics on Lists 17
6.1 Definitions . 17
6.2 Theorems . 18

6.2.1 Representation of Single Processes 18
6.2.2 Representation of Configurations 18
6.2.3 Step Relation on List-Configurations 21

6.3 Predecessor Sets on List-Semantics 22

7 Automata for Execution Hedges 22

8 Computation of Hedge-Constrained Predecessor Sets 24
8.1 Correctness of Reduction . 25
8.2 Effectiveness of Reduction . 27

8.2.1 Definitions . 27
8.2.2 Theorems . 28

8.3 What Does This Proof Tell You ? 30

9 DPNs With Locks 30
9.1 Model . 30
9.2 Interleaving Semantics . 31
9.3 Tree Semantics . 32
9.4 Equivalence of Interleaving and Tree Semantics 32

10 Well-Nestedness of Locks 32
10.1 Well-Nestedness Condition on Paths 33
10.2 Well-Nestedness of Configurations 35

10.2.1 Auxilliary Lemmas about wn-c 35
10.3 Well-Nestedness Condition on Trees 37
10.4 Well-Nestedness of Hedges . 38

10.4.1 Auxilliary Lemmas about wn-h 38
10.4.2 Relation to Path Condition 40

10.5 Well-Nestedness and Tree Scheduling 41

11 Acquisition Structures 43
11.1 Utilities . 43

11.1.1 Combinators for option-datatype 43
11.2 Acquisition Structures . 44

2

11.2.1 Parallel Composition 44
11.2.2 Acquisition Structures of Scheduling Trees and Hedges 45

11.3 Consistency of Acquisition Structures 47
11.3.1 Minimal Elements . 50
11.3.2 Well-Nestedness and Acquisition Structures 51

11.4 Soundness of the Consistency Condition 52
11.5 Precision of the Consistency Condition 52

11.5.1 Custom Size Function 52

12 DPNs with Initial Configuration 58
12.1 DPNs with Initial Configuration 59

12.1.1 Reachable Configurations 59

13 Property Specifications 59
13.1 Specification Formulas . 60
13.2 Semantics . 60
13.3 Examples . 60

13.3.1 Conflict analysis . 61
13.3.2 Bitvector analysis . 61

14 Hedge Constraints for Acquisition Histories 62
14.1 Locks Encoded in Control State 62
14.2 Characterizing Schedulable Execution Hedges 64
14.3 Checking Specifications Using prehc ∆ Hls 66

15 Monitors (aka Block-Structured Locks) 66
15.1 Non-Trivial Instance of a Well-Nested DPN 69

16 Conclusion 71
16.1 Trusted Code Base . 71

1 Introduction

Writing parallel programs has become popular in the last decade. However,
writing correct parallel programs is notoriously difficult, as there are many
possibilities for concurrency related bugs. These are hard to find and hard
to reproduce due to the nondeterministic behaviour of the scheduler. Hence
there is a strong need for formal methods to verify parallel programs and
help find concurrency related bugs. A formal model for parallel programs,
that has been studied in the last few years, are dynamic pushdown networks
(DPNs) [2], a generalization of pushdown systems, where a rule may have
the additional side effect of creating a new process, that is then executed in
parallel. Analysis of DPNs is usually done w.r.t. to an interleaving seman-
tics, where an execution is a sequence of rule applications. The interleaving

3

semantics models the execution on a single processor, that performs one step
at a time and may switch the currently executing process after every step.
However, these interleaved executions do not have nice language theoretic
properties, what makes them difficult to reason about. For example, it is
undecidable whether there exists an execution with a given regular property.
Moreover, executions of the interleaving semantics are not suited to track
properties of specific processes, e.g. acquired locks.

In the first part of this formalization, we define a semantics that mod-
els an execution as a partially ordered set of steps, rather than a (totally
ordered) sequence of steps. This partial ordering only reflects the ordering
between steps of the same process and the causality due to process creation,
i.e. steps of a created process must be executed after the step that created
the process. However, it does not enforce any ordering between steps of pro-
cesses running in parallel. The interleaved executions can be interpreted as
topological sorts of the partial ordering. For executions of DPNs the partial
ordering has a tree shape, where thread creation steps have at most two
successors and pushdown steps have at most one successor. We formally
define these executions as list of trees (called execution hedges).

The key concept of model-checking DPNs is to compute the set of pre-
decessor configurations of a set of configurations. Configurations of DPNs
are represented as words over control- and stack- symbols, and for a regu-
lar set of configurations, the set of predecessor configurations is regular as
well and can be computed efficiently [2]. Predecessor computations can be
used for various interesting analysis, like kill/gen analysis on bitvectors [2]
and context-bounded model checking [1]. Our approach extends the prede-
cessor computation by additionally allowing tree-regular constraints on the
executions. The counterpart for the interleaving semantics, i.e. predecessor
computations with (word-)regular constraints on the interleaved executions,
is not effective.

In the second part of this formalization, we extend DPNs by adding
mutual exclusion via well-nested locks. Locks are a commonly used syn-
chronization primitive to manage shared resources between processes. A
process may acquire and release a lock, and, at any time, each lock may
be owned by at most one process. If a process wants to acquire a lock al-
ready owned by another process, it has to wait until the lock is released.
We assume that locks are used in a well-nested fashion, i.e. a process has to
release locks in the reversed order of acquisition. Note that in practice locks
are commonly used in a well-nested fashion, e.g. the synchronized-blocks of
Java guarantee well-nested lock usage. Also note that for non-well-nested
locks, even simple reachability problems are undecidable [4]. Parallel push-
down processes with well-nested locks have been analyzed using acquisition
histories [4, 3]. We generalize this technique to DPNs. Our generalization is
non-trivial, as the original technique is defined for a model where only two
parallel processes that both exist at the beginning of the execution need to

4

be considered, while we have a model with unboundedly many processes that
may be created at any point of the execution. The generalized acquisition
histories allow us to characterize the executions, that are consistent w.r.t.
lock usage, by a tree-regular set. Applying the results from the first part of
this paper yields an algorithm for computing lock-sensitive predecessor sets
with tree-regular constraints.

This formalization accompanies a paper that is currently in preparation.
Thus the proofs in this work partially depend on unpublished results that are
currently in the process of submission. The following are the most notable
results proven in this formalization:

• We present a tree-based view on DPN executions, and an efficient
predecessor computation with tree-regular constraints.

• We generalize the concept of acquisition histories to programs with
process creation.

• We characterize lock-sensitive executions by tree-regular constraints,
thus obtaining an algorithm for computing lock-sensitive predecessor
sets.

However, this formalization also has its limits. In particular, it does not
include:

• A formalization of operations on automata or tree automata, that
would allow to generate executable code.

• A formalization of the saturation algorithm for computing predecessor
sets of DPNs [2] — another prerequisite for generating executable code.
We have an unpublished formalization of this saturation algorithm,
that we will adapt to the latest version of Isabelle and publish in near
future.

• Due to the first two limitations, we cannot give a formal proof that
shows that our methods are, indeed, executable. However, we prove
some lemmas that give strong evidence that our methods are effective
and could be implemented in principle.

2 Labeled transition systems

theory LTS
imports Main
begin

Labeled transition systems (LTS) provide a model of a state transition
system with named transitions.

5

2.1 Definitions

An LTS is modeled as a ternary relation between start configuration, tran-
sition label and end configuration

types (′c, ′a) LTS = (′c × ′a × ′c) set

Transitive reflexive closure

inductive-set
trcl :: (′c, ′a) LTS ⇒ (′c, ′a list) LTS
for t
where
empty [simp]: (c,[],c) ∈ trcl t
| cons[simp]: [[(c,a,c ′) ∈ t ; (c ′,w ,c ′′) ∈ trcl t]] =⇒ (c,a#w ,c ′′) ∈ trcl t

2.2 Basic properties of transitive reflexive closure

lemma trcl-empty-cons: (c,[],c ′)∈trcl t =⇒ (c=c ′)
〈proof 〉

lemma trcl-empty-simp[simp]: (c,[],c ′)∈trcl t = (c=c ′)
〈proof 〉

lemma trcl-single[simp]: ((c,[a],c ′) ∈ trcl t) = ((c,a,c ′) ∈ t)
〈proof 〉

lemma trcl-uncons: (c,a#w ,c ′)∈trcl t =⇒ ∃ ch . (c,a,ch)∈t ∧ (ch,w ,c ′) ∈ trcl t
〈proof 〉

lemma trcl-uncons-cases: [[
(c,e#w ,c ′)∈trcl S ;
!!ch. [[(c,e,ch)∈S ; (ch,w ,c ′)∈trcl S]] =⇒ P

]] =⇒ P
〈proof 〉

lemma trcl-one-elem: (c,e,c ′)∈t =⇒ (c,[e],c ′)∈trcl t
〈proof 〉

lemma trcl-unconsE [cases set , case-names split]: [[
(c,e#w ,c ′)∈trcl S ;
!!ch. [[(c,e,ch)∈S ; (ch,w ,c ′)∈trcl S]] =⇒ P

]] =⇒ P
〈proof 〉

lemma trcl-pair-unconsE [cases set , case-names split]: [[
((s,c),e#w ,(s ′,c ′))∈trcl S ;
!!sh ch. [[((s,c),e,(sh,ch))∈S ; ((sh,ch),w ,(s ′,c ′))∈trcl S]] =⇒ P

]] =⇒ P
〈proof 〉

lemma trcl-concat : !! c . [[(c,w1 ,c ′)∈trcl t ; (c ′,w2 ,c ′′)∈trcl t]]
=⇒ (c,w1 @w2 ,c ′′)∈trcl t
〈proof 〉

lemma trcl-unconcat : !! c . (c,w1 @w2 ,c ′)∈trcl t

6

=⇒ ∃ ch . (c,w1 ,ch)∈trcl t ∧ (ch,w2 ,c ′)∈trcl t
〈proof 〉

2.2.1 Appending of elements to paths

lemma trcl-rev-cons: [[(c,w ,ch)∈trcl T ; (ch,e,c ′)∈T]] =⇒ (c,w@[e],c ′)∈trcl T
〈proof 〉

lemma trcl-rev-uncons: (c,w@[e],c ′)∈trcl T
=⇒ ∃ ch. (c,w ,ch)∈trcl T ∧ (ch,e,c ′)∈T
〈proof 〉

lemma trcl-rev-uncons-cases: [[
(c,w@[e],c ′)∈trcl T ;
!!ch. [[(c,w ,ch)∈trcl T ; (ch,e,c ′)∈T]] =⇒ P

]] =⇒ P
〈proof 〉

lemma trcl-rev-induct [induct set , consumes 1 , case-names empty snoc]: !! c ′. [[
(c,w ,c ′)∈trcl S ;
!!c. P c [] c;
!!c w c ′ e c ′′. [[(c,w ,c ′)∈trcl S ; (c ′,e,c ′′)∈S ; P c w c ′]] =⇒ P c (w@[e]) c ′′

]] =⇒ P c w c ′

〈proof 〉
lemma trcl-rev-cases: !!c c ′. [[

(c,w ,c ′)∈trcl S ;
[[w=[]; c=c ′]]=⇒P ;
!!ch e wh. [[w=wh@[e]; (c,wh,ch)∈trcl S ; (ch,e,c ′)∈S]]=⇒P

]] =⇒ P
〈proof 〉

lemma trcl-cons2 : [[(c,e,ch)∈T ; (ch,f ,c ′)∈T]] =⇒ (c,[e,f],c ′)∈trcl T
〈proof 〉

2.2.2 Transitivity reasoning setup

declare trcl-cons2 [trans] — It’s important that this is declared before trcl-concat,
because we want trcl-concat to be tried first by the transitivity reasoner

declare cons[trans]
declare trcl-concat [trans]
declare trcl-rev-cons[trans]

2.2.3 Monotonicity

lemma trcl-mono: !!A B . A ⊆ B =⇒ trcl A ⊆ trcl B
〈proof 〉

lemma trcl-inter-mono: x∈trcl (S∩R) =⇒ x∈trcl S x∈trcl (S∩R) =⇒ x∈trcl R
〈proof 〉

7

2.2.4 Special lemmas for reasoning about states that are pairs

lemmas trcl-pair-induct = trcl .induct [of (xc1 ,xc2) xb (xa1 ,xa2), consumes
1 , split-format (complete), case-names empty cons]
lemmas trcl-rev-pair-induct = trcl-rev-induct [of (xc1 ,xc2) xb (xa1 ,xa2),
consumes 1 , split-format (complete), case-names empty snoc]

2.2.5 Invariants

lemma trcl-prop-trans[cases set , consumes 1 , case-names empty steps]: [[
(c,w ,c ′)∈trcl S ;
[[c=c ′; w=[]]] =⇒ P ;
[[c∈Domain S ; c ′∈Range (Range S)]]=⇒P

]] =⇒ P
〈proof 〉

end

3 Dynamic Pushdown Networks

theory DPN
imports Main common/LTS
begin declare predicate2I [HOL.rule del , Pure.rule del]

3.1 Model Definition

A Dynamic Pushdown Network (DPN) [2] is a system of pushdown rules
over states from ′Q and stack symbols from ′Γ, where each pushdown rule
may spawn additional processes. Rules are labeled by elements of type ′L

datatype (′P , ′Γ, ′L) pushdown-rule =
NOSPAWN ′P ′Γ ′L ′P ′Γ list (-,- ↪→- -,- 51) |
SPAWN ′P ′Γ ′L ′P ′Γ list ′P ′Γ list (-,- ↪→- -,-] -,- 51)

notation NOSPAWN (-,- ↪→- -,- 51)
notation SPAWN (-,- ↪→- -,-] -,- 51)

types (′Q , ′Γ, ′L) dpn = (′Q , ′Γ, ′L) pushdown-rule set

We fix the finiteness assumption of the set of rules in a locale. Note that
we do not assume the base types of states, stack symbols, or labels to be
finite. However, the finiteness assumption of the set of rules implies that
the sets of used control states, stack symbols, and labels are finite.

locale DPN =
fixes ∆ :: (′Q , ′Γ, ′L) dpn
assumes ruleset-finite[simp, intro!]: finite ∆

8

end

4 Semantics

theory Semantics
imports DPN RegSet-add
begin

In this theory, we define an interleaving and a tree-based semantics of
DPNs. We show the equivalence of the two semantics.

4.1 Interleaving Semantics

The interleaving semantics models the execution of a DPN on a single pro-
cessor, that makes one step at a time, and may switch the currently executed
process after each step. This is the original semantics of DPNs [2].

The interleaving semantics is formalized by means of a labeled transition
system. A single process is modeled as a pair of its control state and its stack.

A configuration of the DPN is modeled as a list of processes. Note that
we use lists of processes here, rather than multisets, to enable representation
of configurations as regular sets, as required by the algorithms of [2].

types
(′Q , ′Γ) pconf = ′Q × ′Γ list
(′Q , ′Γ) conf = (′Q , ′Γ) pconf list

The (single-) step relation dpntr of the interleavings semantics is defined
as the least solution of the following constraints:

inductive-set dpntr :: (′Q , ′Γ, ′L) dpn ⇒ ((′Q , ′Γ) conf × ′L × (′Q , ′Γ) conf) set
for ∆ where
— A non-spawning step modifies a single pushdown process according to a non-

spawning rule in the DPN:
dpntr-no-spawn:

(p,γ ↪→l p ′,w)∈∆ =⇒
(c1 @(p,γ#r)#c2 ,l ,c1 @(p ′,w@r)#c2) ∈ dpntr ∆ |

— A spawning step modifies a pushdown process according to a spawning rule
in the DPN and adds the spawned process immediately before the spawning
process:

dpntr-spawn:
(p,γ ↪→l ps,ws] p ′,w)∈∆ =⇒

(c1 @(p,γ#r)#c2 ,l ,c1 @(ps,ws)#(p ′,w@r)#c2) ∈ dpntr ∆

We denote the reflexive, transitive closure of the single-step relation by
dpntrc:

abbreviation dpntrc M == trcl (dpntr M)

9

4.2 Tree Semantics

Now we regard a true concurrency semantics, where an execution does not
contain the interleaving between independent steps. When starting at a
single process, we model such an execution as a tree, where each node cor-
responds to an applied step. A node corresponding to a non-spawning step
has one successor, a node corresponding to a spawning step has two succes-
sors. We annotate the leafs of the tree by the configuration of the reached
process.

When starting at a configuration consisting of (a list of) multiple pro-
cesses, we model the execution as a list of multiple execution trees, one for
each process.

datatype (′Q , ′Γ, ′L) ex-tree =
NLEAF (′Q , ′Γ) pconf |
NNOSPAWN ′L (′Q , ′Γ, ′L) ex-tree |
NSPAWN ′L (′Q , ′Γ, ′L) ex-tree (′Q , ′Γ, ′L) ex-tree

types (′Q , ′Γ, ′L) ex-hedge = (′Q , ′Γ, ′L) ex-tree list

inductive tsem
:: (′Q , ′Γ, ′L) dpn ⇒ (′Q , ′Γ) pconf ⇒ (′Q , ′Γ, ′L) ex-tree ⇒ (′Q , ′Γ) conf ⇒ bool
for ∆ where
tsem-leaf [simp, intro!]:

tsem ∆ pw (NLEAF pw) [pw] |
tsem-nospawn:

[[(p,γ ↪→l p ′,w)∈∆; tsem ∆ (p ′,w@r) t c ′]] =⇒
tsem ∆ (p,γ#r) (NNOSPAWN l t) c ′ |

tsem-spawn:
[[(p,γ ↪→l ps,ws] p ′,w)∈∆; tsem ∆ (ps,ws) ts cs; tsem ∆ (p ′,w@r) t c ′]] =⇒

tsem ∆ (p,γ#r) (NSPAWN l ts t) (cs@c ′)

inductive hsem
:: (′Q , ′Γ, ′L) dpn ⇒ (′Q , ′Γ) conf ⇒ (′Q , ′Γ, ′L) ex-hedge ⇒ (′Q , ′Γ) conf ⇒ bool
for ∆ where
hsem-empty [simp, intro!]: hsem ∆ [] [] [] |
hsem-cons: [[tsem ∆ π t cf ′; hsem ∆ c h c ′]] =⇒ hsem ∆ (π#c) (t#h) (cf ′@c ′)

In the following we show some basic facts about the tsem- and hsem-
relations.

lemma hsem-empty-h[simp]:
hsem ∆ c [] c ′←→ c=[] ∧ c ′=[]
〈proof 〉

lemma hsem-length: hsem ∆ c h c ′ =⇒ length c = length h
〈proof 〉

The hedges and configurations of the hedge semantics can be concate-
nated.

10

lemmas hsem-cons-single = hsem-cons[where cf ′=[π ′], simplified , standard]

lemma hsem-conc: [[hsem ∆ c1 h1 c1 ′; hsem ∆ c2 h2 c2 ′]] =⇒
hsem ∆ (c1 @c2) (h1 @h2) (c1 ′@c2 ′)
〈proof 〉

lemmas hsem-conc-lel = hsem-conc[OF - hsem-cons]

lemmas hsem-conc-leel = hsem-conc[OF - hsem-cons[OF - hsem-cons]]

lemma tsem-not-empty [simp]: ¬ tsem ∆ π t []
〈proof 〉

lemma hsem-empty-simps1 [simp]:
hsem ∆ [] h c ′←→ (h=[] ∧ c ′=[])
hsem ∆ c h [] ←→ (c=[] ∧ h=[])
〈proof 〉

lemma hsem-id [simp, intro!]: hsem ∆ c (map NLEAF c) c
〈proof 〉

lemmas hsem-id ′[simp, intro!] = hsem-id [of - π#c, simplified , standard]

Given a partition of the starting configuration, we can construct a cor-
responding partition of the hedge and the final configuration.

lemma hsem-split ′:
[[hsem ∆ (c1 @c2) h c ′]] =⇒ ∃ h1 h2 c1 ′ c2 ′.

h=h1 @h2 ∧ c ′=c1 ′@c2 ′ ∧
hsem ∆ c1 h1 c1 ′ ∧ hsem ∆ c2 h2 c2 ′

〈proof 〉

lemma hsem-split [consumes 1]: [[hsem ∆ (c1 @c2) h c ′;
!!h1 h2 c1 ′ c2 ′.

[[h=h1 @h2 ; c ′=c1 ′@c2 ′; hsem ∆ c1 h1 c1 ′; hsem ∆ c2 h2 c2 ′]] =⇒ P
]] =⇒ P
〈proof 〉

lemma hsem-single:
[[hsem ∆ [π] h c ′; !!t . [[h=[t]; tsem ∆ π t c ′]] =⇒ P]] =⇒ P
〈proof 〉

lemma hsem-split-single[consumes 1]: [[hsem ∆ (π#c2) h c ′;
!!t1 h2 c1 ′ c2 ′.

[[h=t1 #h2 ; c ′=c1 ′@c2 ′; tsem ∆ π t1 c1 ′; hsem ∆ c2 h2 c2 ′]] =⇒ P
]] =⇒ P
〈proof 〉

lemma hsem-lel : [[hsem ∆ (c1 @π#c2) h c ′;
!!h1 t h2 c1 ′ ct ′ c2 ′. [[

h=h1 @t#h2 ; c ′=c1 ′@ct ′@c2 ′;
hsem ∆ c1 h1 c1 ′; tsem ∆ π t ct ′; hsem ∆ c2 h2 c2 ′

11

]] =⇒ P
]] =⇒ P
〈proof 〉

Given a partition of the hedge, we can construct a corresponding parti-
tion of the initial and final configuration.

lemma hsem-split-h ′: [[hsem ∆ c (h1 @h2) c ′]] =⇒
∃ c1 c2 c1 ′ c2 ′. c=c1 @c2 ∧ c ′=c1 ′@c2 ′ ∧

hsem ∆ c1 h1 c1 ′ ∧ hsem ∆ c2 h2 c2 ′

〈proof 〉

lemma hsem-split-h:
[[hsem ∆ c (h1 @h2) c ′;

!!c1 c2 c1 ′ c2 ′.
[[c=c1 @c2 ; c ′=c1 ′@c2 ′; hsem ∆ c1 h1 c1 ′; hsem ∆ c2 h2 c2 ′]] =⇒ P

]] =⇒ P
〈proof 〉

lemma hsem-single-h:
[[hsem ∆ c [t] c ′; !!p. [[c=[p]; tsem ∆ p t c ′]] =⇒ P]] =⇒ P
〈proof 〉

lemmas hsem-split-h-single = hsem-split-h[where ?h1 .0 =[t], simplified , standard]

lemma hsem-lel-h: [[hsem ∆ c (h1 @t#h2) c ′;
!!c1 p c2 c1 ′ ct ′ c2 ′. [[

c=c1 @p#c2 ; c ′=c1 ′@ct ′@c2 ′;
hsem ∆ c1 h1 c1 ′; tsem ∆ p t ct ′; hsem ∆ c2 h2 c2 ′

]] =⇒ P
]] =⇒ P
〈proof 〉

4.2.1 Scheduler

The scheduler maps execution hedges to compatible label sequences. This
is done by eating up the given hedge from the roots to the leafs, until all
non-leaf nodes have been consumed. From an ordering point of view, the
hedge represents a partial ordering on the steps, and the scheduler maps
this ordering to the set of all its topological sorts.

An execution hedge is called final if it solely consists of leaf nodes.

inductive final-t where
[simp, intro!]: final-t (NLEAF pw)

lemma [simp, intro!]:
¬final-t (NNOSPAWN l t)
¬final-t (NSPAWN l ts t)
〈proof 〉

12

abbreviation final == list-all final-t

Final execution hedges contain no steps, hence they do not change the
configuration.

lemma final-tsem-nostep: [[final-t t ; tsem ∆ pw t c ′]] =⇒ c ′=[pw]
〈proof 〉

lemma final-hsem-nostep: [[final h; hsem ∆ c h c ′]] =⇒ c ′=c
〈proof 〉

As described above, the scheduler eats up the execution hedge from the
roots to the leafs, until there are no inner nodes remaining, i.e. the hedge
is final.

inductive sched :: (′Q , ′Γ, ′L) ex-hedge ⇒ ′L list ⇒ bool where
sched-final : final h =⇒ sched h [] |
sched-nospawn:

sched (h1 @t#h2) w =⇒ sched (h1 @(NNOSPAWN l t)#h2) (l#w) |
sched-spawn:

sched (h1 @ts#t#h2) w =⇒ sched (h1 @(NSPAWN l ts t)#h2) (l#w)

inductive-set sched-rel :: ((′Q , ′Γ, ′L) ex-hedge, ′L) LTS where
sched-rel-nospawn: ((h1 @(NNOSPAWN l t)#h2),l ,h1 @t#h2)∈sched-rel |
sched-rel-spawn: ((h1 @(NSPAWN l ts t)#h2),l ,(h1 @ts#t#h2))∈sched-rel

definition sched ′ h ll == (∃ h ′. (h,ll ,h ′)∈trcl sched-rel ∧ final h ′)

lemma sched-alt1 : sched h ll =⇒ sched ′ h ll
〈proof 〉

lemma sched-rel-alt2 : [[(h,ll ,h ′)∈trcl sched-rel ; final h ′]] =⇒ sched h ll
〈proof 〉

lemma sched-alt : sched ′ h ll ←→ sched h ll
〈proof 〉

We now show some basic facts about the scheduler.

lemma sched-empty-seq [simp]: sched h [] ←→ final h
〈proof 〉

lemma sched-empty-hedge[simp]: sched [] ll ←→ ll=[]
〈proof 〉

lemma sched-empty-empty [simp, intro!]: sched [] [] 〈proof 〉

lemma sched-final-simp[simp]: final h =⇒ sched h c ←→ c=[]
〈proof 〉

In the following few lemmas we derive an induction scheme that reasons
about hedges in the way they are consumed by the scheduler

13

fun sched-ind-size where
sched-ind-size (NLEAF π) = 0 |
sched-ind-size (NNOSPAWN l t) = Suc (sched-ind-size t) |
sched-ind-size (NSPAWN l ts t) = Suc (sched-ind-size ts + sched-ind-size t)

abbreviation sched-ind-sizeh h == listsum (map sched-ind-size h)

lemma sched-ind-h-cases[consumes 1 , case-names NOSPAWN SPAWN]:
[[sched-ind-sizeh h > 0 ;

!!h1 l t h2 . h=h1 @(NNOSPAWN l t)#h2 =⇒ P ;
!!h1 ts t h2 l . h = h1 @(NSPAWN l ts t)#h2 =⇒ P

]] =⇒ P
〈proof 〉

lemma sched-ind-helper :
[[!!h. final h =⇒ P h;

!!h1 t h2 l . P (h1 @t#h2) =⇒ P (h1 @(NNOSPAWN l t)#h2);
!!h1 ts t h2 l . P (h1 @ts#t#h2) =⇒ P (h1 @(NSPAWN l ts t)#h2);
sched-ind-sizeh h = k

]] =⇒ P h
〈proof 〉

lemma sched-ind [case-names FINAL NOSPAWN SPAWN]:
[[!!h. final h =⇒ P h;

!!h1 t h2 l . P (h1 @t#h2) =⇒ P (h1 @(NNOSPAWN l t)#h2);
!!h1 ts t h2 l . P (h1 @ts#t#h2) =⇒ P (h1 @(NSPAWN l ts t)#h2)

]] =⇒ P h
〈proof 〉

Every tree/hedge has at least one schedule. From an ordering point of
view, this is because hedge-structures are acyclic, and thus have always at
least one topological sort. However, using the inductive definition of the
scheduler, the proof of this lemma is by straightforward induction.

lemma exists-schedule: [[!!ll . sched h ll =⇒ P]] =⇒ P
〈proof 〉

Next, we want to show that the true concurrency semantics corresponds
to the interleaving semantics. For this purpose, we show that we have an
execution with labeling sequence ll in the interleaving semantics if and only
if there is an execution h in the true concurrency semantics that has ll in
its set of schedules.

The next two lemmas show the two directions of this claim.

lemma sched-correct1 : (c,ll ,c ′)∈dpntrc ∆ =⇒ ∃ h. hsem ∆ c h c ′ ∧ sched h ll
〈proof 〉

lemma sched-correct2 : [[sched h ll ; hsem ∆ c h c ′]] =⇒ (c,ll ,c ′)∈dpntrc ∆
〈proof 〉

14

Finally, we formulate the correspondance between the interleaving and
the true concurrency semantics as a single equivalence:
theorem sched-correct : (c,ll ,c ′)∈dpntrc ∆ ←→ (∃ h. hsem ∆ c h c ′ ∧ sched h ll)
〈proof 〉

As any hedge has at least one schedule, we always get an interleaving
execution from a hedge execution:
lemma obtain-schedule:

[[hsem ∆ c h c ′;
!!ll . [[(c,ll ,c ′)∈dpntrc ∆; sched h ll]] =⇒ P

]] =⇒ P
〈proof 〉

5 Predecessor Sets

Following [2], we define the set of immediate predecessors pre ∆ C and
predecessors pre∗ ∆ C of a set of configurations C. The set of immediate
predecessors contains those configurations from that we can reach (a config-
uration in) C with exactly one step. The set of predecessors contains those
configurations from that we can reach C with an arbitrary number of steps,
including no steps at all (i.e. pre∗ is reflexive).

Computing predecessor sets is the key to model checking and analysis of
DPNs, see [2] for details.
definition pre ∆ C ′ == { c . ∃ l c ′. c ′∈C ′ ∧ (c,l ,c ′) ∈ dpntr ∆ }
definition pre-star (pre∗) where

pre∗ ∆ C ′ == { c . ∃ ll c ′. c ′∈C ′ ∧ (c,ll ,c ′) ∈ dpntrc ∆ }

5.1 Hedge-Constrained Predecessor Sets

For a set of configurations C ′ and a set of execution hedges H, we define
the hedge-constrained predecessor set of C ′ w.r.t. H as the set of those
configurations from that we can reach C ′ with an execution hedge in H.
definition prehc ∆ H C ′ == { c . ∃ h c ′. h∈H ∧ c ′∈C ′ ∧ hsem ∆ c h c ′ }

lemma prehcI : [[h∈H ; c ′∈C ′; hsem ∆ c h c ′]] =⇒ c∈prehc ∆ H C ′

〈proof 〉

lemma prehcE :
[[c∈prehc ∆ H C ′; !!h c ′. [[h∈H ; c ′∈C ′; hsem ∆ c h c ′]] =⇒ P]] =⇒ P
〈proof 〉

The hedge-constrained predecessor set is monotonic in the constraint
lemma prehc-mono: H⊆H ′ =⇒ prehc ∆ H C ′ ⊆ prehc ∆ H ′ C ′

〈proof 〉

The hedge-constrained predecessor set without constraints is the same
as the original predecessor set.

15

lemma prehc-triv-is-pre-star : prehc ∆ UNIV C ′ = pre∗ ∆ C ′

〈proof 〉

The hedge-constrained predecessor set is always a subset of the uncon-
strained predecessor set.

lemma prehc-subset-pre-star : prehc ∆ H C ′ ⊆ pre∗ ∆ C ′

〈proof 〉

We can use a hedge-constraint to express immediate predecessor sets.

definition Hpre :: (′P , ′Γ, ′L) ex-hedge set where
Hpre == { hl1 @t#hl2 | hl1 t hl2 lab ts t ′.

final hl1 ∧ final hl2 ∧ final-t ts ∧ final-t t ′ ∧
(t=NNOSPAWN lab t ′ ∨ t=NSPAWN lab ts t ′) }

lemma HpreI-nospawn:
[[final h1 ; final h2 ; final-t t ′]] =⇒ h1 @NNOSPAWN lab t ′#h2 ∈ Hpre
〈proof 〉

lemma HpreI-spawn:
[[final h1 ; final h2 ; final-t ts; final-t t ′]] =⇒ h1 @NSPAWN lab ts t ′#h2 ∈ Hpre
〈proof 〉

lemmas HpreI = HpreI-nospawn HpreI-spawn

lemma HpreE [cases set , consumes 1 , case-names nospawn spawn]:
[[h∈Hpre;

!!h1 lab t ′ h2 . [[
h=h1 @NNOSPAWN lab t ′#h2 ; final h1 ; final h2 ; final-t t ′

]] =⇒ P ;
!!h1 lab ts t ′ h2 . [[

h=h1 @NSPAWN lab ts t ′#h2 ;
final h1 ; final h2 ; final-t ts; final-t t ′

]] =⇒ P
]] =⇒ P
〈proof 〉

In order to show that Hpre is correct, we first show that it exactly admits
the schedules of length one.

lemma Hpre-length1 : [[h∈Hpre; sched h ll]] =⇒ length ll = 1
〈proof 〉

lemma Hpre-length2 : [[sched h ll ; length ll = 1]] =⇒ h∈Hpre
〈proof 〉

theorem Hpre-length: sched h ll =⇒ h∈Hpre ←→ length ll = 1
〈proof 〉

It is then straightforward to show that prehc ∆ Hpre = pre ∆

lemma Hpre-correct1 : c∈prehc ∆ Hpre C ′ =⇒ c∈pre ∆ C ′

16

〈proof 〉

lemma Hpre-correct2 : c∈pre ∆ C ′ =⇒ c∈prehc ∆ Hpre C ′

〈proof 〉

theorem Hpre-correct : prehc ∆ Hpre = pre ∆
〈proof 〉

end

6 DPN Semantics on Lists

theory ListSemantics
imports Semantics
begin

The interleaving semantics works on configurations that are lists of pro-
cess configurations.

However, in [2] a DPN configuration is represented as a sequence of
control and stack symbols. Each process starts with a control symbol, fol-
lowed by its stack symbols. The configuration is simply a concatenation of
processes. This representation allows the notion of a regular set of configu-
rations as a set of configurations accepted by a FSM.

In this theory, we adopt this representation of configurations, define a
semantics directly over this representation, and show that this representation
is isomorphic to ours for sequences starting with a control symbol. Note that
sequences starting with a stack symbol have no meaningful interpretation,
as each process’s configuration has to start with a control symbol.

6.1 Definitions

We separate stack and control symbols using a datatype with two construc-
tors:

datatype (′Q , ′Γ) cl-item = CTRL ′Q | STACK ′Γ
types (′Q , ′Γ) cl = (′Q , ′Γ) cl-item list

The mapping from configurations to list-based configurations is straight-
forward:

fun pc2cl :: (′Q , ′Γ) pconf ⇒ (′Q , ′Γ) cl where
pc2cl (p,w) = CTRL p # map STACK w

definition c2cl :: (′Q , ′Γ) conf ⇒ (′Q , ′Γ) cl where
c2cl c == concat (map pc2cl c)

abbreviation c2cl-abbrv :: (′Q , ′Γ) conf ⇒ (′Q , ′Γ) cl
— This abbreviation is just for convenience

17

where
c2cl-abbrv c == concat (map pc2cl c)

Valid single-process configurations are those that start with a control
symbol followed by a list of stack symbols:

definition pclvalid == {CTRL p#map STACK w | p w . True}

Valid configurations are those that start with a control symbol:

definition clvalid == {[]} ∪ {CTRL p#c | p c. True}

We also define the step relation directly on list representation of config-
urations:

inductive-set cltr :: (′Q , ′Γ, ′L) dpn ⇒ ((′Q , ′Γ) cl × ′L × (′Q , ′Γ) cl) set
for ∆ where
cltr-no-spawn:

[[(p,γ ↪→l p ′,w)∈∆]] =⇒
(c1 @[CTRL p, STACK γ]@c2 ,

l ,
c1 @CTRL p ′#(map STACK w)@c2

) ∈ cltr ∆ |
cltr-spawn:

[[(p,γ ↪→l ps,ws] p ′,w)∈∆]] =⇒
(c1 @[CTRL p, STACK γ]@c2 ,

l ,
c1 @CTRL ps#(map STACK ws)@CTRL p ′#(map STACK w)@c2

) ∈ cltr ∆

6.2 Theorems

lemma inj-STACK [simp, intro!]: inj STACK 〈proof 〉

6.2.1 Representation of Single Processes

lemma pc2cl-not-empty [simp]: pc2cl π 6= [] 〈proof 〉

lemma pc2cl-inj [simp, intro!]: inj pc2cl
〈proof 〉

lemmas pc2cl-inj-simp[simp] = inj-eq [OF pc2cl-inj]

lemma pc2cl-valid [intro!,simp]: pc2cl π ∈ pclvalid
〈proof 〉

lemma pc2cl-surj : [[πl∈pclvalid ; !!π. πl=pc2cl π =⇒ P]] =⇒ P
〈proof 〉

6.2.2 Representation of Configurations

We start with a bunch of simplification rules and other auxilliary lemmas:

18

lemma stack-no-ctrl1 [simp]:
map STACK w 6= c1 @CTRL p#c2
〈proof 〉

lemmas stack-no-ctrl2 [simp] = stack-no-ctrl1 [symmetric]

lemma map-stack-ne-cCc1 [simp]:
map STACK w 6= c@CTRL s#c ′

〈proof 〉
lemmas map-stack-ne-cCc2 [simp] = map-stack-ne-cCc1 [symmetric]

lemmas map-stack-ne-add-simps[simp] =
map-stack-ne-cCc1 [where c=[], simplified]
map-stack-ne-cCc1 [where c=[a], simplified , standard]

lemma map-STACK-eq-map-STACK-simp[simp]:
map STACK w @CTRL p # cl = map STACK w ′ @ CTRL p ′ # cl ′←→

w ′=w ∧ p ′=p ∧ cl ′=cl
〈proof 〉

lemma map-stack-ne-pc2cl [simp]:
map STACK w 6= c@pc2cl π@c ′

c@pc2cl π@c ′ 6= map STACK w
〈proof 〉

lemmas map-stack-ne-pc2cl-add-simps[simp] =
map-stack-ne-pc2cl [where c=[], simplified]

lemma map-STACK-eq-map-STACK-add-simps[simp]:
map STACK w @ CTRL p#cl = map STACK w ′@pc2cl π ′@cl ′←→

w=w ′ ∧ p=fst π ′ ∧ cl=map STACK (snd π ′)@cl ′

map STACK w ′@pc2cl π ′@cl ′ = map STACK w @ CTRL p#cl ←→
w=w ′ ∧ p=fst π ′ ∧ cl=map STACK (snd π ′)@cl ′

〈proof 〉

lemma c2cl-simps[simp]:
c2cl [] = []
c2cl (π#c) = pc2cl π @ c2cl c
c2cl (c1 @c2) = c2cl c1 @ c2cl c2
〈proof 〉

lemma c2cl-empty [simp]:
c2cl c = [] ←→ c=[]
[] = c2cl c ←→ c=[]
〈proof 〉

19

lemma c2cl-start-with-ctrl [simp]:
c2cl c 6= STACK γ#cl
STACK γ#cl 6= c2cl c
〈proof 〉

lemma c2cl-start-with-ctrl-map:
w 6=[] =⇒ c2cl c 6= map STACK w
w 6=[] =⇒ map STACK w 6= c2cl c
〈proof 〉

lemma map-stack-c2cl-eq-simps[simp]:
map STACK w @ c2cl c = map STACK w ′ @ c2cl c ′ ←→ w=w ′ ∧ c2cl c=c2cl

c ′

〈proof 〉

lemma c2cl-s-cl-eqE :
[[STACK γ # cl = map STACK w @ c2cl c;

!!wr . [[w=γ#wr ; cl = map STACK wr @ c2cl c]] =⇒ P
]] =⇒ P
〈proof 〉

lemma c2cl-first-processE :
[[c2cl c = CTRL p#cl2 ;

!!w c2 cl2 ′. [[c=(p,w)#c2 ; cl2 =(map STACK w)@cl2 ′; c2cl c2 =cl2 ′]] =⇒ P
]] =⇒ P
〈proof 〉

lemma c2cl-find-process1 :
[[c2cl c = cl1 @CTRL p#cl2 ;

!!c1 w c2 . [[c=c1 @(p,w)#c2 ; cl2 =(map STACK w)@c2cl c2 ;
cl1 =c2cl c1

]] =⇒ P
]] =⇒ P

〈proof 〉

Then we show that our representation mapping is injective and surjective
on valid configurations.

lemma c2cl-inj [simp, intro!]: inj c2cl
〈proof 〉

lemmas c2cl-inj-simps[simp] = inj-eq [OF c2cl-inj]
lemmas c2cl-img-Int [simp] = image-Int [OF c2cl-inj]

lemma c2cl-valid [simp,intro!]: c2cl c ∈ clvalid
〈proof 〉

lemma c2cl-surj : [[cl∈clvalid ; !!c. cl=c2cl c =⇒ P]] =⇒ P

20

〈proof 〉

6.2.3 Step Relation on List-Configurations

lemma cltr-pres-valid : (cl ,l ,cl ′)∈cltr ∆ =⇒ cl∈clvalid ←→ cl ′∈clvalid
〈proof 〉

lemma dpntr-is-cltr : [[(c,l ,c ′)∈dpntr ∆]] =⇒ (c2cl c,l ,c2cl c ′)∈cltr ∆
〈proof 〉

lemma cltr-is-dpntr : [[(c2cl c,l ,c2cl c ′)∈cltr ∆]] =⇒ (c,l ,c ′)∈dpntr ∆
〈proof 〉

The following theorem formulates the equivalence of the original seman-
tics and the list-based semantics.

theorem cltr-eq-dpntr : (c2cl c,l ,c2cl c ′)∈cltr ∆ ←→ (c,l ,c ′)∈dpntr ∆
〈proof 〉

The next two lemmas ease the derivation of executions of the original
semantics from executions of the list-based semantics.

lemma cltr2dpntr-fwd :
[[(c2cl c,l ,cl ′)∈cltr ∆;

!!c ′. [[cl ′=c2cl c ′; (c,l ,c ′)∈dpntr ∆]] =⇒ P
]] =⇒ P

〈proof 〉

lemma cltr2dpntr-bwd :
[[(cl ,l ,c2cl c ′)∈cltr ∆;

!!c. [[cl=c2cl c; (c,l ,c ′)∈dpntr ∆]] =⇒ P
]] =⇒ P

〈proof 〉

Finally, we give some lemmas to directly reason about the transitive
closure of the step relation:

lemma cltr-is-dpntrc:
(c2cl c,l ,c2cl c ′)∈trcl (cltr ∆) =⇒ (c,l ,c ′)∈dpntrc ∆
〈proof 〉

lemma dpntrc-is-cltr :
(c,l ,c ′)∈dpntrc ∆ =⇒ (c2cl c,l ,c2cl c ′)∈trcl (cltr ∆)
〈proof 〉

theorem cltr-eq-dpntrc:
(c2cl c,l ,c2cl c ′)∈trcl (cltr ∆) ←→ (c,l ,c ′)∈dpntrc ∆
〈proof 〉

lemma cltrc-pres-valid :
(cl ,w ,cl ′)∈trcl (cltr ∆) =⇒ cl∈clvalid ←→ cl ′∈clvalid
〈proof 〉

21

lemma cltr2dpntrc-fwd :
[[(c2cl c,l ,cl ′)∈trcl (cltr ∆);

!!c ′. [[cl ′=c2cl c ′; (c,l ,c ′)∈dpntrc ∆]] =⇒ P
]] =⇒ P

〈proof 〉

lemma cltr2dpntrc-bwd :
[[(cl ,l ,c2cl c ′)∈trcl (cltr ∆);

!!c. [[cl=c2cl c; (c,l ,c ′)∈dpntrc ∆]] =⇒ P
]] =⇒ P

〈proof 〉

6.3 Predecessor Sets on List-Semantics

We also define predecessor sets for the list-semantics:

definition precl (precl) where
precl ∆ C ′ == { c . ∃ l c ′. c ′∈C ′ ∧ (c,l ,c ′) ∈ cltr ∆ }

definition precl-star (pre∗cl) where
pre∗cl ∆ C ′ == { c . ∃ ll c ′. c ′∈C ′ ∧ (c,ll ,c ′) ∈ trcl (cltr ∆) }

And show that they are equivalent to their counterparts defined over the
original semantics:

lemma precl-is-pre: precl ∆ (c2cl‘C) = c2cl‘ (pre ∆ C)
〈proof 〉

lemma precl-star-is-pre-star : pre∗cl ∆ (c2cl‘C) = c2cl‘ (pre∗ ∆ C)
〈proof 〉

end

7 Automata for Execution Hedges

theory HedgeAutomata
imports Main Semantics
begin

In this section we define hedge automata that accept execution hedges.
A hedge automaton consists of a set of states, an regular initial language

of state sequences and a set of transitions. Transitions are either leaf tran-
sitions that label a leaf node with a state if the configuration at the leaf
node is contained in some (regular) language, or non-spawning or spawning
transitions, that label a spawning or non-spawning node respectively with a
state depending on the states of the successor nodes.

22

In this formalization, we model the initial language and the regular lan-
guages at the leafs just at sets. However, if we want an executable represen-
tation, we need to model real automata there. This is planned to be done
in the future.

datatype (′S , ′P , ′Γ, ′L) ha-rule =
HAR-LEAF ′S ′P ′Γ list set |
HAR-NOSPAWN ′S ′L ′S |
HAR-SPAWN ′S ′L ′S ′S

types (′S , ′P , ′Γ, ′L) ha = ′S list set × (′S , ′P , ′Γ, ′L) ha-rule set

In order to model acceptance of a hedge, we define a relation between
trees and states with which we can label those trees. We then extend this
relation to hedges.

inductive lab
:: (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P , ′Γ, ′L) ex-tree ⇒ ′S ⇒ bool
for H where
lab-leaf :

[[HAR-LEAF s p W ∈ H ; w∈W]] =⇒ lab H (NLEAF (p,w)) s |
lab-nospawn:

[[HAR-NOSPAWN s l s ′ ∈ H ; lab H t s ′]] =⇒ lab H (NNOSPAWN l t) s |
lab-spawn:

[[HAR-SPAWN s l ss s ′ ∈ H ; lab H ts ss; lab H t s ′]] =⇒
lab H (NSPAWN l ts t) s

inductive labh :: (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P , ′Γ, ′L) ex-hedge ⇒ ′S list ⇒ bool

for H where
labh-empty [simp, intro!]: labh H [] [] |
labh-cons: [[lab H t s; labh H h σ]] =⇒ labh H (t#h) (s#σ)

lemma labh-empty [simp]:
labh H [] σ ←→ σ=[]
labh H h [] ←→ h=[]
〈proof 〉

lemma labh-length: labh H h σ =⇒ length h = length σ
〈proof 〉

The language of a hedge automaton consists of those hedges whose roots
can be labeled with a state sequence in the initial language.

definition langh :: (′S , ′P , ′Γ, ′L) ha ⇒ (′P , ′Γ, ′L) ex-hedge set where
langh HA == { h . ∃σ∈fst HA. labh (snd HA) h σ }

end

23

8 Computation of Hedge-Constrained Predeces-
sor Sets

theory CrossProd
imports ListSemantics HedgeAutomata
begin

In this section we show how to compute predecessor sets with regular
hedge constraints. The computation is done by reduction to the computation
of the unconstrained predecessor set. The reduction uses a cross-product like
approach, computing a product-DPN of the original DPN and the hedge
automaton, and a product regular set of the original regular set and the
hedge-automaton’s leaf rules.

This theory uses a list-based representation of DPN-configurations, where
the type of a configuration is a list of control- and stack-symbols. This type
is less structured than the original type of configurations, that is lists of pairs
of control symbol and stack. However, it admits handling configurations as
words, and sets of configurations as (regular) languages.

This theory does not use a formalization of regular languages, nor does
it generate executable code. Instead, regular sets are modeled as sets. The
effectiveness proofs show representations that only contain operations well-
known to preserve regularity. However, an implementation of those opera-
tions is not formalized.

The cross-product DPN simulates the rules of the hedge-automaton via
its transitions, the current state of the hedge automaton is stored in the
DPN’s state:

inductive-set
xdpn :: (′P , ′Γ, ′L) dpn ⇒ (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P× ′S , ′Γ, ′L) dpn
for ∆ H where
xdpn-nospawn:

[[(p,γ ↪→l p ′,w)∈∆; HAR-NOSPAWN s l s ′∈H]] =⇒
((p,s),γ ↪→l (p ′,s ′),w) ∈ xdpn ∆ H |

xdpn-spawn:
[[(p,γ ↪→l ps,ws] p ′,w)∈∆; HAR-SPAWN s l ss s ′∈H]] =⇒

((p,s),γ ↪→l (ps,ss),ws] (p ′,s ′),w)∈xdpn ∆ H

The xdpn-nospawn-rule adds a transition rule to the cross-product DPN
for each original non-spawning transition rule and hedge automaton rule
that could be used to label the node generated by this transition rule. Anal-
ogously, the xdpn-spawn-rule adds a transition rule to the cross-product
DPN for spawning rules.

We now define operators to map configurations of the cross-product DPN
to configurations of the original DPN and sequences of states of the hedge
automaton.

abbreviation

24

proj-c1 :: (′P× ′S , ′Γ) conf ⇒ (′P , ′Γ) conf where
proj-c1 cx == map (λ((p,s),w). (p,w)) cx

abbreviation
proj-c2 :: (′P× ′S , ′Γ) conf ⇒ ′S list where
proj-c2 cx == map (λ((p,s),w). s) cx

We also have to define a mapping for execution hedges, because the
labeling of the leafs is different:
fun proj-t1 :: (′P× ′S , ′Γ, ′L) ex-tree ⇒ (′P , ′Γ, ′L) ex-tree where

proj-t1 (NLEAF ((p,s),w)) = NLEAF (p,w) |
proj-t1 (NNOSPAWN l t) = NNOSPAWN l (proj-t1 t) |
proj-t1 (NSPAWN l ts t) = NSPAWN l (proj-t1 ts) (proj-t1 t)

Next we define how to transform the target set, that contains the con-
figurations of that we want to compute the predecessors.

The new target set contains the configurations of the original target set
with all labelings that may be done by leaf-rules of the hedge automaton:
— Process labeled by a leaf-rule:
abbreviation

xdpnCLP H == { ((p,s),w). ∃W . HAR-LEAF s p W ∈ H ∧ w∈W }

— Configuration labeled by leaf-rules:
abbreviation

xdpnCL H == { cx . (∀ ((p,s),w)∈set cx . ((p,s),w) ∈ xdpnCLP H) }

— New target set:
definition

xdpnC C H == { cx . proj-c1 cx ∈ C } ∩ xdpnCL H

Finally we define how to transform the computed predecessor set in
order to get a set of configurations of the original DPN. This phase consists
of two operations: First, we have to restrict the configurations to those that
are accepted by the hedge automaton’s initial language, and then we have
to project away the hedge-automaton’s states to get a configuration of the
original DPN. In the following definition, these two steps are combined:
definition

projH :: ′S list set ⇒ (′P× ′S , ′Γ) conf set ⇒ (′P , ′Γ) conf set where
projH H0 Cx == { proj-c1 cx | cx . cx∈Cx ∧ proj-c2 cx ∈ H0 }

8.1 Correctness of Reduction

In this section we show that our reduction is correct, i.e. that we really get
the hedge-constrained predecessor set by computing the predecessor set of
the cross-product DPN and a transformed target set, and then applying the
projH -operator to the result.

We first need to introduce a combination operator that combines an
original DPN’s configuration and a list of hedge automaton states to a cross-
product DPN’s configuration.

25

abbreviation cxs c σ == zipf (λ(p,w) s. ((p,s),w)) c σ

lemma proj-cxs1 [simp]: length c = length σ =⇒ proj-c1 (cxs c σ) = c
〈proof 〉

lemma proj-cxs2 [simp]: length c = length σ =⇒ proj-c2 (cxs c σ) = σ
〈proof 〉

lemma cxs-proj [simp]: cxs (proj-c1 cx) (proj-c2 cx) = cx
〈proof 〉

lemma xdpnc-proj : cx ∈ xdpnC C H =⇒ proj-c1 cx ∈ C
〈proof 〉

We now prove the two directions of our main goal. Each direction re-
quires 2 lemmas, the first one for a single tree and the second one for a
hedge.

lemmas tsem-induct-x =
tsem.induct [where ?x1 .0 = ((p,s),w), split-format (complete),

consumes 1 , case-names tsem-leaf tsem-nospawn tsem-spawn
]

lemmas tsem-induct-p =
tsem.induct [where ?x1 .0 = (p,w), split-format (complete),

consumes 1 , case-names tsem-leaf tsem-nospawn tsem-spawn
]

lemma xdpn-correct1-t :
[[tsem (xdpn ∆ H) ((p,s),w) t c ′; c ′∈xdpnCL H]] =⇒

tsem ∆ (p,w) (proj-t1 t) (proj-c1 c ′) ∧ lab H (proj-t1 t) s
〈proof 〉

lemma xdpn-correct1 :
[[hsem (xdpn ∆ H) c h c ′; c ′∈xdpnCL H]] =⇒

hsem ∆ (proj-c1 c) (map proj-t1 h) (proj-c1 c ′) ∧
labh H (map proj-t1 h) (proj-c2 c)

〈proof 〉

lemma xdpn-correct2-t :
[[tsem ∆ (p,w) t c ′; lab H t s]] =⇒
∃ tx cx ′. tsem (xdpn ∆ H) ((p,s),w) tx cx ′ ∧

cx ′∈xdpnCL H ∧ proj-t1 tx = t ∧
proj-c1 cx ′ = c ′

〈proof 〉

lemma xdpn-correct2 :
[[hsem ∆ c h c ′; labh H h σ]] =⇒
∃ hx cx ′. hsem (xdpn ∆ H) (cxs c σ) hx cx ′ ∧

26

cx ′∈xdpnCL H ∧
(map proj-t1 hx) = h ∧
proj-c1 cx ′ = c ′

〈proof 〉

Finally we use the lemmas proven above to show our main goal, i.e. a
representation of the hedge-constrained predecessor set w.r.t. the language
of a hedge automaton by means of the sequential pre∗-operator and the
cross-product construction.

theorem xdpn-correct :
prehc ∆ (langh (H0 ,H)) C ′ = projH H0 (pre∗ (xdpn ∆ H) (xdpnC C ′ H))
〈proof 〉

8.2 Effectiveness of Reduction

In this section we give indication that the cross-product construction is
computable for regular target sets.

The new set of rules xdpn can be computed if the set of dpn rules and the
set of hedge automaton transitions are finite, as the definition of xdpn is not
recursive and each LHS depends on only one element of each set. However,
as said above, we do not provide executable code here.

In [2], a configuration is represented as a sequence of control and stack
symbols, each process starting with a control symbol followed by its stack.
For sequences that start with a control symbol, this representation is iso-
morphic to our representation (cf. Section 6.2.3). As regular sets of con-
figurations are best defined on this list-based semantics, we also show the
effectiveness of our construction on the list-based semantics.

This section, especially the proofs of the Theorems, are rather technical.
The theorems itself show how to compute the new target configuration and
the projection from the computed predecessor set using only operations well-
known to preserve regularity (in this case intersection, union, concatenation,
star, and substitution) as well as some sets that are obviously regular. How-
ever, no formal proof of regularity or effectiveness is given.

8.2.1 Definitions

This function defines the projection operator from the extended to the orig-
inal configuration:

fun fp-cl1 where
fp-cl1 (CTRL (p,s)) = CTRL p |
fp-cl1 (STACK γ) = STACK γ

This function maps a hedge-automaton state to the regular set of all
process configurations labeled with that state. Note that the sets {[CTRL
(p, s)] |p. True} and {[STACK γ] |γ. True} are obviously regular.

definition fp-inv-subst2 where

27

fp-inv-subst2 s = conc { [CTRL (p,s)] | p. True } (star {[STACK γ] | γ. True})

The projection operator can be written using substitution, projection (a
special form of substitution), and intersection.

The intuitive idea is, that subst fp-inv-subst2 H0 is the set of all con-
figurations with a hedge-automaton labeling sequence that is accepted by
H0.

definition projH-cl :: ′S list set ⇒ (′Q× ′S , ′Γ) cl set ⇒ (′Q , ′Γ) cl set where
projH-cl H0 Clx = lang-proj fp-cl1 (subst fp-inv-subst2 H0 ∩ (Clx))

The derivation of the new target set is done by first characterizing all sets
of cross-product configurations whose leafs are labeled correctly according
to the leaf rules of the hedge automaton. Note that there are only finitely
many leaf-rules, hence the union below is over a finite set. Moreover, the
language W at a leaf rule is regular by default, the operation map STACK ‘
- is a projection and the operation op # (CTRL (p,s)) ‘ - is a concatenation.
Hence all the operations below are effective.

definition xdpnCL-cl :: (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P× ′S , ′Γ) cl set where
xdpnCL-cl H = star (

⋃
{ op # (CTRL (p,s)) ‘ (map STACK ‘ W) |

s p W . HAR-LEAF s p W ∈ H }
)

Having characterized all configurations that are correctly labeled, one
gets the new target set by intersecting them with all configurations that
correspond to the old target set:

definition xdpnC-cl
:: (′P , ′Γ) cl set ⇒ (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P× ′S , ′Γ) cl set
where
xdpnC-cl Cl H = lang-inv-proj fp-cl1 Cl ∩ xdpnCL-cl H

In order to compute prehc ∆ (langh (H0 , H)) C ′, we map C’ to its
corresponding regular set of list-based configurations c2cl ‘ C ′ and apply
the list-based operations for cross-product, predecessor set and projection
on it:

definition prehc-cl
:: (′Q , ′Γ, ′L) dpn ⇒ (′S , ′Q , ′Γ, ′L) ha ⇒ (′Q , ′Γ) cl set ⇒ (′Q , ′Γ) cl set
where
prehc-cl ∆ HA Cl ′ =

projH-cl (fst HA) (pre∗cl (xdpn ∆ (snd HA)) (xdpnC-cl Cl ′ (snd HA)))

8.2.2 Theorems

lemma fp-cl1-map-stack-id [simp]: map fp-cl1 (map STACK w) = map STACK w
〈proof 〉

lemma fp-cl1-stack-id [simp]: fp-cl1 s = STACK γ ←→ s=STACK γ
〈proof 〉

28

lemma fp-cl1-eq-map-stack [simp]:
map fp-cl1 la = map STACK w ←→ la=map STACK w
〈proof 〉

lemma star-STACK [simplified ,simp]:
star {[STACK γ] | γ. True} = {map STACK w | w . True}
〈proof 〉

lemma proj-c1-effective: c2cl (proj-c1 c) = map fp-cl1 (c2cl c)
〈proof 〉

lemma fp-inv-subst2I [intro!, simp]:
CTRL (p,s)#map STACK w ∈ fp-inv-subst2 s
〈proof 〉

lemma fp-inv-subst2E :
[[cl∈fp-inv-subst2 s; !!p w . cl=CTRL (p,s)#map STACK w =⇒ P]] =⇒ P
〈proof 〉

Idea of the operation on the original representations of configurations:

lemma projH-effective ′:
projH H0 Cx = lang-proj (λ((p,s),w). (p,w))

(lang-inv-proj (λ((p,s),w). s) H0 ∩ Cx)
〈proof 〉

Correctness of the list-level operation:

theorem projH-effective: c2cl ‘ projH H0 Cx = projH-cl H0 (c2cl ‘ Cx)
〈proof 〉

lemma c2cl-empty-rev : [] = c2cl [] 〈proof 〉

theorem xdpnCL-effective: c2cl ‘ (xdpnCL H) = xdpnCL-cl H
〈proof 〉

lemma inv-proj-c1-effective:
c2cl ‘ { cx . proj-c1 cx ∈ C } = lang-inv-proj fp-cl1 (c2cl ‘ C)
〈proof 〉

theorem xdpnC-effective: c2cl ‘ (xdpnC C H) = xdpnC-cl (c2cl ‘ C) H
〈proof 〉

29

theorem prehc-effective:
c2cl ‘ prehc ∆ (langh (H0 ,H)) C ′ = prehc-cl ∆ (H0 ,H) (c2cl ‘ C ′)
〈proof 〉

8.3 What Does This Proof Tell You ?

In order to believe that our construction is effective, you have to believe
that the RHS of Theorem prehc-effective is really effective.

The effectiveness of the pre∗ - computation is shown in [2], and we have
also an unpublished formal proof of the algorithm presented there. We are
planning to adapt this proof to our model definition and the latest Isabelle
version in near future, and then publish it.

The effectiveness of the involved automata computations is well-known.
In a future version of this formalization, we plan to formalize or adopt an
automata library and use it to generate executable code.

end

9 DPNs With Locks

theory LockSem
imports DPN Semantics
begin

In this theory, we define an extension of DPNs, where synchronization
of the processes via a finite set of locks is allowed.

For this purpose, we assume that the rules are labeled with lock opera-
tions.

9.1 Model

— If a label has either no effect on locks, we allow it to be labeled by some other
generic type ′L. Otherwise, the label indicates either the acquisition or the
release of a lock:

datatype (′L, ′X) lockstep = LNone ′L | LAcq ′X | LRel ′X

— Abbreviation for the datatype of a DPN with locks:
types (′P , ′Γ, ′L, ′X) ldpn = (′P , ′Γ,(′L, ′X) lockstep) dpn

We encode DPNs with locks in a locale.
To save some case distinctions in proofs, we assume that only non-

spawning rules are labeled with lock operations.

locale LDPN = DPN +
constrains

∆ :: (′P , ′Γ, ′L, ′X ::finite) ldpn
assumes

spawn-no-locks: [[(p,γ ↪→a ps,ws] p ′,w) ∈ ∆; !!l . a=LNone l =⇒ P]] =⇒ P

30

begin
lemma snl-simps[simp, intro!]:

(p,γ ↪→LAcq x ps,ws] p ′,w) /∈ ∆
(p,γ ↪→LRel x ps,ws] p ′,w) /∈ ∆
〈proof 〉

lemma X-finite: finite (UNIV :: ′X set) 〈proof 〉
end

9.2 Interleaving Semantics

The following predicate models the step-relation on the set of allocated locks:

inductive lock-valid :: ′X set ⇒ (′L, ′X) lockstep ⇒ ′X set ⇒ bool where
— A LNone-step does not change the set of allocated locks:
lv-none: lock-valid X (LNone l) X |
— A LAcq-step adds the acquired lock to the set of locks. It is only executable

if the lock was not allocated before:
lv-acquire: lock-valid (X−{x}) (LAcq x) (insert x X) |
— A LRel -step removes the released lock from the set of locks. It is only
executable if the lock was allocated before:

lv-release: lock-valid (insert x X) (LRel x) (X−{x})

lemma lock-valid-simps[simp]:
lock-valid X (LNone l) X ′←→ X =X ′

lock-valid X (LAcq x) X ′←→ X ′=insert x X ∧ x /∈X
lock-valid X (LRel x) X ′←→ X =insert x X ′ ∧ x /∈X ′

〈proof 〉

Configurations of the lock-sensitive step-relation consists of the list of
processes and the set of currently acquired locks. Note that, at this point in
the formalization, we do not make any assumptions on which process may
release a lock, or on well-nestedness of locks.

That is, we allow a process releasing a lock that it has not acquired
before, or locks being used in non-well-nestedness fashion.

However, in Section 10, we formalize such assumptions.
The lock-sensitive step-relation is the intersection of the original step-

relation and the step-relation on allocated locks.

definition ldpntr
:: (′P , ′Γ, ′L, ′X) ldpn ⇒ ((′P , ′Γ) conf × ′X set , (′L, ′X) lockstep) LTS
where
ldpntr ∆ = { ((c,X),l ,(c ′,X ′)) . (c,l ,c ′) ∈ dpntr ∆ ∧ lock-valid X l X ′}

abbreviation ldpntrc ∆ == trcl (ldpntr ∆)

lemma ldpntr-subset : ((c,X),w ,(c ′,X ′))∈ldpntr ∆ =⇒ (c,w ,c ′)∈dpntr ∆
〈proof 〉

lemma ldpntrc-subset : ((c,X),w ,(c ′,X ′))∈ldpntrc ∆ =⇒ (c,w ,c ′)∈dpntrc ∆
〈proof 〉

31

9.3 Tree Semantics

For the tree semantics, we only need to redefine the scheduler, such that it
keeps track of the allocated locks.

— Abbreviation for type of execution trees and hedges with locks:
types (′Q , ′Γ, ′L, ′X) lex-tree = (′Q , ′Γ,(′L, ′X) lockstep) ex-tree
types (′Q , ′Γ, ′L, ′X) lex-hedge = (′Q , ′Γ,(′L, ′X) lockstep) ex-hedge

— The definition of the lock-sensitive scheduler is straightforward:
inductive lsched

:: (′Q , ′Γ, ′L, ′X) lex-hedge ⇒ ′X set ⇒ (′L, ′X) lockstep list ⇒ bool
where
lsched-final : final h =⇒ lsched h X [] |
lsched-nospawn:

[[lsched (h1 @t#h2) X ′ w ; lock-valid X l X ′]] =⇒
lsched (h1 @(NNOSPAWN l t)#h2) X (l#w) |

lsched-spawn:
[[lsched (h1 @ts#t#h2) X ′ w ; lock-valid X l X ′]] =⇒

lsched (h1 @(NSPAWN l ts t)#h2) X (l#w)

— Obviously, a lock-sensitive schedule is also a schedule of the original scheduler:

lemma lsched-is-sched : lsched h X ll =⇒ sched h ll
〈proof 〉

9.4 Equivalence of Interleaving and Tree Semantics

— Straightforward adoption of proof of sched-correct1
lemma lsched-correct1 :

((c,X),ll ,(c ′,X ′))∈ldpntrc ∆ =⇒ ∃ h. hsem ∆ c h c ′ ∧ lsched h X ll
〈proof 〉
lemma lsched-correct2 :

[[lsched h X ll ; hsem ∆ c h c ′]] =⇒ ∃X ′. ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆
〈proof 〉

theorem lsched-correct :
(∃X ′. ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆) ←→ (∃ h. hsem ∆ c h c ′ ∧ lsched h X ll)
〈proof 〉

end

10 Well-Nestedness of Locks

theory WellNested
imports DPN Semantics LockSem
begin

32

Well-nestedness of locks is the property that no locks are re-acquired
by the same process and a released locks is always the last one that was
acquired and not yet released by the releasing process. Usually, these two
properties are called non-reentrance and well-nestedness.

In this theory, we formulate a sufficient condition for well-nestedness,
that regards every possible lock-insensitive run of the DPN from some initial
configuration. We then define an equivalent condition on execution hedges.

Note that our condition may rule out DPNs where some non-well-nested
runs are blocked by deadlocks or other lock-induced effects. However, im-
portant classes of programs, in particular programs that use locks in a block-
structured way (like synchronized-blocks in Java), always satisfy our condi-
tion.

Further work required at this point is to formalize a program analysis or
some sufficient conditions (like block-structured lock-acquisition [monitors])
for well-nestedness. We would then be able to prove some non-trivial DPNs
to have well-nested configurations, thus giving a stronger indication that
the well-nestedness assumption is correct. In the current state, we have no
formal proof that the well-nestedness assumption is correct, i.e. an uncorrect
well-nestedness assumption, e.g. a too strict one, would affect the scope of
all our proofs that use this assumption. In the worst case, there would be
no well-nested DPNs at all (or only trivial ones).

10.1 Well-Nestedness Condition on Paths

We first define the set of all paths that may occur from a process. We collect
local paths and environment paths.

ppairs (q ,w) False l means that there is a local path l from process (q ,w).

ppairs (q ,w) True l means that we can reach a spawn step from process
(q ,w) that spawns a process having path ”l”.

inductive ppairs
:: (′P , ′Γ, ′L, ′X) ldpn ⇒ (′P , ′Γ) pconf ⇒ bool ⇒ (′L, ′X) lockstep list ⇒ bool
for ∆ where
ppairs-empty : ppairs ∆ (q ,w) False [] |
ppairs-prepend1 :
[[(q ,γ ↪→a q ′,w) ∈ ∆; ppairs ∆ (q ′,w@r) False l]] =⇒

ppairs ∆ (q ,γ#r) False (a#l) |
ppairs-mvenv1 :
[[(q ,γ ↪→a q ′,w) ∈ ∆; ppairs ∆ (q ′,w@r) True l]] =⇒

ppairs ∆ (q ,γ#r) True l |
ppairs-prepend2 :
[[(q ,γ ↪→a qs,ws] q ′,w) ∈ ∆; ppairs ∆ (q ′,w@r) False l]] =⇒

ppairs ∆ (q ,γ#r) False (a#l) |
ppairs-mvenv2 : [[(q ,γ ↪→a qs,ws] q ′,w) ∈ ∆; ppairs ∆ (q ′,w@r) True l]] =⇒

33

ppairs ∆ (q ,γ#r) True l |
ppairs-genenv : [[(q ,γ ↪→a qs,ws] q ′,w) ∈ ∆; ppairs ∆ (qs,ws) x l]] =⇒

ppairs ∆ (q ,γ#r) True l

This function checks whether a path is well-nested by using a lock stack.

fun wn-p :: (′L, ′X) lockstep list ⇒ ′X list ⇒ bool where
wn-p [] µ = distinct µ |
wn-p (LAcq x#l) µ ←→ wn-p l (x#µ) |
wn-p (LRel x#l) µ ←→ (∃µ ′. µ=x#µ ′ ∧ x /∈set µ ′ ∧ wn-p l µ ′) |
wn-p (-#l) µ ←→ wn-p l µ

A process π is defined to be well-nested w.r.t. some initial lock stack µ
if all reachable path – local paths and environment paths – are well-nested.

definition wn-π ∆ π µ ==
case π of (p,w) ⇒
∀ l . (ppairs ∆ (p,w) False l −→ wn-p l µ) ∧

(ppairs ∆ (p,w) True l −→ wn-p l [])

Introduction and elimination rules for wn-π

lemma wn-πI :
[[

!!l . ppairs ∆ (q ,w) False l =⇒ wn-p l µ;
!!l . ppairs ∆ (q ,w) True l =⇒ wn-p l []

]] =⇒ wn-π ∆ (q ,w) µ
〈proof 〉

lemma wn-πE :
[[wn-π ∆ (q ,w) µ;

[[
!!l . ppairs ∆ (q ,w) False l =⇒ wn-p l µ;
!!l . ppairs ∆ (q ,w) True l =⇒ wn-p l []

]] =⇒ P
]] =⇒ P
〈proof 〉

We have set up the definitions such that well-nestedness w.r.t a lock
stack implies distinctness of this lock stack.

lemma wn-p-distinct : wn-p l µ =⇒ distinct µ
〈proof 〉

lemma wn-π-distinct : wn-π ∆ π µ =⇒ distinct µ
〈proof 〉

Well-nestedness is preserved by steps:

lemma wn-π-none:
[[(q ,γ ↪→(LNone l) q ′,w)∈∆; wn-π ∆ (q ,γ#r) µ]] =⇒ wn-π ∆ (q ′,w@r) µ
〈proof 〉

lemma (in LDPN) wn-π-spawn1 :
[[(q ,γ ↪→a qs,ws] q ′,w)∈∆; wn-π ∆ (q ,γ#r) µ]] =⇒ wn-π ∆ (q ′,w@r) µ

34

〈proof 〉
lemma wn-π-spawn2 :

[[(q ,γ ↪→a qs,ws] q ′,w)∈∆; wn-π ∆ (q ,γ#r) µ]] =⇒ wn-π ∆ (qs,ws) []
〈proof 〉

lemma wn-π-acq :
[[(q ,γ ↪→LAcq x q ′,w)∈∆; wn-π ∆ (q ,γ#r) µ]] =⇒ wn-π ∆ (q ′,w@r) (x#µ)
〈proof 〉

lemma wn-π-rel :
assumes A: (q ,γ ↪→LRel x q ′,w)∈∆ wn-π ∆ (q ,γ#r) µ and

C : !!µ ′. [[µ=x#µ ′; x /∈set µ ′; wn-π ∆ (q ′,w@r) µ ′]] =⇒ P
shows P
〈proof 〉

lemma (in LDPN) wn-π-preserve:
[[(q ,γ ↪→l q ′,w)∈∆; wn-π ∆ (q ,γ#r) xs;

!!xs ′. wn-π ∆ (q ′,w@r) xs ′ =⇒ P
]] =⇒ P

[[(q ,γ ↪→l qs,ws] q ′,w)∈∆; wn-π ∆ (q ,γ#r) xs;
!!xs ′. [[wn-π ∆ (q ′,w@r) xs ′; wn-π ∆ (qs,ws) []]] =⇒ P

]] =⇒ P
〈proof 〉

10.2 Well-Nestedness of Configurations

The locks of a list of lock stacks

abbreviation locks-µ :: ′X list list ⇒ ′X set where
locks-µ µ == list-collect-set set µ

A configuration c=π1. . .πn is well-nested w.r.t. a list µ=s1. . .sn of lock
stacks (wn-h h µ), iff all πi are well-nested w.r.t. stack s i and µ is consistent,
i.e. contains no duplicate locks.

fun wn-c where
wn-c ∆ [] [] ←→ True |
wn-c ∆ (π#c) (xs#µ) ←→

wn-c ∆ c µ ∧ set xs ∩ locks-µ µ = {} ∧ wn-π ∆ π xs |
wn-c ∆ - - ←→ False

10.2.1 Auxilliary Lemmas about wn-c

lemma wn-c-simps[simp]:
wn-c ∆ c [] ←→ c=[]
wn-c ∆ [] µ ←→ µ=[]
〈proof 〉

lemma wn-c-length: wn-c ∆ c µ =⇒ length c = length µ
〈proof 〉

lemma wn-c-prepend-c:

35

[[wn-c ∆ (π#c) µ;
!!xs µ ′. [[µ=xs#µ ′; wn-c ∆ c µ ′;

set xs ∩ locks-µ µ ′ = {}; wn-π ∆ π xs
]] =⇒ P

]] =⇒ P
〈proof 〉

lemma wn-c-prepend-µ:
[[wn-c ∆ c (xs#µ);

!!π c ′. [[c=π#c ′; wn-c ∆ c ′ µ;
set xs ∩ locks-µ µ = {}; wn-π ∆ π xs

]] =⇒ P
]] =⇒ P
〈proof 〉

lemma wn-c-append-c-helper :
assumes

A: wn-c ∆ c µ c1 @c2 =c and
C : !!µ1 µ2 . [[µ=µ1 @µ2 ∧ wn-c ∆ c1 µ1 ∧ wn-c ∆ c2 µ2 ∧

locks-µ µ1 ∩ locks-µ µ2 = {}
]] =⇒ P

shows P
〈proof 〉

lemma wn-c-append-c:
[[wn-c ∆ (c1 @c2) µ;

!!µ1 µ2 . [[µ=µ1 @µ2 ∧ wn-c ∆ c1 µ1 ∧ wn-c ∆ c2 µ2 ∧
locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P

]] =⇒ P
〈proof 〉

lemma wn-c-append-µ-helper :
assumes

A: wn-c ∆ c µ µ1 @µ2 =µ and
C : !!c1 c2 . [[c=c1 @c2 ∧ wn-c ∆ c1 µ1 ∧ wn-c ∆ c2 µ2 ∧

locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P
shows P
〈proof 〉

lemma wn-c-append-µ:
[[wn-c ∆ c (µ1 @µ2);

!!c1 c2 . [[c=c1 @c2 ∧ wn-c ∆ c1 µ1 ∧ wn-c ∆ c2 µ2 ∧
locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P

]] =⇒ P
〈proof 〉

lemma wn-c-appendI :
[[wn-c ∆ c1 µ1 ; wn-c ∆ c2 µ2 ; locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒

wn-c ∆ (c1 @c2) (µ1 @µ2)

36

〈proof 〉

lemma wn-c-prependI :
[[wn-π ∆ π xs; wn-c ∆ c µ; set xs ∩ locks-µ µ = {}]] =⇒ wn-c ∆ (π#c) (xs#µ)
〈proof 〉

lemma wn-c-singlecE : [[wn-c ∆ [π] µ; !!xs. [[µ=[xs]; wn-π ∆ π xs]] =⇒ P]] =⇒ P
〈proof 〉

lemma wn-c-split-aux :
assumes

WN : wn-c ∆ c µ and
HFMT [simp]: c=c1 @π#c2 and
C : !!µ1 xs µ2 . [[µ=µ1 @xs#µ2 ; wn-π ∆ π xs; wn-c ∆ c1 µ1 ; wn-c ∆ c2 µ2 ;

locks-µ µ1 ∩ set xs = {}; locks-µ µ1 ∩ locks-µ µ2 = {};
set xs ∩ locks-µ µ2 = {}

]] =⇒ P
shows P
〈proof 〉

Well-nestedness of configurations is preserved by lock-sensitive steps.

lemma (in LDPN) wnc-preserve-singlestep:
assumes

A: ((c,locks-µ µ),l ,(c ′,X ′))∈ldpntr ∆ wn-c ∆ c µ and
C : !!µ ′. [[X ′=locks-µ µ ′; wn-c ∆ c ′ µ ′]] =⇒ P

shows P
〈proof 〉

lemma (in LDPN) wnc-preserve:
assumes A: ((c,locks-µ µ),ll ,(c ′,X ′))∈ldpntrc ∆ wn-c ∆ c µ and

C : !!µ ′. [[X ′=locks-µ µ ′; wn-c ∆ c ′ µ ′]] =⇒ P
shows P
〈proof 〉

10.3 Well-Nestedness Condition on Trees

Now we define well-nestedness on scheduling trees. Note that scheduling
trees that contain spawn steps with locks interaction are not well-nested.

We define two equivalent formulations of well-nestedness of a tree:

fun wn-t ′ :: (′P , ′Γ, ′L, ′X) lex-tree ⇒ ′X list ⇒ bool where
wn-t ′ (NLEAF π) µ ←→ distinct µ |
wn-t ′ (NNOSPAWN (LNone l) t) µ ←→ wn-t ′ t µ |
wn-t ′ (NSPAWN (LNone l) ts t) µ ←→ wn-t ′ t µ ∧ wn-t ′ ts [] |
wn-t ′ (NNOSPAWN (LAcq x) t) µ ←→ wn-t ′ t (x#µ) ∧ x /∈set µ |
wn-t ′ (NNOSPAWN (LRel x) t) µ ←→

(∃µ ′. µ=x#µ ′ ∧ wn-t ′ t µ ′ ∧ x /∈set µ ′) |
wn-t ′ - - ←→ False

inductive wn-t :: (′P , ′Γ, ′L, ′X) lex-tree ⇒ ′X list ⇒ bool where

37

distinct µ =⇒ wn-t (NLEAF π) µ |
wn-t t µ =⇒ wn-t (NNOSPAWN (LNone l) t) µ |
[[wn-t t µ; wn-t ts []]] =⇒ wn-t (NSPAWN (LNone l) ts t) µ |
[[wn-t t (x#µ); x /∈set µ]] =⇒ wn-t (NNOSPAWN (LAcq x) t) µ |
[[wn-t t µ; x /∈set µ]] =⇒ wn-t (NNOSPAWN (LRel x) t) (x#µ)

inductive lock-valid-xs where
distinct xs =⇒ lock-valid-xs (LNone l) xs xs |
[[distinct xs; x /∈set xs]] =⇒ lock-valid-xs (LRel x) (x#xs) xs |
[[distinct xs; x /∈set xs]] =⇒ lock-valid-xs (LAcq x) xs (x#xs)

The two formulations of well-nestedness of trees are, indeed, equivalent:

lemma wnt-eq-wnt ′: wn-t t µ = wn-t ′ t µ
〈proof 〉

Well-nestedness of trees also implies distinctness of the lock stacks

lemma wnt-distinct : wn-t t µ =⇒ distinct µ
〈proof 〉

lemma wnt-distinct ′: wn-t ′ t ms =⇒ distinct ms
〈proof 〉

lemma all-t-wnt-distinct : ∀ t c ′. tsem ∆ (q ,w) t c ′ −→ wn-t t µ =⇒ distinct µ
〈proof 〉

10.4 Well-Nestedness of Hedges

The well-nestedness property of a hedge expresses that each tree is well-
nested, and the allocated locks of the trees are consistent.

Consistency of a list of lock stacks. µ=s1. . .sn is consistent, iff all s i are
distinct and ∀ i j . i 6=j −→ set s i ∩ set sj = {}.
fun cons-µ :: ′X list list ⇒ bool where

cons-µ [] ←→ True |
cons-µ (xs#µ) ←→ cons-µ µ ∧ distinct xs ∧ set xs ∩ locks-µ µ = {}

A hedge h=t1. . .tn is well-nested w.r.t. a list µ=s1. . .sn of lock stacks
(wn-h h µ), iff all t i are well-nested w.r.t. stack s i and µ is consistent.

fun wn-h where
wn-h [] [] ←→ True |
wn-h (t#h) (xs#µ) ←→ wn-h h µ ∧ set xs ∩ locks-µ µ = {} ∧ wn-t ′ t xs |
wn-h - - ←→ False

lemma cons-µ-append [simp]:
cons-µ (µ1 @µ2) ←→ cons-µ µ1 ∧ cons-µ µ2 ∧ locks-µ µ1 ∩ locks-µ µ2 = {}
〈proof 〉

10.4.1 Auxilliary Lemmas about wn-h

lemma wn-h-simps[simp]:

38

wn-h h [] ←→ h=[]
wn-h [] µ ←→ µ=[]
〈proof 〉

lemma wn-h-length: wn-h h µ =⇒ length h = length µ
〈proof 〉

lemma wn-h-prepend-h:
[[wn-h (t#h) µ;

!!xs µ ′. [[µ=xs#µ ′; wn-h h µ ′; set xs ∩ locks-µ µ ′ = {}; wn-t ′ t xs]] =⇒ P
]] =⇒ P
〈proof 〉

lemma wn-h-prepend-µ:
[[wn-h h (xs#µ);

!!t h ′. [[h=t#h ′; wn-h h ′ µ; set xs ∩ locks-µ µ = {}; wn-t ′ t xs]] =⇒ P
]] =⇒ P
〈proof 〉

lemma wn-h-append-h-helper :
assumes

A: wn-h h µ h1 @h2 =h and
C : !!µ1 µ2 . [[µ=µ1 @µ2 ∧ wn-h h1 µ1 ∧ wn-h h2 µ2 ∧

locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P
shows P
〈proof 〉

lemma wn-h-append-h:
[[wn-h (h1 @h2) µ;

!!µ1 µ2 . [[µ=µ1 @µ2 ∧ wn-h h1 µ1 ∧ wn-h h2 µ2 ∧
locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P

]] =⇒ P
〈proof 〉

lemma wn-h-append-µ-helper :
assumes
A: wn-h h µ µ1 @µ2 =µ and
C : !!h1 h2 . [[h=h1 @h2 ∧ wn-h h1 µ1 ∧ wn-h h2 µ2 ∧

locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P
shows P
〈proof 〉

lemma wn-h-append-µ:
[[wn-h h (µ1 @µ2);

!!h1 h2 . [[h=h1 @h2 ∧ wn-h h1 µ1 ∧ wn-h h2 µ2 ∧
locks-µ µ1 ∩ locks-µ µ2 = {}

]] =⇒ P
]] =⇒ P
〈proof 〉

39

lemma wn-h-appendI :
[[wn-h h1 µ1 ; wn-h h2 µ2 ; locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒

wn-h (h1 @h2) (µ1 @µ2)
〈proof 〉

lemma wn-h-prependI :
[[wn-t ′ t xs; wn-h h µ; set xs ∩ locks-µ µ = {}]] =⇒ wn-h (t#h) (xs#µ)
〈proof 〉

lemma wn-h-singlehE : [[wn-h [t] µ; !!xs. [[µ=[xs]; wn-t ′ t xs]] =⇒ P]] =⇒ P
〈proof 〉

Auxilliary lemma to split the list of lock-stacks w.r.t. to that a hedge is
well-nested by some tree in that hedge.

lemma wn-h-split-aux :
assumes
WN : wn-h h µ and
HFMT [simp]: h=h1 @t#h2 and
C : !!µ1 xs µ2 . [[

µ=µ1 @xs#µ2 ;
wn-t ′ t xs; wn-h h1 µ1 ; wn-h h2 µ2 ;
locks-µ µ1 ∩ set xs = {}; locks-µ µ1 ∩ locks-µ µ2 = {};
set xs ∩ locks-µ µ2 = {}

]] =⇒ P
shows P
〈proof 〉

10.4.2 Relation to Path Condition

We show that the notion of well-nestedness on paths and trees are equivalent,
i.e. a configuration is well-nested w.r.t. a lock stack µ if and only if all trees
from that configuration are well-nested w.r.t. µ.

A process π is well-nested w.r.t. some stack of locks µ, if all its execution
trees are well-nested w.r.t. µ:

definition wn-π-t ∆ π xs == (∀ t c ′. tsem ∆ π t c ′ −→ wn-t t xs)

definition wn-c-h ∆ c µ == (∀ h c ′. hsem ∆ c h c ′ −→ wn-h h µ)

lemma wn-π-tI [intro?]: [[!!t c ′. tsem ∆ π t c ′ =⇒ wn-t t xs]] =⇒ wn-π-t ∆ π xs
〈proof 〉

lemma wn-c-hI [intro?]: [[!!h c ′. hsem ∆ c h c ′ =⇒ wn-h h µ]] =⇒ wn-c-h ∆ c µ
〈proof 〉

lemma wn-π-t-distinct : wn-π-t ∆ π µ =⇒ distinct µ
〈proof 〉

40

lemma wn-c-h-prepend1 : assumes A: wn-c-h ∆ (π#c) (xs#µ)
shows wn-π-t ∆ π xs wn-c-h ∆ c µ set xs ∩ locks-µ µ = {}
〈proof 〉

lemma wn-c-h-prepend2 :
[[wn-π-t ∆ π xs; wn-c-h ∆ c µ; set xs ∩ locks-µ µ = {}]] =⇒

wn-c-h ∆ (π#c) (xs#µ)
〈proof 〉

lemma wn-c-h-prepend [simp]:
wn-c-h ∆ (π#c) (xs#µ) ←→

wn-π-t ∆ π xs ∧ wn-c-h ∆ c µ ∧ set xs ∩ locks-µ µ = {}
〈proof 〉

lemma wn-c-h-empty [simp]: wn-c-h ∆ c [] ←→ (c=[]) 〈proof 〉

lemma wn-c-h-prepend-c:
[[wn-c-h ∆ (π#c) µ;

!!xs µ ′. [[µ=xs#µ ′; wn-π-t ∆ π xs; wn-c-h ∆ c µ ′;
set xs ∩ locks-µ µ ′ = {}]] =⇒ P

]] =⇒ P
〈proof 〉

lemma wn-c-h-simps[simp]: wn-c-h ∆ [] µ ←→ (µ=[])
〈proof 〉

lemma (in LDPN) wnπ2wnt : [[tsem ∆ (q ,w) t c ′; wn-π ∆ (q ,w) µ]] =⇒ wn-t t µ
〈proof 〉

lemma (in LDPN) wnt2wnp:
[[ppairs ∆ (q ,w) en l ; ∀ t c ′. tsem ∆ (q ,w) t c ′ −→ wn-t t µ]] =⇒

(¬en −→ wn-p l µ) ∧ (en −→ wn-p l [])
〈proof 〉

theorem (in LDPN) wnπ-eq-wnπt : wn-π ∆ π µ ←→ wn-π-t ∆ π µ 〈proof 〉

theorem (in LDPN) wnc-eq-wnch: wn-c ∆ c µ ←→ wn-c-h ∆ c µ
〈proof 〉

10.5 Well-Nestedness and Tree Scheduling

In this section we show that well-nestedness is invariant under the tree
scheduling relation. This is important, as it shows that we cannot reach
non-well-nested trees from well-nested ones.

lemma wnt-preserve-nospawn:
[[lock-valid (set xs) l X ′; wn-t ′ (NNOSPAWN l t) xs]] =⇒
∃ xs ′. X ′=set xs ′ ∧ lock-valid-xs l xs xs ′ ∧ wn-t ′ t xs ′

〈proof 〉

41

lemma wn-h-preserve-nospawn:
[[lock-valid (locks-µ µ) l X ′; wn-h (h1 @(NNOSPAWN l t)#h2) µ]] =⇒
∃µ ′. X ′=locks-µ µ ′ ∧ wn-h (h1 @t#h2) µ ′

〈proof 〉

All-in-one lemma for reasoning about a non-spawning step on a well-
nested hedge. In words: If we make a non-speaining step on a well-nested
hedge:

• We can split the list of lock stacks according to the tree that made the
step,

• The lock stack of the tree that made the step changes according to the
label (cf. lock-valid-xs),

• And the resulting hedge is well-nested w.r.t. the new locks, too.

lemma wn-h-split-nospawn:
assumes
A: lock-valid (locks-µ µ) l Xh wn-h (h1 @(NNOSPAWN l t)#h2) µ and
C : !!µ1 xs µ2 xsh. [[
µ=µ1 @xs#µ2 ;
Xh=locks-µ µ1 ∪ set xsh ∪ locks-µ µ2 ;
lock-valid-xs l xs xsh;
wn-t ′ (NNOSPAWN l t) xs;
wn-t ′ t xsh;
wn-h h1 µ1 ;
wn-h h2 µ2 ;
wn-h (h1 @t#h2) (µ1 @xsh#µ2);
locks-µ µ1 ∩ set xs = {};
locks-µ µ1 ∩ set xsh = {};
locks-µ µ1 ∩ locks-µ µ2 = {};
locks-µ µ2 ∩ set xs = {};
locks-µ µ2 ∩ set xsh = {}

]] =⇒ P
shows P
〈proof 〉

lemma wn-h-preserve-spawn:
[[lock-valid (locks-µ µ) l X ′; wn-h (h1 @(NSPAWN l ts t)#h2) µ]] =⇒
∃µ ′. X ′=locks-µ µ ′ ∧ wn-h (h1 @ts#t#h2) µ ′

〈proof 〉

lemma wn-h-preserve-spawn ′:
[[lock-valid (locks-µ µ) l X ′; wn-h (h1 @(NSPAWN l ts t)#h2) µ]] =⇒
∃µ1 xs µ2 . µ=µ1 @xs#µ2 ∧ X ′=locks-µ µ1 ∪ set xs ∪ locks-µ µ2 ∧

wn-h (h1 @ts#t#h2) (µ1 @[]#xs#µ2)
〈proof 〉

42

lemma wn-h-preserve-rel :
[[(h,l ,h ′)∈sched-rel ; lock-valid (locks-µ µ) l X ′; wn-h h µ;

!!µ ′. [[X ′=locks-µ µ ′; wn-h h ′ µ ′]] =⇒ P
]] =⇒ P
〈proof 〉

lemma wn-h-spawn-simps[simp]:
¬wn-h (h @ (NSPAWN (LAcq x) ts t) # h ′) µ
¬wn-h (h @ (NSPAWN (LRel x) ts t) # h ′) µ
〈proof 〉

lemmas wn-h-spawn-simps-add [simp] =
wn-h-spawn-simps[where h=[], simplified]
wn-h-spawn-simps[where h=[tx], simplified , standard]

lemma wn-h-spawn-imp-LNoneE :
[[wn-h (h @ (NSPAWN l ts t) # h ′) µ; !!ll . l=LNone ll =⇒ P]] =⇒ P
〈proof 〉

end

11 Acquisition Structures

theory Acqh
imports Main Semantics WellNested SpecialLemmas
begin

11.1 Utilities

11.1.1 Combinators for option-datatype

Extending a function to option datatype, where None indicates failure

fun opt-ext1 :: (′a ⇒ ′b option) ⇒ ′a option ⇒ ′b option where
opt-ext1 f None = None |
opt-ext1 f (Some x) = f x

fun opt-ext2 :: (′a ⇒ ′b ⇒ ′c option) ⇒ ′a option ⇒ ′b option ⇒ ′c option
where
opt-ext2 f None - = None |
opt-ext2 f - None = None |
opt-ext2 f (Some x) (Some y) = f x y

lemma opt-ext2-simps[simp]:
opt-ext2 f x None = None 〈proof 〉

43

lemma opt-ext2-alt :
opt-ext2 f x y = (

case x of
None ⇒ None |
Some xx ⇒ (case y of

None ⇒ None |
Some yy ⇒ f xx yy

)
)
〈proof 〉

11.2 Acquisition Structures

Acquisition structures are an abstraction of scheduling trees, that are suf-
ficient to decide whether a tree is schedulable. The basic concept of acqui-
sition structures was invented by Kahlon et al. [4, 3] as abstraction of a
linear execution of a single pushdown system. We extend this concept here
to scheduling trees of DPNs.

An acquisition or release history is a partial map from locks to set of
locks. This is the same representation as in [3]. Another, equivalent repre-
sentation is as a set of locks and a graph on locks.

An acquisition structure is a triple of a release history, a set of locks and
an acquisition history.

types
′X ah = ′X ⇒ ′X set option
′X as = ′X ah × ′X set × ′X ah

This is a collection of the common split-lemmas required when reasoning
about acquisition histories

lemmas eahl-splits = option.split-asm list .split-asm prod .split-asm split-if-asm

11.2.1 Parallel Composition

fun as-comp :: ′X as ⇒ ′X as ⇒ ′X as option where
as-comp (l ,u,e) (l ′,u ′,e ′) = (

if dom l ∩ dom l ′ = {} ∧ dom e ∩ dom e ′ = {} then
Some (l++l ′,u∪u ′,e++e ′)

else
None

)

definition as-comp-op
:: ′X as option ⇒ ′X as option ⇒ ′X as option (infixr ‖ 56) where
op ‖ == opt-ext2 as-comp

lemma as-comp-op-simps[simp]:

44

None ‖ x = None
x ‖ None = None
Some a ‖ Some b = as-comp a b
〈proof 〉

lemma as-comp-assoc-helper :
(Some x ‖ Some y) ‖ Some z = Some x ‖ Some y ‖ Some z
〈proof 〉

lemma as-comp-assoc: (x‖y)‖z = x‖y‖z
〈proof 〉

interpretation as-comp-acz : ACIZ [op ‖ Some (empty ,{},empty) None]
〈proof 〉

lemma as-comp-SomeE :
[[h1 ‖ h2 = Some (l ,u,e);

!!l1 u1 e1 l2 u2 e2 . [[h1 =Some (l1 ,u1 ,e1); h2 =Some (l2 ,u2 ,e2);
dom l1 ∩ dom l2 = {}; dom e1 ∩ dom e2 = {};
l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2

]] =⇒ P
]] =⇒ P
〈proof 〉

11.2.2 Acquisition Structures of Scheduling Trees and Hedges

This function adds a set of locks to every entry in a release history. On graph
interpretation, this corresponds to adding edges from any initially released
lock to any lock in X.

definition l-add-use :: ′X ah ⇒ ′X set ⇒ ′X ah where
l-add-use l X == λx . case l x of None ⇒ None | Some Y ⇒ Some (Y∪X)

This function removes an initially released lock x from the release history.
On graph interpretation, this corresponds to removing the node x from the
graph.

definition l-remove :: ′X ah ⇒ ′X ⇒ ′X ah where
l-remove l x == λy . if y=x then None else l y

The acquisition history of a tree is defined inductively over the tree
structure. Note that we assume that spawn steps have no lock operation. For
spawn steps with an operation on locks, the acquisition structure is defined
to be None. We further assume that a tree contains no two initial releases
of the same lock. In this case, its acquisition structure has no meaning any
more. However, if an execution tree contains two final acquisitions of the
same lock, its acquisition structure is defined to be None.

Intuitively, the release history maps all locks that are initially released
to the set of locks that have to be used before the initial release. The set of

45

used locks contains the locks that are used by the execution tree (But not
the locks that are only initially released or finally acquired). The acquisition
history maps all locks that are finally acquired to the set of locks that have
to be used after the final acquisition.

fun as :: (′P , ′Γ, ′L, ′X) lex-tree ⇒ ′X as option where
as (NLEAF π) = Some (empty ,{},empty) |
as (NNOSPAWN (LNone l) t) = as t |
as (NSPAWN (LNone l) ts t) = as ts ‖ as t |
as (NNOSPAWN (LAcq x) t) = (

case as t of
None ⇒ None |
Some (l ,u,e) ⇒

if x∈dom l then
Some (l-add-use (l-remove l x) {x},insert x u,e)

else if x /∈dom e then
Some (l ,u, e(x 7→u))

else
None

) |
as (NNOSPAWN (LRel x) t) = (

case as t of
None ⇒ None |
Some (l ,u,e) ⇒ Some (l(x 7→{}),u,e)

) |
as - = None

The aquisition structure of a hedge is the parallel composition of the
acquisition structures of its trees. The acquisition structure of the empty
hedge is the identity acquisition structure Some (empty , {}, empty).

fun ash :: (′P , ′Γ, ′L, ′X) lex-hedge ⇒ ′X as option where
ash [] = Some (empty ,{},empty) |
ash (t#h) = as t ‖ ash h

lemma l-add-use-dom[simp]: dom (l-add-use l X) = dom l
〈proof 〉

lemma l-add-use-empty [simp]: l-add-use empty X = empty
〈proof 〉

lemma l-add-use-eq-empty [simp]: l-add-use f X = empty ←→ f =empty
〈proof 〉

lemma l-add-use-add [simp]:
l-add-use (l++l ′) X = l-add-use l X ++ l-add-use l ′ X
〈proof 〉

lemma l-add-use-le: l ≤ l-add-use l X
〈proof 〉

46

lemma l-remove-add [simp]: l-remove (l1 ++l2) m = l-remove l1 m ++ l-remove
l2 m
〈proof 〉

lemma l-remove-no-eff [simp]: x /∈dom l =⇒ l-remove l x = l
〈proof 〉

lemma l-remove-dom[simp]: dom (l-remove l x) = dom l − {x}
〈proof 〉

lemma l-remove-app[simp]:
l-remove l x x = None
x 6=x ′ =⇒ l-remove l x x ′ = l x ′

〈proof 〉

lemma l-remove-eq-empty : l-remove l x = empty =⇒ dom l ⊆ {x}
〈proof 〉

lemma l-remove-le-l [simp]: l-remove l x ≤ l
〈proof 〉

lemma as-ran-e-le-u: as t = Some (l ,u,e) =⇒
⋃

ran e ⊆ u
〈proof 〉

lemma ash-le-u: ash h = Some (l ,u,e) =⇒
⋃

ran e ⊆ u
〈proof 〉

lemma ash-final [simp]: final h =⇒ ash h=Some (empty ,{},empty)
〈proof 〉

lemma ash-append [simp]: ash (h1 @h2) = ash h1 ‖ ash h2
〈proof 〉

lemma ash-LNone-simps[simp]:
ash (h1 @NSPAWN (LNone l) ts t#h2) = ash (h1 @ts#t#h2)
ash (h1 @NNOSPAWN (LNone l) t#h2) = ash (h1 @t#h2)
〈proof 〉

11.3 Consistency of Acquisition Structures

The consistency criterium of an acquisition structure decides whether the
corresponding hedge can be scheduled. Note that we currently do not check
this criterium during construction of the acquisition structure, but only at
the end, for the completely constructed acquisition structure.

The consistency criterium has two parts. The first part is a generalization
of the ¬∃m1,m2. m1∈h1(m2) ∧ m2∈h2(m1)-condition of [4]. There, the
condition was checked for two separate acquisition histories h1 and h2 that

47

resulted from executions of two independent pushdown systems. Here, we
have one execution described as a tree. This criterium can be interpreted
as checking acyclicity of a graph defined by the acquisition histories. In [4],
every possible cycle has length two, hence their condition is sufficient. In
our setting, a cycle may have arbitrary length (bounded only by the number
of locks), hence we use a general cyclicity check.

The acquisition and release histories encode a graph between locks. For
an acquisition history e, the graph contains an edge (x , x ′) if x has to be
finally acquired before x ′ is used, that is if x ∈ dom e ∧ x ′ ∈ the (e x)

For a release history l, the graph contains an edge (x , x ′) if x has to be
used before x ′ is initially released, that is if x ′ ∈ dom l ∧ x ∈ the (l x ′)

definition agraph :: ′X ah ⇒ (′X× ′X) set where
agraph e == { (x ,x ′) . x∈dom e ∧ x ′∈the (e x) }

definition rgraph :: ′X ah ⇒ (′X× ′X) set where
rgraph l == { (x ,x ′) . x ′∈dom l ∧ x∈the (l x ′) }

lemma agraph-alt : agraph e = { (x ,x ′) . ∃X ′. e x = Some X ′ ∧ x ′∈X ′}
〈proof 〉

lemma rgraph-alt : rgraph l = { (x ,x ′) . ∃X . l x ′ = Some X ∧ x∈X }
〈proof 〉

For the same map, the acquisition graph is the converse of the release
graph. This lemma makes reasoning simpler at some points, as acquisition
and release histories have the same type, and cyclicity is equivalent for a
graph and its converse.

lemma agraph-rgraph-converse: agraph h = (rgraph h)−1

〈proof 〉

lemma agraph-add-union:
[[dom e ∩ dom e ′ = {}]] =⇒ agraph (e++e ′) = agraph e ∪ agraph e ′

〈proof 〉

lemma rgraph-add-union:
[[dom l ∩ dom l ′ = {}]] =⇒ rgraph (l++l ′) = rgraph l ∪ rgraph l ′

〈proof 〉

lemma agraph-domain-simp[simp]:
Domain (agraph h) = dom h − { x . h x = Some {} }
〈proof 〉

lemma agraph-range-simp[simp]: Range (agraph h) =
⋃

ran h
〈proof 〉

lemma rgraph-domain-simp[simp]: Domain (rgraph h) =
⋃

ran h
〈proof 〉

lemma rgraph-range-simp[simp]:

48

Range (rgraph h) = dom h − { x . h x = Some {} }
〈proof 〉

lemma graph-empty [simp]:
agraph empty = {}
rgraph empty = {}
〈proof 〉

lemma rgraph-add-use: rgraph (l-add-use l X) = rgraph l ∪ X×dom l
〈proof 〉

lemma rgraph-remove: rgraph (l-remove l x) = rgraph l − UNIV×{x}
〈proof 〉

lemma rgraph-upd : x /∈dom l =⇒ rgraph (l(x 7→X)) = rgraph l ∪ X×{x}
〈proof 〉

lemmas rgraph-ops = rgraph-add-use rgraph-remove rgraph-upd

lemma agraph-upd : x /∈dom e =⇒ agraph (e(x 7→X)) = agraph e ∪ {x}×X
〈proof 〉

lemmas agraph-ops = agraph-upd

lemma rgraph-mono: l≤l ′ =⇒ rgraph l ⊆ rgraph l ′

〈proof 〉

lemma agraph-mono: e≤e ′ =⇒ agraph e ⊆ agraph e ′

〈proof 〉

An acquisition or release history is consistent, iff its graph is acyclic.

abbreviation cons-rh :: ′X ah ⇒ bool where cons-rh h == acyclic (rgraph h)
abbreviation cons-ah :: ′X ah ⇒ bool where cons-ah h == acyclic (agraph h)
abbreviation cons-h == cons-rh

As noted above, the cyclicity criterion is equivalent for a graph and
its converse, such that we can use cons-h for both, acquisition and release
histories.

lemma cons-ah-rh-eq :
cons-ah e = cons-h e
cons-rh r = cons-h r
〈proof 〉

lemma cons-h-empty [simp]: cons-h empty
〈proof 〉

lemma cons-h-add :
[[dom h ∩ dom h ′ = {}; cons-h (h++h ′)]] =⇒ cons-h h
[[dom h ∩ dom h ′ = {}; cons-h (h++h ′)]] =⇒ cons-h h ′

49

〈proof 〉

lemma cons-h-antimono: [[l≤l ′; cons-h l ′]] =⇒ cons-h l
〈proof 〉

lemma cons-h-update:
assumes A: cons-h h X∩insert x (dom h) = {}
shows cons-h (h(x 7→X))
〈proof 〉

lemma cons-h-update2 :
assumes A: cons-h h x /∈dom h x /∈X x /∈

⋃
ran h

shows cons-h (h(x 7→X))
〈proof 〉

lemma cons-h-remove: cons-h l =⇒ cons-h (l-remove l m)
〈proof 〉

lemma cons-h-add-use: [[m /∈dom l ; cons-h l]] =⇒ cons-h (l-add-use l {m})
〈proof 〉

lemma cons-h-add-remove: cons-h l =⇒ cons-h (l-add-use (l-remove l m) {m})
〈proof 〉

lemma cons-h-add-remove-partial :
[[m /∈dom l1 ; cons-h (l1 ++l2)]] =⇒

cons-h (l1 ++ l-add-use (l-remove l2 m) {m})
〈proof 〉

The consistency condition for acquisition structures checks available locks
in addition to consistency of the acquisition and release histories.

fun cons-as :: ′X as ⇒ ′X set ⇒ bool where
cons-as (l ,u,e) ξ ←→

u∩(ξ−dom l) = {} ∧ dom e ∩ (ξ−dom l) = {} ∧ cons-h l ∧ cons-h e

lemma cons-as-antimono: [[cons-as h ξ; ξ ′⊆ξ]] =⇒ cons-as h ξ ′

〈proof 〉

fun cons where
cons None X = False |
cons (Some (l ,u,e)) X = cons-as (l ,u,e) X

11.3.1 Minimal Elements

lemma finite-acyclic-wf : [[finite r ; acyclic r]] =⇒ wf r
〈proof 〉

The minimal elements of acquisition and release histories corresponds
to those final acquisitions or initial releases that can safely be scheduled as

50

next step — for an acquisition history without blocking any further locks
usage and for a release history without requiring usage of already acquired
locks.

abbreviation rh-min l m == m∈dom l ∧ dom l ∩ the (l m) = {}
abbreviation ah-min e m == m∈dom e ∧ m /∈

⋃
ran e

lemma rh-min-alt :
rh-min l m = (case l m of None ⇒ False | Some M ⇒ dom l ∩ M = {})
〈proof 〉

There exists a minimal element in a consistent release history. Note that
this lemma depends on the set of locks being finite, as assumed by the LDPN
locale.

theorem (in LDPN) cons-h-ex-rh-min:
fixes l :: ′X ah
assumes A: l 6=empty cons-h l
shows ∃m. rh-min l m
〈proof 〉

There exists a minimal element in a consistent acquisition history.
Note that this lemma depends on the set of locks being finite, as con-

strained by the LDPN locale.

theorem (in LDPN) cons-h-ex-ah-min:
fixes e :: ′X ah
assumes A: e 6=empty cons-h e
shows ∃m. ah-min e m
〈proof 〉

11.3.2 Well-Nestedness and Acquisition Structures

Only locks that are on the lock-stack can be initially released:

lemma wn-t-dom-l-lower-µ:
[[wn-t ′ t µ; as t = Some (l , u, e)]] =⇒ dom l ⊆ set µ
〈proof 〉

lemmas wn-dom-l-empty = wn-t-dom-l-lower-µ[of - [], simplified]

lemma wn-h-dom-l-lower-µ:
[[wn-h h µ; ash h = Some (l ,u,e)]] =⇒ dom l ⊆ locks-µ µ
〈proof 〉

Due to well-nestedness, if a lock x is left, all locks that are above this
lock on the stack are left, too. This lemma expresses leaving a lock by means
of the domain of the release-history. Moreover, the release histories of the
locks released before are smaller or equal than the release history of x, and
do not contain x.

lemma wn-t-dom-l-stack : [[wn-t ′ t µ; as t = Some (l ,u,e); x∈dom l]] =⇒

51

∃µ1 µ2 . µ=µ1 @x#µ2 ∧ set µ1 ⊆ dom l ∧
(∀ x ′∈set µ1 . l x ′ ≤ l x ∧

(case l x ′ of None ⇒ True | Some lx ′⇒ x /∈lx ′ ∧ x ′/∈lx ′)
)

〈proof 〉

lemma wn-t-dom-l-stack ′: [[wn-t ′ t µ; as t = Some (l ,u,e); x∈dom l]] =⇒
∃µ1 µ2 . µ=µ1 @x#µ2 ∧ set µ1 ⊆ dom l ∧

(∀ x ′∈set µ1 . l x ′ ≤ l x ∧ x /∈the (l x ′) ∧ x ′/∈the (l x ′))
〈proof 〉

11.4 Soundness of the Consistency Condition

context LDPN
begin

The consistency condition for acquisition structures is sound, i.e. if a
hedge h is schedulable with initial locks X, and is well-nested w.r.t. a lock
stack list µ containing the locks from X, then the acquisition structure of h
is consistent w.r.t. X.

theorem acqh-sound :
[[lsched h X w ; wn-h h µ; X =locks-µ µ]] =⇒
∃ l u e. ash h = Some (l ,u,e) ∧ cons-as (l ,u,e) (locks-µ µ)

— The proof works by induction over the schedule, in each induction step
prepending a step to teh schedele.

For steps that have perform operation on locks, the proof is straightforward.
If the first step of the execution is a release of a lock, the acquisition history of the
new hedge (with prepended release step at one tree) remains consistent. Acyclicity
is preserved, as the release-step is the first step of the execution. Consistency w.r.t.
used locks is also preserved.
If the first step of the execution is an acquisition step, we further have to distinguish

whether it is a usage or a final acquisition.
〈proof 〉

end

11.5 Precision of the Consistency Condition

11.5.1 Custom Size Function

In the following we construct a custom size function for hedges that is suited
to do induction over hedges. This size function decreases on any step done
on the hedge.

fun list-size ′ where
list-size ′ f [] = (0 ::nat) |
list-size ′ f (a#l) = f a + list-size ′ f l

fun size-t where
size-t (NLEAF π) = Suc 0 |

52

size-t (NNOSPAWN lab t) = Suc (size-t t) |
size-t (NSPAWN lab ts t) = Suc (size-t ts + size-t t)

lemma list-size ′-conc[simp]: list-size ′ f (a@b) = list-size ′ f a + list-size ′ f b
〈proof 〉

abbreviation hedge-size :: (′P , ′Γ, ′L, ′X) lex-hedge ⇒ nat where
hedge-size h == list-size ′ size-t h

lemma hedge-size-zero[simp]: hedge-size h = 0 ←→ h=[]
〈proof 〉

This function checks whether a lock is released in the current execution
tree, and returns the set of locks that are acquired before this lock is released.
Note that this function ignores the lock-effect of labels of spawn-nodes, as
we assume that spawn-nodes have no lock-operation.

fun closing :: ′X ⇒ (′P , ′Γ, ′L, ′X) lex-tree ⇒ ′X set option where
closing x (NLEAF π) = None |
closing x (NSPAWN lab ts t) = closing x t |
closing x (NNOSPAWN (LNone nlab) t) = closing x t |
closing x (NNOSPAWN (LAcq x ′) t) = (

case closing x t of None ⇒ None |
Some X ⇒ Some (insert x ′ X)

) |
closing x (NNOSPAWN (LRel x ′) t) = (if x=x ′ then Some {} else closing x t)

Function that checks whether a tree starts with the acquisition of a lock
that is used (i.e. not finally acquired) and returns all the locks that are used
from the acquisition to to the release of that lock:

fun closing ′ where
closing ′ (NNOSPAWN (LAcq x) t) = closing x t |
closing ′ - = None

The following functions define the set of locks that are acquired at the
roots of a tree/hedge. This function is used in the case of the precision
proof, where all the roots of the hedge are either leafs or final acquisitions.

fun rootlocks-t where
rootlocks-t (NNOSPAWN (LAcq x) t) = {x} |
rootlocks-t - = {}

fun rootlocks where
rootlocks [] = {} |
rootlocks (t # h) = rootlocks-t t ∪ rootlocks h

lemma rootlocks-conc[simp]: rootlocks (h1 @h2) = rootlocks h1 ∪ rootlocks h2
〈proof 〉

lemma rootlocks-split :
[[x∈rootlocks h; !!h1 t h2 . h=h1 @NNOSPAWN (LAcq x) t#h2 =⇒ P]] =⇒ P

53

〈proof 〉

If a lock x is closed (before it is acquired), the value of the release history
for x is precisely the set of used locks before x is closed. Closing x before it
is acquired is expressed by well-nestedness w.r.t. a lock-stack that contains
x.

lemma closing-dom-l :
[[wn-t ′ t (xs1 @x#xs2); closing x t = Some Xu; as t = Some (l ,u,e)]] =⇒

l x = Some Xu
〈proof 〉

A lock must not be used before it is closed.

lemma wn-closing-ni : [[wn-t ′ t (µ1 @x#µ2); closing x t = Some Xu]] =⇒ x /∈Xu
〈proof 〉

This lemma gives porperties of the acquisition structure after an acqui-
sition step of a lock usage. It is used in the case when there is a tree starting
with a usage, to reason about the acquisition structure after the root node
of this tree has been scheduled.

lemma wn-closing-as-fmt :
assumes A: wn-t ′ (NNOSPAWN (LAcq x) t) µ

as (NNOSPAWN (LAcq x) t) = Some (l ,u,e)
closing x t = Some Xu

assumes C : !!l ′ u ′. [[as t = Some (l ′,u ′,e); l ′ ≤ l(x 7→Xu);
u=insert x u ′; dom l ′ = insert x (dom l)

]] =⇒ P
shows P
〈proof 〉

A lock that occurs in the release history is closed in the execution tree,
using the locks as described in the RH.

lemma dom-l-closing :
[[as t = Some (l ,u,e); wn-t ′ t µ; l x = Some Xu]] =⇒ closing x t = Some Xu
〈proof 〉

If a tree starts with a final acquisition of x, its release history is empty
and the acquisition history of x contains all the used locks.

With Lemma as-ran-e-le-u we then also have that the ranges of the
acquisition histories contain precisely the used locks.

lemma ncl-as-fmt-single:
assumes A: wn-t ′ (NNOSPAWN (LAcq x) t) µ

closing ′ (NNOSPAWN (LAcq x) t) = None
as (NNOSPAWN (LAcq x) t) = Some (l ,u,e)

shows u=
⋃

ran e l=empty e x = Some u
〈proof 〉

This lemma describes properties of the acquisition structure of a tree
after a final acquisition has been scheduled.

54

lemma ncl-as-fmt-single ′:
assumes A: wn-t ′ (NNOSPAWN (LAcq x) t) µ

closing ′ (NNOSPAWN (LAcq x) t) = None
as (NNOSPAWN (LAcq x) t) = Some (l ,u,e)

assumes C : !!e ′. [[as t = Some (empty , u, e ′);
u=

⋃
ran e; l=empty ;

e = e ′(x 7→u); x /∈dom e ′

]] =⇒ P
shows P
〈proof 〉

The acquisition structure of a hedge whose trees start with final acqui-
sitions or are leafs has a special structure:

• The release history is empty.

• The ranges of the acquisition histories contain precisely the used locks.

• The acquisition histories for the locks at the roots of the hedge contain
precisely the used locks.

• The acquisistion histories are defined for the locks at the roots of the
hedge.

The first proposition follows because an initial release cannot come after
a final acquisition due to well-nestedness. The second and third propositions
follow as the roots of the hedge preceed every other node in the hedge. The
forth proposition follows directly from the assumption that every root node
that acquired a lock is a final acquisistion.

lemma ncl-as-fmt :
[[

wn-h h µ; ash h = Some (l ,u,e);
!!Q t . [[t∈set h; !!x t ′. t=NNOSPAWN (LAcq x) t ′ =⇒ Q ;

!!p w . t=NLEAF (p,w) =⇒ Q
]] =⇒ Q ;

∀ t∈set h. closing ′ t = None
]] =⇒ l=empty ∧ u=

⋃
ran e ∧⋃

ran (e |‘ rootlocks h) =
⋃

ran e ∧
rootlocks h ⊆ dom e

〈proof 〉

This lemma makes explicit the case-distinction along which the precision
proof is done. The cases are:

final All trees are leaf nodes.

spawn There is a tree starting with a NSPAWN x - node.

none There is a tree starting with a NNOSPAWN LNone - node.

55

release There is a tree starting with a NNOSPAWN (LRel x)-node.

acquire All trees start with a NNOSPAWN (LAcq x)-node or are leafs. At
least one tree is no leaf.

lemma h-cases[case-names final spawn none release acquire]:
assumes C :
final h =⇒ P
!!h1 lab ts t h2 . h=h1 @NSPAWN lab ts t#h2 =⇒ P
!!h1 t nlab h2 . h=h1 @NNOSPAWN (LNone nlab) t#h2 =⇒ P
!!h1 x t h2 . h=h1 @NNOSPAWN (LRel x) t#h2 =⇒ P
[[!!Q t . [[t∈set h; !!x t ′. t=NNOSPAWN (LAcq x) t ′ =⇒ Q ;

!!p w . t=NLEAF (p,w) =⇒ Q
]] =⇒ Q ;

!!Q . [[!!t ′ x . NNOSPAWN (LAcq x) t ′ ∈ set h =⇒ Q]] =⇒ Q
]] =⇒ P

shows P
〈proof 〉

This lemma determines the tree within a hedge whose release history
contains a specific lock.

lemma ash-find-l-t [consumes 2]:
[[ash h = Some (l ,u,e); x∈dom l ;

!!h1 t h2 l1 u1 e1 l2 u2 e2 . [[
h=h1 @t#h2 ; l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2 ;
as t = Some (l1 ,u1 ,e1); ash h1 ‖ ash h2 = Some (l2 ,u2 ,e2);
x∈dom l1 ; dom l1∩dom l2 = {}; dom e1∩dom e2 = {}

]] =⇒ P
]] =⇒ P

〈proof 〉

This lemma determines the tree within a hedge whose acquisition history
contains a specific lock.

lemma ash-find-e-t [consumes 2]:
[[ash h = Some (l ,u,e); x∈dom e;

!!h1 t h2 l1 u1 e1 l2 u2 e2 . [[
h=h1 @t#h2 ; l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2 ;
as t = Some (l1 ,u1 ,e1); ash h1 ‖ ash h2 = Some (l2 ,u2 ,e2);
x∈dom e1 ; dom l1∩dom l2 = {}; dom e1∩dom e2 = {}

]] =⇒ P
]] =⇒ P

〈proof 〉

Auxilliary lemma to split the acquisistion history of a hedge by some
tree in that hedge.

lemma ash-split-aux :
assumes AS : ash h = Some (l ,u,e) and

HFMT [simp]: h=h1 @t#h2 and
C : !!l1 u1 e1 l2 u2 e2 . [[

56

l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2 ; as t = Some (l1 ,u1 ,e1);
ash h1 ‖ ash h2 = Some (l2 ,u2 ,e2);
dom l1 ∩ dom l2 = {}; dom e1 ∩ dom e2 = {}

]] =⇒ P
shows P
〈proof 〉

Auxilliary lemma that combines ash-split-aux and wn-h-split-aux.

lemma wn-ash-split-aux :
assumes

WN : wn-h h µ and
AS : ash h = Some (l ,u,e) and
HFMT [simp]: h=h1 @t#h2 and
C : !!µ1 xs µ2 l1 u1 e1 l2 u2 e2 . [[

µ=µ1 @xs#µ2 ; l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2 ;
wn-t ′ t xs; wn-h h1 µ1 ; wn-h h2 µ2 ;
as t = Some (l1 ,u1 ,e1); ash h1 ‖ ash h2 = Some (l2 ,u2 ,e2);
locks-µ µ1 ∩ set xs = {}; locks-µ µ1 ∩ locks-µ µ2 = {};
set xs ∩ locks-µ µ2 = {}; dom l1 ∩ dom l2 = {}; dom e1 ∩ dom e2 = {}

]] =⇒ P
shows P
〈proof 〉

context LDPN
begin

Precision of the acqusisition structure construction, i.e. for a well-nested
hedge, a consistent acquisistion history implies a schedule.

theorem acqh-precise:
fixes h::(′P , ′Γ, ′L, ′X) lex-hedge
assumes A: ash h=Some (l ,u,e) cons-as (l ,u,e) (locks-µ µ) wn-h h µ
shows ∃w . lsched h (locks-µ µ) w
— The proof is done by induction on the size of the hedge.

Given a non-empty hedge, it constructs the first step of the schedule and shows
that the acquisistion structure remains consistent.
It considers the following cases:

• If the hedge contains a root that has no effect on locks, this root is scheduled.
Those steps can always be scheduled, as the acquisition structure and the set
of acquired locks do not change.

• If the hedge contains a root that initially releases a lock x, it is scheduled.
A release can always be scheduled, as it cannot block. The new acquisition
structure remains consistent: The acqusisition history is unchanged, the re-
lease history decreases (the lock x is removed). Consistency is preserved, as
the lock x does not occur in the set of acquired locks any more.

• If the hedge contains only roots that are lock acquisitions or leafs, we further
distinguish whether some of the roots are usages, or there are only final
acquisitions.

57

– If some of the roots are usages, we can find a usage where the used locks
are disjoint from the domain of the release history (Due to acyclicity of
the RH). Intuitively, this is a usage where the required locks are already
released. This usage could be scheduled as a whole, without changing
the RH, AH or set of acquired locks, and only decreasing the set of used
locks. However, we chose another way here and show that scheduling
only the first acquisition step of the usage also preserves consistency
of the AS. We chose this approach in order to not having to formalize
the scheduling of a usage. We assume that this simplifies formalization
overhead (Perhaps at the cost of increased proof complexity).

– If all of the roots are leafs or final acquisitions, due to acyclicity of
the AH, we can select a final acquisition that acquires a lock that is
not used in the rest of the hedge. Scheduling this acquisition preserves
consistency of the AS.

〈proof 〉

The following is the main theorem of this section. It states the correct-
ness of the acquisition structure construction. For all non-empty hedges
that are well-nested w.r.t. a list of lock-stacks with locks X, the existence
of a schedule starting with locks X is equivalent to the conistency of the
hedge’s acquisition history w.r.t. X.

lemma acqh-correct ′:
fixes h::(′P , ′Γ, ′L, ′X) lex-hedge
shows [[wn-h h µ]] =⇒
(∃w . lsched h (locks-µ µ) w) ←→

(∃ l u e. ash h = Some (l , u, e) ∧ cons-as (l , u, e) (locks-µ µ)
)
〈proof 〉

theorem acqh-correct :
fixes h::(′P , ′Γ, ′L, ′X) lex-hedge
assumes WN : wn-h h µ
shows (∃w . lsched h (locks-µ µ) w) ←→ cons (ash h) (locks-µ µ)
〈proof 〉

end

end

12 DPNs with Initial Configuration

theory DPN-c0
imports WellNested
begin

58

12.1 DPNs with Initial Configuration

In the following locale, we fix a DPN with an initial configuration, and a list
of lock-stacks. We assume that the initial configuration is well-nested w.r.t.
the list of lock-stacks.

This is the model we are able to analyze with our acquisition history
based techniques, that assume well-nestedness.

Note that we – up to now – do not show that there exists a non-trivial
instance of this locale. Such a proof would support the trust in that the
model we formalize here is really the intended model.

locale LDPN-c0 = LDPN +
constrains ∆ :: (′P , ′Γ, ′L, ′X ::finite) ldpn
fixes c0 :: (′P , ′Γ) conf — Initial configuration
fixes µ0 :: ′X list list — Locks held at the start configuration
assumes wellnested : wn-c ∆ c0 µ0 — Start configuration must be well-nested

begin

12.1.1 Reachable Configurations

definition reachable == { c . ∃w . (c0 ,w ,c)∈dpntrc ∆ }
definition reachablels == { (c,X) . ∃w . ((c0 ,locks-µ µ0),w ,(c,X))∈ldpntrc ∆ }

lemma reachablels-subset : (c,X)∈reachablels =⇒ c∈reachable
〈proof 〉

lemma reachable-wn:
[[(c,X)∈reachablels; !!µ. [[wn-c ∆ c µ; X =locks-µ µ]] =⇒ P]] =⇒ P
〈proof 〉

lemma reachablels-triv [simp]: (c0 , locks-µ µ0)∈reachablels
〈proof 〉

end

end

13 Property Specifications

theory Specification
imports DPN-c0 Semantics LockSem common/SublistOrder
begin

We develop a formalism that allows a concise and readable notation for a
class of properties that are checkable via cascaded predecessor computations.

A specification consists of a list of atoms, where each atom either restricts
the current configuration or describes some step.

59

13.1 Specification Formulas

The base element of a property is an atom, that describes a step or restricts
the current configuration

datatype (′Q , ′Γ, ′L, ′X) spec-atom =
— Restrict current configuration to be in a specified set
SPEC-RESTRICT (′Q , ′Γ) conf set |
— Go forward one step, using a rule with labels from a specified set
SPEC-STEP (′L, ′X) lockstep set |
— Go forward any number of steps, using rules with labels from a specified
set
SPEC-STEPS (′L, ′X) lockstep set

A property is a list of atoms

types (′Q , ′Γ, ′L, ′X) spec = (′Q , ′Γ, ′L, ′X) spec-atom list

13.2 Semantics

The semantics of a property specification Φ w.r.t. the current DPN is mod-
elled by a transition relation spec-tr Φ, that contains all pairs (c,c ′) of
configurations, such that there is a path between c and c ′ satisfying the
property.

context LDPN
begin

fun spec-tr where
spec-tr [] = Id |
spec-tr (SPEC-RESTRICT C # Φ) = {(c,c ′) . (c,c ′)∈spec-tr Φ ∧ fst c∈C} |
spec-tr (SPEC-STEP L # Φ) =
{(c,c ′) . ∃ l∈L. ∃ ch. (c,l ,ch)∈ldpntr ∆ ∧ (ch,c ′)∈spec-tr Φ} |

spec-tr (SPEC-STEPS L # Φ) =
{(c,c ′) . ∃ ll∈lists L. ∃ ch. (c,ll ,ch)∈ldpntrc ∆ ∧ (ch,c ′)∈spec-tr Φ}

end

context LDPN-c0
begin

In most cases, it suffices to check whether there is a path matching the
specification from the initial configuration.

definition model-check-ref Φ == (c0 ,locks-µ µ0)∈Domain (spec-tr Φ)
end

13.3 Examples

In this section, we present two short examples to justify the usefulness of
our property specifications.

60

13.3.1 Conflict analysis

Given two stack symbols u,v∈Γ, conflict analysis asks whether a configura-
tion c is reachable that has a conflict between u and v.

A configuration has a conflict between u and v, iff it contains a process
with top stack symbol u and another (different) process with top stack
symbol v.

context LDPN-c0
begin

atUV u v is the set of configurations that have a conflict between u and
v.

definition atUV-ordered u v == { c. ∃ q r q ′ r ′. [(q ,u#r),(q ′,v#r ′)] ≤ c }
definition atUV u v == (atUV-ordered u v) ∪ (atUV-ordered v u)

The following property specification describes all executions reaching a
conflict:

definition conflict-spec u v ==
[SPEC-STEPS UNIV , SPEC-RESTRICT (atUV u v)]

The following definition is a direct definition of a conflict between u and
v being reachable from an initial configuration [(qmain,[γmain])]:

definition has-conflict-ref u v == ∃ (c,X)∈reachablels. c ∈ atUV u v

The next lemma shows that the direct definition of a conflict matches
the property specification:

lemma has-conflict-ref u v ←→ model-check-ref (conflict-spec u v)
〈proof 〉

end

13.3.2 Bitvector analysis

Given a set of generator labels G :: ′L set, a set of killer labels K :: ′L set and
a stack symbol u:: ′Γ, bitvector analysis asks whether there is a path to a
configuration that has process being at u, such that the path executes a
generator rule, and after that no killer rule is executed.

context LDPN-c0
begin

For a stack symbol, u∈Γ, the set atU u is the set of all configurations
that have a process with u at the top of the stack.

definition atU u == { c . ∃ q r . (q ,u#r)∈set c }

The following property specification describes all paths that lead to u
and have the bit set:

definition bitvector-fwd-spec G K u ==

61

[SPEC-STEPS UNIV ,
SPEC-STEP G ,
SPEC-STEPS (UNIV−K),
SPEC-RESTRICT (atU u)

]

The following is the direct definition of bitvector analysis:

definition bitvector-fwd-ref G K u ==
∃ c1 X1 lg c2 X2 ll c3 X3 q r .

(c1 ,X1)∈reachablels ∧
((c1 ,X1),lg ,(c2 ,X2))∈ldpntr ∆ ∧
lg∈G ∧
((c2 ,X2),ll ,(c3 ,X3))∈ldpntrc ∆ ∧
ll∈lists (UNIV−K) ∧
(q ,u#r)∈set c3

This lemma shows that the direct definition matches the property spec-
ification:

lemma bitvector-fwd-ref G K u ←→
model-check-ref (bitvector-fwd-spec G K u)

〈proof 〉

end
end

14 Hedge Constraints for Acquisition Histories

theory As-hc
imports Acqh WellNested DPN-c0 Specification
begin

This theory formulates the set of execution hedges that have a lock-
sensitive schedule, and shows how to use hedge-constrained predecessor set
computations to compute property specifications based on cascaded prede-
cessor sets.

14.1 Locks Encoded in Control State

For this section, we make the assumption that the set of locks is encoded in
the control state of the DPN. We formalize this by means of a locale.

locale EncodedLDPN = LDPN +
— The states of the DPN are tuples of some states ′P and sets of locks:
constrains ∆ :: (′P× ′X set , ′Γ, ′L, ′X ::finite) ldpn
constrains c0 :: (′P× ′X set , ′Γ) conf
constrains µ0 :: ′X list list
— A step of the DPN transforms the locks as expected:

62

assumes encoding-correct-nospawn:
((p,X),γ ↪→l (p ′,X ′),w)∈∆ =⇒ lock-valid X l X ′

assumes encoding-correct-spawn1 :
((p,X),γ ↪→l (ps,Xs),ws] (p ′,X ′),w) ∈ ∆ =⇒ lock-valid X l X ′

— A freshly spawned process initially owns no locks:
assumes encoding-correct-spawn2 :

((p,X),γ ↪→l (ps,Xs),ws] (p ′,X ′),w) ∈ ∆ =⇒ Xs={}
begin

lemmas encoding-correct-spawn = encoding-correct-spawn1 encoding-correct-spawn2
lemmas encoding-correct = encoding-correct-nospawn encoding-correct-spawn

lemma encoding-correct-nospawn ′:
(p,γ ↪→l p ′,w)∈∆ =⇒ lock-valid (snd p) l (snd p ′)
〈proof 〉

lemma encoding-correct-spawn ′:
assumes A: (p,γ ↪→l ps,ws] p ′,w) ∈ ∆
shows lock-valid (snd p) l (snd p ′) snd ps={}
〈proof 〉

lemma encoding-correct-spawn2 ′:
(p,γ ↪→l ps,ws] p ′,w) ∈ ∆ =⇒ snd ps = {}
〈proof 〉

lemma ec-preserve-singlestep:
assumes

A: ((c,locks-µ µ),l ,(c ′,X ′))∈ldpntr ∆ wn-c ∆ c µ
map (snd◦fst) c = map set µ and

C : !!µ ′. [[wn-c ∆ c ′ µ ′; X ′=locks-µ µ ′;
map (snd◦fst) c ′ = map set µ ′

]] =⇒ P
shows P
〈proof 〉

lemma ec-preserve:
assumes

A: ((c,locks-µ µ),ll ,(c ′,X ′))∈ldpntrc ∆ wn-c ∆ c µ
map (snd◦fst) c = map set µ and

C : !!µ ′. [[X ′=locks-µ µ ′; wn-c ∆ c ′ µ ′; map (snd◦fst) c ′ = map set µ ′]] =⇒ P
shows P
〈proof 〉

The following abbreviates the locks owned by a configuration:

abbreviation locks-c c == list-collect-set (snd◦fst) c

lemma locks-µ-mapset : locks-µ µ =
⋃

set (map set µ)

63

〈proof 〉

lemma locks-c-mapset : locks-c c =
⋃

set (map (snd◦fst) c)
〈proof 〉

end

locale EncodedLDPN-c0 = EncodedLDPN + LDPN-c0 +
— The states of the DPN are tuples of some states ′P and sets of locks:
constrains ∆ :: (′P× ′X set , ′Γ, ′L, ′X ::finite) ldpn
constrains c0 :: (′P× ′X set , ′Γ) conf
constrains µ0 :: ′X list list

— The locks encoded in the initial configuration correspond to the locks in the
initial list of lock-stacks:

assumes encoding-correct-start :
map (snd◦fst) c0 = map set µ0

begin

Reachable configurations are well-nested w.r.t. a lock-stack correspond-
ing to the locks encoded in the control states of the processes

lemma reachable-ec:
[[(c,X)∈reachablels;

!!µ. [[wn-c ∆ c µ; X =locks-µ µ; map (snd◦fst) c = map set µ]] =⇒ P
]] =⇒ P
〈proof 〉

Due to our assumptions, a reachable configuration always encodes the
locks that are also used by the lock-sensitive semantics.

theorem reachable-locks: (c,X)∈reachablels =⇒ locks-c c = X
〈proof 〉

14.2 Characterizing Schedulable Execution Hedges

In order to characterize schedulable execution hedges, we have to first char-
acterize the locks allocated at the roots of an execution hedge. This can be
done by deriving the locks at the roots from the control states annotated at
the leafs.

fun lock-eff :: (′L, ′X) lockstep ⇒ ′X set ⇒ ′X set where
lock-eff (LNone nlab) X = X |
lock-eff (LAcq x) X = insert x X |
lock-eff (LRel x) X = X − {x}

fun lock-eff-inv :: (′L, ′X) lockstep ⇒ ′X set ⇒ ′X set where
lock-eff-inv (LNone nlab) X = X |

64

lock-eff-inv (LAcq x) X = X − {x} |
lock-eff-inv (LRel x) X = insert x X

fun rlocks-t :: (′P× ′X set , ′Γ, ′L, ′X) lex-tree ⇒ ′X set where
rlocks-t (NLEAF π) = (case π of ((p,X),w) ⇒ X) |
rlocks-t (NNOSPAWN l t) = lock-eff-inv l (rlocks-t t) |
rlocks-t (NSPAWN l ts t) = lock-eff-inv l (rlocks-t t)

abbreviation rlocks-h :: (′P× ′X set , ′Γ, ′L, ′X) lex-hedge ⇒ ′X set list where
rlocks-h h == map rlocks-t h

lemma tsem-locks: tsem ∆ π t c ′ =⇒ snd (fst π) = rlocks-t t
〈proof 〉

lemma hsem-locks: hsem ∆ c h c ′ =⇒ map (snd◦fst) c = rlocks-h h
〈proof 〉

Next, we have to characterize the execution hedges with consistent ac-
quisition histories w.r.t. the set of allocated locks.

definition Hls h == cons (ash h) (
⋃

set (rlocks-h h))

theorem reachable-hls-char :
assumes A: (c,X)∈reachablels hsem ∆ c h c ′

shows (∃w . lsched h X w) ←→ Hls h
〈proof 〉

Now we can put it all together and show correctness of lock-sensitive
predecessor computation

lemma lsprestar1 :
assumes
REACH :(c,X)∈reachablels and
PRE : c∈prehc ∆ Hls C ′

shows ∃ c ′∈C ′. ∃ ll X ′. ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆
〈proof 〉

lemma lsprestar2 :
assumes
REACH :(c,X)∈reachablels and
MEM : c ′∈C ′ and
PATH : ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆
shows c∈prehc ∆ Hls C ′

〈proof 〉

theorem lsprestar :
assumes REACH :(c,X)∈reachablels
shows c∈prehc ∆ Hls C ′←→ (∃ c ′∈C ′. ∃ ll X ′. ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆)
〈proof 〉

65

14.3 Checking Specifications Using prehc ∆ Hls

We now show that we can use our construction to check for property speci-
fications (cf. Specification.thy).

We first have to construct a hedge-constraint for execution hedges that
contain a restricted set of labels.

fun isLab :: (′L, ′X) lockstep set ⇒ (′Q , ′Γ, ′L, ′X) lex-tree ⇒ bool where
isLab L (NLEAF π) ←→ True |
isLab L (NNOSPAWN l t) ←→ l∈L ∧ isLab L t |
isLab L (NSPAWN l ts t) ←→ l∈L ∧ isLab L ts ∧ isLab L t

abbreviation HLab L == { h . list-all (isLab L) h}

lemma final-h-is-lab[simp]: final h =⇒ list-all (isLab L) h
〈proof 〉

lemma HLab-correct : sched h ll =⇒ h∈HLab L ←→ ll∈lists L
〈proof 〉

lemmas HLab-correct ′ = HLab-correct [OF lsched-is-sched]

Then we can show how to check property specifications using prehc.
fun mc-pre :: (′P× ′X set , ′Γ, ′L, ′X) spec ⇒ (′P× ′X set , ′Γ) conf set where

mc-pre [] = UNIV |
mc-pre (SPEC-RESTRICT C # Φ) = C ∩ mc-pre Φ |
mc-pre (SPEC-STEP L # Φ) = prehc ∆ (Hls ∩ Hpre ∩ HLab L) (mc-pre Φ) |
mc-pre (SPEC-STEPS L # Φ) = prehc ∆ (Hls ∩ HLab L) (mc-pre Φ)

lemma mc-pre-correct-aux :
(c,X)∈reachablels =⇒ c∈mc-pre Φ ←→ (c,X)∈Domain (spec-tr Φ)
〈proof 〉

theorem mc-pre-correct : c0∈mc-pre Φ ←→ model-check-ref Φ
〈proof 〉

end

end

15 Monitors (aka Block-Structured Locks)

theory Monitors
imports LockSem WellNested As-hc
begin

We model monitors by binding locks to stack symbols, and making some
restrictions on rules:

66

• A rule labeled by LNone must not change the allocated locks, nor
must it push or pop stack symbols associated with locks.

• An acquisition rule must be a rule that pushes a stack-symbol with
the acquired lock, and does not change the locks of the stacl-symbol
at the bottom.

• A release rule must be a rule that pops a stack-symbol with the released
lock.

One purpose of this theory is, that it gives strong evidence that our
model is not too restrictive. This is done by defining an introduction rule
for encoded DPNs with initial configurations that only depends on local
properties of the rules and the initial configuration.

— Lock-stack encoded into stack
definition lstackm-s :: (′Γ ⇀ ′X) ⇒ ′Γ ⇒ ′X list where

lstackm-s mon γ = (case mon γ of None ⇒ [] | Some x ⇒ [x])

lemma lstackm-s-simps[simp]:
mon γ = None =⇒ lstackm-s mon γ = []
mon γ = Some x =⇒ lstackm-s mon γ = [x]
〈proof 〉

fun lstackm :: (′Γ ⇀ ′X) ⇒ ′Γ list ⇒ ′X list where
lstackm mon [] = [] |
lstackm mon (γ#s) = lstackm-s mon γ @ lstackm mon s

lemma lstackm-conc[simp]:
lstackm mon (s@s ′) = lstackm mon s @ lstackm mon s ′

〈proof 〉

lemma lstack-spawn-empty [simp]:
[[(∀ γs∈set w . mon γs=None)]] =⇒ lstackm mon w = []
〈proof 〉

locale MDPN = EncodedLDPN +
constrains

∆ :: (′P× ′X set , ′Γ, ′L, ′X ::finite) ldpn
fixes mon :: ′Γ ⇒ ′X option — Maps stack symbols to associated monitors

assumes
locks-lnone-pop-nospawn:

(p,γ ↪→LNone a p ′,[])∈∆ =⇒ mon γ = None and
locks-lnone-pop-spawn:

(p,γ ↪→l ps,ws] p ′,[])∈∆ =⇒ mon γ = None and
locks-lnone-nospawn:

67

(p,γ ↪→LNone a p ′,w@[γ ′])∈∆ =⇒ mon γ ′ = mon γ ∧
(∀ γs∈set w . mon γs=None) and

locks-lnone-spawn:
(p,γ ↪→l ps,ws] p ′,w@[γ ′])∈∆ =⇒ mon γ ′ = mon γ ∧

(∀ γs∈set w . mon γs=None) and
locks-spawn:

(p,γ ↪→l ps,ws] p ′,w)∈∆ =⇒ (∀ γs∈set ws. mon γs=None) and
locks-acquire:

[[(p,γ ↪→LAcq x p ′,w)∈∆;
!!w ′ γ2 γ1 . [[w=w ′@[γ1 ,γ2]; mon γ2 = mon γ; mon γ1 = Some x ;

(∀ γs∈set w ′. mon γs=None)
]] =⇒ P

]] =⇒ P and
locks-release:

(p,γ ↪→LRel x p ′,w)∈∆ =⇒ w=[] ∧ mon γ = Some x

begin

abbreviation lstack-s == lstackm-s mon
abbreviation lstack == lstackm mon

lemma lstack-lnone-nospawn:
[[(p,γ ↪→LNone a p ′,w)∈∆]] =⇒ lstack (γ#r) = lstack (w@r)
〈proof 〉

lemma lstack-lnone-spawn:
[[(p,γ ↪→a ps,ws] p ′,w)∈∆]] =⇒ lstack (γ#r) = lstack (w@r)
〈proof 〉

lemma well-nested-t :
assumes CONS : distinct (lstack (snd π))
assumes H : tsem ∆ π t c ′

assumes COINC : snd (fst π) = set (lstack (snd π))
shows wn-t ′ t (lstack (snd π))
〈proof 〉

lemma well-nested-h:
assumes CONS : cons-µ (map (lstack ◦ snd) c)
assumes H : hsem ∆ c h c ′

assumes COINC : map (snd◦fst) c = map (set◦lstack◦snd) c
shows wn-h h (map (lstack ◦ snd) c)
〈proof 〉

theorem well-nested :
assumes CONS : cons-µ (map (lstack ◦ snd) c)
assumes COINC : map (snd◦fst) c = map (set◦lstack◦snd) c
shows wn-c ∆ c (map (lstack ◦ snd) c)

68

〈proof 〉

This theorem can be used to show that an MDPN along with a consistent
start configuration is a DPN with well-nested lock usage, as described by
the locale EncodedLDPN-c0.

theorem EncodedLDPN-c0-intro[intro?]:
assumes start-config-cons: cons-µ µ0
assumes start-config-coinc: map (snd◦fst) c0 = map set µ0
assumes start-config-match: map (lstack ◦ snd) c0 = µ0
shows EncodedLDPN-c0 ∆ c0 µ0
〈proof 〉

end

theorem EncodedLDPN-c0-intro-external :
assumes MDPN : MDPN ∆ mon
assumes start-config-cons: cons-µ µ0
assumes start-config-coinc: map (snd◦fst) c0 = map set µ0
assumes start-config-match: map (lstackm mon ◦ snd) c0 = µ0
shows EncodedLDPN-c0 ∆ c0 µ0
〈proof 〉

15.1 Non-Trivial Instance of a Well-Nested DPN

In this section, we define a non-trivial Well-nested DPN by hand. This gives
strong evidence that our model assumptions are not too restrictive.

We start by introducing some finite set of locks that we can use in our
programs:

typedef t-my-locks = {1 ..6 ::nat} 〈proof 〉

instance t-my-locks::finite
〈proof 〉

definition l1 :: t-my-locks where l1 = Abs-t-my-locks (1 ::nat)
definition l2 :: t-my-locks where l2 = Abs-t-my-locks (2 ::nat)

lemma [simp, intro!]: l1 6=l2 l2 6=l1
〈proof 〉

The following rules correspond to a by-hand translation of the (nonsense)
program:

procedure p1:
sync l1 {

sync l2 {
spawn p1
spawn p2

}

69

}

procedure p2:
if ? then

spawn p2
call p2

else
sync l2 {
sync l1 {

spawn p1
}

}

definition my∆ :: (nat × t-my-locks set ,nat ,unit ,t-my-locks) ldpn where
my∆ = {

((0 ,{}),1 ↪→LAcq l1 (0 ,{l1}),[2 ,3]),
((0 ,{l1}),2 ↪→LAcq l2 (0 ,{l1 ,l2}),[4 ,5]),
((0 ,{l1 ,l2}),4 ↪→LNone () (0 ,{}),[1]](0 ,{l1 ,l2}),[6]),
((0 ,{l1 ,l2}),6 ↪→LNone () (0 ,{}),[11]](0 ,{l1 ,l2}),[7]),
((0 ,{l1 ,l2}),7 ↪→LRel l2 (0 ,{l1}),[]),
((0 ,{l1}),5 ↪→LRel l1 (0 ,{}),[]),
((0 ,{}),3 ↪→LNone () (0 ,{}),[]),

((0 ,{}),11 ↪→LNone () (0 ,{}),[11]](0 ,{}),[12]),
((0 ,{}),12 ↪→LNone () (0 ,{}),[11 ,13]),
((0 ,{}),11 ↪→LAcq l2 (0 ,{l2}),[14 ,13]),
((0 ,{l2}),14 ↪→LAcq l1 (0 ,{l1 ,l2}),[16 ,17]),
((0 ,{l1 ,l2}),16 ↪→LNone () (0 ,{}),[1]](0 ,{l1 ,l2}),[18]),
((0 ,{l1 ,l2}),18 ↪→LRel l1 (0 ,{l2}),[]),
((0 ,{l2}),17 ↪→LRel l2 (0 ,{}),[]),
((0 ,{}),13 ↪→LNone () (0 ,{}),[])
}

definition my-mon :: nat ⇒ t-my-locks option where
my-mon s = (

if s=1 then None
else if s=2 then Some l1
else if s=3 then None
else if s=4 then Some l2
else if s=5 then Some l1
else if s=6 then Some l2
else if s=7 then Some l2
else if s=11 then None
else if s=12 then None

70

else if s=13 then None
else if s=14 then Some l2
else if s=15 then None
else if s=16 then Some l1
else if s=17 then Some l2
else if s=18 then Some l1
else None

)

It is straightforward to show that this is an MDPN

interpretation MDPN [my∆ my-mon]
〈proof 〉

And with the stuff proven above, we also get that this program is a well-
nested LDPN w.r.t. the start configuration [((0 :: ′a, {}), [1 :: ′c])], which
corresponds to starting with procedure p1.

interpretation EncodedLDPN-c0 [my∆ [((0 ,{}),[1])] [[]]]
〈proof 〉

end

16 Conclusion

We formalized a tree-based semantics for DPNs, where executions are mod-
eled as hedges, that reflect the ordering of steps of each process and the
causality due to process creation, but enforce no ordering between steps of
processes running in parallel. We have shown how to efficiently compute pre-
decessor sets of regular sets of configurations with tree-regular constraints
on the execution hedges, by encoding a hedge-automaton into the DPN,
thus reducing the problem to unconstrained predecessor set computation.

We have then formalized a generalization of acquisition histories to DPNs,
and have shown its correctness. We have demonstrated how to use the gen-
eralized acquisistion histories to describe the set of execution hedges, that
have a lock-sensitive schedule, as a regular set. Thus we could use the tech-
niques for hedge-constrained predecessor set computation to also compute
lock-sensitive, hedge-constrained predecessor sets. Finally, we have defined
a class of properties that can be computed using cascaded predecessor com-
putations, and have applied our techniques to decide those properties for
DPNs.

16.1 Trusted Code Base

In this section we shortly characterize on what our formal proof depends,
i.e. how to interpret the information contained in this formal proof and the
fact that it is accepted by Isabelle.

71

First of all, you have to trust the theorem prover and its axiomatization
of HOL, the ML-platform, the operating system software and the hardware
it runs on. All this components are able to cause false theorems to be proven.

Next, most of the theorems proven here have some implicit and explicit
assumptions. The most critical assumptions are the assumptions of the lo-
cales, namely DPN, LDPN, LDPN c0, and encodedLDPN. It is not formally
provebn that these assumptions make sense, and the locales really admit
useful models. In Section 15 we give an example for a non-trivial DPN and
formally prove that it satisfies our assumptions. This gives some evidence
that our assumptions are not too restrictive.

The next crucial point – already discussed in the introduction – is, that
we at some points claim that our methods are executable. However, we
do not derive any executable code, and even if we did, the Isabelle code-
generator can only guarantee partial correctness, i.e. correctness under the
assumption of termination. At this point, the belief in the existence of exe-
cutable methods depends on the belief in that the model-checking functions,
i.e. the function mc-pre in As-hc.thy is effective for regular sets, and the re-
sult is a regular set again, such that we can check c0 ∈ mc− preΦ as required
by Theorem mc-pre-correct, using the saturation algorithm of [2].

However, we prove some theorems that support this belief by showing
how the required operations can be decomposed to operations that are well-
known to be effective and to preserve regularity.

References

[1] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability
analysis of multithreaded software with asynchronous communication.
In Proc. of FSTTCS’05, pages 348–359. Springer, 2005.

[2] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis
of dynamic networks of pushdown systems. In Proc. of CONCUR’05.
Springer, 2005.

[3] V. Kahlon and A. Gupta. An automata-theoretic approach for model
checking threads for LTL properties. In Proc. of LICS 2006, pages 101–
110. IEEE Computer Society, 2006.

[4] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads com-
municating via locks. In Proc. of CAV 2005, pages 505–518. Springer,
2005.

72

	Introduction
	Labeled transition systems
	Definitions
	Basic properties of transitive reflexive closure
	Appending of elements to paths
	Transitivity reasoning setup
	Monotonicity
	Special lemmas for reasoning about states that are pairs
	Invariants

	Dynamic Pushdown Networks
	Model Definition

	Semantics
	Interleaving Semantics
	Tree Semantics
	Scheduler

	Predecessor Sets
	Hedge-Constrained Predecessor Sets

	DPN Semantics on Lists
	Definitions
	Theorems
	Representation of Single Processes
	Representation of Configurations
	Step Relation on List-Configurations

	Predecessor Sets on List-Semantics

	Automata for Execution Hedges
	Computation of Hedge-Constrained Predecessor Sets
	Correctness of Reduction
	Effectiveness of Reduction
	Definitions
	Theorems

	What Does This Proof Tell You ?

	DPNs With Locks
	Model
	Interleaving Semantics
	Tree Semantics
	Equivalence of Interleaving and Tree Semantics

	Well-Nestedness of Locks
	Well-Nestedness Condition on Paths
	Well-Nestedness of Configurations
	Auxilliary Lemmas about wn-c

	Well-Nestedness Condition on Trees
	Well-Nestedness of Hedges
	Auxilliary Lemmas about wn-h
	Relation to Path Condition

	Well-Nestedness and Tree Scheduling

	Acquisition Structures
	Utilities
	Combinators for option-datatype

	Acquisition Structures
	Parallel Composition
	Acquisition Structures of Scheduling Trees and Hedges

	Consistency of Acquisition Structures
	Minimal Elements
	Well-Nestedness and Acquisition Structures

	Soundness of the Consistency Condition
	Precision of the Consistency Condition
	Custom Size Function

	DPNs with Initial Configuration
	DPNs with Initial Configuration
	Reachable Configurations

	Property Specifications
	Specification Formulas
	Semantics
	Examples
	Conflict analysis
	Bitvector analysis

	Hedge Constraints for Acquisition Histories
	Locks Encoded in Control State
	Characterizing Schedulable Execution Hedges
	Checking Specifications Using prehc Hls

	Monitors (aka Block-Structured Locks)
	Non-Trivial Instance of a Well-Nested DPN

	Conclusion
	Trusted Code Base

