
Checking Herbrand Equalities and Beyond

Markus Müller-Olm1, Oliver Rüthing1, and Helmut Seidl2

1 Universit ät Dortmund, FB 4, LS V, 44221 Dortmund, Germany
{mmo,ruething}@ls5.cs.uni-dortmund.de

2 TU M ünchen, Informatik, I2, 85748 M ünchen, Germany
seidl@in.tum.de

Abstract. A Herbrand equality between expressions in a program is an equality
which holds relative to the Herbrand interpretation of operators. We show that
the problem of checking validity of positive Boolean combinations of Herbrand
equalities at a given program point is decidable — even in presence of disequal-
ity guards. This result vastly extends the reach of classical methods for global
value numbering which cannot deal with disjunctions and are always based on
an abstraction of conditional branching with non-deterministic choice. In order
to introduce our analysis technique in a simpler scenario we also give an alterna-
tive proof that in the classic setting, where all guards are ignored, conjunctions of
Herbrand equalities can be checked in polynomial time. As an application of our
method, we show how to derive all valid Herbrand constants in programs with
disequality guards. Finally, we present a PSPACE lower bound and show that
in presence of equality guards instead of disequality guards, it is undecidable to
check whether a given Herbrand equality holds or not.

1 Introduction

Analyses for finding definite equalities between variables or variables and expressions
in a program have been used in program optimization for a long time where this infor-
mation can be used for performing and enhancing powerful transformations like (par-
tial) redundancy elimination including loop invariant code motion [19, 21, 12], strength
reduction [22], constant propagation and branch elimination [3, 7].

Since determining whether two variables always have the same value at a pro-
gram point is an undecidable problem even without interpreting conditionals [18], anal-
yses are usually restricted to detect only a subset, i.e., a safe approximation, of all
equivalences. Analyses based on Herbrand interpretation of operators consider two val-
ues equal only if they are constructed by the same operator applications. Cocke and
Schwartz [4] presented the earliest such technique for finding equalities inside basic
blocks. Since their technique operates by assigning hash values to computations, the
detection of (Herbrand-)equivalences is often also referred to as value numbering. In
his seminal paper [11], Kildall presents a technique for global value numbering that
extends Cocke’s and Schwartz’s technique to flow graphs with loops. In contrast to a
number of algorithms focusing more on efficiency than on precision [18, 1, 3, 20, 7, 9],
Kildall’s algorithm detects all Herbrand equalities in a program. However, the repre-
sentation of equalities can be of exponential size in terms of the argument program.

2 Markus M üller-Olm, Oliver R üthing, and Helmut Seidl

This deficiency is still present in the algorithm for partial redundancy elimination of
Steffen et al. [21] which employs a variant of Kildall’s algorithm using a compact rep-
resentation of Herbrand equivalences in terms of structured partition DAGs (SPDAGs).
Recently, Gulwani and Necula proposed a polynomial time variant of this algorithm
exploiting the fact that SPDAGs can be pruned, if only equalities of bounded size are
searched for [8].

The analyses based on Herbrand interpretation mentioned above ignore guards in
programs.3 In this paper, we present an analysis that fully interprets besides the assign-
ments in the program also all the disequality guards with respect to Herbrand interpre-
tation. We also consider a larger class of properties: positive Boolean combinations of
Herbrand equalities. More specifically, we show that the problem of checking the valid-
ity of positive Boolean combinations of Herbrand equalities at a given program point
is decidable — even in presence of non-equality guards. (A Herbrand equality between
expressions in a program is an equality which holds relative to Herbrand interpretation
of operators; a positive Boolean combination of Herbrand equalities is a formula con-
structed from Herbrand equalities by means of disjunction and conjunction.) We also
present a PSPACE lower bound for this problem. Our analysis vastly extends the reach
of the classical value numbering methods which cannot deal with disjunctions and are
always based on an abstraction of conditional branching with non-deterministic choice.
Unlike the classical methods our analysis checks given properties instead of deriving all
valid properties of the considered class. Indeed we do not know how to derive all valid
properties in our scenario. Note, however, that an iterated application of our checking
procedure still allows us to determine all properties of bounded size. We also show how
to derive all valid Herbrand constants in programs with non-equality guards.

In order to show the decidability result, we rely on effective weakest precondition
computations using a certain lattice of assertions. While we have used the idea of ef-
fective weakest precondition computations before [13, 14, 17, 16], the type of assertions
and the kind of results exploited is quite different here. In [13, 14, 17, 16] assertions are
represented by bases of vector spaces or polynomial ideals and results from polynomial
and linear algebra are exploited. Here we use equivalence classes of certain types of
formulas as assertions and substitution-based techniques as used in automatic theorem
proving. In order to introduce our technique in a simpler scenario and as a second ap-
plication we show that in the classic setting where all guards are ignored, conjunctions
of Herbrand equalities can be checked in polynomial time. While this follows also from
the results in [8], our proof technique is different and illustrates the technique by which
we obtain the new results presented in Section 5.

The considerations of this paper belong to a line of research in which we try to
identify classes of (abstractions of) programs and analysis problems for which com-
plete analyses are possible. Here, we abstract from the equality guards — and rely on
Herbrand interpretation. There are two reasons why we must ignore equality guards.
The first reason is that we cannot hope for a complete treatment of equality guards;

3 The branch sensitive methods [3, 7, 2] based on the work of Click and Cooper [3] unify value
numbering with constant propagation and elimination of dead branches. However, the value
numbering component of these methods is based on the work of Alpern, Wegman and Zadeck
[1] which is restricted to the detection of a small fragment of Herbrand equalities only.

Checking Herbrand Equalities and Beyond 3

c.f. Section 6, Theorem 6. The second reason is even more devastating: using Herbrand
interpretation of programs with equality guards for inferring definite equalities w.r.t. an-
other interpretation — which is what we are up to when we use Herbrand interpretation
in program analysis — is unsound. The reason is that an equality might be invalid w.r.t.
Herbrand interpretation but valid w.r.t. the “real” interpretation. Thus, it can happen
that a Herbrand interpretation based execution would not pass an equality guard while
executions based on the real semantics would do so. In this case, the Herbrand inter-
pretation based analysis would consider too few executions, making it unsound. Note
that this problem does not occur for disequality guards, because, whenever an equality
is invalid w.r.t. the “real” interpretation it is also invalid w.r.t. Herbrand interpretation.

In Section 2 we introduce Herbrand programs as an abstract model of programs
for which our analyses are complete. Moreover, we analyze the requirements a lattice
of assertions must satisfy in order to allow weakest precondition computations. In Sec-
tion 4 we introduce our technique by developing an analysis that checks conjunctions
of Herbrand equalities in Herbrand programs without disequality guards in polynomial
time. This analysis is extended in Section 5 to the analysis that checks arbitrary positive
Boolean combinations of Herbrand equalities in Herbrand programs with disequality
guards. For this analysis we can show termination but we do not have an upper bound
for its running time. In Section 6 we show that there are no effective and complete anal-
ysis procedures for Herbrand programs with equality instead of disequality guards. Also
we provide a PSPACE lower bound for the problem of checking Herbrand equalities in
Herbrand programs with disequality guards.

2 Herbrand Programs

Terms and States. Let X = {x1, . . . ,xk} be the set of variables the program operates
on. We assume that the variables take values which are constructed from variables and
constants by means of operator application. Let Ω denote a signature consisting of a set
Ω0 of constant symbols and sets Ωr, r > 0, of operator symbols of rank r. In examples,
we will omit brackets around the arguments of unary operators and often write binary
operators infix. Let TΩ be the set of all formal terms built up from Ω. For simplicity, we
assume that the set Ω0 is non-empty and that there is at least one operator. Given this,
the set TΩ is infinite. Let TΩ(X) denote the set of all terms with constants and operators
from Ω which additionally may contain occurrences of variables from X. In the present
context, we will not interpret constants and operators. Thus, a state assigning values to
the variables is conveniently modeled by a ground substitution σ : X → TΩ .

Herbrand Programs. We assume that the basic statements in a Herbrand program are
either assignments of the form xj := t, where t ∈ TΩ(X), or nondeterministic as-
signments xj :=?. While we assume that branching is non-deterministic in general,
we allow control statements that are disequality guards of the form t1 6= t2. Note
that positive Boolean combinations of disequality guards can be coded by small flow
graphs as shown in Fig. 2 for (t1 6= t′1 ∧ t2 6= t′2) ∨ t3 6= t′3. Let Stmt be the set of
assignments and disequality guards. Now, a Herbrand program is given by a control
flow graph G = (N, E, st) that consists of a set N of program points; a set of edges

4 Markus M üller-Olm, Oliver R üthing, and Helmut Seidl

E ⊆ N × Stmt × N ; and a special entry (or start) point st ∈ N . An example of a
Herbrand program is shown in Fig. 1.

0

1

2

3

4

x1 6= x2

x1 := 2

x3 := x3 − 1

x1 := x2

x3 := x2 %x1

Fig. 1. An example Herbrand program.

t2 6= t
′
2

t1 6= t
′
1

t3 6= t
′
3

Fig. 2. Boolean combinations of guards.

Herbrand programs serve as an abstraction of real programs. Non-deterministic as-
signments xj :=? can be used to abstract, e.g., input statements which return unknown
values. Assignments xj := xj that have no effect on the program state can be used
as skip statements and for abstraction of guards that are not disequality guards. Our
analyses are sound and complete for Herbrand programs. They are sound for abstracted
programs in the sense that equalities found to be valid on the Herbrand program ab-
straction are also valid on the abstracted program.

Collecting Semantics. As common in flow analysis, we use the program’s collecting
semantics as primary semantic reference point. In order to prepare for the definition,
we define the transformation on sets of states, [[s]], induced by a statement s first:

[[xj := t]] S = {σ[xj 7→ σ(t)] | σ ∈ S} ,

[[xj :=?]] S = {σ[xj 7→ t′] | σ ∈ S, t′ ∈ TΩ} , and

[[t1 6= t2]] S = {σ ∈ S | σ(t1) 6= σ(t2)} .

Here σ(t) is the term obtained from t by replacing each occurrence of a variable xi by
σ(xi) and σ[xj 7→ t′] is the ground substitution that maps xj to t′ ∈ TΩ and variables
xi 6= xj to σ(xi). Note that for s ≡ xj :=?, the variable xj may receive any value.

For a given set of initial states S, the collecting semantics assigns to each program
point u ∈ N the set of all those states that occur at u in some execution of the program
from a state in S. It can be characterized as the least solution of the following constraint
system, VS , on sets of states, i.e., sets of ground substitutions:

[V1] VS [st] ⊇ S

[V2] VS [v] ⊇ [[s]](VS [u]) , for each (u, s, v) ∈ E .

By abuse of notation we denote the components of the least solution of the constraint
system VS (which exists by Knaster-Tarski fixpoint theorem) by VS [v], v ∈ N . Often
if we have no knowledge about possible initial states we choose S = (X → TΩ). We
call a program point v ∈ N dynamically reachable if V(X→TΩ)[v] 6= ∅ and dynamically
unreachable if V(X→TΩ)[v] = ∅.

Checking Herbrand Equalities and Beyond 5

Validity of Equations. An equation t1 = t2 is valid for a substitution σ : X → TΩ(X)
iff σ(t1) = σ(t2); t1 = t2 is valid at a program point v from a set S of initial states
iff it is valid for all σ ∈ VS [v]. It is called valid at a program point v if it is valid
at v from (X → TΩ). These definitions are straightforwardly extended to predicate-
logical formulas over equations as atomic formulas. We write σ |= φ if φ is valid for a
substitution σ. We call two formulas φ1, φ2 equivalent (and write φ1 ⇔ φ2) if they are
valid for the same substitutions. We write φ1 ⇒ φ2 if σ |= φ1 implies σ |= φ2.

3 Weakest Preconditions

For every assignment or disequality guard s, we consider the corresponding weakest
precondition transformer [[s]]t which takes a formula φ and returns the weakest pre-
condition of φ which must hold before execution of s such that φ holds after s. This
transformation is given by the well-known rules:

[[xj := t]]tφ = φ[t/xj] , [[xj :=?]]tφ = ∀xj . φ , and [[t1 6= t2]]
t φ = (t1 = t2) ∨ φ .

Here φ[t/xj] denotes the formula obtained from φ by substituting t for xj . The key
property which summarizes the relationship between the transformation [[s]] and the
weakest precondition transformation [[s]]t is given in the following lemma.

Lemma 1. Let S ⊆ X → TΩ be a set of ground substitutions and φ be any formula.
Then: (∀σ ∈ [[s]] S : σ |= φ) iff (∀τ ∈ S : τ |= [[s]]tφ). ut

We identify the following desirable properties of a language L of formulas to be used
for weakest precondition computations. First, it must be (semantically) closed under
[[s]]t, i.e., under substitution, universal quantification, and, if we want to handle dise-
quality guards, disjunction. More precisely, this means that L must contain formulas
equivalent to φ[t/xi], ∀xi.φ, and φ ∨ φ′, respectively, for all φ, φ′ ∈ L. Moreover, we
want the fixpoint computation for characterizing the weakest pre-conditions at every
program point to terminate. Therefore, we secondly demand that L is closed under fi-
nite conjunctions, i.e., that it contains a formula equivalent to true as well as a formula
equivalent to φ ∧ φ′ for all φ, φ′ ∈ L, and that L is compact, i.e., for every sequence
φ0, φ1, . . . of formulas,

∧

i≥0 φi ⇔
∧m

i=0 φi for some m ≥ 0.
In order to construct a lattice of properties from L we consider equivalence classes

of formulas, which, however, will always be represented by one of their members. Let
L denote the set of all equivalence classes of formulas. Then this set is partially ordered
w.r.t. “⇒” (on the representatives) and the pairwise lower bound always exists and is
given by “∧”. By compactness, all descending chains in this lattice are ultimately stable.
Therefore, not only finite but also infinite subsets X ⊆ L have a greatest lower bound.
This implies that L is a complete lattice.

Assume that we want to check whether a formula φ holds at a specific program
point vt. Then we put up the following constraint system, WP, over L:

[E1] WP[vt] ⇒ φ

[E2] WP[u] ⇒ [[s]]t(WP[v]) , for each (u, s, v) ∈ E .

6 Markus M üller-Olm, Oliver R üthing, and Helmut Seidl

Since L is a complete lattice, a greatest solution of the constraint system exists, again by
Knaster-Tarski fixpoint theorem. This solution is denoted by WP[v], v ∈ N , as well.

Intuitively, the constraint system specifies that for each program point v ∈ N ,
WP[v] is a condition strong enough to guarantee that φ holds whenever an execu-
tion starting in v from a state s with s |= WP[v] reaches vt. Accordingly, the greatest
solution (i.e., the one with the weakest conditions) is the one looked for. We have:

Lemma 2. Suppose φ0 is a pre-condition, i.e., a formula describing initial states. Let
S0 = {σ : X → TΩ | σ |= φ0} be the corresponding set of initial states. Then:

(∀σ ∈ VS0
[vt] : σ |= φ) iff φ0 ⇒ WP[st] ,

i.e., formula φ is valid at program point vt from S0 if and only if φ0 ⇒ WP[st].

Proof. Consider a single program execution path π ∈ Stmt∗. Define the collecting
semantics [[π]] S of π relative to S by: [[ε]] S = S and [[π′s]] S = [[s]] ([[π′]] S). Ac-
cordingly, define the weakest precondition [[π]]t of φ along π by: [[ε]]t φ = φ and
[[π′s]]t φ = [[π′]]t ([[s]]t φ).
Claim 1: For every path π, set of states S and formula φ, σ |= φ for all σ ∈ [[π]] S iff
τ |= [[π]]t φ for all τ ∈ S.
For a proof of Claim 1, we proceed by induction on the length of π. Obviously, the
claim is true for π = ε. Otherwise, π = π′s for some shorter path π′ and a statement s.
Define S′ = [[π′]] S and φ′ = [[s]]t φ. By Lemma 1, σ |= φ for all σ ∈ [[s]] S ′ iff σ′ |= φ′

for all σ′ ∈ S′. By inductive hypothesis for π′ and φ′, however, the latter statement
is equivalent to τ |= [[π′]]t φ′ for all τ ∈ S, Since by definition, [[s]] S ′ = [[π]] S and
[[π′]]t φ′ = [[π]] φ, the assertion follows. ut
Claim 2: Let Π denote the set of paths from st to vt. Then

1. VS [vt] =
⋃

{[[π]] S | π ∈ Π};
2. WP[st] =

∧

{[[π]]t φ | π ∈ Π}.

Note that the second statement of Claim 2 is in fact well-defined as L is a complete
lattice. Claim 2 follows from Kam and Ullman’s classic MOP=MFP theorem [10] since
both the transfer functions [[s]] of the constraint system for the collecting semantics as
well as the transfer functions [[s]]t of the constraint system for the weakest precondition
distribute over union and conjunction, respectively. ut

By Claim 2(1), φ is valid at vt from S0 iff σ |= φ for all π ∈ Π , σ ∈ [[π]] S0. By
claim 1, this is the case iff τ |= [[π]]t φ for all π ∈ Π , τ ∈ S0. By Claim 2(2), this is
true iff τ |= WP[st] for all τ ∈ S0. The latter is true iff φ ⇒ WP[st]. ut

4 Conjunctions

In order to introduce our substitution-based technique in a simpler scenario, we first
consider conjunctions of equalities as language of assertions for weakest precondition
computations, i.e., the members of E = {s1 = t1 ∧ . . . ∧ sm = tm | m ≥ 0, si, ti ∈
TΩ(X)}. Clearly, conjunctions of equalities are not closed under “∨”. Hence, this as-
sertion language is not able to handle disjunctions and thus disequality guards precisely.
Therefore, we consider Herbrand programs without disequality guards in this section.

Checking Herbrand Equalities and Beyond 7

The Lattice. As explained in Section 3 we compute with equivalence classes of asser-
tions (up to ⇔). So let E be the set of all equivalence classes of finite conjunctions of
equalities s = t, s, t ∈ TΩ(X). We call a conjunction c ∈ E satisfiable iff σ |= c for
at least one σ. Otherwise, i.e., if c is unsatisfiable, c is equivalent to false (the Boolean
value ‘false’). Thus, we write false to denote the equivalence class of unsatisfiable con-
junctions, which is the bottom value of our lattice E. The greatest value is given by the
empty conjunction which is always true and therefore also denoted by true. In preparing
the discussion how satisfiable conjunctions are represented in the analysis algorithm, we
recall the notion of most-general unifiers known from automatic theorem proving.

Most-General Unifiers. Whenever a conjunction c ∈ E is satisfiable, then there is a
most general satisfying substitution σ, i.e., σ |= c and for every other substitution τ
with τ |= c there is a substitution τ1 with τ = τ1 ◦σ. Such a substitution σ is also called
most general unifier of the equations in c [5]. Recall that most general unifiers σ can
be chosen idempotent, which means that σ = σ ◦ σ or, equivalently, that no variable xi

with σ(xi) 6≡ xi occurs in the image σ(xj) of any variable xj .

Representation of Conjunctions and Compactness. We use compact representations
of trees. In particular, we assume that identical subterms are represented only once.
Therefore, we define the size of a term t as the number of distinct subtrees of t. Thus,
e.g., the size of t = a(bx1, b c) equals 5 whereas the size of t′ = a(b c, b c) equals
3. The size of a term t is also denoted by |t|. According to this definition, the size
of t[s/xi] is always less than |t| + |s|. A conjunction c is reduced iff c equals xi1 =
t1 ∧ . . . ∧ xim

= tm for distinct variables xi1 , . . . ,xim
such that tj 6≡ xij

for all j.
Let the size |c| of a finite conjunction c be the maximum of 1 and the maximal size of a
term occurring in c. We show that every finite conjunction of equalities is equivalent to
a reduced conjunction of at most the same size:

Lemma 3. Every satisfiable conjunction c is equivalent to a reduced conjunction c′

with |c′| ≤ |c|. The conjunction c′ can be constructed in polynomial time.

Proof. It is not hard to show that a reduced conjunction equivalent to c is obtained
by taking a most general unifier σ of c and returning the conjunction of equalities
xi = σ(xi) for the variables xi with xi 6= σ(xi). This reduced conjunction, however,
may not satisfy the condition on sizes. The equation a(x1, b b bx1) = a(b b c,x2), for
example, has size 5. The most general unifier is the substitution σ = {x1 7→ b b c,x2 7→
b b b b b c}. The corresponding reduced equation system therefore would have size 6 —
which does not conform to the assertion of the lemma. The reason is that most general
unifiers typically are idempotent. If we drop this assumption, we may instead consider
the substitution τ = {x1 7→ b b c,x2 7→ b b bx1} — which is neither idempotent nor
a most general unifier, but yields the most general unifier after two iterations, namely,
σ = τ ◦ τ . The reduced system corresponding to τ has size 4 and therefore is small
enough. Our construction of the reduced system thus is based on the construction of a
substitution τ such that k-fold composition of τ results in the most general unifier of c.
(Recall k is the number of variables.) Let σ denote an idempotent most general unifier
of c. We introduce an equivalence relation ≡σ on the set of variables X and subterms of

8 Markus M üller-Olm, Oliver R üthing, and Helmut Seidl

c by s1 ≡σ s2 iff σ(s1) = σ(s2). Then there is a partial ordering “≤” on the variables
X such that whenever xj ≡σ t for some subterm t 6∈ X of c, then xi < xj for all
variables xi occurring in t. Moreover, for every variable xj :

– if σ(xj) ∈ X then t ∈ X for every t with xj ≡σ t.
– if σ(xj) 6∈ X, then xj ≡σ t for some subterm t 6∈ X of c.

Let us w.l.o.g. assume that i < j implies xi < xj . Then we define substitutions
τ1, . . . , τk by τ1 = σ, and for i > 1,

τi(xj) =

{

ti if i = j
τi−1(xj) if i 6= j ,

where ti = σ(xi) if σ(xi) ∈ X. Otherwise, we choose ti = t for any t 6∈ X with
xi ≡σ t. By induction on i, we then verify that τ i

i = σ. We conclude that c′ ≡
∧

{xi = τk(xi) | τk(xi) 6= xi} is a conjunction which is equivalent to c whose non-
variable right-hand sides all are sub-terms of right-hand sides of c. Since a most general
unifier can be constructed in polynomial (even linear) time, the assertion follows. ut

Lemma 3 allows us to use reduced conjunctions to represent all equivalence classes
of assertions except of false when we compute the greatest fixpoint of WP. The next
lemma shows us that we can perform the necessary updates during the fixpoint compu-
tation in this representation in polynomial time as well.

Lemma 4. If c ⇒ c1 where c is satisfiable and c1 is reduced, then c is equivalent to a
reduced conjunction c1 ∧ c′. In particular, c′ can be computed in polynomial time.

Proof. Let σ, σ1 denote idempotent most general unifiers of c and c1, respectively. Since
c ⇒ c1, σ = σ′ ◦ σ1 for some σ′, which can be chosen idempotent as well, where the
domains of σ1 and σ′ are disjoint. Then we simply choose c′ as the reduced conjunction
constructed from σ′ along the same lines as in Lemma 3. ut

As a corollary, we obtain:

Corollary 1. For every sequence c0 ⇐ . . . ⇐ cm of pairwise inequivalent conjunc-
tions cj , m ≤ k + 1. ut

Corollary 1 implies compactness of the language of conjunctions of equalities.

Closure Properties. It remains to consider the closure properties of E. Clearly, it is
closed under conjunctions and substitutions. For closure under universal quantification,
we find the following equivalence for a single equality of the form xi = s:

∀xj . xi = s ⇔

xi = s if i 6= j and xj does not occur in s
true if i = j and s ≡ xj

false otherwise .

Since, by Lemma 3, satisfiable conjunctions can be written as reduced conjunctions and
∀xi . (e1 ∧ . . .∧ em) ⇔ (∀xi . e1)∧ . . .∧ (∀xi . em), conjunctions are closed under
universal quantification. Thus, in absence of disequality guards, the weakest precondi-
tion of a conjunction w.r.t. a statement always is again a conjunction — or false.

Checking Herbrand Equalities and Beyond 9

The Algorithm. In order to check validity of a conjunction c at a program point vt,
we choose L = E, compute the greatest solution of constraint system WP by fixpoint
iteration, and check, if WP[st] is equivalent to true. The latter is equivalent to validity
of c at vt by Lemma 2. Let us estimate the running time of the fixpoint computation.
By Corollary 1, each variable in the constraint system may be updated at most k + 1
times. The application of a transformer [[s]]t as well as conjunction can be executed
in time polynomial in their inputs. In order to obtain a polynomial time algorithm for
computing the values WP[v], it therefore remains to prove that all conjunctions which
are intermediately constructed during fixpoint iteration have polynomial sizes. For this,
we recall the following two facts. First, a standard worklist algorithm for computing
the least fixpoint will perform O(n · k) evaluations of right-hand sides of constraints.
Assuming that w.l.o.g. all right-hand sides in the program have constant size, each eval-
uation of a right-hand side may increase the maximal size of an equation at most by a
constant. Since the greatest lower bound operation does not increase the maximal size,
we conclude that all equalities occurring during fixpoint iteration, are bounded in size
by O(n · k + m) if m is the size of the initial equation c. Summarizing, we obtain:

Theorem 1. Assume p is a Herbrand program without disequality guards, vt is a pro-
gram point and c is a conjunction of equalities. Then it can be decided in polynomial
time whether or not c is valid in p at vt. ut

In practice, we can stop the fixpoint iteration for WP as soon as we find the value false

at some reachable program point or change the value stored for the start point st since
this implies that WP[st] cannot be true. A worklist algorithm that integrates this test
can be seen as a demand-driven backwards search for a reason why c fails at vt.

As an example, consider the program from Section 2. Since we use conjunctions
of equalities only, we must ignore the disequality guard. The weakest pre-conditions
computed for the equality x3 = x2 % 2 at program point 3 then are shown in Figure 3.
Since the weakest pre-condition for the start node 0 is different from true, we cannot

0

1

2

3

4

x1 := 2

x3 := x3 − 1

x1 := x2

x3 := x2 %x1

x1 = 2x2 = 2

(x1 = 2) ∧ (x2 = 2)

(x3 = x2 %2) ∧ (x2 = 2)

Fig. 3. The pre-conditions computed for x3 = x2 % 2 at program point 3.

conclude that the equality x3 = x2 % 2 holds at program point 3.
As a second application of wp-computations with the lattice E we obtain:

10 Markus M üller-Olm, Oliver R üthing, and Helmut Seidl

Theorem 2. Assume p is a Herbrand program without disequality guards and vt is a
program point of p. Then it can be determined in polynomial time whether or not a
variable xi is constant at vt, i.e., has always the same value c ∈ TΩ when program
execution reaches vt.

Proof. We introduce the equality xi = y for some fresh variable y. Then xi is constant
at program point vt iff the weakest precondition WP[st] of this equality at program
entry is implied by y = c for some ground term c ∈ TΩ . In this case WP[st] either
is equivalent to true — implying that vt is dynamically unreachable — or equivalent
to y = c. In the latter case, the value c constitutes the constant value of xi at program
point vt. Since WP[st] for the given equality can be computed in polynomial time, we
conclude that all program constants can be computed in polynomial time as well. ut

Theorems 1 and 2 also follow from results recently presented by Gulwani and Nec-
ula [8]. However, while Gulwani and Necula rely on a classic forward propagation of
valid facts, we use a symbolic weakest precondition computation here with a backwards
propagation of assertions. This backwards propagation technique is crucial for the next
section in which we present the main novel results of this paper. We do not know how
to achieve these results by means of forward propagation algorithms.

5 Disjunctions

In this section, we consider finite disjunctions of finite conjunctions of equalities which
we call DC-formulas. Note that every positive Boolean combination of equalities, i.e.
each formula which is built up from equalities by means of conjunctions and disjunc-
tions can be written as a DC-formula by the usual distributivity laws. Clearly, the lan-
guage of DC-formulas is closed under substitution and disjunction and, again by dis-
tributivity, also under conjunction. First, we convince ourselves that it is indeed also
closed under universal quantification.

Lemma 5. Assume that TΩ is infinite. Then we have:

1. For every conjunction c of equalities, ∀xj . c ⇔ c[t1/xj] ∧ c[t2/xj] for any
ground terms t1, t2 ∈ TΩ with t1 6= t2.

2. For every disjunction φ ≡ c1 ∨ . . . ∨ cm of conjunctions ci of equalities,

∀xj . φ ⇔ (∀xj . c1) ∨ . . . ∨ (∀xj . cm) .

Proof. Obviously, it suffices to verify assertion 1 only for a single equality c ≡ xi = s
for xi ∈ X and s ∈ TΩ(X), where s is syntactically different from xi. If c holds for all
values of xj , then it also holds for particular values t1, t2 for xj . Therefore, it remains to
prove the reverse implication. We distinguish two cases. First assume that the equation
c does not contain an occurrence of xj . Then for k = 1, 2, c[tk/xj] ≡ c, and validity of
c also implies validity of ∀xj . c. Therefore in this case, assertion 1 holds. Now assume
that c contains an occurrence of xj . We claim that then c[t1/xj] ∧ c[t2/xj] is unsatisfi-
able. Under this assumption, ∀xj . c is trivially implied and the assertion follows. There-
fore, it remains to prove the claim. For a contradiction, assume that c[t1/xj]∧ c[t2/xj]

Checking Herbrand Equalities and Beyond 11

is satisfiable and thus has a most general unifier σ : (X\{xj}) → TΩ(X\{xj}). If the
variable xi of the left-hand side of the equation c is given by xj , then t1 = σ(s) = t2 –
in contradiction to our choice of t1, t2. If on the other hand, xj occurs in s, then σ(xi) =
σ(s[t1/xj]) = σ(s[t2/xj]). Note that σ(s[tk/xj]) = σ(s)[tk/xj] for k = 1, 2, since
the tk are ground. By induction on the size of a term s′ containing the variable xj ,
we verify that the mapping t 7→ s′[t/xj] is injective, i.e., different t produce different
results. Here, substituting t1, t2 into σ(s) results in the same term σ(xi). We conclude
that therefore, t1 must equal t2 – in contradiction to our assumption. This completes the
proof of assertion 1.

Assertion 2 follows from assertion 1 by means of infinite version of the pigeon-hole
princible. Consider a disjunction φ ≡ c1∨ . . .∨cm for conjunctions ci, and assume that
∀xj . φ holds for some substitution σ. Thus, σ |= φ[t/xj] for every t ∈ TΩ . Since TΩ is
infinite, we conclude that there exists some i such that σ |= ci[t/xj] for infinitely many
t. In particular, σ |= ci[t1/xj] ∧ ci[t2/xj] for ground terms t1 6= t2. Thus by assertion
1, σ |= ∀xj . ci and therefore also, σ |= (∀xj . c1)∨ . . .∨ (∀xj . cm), which proves one
implication of assertion 2. The reverse implication is trivial. ut

A DC-formula d need no longer have a single most general unifier. The disjunction
ax1 = a b∨a c = ax1, for example, has two maximally general unifiers {x1 7→ b} and
{x1 7→ c}. By Lemma 3, however, each conjunction in a DC-formula d can be brought
into reduced form. Let us call the resulting formula a reduced DC-formula. Our further
considerations are based on the following fundamental theorem.

Theorem 3. Let dj , j ≥ 0, be a sequence of DC-formulas such that dj ⇐ dj+1 for all
j ≥ 0. Then this sequence is ultimately stable, i.e., there is some m ∈ N such that for
all m′ ≥ m, dm ⇔ dm′ .

Proof. If any of the dj is unsatisfiable, i.e., equivalent to false, then all positive Boolean
combinations of greater index also must be unsatisfiable, and the assertion of the the-
orem follows. Therefore let us assume that all dj are satisfiable. W.l.o.g. all dj are
reduced. We successively construct a sequence Γj , j ≥ 0, where Γ0 = d0 and Γj+1 is
a reduced DC-formula equivalent to Γj ∧ dj+1 for j ≥ 0. Since dj ⇐ dj+1 for all j,
Γj is equivalent to dj . For a reduced DC-formula Γ , we maintain a vector v[Γ] ∈ N

k

where the i-th component of v[Γ] counts the number of conjunctions in Γ with exactly
i equalities. On N

k we consider the lexicographical ordering “≤” which is given by:
(n1, . . . , nk) ≤ (n′

1, . . . , n
′
k) iff either nl = n′

l for all l, or there is some 1 ≤ i ≤ k
such that nl = n′

l for all l < i, and ni < n′
i. Recall that this ordering is a well-ordering,

i.e., it does not admit infinite strictly decreasing sequences.
Now assume that Γj equals c1 ∨ . . . ∨ cm for reduced conjunctions ci. Assume that

dj+1 equals c′1∨. . .∨c′n for reduced conjunctions c′l. Then by distributivity, Γj∧dj+1 is
equivalent to

∨m

i=1 ci∧(c′1∨. . .∨c′n). First, assume that for a given i, ci∧c′l is equivalent
to ci for some l. Then also ci ∧ (c′1 ∨ . . . ∨ c′n) is equivalent to ci. Let V denote the
subset of all i with this property. Thus for all i 6∈ V , ci is not equivalent to any of the
conjunctions ci ∧ c′l. Let J [i] denote the set of all l such that ci ∧ c′l is satisfiable. Then
by Lemma 3, we can construct for every l ∈ J [i], a non-empty conjunction cil such
that ci ∧ cil is reduced and equivalent to ci ∧ c′l. Summarizing, we construct the reduced
DC-formula Γj+1 equivalent to Γj ∧ dj+1 as:

12 Markus M üller-Olm, Oliver R üthing, and Helmut Seidl

(
∨

i∈V ci

)

∨
(

∨

i6∈V

∨

l∈J[i] ci ∧ cil

)

.

According to this construction, v[Γj] = v[Γj+1] implies that V = {1, . . . , k} and
therefore that Γj is equivalent to Γj+1. Moreover, if Γj is not equivalent to Γj+1, then
v[Γj] > v[Γj+1]. Accordingly, if the sequence Γj , j ≥ 0, is not ultimately stable, we
obtain an infinite sequence of strictly decreasing vectors — contradiction. ut

In particular, Theorem 3 implies that compactness holds for DC-formulas as well. Note
that if we consider not just positive Boolean combinations but additionally allow nega-
tion, then the compactness property is immediately lost. To see this, consider an infinite
sequence t1, t2, . . . of pairwise distinct ground terms. Then obviously, all conjunctions
∧m

i=1(x1 6= ti), m ≥ 0, are pairwise inequivalent.
In order to perform effective fixpoint computations, we need an effective test for

stability.

Lemma 6. It is decidable for DC formulas d, d′ whether or not d ⇒ d′.

Proof. Assume d ≡ c1∨ . . .∨cr and d′ ≡ c′1∨ . . .∨c′s for conjunctions ci, c
′
j . W.l.o.g.

we assume that all conjunctions ci are satisfiable and thus have a most general unifier
σi. Then d ⇒ d′ iff σ |= d implies σ |= d′ for all substitutions σ. The latter is the case
iff for every i we can find some j such that σi |= c′j . Since it is decidable whether or
not a substitution satisfies a conjunction of equalities, the assertion follows. Note that
this decision procedure for implications requires polynomial time. ut

We now extend the lattice E to a lattice D of equivalence classes of DC-formulas. Again,
the ordering is given by implication “⇒” where the binary greatest lower bound oper-
ation is “∧”. By Theorem 3, all descending chains in D are ultimately stable. Similar
to E, we deduce that D is in fact a complete lattice and therefore amenable to fixpoint
computations. Note however that, in contrast to the complete lattice E, the new lattice
D has infinite strictly ascending chains. An example is the ascending chain defined by
φ0 = false and φi+1 = φi∨x1 = ti, where t0, t1, . . . is a sequence of pairwisely distinct
ground terms. This implies that D does not have finite height and that there exist strictly
descending chains of arbitrary lengths. This more general lattice allows us to treat also
disjunctions and hence also Herbrand programs which, besides assignments, contain
disequality guards t1 6= t2. As weakest precondition computations generate descending
chains at each program point, they must become stable eventually and by Lemma 6,
we can detect when stability has been reached. In contrast, in a forward propagation
of valid facts, we would generate ascending chains such that we could not guarantee
termination. We obtain the main result of this section:

Theorem 4. Assume p is a Herbrand program, possibly with disequality guards. For
every program point vt of p and every positive Boolean combination of equalities d, it
is decidable whether or not d is valid at vt. ut

Consider again the example program from Section 2. Assuming that we want to check
whether x3 = x2 % 2 holds at program point 3, we compute the weakest pre-conditions
for the program points 0, . . . , 3 as shown in Figure 4. Indeed, the pre-condition for the
start node 0 is true implying that the equality to be checked is valid at program point 3.

Generalizing the idea from Section 4 for constant propagation, we obtain:

Checking Herbrand Equalities and Beyond 13

0

1

2

3

4

x3 := x2%x1

x1 6= x2

x1 := 2

x3 := x3 − 1

x1 := x2

x1 = 2true

x3 = x2%2

(x1 = 2) ∨ (x1 = x2)

Fig. 4. The pre-conditions computed for x3 = x2 % 2 at program point 3.

Theorem 5. For a Herbrand program p possibly with disequality guards let WP[st]
denote the weakest precondition of xi = y at the program point vt. Then we have:

1. vt is dynamically unreachable iff WP[st] is equivalent to true.
2. Suppose vt is dynamically reachable and let c ∈ TΩ , Then xi = c holds at vt iff

∀x1.xk .WP[st] is equivalent to y = c.

In particular, it can be decided whether xi is constant at vt.

Proof. We only prove the second assertion. Let φ ≡ (∀x1.xk .WP[st]). We first
show that for any given ground term c ∈ TΩ , the following equivalence holds:

xi = c holds at vt iff φ[c/y] is equivalent to true . (1)

For proving this equivalence, consider for a given ground term c ∈ TΩ a modified
program pc which first performs the assignments y := c;x1 :=?; . . . ;xk :=? and then
behaves like p. As y is not used anywhere in the program p and the variables x1, . . . ,xk

have unknown initial values anyhow, xi = c holds at program point vt in p if and only
if it holds at vt in pc. This is the case iff xi = y holds at vt in pc because y is assigned
c by the first assignment in pc and is never modified. It follows from Lemma 2 that
xi = y holds at vt in pc iff the weakest precondition for validity of xi = y at vt in
pc is equivalent to true. If we compute this weakest precondition, we obtain at the start
node of pc a formula equivalent to φ[c/y] by the definition of weakest preconditions for
statements. Equivalence (1) follows.

If φ is equivalent to true, WP[st] is equivalent to true as well. In this case vt is
dynamically unreachable by assertion 1; assertion 2 follows for trivial reasons. If φ is
equivalent to false, Equivalence (1) yields that there is no c ∈ TΩ such that xi = c
holds at vt; thus in this case both sides of the equivalence claimed in assertion 2 are
dissatisfied.

Finally, if φ is equivalent to neither true nor false, it can be written as a non-
empty disjunction of reduced, pairwisely inequivalent conjunctions by Lemma 5 and
Lemma 3. As only y appears free in φ this disjunction takes the form y = c1∨· · ·∨y =
cl with l ≥ 1 and pairwisely distinct ground terms c1, . . . , cl ∈ TΩ . Then, φ[c/y] is

14 Markus M üller-Olm, Oliver R üthing, and Helmut Seidl

equivalent to true iff c ∈ {c1, . . . , cl}. By (1) this means that xi = c holds at vt iff
c ∈ {c1, . . . , cl}. For l = 1, both sides of the equivalence claimed in assertion 2 are
satisfied. For l > 1, on the other hand, both xi = c1 and xi = c2 hold at vt. As c1 6= c2

this implies that vt is dynamically unreachable and assertion 2 follows for trivial rea-
sons. (Note, that in this case by assertion 1 WP[st] and thus φ is equivalent to true.
Thus, actually the case l > 1 cannot appear.) ut

6 Limitations and Lower Bounds

In [15], we showed for affine programs, i.e., programs where the standard arithmetic
operators except division are treated precisely, that equality guards allow us to encode
Post’s correspondence problem. In fact, multiplication with powers of 2 and addition
of constants was used to simulate the concatenation with a given string. For Herbrand
programs, we simply may encode letters by unary operators. Thus, we obtain:

Theorem 6. It is undecidable whether a given equality holds at some program point in
a Herbrand program with equality guards of the form xi = xj . ut

We conclude that completeness cannot be achieved if we do not ignore equality guards.
As explained in the introduction, Herbrand interpretation based analyses of equality
guards are also questionable for soundness reasons. Turning to our algorithm for check-
ing disjunctions, we recall that termination of the fixpoint algorithm is based on the
well-foundedness of the lexicographical ordering. This argument does not provide any
clue to derive an explicit complexity bound for the algorithm. We can show, however,
that it is unlikely that an algorithm with polynomial worst case running time exits.

Theorem 7. It is at least PSPACE-hard to decide in a Herbrand program with dise-
quality guards whether a given Herbrand equality is true or not.

We prove Theorem 7 by means of a reduction from the language-universality problem
of non-deterministic finite automata (NFA), a well-known PSPACE-complete problem.
The details can be found in Appendix A.

7 Conclusion

We presented an algorithm for checking validity of equalities in Herbrand programs.
In absence of disequality guards, our algorithm runs in polynomial time. We general-
ized this base algorithm to an algorithm that checks positive Boolean combinations of
equalities and deals with programs containing disequality guards. We also showed that
our techniques are sufficient to find all Herbrand constants in such programs.

Many challenging problems remain. First, termination of the generalized algorithm
is based on well-founded orderings. We succeeded in establishing a PSPACE lower
bound to the complexity of our analysis. This lower bound, however, did not exploit
the full strength of Herbrand programs — thus leaving room for, perhaps, larger lower
bounds. On the other hand, a more constructive termination proof could help to derive
explicit upper complexity bounds. Finally, note that any algorithm that checks validity

Checking Herbrand Equalities and Beyond 15

can be used to infer all valid assertions up to a given size. Clearly, a more practical
inference algorithm would be highly desirable. Also, it is still unknown how to decide
whether or not any finite disjunction of Herbrand equalities exists which holds at a given
program point.

Acknowledgments. We thank the anonymous referees for their detailed comments that
helped us to improve readability of the paper.

References

1. B. Alpern, M. Wegman, and F. K. Zadeck. Detecting Equality of Variables in Programs. In 15th ACM Symp. on
Principles of Programming Languages (POPL), 1–11, 1988.

2. P. Briggs, K. D. Cooper, and L. T. Simpson. Value Numbering. Software- Practice and Experience, 27(6):701–724,
1997.

3. C. Click and K. D. Cooper. Combining Analyses, Combining Optimizations. ACM Transactions on Programming
Languages and Systems, 17(2):181–196, 1995.

4. J. Cocke and J. T. Schwartz. Programming Languages and Their Compilers. Courant Institute of Mathematical Sci-
ences, NY, 1970.

5. D. Duffy. Principles of Automated Theorem Proving. Wiley, 1991.
6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman and Company, 1978.
7. K. Gargi. A Sparse Algorithm for Predicated Global Value Numbering. In ACM Conf. on Programming Language

Design and Implementation (PLDI), 45–56, 2002.
8. S. Gulwani and G. C. Necula. A Polynomial-time Algorithm for Global Value Numbering. In 11th Int. Static Analysis

Symposium (SAS),. Springer Verlag, 2004.
9. S. Gulwani and G. C. Necula. Global Value Numbering Using Random Interpretation. In 31st ACM Symp. on Principles

of Programming Languages (POPL), 342–352, 2004.
10. J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Technical Report 169, Department of Electrical

Engineering, Princeton University, Princeton, NJ, 1975.
11. G. A. Kildall. A Unified Approach to Global Program Optimization. In First ACM Symp. on Principles of Programming

Languages (POPL), 194–206, 1973.
12. J. Knoop, O. R üthing, and B. Steffen. Code Motion and Code Placement: Just Synonyms? In 6th ESOP, LNCS 1381,

154–196. Springer-Verlag, 1998.
13. M. M üller-Olm and O. R üthing. The Complexity of Constant Propagation. In 10th European Symposium on Program-

ming (ESOP), 190–205. LNCS 2028, Springer-Verlag, 2001.
14. M. M üller-Olm and H. Seidl. Polynomial Constants are Decidable. In 9th Static Analysis Symposium (SAS), 4–19.

LNCS 2477, Springer-Verlag, 2002.
15. M. M üller-Olm and H. Seidl. A Note on Karr’s Algorithm. In 31st Int. Coll. on Automata, Languages and Programming

(ICALP), 1016–1028. Springer Verlag, LNCS 3142, 2004.
16. M. M üller-Olm and H. Seidl. Computing Polynomial Program Invariants. Information Processing Letters (IPL),

91(5):233–244, 2004.
17. M. M üller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear Algebra. In 31st ACM Symp. on

Principles of Programming Languages (POPL), 330–341, 2004.
18. J. H. Reif and R. Lewis. Symbolic Evaluation and the Gobal Value Graph. In 4th ACM Symp. on Principles of

Programming Languages (POPL), 104–118, 1977.
19. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers and Redundant Computations. In 15th ACM

Symp. on Principles of Programming Languages (POPL), 12–27, 1988.
20. O. R üthing, J. Knoop, and B. Steffen. Detecting Equalities of Variables: Combining Efficiency with Precision. In 6th

Int. Static Analysis Symposium (SAS), LNCS 1694, 232–247. Springer-Verlag, 1999.
21. B. Steffen, J. Knoop, and O. R üthing. The Value Flow Graph: A Program Representation for Optimal Program Trans-

formations. In Third ESOP, LNCS 432, 389–405. Springer-Verlag, 1990.
22. B. Steffen, J. Knoop, and O. R üthing. Efficient Code Motion and an Adaption to Strength Reduction. In 4th Int. Joint

Conf. on the Theory and Practice of Software Development (TAPSOFT), LNCS 494, 394–415. Springer-Verlag, 1991.

A Proof of Theorem 7

As mentioned, we prove Theorem 7 by means of a polynomial-time reduction from
the language-universality problem of non-deterministic finite automata (NFA). This is
known to be a PSPACE-complete problem (cf. the remark to Problem AL1 in [6]). An

16 Markus M üller-Olm, Oliver R üthing, and Helmut Seidl

instance of the problem is given by an NFA A over an alphabet Σ. The problem is to
decide whether A accepts the universal language, i.e., whether L(A) = Σ∗.

Without loss of generality, we may assume that Σ = {0, 1}. So suppose given
an NFA A = (Σ, S, δ, s1, F), where Σ = {0, 1} is the underlying alphabet, S =
{s1, . . . , sk} is the set of states, δ ⊆ S × Σ × S is the transition relation, s1 is the
start state, and F ⊆ S is the set of accepting states. From this NFA, A, we construct a
Herbrand program π which uses k variables x1, . . . ,xk that correspond to the states of
the automaton and another set y1, . . . ,yk of auxiliary variables. These variables hold
the values 0 or 1 only in executions of π. Consider first the programs πi

σ for σ ∈ Σ,
i ∈ {1, . . . , k} pictured in Fig. 5 that are used as building blocks in the construction
of π. As mentioned in Sect. 2, the finite disjunctions and conjunctions of disequality
guards used in πi

σ (and later in π) can be coded by simple disequality guards. It is not
hard to see that the following is valid:

Lemma 7. For each initial state, in which the variables x1 . . . ,xk hold only the values
0 and 1, πi

σ has a unique execution. This execution sets yi to 1 if and only if xj holds 1
for some σ-predecessor sj of si. Otherwise, it sets yi to 0. ut

yi := 1yi := 0

V

{xj 6= 1 | (sj , σ, si) ∈ δ}
W

{xj 6= 0 | (sj , σ, si) ∈ δ}

Fig. 5. The program π
i

σ .

x1 := y1

x1 := 0

V

{xj 6= 1 | sj ∈ F}

xk := 0

x2 := 0

x1 := 1

xk := yk

π1
0

πk
0

π1
1

πk
1

x1 := 1

1

5

7

8

9

43

0

2

6

Fig. 6. The program π.

Consider now the program π shown in Fig. 6. Intuitively, each path from the initial
program point 0, to the program point 2 corresponds to a word w ∈ Σ∗ and vice versa.
Execution of the initializing assignments on the direct path from 0 to 2 corresponds to
the empty word, ε. Each execution of the loop body amounts to a prolongation of the
corresponding word by one letter. If the left branch is taken in the loop body (the one
via program point 3) then the word is extended by the letter 0; if the right branch is

Checking Herbrand Equalities and Beyond 17

taken (the one via program point 4), the word is extended by the letter 1. Let pw be the
path from program node 0 to node 2 that corresponds to the word w. We prove:

Lemma 8. After execution of pw variable xi (for i = 1, . . . , k) holds the value 1 if
state si is reachable in the automaton under the word w. Otherwise, xi holds 0.

Proof. We prove Lemma 8 by induction on the length of w.

Base Case: Under the empty word, just the initial state s1 is reachable in A. As the
initialization sets x1 to 1 and the variables x2, . . . ,xk to 0, the property claimed in
the lemma is valid for the empty word.

Induction Step: Suppose w = w′0 with w′ ∈ Σ∗; the case w = w′1 is similar. Let p
be the cycle-free path from 2 to itself via 3. Then pw = pw′p.
Assume si is reachable under the word w inA. Then, clearly, there is a 0-predecessor
sj of si in A that is reachable under w′. Thus, by the induction hypothesis, xj

holds 1 after execution of pw′ . Consider executing p. The programs π1
0 , . . . , πi−1

0

do not change xj . Thus, by Lemma 7, the program πi
0 sets yi to 1 and this value

is copied to xi in the i-th assignment after program point 5 because the programs
πi+1

0 , . . . , πk
0 do not change yi.

Finally, assume that si is not reachable under the word w in A. Then, clearly, no σ-
predecessor sj of si in A is reachable under w′. Thus, by the induction hypothesis,
for all 0-predecessors sj of si, xj holds 0 after execution of pw′ . The programs
π1

0 , . . . , πi−1
0 do not change these values. Thus, by Lemma 7, the program πi

0 sets
yi to 0 and this value is copied to xi in the i-th assignment after program point 5
because the programs πi+1

0 , . . . , πk
0 do not change yi. ut

It is not hard to see from this property that there is an execution of π that passes the
guard at the edge between the nodes 7 and 8 if and only if L(A) 6= Σ∗. This implies:

Lemma 9. The relation x1 = 0 is valid at node 9 of program π iff L(A) = Σ∗.

Proof. We prove both directions of the equivalence claimed in Lemma 9 separately:

“⇒”: The proof is by contraposition. Assume L(A) 6= Σ∗. Let w ∈ Σ∗ such that
w /∈ L(A). This implies that no state sj ∈ F is reachable in A under w. Therefore,
after executing pw all variables xj with sj ∈ F hold 0 by Lemma 8 such that the
condition

∧

{xj 6= 1 | sj ∈ F} is satisfied. Hence, we can proceed this execution
via the nodes 7, 8, and 9. After this execution, however, x1 holds 1 such that the
relation x1 = 0 is invalidated.

“⇐”: Assume L(A) = Σ∗. Then after any execution from the initial program node 0
to node 2 one of the variables xj with sj ∈ F holds the value 1 because the word
corresponding to this execution is accepted byA. Therefore, the path 2, 7, 8, 9 is not
executable, such that x1 is set of 0 whenever 9 is reached. Therefore, the relation
x1 = 0 is valid at program point 9. ut

Note that our PSPACE-hardness proof does not exploit the full power of Herbrand pro-
grams and Herbrand equalities. We just use constant assignments of the form x := 0
and x := 1, copying assignments of the form x := y, and disequality guards of the
form x 6= 0 and x 6= 1, where 0 and 1 are two different constants. Moreover, we just
need to check whether a relation of the form x = 0 is valid at a given program point.

