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1. Proof theoretic ordinals

1.1 Preliminaries

One of the aims of infinitary proof theory is the computation of the proof theoretical ordinal of
axiom systems. We will indicate in these lectures that there are different types of proof theoretical
ordinals for axiom systems.
Proof theory was launched by the consistency problem for axioms systems. Its original aim
was to give finitary consistency proofs. However, according to GÖDEL’s second incompleteness
theorem, finitary consistency proofs are impossible for axiom systems which allow sufficiently
much coding machinery.
Ordinals entered the stage when GENTZEN in [5] and [6] proved the consistency of the axioms
of number theory using a transfinite induction. His proof is completely finitary except for the
transfinite induction. The infinite content of the axioms for Number Theory is thus pinpointed in
the transfinite induction used in the consistency proof. Therefore it seemed to be a good idea to
regard the order–type of the least well–ordering which is needed in the consistency proof for an
axioms system as characteristic for these axioms and to call it its proof theoretic ordinal. But as
observed by KREISEL there is a serious obstacle.
To state KREISEL’s theorem we use some obvious abbreviations. The systemEA of Elementary
Arithmeticis formulated in the language of arithmetic with the non-logical symbols

(0; 1;+; �; 2x;=;�)

together with their defining axioms among them

(exp) 20 = 1 and2x+1 = 2x + 2x

(�) x � 0$ x = 0 and
x � y + 1$ x � y _ x = y + 1.

The scheme

(Ind) '(0) ^ (8x)['(x)! '(x + 1)] ! (8x)'(x)

of Mathematical Inductionis restricted to�0–formulas'. A formula is�0 iff it only contains
bounded quantifiers(8x< a) or (9x < a). Mostly we use the systemPRA which has constants
for all primitive recursive functions and in which the scheme of mathematical induction is re-
stricted to�0

1–formulas. By? we denote the false sentence0 = 1. We assume that there is an
elementary coding for the language of arithmetic and that there is a predicate

Prf Ax (i; v) :, “ i codes a proof fromAx of the formula coded byv” :

For an axiom systemAx we obtain theprovability predicateas

�Axx :, (9y)Prf Ax (y; x):

By PRWO(�) we denote that there are no primitive recursive infinite descending sequences in
�eld �. By TI (�) we denote the scheme of induction along�.

1.1.1 Theorem (Kreisel) For any consistent axiom systemAx there is a primitive recursive
well–ordering�Ax of order type! such that

PRA+ PRWO(�Ax ) Con(Ax )
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1. Proof theoretic ordinals

Sketch of the proof of Theorem 1.1.1 Define

x �Ax y :,

�
x < y if (8i < x)[:Prf Ax (i; ? )]
y < x otherwise

(i)

and let

F (x) :, (8i� x)[:Prf Ax (i; ? )]: (ii)

Now we obtain

PRA (8x�Axy)F (x) ! F (y) (iii)

since if we assume:F (x) we have(9i� x)[Prf Ax (i; ? )] and getx + 1 �Ax x and thus
together with the premise of (iii) alsoF (x+ 1). But this impliesF (x), a contradiction.
SinceF (x) is primitive recursive we obtain from (iii)

PRA+ PRWO(�Ax ) (8x)F (x) (iv)

and thus

PRA+ PRWO(�Ax ) Con(Ax): (v)

SinceCon(Ax) is true we haveotyp(�Ax ) = !. �

Recall that!CK

1 denotes the first ordinal which cannot be represented as the order–type of a recur-
sive well–ordering. It is well-known that for every ordinal� < !CK

1 there is a primitive recursive
(even elementary) well–ordering of order–type�. There is a theorem recently observed by BEK-
LEMISHEV which points exactly in the opposite direction of Theorem 1.1.1.

1.1.2 Theorem (Beklemishev) For any� < !CK

1 there is a primitive recursive well–ordering
of order–type� such that

PRA+ PRWO(�) 6 Con(PA):

To show Theorem 1.1.2 we first observes two other facts.

1.1.3 Theorem (Beklemishev) For every ordinal� < !CK

1 there is a primitive recursive well–
orderingE of order type� such that

PA Con(PRA+ TI (E)):

Sketch of the proof of Theorem. 1.1.3 LetR be a primitive recursive well–ordering such that

otyp(R) = �: (i)

Put

x Rz y :, x+ y � z ^ x R y: (ii)

ThenRz is a finite ordering and we get a proof ofTI (Rz) primitive recursively fromz. Hence

PRA (8z)�PRATI (Rz� ): (iii)

By the arithmetical fixed-point theorem we define a formula

x E y :, x R y ^ (8u< x+ y):C(u; (x E y) ) (iv)

whereC(u; v) is the primitive recursive predicate saying thatv is a code forx E y andu codes a
proof of a contradiction fromPRA+ TI (E). Then
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1.1. Preliminaries

PRA C(z; (x E y) ) ^ (8u< z):C(u; (x E y) )

! (x E y $ x Rz y)

! (8z)�PRA(x E y $ xRz� y)

! �PRATI (E)

(v)

by (iii). SincePA provesCon(PRA) and the least number principle we get from (v)

PA (9z)C(z; (x E y) ) ! Con(PRA+ TI (E)): (vi)

But (vi) means

PA Con(PRA+ TI (E)): (vii)

This, however, also entails thatE andR coincide and we haveotyp(E) = otyp(R) = �: �

1.1.4 Theorem Let Ax 1 andAx2 be theories which comprisePRA (either directly or via in-
terpretation). ThenAx 1 Con(Ax2) impliesAx2 ��0

1
Ax1, i.e.Ax 1 is �0

1–conservative over
Ax2.

Sketch of the proof of Thm.1.1.4 By formalized�0
1 completeness we get for a�0

1 formulaP

PRA :P ! �Ax2:P (i)

and thus

PRA :�Ax2:P ! P: (ii)

If Ax2 P we getPRA �Ax2P and thus also

PRA �Ax2::P: (iii)

Hence

PRA :�Ax2? ! :�Ax2:P (iv)

which is

PRA Con(Ax2) ! :�Ax2:P: (v)

Because of

Ax1 Con(Ax2) (vi)

we obtain from (vi),(v) and (ii)

Ax1 P

and are done. �

Now we obtain Theorem 1.1.2 from Theorems 1.1.4 and 1.1.3 by choosing� to be the well–
orderingE constructed in Theorem 1.1.3. �

It follows from Theorems 1.1.1 and 1.1.2 that the order–type of a well–ordering which suffices
for a consistency proof by induction along this well–ordering is not a very intrinsic measure. The
order relation constructed in proving both theorems, however, appear quite artificial. For “natural
well–orderings” these pathological phenomena do not arise. But the real obstacle here is to find
a mathematically sound definition of “naturalness” for well–orderings. Therefore one is looking
for a more stable definition of the proof theretic ordinal of an axiom system.
Already GENTZEN in [7] observed that his consistency proof also entails the result that the axioms
of Peano Arithmetic cannot prove the well–foundedness of primitive recursive well–orderings of
order–types exceeding the order–type of the well–ordering which he used in his consistency proof.
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1. Proof theoretic ordinals

On the other hand he could show that for any lower order–type� there is a primitive recursive
well–ordering of order–type� whose well–foundedness can be derived from the axioms of Peano
arithmetic. So his ordinal is characteristic forPA in that sense that it is the least upper bound
for the order–types of primitiv recursive well–oderings whose well foundedness can be proved in
PA. The well–foundedness of a relation� can be expressed by the formula

TI (�; X) :, (8x)[(8y� x)(y 2 X)! x 2 X ] ! (8x)[x 2 X ]:

Let PR denote the collection of primitive recursive relations. According to GENTZEN’s obser-
vation we define

jjAx jj := sup
�
otyp(�) �2 PR ^ Ax TI (�; X)

	
(1.1)

and calljjAx jj theproof–theoretic ordinalof the axiom systemAx . For reasons which will be-
come clear in the next sections we calljjAx jj the�1

1–ordinal ofAx and will later indicate that
there are also other characteristic ordinals for a setAx of axioms.

1.2 Some basic facts about ordinals

Ordinals are originally introduced as equivalence classes of well–orderings. From a set theoretical
point of view this is problematic since these equivalence classes are not sets but proper classes.
Ordinals in the set theoretical sense are therefore introduced as sets which are well–ordered by
the2–relation. This entails that an ordinal� the set of all ordinals� < �. When we talk about
ordinals we have the set theoretical meaning of ordinals in mind. But this is of no importance.
All we have to know about ordinals are a few basic facts which we will describe shortly.

(On1) The classOn of ordinals is a non void transitive class, which is well-ordered by the mem-
bership relation2. We define� < � as� 2 On ^ � 2 On ^ � 2 �.

In general we use lower case Greek letters as syntactical variables for ordinals. The well-foundedness
of 2 on the classOn implies the principle oftransfinite induction

(8� 2On)[(8� < �)F (�)) F (�)]) (8� 2On)F (�)

and transfinite recursion which, for a given functiong, allows the definition of a functionf satis-
fying the recursion equation

f(�) = g(
�
f(�) � < �

	
):

(On2) The classOn of ordinals is unbounded, i.e.,(8� 2On)(9� 2On))[� < �]. Thecardinal-
ity jM j of a setM is the least ordinal� such thatM can be mapped bijectively onto�.
An ordinal� is acardinal if j�j = �.

(On3) IfM � On andjM j 2 On thenM is bounded inOn, i.e., there is an� 2 On such that
M � �.

For every ordinal� we have by(On1)and(On2)a least ordinal�0 which is bigger than�. We
call �0 thesuccessorof �. There are three types of ordinals:

� the least ordinal0,

� successor ordinals, i.e., ordinals of the form�0,

� ordinals which are neither0 nor successor ordinals. Such ordinals are calledlimit ordinals. We
denote the class of limit ordinals byLim .

Considering these three types of ordinals we reformulate transfinite induction and recursion as
follows:
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1.2. Some basic facts about ordinals

Transfinite induction: IfF (0) and(8� 2On)[F (�) ) F (�0)] as well as(8� < �)F (�) ) F (�)
for � 2 Lim then(8� 2On)F (�).

Transfinite recursion: For given� 2 On and functionsg, h there is a functionf satisfying the
recursion equations

f(0) = �

f(�0) = g(f(�))
f(�) = h(

�
f(�) � < �

	
) for � 2 Lim .

An ordinal� satisfying

(R1) � 2 Lim

(R2) If M � � andjM j < � thenM is bounded in�, i.e., there is an� 2 � such thatM � �

is calledregular. The class of regular ordinals is denoted byReg.

(On4) The classReg is unbounded, i.e.,(8� 2On)(9� 2Reg)[� � �].

We define

supM := min
�
� 2On (8� 2M)(� � �)

	
as the least upper bound for a setM � On. In set theoretic terms it issupM =

S
M . It follows

thatsupM is either the biggest ordinal inM , i.e.,supM = maxM , or supM 2 Lim. By ! we
denote the least limit ordinal. It exists according to(O4) and(O1). The ordinal!1 denotes the
first uncountable ordinal, i.e., the first ordinal whose cardinality is bigger than that of!. It exists
by (On3).
For every classM � On there is a uniquely determined transitive classotyp(M) � On and an
order preserving functionenM : otyp(M)

onto
�! M . The functionenM enumerates the elements

of M in increasing order. Sinceotyp(M) is transitive it is eitherotyp(M) = On or otyp(M) 2
On. We callotyp(M) the order typeof M . In fact otyp(M) is the MOSTOWSKI collapse of
M andenM the inverse of the collapsing function (usually denoted by�). By (On3) we have
otyp(M) 2 On iff M is bounded inOn. Unbounded, i.e., proper classes of ordinals have order
typeOn. If M is a set of ordinals thenotyp(M) 2 On.
If M is a transitive class andf :M �! On an order preserving function then� � f(�) for all
� 2M .
A classM is closed(in a regular ordinal�) iff supN 2 M holds for every classN � M such
thatjN j 2 On (jN j < �). We callM club (in �) iff M is closed and unbounded (in�).
We call an order preserving functionf :M �! On (�-) continuous iffM is (�-) closed andf
preserves suprema, i.e.,sup

�
f(�) � 2 N

	
= f(sup(N)) for anyN �M such thatjN j 2 On

(jN j < �).
A normal (�-normal) function is an order-preserving continuous function

f :On �! On or f :� �! � respectively.

ForM � On (M � �) the enumerating functionenM is a (�-)normal function iffM is club (in
�).
Extending their primitive recursive definitions continuously into the transfinite we obtain the basic
arithmetical functions+, � and exponentiation for all ordinals. The ordinal sum, for example,
satisfies the recursion equations

�+ 0 = �

�+ �0 = (� + �)0

�+ � = sup� < �(�+ �) for � 2 Lim .

It is easy to see that the function�� : �+ � is the enumerating function of the class
�
� 2On � � �
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1. Proof theoretic ordinals

which is club in all regular� > �. Hence�� : �+ � is a�-normal function for all regular� > �.
We define

H :=
�
� 2On � 6= 0 ^ (8� < �)(8� < �)[� + � < �]

	
and call the ordinals inH additively indecomposable. ThenH is club (in any regular ordinal
> !), 1 := 00 2 H , ! 2 H and! \ H = f1g. HenceenH (0) = 1 andenH (1) = ! which are the
first two examples of the fact that

(8� 2On)[enH (�) = !�]: (1.2)

Thus�� : !� is a (�-)normal function (for all� 2 Reg bigger than!). We have

H � Lim [ f1g

and obtain

� 2 H iff (8� < �)[� + � = �]:

Thus for a finite setf�1; : : : ; �ng � H we get

�1 + : : :+ �n = �k1 + : : :+ �km

for fk1; : : : ; kmg � f1; : : : ; ng such thatki < ki+1 and�ki � �ki+1 . By induction on� we
obtain thus ordinalsf�1; : : : ; �ng � H such that for� 6= 0 we have

� = �1 + : : :+ �n and �1 � : : : � �n: (1.3)

This is obvious for� 2 H and immediate from the induction hypothesis and the above remark if
� = � + � for �; � < �. It follows by induction onn that the ordinals�1; : : : ; �n in (1.3) are
uniquely determined. We therefore define anadditive normal form

� =NF �1 + : : :+ �n : , � = �1 + : : :+�n; f�1; : : : ; �ng � H and �1 � : : : � �n:

We callf�1; : : : ; �ng the set ofadditive componentsof � if � =NF �1 + : : :+ �n.
We use the additive components to define thesymmetric sumof ordinals� =NF �1 + : : : + �n
and� =NF �n+1 + : : :+ �m by

� =k � := ��(1) + : : :+ ��(m)

where� is a permutation of the numbersf1; : : : ;mg such that

1 � i < j � m) ��(i) � ��(j):

In contrast to the “ordinary ordinal sum” the symmetric sum does not cancel additive components.
By definition we have

� =k � = � =k �:

It is easy to check that the symmetric sum is order preserving in its both arguments.
As another consequence of (1.3) we obtain the CANTOR normal formfor ordinals for the basis!,
which says that for every ordinal� 6= 0 there are ordinals�1; : : : ; �n such that

� =NF !
�1 + : : :+ !�n :

Since�� : !� is a normal function we have� � !� for all ordinals�. We call� an"-number if
!� = � and define

"0 := min
�
� !� = �

	
:

more generally let�� : "� enumerate the fixed points of�� : !� . If we put

exp0(�; �) := � and expn+1(�; �) := �exp
n(�;�)
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1.2. Some basic facts about ordinals

we obtain

"0 := sup
n<!

expn(!; 0):

For 0 < � < "0 we have� < !� and obtain by the CANTOR Normal Form Theorem uniquely
determined ordinals�1; : : : ; �n < � such that� =NF !

�1 + : : :+ !�n .
For a classM � On we define itsderivative

M 0 :=
�
� 2On enM (�) = �

	
:

The derivativef 0 of a functionf is defined byf 0 := enFix (f), where

Fix (f) :=
�
� f(�) = �

	
:

Thusf 0 enumerates the fixed-points off . If M is club (in some regular�) thenM 0 is also club
(in �). Thus iff is a normal functionf 0 is a normal function, too.
If
�
M� � 2 I

	
is a collections of classes club (in some regular�) andjI j 2 On (jI j 2 �) thenT

�2IM� is also club (in�).
These facts give raise to a hierarchy of club classes. We define

Cr (0) := H
Cr (�0) := Cr(�)0

Cr (�) :=
T
�<� Cr(�) for � 2 Lim.

If we put

'� := enCr(�);

then all'� are normal functions and we have by definition

� < � ) '�('�()) = '�(): (1.4)

The function' is commonly called VEBLEN function. From (1.4) we obtain immediately

'�1(�1) � '�2(�2) iff �1 < �2 and �1 � '�2(�2)
or �1 = �2 and �1 � �2
or �2 < �1 and '�1(�1) � �2.

(1.5)

We define the VEBLEN normal form for ordinals'�(�) by

� =NF '�(�) : , � = '�(�) and � < �:

Then� =NF '�1(�1) and � =NF '�2(�2) ) �1 = �2 and �1 = �2. Since� < � and
� < � 2 Cr(�) implies'�(�) < � we callCr(�) the class of�–critical ordinals.. If� is itself
�–critical then�; � < � ) '�(�) < �. Therefore we define the classSC of strongly critical
ordinalsby

SC :=
�
� 2On � 2 Cr (�)

	
:

The classSC is club (in all regular ordinals� > !). Its enumerating function is denoted by
�� : �� . Regarding that by (1.5)�� : '�(0) is order preserving one easily proves

SC =
�
� '�(0) = �

	
:

If we define0 := 0 andn+1 := 'n(0) then we obtain

�0 = sup
n < !

n:

We define the set ofstrongly critical componentsSC (�) of an ordinal� by

9



1. Proof theoretic ordinals

SC (�) :=

8><
>:
f0g if � = 0
f�g if � 2 SC

SC (�) [ SC (�) if � =NF '�(�)
SC (�1) [ : : :SC (�n) if � =NF �1 + : : :+ �n.

(1.6)

For every� < �0 there are uniquely determined ordinals�1; : : : ; �n < � and�1; : : : ; �n < �

such that

� =NF '�1(�1) + : : :+ '�n(�n) and �i < '�i(�i) for i 2 f1; : : : ; ng: (1.7)

Recall that a relation� is well–founded if there is no infinite descending sequence� � �xn+1 �

xn � � � � in �eld(�). Forx 2 �eld(�) we define

otyp�(x) := sup
�
otyp�(y) y � x

	
and

otyp(�) := sup
�
otyp�(x) x 2 �eld(�)

	
:

We callotyp(�) the ordertype of�. It is easy to see thatotyp�(x) andotyp(�) are ordinals.
This is all we need to know about ordinals for the moment. We will have to come back to the
theory later.

1.3 Truth complexity for �1
1–sentences

1.3.1 Definition The TAIT–language for arithmetic contains the following symbols

� Set variablesX , Y ,X1,. . .

� The logical symbolŝ , _, 8, 9

� The binary relation symbols2,=2, =,6=.

� The constant0.

� Symbols for all primitive recursive functions.

Terms and formulas are constructed in the usual way.
Since there is no negation symbol we define

� �(s = t) :� s 6= t; �(s 6= t) :� s = t

� �(s 2 X) :� s =2 X ; �(s =2 X) :� s 2 X

� �(A ^ B) :� �A _ �B; �(A _ B) :� �A ^ �B

� �(8x)F (x) :� (9x)�F (x); �(9x)F (x) :� (8x)�F (x).

We observe that for any assignment� of subsets ofN to the set variables occurring inF we obtain

N j= �F [�] , N j= :F [�]: (1.8)

Therefore we commonly write:F instead of�F .

LetD(N) be thediagram of N, i.e. the set of true atomic sentences.

1.3.2 Observation The true arithmetical sentences can be characterized by the following types

� the sentences inD(N)

� the sentences of the form(F0 _ F1) or (9x)F (x) whereFi andF (k) is true for somei 2
f0; 1g or k 2 ! respectively
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� the sentences of the form(F0 ^ F1) or (8x)F (x) whereFi andF (k) is true forall i 2 f0; 1g
or k 2 ! respectively

According to Observation 1.3.2 we divide the arithmetical sentences into two types.

1.3.3 Definition^
–type:= D(N) [ fsentences of the form(F0 ^ F1)g[

fsentences of the form(8x)F (x)g

_
–type:=

�
:F F 2

^
–type

	
=

:D(N) [ fsentences of the form(F0 _ F1)g

[fsentences of the form(9x)F (x)g

and define acharacteristic sequenceCS (F ) of sub–sentences ofF by

1.3.4 Definition

CS (F ) :=

8<
:
; if F is atomic
(F0; F1) if F � (F0 Æ F1)
(F (k) j k 2 !) if F � (Qx)F (x)

for Æ 2 f^;_g andQ 2 f8; 9g. The length of the typeof a sentenceF is the length of its
characteristic sequenceCS (F ).

From Observation 1.3.2 and Definition 1.3.3 we get immediately

1.3.5 Observation

F 2
^

–type ) [N j= F , (8G2CS (F ))(N j= G)]

and

F 2
_

–type ) [N j= F , (9G 2CS (F ))(N j= G)]

We use Observation 1.3.5 to define thetruth complexityof a sentenceF .

1.3.6 Definition We define the validity relation
�
F inductively by the following two clauses

(
^
) If F 2

^
–type and(8G2CS (F ))[

�G
G & �G < �] then

�
F

(
_
) If F 2

_
–type und(9G 2CS (F ))[

�G
G & �G < �] then

�
F .

Finally we put

tc(F ) := min(
�
�

�
F
	
[ f!g)

and calltc(F ) thetruth complexityof the sentenceF .

The next theorem is obvious from Observation 1.3.5 and Definition 1.3.6.

1.3.7 Theorem
�
F impliesN j= F .

11



1. Proof theoretic ordinals

1.3.8 ObservationLet rnk(F ) be the number of logical symbols accurring inF . Then we get

N j= F ) tc(F ) � rnk(F )

and

N j= F , tc(F ) < !:

According to Observation 1.3.8 the notion of truth complexity is not very exciting for arithmetical
sentences. This, however, will change if we extend it to the class of formulas containing also free
set variables.

1.3.9 Definition We call an arithmetical formula which does not contain free number variables
but may contain free set parameters apseudo�1

1–sentence.For pseudo�1
1–sentencesF ( ~X) we

define

N j= F ( ~X) :, N j= (8 ~X)F ( ~X):

For pseudo�1
1–sentences there is a third type of open atomic pseudo sentences which are the

sentences of the form

(t 2 X) and (s =2 X):

1.3.10 Definition For a finite set� of pseudo�1
1–sentences we define the validity relation� �

inductively by the following clauses

(Ax ) sN = tN )
�
� ; s 2 X; t =2 X

(
^

) If F 2
^

–type\� and(8G 2CS (F ))
� �G � ; G & �G < �

�
then

�
�

(
_

) If F 2
_

–type\� and(9G 2CS (F ))
� �G � ; G & �G < �

�
then

�
�

Observe that for finite sets of formulas we always writeF1; : : : ; Fn instead offF1; : : : ; Fng. We
often also write�;� instead of� [ �.
The aim is now to extend the second claim in observation 1.3.8 to formulas also containing set pa-
rameters. We will do that using the method ofsearch treesas introduced by SCHÜTTE. Therefore
we order the formulas in� arbitrarily and obtain finite sequenceh�i of pseudo�1

1–sentences.

The leftmost formula in a sequenceh�i which does not belong tô –type[
_

–type is theredex

R(h�i) of h�i. The sequenceh�ir is obtained fromh�i by canceling its redexR(h�i). We put

Ax (�) :, 9s; t;X [sN = tN ^ ft 2 X; s =2 Xg � �]:

For the definition of a tree cf. Definition 1.7.1. Two pseudo�1
1–sentences arenumerical equiva-

lent if they only differ in terms whose evaluation yield the same value.

1.3.11 Definition For a finite sequenceh�i of pseudo�1
1-sentences we define itssearch tree

Sh�i together with alabel function

Æ:Sh�i �! finite sequences of pseudo�1
1–sentences

inductively by the following clauses

(Shi) hi 2 Sh�i ^ Æ(hi) = h�i

For the following clauses assumes 2 Sh�i and:Ax(Æ(s))

(SId ) R(Æ(s)) = ; ) s_h0i 2 Sh�i ^ Æ(s
_h0i) = Æ(s)

12



1.3. Truth complexity for�1
1–sentences

(SV) R(Æ(s)) 2
^

–type ) (8Fi 2CS (R(Æ(s))))[s
_hii 2 Sh�i] ^ Æ(s

_hii) = Æ(s)r; Fi

(SW) R(Æ(s)) 2
_

–type ) s_h0i 2 Sh�i ^ Æ(s
_h0i) = Æ(s)r; Fi; R(Æ(s)); whereFi is

the first formula inCS (F ) which is not numerical equivalent to a formula in
[
s0�s

Æ(s0).

1.3.12 Remark The search treeSh�i andÆ are primitive recursively constructed fromh�i.

1.3.13 Lemma (Syntactical Main Lemma) IfSh�i is well–founded then
otyp(s)

_
Æ(s) holds

for all s 2 Sh�i.

Proof An easy induction onotyp(s). �

1.3.14 Lemma (Semantical Main Lemma) IfSh�i is not well–founded then there is an as-
signmentS1; : : : ; Sn to the set variables occurring inh�i such thatN 6j= F [S1; : : : ; Sn] for all
F 2 h�i.

Sketch of the proof of Lemma 1.3.14. Pick an infinite pathf in Sh�i and let

f [n] := hf(0); : : : ; f(n� 1)i:

Observe

F atomic^ F 2 Æ(f [n]) ) (8m�n)[F 2 Æ(f [m])] (i)

F 2 Æ(f [n]) \
^

–type ) (9m)(9G 2CS (F ))[G 2 Æ(f [m])] (ii)

F 2 Æ(f [n]) \
_

–type ) (8G2CS (F ))(9m)[G 2 Æ(f [m])]: (iii)

Notice that we identify numerical equivalent formulas.
We define an assignment

�(X) :=
�
tN (9m)[(t =2 X) 2 Æ(f [m])]

	
and show by induction onrnk(F ) thatN 6j= F [�] for all F 2

[
m2!

Æ(f [m]) using (ii) and (iii).

�

1.3.15 Theorem(!–completeness Theorem) For a�1
1–sentence(8X1) : : : (8Xn)F (X1; : : : ; Xn)

we have

N j= (8X1) : : : (8Xn)F (X1; : : : ; Xn) , (9a < !CK

1 )
�
F (X1; : : : ; Xn):

Proof First we show by an straight forward induction on�

�
� ) N j=

_
�[�] (i)

for any assignment of subsets ofN to the set variables occurring in�. The direction from right
to left follows from (i).
For the opposite direction we assume

�

6 F (X1; : : : ; Xn) (ii)

for all � < !CK

1 . ThenSF (X1;:::;Xn) cannot be well–founded by the Syntactical Main Lemma
(Lemma 1.3.13). By the Semantical Main Lemma we thus obtain an assignment� to the set
variablesX1; : : : ; Xn such thatN 6j= F (X1; : : : ; Xn)[�]. �

13



1. Proof theoretic ordinals

1.3.16 Definition Let (8 ~X)F ( ~X) be a�1
1 sentence. We put

tc((8 ~X)F ( ~X)) := min(
�
�

�
F ( ~X)

	
[ !CK

1 )

and calltc(F ) the truth complexityof F . For a pseudo�1
1–sentenceG( ~X) containing the free

set parameters~X we define

tc(G( ~X)) := tc((8 ~X)G( ~X)):

1.3.17 TheoremFor any (pseudo)�1
1–sentenceF we have

N j= F , tc(F ) < !CK

1 :

1.4 Inductive definitions

In order to link truth complexities with the proof theoretic ordinal ofAx defined in (1.1) we make
a quick excursion into the theory of inductively defined sets.

1.4.1 Definition An n–aryclauseon an infinite setN has the form

(C) P �! c,

whereP � Nn is the set ofpremisesandc 2 Nn is theconclusionof the clause (C).
A setS � Nn satisfies(C) if P � S impliesc 2 S.
An inductive definitiononN s a set� :=

�
P� �! c� � 2 I

	
of clauses onN .

The least (with respect to set inclusion) setI � Nn which simultaneously satisfies all clauses in
an inductive definition� is calledinductively definedby�.

The special thing about inductive definition is the principle ofproof by induction on the definition
which says:

1.4.2 Theorem If I � Nn is inductively defined by an inductive definition� and' is a “prop-
erty” which is preserved by all clauses in�, i.e.

P� �! c� 2 � ^ (8s2 P�)'(s) ) '(c�);

then all elements of the setI have the property', i.e.

(8s2 I)['(s)]:

Proof Obvious. �

1.4.3 ObservationAn inductive definition� induces an operator

��:Pow(N
n) �! Pow(Nn)

by defining

��(S) :=
�
c (9P )[P �! c 2 � ^ P � S]

	
which is monotonic, i.e.

S � T � Nn ) ��(S) � ��(T ):

Generalizing the situation in Observation 1.4.3 we make the following definition.

14



1.5. The stages of an inductive definition

1.4.4 Definition LetN be a set. Ann–arygeneralized monotone inductive definitiononN is a
monotone operator

�:Pow(Nn) �! Pow(Nn):

A setS � Nn is closed under�, if �(S) � S.
A setF � Nn is afixed–pointof � iff �(F ) = F .
The least fixed–point (with respect to set–inclusion) of an operator� is calledthefixed–point of
�.

1.4.5 Observation Every generalized monotone inductive definition� on a setN possesses a
least fixed–pointI� which is the intersection of all�–closed sets.

Proof Let

M� :=
�
S �(S) � S

	
and

I� :=
\
M�:

ForS 2M� we haveI� � S and thus�(I�) � �(S) � S by monotonicity. Thus

�(I�) �
\
M� = I�: (i)

From (i) we obtain

�(�(I�)) � �(I�) (ii)

again by monotonicity. Hence�(I�) 2M� which entails

I� � �(I�): (iii)

But (i) and (iii) show thatI� is a fixed–point and by definition ofI� this has to be the least one.
�

1.5 The stages of an inductive definition

1.5.1 Definition For an arbitrary operator�:Pow(Nn) �! Pow(Nn) we define its�–th iter-
ation�� by

�0(S) := S

��+1(S) := �(��(S))

��(S) := �(
[�

��(S) � < �
	
) for � 2 Lim :

We will frequently use the shorthand

�<�(S) :=
[
�<�

��(S):

We define

I�� := �<�(;) [ �(�<�(;))

and use the shorthand

I<�� :=
[
�<�

I
�
�:

15



1. Proof theoretic ordinals

1.5.2 Lemma For a monotone operator� we have

I�� := �(I<�� ):

1.5.3 Lemma Let �:Pow(Nn) �! Pow(Nn) be an operator. Then there is a least ordinal
j�j < jN j+ such that

I
j�j
� = I

<j�j
� :

We callj�j theclosure ordinalof the operator�.
Proof This is obvious for cardinality reasons. �

1.5.4 Theorem Let� be a generalized monotone inductive definition. Then

I� = I
j�j
� = I

<j�j
� :

Proof Since�(I<j�j� ) = I
j�j
� = I

<j�j
� we haveI j�j� 2M� and thusI� � I

j�j
� . For the opposite

inclusion we prove

I
�
� � I� (i)

by induction on� � j�j. By induction hypothesis we haveI<�� � I� which by monotonicity
entailsI�� = �(I<�� ) � �(I�) = I�: �

The following definition is an obvious generalization of Theorem 1.5.4.

1.5.5 Definition A generalized inductive definition on a setN is an operator

�:Pow(Nn) �! Pow(Nn):

Thefixed–point of a generalized inductive definition� is the setI� := I
j�j
� .

1.5.6 Definition For a generalized inductive definition� andn 2 I� we define

jnj� := min
�
� n 2 I

�
�

	
:

1.5.7 Theorem Let� be an generalized inductive definition on a setN . Then

j�j = sup
�
jnj� + 1 n 2 I�

	
:

Proof By definition we have

� := sup
�
jnj� + 1 n 2 I�

	
� j�j: (i)

Assuming� < j�j we getI<�� $ I�� and find somex 2 I� such that� � jxj� < jxj� + 1 � �.
A contradiction. �
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1.6. Positively definable inductive definitions

1.6 Positively definable inductive definitions

1.6.1 Definition Let S = (S; � � �) be some infinite structure andF a class ofL(S)–formulas.
We will now and for ever assume thatF contains all atomic formulas and is closed under the
positive boolean operations_ and^ and substitution with relations definable by formulas inF .
An operator

�:Sn �! Sn

isF–definableon the structureS iff there is anF–formula'(~x;X; ~y) and a tuple~a of elements
of S such that

�(M) =
�
~y 2 Sn S j= '[~y;M;~a]

	
:

If F is the class of first order formulas we call� first order or – synonymously –elementarily
definable.
We denote the operator defined by a formula'(X;~x) by �' and the fixed–point of�' by I'.
Anaologously we write shortlyI�' instead ofI��' , j'j instead ofj�'j andjxj' instead ofjxj�' .

1.6.2 Definition The class ofX–positiveL(S)–formulas is the least class containing all atomic
formulas without occurrences ofX and all atomic formulas of the shape~t 2 X which is closed
under the positive boolean operations_ and^ and under arbitrary quantifications.

1.6.3 ObservationAny operator�' which is defined by anX–positive formula is monotone. We
call such operatorspositive.

Proof Show

M � N ^ S j= '[M;~n] ) S j= '[N;~n]

for all ~n 2 Sk by induction on the length of theX–positive formula'(X;~x). �

1.6.4 Definition Let F be a class ofL(S)–formulas. A relationR � Sn is calledpositively
F–inductiveon the structureS = (S; � � �) if there is anX–positive formula'(X;~x; ~y) in F and
a tuple~s 2 Sm such that

~x 2 R , (~x;~s) 2 I':

In the case thatF is the class of first order formulas we talk aboutpositively inductiverelations.

1.6.5 Theorem Every positively inductive relation on a structureS is�1
1-definable.

Proof This follows immediately from Observations 1.6.3 and 1.4.5. �

1.6.6 Definition The ordinal

�S := sup
�
j'j '(X;~x) is anX–positive elementaryL(S)–formula

	
is called theclosure ordinalof the structureS.

1.7 Well–founded trees and positive inductive definitions

We now leave the general situation and return to the structureN of arithmetic.
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1.7.1 Definition A tree is a set of (codes for) finite number sequences which is closed under
initial sequences. I.e.

T is a tree :, T � Seq ^ (8t2 T )[s � t! s 2 T ];

wheres � t stands forlh(s) � lh(t) ^ (8i < lh(s))[(s)i = (t)i].
A path in a treeT is a subsetf � T which is linearly ordered by and closed under�.
A tree is well–founded if it has no infinite path.
For anodes 2 T in a well–founded tree we define

otypT (s) := sup
�
otypT (s

_hyi) s_hyi 2 T
	

and

otyp(T ) := otypT (h i):

1.7.2 Definition Let T be a tree. We define theX–positive formula

'T (X; x) :, (8y)[x_hyi 2 T ! x_hyi 2 X ]:

1.7.3 Lemma LetT be a well–founded tree ands 2 T . Thens 2 IotypT (s)'T .

Proof We induct onotypT (s). If otypT (s) = 0 then there is nox 2 S such thats_hxi 2 T .
Hence'T (;; s) which entailss 2 I0'T . Now letotypT (s) > 0. For everys_hxi 2 T we have
� := otypT (s

_hxi) < otypT (s). By induction hypothesis we therefore obtains_hxi 2 I�'T �

I
<otypT (s)
'T . Hence'T (I

<otypT (s)
'T ; s) which entailss 2 IotypT (s)'T . �

1.7.4 Corollary For a well–founded treeT we havejsj'T � otypT (s) for all s 2 T . Hence
j'T j � otyp(T ).

For a treeT and a nodes 2 T we define the restriction ofT aboves as

T �s :=
�
t 2 Seq s_t 2 T

	
:

ApparentlyT �s is again a tree. IfT �s possesses an infinite pathP then there is ans_hyi 2 T

such that the tail ofP aboves belongs toT �s_hyi. This shows thatT �s is well-founded if
T �s_hyi is well–founded for alls_hyi 2 T .

1.7.5 Lemma LetT be a tree ands 2 T . If s 2 I'T thenT �s is well–founded andotyp(T �s) �
jsj'T .

Proof The proof is by induction onjsj'T . If jsj'T = 0 then we have'T (;; s), i.e. (8x)[s_hxi =2
T ]. HenceT �s = h i and otyp(T �s) = 0: If jsj'T > 0 we have(8x)[s_hxi 2 T )

s_hxi 2 I
<jsj'T
'T ]. Then by induction hypothesisT �s_hxi is well–founded for alls_hxi 2 T

andotyp(T �s_hxi) < jsj': This implies thatT �s is well-founded, too andotyp(T �s) � jsj':

�

As a consequence of Corollary 1.7.4 and Lemma 1.7.5 we obtain

1.7.6 Theorem A treeT is well-founded iffh i 2 I' and for well-founded treesT we have
otyp(T ) + 1 = j'j.
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Proof Let T be well–founded. Thenh i 2 I' by Lemma 1.7.3. If converselyh i 2 I' then
T = T �h i is well–founded by Lemma 1.7.5. For a well-founded treeT we get by Corollary 1.7.4
and Lemma 1.7.5

otypT (s) = otyp(T �s) � jsj'T � otypT (s):

Hence

T well–founded̂ s 2 T ) otypT (s) = jsj'T (1.9)

and

otyp(T ) = otyp(T �h i) = jh ij'T < jsj'T

for all s 2 T . But j'T j = sup
�
jsj'T + 1 s 2 I'

	
= jh ij'T + 1 = otyp(T ) + 1. �

1.7.7 Theorem The�1
1–relations onN are exactly the positively inductive relations .

Proof By Theorem 1.6.5 we know that all positively inductive relations are�1
1 definable. Con-

versely letR be a�1
1–relation. Then there is a�1

1–formula(8 ~X)�( ~X; ~x) such that by Theorem
1.7.6

~s 2 R , N j= (8 ~X)�( ~X;~s)

, S
�( ~X;~s) is well–founded

, h i 2 I'S
�( ~X;~s)

:

(i)

�

1.7.8 Theorem (Stage Theorem) If
�

(9x)['(X;~x) ^ ~x =2 X ];�(X;Y ) for a finite set
�(X;Y ) ofX–positive formulas thenN j=

W
�[I<2

�

' ; S] for any setS � N.

Proof To show the theorem by induction on� we need a more general statement. For anX–
positive formula'(X;~x) and a tuple~t = (~t1; : : : ;~tn) of terms we introduce the formula

'~t1;:::;~tn(X;~x) :, '(X;~x) _ ~x = ~t N1 _ : : : _ ~x = ~t Nn : (i)

We claim

s 2 I�' ) I�'s � I�+�' : (ii)

We prove (ii) by induction on�. Let x 2 I�'s . Then'(I<�'s ; x) _ x = s which implies by
induction hypothesis implies'(I<�+�' ; x) _ x = s. Together with the hypothesiss 2 I�' �

I�+�' this yieldsx 2 I�+�' .
Let S be an arbitrary subset ofN. We show

�
(9x)['(X;~x) ^ ~x =2 X ];~t1 =2 X; : : : ;~tn =2 X;�[X;Y ] ) N j= �[I<2

�

'~t1 ;:::;~tn
; S] (iii)

for a finite set�[X;Y ] of X–positive formulas by induction on�. If (iii) holds by (Ax ) then
�[X;Y ] contains a formula~s 2 X such that~s N = ~t Ni for somei 2 f1; : : : ; ng. Since~t Ni 2

I<2
�

'~t1;:::;~tn
we obtainN j=

W
�[I<2

�

'~t1;:::;~tn
; S].

If the last inference is� ��
(9x)['(X;~x) ^ ~x =2 X ];~t1 =2 X; : : : ;~tn =2 X;��[X;Y ] � 2 J

	
)

�
(9x)['(X;~x) ^ ~x =2 X ];~t1 =2 X; : : : ;~tn =2 X;�[X;Y ]

then we have by induction hypothesis

N j=
_

��[I
<2�0
'~t1;:::;~tn

; S] (iv)
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for all � 2 J . HenceN j=
W
��[I<2

�

'~t1 ;:::;~tn
; S] for all � 2 J which entailsN j=

W
�[I<2

�

'~t1;:::;~tn
; S]

by the soundness of the inferences of the infinitary calculus.
The really interesting case is
�0

(9x)['(X;~x) ^ ~x =2 X ];~t1 =2 X; : : : ;~tn =2 X; '(X;~s) ^ ~s =2 X;�[X;Y ] )
�
(9x)['(X;~x) ^ ~x =2 X ];~t1 =2 X; : : : ;~tn =2 X;�[X;Y ]:

(v)

From the premise in (v) we obtain
�0

(9x)['(X;~x) ^ ~x =2 X ];~t1 =2 X; : : : ;~tn =2 X; '(X;~s);�[X;Y ] (vi)

and
�0

(9x)['(X;~x) ^ ~x =2 X ];~t1 =2 X; : : : ;~tn =2 X; ~s =2 X;�[X;Y ]: (vii)

From the induction hypothesis for (vii) we obtain

N j=
_

�[I<2
�0

'~t1 ;:::;~tn;~s
; S]: (viii)

Assuming

N 6j=
_

�[I<2
�

'~t1 ;:::;~tn
; S] (ix)

we also have

N 6j=
_

�[I<2
�0

'~t1 ;:::;~tn
; S] (x)

which together with the induction hypothesis for (vi) imply

N j= '(I<2
�0

'~t1 ;:::;~tn
; ~s): (xi)

Hence

~s 2 I2
�0

'~t1;:::;~tn
(xii)

which by (ii) implies

I<2
�0

'~t1;:::;~tn;~s
� I<2

�0 �2
'~t1;:::;~tn

� I<2
�

'~t1;:::;~tn
(xiii)

By (xiii) and (viii) we finally obtain

N j=
_

�[I<2
�

'~t1 ;:::;~tn
; S]

contradicting (ix). So we have (iii). The theorem, however, is a special case of (iii). �

In a special situation we can sharpen the Stage Theorem.

1.7.9 Definition For an order relation� let

'�(X; x) :, (8y� x)[y 2 X ] (1.10)

andAcc(�) := I'� . We callAcc(�) theaccessible partof �. By Acc�(�) := I�'� we denote
the�th stage of the accessible part.

1.7.10 ObservationFor a well-founded relation� we have

x 2 Acc�(�) , otyp�(x) � �:

More precisely we havejxj'� = otyp�(x) for all x 2 �eld(�).
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1.7. Well–founded trees and positive inductive definitions

To sharpen the Stage Theorem in the case of an accessibility definition, we need some additional
notions. For a transitive relation� let

��(X) := X [
�
x (8y� x)[y 2 X ]

	
(1.11)

and

���(X) := ��(X [ �<�� (X)) (1.12)

where

�<�� (X) :=
[
�<�

���(X):

Then we obviously have

Acc�(�) = ���(;): (1.13)

For a setM � Acc(�) let enM enumerate the set
�
jnj'� n 2 Acc(�) nM

	
: We define a new

operator

R��(X) := X [
�
n2Acc(�) jnj'� � enX(�)

	
: (1.14)

SinceenX[fsg(�) � enX(�+ 1) we obviously have

R��(X [ fxg) � R�+1� (X) [ fxg (1.15)

ForR<�� (X) :=
S
�<�R

�
�(X) we claim

R��(X) = ��(R
<�
� (X)): (1.16)

To prove the inclusion from left to right in (1.16) letn 2 R��(X). If n 2 X , we are done
becauseX � ��(R

<�
� (X)). Otherwise we havejnj'� � enX(�). Letm � n. If enX(�) <

jmj'� < jnj'� � enX(�) for all � < � we havem 2 X � R<�� (X). Otherwise we have
jmj'� � enX(�) for some� < �. This shows

(8m� n)[m 2 R<�� (X)];

i.e. n 2 ��(R
<�
� (X)).

For the opposite direction assumen 2 ��(R
<�
� (X)). Again we are done ifn 2 X . Otherwise

we have

(8m� n)[m =2 X ) jmj'� < enX(�)]:

Pick an�–minimalm � n such that
�
k m � k � n

	
� X andm =2 X . Then jmj'� =

enX(�) for some� < � and thereforejnj'� = enX (� + 1) � enX(�). If such anm does not
exist we have eitherjnj'� = enX(0) � enX (�) or (8m� n)(9k � n)[m � k � n ^ k =2 X ]
which implies(8m� n)[jmj'� < jkj'� < enX(�)]. So we havejnj'� � enX(�) in any case
which impliesn 2 R��(X). �

SinceX [ R<�� (X) = R<�� (X) we obtain from (1.16)

���(X) = R��(X) (1.17)

immediately by induction on�.

1.7.11 Lemma (Boundedness Lemma ) LetProg(X;�) :� (8x)[(8y� x)(y 2 X) ! x 2 X ]
and assume

�
:Prog(�; X); t1 =2 X; : : : ; tn =2 X; ;�(X;Y )

for a transitive relation� and a finite set�(X;Y ) ofX–positive formulas. Then
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1. Proof theoretic ordinals

N j=
_

�[���(ft
N

1 ; : : : ; t
N

ng); S]

holds for any setS � N.

Proof We use (1.17) and prove

�
:Prog(�; X); t1 =2 X; : : : ; tn =2 X; ;�(X;Y ) ) N j=

_
�[R��(ft

N

1 ; : : : ; t
N

ng); S]: (i)

The proof parallels that of Theorem 1.7.8 but due to (1.15) with a sharper bound.
If (i) holds by (Ax) then�[X;Y ] contains a formulas 2 X such thatsN = tNi for somei 2
f1; : : : ; ng. SincetNi 2 R

�
�(~t1; : : : ;~tn) we obtainN j=

W
�[R��(~t1; : : : ;~tn); S].

If the last inference is� ��
:Prog(�; X); t1 =2 X; : : : ; tn =2 X;��[X;Y ] � 2 J

	
)

�
:Prog(�; X); t1 =2 X; : : : ; tn =2 X;�[X;Y ]

then we have by induction hypothesis

N j=
_

��[R
�0
� (~t1; : : : ;~tn); S] (ii)

for all � 2 J . HenceN j=
W
��[R��(~t1; : : : ;~tn); S] for all � 2 J which by the soundness of the

inferences entailsN j=
W
�[R��(~t1; : : : ;~tn); S].

The really interesting case is
�0
:Prog(�; X); t1 =2 X; : : : ; tn =2 X; (8y� s)[y 2 X ] ^ s =2 X;�[X;Y ] )

�
:Prog(�; X); t1 =2 X; : : : ; tn =2 X;�[X;Y ]:

(iii)

From the premise in (iii) we obtain
�0
:Prog(�; X); t1 =2 X; : : : ; tn =2 X; (8y� s)[y 2 X ];�[X;Y ] (iv)

and
�0
:Prog(�; X); t1 =2 X; : : : ; tn =2 X; s =2 X;�[X;Y ]: (v)

From the induction hypothesis for (v) we obtain

N j=
_

�[R�0� (~t1; : : : ;~tn; ~s); S] (vi)

which together with (1.15) imply

N j=
_

�[R�0+1� (~t1; : : : ;~tn) [ f~sg; S]: (vii)

Assuming

N 6j=
_

�[R��(~t1; : : : ;~tn); S] (viii)

we also have

N 6j=
_

�[R�0� (~t1; : : : ;~tn); S] (ix)

which together with the induction hypothesis for (iv) imply

N j= (8y� s)[y 2 R�0� (~t1; : : : ;~tn)] i.e. s 2 ��(R
�0
� (ft1; : : : ; tng)): (x)

Hence

s 2 R�0+1� (~t1; : : : ;~tn) � R��(~t1; : : : ;~tn): (xi)

By (xi) and (vii) we finally obtain
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1–ordinal of an axiom system

N j=
_

�[R��(t1; : : : ; tn); S]:

So we have (i). The Lemma, however, follows from (i) and (1.16). �

From the Boundedness Lemma together with (1.13) we obtain the next theorem.

1.7.12 Theorem (Boundedness Theorem) For any arithmetical definable transitive relation�

and a finite set ofX–positive arithemetical formulas we have

�
:Prog(�; X);�[X;Y ] ) N j= (8Y )

�_
�[Acc�(�); Y ]

�
:

1.7.13 Theorem It is �N = !CK

1 .

Proof If � is a recursive well–ordering then by Observation 1.7.10 we obtainotyp(�) �
j'�j � �N. Since!CK

1 = sup
�
otyp(�) � is recursive

	
this implies!CK

1 � �N.
For anX– positive formula'(X;~x) we have

~s 2 I' , N j= (8X)[(8~x)('(X;~x)! ~x 2 X) ! ~s 2 X ]

, (9�<!CK

1 )
� �

: (8~x)('(X;~x)! ~x 2 X); ~s 2 X
�

) (9�<!CK

1 )
�
N j= ~s 2 I2

�

'

�
:

(i)

Since� < !CK

1 implies 2� < !CK

1 we havej'j � !CK

1 for all positive elementary inductive
definitions. Hence�N � !CK

1 . �

1.8 The�1
1–ordinal of an axiom system

1.8.1 Definition For a theoryAx in the language of (2nd–order) arithmetic we define

jjAx jj�1
1
:= sup

�
tc(F ) F 2 �1

1 ^ Ax F
	
:

We calljjAx jj�1
1

the�1
1–ordinal ofAx .

We are going to show that the�1
1–ordinal and the proof theoretic ordinal defined in (1.1) coincide.

1.8.2 Lemma For a well–ordering� we have

otyp(�) � tc(TI (�; X)):

Proof Apply the Boundedness Theorem (Theorem 1.7.12) and Observation 1.7.10. �

For a primitive recursive well-ordering� ands 2 �eld(�) we obtain by an easy induction on
otyp�(s)

5�(otyp�(s)+1)

: (8x)[(8y� x)(y 2 X)! x 2 X ]; s 2 X: (1.18)

From (1.18) and Lemma 1.8.2 we obtain the following theorem.

1.8.3 Theorem For an arithmetical definable well–ordering� we have

otyp(�) = tc(TI (�; X)):

We just want to remark that this can be extended to�
1

1–definable well–orderings. Details are in [2].
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1. Proof theoretic ordinals

1.8.4 Lemma For any axiom systemAx in the language of (2nd–order) arithmetic we have

jjAx jj � jjAx jj�1
1
:

Proof This is an immediate consequence of Theorem 1.8.3. �

1.8.5 Lemma If Ax is an axiom system comprisingPA thenjjAx jj = jjAx jj�1
1
.

Sketch of the proof Assume thatAx is a theory comprisingPA and let(8~Y )F (~Y ) be a�1
1-

sentence. Denote by�S
F(~Y )

the KLEENE–BROUWERordering in the search treeS
F (~Y ) for F (~Y )

and assume thatAx 6 TI (�S
F (~Y )

; X) . Then there is a modelM j= Ax and an assignment
T �M forX such thatM 6j= TI (�S

F (~Y )
; X)[T ]. Therefore there is an infinite path, sayP �M,

throughS
F (~Y ) which is definable by an first order formula with parameterT . According to the

Semantical Main Lemma we get assignments�(Yi) � M for all Yi belonging to~Y which are
definable by first order formulas with parameterT . Since we have induction inM for first order
formulas we obtainM 6j= F (~Y )[�] as in the proof of the Semantical Main Lemma using a local
truth predicate. HenceAx 6 F (~Y ) and we have shown

Ax F (~Y )) Ax TI (�S
F (~Y )

; X):

Since�S
F (~Y )

is primitive recursively definable and we havetc(F (~Y )) � otyp(�S
F (~Y )

) � jjAx jj

for Ax F (~Y ) this impliesjjAx jj�1
1
� jjAx jj. �

1.8.6 Theorem Let Ax be a�1
1–set of arithmetical sentences. The theoryAx is �1

1–sound iff
jjAx jj < !CK

1 :

Proof If jjAx jj < !CK

1 we havejjAx jj�1
1
< !CK

1 and thusN j= F for all F such thatAx F by

Theorem 1.3.17. If converselyAx is�1
1–sound then

�
tc(F ) Ax F

	
is a�1

1–definable subset
of !CK

1 . HencejjAx jj = jjAx jj�1
1
= sup

�
tc(F ) Ax F

	
< !CK

1 : �

The following theorem is an immediate consequence of Theorem 1.8.3.

1.8.7 Theorem

jjAx jj � sup
�
otyp(�) �2 PR ^ Ax TI (�)

	
� sup

�
otyp(�) �2 �1

0 ^ Ax TI (�)
	

� sup
�
otyp(�) �2 �1

1 ^ Ax TI (�)
	

� jjAx jj�1
1
= jjAx jj

1.8.8 Theorem (Kreisel) LetAx be a theory which containsPA. Then

jjAx jj�1
1
= jjAx + F jj�1

1

holds for every true�1
1–sentenceF .

Proof Assume

Ax + F TI (�; X) (i)

for a primitive recursive ordering�. Then

Ax :F _ TI (�; X) (ii)
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which implies
�
: F;TI (�; X) (iii)

for some� < jjAx jj�1
1
. ForF � (9Y )F0(Y ) we obtain from (iii)

�
: Prog(�; X);:F0(Y ); (8x 2 �eld(�))[x 2 X ] (iv)

which by the Boundedness Theorem (Theorem 1.7.12) implies

N j= :F0[S] _ (8x2 �eld (�))[x 2 Acc�(�)] (v)

for every setS � N. SinceN j= (9Y )F0(Y ) there is a setS � N such thatN j= F0[S] and we
obtain from (v)

N j= (8x2 �eld (�))[otyp�(x) � �]: (vi)

Hence

jjAx + F jj�1
1
= jjAx + F jj � jjAx jj�1

1
:

The opposite inequality holds obviously. �

It follows from KREISEL’s theorem that the�1
1–ordinal of an axiom system does not characterize

its arithmetical power. Therefore more refined notions of proof theoretic ordinals have been
developed (e.g. in [12]). Most recently BEKLEMISHEV could define the�0

n–ordinal of a theory
for all levels of the arithmetical hierarchy using iterated reflection principles. All these notions,
however, need a representation of ordinals either by notation systems or by elementarily definable
order relations onN. But it can be shown that different representations satisfying mild conditions
yield the same proof theoretic ordinals.
In this lecture we will concentrate on the computation of the�1

1 ordinals. In the second part
Weierman will say something about the�0

2–ordinal ofPA which characterizes its provably recur-
sive functions. We just want to mention that the computations we are going to show areprofound
ordinal analysesin the sense of [11] and [12] and thus also comprise a computation of the the�0

2

ordinals. But we don’t want to give details about that here.
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2. The ordinal analysis forPA

2.1 Logic

To fix the logical frame we introduce a formal system for first order logic (without identity) which
is based on a one sided sequent calculus `a la TAIT .

2.1.1 Definition

(AxL)
m
�; A;:A for anym, if A is an atomic formula

(_) If
m0

�; Ai for somei 2 f1; 2g, then
m
�; A1 _ A2 for all m > m0

(^) If
mi

�; Ai andmi < m for all i 2 f1; 2g, then
m
�; A1 ^ A2

(9) If
m0

�; A(t), then
m
�; (9x)A(x) for all m > m0

(8) If
m0

�; A(u) andu not free in�; (8x)A(x), then
m
�; (8x)A(x) for all m > m0.

One should observe the similarity of this calculus to the truth definition given in Definition 1.3.10.
By an easy induction onm we obtain

2.1.2 Lemma If
m
� thenj=

W
�.

Using the technique of search trees one can also prove the completeness of this calculus. I.e. we
have

2.1.3 Theorem A formula of first order predicate calculus is logically valid iff there is a natural
numberm such that

m
F .

We will omit the proof which is very similar to the proof of the!–completeness theorem. One
has to modify the definition of search tree in the obvious way. The Syntactical Main Lemma
then follows as before. To show the Semantical Main Lemma one assumes that the search tree
contains an infinite path and constructs a term model together with an assignment of terms to
the free variables such that all formulas occurring in the infinite path become false under this
assignment.
One of the consequences of the completeness theorem for the TAIT–calculus is the admissibility
of the cut rule. We obtain

2.1.4 Theorem If
m
�; F and

n
�;:F then there is ak such that

k
�.

But Theorem 2.1.5 does not say anything about the size ofk. Therefore one augments the clauses
in Definition 2.1.1 by a cut rule

(Cut) If rnk(F ) < r,
m

r �; F and
m

r ;�:F then
n

r � for all n > m

and replaces
m
�; : : : in all clauses by

m

r �; : : :. The subscriptr is thus a measure for the
complexity of all cut formulas occurring in the derivation. Obviously we have

m
� ,

m

0
�.

2.1.5 Theorem (Gentzen’s Hauptsatz) If
m

r � then
2r(m)

0
�where2r(x) is defined by20(x) =

x and2n+1(x) = 22n(x)
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2. The ordinal analysis forPA

We will not prove the Hauptsatz but leave it as an exercise which should be solved after having
seen the cut–elimination for the semi–formal calculus which we are going to introduce in 2.3.3.

2.1.6 Theorem Let �(~x) be a finite set of formulas in the the language of arithmetic with all
number variables shown. Then

m
�(~x) implies

m
� (~n) for all tuples~n of numerals.

Theproofof Theorem 2.1.6 is straightforward by induction onm using the obvious property

sN = tN and
�
� (s) )

�
� (t): (2.1)

2.2 The theoryNT

Instead of analyzing the axioms inPA we do that for a richer language which has constants for
all primitive recursive functions and relations.
The languageL(NT ) is a first order language which contains set parameters denoted by capital
Latin lettersX , Y , Z, X1, . . . and constants for0 and all primitive recursive functions and rela-
tions. We assume that the symbols for primitive recursive functions are built up from the symbols
Cnk for the constant function,Pnk for the projection on then-th component,S for the successor
function by a substitution operatorSub and the recursion operatorRec.
The theoryNT comprises the universal closure of the following formulas:

The successor axioms

(8x)[:0 = Sx]

(8x)(8y)[S(x) = S(y)) x = y]

The defining axioms for function and relation symbols which are the universal closures of the
following formulas

Cnk (x1; : : : ; xn) = k

Pnk (x1; : : : ; xn) = xk

Sub(g; h1; : : : ; hm)(x1; : : : ; xn) = g(h1(x1; : : : ; xn)) : : : (hm(x1; : : : ; xn))

Rec(g; h)(0; x1; : : : ; xn) = g(x1; : : : ; xn)

Rec(g; h)(Sy; x1; : : : ; xn) = h(y;Rec(g; h)(y; x1; : : : ; xn); x1; : : : ; xn)

(x1; : : : ; xn) 2 R$ �R(x1; : : : ; xn) = 0

The scheme of Mathematical Induction

F (0) ^ (8x)[F (x)! F (S(x))]! (8x)F (x)

for all L(NT )-formulasF (u).

The identity axioms

(8x)[x = x]

(8x)(8y)[x = y ! y = x]

(8x)(8y)(8z)[x = y ^ y = z ! x = z]

(8~x)(8~y)[x1 = y1 ^ : : : ^ xn = yn ! f(x1; : : : ; xn) = f(y1; : : : ; yn)]

(8~x)(8~y)[x1 = y1 ^ : : : ^ xn = yn ! (R(x1; : : : ; xn)! R(y1; : : : ; yn))]

(8x)(8y)[x = y ! (x 2 X ! y 2 X)]:

If NT F there are finitely many axiomsA1; : : : ; An of NT such that:A1 _ � � � _ :An _ F

is logically valid. Due to the completeness of the TAIT–calculus (cf. Theorem 2.1.3) we therefore
have the following theorem.
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2.2.1 Theorem LetF be a formula which is provable inNT . Then there are finitely many axioms
A1; : : : ; An and anm < ! such that

m
:A1; : : : ;:An; F .

2.3 The upper bound

It follows from Theorems 2.1.3 and 2.1.6 that we have
m
:A1; : : : ;:An; F (2.2)

for the provable pseudo�1
1–sentences ofNT . In order to determine the�1

1–ordinal ofNT we
have to computetc(F ). Our strategy will be the following. First we compute an upper bound,
say�, for the truth complexities of all axioms inNT . This gives

�
A i (2.3)

for all axiomsAi. Then we extend the infinitary calculus for the truth definition to an infinitary
calculus with cut and use the cut rule to get rid of all the axioms. Then we eliminate the cuts. If
we succeed in controlling the length of an infinite derivation during the cut elimination procedure
we will obtain an upper bound for the truth complexity ofF .
We start with the computation of the truth complexities of the axioms ofNT .
All numerical instances of the defining axioms for primitive recursive function and relations be-
long to the diagramD(N). Therefore we obtain their universal closure by a finite number of

applications of thê –rule. The same is true for all identity axioms except the last one. But there
we observe

5
(8x)(8y)[x = y ! (x 2 X ! y 2 X)] :

So we have

tc(F ) < ! (2.4)

for all mathematical and identity axioms except induction. What really needs checking is the truth
complexity of the scheme of Mathematical Induction. Here we need the following lemmas.

2.3.1 Lemma (Tautology Lemma) For everyL(NT )-formula we have
2�rnk(F )

�;:F; F .

The proof is by induction onrnk(F ).

2.3.2 Lemma (Induction Lemma) For any natural numbern and anyL(NT )-sentenceF (n)
we have

2�[rnkF (n))+n]
:F (0);:(8x)[F (x) ! F (S(x))]; F (n) :

The proof by induction onn is very similar to that of (1.18). Forn = 0 this is an instance of the
Tautology Lemma. For the induction step we have

2�[rnkF (n))+n]
:F (0);:(8x)[F (x) ! F (S(x))]; F (n) (i)

by the induction hypothesis and obtain

2�rnkF (n))
:F (0);:(8x)[F (x)! F (S(x))];:F (S(n)); F (S(n)) (ii)

by the Tautology Lemma. From (i) and (ii) we get by(
^
)

2�[rnkF (n))+n]+1
:F (0);:(8x)[F (x) ! F (S(x))]; F (n) ^ :F (S(n)); F (S(n)) : (iii)
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2. The ordinal analysis forPA

By a clause(9) we finally obtain

2�[rnkF (n))+n]+2
:F (0);:(8x)[F (x)! F (S(x))]; F (S(n)) : �

By Lemma 2.3.2 we havetc(G) � ! + 4 for all instancesG of the Mathematical Induction
Scheme. Together with (2.4) we get

!+4
A i i.e. tc(Ai) � ! + 4 (2.5)

for all identity and non-logical axiomsAi of NT .

2.3.3 Definition For a finite set� of pseudo�1
1–sentences we define the semi–formal provability

relation
�

� � inductively by the following clauses

(Ax ) sN = tN )
�

� �; s 2 X; t =2 X

(
^

) If F 2
^

–type\� and(8G 2CS (F ))
h
�G

� �; G & �G < �
i

then
�

� �

(
_

) If F 2
_

–type\� and(9G 2CS (F ))
� �G
� �; G & �G < �

�
then

�

� �

(cut) If
�0

� �; F ;
�0

� �;:F andrnk(F ) < � then
�

� � for all � > �0.

We callF themain formulaof the clauses(
^
) and(

_
). The main formulas of an axiom(Ax )

ares 2 X andt =2 X . A cut possesses no main formula.
Observe that we have

�

0
� ,

�
� : (2.6)

Hence
m
� )

m

0
� (2.7)

by Theorem 2.1.6. There are some obvious properties of
�

� � which are proved by induction on
�.

2.3.4 Lemma (Soundness) If
�

� F1; : : : ; Fn thenN j= (F1 _ � � � _ Fn)[�] for every assign-
ment� of subsets ofN to the set parameters inF1; : : : ; Fn.

2.3.5 Lemma (Structural Lemma) If
�

� � then
�

� � holds for all� � �, � � � and� � �.

2.3.6 Lemma (Inversion Lemma) IfF 2
^

–type and
�

� �; F then
�

� �; G for all G 2

CS (F ).

2.3.7 Lemma (_–Exportation) If
�

� �; F1 _ � � � _ Fn then
�

� �; F1; : : : ; Fn.

2.3.8 Lemma If F 2 D(N) and
�

� �;:F then
�

� �.

2.3.9 Lemma (Reduction Lemma) Let� = rnk(F ) for F 2
^

–type,F � (s 2 X) or F �

(s =2 X). If
�

� �; F and
�

� �;:F then
�+�

� �;�.
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Proof The proof is by induction on�. If :F is not the main formula in
�

� �;:F then we have

the premises
��

� ��; F for � 2 I . If I = ; then�\D(N) 6= ; which entails�;�\D(N) 6= ; and

we obtain
�+�

� �;� by an inference(
^

) with empty premise. Otherwise we get

�+��

� �;� (i)

by the induction hypothesis and obtain
�+�

� �;� from (i) by the same inference.

Now assume that:F is the main formula. If� = 0 then:F is atomic. IfF 2
^

–type we have

F 2 D(N) and obtain
�+�

� �;� by Lemma 2.3.8 and Lemma 2.3.4. IfF � (s 2 X) we show

�

� �;� (ii)

by a side induction on�. First we observe that there is a formulat 2 X with tN = sN in � since
�

� �;:F holds by(Ax ) . If F is not the main formula of
�

� �; F then we have the premises
��

� ��; F for � 2 I . If I = ; we get
�

� �;� directly and forI 6= ; from the induction hypothesis
by the same inference. IfF is the main formula we are in the case of(Ax ) which entails that
there is a formular =2 X in � with rN = sN = tN. But then we obtain

�

� �;� by (Ax). The

caseF � (s =2 X) is symmetrical. From (ii) we get
�+�

� �;� by the Structural Lemma.

Now assume� > 0. Then:F 2
_

–type and we have the premise

�0

� �;:F;:G (iii)

for someG 2 CS (F ). Then we obtain

�+�0

� �;�;:G (iv)

by induction hypothesis. From
�

� �; F we obtain

�+�0

� �;�; G (v)

by the Inversion and the Structural Lemma. Sincernk(G) < rnk(F ) = � we obtain the claim
from (iv) and (v) by (cut). �

2.3.10 Lemma (Basic Elimination Lemma) If
�

�+1
� then

2�

� �.

Proof Induction on�. If the last inference is not a cut of complexity� we obtain the claim
immediately from the induction hypothesis and the fact that�� : 2� is order preserving. The
critical case is a cut

�0

�+1
�; F ;

�0

�+1
�;:F )

�

�+1
� with rnk(F ) = �. By the induction

hypothesis and the Reduction Lemma we obtain
2�0+2�0

� � and we have2�0 + 2�0 = 2�0+1 �
2�. �

Observe that our language so far only comprises formulas of finite rank. But we have designed
the semi–formal calculus in such a way that it will also work for languages with formulas of
complexities� !. The following results masters also this situation.

2.3.11 Lemma (Predicative Elimination Lemma) If
�

�+!�
� then

'�(�)

�
�.

Proof Induction on� with side induction on�. For � = 0 we obtain
2�

�
� by the Basic

Elimination Lemma which, since2� � !� = '0(�), entails the claim. Now assume� > 0. If
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2. The ordinal analysis forPA

the last clause was not a cut of rank� � we obtain the claim from the induction hypotheses and
the fact that the functions'� are order preserving. Therefore assume that the last inference is

�0

�+!�
�; F

�0

�+!�
�;:F )

�

�+!�
�

such that� � rnk(F ) < �+!�. But then there is an ordinal� such thatrnk(F ) = �+� which,
writing � in CANTOR normal form, meansrnk(F ) = �+!�1+: : :+!�n < �+!�. Hence�1 < �

and, putting� := �1, we getrnk(F ) < �+!� �(n+1). By the side induction hypothesis we have
'�(�0)

�
�; F and

'�(�0)

�
�;:F . By a cut it follows

'�(�0)+1

�+!��(n+1)
�. If we define'0�(�) := � and

'n+1� (�) := '�('
n
�(�)) we obtain from� < � by n + 1–fold application of the main induction

hypothesis
'n+1� ('�(�0)+1)

�
�. Finally we show'n�('�(�0) + 1) < '�(�) by induction onn.

Forn = 0 we have'0�('�(�0) + 1) = '�(�0) + 1 < '�(�) since�0 < � and'�(�) 2 Cr(0).
For the induction step we have'n+1� ('�(�0)+1) = '�('

n
�('�(�0)+1)) < '�(�) since� < �

and'n�('�(�0) + 1) < '�(�) by the induction hypothesis. Hence
'�(�)

�
�. �

By iterated application of the Predicative Elimination Lemma we obtain

2.3.12 Theorem(Elimination Theorem) Let
�

� � such that� =NF !�1 + : : : + !�n .

Then
'�1 ('�2 (���'�n (�)���))

0
�:

2.3.13 Theorem(The upper bound forNT ) If NT F thentc(F ) < "0. Hence

jjNT jj = jjNT jj�1
1
� "0:

Proof If NT F we get by (2.3) and (2.5)

!+!

r F (i)

for r := maxfrnk(A1); : : : ; rnk(An)g < !. By the Elimination Theorem (or just by iterated
application of the Basis Elimination Lemma) this entails

'r0(!+!)

0
F: (ii)

Hence
'r0(!+!)

F and we gettc(F ) < "0 since'r0(! + !) < "0 for all finite r. �

2.4 The lower bound

We want to show that the bound given in Theorem 2.3.13 is the best possible one. By Theo-
rem 1.8.7 it suffices to have Theorem 2.4.1 below.

2.4.1 Theorem For every ordinal� < "0 there is a primitive recursive well-order� on the
natural numbers of order type� such thatNT TI (�; X).

The first step in proving Theorem 2.4.1 is to represent ordinals below"0 by primitive recursive
well-orders. This is done by an arithmetization. We simultaneously define a setOn � N and a
relationa � b for a; b 2 On together with an evaluation mapj � j:On �! On such thatOn and
� become primitive recursive anda � b , jaj < jbj. We put

� 0 2 On andj0j = 0
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2.4. The lower bound

� If z1; : : : ; zn � On andz1 � : : : � zn thenhz1; : : : ; zni 2 On andjhz1; : : : ; znij = !jz1j +
: : :+ !jznj

and

� a � b : , a 2 On ^ b 2 On ^ [(a = 0 ^ b 6= 0)
_ (lh(a) < lh(b) ^ (8i < lh(a))((a)i = (b)i))
_ (9i < minflh(a); lh(b)g)(8j < i)((a)j = (b)j ^ (a)i � (b)i)].

Observe thatOn and� are defined by simultaneous course of values recursion and thence are
primitive recursive. It is also easy to check thata � b , jaj < jbj. The orderhOn;�i is
a well-order of order type"0. We may therefore represent every ordinal� < "0 by an initial
segment�� of the well-order�. Thus we can talk about ordinals< "0 in L(NT ). We will not
distinguish between ordinals and their representations inL(NT ) and regard formulas as(8�)[: : :]
as abbreviations for(8x)[x 2 On ! : : :] as well as(9�)[: : :] as abbreviation for(9x)[x 2

On ^ : : :]. We also write� < � instead of� � �. We introduce the following formulas:

� � � X :, (8�)[� < �! � 2 X ]

� Prog(X) :, (8�)[� � X ! � 2 X ]

� TI(�;X) :, Prog(X)! � � X

Our aim is to showTI(�;X) for all � < "0. Since"0 = sup
�
expn(!; 0) n 2 !

	
andTI(0; X)

holds trivially we are done as soon as we succeed in proving

NT TI(�;X) ) NT TI(!�; X) (2.8)

becauseNT TI(�;X) and� < � obviously entailsNT TI(�;X). The first observation is

NT F (X) ) NT F (
�
x G(x)

	
) (2.9)

for all L(NT )-formulasG. The formulaF (
�
x G(x)

	
) is obtained fromF (X) by replacing all

occurrences oft 2 X byG(t) and those oft =2 X by:G(t). To prove (2.9) assume

NT F (X) (i)

and letS be an arbitraryL(NT )-structure and� an assignment of subsets ofN to the set variables
such that

S j= NT [�]: (ii)

We have to show

S j= F (
�
x G(x)

	
)[�]: (iii)

Define a new assignment

	(Y ) :=

�
�(Y ) if Y 6= X�
n 2S S j= G(x)[n;�]

	
otherwise.

Then

S j= F (X)[	] iff S j= F (
�
x G(x)

	
)[�]: (iv)

We claim

S j= NT [	]: (v)

Then (v) together with (i) and (iv) prove (iii). To check (v) we have only to take care of formulas
in NT which contain the set variableX . This can only happen in instances of the scheme of
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2. The ordinal analysis forPA

Mathematical Induction or in identity axioms. Let

I(X) :, H(X; 0) ^ (8x)[H(X; x)! H(X;S(x))]! (8x)H(X; x)

be an instance of Mathematical Induction. We have

S j= I(X)[	] iff S j= I(
�
x G(x)

	
)[�]: (vi)

The right formula in (vi), however, holds by (ii) sinceH(
�
x G(x)

	
; x) is also a formula inNT .

Instances of identity axioms are treated analogously. �

The above proof shows the importance of formulating Mathematical Induction as a scheme.
Let

J (X) :=
�
� (8�)[� � X ! � + !� � X ]

	
denote thejumpof X . Then, if we assume

NT Prog(X)! Prog(J (X)); (i)

we obtain

NT TI(�;J (X))! TI(!�; X): (ii)

To prove (ii) assume (working informally inNT ) TI(�;J (X)), i.e.

Prog(J (X))! � � J (X) (iii)

which entails

Prog(J (X))! � 2 J (X): (iv)

Choosing� = 0 in the definition of the jump turns (iv) into

Prog(J (X))! !� � X; (v)

which, together with (i), gives

Prog(X)! !� � X; (vi)

which isTI(!�; X). Once we have (ii) we also get (2.8) becauseTI(�;X) impliesTI(�;J (X))
by (2.9).
It remains to prove (i). Again we work informally inNT . Assume

Prog(X): (vii)

We want to proveProg(J (X)) i.e. (8�)[� � J (X)! � 2 J (X)]. Thus, assuming also

� � J (X); (viii)

we have to show� 2 J (X). i.e.(8�)[� � X ! �+!� � X ]. That means that we have to prove
� 2 X under the additional hypotheses

� � X (ix)

and

� < � + !�: (x)

If � < � we obtain� 2 X by (ix). Let � � � < � + !�. If � = 0 the� = � and we obtain� 2 X
by (ix) and (vii). If � > 0 then there is a� < � and a natural number (i.e. a numeral inNT ),
such that� < !� + : : :+ !�| {z }

n�fold

=: !� � n (c.f. the proof of the Predicative Elimination Lemma).

We show
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2.4. The lower bound

� < �! � + !� � n � X (xi)

by induction onn. Forn = 0 this is (ix). Forn := m+ 1 we have

� + !� �m � X (xii)

by the induction hypothesis. From� < � we obtain� 2 J (X) from (viii). This together with
(xii) entails� + !� � n = � + !� �m+ !� 2 X . This finishes the proof of (i), hence also that of
(2.8) which in turn implies Theorem 2.4.1. �

Summing up we have shown

2.4.2 Theorem (Ordinal Analysis ofNT ) jjNT jj = jjNT jj�1
1
= "0.

As a consequence of Theorem 2.3.13 and Theorem 2.4.1 we get

2.4.3 Theorem There is a�1
1–sentence(8X)(8x)F (X; x)which is true in the standard structure

N such thatNT F (X;n) for all n 2 N butNT 6 (8x)F (X; x) .

To prove the theorem chooseF (X; x) :, Prog(X)! x 2 On! x 2 X: �

Theorem 2.4.3 is a weakened form of GÖDEL’s Theorem. G̈ODEL’s Theorem says that Theo-
rem 2.4.3 holds already for a�0

1-sentence(8x)F (x).
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3. Ordinal analysis of non iterated inductive
definitions

3.1 The theoryID1

We want to axiomatize the theory for positively definable inductive definitions over the natural
numbers. According to Theorem 1.7.7 we can express�1

1–relations by inductivley defined rela-
tions. Therefore we can dispend with set parameters in the theory and we will do so to save some
case distinctions (and also to give examples for some of the phenomena which are characteristic
for impredicative proof theory).

3.1.1 Definition The languageL(ID1) comprises the language ofNT . For everyX–positive
formulaF (X;~x) we introduce a new relation symbolIF whose arity is the length of the tuple~x.
The theoryID1 comprisesNT (but in the language without set parameters) together with the
defining axioms for the set constants

(ID1
1)(8x)[F (IF ; ~x) ! x 2 IF ]

and

(ID1
2)ClF (G) ! (8x)[x 2 IF ! G(x)],

where

ClF (G) � (8x)[F (G; ~x)! G(~x)]

expresses that the “class”
�
~x G(~x)

	
is closed under the operator�F induced byF (X;~x). The

notionF (G; ~x) stands for the formula obtained fromF (X;~x) replacing all occurrencest 2 X

byG(t) andt =2 X by:G(t).

The standard interpretation forIF is of course the least fixed pointIF as introduced in Definition
1.6.1. The following theorem is left as an exercise.

3.1.2 Theorem

N j= ~n 2 IF , N j= (8X)[ClF (X)! ~n 2 X ]

ID1 (8x)[F (IF ; ~x)$ ~x 2 IF ]

3.2 The languageL1(NT )

We extend the language ofL(NT ) to an infinitary language containing infinitely long formulas.

3.2.1 Definition (The languageL1;!(NT )) We define the languageL1;!(NT ) as a TAIT–
language parallel to Definition 1.3.1. It contains the same non logical symbols. The logical
symbols are augmented by the infinite boolean operations

_
and

^
. The atomic formulas are

unaltered. The language is closed under all first order operations and we have the additional
clause
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3. Ordinal analysis of non iterated inductive definitions

� If hF� j � 2 Ii is a infinite sequence ofL1;!(NT )–formulas containing at most finitely many

free variables then̂
�2I

F� and
_

�2I
F� areL1;!(NT )–formulas.

Again we are interested in the sentences ofL1;!(NT ). The set of sentences is denoted by
L1(NT ).

The semantics forL1(NT ) is defined in the obvious way. We get

j=
^
�2I

F� :, N j= F� for all � 2 I

and

j=
_
�2I

F� :, N j= F� for some � 2 I:

Then it is obvious that we have

�
^
�2I

F� 2
^

–type

and

�
_
�2I

F� 2
_

–type

and

� CS (
^
�2I

F�) = CS (
_
�2I

F�) = hF� j � 2 Ii.

The definition of the validity relation as given in Definition 1.3.10 now carries over to the language
L1(NT ). Observe that we can dipsense with rule(Ax) because we don’t have set parameters.
By an easy induction on� we get

3.2.2 Lemma For any finite set� ofL1(NT )–sentences we have

�
� ) N j=

_
�:

Since we only deal with sentences the completeness of the validity relation is much easier to
show.

3.2.3 Definition For every formulaF in L1(NT ) we define its rankrnk(F ) by

rnk(F ) := sup
�
rnk(G) + 1 G 2 CS (F )

	
:

By an easy induction onrnk(F ) we obtain

3.2.4 Lemma For F 2 L1(NT ) we have

N j= F )
rnk(F )

F :

3.3 Inductive definitions andL1(NT )

The stages of an inductive definition overN can be easily expressed inL1(NT ).
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3.4. The semi–formal system forL1(NT )

3.3.1 Definition LetF (X;~x) be a formula inL(NT ). By recursion on� � !1 we define

~t 2 I<�F :�
_
�<�

F (I<�F ;~t)

and dually

~t =2 I<�F :�
^
�<�

:F (I<�F ;~t):

As a shorthand we also use

~t 2 I�F :� F (I<�F ;~t)

and

~t =2 I�F :� :F (I<�F ;~t):

It it obvious that we have

N j= ~t 2 I�F , ~tN 2 I�F (3.1)

whereI�F denotes the stages of the inductive definiton induced byF in the sense of Definition
1.6.1.
For the rest of the lecture we will only regard the fragment ofL1(NT ) which is obtained from
the sentences defined in Definition 3.3.1 by closing them under first order operations.
If F (X;~x) is anX–positiveL(NT )–formula, we know by Theorem 1.7.13jF j � !CK

1 . Hence

IF = I
<!CK1
F = I<!1F . Let us use
 as a symbol for either!CK

1 or !1. There is an obvious
embedding of the languageL(ID1) into our fragment ofL1(NT ).

3.3.2 Lemma If G is anL(ID1)–sentence we obtainG� by replacing all occurrences ofIF in G
by I<
F . Then

N j= G , N j= G�:

3.4 The semi–formal system forL1(NT )

We introduced the theoryID1 as a pure first order theory (i.e. a theory wich does not allow
the formation of pseudo�1

1–sentences). Our observations in Section 1.1, however, based on the
possibility of formation of pseudo�1

1–sentences. Therefore we have to start with a discussion in
what sense a computation of the�1

1–ordinal forID1 is possible.
Our first observation is that extending the theoryID1 to a theoryIDext

1 by adding free set param-
eters yields a conservative extension. This is obvious because any model forID1 can be extended
to a model forIDext

1 by assigning first order definable subsets of the domain of the model to
the set variables. In the extended theoryIDext

1 is makes sents to talk about provable pseudo
�1
1–sentences.

We are going to show that the computation of the ordinal

�ID1 := sup
�
jnjF F (X; x) isX–positive ^ ID1 n 2 IF

	
yields an ordinal analysis forIDext

1 . First we remarke that
�
jnjF ID1 n 2 IF

	
is a recursiv-

ley enumerable set which implies�ID1 < !CK

1 .
Next we observe

IDext
1 TI (�; X) , ID1 (8x2 �eld(�)) [x 2 Acc(�)] : (3.2)
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3. Ordinal analysis of non iterated inductive definitions

To check (3.2) letF�(X; x) :� x 2 �eld(�) ^ (8y� x)[y 2 X ]. ThenIDext
1 TI (�; X)

meansIDext
1 ClF�(X) ! (8x2 �eld(�))[x 2 X ]. HenceIDext

1 ClF�(Acc(�)) !

(8x 2 �eld(�))[x 2 Acc(�)]. But sinceClF�(Acc(�)) is an axiom ofIDext
1 this entails

ID
ext
1 (8x2 �eld(�))[x 2 Acc(�)]. For the opposite direction we observe thatClF�(X) !

(8x)[x 2 Acc(�) ! x 2 X ] is an axiom ofIDext
1 . So fromIDext

1 (8x2 �eld(�))[x 2

Acc(�)]we immediatly getClF�(X)! (8x)[x 2 �eld(�)! x 2 X ], i.e. IDext
1 TI (�; X).

From (3.2) we getotyp(�) = sup
�
otyp�(x ) x 2 �eld(�)

	
� sup

�
jxjF� x 2 Acc(�)

	
�

�ID1 for every relation� with IDext
1 TI (�; X).

But we also have

ID1 ~t 2 IF , IDext
1 ClF (X)! ~t 2 X: (3.3)

The direction from left to right holds since(8x)ClF (X) ! ~t 2 IF ! ~t 2 X is an instance
of the axiomID1

2 and the opposite direction follows becauseID1 ~t 2 IF is obvious from the
the instantiationClF (IF ) ! t 2 IF and the axiomsClF (IF ).
By the Stage Theorem 1.7.8 and (3.3) we then obtain�ID1 � jjIDext

1 jj�1
1
. Hence

jjIDext
1 jj � �ID1 � jjIDext

1 jj�1
1
= jjIDext

1 jj

which confirms our decision not to include set parameters.
First we observe

3.4.1 Lemma We have
�
� ;~t 2 I<
F )

�
� ; I<�F

which means

jnjF � tc(n 2 I<
F ):

The proof is a straightforward induction on� which we omit since a similar property (Lemma
3.4.13) will be needed and proved for the semi–formal calculus below.
It becomes clear from Lemma 3.4.1 that the computation of an upper bound for�ID1 can be
done analogously to that of an upper bound forjjNT jj�1

1
. Therfore the first step should be the

computation of the truth complexities for the axioms ofID1. Here we have even to be carful
in transfering Theorem 2.1.6. The sentencen 2 IF is an atomic sentence ofL(ID1) but not an
atomic sentence ofL1(NT ). But observe that because ofrnk(~t 2 I<
F ) � 
 we obtain by the
Tautology Lemma (Lemma 2.3.1)



� ;~t =2 I<
F ;~t 2 I<
F : (3.4)

Thus Theorem 2.1.6 modifies to

3.4.2 Theorem If
m
�(~x) holds for a finite set ofL(ID1)–formulas then


+m
� (~n) for all

tuples~n of numerals.

The truth complexities of the defining axioms for primitive recursive functions and relations are of
course not altered. More caution is again needed for the identity axioms which of course include
the scheme

(8~x)(8~y)[~x = ~y ! ~x 2 IF ! ~y 2 IF ]:

But here we get


+n
(8~x)(8~y)[~x = ~y ! ~x 2 I<
F ! ~y 2 I<
F ]

for somen < !. By the Induction Lemma (Lemma 2.3.2) we obtain
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3.4. The semi–formal system forL1(NT )


+!+4
G�

for all instancesG of the scheme of Mathematical Induction inID1. It remains to check the truth
complexities for the axiomsID1

1 andID1
2. By Lemma 3.2.4 we obtain


+n
ClF (I

<

F )

sincernk(ClF (I<
F )) = 
 + n for somen < !.
The same is of course also true for all instances of the axiomID1

2.
These observations show that the ordinal analysis forID1 needs something new. The truth com-
plexities for the axioms ofID1 are above
. The ordinal�ID1 , however, is an ordinal< 

(regardless of the interpretation of
). Since a validation proof for a sentence~n 2 I<
F does not
contain
–branchings it is also clear thattc(~n 2 I<
F ) < 
. So we need additional conditions
which allow us to collapse the ordinal assigned to the infinitary derivations for sentences of the
form ~n 2 I<
F into ordinals below
.
But there is still another reason why cut–elimination alone cannot solve our problem. We define
the semi–formal system for the languageL1(NT ) as in Definition 2.3.3. Again we can dispense
with the rule(Ax ) because we do not have set parameters. But now we obtain the following
theorem.

3.4.3 Theorem Let� be a finite sets ofL1(NT )–sentences. Then
�

� � )
�
� :

Proof We prove
�

� �;� and N 6j= F for all F 2 � )
�
� (i)

by induction on�. The proof depends heavily on the fact that we only have sentences inL1(NT ).
In the case of a cut we have the premises

�0

� �;�; F (ii)

and
�0

� �;�;:F (iii)

and eitherN 6j= F or N 6j= :F . Using the induction hypothesis on the corresponding premise we
get the claim. The remaining cases are obvious. �

It follows from Theorem 3.4.3 that cut–elimination cannot be the crucial point in the ordinal anal-
ysis ofID1. The same is of course also true for stronger theories.The hallmark for impredicative
proof theory is not longer cut–elimination but collapsing.Since ordinals above
 are in general
not collapsable into ordinal below
 we have to control the ordinals assigned to the derivations.
We follow the concept ofoperator controlled derivationswhich was introduced in [3] as a sim-
plification of the method of local predicativity introduced in [9]. However, we will not copy
BUCHHOLZ’ proof but introduce a variant which even sharper pinpoints the role of collapsing.

3.4.4 Definition A Skolem–hull operatoris a functionH which maps sets of ordinals on sets of
ordinals satisfying the conditions

� For allX � On it is X � H(X)

� If Y � H(X) thenH(Y ) � H(X).

3.4.5 Definition For a sentenceG in our fragment ofL1(NT ) we define
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3. Ordinal analysis of non iterated inductive definitions

par (G) :=
�
� I<�F occurs inG

	
:

For a finite set� of sentences of our fragment ofL1(NT ) we define

par (�) :=
[
F2�

par(F ):

3.4.6 Definition For a Skolem–hull operator we define the relationH
�

� � by the clauses(
^

),

(
_

) and (cut) of Definition 2.3.3 with the additional conditions that we always have

� � 2 H(par(�))

and for an inference

H
�i

� �� for � 2 I ) H
�

� �

with finite I also

� par(��) � H(par (�)).

We define

H1 � H2 :, (8X)�On[H1(X) � H2(X)]:

A Skolem–hull operatorH is Cantorian closediff

� f0;
g � H(;),

� H(;) \ 
 is transitive

and it satisfies

� � 2 H(X) , SC (�) � H(X) for any setX of ordinals.

For a setX � On and an operatorH let

� H[X ] := �� :H(X [ �) .

When writingH
�

� � we tacitly assume thatH is a Cantorian closed Skolem–hull operator. The
Structural Lemma of Section 2.3 extents to

3.4.7 Lemma If H1 � H2, � � �, � � �, � � �, � 2 H2(par (�)) andH1
�

� � thenH2
�

� �.

The remaining facts of Section 2.3 carry over to controlled semi–formal derivations.

3.4.8 Lemma (Inversion Lemma) IfF 2
^

–type andH
�

� �; F thenH[par (F )]
�

� �; G for

all G 2 CS (F ).

3.4.9 Lemma (_–Exportation) IfH
�

� �; F1 _ � � � _ Fn thenH
�

� �; F1; : : : ; Fn.

3.4.10 Lemma If F 2 D(N) andH
�

� �;:F thenH
�

� �.

3.4.11 Lemma (Reduction Lemma) LetF 2
^

–type,� = rnk(F ) andpar (F ) � H(par (�)).

If H
�

� �; F andH
�

� �;:F thenH
�+�

� �;�.
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Proof The proof is of course very similar to that of Lemma 2.3.9 but we need to put extra care
on the controlling operator. We induct on�. Let us first assume that the critical formula of

the last inference “H
��

� �i;:F for � 2 I ) H
�

� �;:F ” is different from:F . Then we

still havepar (F ) � H(par(�)) and obtainH
�+��

� �;�� by the induction hypothesis. Since
� + �� < � + � – and in the case of finiteI alsopar (�;��) � H(par (�;�)) – we obtain

H
�+�

� �;� by the same inference.

Now assume that:F is the main formula of the last inference inH
�

� �;:F . Then we have the

premiseH
�0

� �;:F;:G for someG 2 CS (F ) with

par (�; F;G) � H(par (�; F )) (i)

and obtainH
�+�0

� �;�;:G by the induction hypothesis. By inversion, the Structural Lemma

and the hypothesispar (F ) � H(par (�)) � H(par (�;�)) we also haveH
�+�0

� �;�; G. It is
rnk(G) < � but to apply a cut we also have to check

par (�;�; G) � H(par (�;�)): (ii)

But this is secured by (i) and the hypothesispar (F ) � H(par (�)) � H(par (�;�)). �

3.4.12 Theorem(Cut elimination for controlled derivations) LetH be a Cantorian closed Skolem–
hull operator. Then

(i) H
�

�+1
� ) H

2�

� �

and

(ii) H
�

�+!�
� and � 2 H(par (�)) ) H

'�(�)

�
�.

Proof We show (i) by induction of�. If the last inferenceH
��

�+1
�� for � 2 I ) H

�

�+1
�

is not a cut of rank� we haveH
2��

� �� by induction hypothesis andpar(��) � H(par(�)) in

the case of finiteI . So we getH
2�

� � by the same inference.

In case that the last inference is a cutH
�0

�+1
�; F H

�0

�+1
�;:F ) H

�

�+1
� of rank� we

obtainH
2�0

� �; F andH
2�0

� �;:F by the induction hypothesis. But eitherF 2
^

–type or

:F 2
^

–type andpar (F ) = par(:F ) � H(par (�)). Therefore we may apply the Reduction

Lemma (Lemma 3.4.11) and the fact that2�0 + 2�0 � 2� to obtainH
2�

� �. �

We close this section by showing a extension of Lemma 3.4.1 to operator controlled derivations.
This will be one of the key properties of the collapsing procedure in the following section.

3.4.13 Lemma (Boundedness) IfH
�

� �(
~t 2 I

<�
F ) thenH[f�g]

�

� �(
~t 2 I

<
F ) holds for all 

such that� �  � �.

Proof We induct on�. In the cases that~t 2 I
<�
F is not the main formula of the last inference

H
��

� ��(~t 2 I
<�

F ) for � 2 I ) H
�

� �(~t 2 I
<�

F ) (i)

we get

H[f�g]
��

� ��(~t 2 I
<
F ) (ii)
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3. Ordinal analysis of non iterated inductive definitions

by induction hypothesis. IfI is finite we havepar (��(~t 2 I
<�
F )) � H(par (�(~t 2 I

<�
F ))) which

entailspar (��(~t 2 I
<
F )) � H[f�g](par (�(~t 2 I

<
F ))) and we obtain

H[f�g]
�

� �(~t 2 I
<
F ) (iii)

from (ii) by the same inference.
If ~t 2 I

<�
F is the main formula we are in the case of an(

_
) inference with the premise

H
�0

� �0;~t 2 I
<�
F ;~t 2 I

�
F (iv)

for some� < �. Applying the induction hypothesis twice we obtain

H[f�; �g]
�0

� �0;~t 2 I
<
F ;~t 2 I�0F : (v)

From �0 2 H(par (�0;~t 2 I
<�
F ;~t 2 I

�
F )) and � 2 H(par (�0;~t 2 I

<�
F )) we obtain�o 2

H(par (�0; I
<�
F )) � H[f�g](par (�0; I

<
F )) andH[f�; �g](par (=))H[f�g](par ()). Since�0 <

� �  we can apply an inference(
_

) to obtain

H[f�g]
�

� �0;~t 2 I
<
F : �

3.5 The collapsing theorem forID1

LetH by an Cantorian close operator. We define its iterationsH�.

3.5.1 Definition For X � On let H�(X) be the least set of ordinals containingX [ f0;
g
which is closed underH and the collapsing function H�� where

 H(�) := min
�
� � =2 H�(;)

	
:

We need a few facts about the operatorsH�. Here it is comfortable to think on
 as the first
uncountable cardinal. Interpreting
 as!CK

1 makes the following considerations much harder.
First we observe

jH�(X)j = maxfjX j; !g (3.5)

which implies

 H(�) < 
 (3.6)

showing that H is in fact collapsing. Clearly the operatorsH� are Cantorian closed and cumu-
lative, i.e.

� � � ) H� � H� and  H(�) �  H(�): (3.7)

Since for� 2 H�(;) \ � we get H(�) 2 H�(;) we have

� 2 H�(;) \ � )  H(�) <  H(�): (3.8)

From (3.8) we get

H�(;) \ 
 =  H(�): (3.9)

The “�”–direction follows from the definition of H(�) and (3.6). For the opposite inclusion
observe that H(�) is strongly critial and show

� 2 H�(;) \ 
 ) � <  H(�)
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3.5. The collapsing theorem forID1

by induction on the definition of� 2 H�(;). In case that� =  H(�) we have� 2 H�(;) \ �
which by (3.8) implies� =  H(�) <  H(�).
From (3.9) we see that all the iterationsH� are again Cantorian closed operators.

3.5.2 Lemma LetH be an Cantorian closed operator. Then(H�)�(X) = H�+�(X) for all X
and H�

(�) =  H(�+ �).

Proof This is a straight forward induction on�. �

The following observation will be crucial for the ordinal analysis ofID1.

3.5.3 Definition We say that a sentence in our fragment ofL1(NT ) is in
_


–type if it does not

contain subformulas of the shape~t =2 I<
F .

3.5.4 Lemma (Collapsing Lemma) Let� �
_


–type such thatpar (�) � H(;) and

H
�



:ClF1(I

<

F1

); : : : ;:ClFk (I
<

Fk

);�. ThenH!�+1

 H(!
�)



�.

The proof is by induction on�. The key property is

� 2 H(;) and !� <  )  H(!
�) <  H() (i)

which is obvious by (3.8) since we have!� 2 H(;) \  � H(;) \ . Other observations are

H(par (�)) = H(;) (ii)

becausepar(�) � H(;) and

� 2 H(;) ) !� 2 H!�+1(;) and  H(!�) 2 H!�+1(;) (iii)

which is clear by (3.7) and definition.
Let us first assume that the main part of the last inference

H
��



:ClF1(I

<

F1

); : : : ;:ClFk (I
<

Fk

);��

for � 2 I

�
) H

�



:ClF1(I

<

F1

); : : : ;:ClFk(I
<

Fk

);� (iv)

belongs to a sentence in�. Observe thatpar(:ClF1(I
<

F1

); : : : ;:ClFk(I
<

Fk

)) = f
g. So we
only have to bother about the parameters of�. We claim

par (��) � H(;): (v)

If I is finite then we havepar (��) � H�+1(par(�)) = H(;) becausepar (�) � H(;).

If I is infinite the main formula of the inference is~t =2 I
<�
F for � < 
 because� �

_

–type.

Then�� = �; G for G 2 CS (~t =2 I
<�
F ) which means thatpar(��) � par (�) [ f�g for some

� < �. But � 2 H(;) \ 
 entails� � H(;) by transitivity. Hencepar (��) � H(;) for all � 2 I
and the proof of (v) is completed.
Next we claim

�� �
_


–type: (vi)

This follows from� �
_


–type for inferences which are no cuts. In case that the inference

in (iv) is a cut its cut–sentence is of rank< 
 which ensures that it belongs to
_


–type, too.
Because of (v) and (vi) the induction hypothesis applies to the premises of (iv) and we obtain

H!��+1

 H(!
�� )



��: (vii)
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3. Ordinal analysis of non iterated inductive definitions

From �� 2 H(;) we obtain H(!��) <  H(�) by (i) and from� 2 H(;) also H(!�) 2
H!�+1(;). Since alsopar (��) � H(;) � H!�+1(;) we obtain

H!�+1

 H(!
�)



� (viii)

from (vii) by the same inference.
Now assume that the main formula ot the last inference is

:ClFi(I
<

Fi

) � (9x)[Fi(I
<

Fi
; x) ^ x =2 I<
Fi ]: (ix)

Then we have the premise

H
�0



:ClF1(I

<

F1

); : : : ;:ClFk (I
<

Fk

); Fi(I
<

Fi
; t) ^ t =2 I<
Fi ;� (x)

with �0 2 H(par (�) [ f
g) = H(;). By inversion we obtain from (x)

H
�0



:ClF1(I

<

F1

); : : : ;:ClFk (I
<

Fk

); Fi(I
<

Fi
; t);� (xi)

and

H
�0



:ClF1(I

<

F1

); : : : ;:ClFk (I
<

Fk

); t =2 I<
Fi ;�: (xii)

Applying the induction hypothesis to (xi) and then using boundedness gives

H!�0+1

 H(!
�0 )



Fi(I

< H(!
�0 )

Fi
; t);�; (xiii)

i.e.

H!�0+1

 H(!
�0 )



t 2 I

 H(!
�0 )

Fi
;�: (xiv)

From (xii) we obtain by inversion

H
�0



:ClF1(I

<

F1

); : : : ;:ClFk (I
<

Fk

); t =2 I
 H(!

�0 )
Fi

;� (xv)

which entails

H!�0+1

�0



:ClF1(I

<

F1

); : : : ;:ClFk(I
<

Fk

); t =2 I
 H(!

�0 )
Fi

;�: (xvi)

Since H(!�0) 2 H!�0+1(;) the induction hypothesis applies to (xvi) and we obtain

(H!�0+1)!�0+1
 H(!

�0+!�0 )



t =2 I

 H(!
�0 )

Fi
;�: (xvii)

By Lemma 3.5.2 this entails

H!�0+1+!�0+1

 H(!
�0+!�0 )



t =2 I

 H(!
�0 )

Fi
;�: (xviii)

Now we obtain

H!�+1

 H(!
�)



�

from (xiv) and (xvii) by the Structural Lemma and (cut). �

3.5.5 Remark Although we will not need it for the ordinal analysis ofID1 we want to remark
that the Collapsing Lemma may be strengthened to

H
�


+1
:ClF1(I

<

F1

); : : : ;:ClFk (I
<

Fk

);� ) H!�+1

 H(!
�)

 H(!
�)
�:

Fork = 0 it can be modified to
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H
�



� ) H�+1

 H(�)

 H(�)
�

Proof We have to do three things. First we observe that in the case of a cut of rank< 
 we
havepar (F ) � H(;) \
 � H!� \
 =  H(!

�). Sincernk(F ) < max par(F ) + ! we obtain
rnk(F ) <  H(!

�). If the cut rank is
+ 1 we have the additional case of a cut of rank
. Then
the cut sentence ist 2 I<
F and we have the premises

H
�0


+1
:ClF1(I

<

F1

); : : : ;:ClFk (I
<

Fk

);�; t 2 I<
F (i)

and

H
�0


+1
:ClF1(I

<

F1

); : : : ;:ClFk (I
<

Fk

);�; t =2 I<
F : (ii)

But then we may apply the induction hypothesis to (i) and then proceed as in the last case in the

proof of the Collapsing Lemma. The resulting cut sentence ist 2 I
< H(!

�0 )
F which shows that

the cut sentence has rank<  H(!
�).

Finally we observe that only in this case we needed the fact that!� is additively indecomposable.
This case is not needed ifk = 0 and we may replace!� by �. �

3.6 The upper bound

In order to get an upper bound for�ID1 Theorem 3.4.2 is not longer sufficient. What we need is

3.6.1 Theorem If
m
�(~x) holds for a finite set ofL(ID1)–formulas thenH


+m

0
�(~n) for all

tuples~n of numerals and all Cantorian closed Skolem–hull operatorsH.

The key here is

3.6.2 Lemma (Controlled Tautology) For everyL1(NT )-sentence and Cantorian closed Skolem–

hull operatorH we haveH
2�rnk(F )

0
�;:F; F .

The proof by induction onrnk(F ) is easy. First observe that2 � rnk(F ) 2 H(par (F )) for every
Cantorian closed Skolem–hull operator becausernk(F ) = max par(F ) + n for somen < !.

Assume without loss of generality thatF 2
^

–type. By induction hypothesis we have

H
2�rnk(G)

0
�;:F; F;G;:G (i)

for all G 2 CS (F ). Sincepar (�;:F; F;G;:G) � H(par(�;:F; F;G)) we obtain from (i)

H
2�rnk(G)+1

0
�;:F; F;G; (ii)

for all G 2 CS (F ) by an inference(
_

). From (ii) and2 � rnk(G) + 1 < 2 � (rnk(G) + 1) �

2 � rnk(F ), however, we immediately get

H
2�rnk(F )

0
�;:F; F

by an inference(
^
). �

Now it is an easy exercise to prove Theorem 3.6.1 by induction onm using Lemma 3.6.2 in case
that

m
�;~t 2 IF ;:~t 2 IF holds by (AxL).
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3. Ordinal analysis of non iterated inductive definitions

It is obvious that all defining axioms and also all identity axioms are controlled derivable with a
derivation depth below!. Ruminating the proof of the Induction Lemma (Lemma 2.3.2) shows
that this proof is controlled by any Cantorian closed Skolem–hull operator. Summing up we get

H

+!+4

0
F � (3.10)

for every axiomG of NT in the languageL(ID1) whereH may be an aribtrary Cantorian closed
Skolem–hull operator.
So it remains to check the schemesID1

1 andID1
2. By the Collapsing Lemma (Lemma 3.5.4)

we have only to deal withID1
2.

3.6.3 Lemma (Generalized Induction) LetF (X;~x) be anX–positiveNT formula. Then

H
2�rnk(G)+!�(�+1)

0
:ClF (G); ~n =2 I�F ; G(~n)

holds for any sentenceG(~n) in our fragment ofL1(NT ) and for any Cantorian closed Skolem–
hull operatorH.

From the Generalized Induction Lemma we obtain

H

�2+3

0
:ClF (G); (8~x)[~x 2 I<
F ! G(~x)] (3.11)

which is the translation of the schemeID1
2.

The proof of Lemma 3.6.3 still needs a preparing lemma.

3.6.4 Lemma (Monotonicity Lemma) LetF (X;~x) be anX–positiveL(NT )–formula. Then

H
�

� �;:G(~n); H(~n) for all ~n ) H
�+2�rnk(F )

� �;:F (G;~n); F (H;~n)

for all ~n.

Proof Induction onrnk(F ). In the case thatX does not occur inF (X;~x) we have

H
2�rnk(F )

0
�;:F; F

by the Tautology Lemma (Lemma 3.6.2). In the case thatF � (~x 2 X) we obtain the claim from
the hypothesisH

�

� �;:G(~n); H(~n). The remaining cases are as in the proof of the controlled
Tautology Lemma. �

Proof of the Generalized Induction Lemma. We have

H
2�rnk(G)+!��

0
:ClF (G); ~n =2 I<�F ; G(~n) (i)

by an inference(
^

) with empty premises if� = 0 or by induction hypothesis. From (i) we
obtain

H
2�rnk(G)+!��+2�rnk(F )

0
:ClF (G); ~n =2 I�F ; F (G;~n) (ii)

by the Monotonicity Lemma. By controlled Tautology we have

H
2�rnk(G)

0
:ClF (G); ~n =2 I�F ;:G(~n); G(~n): (iii)

From (ii) and (iii) we get

H
2�rnk(G)+!��+(2�rnk(F ))+1

0
:ClF (G); ~n =2 I�F ; F (G;~n) ^ :G(~n); G(~n) (iv)

by an inference(
^
). From (iv) we finally obtain
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H
2�rnk(G)+!��+2�rnk(F )+2

0
:ClF (G); ~n =2 I�F ; G(~n)

by an inference(
_
). Since2 � rnk(G) + ! � �+2 � rnk(F ) + 2 < 2 � rnk(G) + ! � (�+ 1) we

are done. �

3.6.5 Theorem If ID1 F (~x) then there are finitely many axiomsClF1(I
<

F1

); : : : ;ClFk (I
<

Fk

)
and ann < ! such that

H

�2+!


+n
:ClF1(I

<

F1

); : : : ;:ClFk(I
<

Fk

); F (~m)

holds for any tuple~m of the length of~x and for any Cantorian closed Skolem–hull operator.

Proof If ID1 F (~x) then there are finitely many axiomsA1; : : : ; Ar and a natural numberp
such that

p
:A1; : : : ;:Ar ; F (~x). By Theorem 3.6.1 this implies

H

+p

0
:A�1; : : : ;:A

�
r ; F

�(~m) (i)

for any Cantorian closed Skolem–hull operatorH. From (i), (3.10) and (3.11) we obtain the claim
by some cuts. �

Let B0(X) the least setY � X such thatf0;
g � Y andY is closed under+ and'. Then
B0 is Cantorian closed and we obtain a hierarchyB� of Cantorian closed operators. We put
 (�) :=  B0(�). The ordinal ("
+1) is then the BACHMANN –HOWARD ordinal.

3.6.6 Theorem (The Upper Bound forID1) It is �ID1 �  ("
+1).

Proof If ID1 m 2 IF we obtain by Theorem 3.6.5

B0

�2+!


+n
:ClF1(I

<

F1

); : : : ;:ClFk(I
<

Fk

);m 2 I<
F : (i)

By Theorem 3.4.12 we obtain an� < "
+1 such that

B0
�



:ClF1(I

<

F1

); : : : ;:ClFk(I
<

Fk

);m 2 I<
F : (ii)

From (ii) and the Collapsing Lemma (Lemma 3.5.4) it follows

B!�+1
 (!�)



m 2 I<
F

which by Theorem 3.4.3 impliestc(m 2 I<
F ) �  (!�) <  ("
+1). By Lemma 3.4.1 the claim
follows. �

3.7 The lower bound

3.7.1 Coding ordinals inL(NT )

It follows from the previous sections thatB"
+1(;) is the set of ordinals which turned out to be
relevant in the computation of an upper bound for�ID1 . To prove that ("
+1) is the exact bound
it suffices to proven 2 Acc�(�) for some arithmetical definable relation� and all� <  ("
+1).
If we succeed in showing that for a primitive recursive relation� we have by Observation 1.7.10
jjID1jj =  ("
+1).
Since we cannot talk about ordinals inL(ID1) we need codes for the ordinals inB"
+1(;). The
only parameters occurring onB"
+1(;) are0 and
. Therefore every ordinal inB"
+1(;) pos-
sesses a term notation which is built up from0,
 by the functions+,' and . This term notation,
however, is not unique. In order to show that the set of term notations together with the induced
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3. Ordinal analysis of non iterated inductive definitions

<–relation on the terms is primitive recursive we need a unique term notation. This forces us to
inspect the setB�(;) more closely.
We define

� =NF  (�) :, � =  (�) ^ � 2 B�(;):

Then

� =NF  (�1) ^ � =NF  (�2) ) �1 = �2 (3.12)

since�1 < �2 would imply (�1) <  (�2) by (3.8) because�1 2 B�1(;) � B�2(;). Now we
define a set ofordinal termsT by the clauses

(T0) f0;
g � T

(T1) � =2 SC ^ SC (�) � T ) � 2 T

(T2) � 2 T ^ � =NF  (�) ) � 2 T .

We want to prove

T = B
�(;) (3.13)

for 
� := min
�
� 2 SC 
 < �

	
.

The inclusion� in (3.13) is obvious. Troublesome is the converse inclusion. The idea is of course
to prove

� 2 B
�(;) ) � 2 T (3.14)

by induction on the definition of� 2 B
�(;). We will therefore redefine the setsB�(;) more
carefully by the following clauses.

(B0) f0;
g � Bn
�

(B1) � =2 SC ^ SC (�) � Bn�1
� ) � 2 Bn

�

(B2) � 2 Bn�1
� \ � )  (�) 2 Bn

�

(B3) B� :=
S
n2! B

n
� ^  (�) := min

�
� � =2 B�

	
.

It is easy to check thatB� = B�(;) for all � � 
� which justifies the use of the same symbol 

for the functionsmin
�
� � =2 B�(;)

	
andmin

�
� � =2 B�

	
. So (3.14) can be shown by proving

� 2 Bn
� ) � 2 T (3.15)

for all � < 
� by induction onn. What is still troublesome in pursuing this strategy is case(B2).
In this case we don’t know if (�) is in normal–form, i.e. if� 2 B� . Therefore we show first

3.7.1 Lemma For every ordinal� < 
� the ordinal�nf := min
�
� � � � 2 B�

	
exists and it

is  (�) =NF  (�nf).

Proof Since
� = supn2! '
n

(0) and'n
(0) 2 B� for any� it follows that�nf exists. By

definition [�; �nf) \ B� = ; which impliesB� = B�nf
and thus also (�) =  (�nf). Since

�nf 2 B� = B�nf
we have (�) =NF  (�nf). �

Our troubles are solved as soon as we can show

� 2 Bn
� ) �nf 2 Bn

� : (3.16)

Then we may argue in case(B2) that for� 2 Bn�1
� we also have�nf 2 Bn�1

� and thus�nf 2 T

which entails (�) =NF  (�nf) 2 T .
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3.7. The lower bound

We obtain (3.16) as a special case of the following lemma whose proof is admittedly tedious.
Also we cannot learn much from its proof. Therefore one commonly includes the normal–form
condition into clause(B2) which then becomes

(B2)
0 � 2 Bn�1

� \ � ^ � 2 B� )  (�) 2 Bn
� .

The proof of (3.15) then becomes trivial.

3.7.2 Lemma Let Æ(�) := min
�
� � � � 2 BÆ

	
. Then� 2 Bn

� impliesÆ(�) 2 Bn
� for all

� < 
�.

Proof We show the lemma by induction onn. First observe that by the miminality ofÆ(�) we
get

� 2 H ) Æ(�) 2 H and � 2 SC ) Æ(�) 2 SC : (i)

The lemma is trivial if� 2 BÆ . ThenÆ(�) = �. Therefore we assume

� =2 BÆ : (ii)

Then� < Æ(�) and for� < 
 we get by (3.9)Æ(�) = 
 2 Bn
Æ for anyn. Therefore we may

also assume


 � �: (iii)

We have

� =2 SC ^ � 2 Bn
� ) SC (�) � Bn�1

� : (iv)

Since(
;
�) \ SC = ; we obtain by induction hypothesis

Æ(SC (�)) :=
�
Æ(�) � 2 SC (�)

	
� Bn�1

� \ BÆ : (v)

We are done if we can prove

SC (Æ(�)) � Bn�1
� \ BÆ : (vi)

We prove (vi) by induction on the number of ordinals inSC (�). First assume� =NF �1+ � � �+
�k. Since�j � Æ(�j) 2 H we obtain� � Æ(�1)+ � � �+ Æ(�k) and becauseÆ(�1)+ � � � Æ(�n) 2
BÆ even� < Æ(�1) + � � � Æ(�k). Let i := min

�
j � k �j < Æ(�j)

	
. We claim

Æ(�) = �1 + � � �+ �i�1 + Æ(�i) = Æ(�1) + � � �+ Æ(�i�1) + Æ(�i): (vii)

From (vii) we obtain (vi) by induction hypothesis. Let� := �1 + � � � + �i�1. We have� <

�+ Æ(�i). HenceÆ(�) � �+ Æ(�i). If we assumeÆ(�) < �+ Æ(�i) there is an" 2 BÆ such that
�+�i � � < " < �+Æ(�i). But then we obtain an"1 such that" = �+"1 and�i < "1 < Æ(�i).
But " 2 BÆ entails"1 2 BÆ which contradicts the definition ofÆ(�1).
Next assume� =NF '�1(�2). If Æ(�1) = �1 we immediately obtainÆ('�1(�2)) = '�1(Æ(�2)) =
'Æ(�1)(Æ(�2)) which entails (vi) byinduction hypothesis. If�1 < Æ(�1) and� � Æ(�2) we ob-
tain Æ(�) � Æ(�2) � Æ(�) and (vi) follows by induction hypothesis. So assume�1 < Æ(�1) and
Æ(�2) < �. Let

�3 := min
�
� � � 'Æ(�1)(�)

	
: (viii)

We claim

�3 2 Bn�1
� \ BÆ : (ix)

From (ix) we getÆ(�) � 'Æ(�1)(�3). If we assumeÆ(�) < 'Æ(�1)(�3) we have� = '�1(�2) <
'Æ(�1)(�3). SinceÆ(�) 2 H we obtainÆ(�) =NF '�1(�2). The assumption�1 = Æ(�1) yields
� < Æ(�) = 'Æ(�1)(�2) < 'Æ(�1)(�3) and thus�2 < �3 conctradicting the minimality of�3.
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AssumingÆ(�1) < �1 yieldsÆ(�) < �3 and� < Æ(�) = 'Æ(�1)(Æ(�)) again contradicting the
minimality of �3. So it remains�1 < Æ(�1). But since�1 2 B� this implies�1 < �1 which in
turn entails� < �2 2 BÆ \ Æ(�) contradiction the definition ofÆ(�). Therefore we have

Æ(�) = 'Æ(�1)(�3) (x)

and obtain (vi) from (x) by induction hypothesis and (ix).
It remains to prove (ix). We are done if�3 = 0. If we assume�3 2 Lim we get� =NF
'�1(�2) = 'Æ(�1)(�3) by the continuity of'Æ(�1). Because�1 < Æ(�1) we then obtain�2 = �

contradicting�2 � Æ(�2) < �. It remains the case that�3 = � + 1. Then'Æ(�1)(�) < � =NF
'�1(�2) < 'Æ(�1)(� + 1). Because of�1 < Æ(�1) this implies'Æ(�1)(�) � �2 � Æ(�2) <
� = 'Æ(�1)(� + 1). But�2 = 'Æ(�1)(�) is excluded because otherwise we get'�1(�2) = �2 <

'�1(�2). SinceÆ(�2) 2 Bn�1
� \ BÆ we have shown

BÆ \ Bn�1
� \ ('Æ(�1)(�); 'Æ(�1)(� + 1)) 6= ;: (xi)

To finish the proof we show that in general we have

Bn
� \ ('�(�); '�(� + 1)) 6= ; ) � + 1 2 Bn

� : (3.17)

From (xi) and (3.17) we then obtain�3 2 BÆ \ Bn�1
� , i.e. (ix).

To prove (3.17) we first show

 2 ['�(�); '�(� + 1)) ) SC (�) � SC () (xii)

by induction on the number of elements inSC ().
If  =NF 1+ � � �+k we have1 2 ['�(�); '�(�+1)) and obtainSC (�) � SC (1) � SC ().
If  =NF '1(2) then1 � � because� < 1 entails � �+1 < '�(�). If � = 1 then� = 2
andSC (�) = SC (2) � SC (). If 1 < � then'�(�) � 2 <  < '�(� + 1) and we obtain
SC (�) � SC (2) � SC () by induction hypothesis. If finally 2 SC then = '�(�) = � and
the claim is obvious.
We prove (3.17) by induction onn. Let � 2 Bn

� \ ('�(�); '�(� + 1)). Then� =2 SC and we

haveSC (�) � Bn�1
� . By (xii) we getSC (�) � SC (�) � Bn�1

� . Since0 2 Bn�1
� we also have

SC (� + 1) � Bn�1
� and thus obtain� + 1 2 Bn

� . �

Having establishedB
�(;) = B
� = T we want to develop a primitive recursive notation system
for the ordinals inT . What is still annoying is the normal–form condition in clause(T2). In order
to define a setOn of notions for ordinals inT together with a<–relation inOn by simultaneous
course–of–values recursion we should try to replace the condition� 2 B� in � =NF  (�) by a
condition which refers only to proper subterms of�. We observe that we have

� 2 B� , � = 0 _ � = 
 _

(� =2 SC ^ SC (�) � B�) _

(� =  (�) ^ � 2 B� \ �):

(3.18)

From (3.18) we read off the following definition.

3.7.3 Definition Let

K (�) :=

8<
:
; if � = 0 or � = 
[�

K (�) � 2 SC (�)
	

if � =2 SC

f�g [K (�) if � =  (�).

From (3.18) and Definition 3.7.3 we immediately get

3.7.4 Lemma It is � 2 B� iff K (�) � �.
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3.7.5 Corollary We have� =NF  (�) iff � =  (�) andK (�) � �.

3.7.6 Definition We use the facts about ordinals inT to define setsSC � H � On � N
of ordinal notations together with a finite setK(a) � On of subterms ofa 2 On, relations
�� On � On and�� On � On and an evaluation functionj jO:On �! T by the following
clauses.

Definition ofSC, H andOn.

� h0i 2 On, h1i 2 SC, jh0ijO := 0 andjh1ijO := !1

� If a1; : : : ; an 2 H anda1 � � � � � an thenh1; a1; : : : ; ani 2 On andjh1; a1; : : : ; anijO :=
ja1jO + � � �+ janjO

� If a; b 2 On thenh2; a; bi 2 H andjh2; a; bijO = 'jajO(jbjO)

� If a 2 On andb � a for all b 2 K(a) thenh3; ai 2 SC andjh3; aijO :=  (jajO)

Definition ofK(a).

� K(h0i) = K(h1i) = ;

� K(h1; a1; : : : ; ani) = K(a1) [ � � � [ K(an)

� If b � h2; a; bi thenK(h2; a; bi) = K(a) [ K(b)

� K(h3; ai) = fag [ K(a)

Let a; b 2 On. Thena � b iff one of the following conditions is satisfied.

� a = h0i andb 6= h0i

� a = h1; a1; : : : ; ami, b = h1; b1; : : : ; bni and(9i <m)(8j � i)[aj � bj ^ ai+1 � bi+1] or
(8j �m)[aj � bj ] ^ m < n

� a = h1; a1; : : : ; ani, b 2 H anda1 � b

� a 2 H, b = h1; b1; : : : ; bni anda � b1

� a = h2; a1; a2i, b = h2; b1; b2i and one of the following conditions is satisfied

a1 � b1 anda2 � b

a1 = b1 anda2 � b2

b1 � a1 anda � b2

� a = h2; a1; a2i, a2 � a, b 2 SC anda1; a2 � b

� a 2 SC, b = h2; b1; b2i, b2 � b anda � b1 or a � b2

� a = h3; a1i, b = h3; b1i anda1 � b1

� a = h3; a1i andb = h1i

Fora; b 2 On we definea � b if one of the following conditions is satisfied

� (a)0 6= 2 and(b)0 6= 2 anda = b

� a 2 SC, b1 � a andb = h2; b1; ai

� b 2 SC, a1 � b anda = h2; a1; bi

53



3. Ordinal analysis of non iterated inductive definitions

� a = h2; a1; a2i, b = h2; b1; b2i and one of the following conditions is satisfied

a1 � b1 anda2 � b

a1 = b2 anda2 � b2

b1 � a1 anda � b2.

� The relation� is transitive, reflexive and symmetrical.

Collecting all the known facts aboutT and observing thatOn, SC, H, K (a),� and� are defined
by simultaneous course–of–values recursion we obtain the following theorem.

3.7.7 Theorem The setsOn, H and SC as well as the relations� and� are primitive recursive.
The mapj jO:On �! T is onto such thata � b iff jajO < jbjO anda � b iff jajO = jbjO.

3.7.8 Corollary  ("
+1) < !CK

1 .

3.7.2 The well–ordering proof

In view of Theorem 3.7.7 we may talk about the ordinals inB
�(;) in L(NT ) and thus also in
L(ID1). For the sake of better readability we will, however, not use the codes but identify ordinals
in B
�(;) and their codes. We will denote (codes of ) ordinals by lower case greek letters and
write � < � instead of� � �. We use the abbreviations introduced in Section 2.4.
The aim of this section is to show that there is a primitive recursiv relation<0 such that for every
� <  ("
+1) we getID1 � 2 Acc(<0). The strategy of the proof will be the following.

� We first define a relation<1 which is not longer arithmetical definable but needs a fixed point
in its definition such thatTI1(
; X) holds trivially and then use the well–ordering proof of
Section 2.4 to obtainTI1(�;X) porvable inIDext

1 for all � <1 "
+1.

� Then we use acondensing argumentto show thatTI1(�;X) implies (�) 2 Acc(<0).

3.7.9 Definition For ordinals�, � we define

� � <0 � :, � < � < 
:

By � �0 X we denote the formula(8�<0 �)[� 2 X ].
LetAcc be the fixed point of the operator induced by� �0 X , i.e.Acc � Acc(<0).
For�; � 2 On we define

� � <1 � :, � < � ^ SC (�) \ 
 � Acc.

� �1 X stands for(8�<1 �)[� 2 X ].
Let

� Progi(F ) :� (8� 2 �eld(<i))[(8�<i �)F (�) ! F (�)]

� TIi(�; F ) :� � 2 �eld(<i) ^ Progi(F ) ! (8�<i �)F (�).

Observe that by the axioms ofID1 and Theorem 3.1.2 we have

ID1 � 2 Acc $ � < 
 ^ � � Acc (3.19)

ID1 Prog0(Acc) (3.20)

ID1 Prog0(F ) ! (8�)[� 2 Acc! F (�)] (3.21)
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3.7.10 Lemma ID1 Acc � 
.

Proof SinceProg0(�eld (<0)) holds trivially we getAcc � �eld(<0) =
�
� � < 


	
by

(3.21). �

3.7.11 Lemma Let Prog(F ) :� (8�)[(8� < �)F (�) ! F (�)]. ThenID1 Prog(F ) !

Prog0(F ) and thus alsoID1 Prog(F ) ! (8� 2 Acc)F (�).

Proof (8�<0 �)F (�) implies (8� < �)F (�) for � < 
. Together withProg(F ) we therefore
getF (�), i.e. we haveProg0(F ). Together with (3.21) we obtain the second claim, too, �

3.7.12 Lemma (ID1) The classAcc is closed under ordinal addition.

Proof LetAcc+ :=
�
� (8� 2 Acc)[� + � 2 Acc]

	
. We claim

Prog0(Acc+): (i)

To prove (i) we have the hypothesis

� < 
 ^ (8� < �)[� 2 Acc+] (ii)

and have to show� 2 Acc+ i.e.

(8� 2 Acc)[� + � 2 Acc]: (iii)

By (3.19) it suffices to have

� + � � Acc (iv)

to get (iii). Let� < �+�. If � < � then we get� 2 Acc from� 2 Acc by (3.19). If� � � < �+�
there is a� < � such that� = � + �. Then we obtain� + � 2 Acc by (ii).
From (i) we obtain

(8� 2 Acc)[� 2 Acc+] (v)

by (3.21) which means

(8� 2 Acc)(8� 2 Acc)[� + � 2 Acc]: �

3.7.13 Lemma ID1 Prog1(F ) ! Prog0(F ).

Proof We have the premisesProg1(F ), � < 
 and(8�<0 �)F (�) and have to showF (�): If
� <1 � we get� <0 � by � < 
 and thusF (�) by (8�<0 �)F (�). Hence(8�<1 �)F (�) which
entailsF (�) byProg1(F ). �

3.7.14 Lemma (ID1) The classAcc is closed under��; � : '�(�) .

LetM :=
�
� SC (�) \ 
 � Acc

	
and define

Acc' :=
�
� (8� 2 Acc)[� < '�(�)! '�(�) 2 Acc] _ � =2 M _ 
 � �

	
: (i)

We claim

Prog1(Acc'): (ii)

To prove (ii) we have the hypothesis

(8�<1 �)[� 2 Acc'] (iii)
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and have to show

� 2 Acc': (iv)

For� =2 M or
 � � (iii) is obvious. Therefore assume

� 2 M \ 
: (v)

we have to show

(8� 2 Acc)[� < '�(�)! '�(�) 2 Acc]: (vi)

According to Lemma 3.7.11 we may assume that we have

(8� < �)[� < '�(�)! '�(�) 2 Acc] (vii)

and have to show

'�(�) 2 Acc (viii)

for which by (3.19) ist suffices to prove

� < '�(�) ! � 2 Acc: (ix)

We show (ix) by Mathematical Induction on the length of the term notation of�. If � =NF
�1 + � � �+ �n we have�i 2 Acc by induction hypothesis and obtain� 2 Acc by Lemma 3.7.12.
If � 2 SC then we have� � � or � � �. If � � � we get� 2 Acc from � 2 Acc. If � � � we
have� � � for some� 2 SC (�). Since� 2 M we have� 2 Acc and thence also� 2 Acc.
Now assume� 2 H n SC. Then� =NF '�1(�2). There are the following cases.
1. �1 = � and�2 < �. Then we obtain'�1(�2) 2 Acc by (vii).
2. � < �1 and� < �. Then� 2 Acc follows from� 2 Acc.
3. �1 < � and�2 < '�(�). ThenSC (�1) \ 
 is majorized by some� 2 SC (�) \ 
 � Acc

which meansSC (�1) \ 
 � Acc and therefore�1 <1 �. By (ii) we obtain�1 2 Acc'. By
induction hypothesis we have�2 2 Acc and which entails'�1 (�2) 2 Acc. This finishes the proof
of (ii). We have to show

�; � 2 Acc ) '�(�) 2 Acc: (x)

From�; � 2 Acc we get�; � < 
. ThereforeSC (�) � � which impliesSC (�) \ 
 � Acc.
Hence� 2 M\
. From (ii) and Lemma 3.7.13 we obtainProg0(Acc') and thenceAcc' � Acc

by (3.21). Together with� 2 Acc this implies'�(�) 2 Acc. �

3.7.15 Lemma (ID1) DefineAcc
 :=
�
� � =2 M _ (9� 2K (�))[� � �] _  (�) 2 Acc

	
.

Then we obtainProg1(Acc
):

Proof Assume

� 2 �eld(<1) and (8�<1 �)[� 2 Acc
]: (i)

We have to show

� 2 Acc
: (ii)

For� =2 M or (9� 2K (�))[� � �] (ii) is obvious. Therefore assume� 2 M andK (�) � �. To
prove (ii) it remains to show

 (�) 2 Acc: (iii)

For (iii) in turn it suffices to have

� <  (�) ! � 2 Acc: (iv)
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We prove (iv) by Mathematical Induction on the length of the term notation of�. If � =2 SC we get
SC (�) � Acc by induction hypothesis and thence� 2 Acc by Lemma 3.7.12 and Lemma 3.7.14.
If � 2 SC then there is a�0 such thatK(�0) � �0 < � and� =  (�0). For� 2 SC (�0) \ 
 we
either have� = 0 or � =NF  (�) for some�. In the second case we get� 2 K(�) � K(�0) � �

which implies� =  (�) <  (�). HenceSC (�0) \ 
 �  (�). By induction hypothesis we
therefore obtainSC (�0) \ 
 � Acc. Hence�0 <1 � and therefore�0 2 Acc
 by (i). Since we
haveK(�0) � �0 and just showed�0 2 M this implies� =  (�0) 2 Acc. �

3.7.16 Lemma (Condensation Lemma) IfK(�) � � and� 2 M thenID1 TI1(�; F ), im-
pliesID1  (�) 2 Acc.

Proof We especially have

ID1 TI1(�;Acc
): (i)

From (i) and Lemma 3.7.15 we obtain

(8�<1 �)[� 2 Acc
] (ii)

and from (ii) and Lemma 3.7.15

� 2 Acc
: (iii)

But (iii) together with the other hypotheses yield (�) 2 Acc. �

3.7.17 Lemma ID1 TI1(
 + 1; F ) ^ K(
 + 1) � 
+ 1 ^ 
 + 1 2 M.

Proof SinceSC (
+1) = f0g andK(
+1) = ;we obviously haveK(
+1) � 
+1 ^ 
+1 2
M. AssumingProg1(F )we have to show(8�<1 
+1)[F (�)]. If � <1 
we obtainSC (�) � Acc

and thus� 2 Acc by Lemma 3.7.12 and Lemma 3.7.14. By Lemma 3.7.13 we getProg0(F )
which then by (3.21) entailsF (�). So we have(8�<1 
)[F (�)] which byProg1(F ) also implies
F (
). �

3.7.18 Lemma

ID1 TI1(�; F ) ^ K(�) � � ^ � 2 M ) ID1 TI1(!
�; F ) ^ K(!�) � !� ^ !� 2 M:

Proof We showID1 TI1(�; F ) ) ID1 TI1(!
�; F ) literally as (2.8). Because ofSC (!�)\


 = SC (�) \ 
 [ f0g andK(!�) = K(�) the remaining claims follow trivially. �

3.7.19 Theorem(The lower bound forID1) For every ordinal� <  ("
+1) there is a primitiv
recursive ordering� such thatID1 n 2 Acc(�) and� � jnjAcc(�).

Proof We have outlined in Theorem 3.7.7 that<0 is primitive recursive. Defining a sequence
�0 = 
+ 1 and�n+1 = !�n we obtain by Lemma 3.7.17 and Lemma 3.7.18

ID1 TI1(�n; F ) ^ K(�n) � �n ^ �n 2 M

for all n. Hence (�n) 2 Acc = Acc(<0) by the Condensation Lemma (Lemma 3.7.16). By
Observation 1.7.10 we havejnjAcc(<0) = otyp<0

(n) = jnjO. Hencej (�n)jAcc(<0) =  (�n)
and the claim follows becausesupn �n =  ("
+1). �

3.7.20 Corollary We havejjID1jj = �ID1 =  ("
+1) and jjIDext
1 jj = jjIDext

1 jj�1
1
= �ID

ext

1 =
 ("
+1).
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