Join-Lock-Sensitive Forward Reachability Analysis for
Concurrent Programs with Dynamic Process Creation *

Thomas Martin Gawlitza!, Peter Lammich?, Markus Miiller-Olm?, Helmut Seidl3,
and Alexander Wenner?

1 CNRS/VERIMAG, France, Thomas.Gawlitza@ imag. fr
2 Institut fiir Informatik, Westfilische Wilhelms-Universitit Miinster, Germany
{peter.lammich, markus.mueller-olm, alexander.wenner}Qwwu.de
3 Technische Universitit Miinchen, Germany, seidl@in.tum.de

Abstract. Dynamic Pushdown Networks (DPNs) are a model for parallel pro-
grams with (recursive) procedures and dynamic process creation. Constraints on
the sequences of spawned processes allow to extend the basic model with join-
ing of created processes [2]. Orthogonally DPNs can be extended with nested
locking [8]. Reachability of a regular set R of configurations in presence of sta-
ble constraints as well as reachability without constraints but with nested locking
are based on computing the set of predecessors pre*(R). In the present paper,
we present a forward-propagating algorithm for deciding reachability for DPNs.
We represent sets of executions by sets of execution trees and show that the set
of all execution trees resulting in configurations from R which either allow a
lock-sensitive execution or a join-sensitive execution, is regular. Here, we rely
on basic results about macro tree transducers. As a second contribution, we show
that reachability is decidable also for DPNs with both nested locking and joins.

1 Introduction

Bouajjani et al. [2] introduced (Constrained) Dynamic Pushdown Networks ((C)DPNs)
for modeling parallel programs with (potentially recursive) procedures and dynamic
process creation. They propose an algorithm inspired by the pre*-algorithm for Push-
down Systems that, under the mild assumption that all constraints are stable, computes
the set of all predecessors of a given regular set of configurations. Stable constraints
are, for instance, capable of modeling fork-join parallelism as considered by Esparza
and Podelski [4], Miiller-Olm and Seidl [9], Seidl and Steffen [10].

Only weak forms of synchronization can be expressed in CDPNs. In order to deal
with nested locking, Lammich et al. [8] introduced another mechanism for restricting
executions. For unconstrained DPNs, they introduce action trees* to represent sets of re-
lated executions. Generalizing the acquisition history techniques of Kahlon et al. [5, 6],
they construct a finite tree automaton to check whether an action tree represents a lock-
sensitive execution. This allows them to perform a lock-sensitive backward reachability
analysis for unconstrained DPNs with nested locking.

* This work was partially funded by the DFG project OpIAT (MU 1508/1-1 and SE 551/13-1)
and the ANR project ASOPT.
* Action trees are called execution trees in Lammich et al. [8].

The techniques of Lammich et al. [8] cannot directly be adapted to perform a lock-
sensitive forward reachability analysis, since the set of all possible executions cannot
always be represented by a regular set of action trees. In this paper, we therefore pro-
pose an augmented version of action trees, which we call execution trees throughout
the present paper. Our construction should be seen in analogy to contextfree grammars
where the linear derivation process can be represented in treelike form by represent-
ing subderivations referring to distinct sections of sentential forms in distinct subtrees.
We show that the set of executions can be represented by a regular set of execution
trees. This enables us to use tree automata techniques for forward reachability analysis.
Moreover, by applying known results for macro tree transducers, we show that every
tree regular property of action trees can be translated into a tree regular property of
execution trees. This allows us to re-use the results of Lammich et al. [8] to perform a
forward reachability analysis for DPNs with joins as well as a lock-sensitive forward
reachability analysis for DPNs with nested locking. The algorithms we obtain in this
way are both natural and not less efficient than the corresponding algorithms for back-
ward reachability analysis of Bouajjani et al. [2] and Lammich et al. [8], respectively.
These algorithms for forward reachability are our first contribution.

In programming languages which support multithreaded programming such as
JAVA and C with POSIX threads, joins and locks may occur simultaneously in pro-
grams. Therefore, as our second contribution, we provide an algorithm for performing
a forward reachability analysis that is simultaneously join- and lock-sensitive. Follow-
ing the approach of Lammich et al. [8], we construct a finite tree automaton which
accepts all action trees for which a schedule exists that is simultaneously lock-sensitive
and join-sensitive. This tree automaton can be used with both, the forward analysis tech-
niques of this paper, and the backward analysis techniques of Lammich et al. [8]. Note
that such an automaton cannot be constructed by simply intersecting a tree automaton
for lock-sensitive action trees with a tree automaton for join-sensitive action trees, since
action trees may represent multiple executions. Hence, an action tree may represent a
lock-sensitive execution and a different join-sensitive execution, but no execution that
is simultaneously join- and lock-sensitive.

Before we proceed with the technical constructions, we consider an introductory
example written in a real-world programming language:

Example 1. We consider the following C program that uses POSIX threads:

pthread_mutex_t m = PTHREAD_MUTEX_ INITIALIZER;

void+ f (voidx x) {
pthread_mutex_lock (&m); printf ("A"); printf ("B\n");
pthread_mutex_unlock (&m); }

int main() { pthread_t t[10]; int i;
for (i = 0; i < 10; i++) pthread_create(&t[i],NULL, f,NULL);
for (i = 0; 1 < 10; i++) pthread_join(t[i],NULL);
printf ("End!\n"); return 0; }

Here, a main process creates 10 child-processes, waits until all these processes termi-
nate, prints End/, and terminates. Each child-process prints AB. The lock m guarantees
that the critical section of f is not used by two different processes at the same time.
The main process does not need to acquire the lock m, since it only may access the

printer when no child-process is alive. A lock-sensitive reachability analysis which does
not take joining into account, may flag a spurious warning that exclusive access to the
printer might be violated. Likewise, a join-sensitive reachability analysis which ignores
the locking cannot exclude potential violations. In order to exclude such false alarms, a
reachability analysis is required which is simultaneously join- and lock-sensitive. O

2 Dynamic Pushdown Networks

Let us first introduce some notation: The Boolean lattice {_L, T} is denoted by B. The
natural numbers are denoted by N. We assume 0 € N and set Ny := N\ {0}. The
domain of a partial function f : A ~~ B is denoted by dom(f). & denotes the update
operator for partial functions, i.e., for f,g: A~ Bandx € A, (f ® g)(z) equals g(x)
if x € dom(g) and f(z) otherwise. We write {z1 — y1, ..., T, > Yy} for the partial
function that maps x; to y; for all ¢ € {1,...,n} and is undefined otherwise.

Let Act be a non-empty set of actions. The specific action sp ¢ Act represents the
spawning of a new process. We set Act := Act U {sp}. A Dynamic Pushdown Network
(DPN) M is a tuple (Act, P, I', A) where P is a finite set of control states, I is a finite
set of stack symbols, and A is a finite set of transition rules of the following forms:

(Base) pry <= p'y' (Push) py < p/'y17s
sp
(Pop) py <= p/ (Spawn) py <= p'y' > pss

Here, p,p’,ps € P, a € Act, and v,7’, 71,72 € I'. Intuitively, DPNs extend pushdown
systems by (Spawn)-rules, that create a new process as a side effect.

A configuration of a DPN M = (Act, P, I, A) is an unranked tree where each
node in the tree is labeled with an element from PI™*. Intuitively, each node of the tree
denotes a process and is labeled with the current configuration of the process. The chil-
dren of a process are the processes that were spawned by the parent process. Formally,
we represent nodes in trees by sequences of natural numbers: A set 7' C N7 is called
a tree domain iff (1) T is finite, and (2) prefix-closed, i.e., | € T implies I’ € T for all
prefixes I’ of [, and (3) if [4 € T with ¢ > 1 then also [(¢ — 1) € T. The set of all
tree domains is denoted by 7+, Accordingly, a configuration c is a partial mapping
¢ : N% ~» PI'* where the domain dom(c) is a tree domain. Let C denote the set of all
configurations of M. Within a configuration c, processes are organized hierarchically.
Each element ! € dom(c) denotes a process. The set {li € dom(c) | i € N4} contains
all child-processes of [within the configuration c. For ¢(l) = pw withp € P,w € T'*,
p is the control-state and w the stack of the process [within the configuration c. We call
a configuration cg an initial configuration iff co = {€ — pv} for some p € P and some
v € I, i.e. it contains a single process with a single symbol on its stack.

A single execution step of a DPN on a configuration applies a local rewrite step to
the control-state and stack of one of the processes of the configuration. For all transition
rules 7 € A and all processes | € N* , we define the partial function +.. : C ~ C that
applies 7 to the process [as follows:

l

[d a
py—p'w’

(c):=ca{l— puww} if ¢(l) = pyw
!

i a
PY—=DP'V' B>PsTs

(¢) :==c® {l — p'vw,nc(l,dom(c)) — psys} if e(l) = pyw

Here, nc(l,T) := | -min{i € Ny | [-4 ¢ T} is the sequence of natural numbers
denoting the next child of process [which can be added to the tree domain 7" preserving
the tree domain property.

Constraint Structures. In this paragraph we define constraint structures that allow us to
restrict sequences of execution steps of DPNs. The idea is to disable undesired execution
steps depending on a global state, that is computed in parallel to the actual configura-
tion of the DPN. Constraint structures will later be used to define join-lock sensitive
executions. Formally a constraint structure is a tuple C = (S, T, so) where S is a non-
empty set of global states, sq € S is an initial state, and T : N7 x Act — S~ Sisa
global state transformer. For | € N* , a € Act, and s € S, T(I, a)(s) denotes the global
state resulting from applying action a to process [in global state s, or is undefined.
If T(I,a)(s) is undefined, we consider the constraint to be violated. In this case, the
corresponding action cannot be performed, i.e. the corresponding transition rule is not
applicable. In order to capture this, we define the partial function . : S x C ~ S x C
by

Csl((s,¢)) := (T(1, Act(r))(s), —L(c)) if T(I, Act(r))(s) and —! (c) are defined

Here, Act(r) denotes the action of the transition rule 7. The transition rule r is applied to
the process [as before and the global state is transformed according to the transformer
of the constraint structure. Thus, the function is only defined if the transformation of
the global state is defined. Whenever the next global state is undefined, the constraint
structure C prevents the application of r to .

The set of configurations reachable from an initial configuration ¢y under a con-
straint structure C is defined as post. 5,(co) = {co} U{c| Ik € Ny, lh, ... Iy € N1,
1,7k € A5 €8, (s,¢) = CH[#};(' : 'Clell(So,co) -++)}. One goal of this paper
is to present an algorithm to check whether a set R of configurations is reachable from
an initial configuration ¢, given one of the constraint structures C € {C*,C}, C', C/'}
defined in the following. Formally, this is equivalent to checking whether

poste as(co) N R # 0.

Join/Lock-Constraints. In the present paper we consider joins together with nested
locking. For that, let L = {1,...,n} be a fixed, finite set of locks. We assume a fixed
set of actions Act = {jo,$,e} U {acq(i),rel(¢) | ¢ € L}. The action jo blocks the
current process until all child-processes of the current process are stopped. The action $
stops a process. The action e represents actions unrelated to joining and locking. acq(i)
acquires and rel(7) releases the lock 4.

Unconstrained. For dealing with unconstrained DPNs, we define thi constraint struc-
ture C" := ({T},T%, T) by T*({,a)(T) := T forall I € N%,a € Act. This constraint
structure never disables any execution steps.

Joins. For dealing with joins we define a constraint structure that keeps track of whether
existing processes have stopped or not. Processes can only make steps if they have not

stopped and jo-steps can only be performed if all child processes have stopped. Hence
we define CJ := (S}, T9, s)) by S := N ~ B, sp(e) = L, s3(1) is undefined for all
1€ Ni \ {¢}, and

s if s(l) = L,a = jo,
' Vie Ny li € dom(s) = s(li) =T
T'(l,a)(s) =< s®{l— T} ifs(l)=L,a=%
s @ {nc(l,dom(s)) — L} ifs(l)=L,a=sp
s ifs(l) = L,a ¢ {jo,$,sp}

forall s € S, all | € dom(s), and all @ € Act. Forall s € Sland alll € N7, s(I) = T
iff the process [exists and it is stopped.

Locks. For dealing with locks we define a constraint structure that keeps track of the
set of locks held by each existing process. acq-steps can only be performed if the cor-
responding lock is held by no process and rel-steps require the corresponding lock to
be held by the process. Formally, we define C! := (S',T', s})) by S! := N7 ~ 2F,
sy(€) = 0, s(1) is undefined for all [€ N\ {e}, and

se{l— (s(hu{i})} if a =acq(),i & Upeqom(s) 5(I')
T, a)(s) = 4 ° & {l— (s()\{i})} ifa=rel(7),i € s()
’ s@® {nc(l,dom(s)) — 0} ifa=sp
s ifa ¢ {acq(i),rel(i),sp| i€ L}

forall s € S, all I € dom(s), and all @ € Act. For all s € S' and all | € N, s(1)
is the set of locks that are acquired by the process [/, provided that the process [exists.
Here, we only consider non-reentrant locks, i.e., a process that already owns a lock 7 is
not allowed to acquire ¢ again. However, under certain conditions, DPNs with reentrant
locks can be simulated by DPNs with non-reentrant locks at a cost that is exponential
in the maximal nesting depth of locks (see Kidd et al. [7], Lammich et al. [8]).

Products of Constraint Structures. For all constraint structures C; = (Sy, Ty, sél)) and
Cy = (g, To, 382)), we define the product C; x Cs of C; and Cs by

(Cl X (CQ = (Sl X 82,’]1‘1 X ']I‘2, (881),582)))7

where (T, x T2)(l,a)((s1,52)) = (T1(l,a)(s1), T2(l,a)(s2)) for all I € N7, all
a € Act, and all (s1, s2) € Sy x Sy iff T1(l,a)(s1) and Tz (1, a)(s2) are defined.

Joins and Locks. For dealing with joins and locks simultaneously, we define the con-
straint structure Ci! := CJ x C'. A DPN together with the constraint structure C/! is
called a join-lock-DPN for short.

Example 2. The behavior of the C program of Example 1 can be safely over-approxi-
mated by the join-lock-DPN with the following transition rules:

sp jo acq(1) rel(1) $
P = P > prf pmm = Sypm prf = qpf qpf = rpf rif—=$sf

The main process p,,m may create arbitrary many child-processes ps f and may termi-
nate (go into the state $,,,) as soon as all child-processes are stopped. Each child-process
acquires the lock 1, releases the lock 1 and then stops. Because of the semantics of
locks, two different child-processes may never be in state gy simultaneously. Moreover,
because of the semantics of joins, all child-processes must be in state $¢, before the
main-process can reach state $,,. O

3 Forward Reachability

In this section we present our approach for checking forward reachability using only
operations on regular sets of trees.

Configurations. In order to explicitly describe sets of configurations of a DPN M =
(Act, P, I', A) using regular tree languages, i.e. tree automata, we represent the un-
ranked trees ¢ from the set C by ranked trees. For that, we use lists constructed with cons
and nil. As a shorthand we later write lists cons(ay, ..., cons(ag,nil)...) as [a1;...;
ai]. The set C of ranked trees which we will use is specified by the tree grammar:

LG :=nil | cons(I',LG) LC =:=nil | cons(C,LC) C == P(LG,LC)

Hence a configuration is a ranked tree where the root node is labeled with the control
state of the initial process. The root node has two branches. One is the list of stack sym-
bols of the initial process. The other is the list of processes spawned by the initial pro-
cess, where the last process spawned is the first in the list. For each spawned process the
list contains a configuration with the process as initial process. The function f : C — C
captures the relation between the unranked and ranked model of configurations. It is
defined by f(c) := f(c,€) for all ¢ € C, where, for all ¢ € C and all I € dom(c),
fle,) == p(lar;...5am], [-+ 5] if e(l) = par ...am,p € Pyay,...,am € T,
{ieNy|l-iedom(e)} ={1,....k},and ¢} = f(c,11),....,¢}, = f(c, k). Recall
that [1 is the first and [k the last process spawned by process [within configuration
c. Since f is a bijection, all functions and concepts defined in Section 2 can be trans-
ferred to the new representation and in the following we redefine the set C to be the
set C' of ranked trees. Hence a configuration ¢ € C is now a ranked tree and an initial
configuration is represented by a term of the form p([], nil) withp € Pandy € I

Known Results. For all pushdown systems M, pre*(R) and post*(R) are regular, when-
ever R C C is a regular set of configurations. Bouajjani et al. [1] provide a construction
which, starting from a finite automaton for R, successively adds transitions until an
automaton for pre*(R) is obtained. Bouajjani et al. [2] applied a generalization of this
construction to implement pre*-operators for DPNs with stable constraints. The post™-
operator for DPNs, however, does not preserve regularity as shown in Bouajjani et al.
[2] for a word model of configurations. This also holds for the tree model of this paper:

Example 3 (A Non-Regular post*-Image). We consider the DPN M = (Act, P, I, A)
that is defined by P = {p,q,p’,¢',r,7’,$}, I = {a}, and

sp $ o sp
A={pa=qgar>ra, ra—$, qa < paa, pa > p', pa da>r'a, ¢a > p'}.

Here, post¢. 5, (p([a], nil)) is not regular, since the process can spawn at most & pro-
cesses of type r’a after spawning k processes of type ra. a

Execution Trees. We avoid the problem of non-regularity by introducing execution
trees. Execution trees can be regarded as configuration trees with a history of rule appli-
cations that lead from an initial configuration to the reached configuration. Inner nodes
of execution trees are annotated with rules of the DPN and leaf nodes contain informa-
tion about the current control state and, if existent, the current top-most stack symbol.

Starting from the root node, the leftmost branch of an execution tree contains the
rules applied to the initial process in the order of application. Whenever a new process
was spawned, the corresponding sp-rule has a separate branch containing the rules ap-
plied to the new process. Additionally, if a stack symbol is pushed that is later popped,
the push-node has two branches: The left one describes the execution up to popping the
stack symbol and the right one describes the rest of the execution.

To this end, we consider the set A of all transition rules of the DPN M as a ranked
alphabet where Push-rules have rank 1 or 2, Spawn-rules have rank 2, Base-rules have
rank 1, and Pop-rules have ranks 0. Additionally, for p € P and v € I', we introduce
symbols (p,) of rank 0. The set X of execution trees is then described by the following
regular tree grammar:

XT ::= (Base)(XT) | (Push)(XT,XT) | (Pop) | (Spawn)(XT,X)
XN ::= (Base)(XN) | (Push)(XN) | (Push)(XT,XN) | (Spawn)(XN,X) | (P x I")
X x=XT| XN

Here, Base is the set of Base-rules, Push is the set of Push-rules, Pop is the set of
Pop-rules, and Spawn is the set of Spawn-rules. The elements of the set X are the
execution trees, where X'T (terminated execution trees) contains the execution trees that
end with popping the stack-symbol of the current stacklevel, and XN (not yet terminated
execution trees) contains the execution trees that do not pop the stack-symbol of the
current stacklevel.

An execution tree ¢ reaches a configuration c(t). We can extract this configuration
by c(t) := c(¢, nil, nil) with:

(<), w,¢) := p(cons(v, w),e)
(<m < p'Y)(E),w,2) = c(t, w,)
(<m < p'm72) (1), w, @) = c(t, cons(q2, w),)
c({py %pywzﬂtl, 2),w,) := c(t2, w, ch(t1,¢))
. c((py <= p')w,e) ==p (w,7)
c({py <> py B pas) (t ts),w, ©) = c(t, w, cons(c(ts), 7))
ch({p,7),¢) :=¢
ch((py <> p'v')(t),) == ch(t,c)
ch((py < p'y172) (1), €) = ch(t,?)
ch((py < p’vm)(tht),€) := ch(tz,ch(t1,2))
ch((py <= p),2) :=¢

ch({py < py > pevs) (t, £5), ©) := ch(t, cons(c(t,),)

Here ch is an auxiliary function that extracts the list of configurations of all spawned
processes in an execution tree. The function is used to collect the configurations of
processes which were spawned in left branches of push-nodes. Note that initial config-
urations p([7], nil) are represented by execution trees consisting of a single node (p, 7).

The mappings c and ch for extracting the configuration can be interpreted as total
deterministic macro tree transducers (see, e.g., Engelfriet and Vogler [3] for definitions
and fundamental results), which use each of their input and output parameters exactly
once. The pre-image of a regular set of trees w.r.t. the translation of any macro tree
transducer is again regular [3]. By carefully inspecting the macro tree transducers real-
izing the mappings c and ch, we obtain:

Lemma 1. For every regular set C of configurations, c=1(C) is a regular set of execu-
tion trees. If C'is given by a nondeterministic finite tree automaton with n states and m
transitions, a finite tree automaton for c=1(C) can be constructed in time O(m? + | A| -
n*+|Al-m-n?+|P|-|[]-n).

Due to lack of space, the proof of this and some other lemmas is deferred to the
appendix.
We now define a semantics =L on execution trees that is compatible with the se-
mantics C|—>lr on configurations. For that, for all » € A, we define the partial function

r + X ~» X that applies r to the root process of an execution tree as follows:

< Y ()

B () =
s, (P)) 5= (07 < P (0,)
B o (p) =y =)
WHP o DZm(() = (07 = 0y B) ((017), (s 7))
=0y = 'Y (1) = (py = 'Y) (B (1)
=l S P (1) = {@”ﬁp””f) e Xy

(v <% pryye) (t, (s(c(t'),~2)) ift’ € XT
where t' = (1)

= ((0y = Pne)(t,1) = (py = p'nre) (b = ()
sp sp
Er((p7 = 'Y B peys) (t, 1)) i= (py = 'y B psvs) (B0 (1), Es)

Here, s(p(w,¢)) := p for all p(w,¢) € C extracts the control-state of the root process
of an execution tree. It is used to extract the control state at the end of a left branch of a
push-node. This control-state is the initial control-state for the continued execution on
the right branch.

We define =L (¢) to be the application of =,. to the subtree of the execution tree
which has the process identified by [€ N as root process. One can find the spe-
cific subtree by counting the number of sp-rules along the leftmost branch starting
from the root node. If the correct sp-rule was found, we descend into the right branch

and continue. If we arrive at the end of a left branch of a push-node, we continue at
the right branch of that node. Analogously to Section 2 we define Cl::{ and the set
tpOStE[k:7M(<p77>) = {<p77>} U {t | Hk € N—Hlla oo 7lk S Nj—arla ey Tk € A,S S
S. (s,t) = “=l (-Gl (s0, (p, 7)) - -+)} of successors of an execution tree repre-
senting an initial configuration for execution trees. An execution tree is called consis-
tent iff there exists some p € P and some v € I" such that ¢ € tpost. »,((p, 7)), i-e.
tpostgu 5/ ({p,7)) is the set of consistent execution trees starting in py. We then have:

Lemma 2. c(®=L(t)) = C—l(c(t)) holds for all execution trees t € X, all transition

T
rules r € A, all positions | € N* and constraint structures C.

Thus, to check reachability we can check c(tpostg 5, ((p,7))) N R # 0 or equivalently

tposte o, ((p,7) N ' (R) # 0.

We have already mentionend, that c~*(R) is regular if R is regular. In order to obtain
an algorithm which allows to check reachability solely based on operations on regular
sets of trees, it remains to show that tpostg. ,,((p, 7)) is regular as well. We first show
this for unconstrained DPN:, i.e. for C = C".

Regular characterization of tpost{ ,,((p,7)). Letp € P and v € I'. Our goal is to
compute the set tpostt. ,/((p, 7)) ‘of all execution trees that can be reached starting
from the execution tree (p,~) without any restrictions due to the constraint structure.
For that we construct a finite tree automaton which recognizes tpostzu ,,({p,7))-

For all control states p, p’ € P and all stack symbols v € X, we inductively define
the set 7777’ (resp. N'P7) of terminated (resp. not yet terminated) execution trees with
initial control state p and top-most stack symbol and terminating with control state p’
(resp. not terminating) as follows:

Open Leaf: For allpae P,andally € I™: (p,,w € NP7
Pop: Forall r = py — p €A (r)y e TPYP
Base: Forallr = py — p'y' € A, and all p” € P:
Ift € 7¢"7"P" then (r)(t) € TP?",
Ift € NP7, then (r)(t) € NP7,
Push: Forall r = py — p'v172 € A, and all p”’, p"" € P:
Iftt; € 77 1P and ty € TP 722" then (ry(ty,t9) € TrP”
Iftl S Tp//h,p” and tz c NP”NZ’ then <T‘>(t1, tQ) S ./\/—177’7.
Ift, € N7, then (r)(tr) € NP7,
Spawn: Forall r = py < p'y' > psys € A, and all p”, p, € P:
It e 7P 7P andt, € TP1sPe UNPs then (r)(t,t;) € TPIP" .
Ift € NP7 and t, € TP=7=Ps U NP5 then (r)(t,t,) € NP7,

Thus, we get:

Theorem 1. 1. tpostt. ,,((0,7)) = Upep TPAp AP,
2. The sets TPP', NP7, and finally tpostgu 5/ ({p, 7)) can be recognized by a finite
tree automaton that can be constructed in time O(|P|* - (|| + | A])).

Proof (Sketch). Statement 1 can be shown by straight-forward induction. We focus on
Statement 2: The states of the finite tree automaton correspond to the sets TPP and
NP7 Hence, we have |P|” - |I'| states. Moreover, there are O(|P| - |I'| + |P|* - |A])
transition rules. This gives us the desired complexity estimation. a

Hence, we can effectively check reachability for unconstrained DPNs using only op-
erations on regular tree languages, i.e. finite tree automata. To close the gap to DPNs
with a constraint structure, we observe, that the order in which rules are applied to pro-
cesses running in parallel in an unconstrained DPN is irrelevant for the finally reached
execution tree. However, this is not the case for DPNs with a constraint structure,
since the order of rule applications determines how the global state of the constraint
structure is transformed. Consequently, there may be orders which are not feasible,
since a necessary transformation is undefined. To capture this, we define a schedule
(l1,a1), ..., (I, ar) of an execution tree ¢ as a sequence of process-labels and actions,
such that there exists p € P,y € I and rules rq,...,r, € A, with ra(ri) = a;,
such that t = =% (- =1 ((p,7)) -+). Bach consistent execution tree has at least
one schedule. A schedule is call executable under a constraint structure iff additionally
T(lk,ar)(---T(l1,a1)(s0) - -) is defined. Then, tpostg. 1, ((p, 7)) is exactly the set of
consistent execution trees starting in py that have an executable schedule under C. As a
consequence we can write tpostg 5, ((p,7)) = tpostgu 5, ((p, 7)) N He, where H is a
set of execution trees that contains all consistent execution trees that have an executable
schedule and no consistent execution tree that has no executable schedule. Then our
reachability problem boils down to checking

tpostiu 27 ((p,7)) N He N cH(R) #9.

In the remainder of this paper, we construct regular sets H¢ for all constraint struc-
tures C € {CJ, C!, C'}. Thus, checking reachability reduces to checking emptiness of
intersections of regular sets of trees.

4 Action Trees

At the end of the last section we have observed that, in order to check reachability under
a constraint structure, we need to specify a regular set of execution trees that contains all
consistent execution trees with an executable schedule and no consistent execution tree
without an executable schedule. We have also observed that executability of a schedule
depends only on the actions of the rules and identities of the processes taking part in
the execution. Consequently, we do not need the full power of the execution tree model
to capture executability. Indeed, it is simpler to characterize executability if the left
branches of push-nodes are inlined as in the trees used by Lammich et al. [8]. Therefore,
in this section, we introduce action trees as an abstraction of execution trees that does
this inlining and omits information about control states and stack contents.

Formally, the set of action trees 7/ is defined by the tree grammar 7/t ::=
€ | (Act)(TA) | (sp)(ZA, TAt). The root node and each right child of an sp-node
within an action tree represents a process that performs the actions of the left-most path
starting from this node and ending in a leaf.

10

Schedules. Foralll € N, a € Act, we define the partial function ! : TA o TAt,
that constructs action trees by

HZ(@ = (a)(e) ifl = €,a € Act
—Ly(€) = (sp) (e, €) ifl=ec
—4L (') () == (a) (=} (1) if a' € Act
—a((sp)(t,1s)) = (sp) (2 (1), ts) ifl =e
Hé(<5p>(f,t5)) = <Sp>(t, Hfz ts/)) ifl=1-1
—hL((sp)(t, 1)) = (sp) (=T (8), 1) ifl=i-0i>1

—! (t) appends the action a to the process [of the action tree. Identification of processes
is similar as in the case of execution trees.

A schedule of an action tree ¢ is a finite sequence (I1,a1), ..., (I, ar), where I; €
N* and a; € Act forall i € {1,...,k}, with t = —k% (- =l (¢)---). Action trees
always have at least one schedule in contrast to execution trees, where only consistent
execution trees have a schedule. Recall that a schedule is called executable under a

constraint structure C iff T(lg, a)(- - - T(l1,a1)(so) - - -) is defined.

Execution Trees and Action Trees. Each execution tree ¢ can be abstracted to an action
tree a(t) by cutting away unnecessary information. We define a(¢t) := a(t, ¢), where:

. a((p,), @) =z
a(<pz = p'y)(t),2) := (a)(a(t,z))
a((py = p'yye)(t), x) := (a)(a(t, x))
a((py = p'yre)(ti, te), @) := (a)(a(t1, a(ts, x)))
. a((py = p'),x) := (a)(x)
a((py < py > peava) (t ts), 7) = (sp)(alt,), a(ts))

The mapping a for extracting action trees can again be interpreted as a total determin-
istic macro tree transducer. We get:

Lemma 3. For every regular set T of action trees, a—*(T) is a regular set of execution
trees. If T' is given by a nondeterministic finite tree automaton with n states and m
transitions, a finite tree automaton for a—1(T) can be constructed in time O(|P| - |I'| -
n+|Al-m-n?).

Moreover, scheduling of action trees is compatible with that of execution trees:

Lemma 4. A consistent execution tree t has an executable schedule under a constraint
structure C iff a(t) has an executable schedule.

Consequently, for the set T of all action trees that have an executable schedule under
the constraint structure C, each consistent execution tree ¢t € a~ ! (T¢) has an executable
schedule. Vice versa, each consistent execution tree t ¢ a~ (1) has no executable
schedule. Thus, we define Hc := a~(T¢). Since a~! preservers regularity, Hc is
regular if T is regular.

11

Fig. 1. Action Tree with join- and lock-sensitive but no join-lock-sensitive schedule.

Lammich et al. [8] showed how to construct a tree automaton check! that accepts the
set T of all action trees that can be scheduled lock-sensitively, i.e. have an executable
schedule under C!. A tree automaton check’ that accepts the set T; of all action trees
that can be scheduled join-sensitively, i.e. have an executable schedule under CJ, can be
— rather straightforwardly — constructed in polynomial time as well. The tree automaton
check! checks that all child-processes that are spawned before a jo-action are stopped
using the action $ and the action $ is only performed at the end of branches.

The language 71, however, need not to be the intersection of the languages T; and
T1. The reason is that the set of join-sensitive schedules and the set of lock-sensitive
schedules of ¢ might be disjoint. An example for an action tree with a join-sensitive and
a lock-sensitive, but no join-lock-sensitive schedule can be seen in Figure 4.

5 Join-Lock-Sensitive Schedules of Action Trees

In this section we construct a deterministic bottom-up tree automaton check!! which
recognizes the set of all action trees that can be scheduled join-lock-sensitively. We
restrict ourselves to action trees where each single process in isolation uses locks in
a well-nested fashion, releases all locks before stopping, and does not try to perform
actions after the stop action. We call such action trees join-lock-well-formed, a notion
defined more formally in the next paragraph.

Well-Formedness. A sequence of actions aj - - - ay, is called well-nested iff its lock op-
erations are a prefix of a sequence from the context-free language U =€ | U - U |
acq(1)-U-rel(1) | --- | acq(n)-U-rel(n). It is called non-reentrant iff each acquired lock
is released before it is acquired again, i.e., for each a; = acq(j), a;y = acq(j), i < @,
there is an ¢ with ¢ < i’/ < i’ and a;» = rel(j), and, symmetrically, each released lock
is re-acquired before it is released again, i.e., for each a; = rel(j), a; = rel(j), i <’
there is an ¢’/ with ¢ < ¢ < i’ and a;» = acq(j). A sequence of actions is called well-
formed iff it is both well-nested and non-reentrant. It is called join-lock-well-formed iff

12

(1) it is well-formed, (2) there is no action after the action $, and (3) if the sequence
ends with the action $, then its sequence of lock operations is from U, i.e., all acquired
locks are released before terminating with the action $.

An action tree is called join-lock-well-formed iff the actions of each process form
a join-lock-well-formed sequence. A join-lock-DPN M is called join-lock-well-formed
iff all action trees that correspond to consistent execution trees of M are join-lock-well-
formed. Note that the set of join-lock-well-formed action trees is regular. Thus, we can
use the techniques presented above to check whether a DPN is join-lock-well-formed.

Acquisition-Structures. For defining the tree automaton check’!, we use a modified
version of acquisition structures as introduced by Lammich et al. [8].

An acquisition of a lock ¢ without a matching release is called a final acquisition
of 7. A matching release means, that the same process releases the lock, i.e., that there
is a release of ¢ on the leftmost path starting at the acquisition node. Symmetrically, a
release of ¢ without a matching acquisition is called an initial release. Acquisitions and
releases that are not final acquisitions or initial releases are called usages.

Let ¢ be a join-lock-well-formed action tree. We first check the following proper-
ties, that are obviously necessary for the existence of a join-lock-sensitive schedule: (1)
Every lock is finally acquired at most once. (2) For every process, the last action of all
child-processes that are spawned before some join is $. We write ok(¢) iff ¢ fulfills the
requirements (1) and (2). The evaluation of the predicate ok can easily be implemented
by a deterministic bottom-up tree automaton where the complexity of the construction
is exponential in the number of locks.

To each subtree of a join-lock-well-formed action tree, we assign an acquisition
structure that can be used for constructing a join-lock-sensitive schedule. In this paper
we define an acquisition structure either to be L or a tuple (A4, R, Rjo, U, — 4, J) where:

— A s the set of acquired locks (final acquisitions and usages).

— R is the set of initially released locks. Note that, due to well-nestedness, only the
root process of the subtree may contain initial releases.

— R, is the set of locks that are initially released after the next join. If the root process
contains no join operation, we have Rj, = (). Moreover, we have R, C R.

— U is the set of locks whose usages are required for termination of the root process,
including locks whose usages are required for termination of spawned processes
the root process joins with.

— —AC L? is the acquisition graph. We have i — 4 j iff there is an acquisition of j
after a final acquisition of <.

J € Bis T iff the root process performs at least one jo.

The acquisition structure as(t) of an action tree ¢ is defined by the following rules, if
the subtrees of ¢ have non-bottom acquisition structures and the side conditions of the

13

rules are fulfilled. In any other case, we set as(t) := L.

as(e) := as((8)(e)) := (@,@,@,@,@, 1)
as((e)(£)) := as(?)
as((aca(i))(1)) = (AU {i}, R\ {i}, R \ {i},U U{i}, —a,J), ifi€R
as((acq(i))(t)) == (AU{i}, R, Rjo, U,—a U {i} x A, J), ifi¢ R
as((rel(?))(t)) := (A, RU{i}, Rjo, U, — a4, J)
as((jo)()) = (A’R7 R? U7 _)A7T)
as((sp)(t,t')) := (AUA R, Rjo,U,— 4 U—4", 1), if J= 1
as((sp)(t,t")) ;= (AU A R, Rjo,UUU', — 4 U—4",T),

if J=TandRjoNU' =0
where as(t) = (A, R, Rjo,U,—a,J) and as(t’) = (A", R/, RJfO, U\,—4",J). We
prove that a join-lock-well-formed action tree ¢ can be scheduled join-lock-sensitively
iff ok(t) and as(t) = (4, R, Rjo, U, — 4, J) with acyclic — 4. Since the number of ac-
quisition structures is finite, a deterministic bottom-up tree automaton check’' can be
constructed that accepts the action trees that satisfy the above property:

Theorem 2. There is a deterministic bottom-up tree automaton check!! which accepts
a join-lock-well-formed action tree t iff t can be scheduled join-lock-sensitively; check!
can be constructed in time at most exponential in the number of locks.

Proof (Sketch). Due to lack of space only a sketch is presented here. The complete
proof can be found in the appendix.

The complexity estimate for check!! follows from the fact that the number of acqui-
sition structures is exponentially bounded in the number of locks.

Assume that check’ does not accept ¢. Hence, not ok(t) or as(t) = L or as(t) =
(A, R, Rjo,U, — 4, J) with cyclic — 4. First of all, it is easy to see that there is no join-
lock sensitive schedule if ok(¢) does not hold. If as(¢) = _L, this results from a failed
Rjo N U" = 0 check in the second sp-rule of m. This means that there is a process
that spawns another process and then joins, while it holds a lock that is required by the
spawned process for termination. Hence, no lock-sensitive schedule is possible. The
edges in — 4 capture ordering constraints on final acquisitions of locks: i— 4 j means,
that there is a final acquisition of ¢ that must be scheduled before the final acquisition
of 7, if any. If — 4 is cyclic, these constraints obviously cannot be fulfilled.

If check!" accepts ¢, then ok(t) holds and as(t) = (A, R, Rjo, U, —4,J) with an
acyclic — 4. We first choose a total ordering < on the locks with — 4 C <. Then, we
construct inductively a schedule s(t’) for each subtree ¢’ of ¢ with the following proper-
ties: (1) The actions in s(¢') form a suffix of a join-lock-well-formed action sequence.
(2) s(t') is join-sensitive, i.e. steps of spawned processes are scheduled before the re-
spective join operations. (3) Acquisitions in s(¢') respect the ordering < in the sense that
only locks ¢ > j are acquired after an unmatched acquisition of j. (4) Only required
locks are used before termination, i.e. before termination of the root process, all ac-
quired locks are released and are from U’ (where as(t') = (A’, R/, RJfO, U\,—4",J).

The construction of this schedule is straightforward except for subtrees of the form
t' = (sp)(t1,t2). In this case, s(¢’) is constructed as a specific shuffling of s(¢1) and

14

s(t2). Then, by (1) and (2), the schedule s(t) constructed for the entire tree ¢ is join-lock
sensitive. a

We are now prepared to put all parts together:

Theorem 3. Let M = (Act, P, I, A) be a join-lock-well-formed join-lock-DPN, p €
P, v € I', and R a regular set of configurations. It can be decided whether a configu-
ration from R can be reached by M, starting from the configuration p([y], nil) through
an execution that respects joins and locks simultaneously, i.e., whether or not

posten a (p([y]s mil)) N R # 0

holds, by checking the following intersection of regular sets:
tpostiw y ((p.7)) Na™H(T) N (R) # 0

where T' is the language of check. The complexity is polynomial in the size of M and
in that of a tree automaton recognizing R and exponential only in the number of locks.

6 Conclusion

We have developed a forward propagating algorithm for analyzing reachability in Dy-
namic Pushdown Networks. The key idea was to represent all possible executions by
means of a regular set of execution trees. We then showed how to restrict the set of all
possible executions to executions that respect joins and locks simultaneously. By that,
we obtained an algorithm for analyzing reachability w.r.t. join-lock-sensitive execu-
tions. Our algorithms are polynomial in the size of the DPN as well as in the size of the
finite tree automaton describing the set of configurations to be reached and exponential
only in the number of locks used by the DPN.

It would be interesting to explore to what extent nested locking can be combined
with concepts that are more general than joins, e.g. stable constraints as considered by
Bouajjani et al. [2]. It might also be challenging to see which other properties can be
decided for the different classes of DPNs beyond reachability. Finally, it is left to future
work to practically evaluate the provided techniques on real world examples.

Bibliography

[1] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model-checking. In A. W. Mazurkiewicz and
J. Winkowski, editors, CONCUR, volume 1243 of Lecture Notes in Computer
Science, pages 135-150. Springer, 1997. ISBN 3-540-63141-0.

[2] A. Bouajjani, M. Miiller-Olm, and T. Touili. Regular symbolic analysis of dy-
namic networks of pushdown systems. In Concurrency Theory. 16th Int. Conf.
(CONCUR), pages 473—487. LNCS 3653, Springer, 2005.

[3] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci., 31(1):
71-146, 1985.

15

[4] J. Esparza and A. Podelski. Efficient algorithms for plre>l< and post>l< on interproce-
dural parallel flow graphs. In POPL, pages 1-11, 2000.

[5] V. Kahlon and A. Gupta. An automata-theoretic approach for model checking
threads for LTL properties. In Proc. of LICS 2006, pages 101-110. IEEE Com-
puter Society, 2006.

[6] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via
locks. In Proc. of CAV 2005, volume 3576 of LNCS. Springer, 2005.

[7]1 N. Kidd, A. Lal, and T. W. Reps. Language strength reduction. In M. Alpuente
and G. Vidal, editors, SAS, volume 5079 of Lecture Notes in Computer Science,
pages 283-298. Springer, 2008. ISBN 978-3-540-69163-1.

[8] P. Lammich, M. Miiller-Olm, and A. Wenner. Predecessor sets of dynamic push-
down networks with tree-regular constraints. In A. Bouajjani and O. Maler, ed-
itors, CAV, volume 5643 of Lecture Notes in Computer Science, pages 525-539.
Springer, 2009. ISBN 978-3-642-02657-7.

[9] M. Miiller-Olm and H. Seidl. On optimal slicing of parallel programs. In STOC,
pages 647-656, 2001.

[10] H. Seidl and B. Steffen. Constraint-based inter-procedural analysis of parallel
programs. Nord. J. Comput., 7(4):375-, 2000.

16

A Omitted Proofs

Proof (of Lemma 1). For a proof, we provide an explicit construction for the tree au-
tomaton in question. Let .S be a regular set of (representations of) configurations. As-
sume that we are given a nondeterministic finite automaton A that recognizes 9, i.e.,

L(A

)=

S. W.Lo.g. the set of states of Ais Q = Q U W U C, the transition relation of

Ais — = >y U e U <, the set of accepting states F' of A is a subset of @, and
the following holds:

W is a finite set of states for stack contents together with a designated state sy for
the empty stack;

—w C cons(I, W) x W;

C is a finite set of states for sequences of processes together with a designated state
sc¢ for the emtpy sequence of processes;

—¢ Ceons(Q,C) x C.

@ is a finite set of states for processes;

—q S P(W.C)xQ

The finite automaton A’ that accepts ¢~ (S) then is given by

— the setof states Q x W x CUC x C;
— the set of accepting states F' X {sw} x {sc};
— the transition relation <’ of A’ which is defined as follows:

1.

(p,7) =" (q,w,) forall p(w1, ¢) —q g, cons(v, w) —w wi.
(O(]—[?) transitions)

Apy S Y)Y (g, w, €)) = (g, w,c) forall py <> p'y' € A, g € Quw € W,

ceC. 5
O(|4] - ‘Q|) transitions)

Ay S P y2) (g, w1, €)) ' (q,w, ¢) forall py < pyiya € A, cons(ya,w:)

w,q € Q,ceC.
O(A| - || - |@|2) transitions)

. <p’7 (1) p/71’72>((027c)a(Q7w302)) —' (q,w,c) for all Py i’ p/71’72 €A

qeEQ,weW,ccoeC.
O(|A4] - ‘@|4) transitions)

Apy S) ' (qyw,) forall py <5 p € A, pl(w,€) =g q.

(O(JA| - |<|) transitions)

sp sp
Ay = vy > psvs) (g, w, 1), (g1, sw, se)) < (g, w,¢) for all py < py >

DsYs € A, cons(ql,cl) —c 6 qEeEQQ,weW.
04| -] ’Q|2) transitions)

. Ap,y) — (c,c)forallpéP,’yEF,cEC’

(O(P|- |- ’@D transitions)

. {py &p’y’)((c, c1)) =’ (¢, cp) for all pry <, p'y e A e el

O(lA] - ‘@|2) transitions)

17

c_)W

9. {py < p'1172)((¢,c1)) <=’ (¢, ¢1) for all py < P'rye € A, ¢,c1 € C.
O(|4] - |@|2) transitions)

10. (py <= pre)((ee2), (cac1)) = (c,c1) for all py < p'yye € A,
¢, c1,09 € C.

04| - ‘@|3) transitions)

11. (py <, p’) =’ (c,c) forall py < peAcel.
(O(|A] - |Q|) transitions)

sp sp

12. (py = spy>ps7s)((c,), (g, sw, sc)) =’ (¢, c1) forall py — py>psys €
A, cons(q, ¢2) —c e, ceC.
O(A| - |—] - ’Q|) transitions)

The tree automaton A’ can be constructed in time

O(=>+141- Q" +14]- |=|- [+ [P 1T'| - |Q)]).

Proof (of Lemma 2). The statement can be shown by a straight-forward induction.
Proof (of Theorem 1). The statements can be shown by a straight-forward induction.

Proof (of Lemma 3). For a proof, we provide an explicit construction for the tree au-
tomaton in question. Let 7" be a regular set of action trees. Assume that we are given a
nondeterministic finite automaton A that recognizes T, i.e., L(A) = T. Let) be the
set of states of A, and < be the transition relation of A, and F’ be the accepting states
of A. Assume that the state ¢. accepts exactly the set {e} of action trees.

The set of states of The finite automaton A’ that accepts a—(T') is given by

— the set of states Q?;
— the set of accepting states F' x {q.}; and
— the transition relation <’ which is defined as follows:

L. {p,7y) =’ (g,q) forallpe P,y e I''q € Q.
(O(|P] -|I'| - |Q]) transitions)

2. (py <= PV) (@1, q) = (q.¢) for all py < p'y' € A, (a)(q1) = .
q € Q.

(O(|A| - |—| - |Q]) transitions)

3. (py < Pne) (a1, 4) = (g,¢) forall py < p'yya € A, (a)(@) < g,
q € Q.
(O(|A| - |—| - |Q]) transitions)

4 (py = pnye) (a1 @), (a2, 45) =
(a)(q1) = ¢. 42,95 € Q.
(O(A] - || - |Q|?) transitions)

5. (py = p) = (g,q1) forall py = p' € A, (a)(q1) = q.
(O(|A]| - |=|) transitions)

!

(¢,q5) for all py <% pyye € A,

18

sp "
6. <pry - p,’}/ > p578>((q1’ qi)v <Q27q6)) ' (q,qi) for all py — p’f}/ > psYs €
A, (sp)(q1,92) — ¢ ¢4 € Q.
(O(]4] - |=| - |Q|) transitions)

The tree automaton A’ can be constructed in time
2
o(P]- |- 1Q + 4] - [=] - [Q[).
O

Proof (of Lemma 4). Let the set X be defined by the following regular tree grammar:

!

X' = ¢ | (Base U Push U Pop)(X') | (Spawn)(X , X)
X = (P xI)(X)

The trees in X are inlined execution trees, where the initial configuration is annotated
at the root, all additional branches of Push-rules are inlined and leaves are replaced by
€.

t € X represents a set of executions that in particular lead to the same configuration
c'(t) that is defined by c’({p,y)(t)) := (¢, p([7], nil)), where

c(e,c):=c
<((py <= p'7)(t), p(yw, ©) = ¢ (t,p' (cons(v, w), ©))
< ((py < P'm72) (1), plcons(y, w), @) == ¢/ (t, p/ (cons(1, cons(y2, w)), ©))
c((py <= p)(t), p(cons(y, w), ©)) := '(t,p' (w,)
< ({py & 'y > peva)(ta, t2), pleons(y, w), B)) := ¢ (t1, p/(cons(y', w), cons(c (t2), 7))

We are now going to define a semantics —.. on X that is compatible with the semantics

! on configurations. For that we first define app,. : X' — X forall 7 € A as follows:

app,.(e) = { (r) (e, <ps,VZZ§E

. sp
) ifr=py = py > prs
€) otherwise

app,.((r')(t)) = (') (app,.(t))
app,.((r')(t1,t2)) = (r')(app,.(t1), t2)

Then, for every r € A, —,.((p,) (t)) := (p,7)(app,(t)) iff —<(c(¢)) is defined.

Similarly to Section 3 we extend —,. to —!, by applying —,. to the subtree of an
inlined execution tree representing process I € N of the execution.

An inlined execution tree t is called consistent, if there exists p € P,y € I,k €
Nalla"'alk’ € N17T17"-ark € Awitht = A»ii(*»i*ll“parw((f)))

We now decompose the mapping a from execution trees to action trees into two
parts. The first part converts the execution tree into an inlined execution tree and the
second part converts the inlined execution tree into an action tree.

19

The inlined execution tree a1 (¢) of an execution tree ¢ is defined by:

a1((p, 7)) == (p,7)(e) .
(< py < pw)(t)) = (p,7) (a1 ((py ‘—>p'w’>(t) €))
a1 ((py <= pw’ B pes) (i, t2)) = (0, 1) (a1 (((py < P’ > pyys) (tr, t2), €))
ai((p,7), @) =2
a1 ((p 7‘—>p7>(t,33) p7<—>p7>(al(t,1‘))
)=
)=
)=
)=

, T

(
(<m < prre) (1), 2) = (py < pnye)(ai(t,)

Py < P2 (a1 (ty, a1 (t2, 2)))
(p 7jp>(z)
(py 2 py > pevs) (ar(t), ar (ts))

a((py <= p).a

v)

)

)
(<p7 < p 71’72>(t17)’x

)
a1((py & py B o) (t, 1)

, T

The action tree ax(t) of an inlined execution tree ¢ € X is defined as follows:

a2({p,7)(1)) = 22(1)
22((py = p'Y)(#)) = (a)(aa(t))
as((py <= p 172) (1)) := (a)(az(1))
as((py = P)(1)) = {a) (az(t))
((py = Py > psvs) (£, 15)) := (sp) (a2(t), az(ts))

The following statements can be shown by straight-forward inductions:

Lemmas. /. a=asoa.

2. ai(=l(t)) = =L(ai(t)) forall t € X, all transition rules v € A, and all | € N*.
Hence, forallt € X, the set of executable schedules of t equals the set of executable
schedules of a1 (t). And t € X is consistent iff a1 (t) is consistent.

3. The set of executable schedules of a consistent t € X equals the set of executable
schedules of as(t).

The original statement is then a corollary of the above lemma. a

Proof (of Theorem 2). Assume that check!! does not accept t. Hence, not ok(t) or
as(t) = Loras(t) = (A, R, Rjo, U, — 4, J) with cyclic — 4. First of all, if not ok(t),
there is obviously no join-lock sensitive schedule.

Secondly, if as(t) = L, we choose a minimal subtree ¢’ of ¢ with as(¢') = L. This
subtree must be of the form ¢’ = (sp)(t1,t2) with as(t1) = (A, R, Rjo, U, —a4, T) and
as(tz) = (A", R\, R;,,U’',—4’,J") and Rjo N U’ # 0 as all other cases yield non-L
values. Rjo N U’ # () means that there is a lock « required by the spawned process for
termination, but held by the spawning process and released only after the join, such that
no join-lock sensitive schedule is possible.

Finally, assume as(t) = (A, R, Rjo,U, — 4, J) with cyclic — 4. The edges in the
acquisition graph — 4 capture ordering constraints on final acquisitions of locks. More
specifically, i— 4j means, that there is a final acquisition of ¢ that must be scheduled
before any final acquisition of j. If there is a cycle t1— 4 ... — At — a%1, kK > 1, with
pairwise disjoint locks i1, ...,%x, the ordering constraints on the final acquisitions of

20

i1, ...,% obviously cannot be fulfilled. If there is a cycle i— 4t involving just a single
lock 7, we have to schedule an acquisition of 7 after a final acquisition of 7, which also
contradicts lock-sensitivity.

Assume now that check’" accepts ¢. This implies that ok(Z) holds and that as(t) =
(A, R, Rjo, U, — 4, J) with an acyclic — 4. For the proof, we first annotate each node
of ¢ with its process I € N . In addition, spawn nodes are annotated with the spawned
process. This results in a tree of the form:

A —Act

—Ac % « * «\ ;=Act —=Ac
T a= NT [(N5 x Act)(T) | (N x {sp} x NN (T, T)

where in a tree of the form (I,sp,l’)(¢,t’), I is the spawning process and !’ is the

. . . . =Act
spawned process. The translation of the action tree ¢ to its annotated version ¢t € 7 ‘

is straightforward. A schedule of an annotated action tree is a topological ordering of
the annotations of its inner nodes. It is easy to see that, from a schedule of ¢ a schedule
of ¢ is obtained by removing the additional annotations at the spawn actions.

We call a schedule a u-schedule, if its lock actions are in the context free language
U:u=¢€|U-Ulacq(l)-U-rel(1) | ---|acq(n) U - rel(n). We call a schedule a p-
schedule, if it is a prefix of a u-schedule. Similar, a schedule is called s-schedule, if it is
a suffix of a u-schedule, and sp-schedule if it is a suffix of a prefix of a u-schedule. Intu-
itively, u-schedules describe schedules with only matched lock and unlock operations,
p-schedules may additionally contain unmatched acquisitions, s-schedules may contain
unmatched releases and sp-schedules may contain both, unmatched acquisitions and
unmatched releases.

We call a schedule s non-reentrant, if its sequence of actions is non-reentrant. Note
that non-reentrant p-schedules correspond to well-formed action sequences.

As — 4 is acyclic, we can choose a total order < on locks s.t. -4 C <, ie. a
topological ordering of the locks w.r.t. — 4. We now construct inductively for each sub-
tree t' of t with as(t') = (A’, R', Rj,,U’, —4’, J') a schedule s(¢') with the following
properties:

1. s(t’) is a non-reentrant sp-schedule (i.e. its actions form a suffix of a well-formed
sequence).

2. s(t') is join-sensitive, i.e. s(t') = s1(l,sp,"}s2(l,jo)s3 = (I',$) € s

3. The order of acquisitions respects < in the following sense:

s(t") = s1(l,acq(i))s2(l’,acq(f))ss A (I,rel(i)) & sos3 = i < j

i.e. a final acquisition is only followed by acquisitions of greater locks w.r.t. <.
4. Only required locks are used before termination of the root process, i.e.

s(t") = s1(I(t'),$)s2 = s; is an s-schedule acquiring only locks from U’
where [(t') is the process of subtree ¢/, i.e. the annotation of its root node.

The schedule constructed for the entire tree ¢ then corresponds to a join-lock sensitive
schedule of ¢.

The schedule of an atomic tree (I) is the empty sequence, that trivially satisfies
properties 1-4.

21

The schedule of a tree of the form ¢ = (l,a)(t”) is s(t') = (l,a)s(t"). Let
as(t") = (A", R", Rig, U", — 4", J").If a = jo, properties 1-4 are trivially preserved.
For a = rel(4), properties 2 and 3 are trivially preserved. Properties 1 and 4 are pre-
served as sp-schedules as well as s-schedules are closed under prepending of release ac-
tions, and non-reentrance of the constructed schedule follows from the well-formedness

assumption on t. For a = acq(i), we distinguish whether ¢ € R’ or not.

Case i € R"” Ast is join-lock-well-formed, all unmatched releases in ¢” done by
process [, and the first unmatched release action must be (I, rel(7)). This implies that
s(t') is an sp-schedule. Its non-reentrance follows from non-reentrance of s(t”).
Preservation of Property 4 is shown analogously, and preservation of Properties 2
and 3 is trivial.

Case i ¢ R” Astis join-lock-well-formed, s(¢") cannot contain unmatched releases.
Hence, s(t') is an sp-schedule. If s(¢"") would contain an acquisition of ¢, we would
have (¢,7) € — 4’ C — 4 in contradiction to acyclicity of — 4. Hence, s(t’) stays
non-reentrant. Preservation of Property 2 is trivial. Preservation of Property 3 fol-
lows because for each action (I;acq(j)) € s(t”), the pair (4, 7) is included in
— 4’ € —4 C <. Property 4 holds in this case, as [(t') cannot stopped due to the
assumption that processes release all their locks before stopping.

Let us now consider subtrees of the form ¢ = (ly,sp,l2)(t1,t2) with as(t1) =
(Alv Rl, Rj107 Ul, —>}4, Jl) and as(tz) = (AQ, RQ, Rj2o7 UQ, —>?4, JQ)

For the proof, a schedule of the form (l,acq(i))w with a u-schedule w is called
a macro-step. For a macro-step, we define acq((l,acq(é))w) := 4. Note that any sp-
schedule s can be written as s = s159 where s1 is an s-schedule, and s» is a sequence
of macro-steps. Analogously, every p-schedule s can be written as s = s155 where s1
is a u-schedule and s5 is a sequence of macrosteps.

For sequences of macrosteps, we now define a shuffle-operator ||, that constructs

from two sequences of macrosteps that respect < an interleaving that also respects <:

glls:=s|le:=s

s1(r1)|sare) if acq(s1) < acq(sz)
s171||s2re := ¢ sa(s1r1ljr2) if acq(s2) < acq(sy)
undefined otherwise

We make a case distinction whether the root process of t1, i.e. [1, performs a join
operation or not.

Case 1: If I, does not perform a join operation, we have J; = L and (I1,jo) ¢ s(t1).
As s(t1) is an sp-schedule, it can be written as s(t1) = s1.2 for an s-schedule s; and a
sequence of macrosteps so. Due to well-formedness, ¢5 contains no unmatched releases,
hence s(t2) is a p-schedule and can be written as s(t2) = s} s, for an u-schedule s} and
a sequence of macrosteps sb.

As ok(t) holds the unmatched acquisitions in s and s} are disjoint. Hence s||s5 is
defined and we set s(t') = s181(s2]|s5). It can be checked that this preserves Proper-
ties 1-4:

22

1. Sequences of macro-steps are p-schedules, hence (s2||s5) is a p-schedule. Prepend-

ing the u-schedule s/ yields a p-schedule again, and prepending the s-schedule s;
yields an sp-schedule.
For non-reentrance, we first observe that s(¢') can only violate non-reentrance if at
least one unmatched operation is involved, as shuffling was done regarding matched
operations atomically. Unmatched release operations can occur only in s, hence a
violation of non-reentrance would also imply that s(¢) is reentrant, in contradiction
to our assumptions. Unmatched acquisition operations can only occur in (s3]|s5).
As ok(t) holds, the unmatched acquisitions in sy and s} are disjoint. Hence, the
only possibility to violate non-reentrance is that there is an unmatched acquisition
acq () from, say (w.l.o.g.) so conflicting with a matched acquisition from s}, i.e.
s2 = so1((lacq(i))w)szs and s = sy (1, acq(j))u)shy with (I',acq(i)) €
w’. Due to our inductive assumption on s(t2), we have acq(m’) < 14 for each
macrostep m’ € shy ((I',acq(j))w’), hence the shuffle operation will schedule the
steps from s5; ({(I’,acq(j))w’) before the unmatched acquisition of ¢, preserving
non-reentrance.

2. Join-sensitivity is preserved as the root-process contains no join operation, and the

relative order of the steps from s(¢1) and s(¢3) are preserved in s(t').

This property is preserved by the definition of the ||-operation.

4. If the root-process stops, it frees all its locks due to the join-lock-well-formed-
ness assumption. Hence, the action (I(¢'), $) is in s1, and Property 4 is obviously
preserved.

e

Case 2: Consider now the case that the root process of t1, i.e. [;, performs a join
operation. Then we have J; = T and (I, jo) € s(t1). We can write s(t1) as s(t1) =
s182 with an sp-schedule s; and a sequence of macrosteps so, and s(¢2) can be written
as s(ta) = s1(l2, $)sh sy with a u-schedule s} that only uses lock-operations from Us,
a u-schedule s}, and a sequence of macrosteps s5 (by the join-lock-well-formedness
assumption and Property 4 of s(t2)).

If (I1,]jo) ¢ s1, we define s(t') := s15)(l2, $)s5(s2]|s5), otherwise, we can write s
in the form s; = s11812 where s1; is an s-schedule of maximal length with (Iy,jo) ¢
s11, and we define s(t') := s1181{l2, $)s1285(s2||s5).

Again, this construction preserves Properties 1-4:

1. That the constructed schedule is an sp-schedule can be proven analogously to
Case 1. For preservation of non-reentrance, one has to regard the new case that,
for the schedule s(t') = s115)(l2,$)s1255(s2]|s5), an unmatched release in s12
conflicts with a lock operation in s}. However, the unmatched releases in sy are
captured by leo, the lock operations in s} are captured by U and due to as(t) # L
we have leo NU, = 0, hence there are no such conflicts. The other cases are argued
analogously to Case 1.

2. For join-operations of the non-root processes, preservation of join-sensitivity is
analogous to Case 1. As all steps of the spawned process are scheduled before
the first join operation, and the relative ordering of the steps in s(¢;) is preserved,
the constructed schedule is join-sensitive.

3. This property is, as in Case 1, preserved by the definition of the ||-operation.

23

4. If the root process I; stops, all its actions, in particular the join-operation, are con-
tained in s;. Hence we are in the case s(t') := s115] (l2, $)s1255(s2]|s5), and s12
can be written as s121 (l1, $) s122, for s-schedules s121 and s120. Hence, s115] (l2, $)s121
is also an s-schedule, and it only uses locks from U’ = Uy U Us.

O

Proof (of Theorem 3). Follows from Theorems 1, 2 and Lemma 1, 2, 3, 4.

24

