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1. Proof theoretic ordinals

1.1 Preliminaries

One of the aims of infinitary proof theory is the computation of the proof theoretical ordinal of
axiom systems. We will indicate in these lectures that there are different types of proof theoretical
ordinals for axiom systems.

Proof theory was launched by the consistency problem for axioms systems. Its original aim
was to give finitary consistency proofs. However, according tm6&L's second incompleteness
theorem, finitary consistency proofs are impossible for axiom systems which allow sufficiently
much coding machinery.

Ordinals entered the stage whe®@&zEN in [5] and [6] proved the consistency of the axioms

of number theory using a transfinite induction. His proof is completely finitary except for the
transfinite induction. The infinite content of the axioms for Number Theory is thus pinpointed in
the transfinite induction used in the consistency proof. Therefore it seemed to be a good idea to
regard the order—type of the least well-ordering which is needed in the consistency proof for an
axioms system as characteristic for these axioms and to call it its proof theoretic ordinal. But as
observed by REISELthere is a serious obstacle.

To state KREISEL'S theorem we use some obvious abbreviations. The sy&térof Elementary
Arithmeticis formulated in the language of arithmetic with the non-logical symbols

(0,1,4,-,2%,=,<)
together with their defining axioms among them
(exp) 2° =1and2*+! =27 4 22
() 2<0«z=0and
r<y+lez<yvez=y+1.
The scheme
(Ind)  ©(0) A (Va)lp(z) = ¢(z +1)] — (Vz)o(z)

of Mathematical Inductioris restricted taAg—formulasy. A formula is Ay iff it only contains
bounded quantifierév/z < a) or (3z < a). Mostly we use the systetRR A which has constants

for all primitive recursive functions and in which the scheme of mathematical induction is re-
stricted toX{—formulas. ByL we denote the false senterite= 1. We assume that there is an
elementary coding for the language of arithmetic and that there is a predicate

Prf 4,(i,v) :& “icodes a proof fromiz of the formula coded by”.
For an axiom system z we obtain therovability predicateas
Oazzr & (Ely)Prfo (y,az).
By PRWO(=<) we denote that there are no primitive recursive infinite descending sequences in
field <. By TI(<) we denote the scheme of induction alorg
1.1.1 Theorem (Kreisel) For any consistent axiom systeta there is a primitive recursive
well-ordering< 4, of order typev such that
PRA + PRWO(< ;)| Con(Ax)



1. Prooftheoretic ordinals

Sketch of the proof of Theorem 1.1.1 Define

. z<y if (Vi<z)[-Prf .0, L")] ,

TRy e {y <z otherwise ! ®
and let

Flz) o (Vi <a)[~Prf 4,(, 1. 0)

Now we obtain
PRA (Vz<a.y)F(z) — F(y) (iii)

since if we assume-F(x) we have(3i < z)[Prf 4, (i, "L')] and getr + 1 <4, = and thus
together with the premise of (iii) alsb(z + 1). But this impliesF'(z), a contradiction.
SinceF (x) is primitive recursive we obtain from (iii)

PRA + PRWO(< 42) b (V2)F () (iv)
and thus

PRA + PRWO(<4,) b Con(Az). (v)
SinceCon(Az) is true we havetyp(<a;) = w. O

Recall thatw{* denotes the first ordinal which cannot be represented as the order—type of a recur-
sive well-ordering. It is well-known that for every ordinak: w{* there is a primitive recursive
(even elementary) well-ordering of order—typeThere is a theorem recently observed sxB
LEMISHEV which points exactly in the opposite direction of Theorem 1.1.1.

1.1.2 Theorem (Beklemishev) For any < w{* there is a primitive recursive well-ordering
of order—type\ such that
PRA + PRWO(<) /~ Con(PA).

To show Theorem 1.1.2 we first observes two other facts.
1.1.3 Theorem (Beklemishev) For every ordinal < w{* there is a primitive recursive well-
ordering E of order type\ such that

PA|- Con(PRA + TI(E)).

Sketch of the proof of Theorem. 1.1.3 Let R be a primitive recursive well-ordering such that
otyp(R) = A. 0}
Put
zR,y & z+y<zAzRy. (i)
ThenR, is a finite ordering and we get a proof 87 (R. ) primitive recursively fromz. Hence
PRA} (V2)OpraTI(R: ). (iii)
By the arithmetical fixed-point theorem we define a formula
tEy ¢ zRyANMu<z+y)-Clu, ' (z Ey)) (iv)

whereC'(u, v) is the primitive recursive predicate saying thas a code forr E y andu codes a
proof of a contradiction fronrPRA + TI(E). Then

4



1.1. Preliminaries

PRAFC(z,(x Ey)') A (Vu < 2)=C(u, (z Ey)')
= (tEFEy+ xR, y)
— (V2)Opra(z By & xR, y)
— DPRA TI(E)

by (iii). Since PA provesCon(PRA) and the least number principle we get from (v)

(v)

PA (32)C(z,"(x Ey)') — Con(PRA+ TI(E)). (vi)
But (vi) means

PAl- Con(PRA + TI(E)). (vii)
This, however, also entails thatand R coincide and we havetyp(E) = otyp(R) = A. O

1.1.4 TheoremLet Az, and Az, be theories which comprisBRA (either directly or via in-
terpretation). Themdz, |- Con(Az,) implies Az, Cro Az, i.e. Azyis 19—conservative over
A.’L’Q.

Sketch of the proof of Thm.1.1.4 By formalizedX? completeness we get forl# formula P

PRAF--P — Opp,—P (i)
and thus

PRA}-0O4,,~P — P. (ii)
If Azy|— P we getPRA|- Oy, P and thus also

PRAF-0Oy4,,——P. (iii)
Hence

PRAF-0Oap, 1 — —0Oag,—P (iv)
which is

PRAF- Con(Azy) — —Oag,—P. (v)
Because of

Az |- Con(Azs) (vi)
we obtain from (vi),(v) and (ii)

Az |- P
and are done. O

Now we obtain Theorem 1.1.2 from Theorems 1.1.4 and 1.1.3 by choestagbe the well—-
orderingE constructed in Theorem 1.1.3. O

It follows from Theorems 1.1.1 and 1.1.2 that the order-type of a well-ordering which suffices
for a consistency proof by induction along this well-ordering is not a very intrinsic measure. The
order relation constructed in proving both theorems, however, appear quite artificial. For “natural
well-orderings” these pathological phenomena do not arise. But the real obstacle here is to find
a mathematically sound definition of “naturalness” for well-orderings. Therefore one is looking
for a more stable definition of the proof theretic ordinal of an axiom system.

Already GENTZENIN [7] observed that his consistency proof also entails the result that the axioms
of Peano Arithmetic cannot prove the well-foundedness of primitive recursive well-orderings of
order—types exceeding the order—type of the well-ordering which he used in his consistency proof.

5



1. Prooftheoretic ordinals

On the other hand he could show that for any lower order—dygheere is a primitive recursive
well-ordering of order—typ& whose well-foundedness can be derived from the axioms of Peano
arithmetic. So his ordinal is characteristic fBA in that sense that it is the least upper bound
for the order—types of primitiv recursive well-oderings whose well foundedness can be proved in
PA. The well-foundedness of a relatiencan be expressed by the formula

TI(<,X) & (Vo)[(Vy<z)lye X) 2 zeX] - (Vo)[z € X].
Let PR denote the collection of primitive recursive relations. According ENGZEN's obser-
vation we define

|Az|| := sup {otyp(<)| <€ PR A Az} TI(<,X)} (1.1)

and call||Az|| the proof-theoretic ordinabf the axiom systendz. For reasons which will be-
come clear in the next sections we cjllz|| the ITI{—ordinal of Az and will later indicate that
there are also other characteristic ordinals for adsebf axioms.

1.2 Some basic facts about ordinals

Ordinals are originally introduced as equivalence classes of well-orderings. From a set theoretical
point of view this is problematic since these equivalence classes are not sets but proper classes.
Ordinals in the set theoretical sense are therefore introduced as sets which are well-ordered by
the e—relation. This entails that an ordinalthe set of all ordinal® < «. When we talk about
ordinals we have the set theoretical meaning of ordinals in mind. But this is of no importance.
All we have to know about ordinals are a few basic facts which we will describe shortly.

(Onl1) The clas®)n of ordinals is a non void transitive class, which is well-ordered by the mem-
bership relatiore. We definex < fasa € On A3 € On A a € .

In general we use lower case Greek letters as syntactical variables for ordinals. The well-foundedness
of € on the classOn implies the principle ofransfinite induction

(V€ € On)[(Vn <§F(n) = F(§] = (V¢ € On)F(§)

and transfinite recursion which, for a given functigrallows the definition of a functioifi satis-
fying the recursion equation

fm) =g({£(&)| €<n}).

(On2) The clasn of ordinals is unbounded, i.€Y¢ € On)(3n € On))[¢ < n). Thecardinal-
ity | M| of a setM is the least ordinak such thatd/ can be mapped bijectively onta
An ordinala is acardinalif |a| = a.

(On3) If M C On and|M| € On thenM is bounded inOn, i.e., there is am € On such that
M C a.

For every ordinak we have by(Onl)and(On2)a least ordinah’ which is bigger tham. We
call o' thesuccessoof a. There are three types of ordinals:

e the least ordinal,
e successor ordinals, i.e., ordinals of the farm

¢ ordinals which are neithérnor successor ordinals. Such ordinals are caiigid ordinals. We
denote the class of limit ordinals byim.

Considering these three types of ordinals we reformulate transfinite induction and recursion as
follows:

6



1.2. Some basic facts about ordinals

Transfinite induction: I#(0) and(Va € On)[F(a) = F(o')] aswellagVé < \)F (&) = F())
for A € Lim then(V¢ € On)F(£).

Transfinite recursion: For given € On and functiongy, h there is a functionf satisfying the
recursion equations

f(0)=a
f(&) =g(f(&)
FO) = h({f(m)] n<A})for A € Lim.

An ordinal x satisfying
(R1) k€ Lim
(R2) If M C xand|M| < kthenM is bounded irx, i.e., there is am € x such thatM C «
is calledregular. The class of regular ordinals is denotedRygg.
(On4) The clasReg is unbounded, i.e(V¢ € On)(3n € Reg)[€ < 7).
We define
sup M :=min {£ € On| (Vne M)(n <€)}

as the least upper bound for a 8¢tC On. In set theoretic termsiitisip M = | J M. It follows
thatsup M is either the biggest ordinal it/, i.e.,sup M = max M, orsup M € Lim. By w we
denote the least limit ordinal. It exists according(@4) and(O1). The ordinakws; denotes the
first uncountable ordinal, i.e., the first ordinal whose cardinality is bigger than thatloexists
by (On3).

For every class/ C On there is a uniquely determined transitive clasgy (M) C On and an
order preserving functioan s : otyp (M) M M. The functionen,; enumerates the elements
of M inincreasing order. Sincetyp(M) is transitive it is eithebtyp (M) = On or otyp(M) €
On. We call otyp(M) the order typeof M. In fact otyp(M) is the MosTowskI collapse of
M anden, the inverse of the collapsing function (usually denotedrlpy By (On3) we have
otyp(M) € On iff M is bounded inOn. Unbounded, i.e., proper classes of ordinals have order
type On. If M is a set of ordinals theotyp (M) € On.

If M is a transitive class anf: M — On an order preserving function then< f(«) for all

a € M.

A classM is closed(in a regular ordinak) iff sup N € M holds for every clas®v C M such
that| N| € On (|N| < k). We callM club(in ) iff M is closed and unbounded ().

We call an order preserving functigh M — On (x-) continuous iffM is (x-) closed andf
preserves suprema, i.up { f(€)| £ € N} = f(sup(INV)) for anyN C M such tha{N| € On
(|N| < K).

A normal (k-normal) function is an order-preserving continuous function

f:On — On or f:k — Kk respectively.

For M C On (M C k) the enumerating functioen s is a (x-)normal function iff A is club (in

K).

Extending their primitive recursive definitions continuously into the transfinite we obtain the basic
arithmetical functionst, - and exponentiation for all ordinals. The ordinal sum, for example,
satisfies the recursion equations

a+0=a«a
a+ 8 =(a+pB)
a+ A =sup; o \(a+§) for X € Lim.

Itis easy to see that the functiag. « + £ is the enumerating function of the cIa@e On| a< f}

7



1. Prooftheoretic ordinals

which is clubin all regular > a. HenceX{. a + ¢ is ak-normal function for all regulag > «.
We define

H:={a€On| aZ0A (Vé<a)(Vn<a)ll+n<a]}

and call the ordinals il additively indecomposahleThenH is club (in any regular ordinal
>w),1:=0" € H, we Handw NH = {1}. Henceeny(0) = 1 andeng(1) = w which are the
first two examples of the fact that

(V¢ € On)[ens (&) = of]. (1.2)
ThusA¢. wt is a (s-)normal function (for allkk € Reg bigger thanv). We have

H C Lim U {1}
and obtain

acHiff (VE<a)l{+a=al
Thus for a finite se{a, ..., a,} C H we get

ap+...t+a, =ag, +...+ o,

for {k1,...,kn} C {1,...,n} such that; < k;;1 andag, > ay,,,. By induction ona we
obtain thus ordinal$a, . .., a,} C H such that forx # 0 we have

a=a;+...+a, anda; > ...> a,. (1.3)

This is obvious forx € H and immediate from the induction hypothesis and the above remark if
a =&+ nforé n < a. ltfollows by induction onn that the ordinalgyy, . .., «, in (1.3) are
uniquely determined. We therefore defineaatditive normal form

a=Npo1+...+a,: & a=a1+...+a,, {a,...,a,} CHanda; > ... > a,.

We call{ay, ..., a,} the set ofadditive componentsf o if &« =np a1 + ... + ap.
We use the additive components to definedhpgmetric surof ordinalsa =np a1 + ... 4+ a,
andﬁ =NF Qny1 + ...+ apy by

a$ b= Or(1) + .-+ Qrim)
wherer is a permutation of the numbefs, . . ., m} such that
1<i<j<m= g 2 Qr(jy-

In contrast to the “ordinary ordinal sum” the symmetric sum does not cancel additive components.
By definition we have

afB=04%a.

It is easy to check that the symmetric sum is order preserving in its both arguments.
As another consequence of (1.3) we obtain thei@R normal formfor ordinals for the basis,
which says that for every ordinal # 0 there are ordinalg, . . ., &, such that

a:NFw51+...+w£".

SinceX¢. wt is a normal function we have < w® for all ordinalsa. We calla ane-number if
w® = a and define

£p 1= min{a| w® = a}.
more generally leA¢. e enumerate the fixed points af . w¢ . If we put

exp(a, B) := B and exp™(a, B) := a*P" (*0)



1.2. Some basic facts about ordinals

we obtain

€o := sup exp”(w,0).
n<w

For0 < a < go we havea < w® and obtain by the ENTOR Normal Form Theorem uniquely
determined ordinala, ..., a, < a such thate =np W + ... + w".
For a class\f C On we define itgderivative

M':={€€ On| enp (&) =&}

The derivativef’ of a functionf is defined byf’ := en g, (5), where

Fiz(f) = {¢] f(&) =&}
Thus f’ enumerates the fixed-points 6f If M is club (in some regulat) then M’ is also club
(in k). Thus if f is a normal functiory’ is a normal function, too.
If {M,| « € I} is a collections of classes club (in some regufpand|I| € On (|I| € &) then
M.er M. is also club (inx).
These facts give raise to a hierarchy of club classes. We define

Cr(0) :=H

Cr(a') .= Cr(a)

Cr(A) :=Ne<y Cr(§) for A € Lim.

If we put

Pa = ENCr(a),

then allp,, are normal functions and we have by definition

a < 3= pales(r) = vs(7)- (1.4)
The functiony is commonly called ¥BLEN function. From (1.4) we obtain immediately
P (B1) < pay(Be) iff a1 < az and 81 < @q,(2) (1.5)

or ag =a and f; < B
or ay <oy and g, (B1) < fo.

We define the \¢BLEN normal form for ordinalsoe () by
a=nrpe(n): & a=yp(n) andn <.

Thena =nr ¢e, (m) and a =nr e, (m2) = & = & andn = 2. Sinceé < a and
n < B € Cr(a) impliesyps(n) < 8 we call Cr(a) the class ofv—critical ordinals.. Ifo is itself
a—critical then¢,n < a = ¢¢(n) < a. Therefore we define the clas¥’ of strongly critical
ordinalsby

SC:={a€On| ae Cr(a)}.

The classSC is club (in all regular ordinalg > w). Its enumerating function is denoted by
X¢. T¢. Regarding that by (1.5)¢. ¢¢(0) is order preserving one easily proves

SC ={a| ¢a(0) = a}.
If we defineyy := 0 andv,+1 := ¢, (0) then we obtain

[y = sup vn.

n <w

We define the set aftrongly critical componentSC'(«) of an ordinaky by



1. Prooftheoretic ordinals

{0} ifa=0
if « € SC
SC(a) =4 1 ! 1.6
(@)=1 5c(9usC(0) if o =i e(n) (1.6)
SClan)U...5C(a,) Fa=npar+...+ a,.
For everya < Ty there are uniquely determined ordingls..., ¢, < aandn,...,n, < «@
such that
a=nrF @& (M) + ...+ ¢e, () and n; < e, (n;) for i € {1,...,n}. a.7)

Recall that a relatiork is well-founded if there is no infinite descending sequenee,,; <
Xy < ---in field(<). Forx € field(<) we define

otyp_ (x) = sup {otyp_(y)| y < =}
and
otyp(<) :=sup {otyp . (z)| = € field(<)}.

We call otyp (<) the ordertype oK. Itis easy to see thattyp . (z) andotyp(=<) are ordinals.
This is all we need to know about ordinals for the moment. We will have to come back to the
theory later.

1.3 Truth complexity for II1i—sentences

1.3.1 Definition The TaiT—language for arithmetic contains the following symbols
e Setvariables(,Y, Xi,...

e The logical symbolsg\, v, V, 3

e The binary relation symbols,¢, =,#.

e The constand.

e Symbols for all primitive recursive functions.

Terms and formulas are constructed in the usual way.
Since there is no negation symbol we define

(s=t):=s#t; ~(s#1)=s=1

o ~(seX)=s¢X; ~(s¢X)=seX

e ~(AANB):=~AV~B; ~(AVB):=~AA~B

o ~(Vz)F(z):= (3z)~F(z); ~3x)F(z):= Vz)~F(z).

We observe that for any assignménof subsets oN to the set variables occurring ifwe obtain
N E ~F[®] & Nl=-F[®)]. (1.8)

Therefore we commonly write F' instead of~F'.

[ ] ~

S

Let D(N) be thediagram of IN, i.e. the set of true atomic sentences.

1.3.2 Observation The true arithmetical sentences can be characterized by the following types
¢ the sentences iD(N)

¢ the sentences of the fort#, Vv Fy) or (3z)F(z) whereF; and F'(k) is true forsomei €
{0,1} or k € w respectively

10



1.3. Truth complexity folll}—sentences

¢ the sentences of the forffy A Fy) or (Vz)F(x) whereF; and F'(k) is true forall i € {0,1}
or k € w respectively

According to Observation 1.3.2 we divide the arithmetical sentences into two types.

1.3.3 Definition

/\-type:= D(IN) U {sentences of the forifF, A F)}U
{sentences of the forifvz) F'(x)}

\/-type:= {~F| F € \-type} =
-D(N) U {sentences of the fortt¥, vV F1)}
U{sentences of the forifdz) F'(z)}

and define @haracteristic sequenc€S(F) of sub—sentences éf by

1.3.4 Definition
0 if F'is atomic
CS(F) = (F(),Fl) |fFE(F00F1)
(F(k)| k ew) if F=(Qx)F(z)

foro € {A,v} andQ € {V,3}. Thelength of the typef a sentencé’ is the length of its
characteristic sequen&S (F).

From Observation 1.3.2 and Definition 1.3.3 we get immediately

1.3.5 Observation
Fe /\-type = [NEF & (VG CS(F)(NEG)]
and

Fe\ltype = [NEF & (3Ge CS(F)(NEG)]
We use Observation 1.3.5 to define theh complexityof a sentencé’.
1.3.6 Definition We define the validity relatiof® F inductively by the following two clauses
(N\) If Fe \-typeandVG e CS(F)EL G & ag < o] thenE F

(\/) If Fe\/-typeund3G e CS(F)[EL G & ag < o|then2 F.
Finally we put

te(F) ;= min({a| F F}U{w})

and calltc(F') thetruth complexityof the sentencé’.
The next theorem is obvious from Observation 1.3.5 and Definition 1.3.6.
1.3.7 Theorem £ F impliesN |= F.

11



1. Prooftheoretic ordinals

1.3.8 Observation Let rnk (F') be the number of logical symbols accurringhih Then we get
NEF = te(F)<rk(F)

and
NEF & te(F)<w.

According to Observation 1.3.8 the notion of truth complexity is not very exciting for arithmetical

sentences. This, however, will change if we extend it to the class of formulas containing also free
set variables.

1.3.9 Definition We call an arithmetical formula which does not contain free number variables
but may contain free set parametensseuddIi-sentenceFor pseuddli-sentence$'(X) we
define

NE F(X) & NE (VX)F(X).
For pseuddl}-sentences there is a third type of open atomic pseudo sentences which are the
sentences of the form

(teX) and (s ¢ X).

1.3.10 Definition For a finite set\ of pseuddI}—sentences we define the validity relatign A
inductively by the following clauses

(Az) "=t" = EA,seX,t¢X
(N\) If Fe \-typen Aand(VG € CS(F)) [E2 A ,G & ag < a] then |2 A

(\/) 1fFe\/-typen Aand(3G € CS(F))[EL A ,G & ag < o] then 2 A

Observe that for finite sets of formulas we always wfte. . ., F, instead of{ F1, ..., F,,}. We

often also writeA, I' instead ofA U T.

The aim is now to extend the second claim in observation 1.3.8 to formulas also containing set pa-
rameters. We will do that using the methodsefarch treess introduced by SHUTTE. Therefore

we order the formulas ir\ arbitrarily and obtain finite sequen¢a) of pseuddl}—sentences.

The leftmost formula in a sequen¢&) which does not belong t}{)\—typeu \/—type is theredex
R((A)) of (A). The sequenc@\)” is obtained fromA) by canceling its redeR((A)). We put

Az(A) & Is,t, X[s"=tNA{te X,s¢ X} CA]

For the definition of a tree cf. Definition 1.7.1. Two pseUddie-sentences areumerical equiva-
lentif they only differ in terms whose evaluation yield the same value.

1.3.11 Definition For a finite sequencé\) of pseudoll}-sentences we define itearch tree
S(a) together with dabel function

d:S(ay — finite sequences of pseutid—sentences
inductively by the following clauses
(Sp) O €Sy Ad(() =(A)
For the following clauses assumes Sy and—Az(d(s))
(S1a)  R(3(s)) =0 = s7(0) € Say A d(s™(0)) = d(s)
12



1.3. Truth complexity folll}—sentences

(SA) R(4(s)) € /\—type = (VF; € CS(R(6(s))))[s™ (i) € Siay] A 0(s™ (i) = 6(s)", Fi

(Sv) R(4(s)) € \/—type = 57(0) € S(ay A (57(0)) = 6(s)", Fi, R(6(s)), whereF; is

the first formula inCS (F') which is not numerical equivalent to a formula @ d(s0).
s0Cs

1.3.12 Remark The search tre§y andé are primitive recursively constructed frofn).

1.3.13 Lemma (Syntactical Main Lemma) B, is well-founded thedl&m \/ 4(s) holds
forall s € Say.

Proof An easy induction omtyp(s). O
1.3.14 Lemma (Semantical Main Lemma) 4, is not well-founded then there is an as-

signmentSy, ..., S, to the set variables occurring itA) such thatN j= F[Sy,...,S,] for all
F e (A).

Sketch of the proof of Lemma 1.3.14  Pick an infinite patty in Sy and let

Observe
F atomicA F € §(f[n]) = (Vm>n)[F € 6(f[m])] 0]
F e §(f[n))n \-type = (3Im)(3G € CS(F))[G € 8(f[m])] (i
Fed(fln]) N \/—type = (VG € CS(F))(Am)[G € §(f[m])]. (iii)

Notice that we identify numerical equivalent formulas.
We define an assignment

®(X) = {t"] @m)[(t ¢ X) € 8(f[m])]}

and show by induction omk(F) thatN [~ F[®] forall F € U . d(f[m]) using (ii) and (iii).
g

1.3.15 Theorem (w—completeness Theorem)  Follgé—sentencévX,) ... (VX,)F(X1,...,X,)
we have

NE (VX)) ... (VX)) F(X1,...,Xp) & (Fa<w{®EF (Xi1,...,X,).

Proof First we show by an straight forward induction @n
FA = NE\/A[Q] (i)

for any assignment of subsets§fto the set variables occurring i. The direction from right
to left follows from (i).
For the opposite direction we assume

E F(X4,...,X5) (ii)

forall @ < wi*. ThenSp(x, .. x,) cannot be well-founded by the Syntactical Main Lemma
(Lemma 1.3.13). By the Semantical Main Lemma we thus obtain an assigrimtenthe set
variablesXy, ..., X, such thalN |~ F(Xy,..., X,)[®]. O

13



1. Prooftheoretic ordinals

1.3.16 Definition Let (VX)F(X) be all! sentence. We put
te(VX)F (X)) := min({a| & F(X) } Uwf)

and calltc(F) thetruth complexityof F. For a pseuddl!—sentence&?(X) containing the free
set parameter¥ we define

te(G(X)) := te((VX)G(X)).

1.3.17 TheoremFor any (pseudo)l}—sentencé’ we have

NEF & tc(F)<wi®.

1.4 Inductive definitions

In order to link truth complexities with the proof theoretic ordinaltf defined in (1.1) we make
a quick excursion into the theory of inductively defined sets.

1.4.1 Definition An n—aryclauseon an infinite sefV has the form

C P—eg

whereP C N™" is the set opremisesandc € N™ is theconclusionof the clause (C).

A setS C N™ satisfieqC) if P C S impliesc € S.

An inductive definitioron N' s a set® := {P, — ¢,| ¢ € I'} of clauses onV.

The least (with respect to set inclusion) $eT N™ which simultaneously satisfies all clauses in
an inductive definitior® is calledinductively definethy ®.

The special thing about inductive definition is the principl@mfof by induction on the definition
which says:

1.4.2 TheoremIf I C N™ is inductively defined by an inductive definiti®nand ¢ is a “prop-
erty” which is preserved by all clauses 1, i.e.

P,—c, e ®A(VseP)p(s) = ¢lc),
then all elements of the séthave the property, i.e.
(Vs € D)[ip(s)]-

Proof Obvious. O

1.4.3 Observation An inductive definitior® induces an operator
I's: Pow(N™) — Pow(N™)

by defining
Ls(S):={c| AP)[P —ce®APCS]}

which is monotonic, i.e.

Generalizing the situation in Observation 1.4.3 we make the following definition.

14



1.5. The stages of an inductive definition

1.4.4 Definition Let N be a set. Am—arygeneralized monotone inductive definitmm NV is a
monotone operator

[: Pow(N"™) — Pow(N™).

AsetS C N"isclosed undel’, if I'(S) C S.

AsetF C N"is afixed—poinof T iff I'(F) = F.

The least fixed—point (with respect to set—inclusion) of an opefatsrcalledthe fixed—point of
T.

1.4.5 Observation Every generalized monotone inductive definitibion a setV possesses a
least fixed—poinfr which is the intersection of all-closed sets.

Proof Let

My = {S| I(S) C S}
and

Ir == M.
ForS € Mr we havelr C S and thud'(Ir) C T'(S) C S by monotonicity. Thus

T(Ir) € ()P = Ir. 0)
From (i) we obtain

I'(T(Ir)) € I'(Ir) (i)
again by monotonicity. Hende(Ir) € 9ir which entails

Ir CT(Ir). (iii)

But (i) and (iii) show thatl is a fixed—point and by definition df- this has to be the least one.
O

1.5 The stages of an inductive definition

1.5.1 Definition For an arbitrary operatdt: Pow(N") — Pow(N") we define itsa—th iter-
ationT'* by

') =S

L+ (S) = D(I(S))

T(S) == D((J{T*(S)| &€ < A})for A € Lim.
We will frequently use the shorthand

r<(S) := | J %(9).

E<a

We define

I¢ :=T<%()) UT(T<*())
and use the shorthand

o= It
{<a

15



1. Prooftheoretic ordinals

1.5.2 Lemma For a monotone operatdr we have

Ig =T (I5™).

1.5.3Lemmaletl: Pow(N™) — Pow(N™) be an operator. Then there is a least ordinal
IT| < |N|* such that

=",

We call|T'| theclosure ordinalof the operator..
Proof This is obvious for cardinality reasons. O

1.5.4 Theorem LetT" be a generalized monotone inductive definition. Then

p=1" =

Proof Sincel'(I="!) = 1" = 15 we haver"! € 9 and thusly C 1}, For the opposite
inclusion we prove

It CIr @)

by induction on¢ < |I'|. By induction hypothesis we ha\[q;<£ C I+ which by monotonicity
entailsif = T'(I5%) C T'(Ip) = Ir. 0

The following definition is an obvious generalization of Theorem 1.5.4.

1.5.5 Definition A generalized inductive definition on a s¥tis an operator
[: Pow(N"™) — Pow(N").

Thefixed—point of a generalized inductive definitibris the setlp := I'FF‘.

1.5.6 Definition For a generalized inductive definitidhandn € I we define

In|r := min {£]| n € Ilé}

1.5.7 Theorem LetT" be an generalized inductive definition on a 8&tThen

IT| =sup {|n|r + 1| n € It}.

Proof By definition we have

oc:=sup{|njr+1| nelr} <|T| @)
Assumingo < |T'| we get[ = G I and find somer € Ir suchthav < [z[r < |z|r + 1 < 0.
A contradiction. O
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1.6. Positively definable inductive definitions

1.6 Positively definable inductive definitions

1.6.1 Definition Let & = (S, - - -) be some infinite structure ané a class of£(&)—formulas.
We will now and for ever assume th&t contains all atomic formulas and is closed under the
positive boolean operationsandA and substitution with relations definable by formulasfin

An operator

r.s" — s»

is F—definableon the structurés iff there is anF—formulap(#, X, i) and a tuplei of elements
of S such that

D(M) = {7eS"| &k oly, M, a]}.

If F is the class of first order formulas we calffirst order or — synonymously elementarily
definable.

We denote the operator defined by a formpla’, #) by ', and the fixed—point of',, by I,,.
Anaologously we write shortlyZ instead offy: , | instead ofI', | and|z|, instead ofz|r .

1.6.2 Definition The class ofX —positive£(&)—formulas is the least class containing all atomic
formulas without occurrences &f and all atomic formulas of the shapes X which is closed
under the positive boolean operationandA and under arbitrary quantifications.

1.6.3 Observation Any operatod’,, which is defined by aX —positive formula is monotone. We
call such operatorgositive

Proof Show
MCNAGEMi] = 6 ¢[N,i]
for all 7 € S* by induction on the length of th& —positive formulap (X, 7). O

1.6.4 Definition Let F be a class ofZ(&)—formulas. A relationR C S™ is calledpositively
F—inductiveon the structur& = (S, - - -) if there is anX—positive formulap(X, Z, %) in F and
atuples € S™ such that

ZeR & (£,5)¢€l,.
In the case thaF is the class of first order formulas we talk abpositively inductiveelations.
1.6.5 Theorem Every positively inductive relation on a structugeis I1} -definable.

Proof This follows immediately from Observations 1.6.3 and 1.4.5. O

1.6.6 Definition The ordinal
£ == sup {|p|| ¢(X,7) is anX—positive elementarg (&)—formula}

is called theclosure ordinalof the structures.

1.7 Well-founded trees and positive inductive definitions

We now leave the general situation and return to the struéfwkarithmetic.
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1. Prooftheoretic ordinals

1.7.1 Definition A treeis a set of (codes for) finite humber sequences which is closed under
initial sequences. l.e.

Tisatree :& T CSeq AN (VteT)[sCt—seT],

wheres C ¢ stands forih(s) < Ih(t) A (Vi <Ih(s))[(s): = (t):].

A pathin atre€l’ is a subsef C T which is linearly ordered by and closed under
A tree is well-founded if it has no infinite path.

For anodes € T in a well-founded tree we define

otypr(s) := sup {otypr (s~ (y))| s~ (y) € T}
and

otyp(T) := otypr(()).

1.7.2 Definition Let T' be a tree. We define thE—positive formula

pr(X,z) & (W (yeT — 27 (y) € X].

1.7.3 Lemma Let T be a well-founded tree ande T. Thens € I94P7(*).

Proof We induct onotyp(s). If otypy(s) = 0then there is na € S such thats™(z) € T.
Henceyr (0, s) which entailss € I . Now let otyp(s) > 0. For everys™(z) € T we have
a := otypr (s~ (z)) < otypy(s). By induction hypothesis we therefore obtain(z) € I3, C

1527 Hencepy (I52"™) | s) which entailss € 15247 7(*), O

1.7.4 Corollary For a well-founded tred" we havels|,, < otypy(s) forall s € T. Hence
lpr| < otyp(T).

For atreel’ and a node € T we define the restriction &F aboves as
Tls:={te Seq| s~ teT}.

ApparentlyT'[s is again a tree. 1f'|s possesses an infinite paththen there is an™~(y) € T
such that the tail of” aboves belongs toT'[s™(y). This shows thaf'[s is well-founded if
Ts™(y) is well-founded for alk~(y) € T.

1.75LemmaletT beatreeand € T. If s € I, thenT'[s is well-founded andtyp(T'|s) <
|S|¥7T'

Proof The proofis by induction ofs|,.. If |s|,, = 0thenwe haver (0, s), i.e. (Vz)[s™ (z) ¢
T]. HenceT|s = () andotyp(T'ls) = 0. If |s|,,, > 0 we have(Vz)[s™(z) € T =

s (z) € IjTls‘“’T]. Then by induction hypothesiB|s™(x) is well-founded for alk™(z) € T
andotyp(T'[s™ (z)) < |s|,. Thisimplies thafl'|s is well-founded, too andtyp(T'Is) < |s],.
d

As a consequence of Corollary 1.7.4 and Lemma 1.7.5 we obtain

1.7.6 TheoremA tree T is well-founded iff( ) € I, and for well-founded tree$' we have
otyp(T) +1 = [¢].

18



1.7. Well-founded trees and positive inductive definitions

Proof LetT be well-founded. Theii) € I, by Lemma 1.7.3. If conversely) € I, then
T = T|() is well-founded by Lemma 1.7.5. For a well-founded tfewe get by Corollary 1.7.4
and Lemma 1.7.5

otypy(s) = otyp(T'1s) < |slor < otypr(s).
Hence

T well-foundedA s € T = otyps(s) = |s|ey (1.9)
and

otyp(T) = otyp(T1()) = |Oor < Islor
forall s € T. But|pr| =sup {|s|y, + 1| s € I} = |[()]pr + 1 = otyp(T) + 1. O

1.7.7 Theorem Thell}—relations onN are exactly the positively inductive relations .

Proof By Theorem 1.6.5 we know that all positively inductive relationsléelefinable. Con-

versely letR be all!-relation. Then there is H!—formula(vX)@(X, Z) such that by Theorem
1.7.6

FeR & NE (VX)¢(X,3)

& S4%,5 Iswel-founded (i)
& (ely, -
d
1.7.8 Theorem (Stage Theorem) = (Jz)[p(X,Z) A Z ¢ X],A(X,Y) for a finite set

A(X,Y) of X—positive formulas theN |= \/ A[I<2 ,S] for any setS C N.

Proof To show the theorem by induction enwe need a more general statement. FoXan

positive formulap(X, #) and a tuple’ = (i1, .. .,,) of terms we introduce the formula
0,08 & (X, HVE=FV ... VE=1F (i)
We claim
sell = I CI3tP. (ii)

We prove (i) by induction ond. Letz € IZ . Thenp(I5”,z) vz = s which implies by
induction hypothesis implieg(Ij“””,x) vV z = s. Together with the hypothesise I C
1970 this yieldsz € 1317,
Let .S be an arbitrary subset 8% We show

F @o)lp(X,®) AT ¢ X5 ¢ X, .5 ¢ X,A[X,Y] = NEA[S 8] (i)

for a finite setA[X, Y] of X—positive formulas by induction oa. If (iii) holds by (Az) then
A[X,Y] contains a formul& € X such that'™ = #¥ for somei € {1,...,n}. Sincet;" €
I5*" _ weobtainN |= \/ A[I32" 5]

Py tn

’
----- 1rrtn

If the last inference is
(B @o)p(X, ) AT ¢ X, 51 ¢ X,...,0, ¢ X,A[X,Y]| 1€ J}

|: (Fx)[e(X,Z) AT ¢ X], 61 ¢ X,....1n ¢ X,A[X,Y]
then we have by induction hypothesis

NE\/ Al 1<2“° ,S] (iv)
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1. Prooftheoretic ordinals

forall. € J. HenceN = \/ Au[I52" _ S]forall . € J which entailsN = \/ A[I5>" ]
[ in E1yeens in

by the soundness of the inferences of the infinitary calculus.
The really interesting case is

2 @n)[p(X,8) AT ¢ X101 ¢ X, 0 ¢ X,0(X,5) AF ¢ X,A[X,Y] =

1 Q) o(X.20) A FEXIE ¢ X, Frd X ALY )

From the premise in (v) we obtain

@)X, 8) AT ¢ X101 ¢ X,..., T, ¢ X, (X, 5),A[X, Y] (vi)
and

E @)X, 8) AT ¢ X)L ¢ X,...,t, ¢ X,5¢ X,A[X,Y]. (vii)
From the induction hypothesis for (vii) we obtain

NE\/Af 1<2°f_?_‘ 5] (viii)
Assuming

Nbé\/AI<2 _____ .S (ix)
we also have

N\ AL’ 5] ()
which together with the induction hypothesis for (vi) imply

= (I<2‘_é_‘ 9. (xi)
Hence

Fe IZ;O ‘‘‘‘‘ . (xii)
which by (ii) implies

IE AT < - (i
By (xiii) and (viii) we finally obtain

NE\/Af 152 8]
contradicting (ix). So we have (iii). The theorem, however, is a special case of (iii). O
In a special situation we can sharpen the Stage Theorem.
1.7.9 Definition For an order relatio let

p<(X,z) = (Vy=<z)ly € X] (1.10)

andAce(<) = I, . We call Acc(<) theaccessible parof <. By Acc®(<) := I3 we denote
the ath stage of the accessible part.
1.7.10 ObservationFor a well-founded relation< we have
x € Acc® (<) & otyp(z) <o
More precisely we have:|,_ = otyp _(z) forall z € field(=<).
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1.7. Well-founded trees and positive inductive definitions

To sharpen the Stage Theorem in the case of an accessibility definition, we need some additional
notions. For a transitive relatioRr let

I2(X):=XU{z| (Vy<z)y € X]} (1.11)
and
% (X) =T (X UT3*(X)) (1.12)
where
r<e(X) = |J r&x).
{<a

Then we obviously have
Acc™(<) =T%(0). (1.13)

ForasetM C Acc(<) letenpr enumerate the séin|,_ | n € Ace(<) \ M }. We define a new
operator

R%(X) := X U{n¢€ Ace(<)]| In|p, <enx(a)}. (1.14)
Sinceenx sy (a) < enx (a + 1) we obviously have

R%(X U{z}) C R (X) U {z} (1.15)
For RS%(X) := Ue <4 RS (X) we claim

R%(X) = DL(RS¥(X)). (1.16)

To prove the inclusion from left to right in (1.16) let € R%(X). If n € X, we are done
becauseX C I'(R3*(X)). Otherwise we havén|,, < enx(a). Letm < n. If enx(3) <
Im|,. < |nl,. < enx(a)forall 3 < o we havem € X C RS®(X). Otherwise we have
|m|,. < enx(B)forsomes < a. This shows

(Ym <n)[m € RS*(X)],

i.e.n € TS (RSY(X)).
For the opposite direction assumes I'2(RS*(X)). Again we are done ifi € X. Otherwise
we have

(vm <m)im ¢ X = ml,, < ez (a)].

Pick an<—minimalm < n such that{k| m <k <n} C X andm ¢ X. Then|m|,, =
enx (0) for somes < a and thereforgn|,_ =enx(3+ 1) < enx(«). If such anm does not
exist we have eithen|, , = enx(0) < enx(a) or (Vm <n)(Fk <n)[m <k <n Ak ¢ X]
which implies(Vm < n)[|m|,. < |k|,. < enx(a)]. So we haven|,, < enx(a)in any case

which impliesn € R% (X). O
SinceX U RS*(X) = RS™(X) we obtain from (1.16)
[%(X) = RY(X) (1.17)

immediately by induction on.

1.7.11 Lemma (Boundedness Lemma ) LBtog(X, <) := (Vx)[(Vy <z)(y € X) = z € X]
and assume

E —Prog(<,X),t1 ¢ X,...,t, ¢ X,,A(X,Y)
for a transitive relation< and a finite se\ (X, Y") of X—positive formulas. Then
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1. Prooftheoretic ordinals

N\ ACSEA,. . &), ]
holds for any sef C N.
Proof We use (1.17) and prove
[ =Prog(<,X),t1 ¢ X,...,t. ¢ X,,A(X,Y) = NE\/ARY{H,...,00}), 5] ()
The proof parallels that of Theorem 1.7.8 but due to (1.15) with a sharper bound.

If (i) holds by (Az) then A[X, Y] contains a formula € X such thats™ = ¢I' for somei €

—

{1,...,n}. Sincet} € R%(t1,...,t,) we obtainN |= \/ A[R% (71, ..., ), S].
If the last inference is
{%ﬂng(-ﬁX),tl ¢X,... th 8 X,A[X)Y]| 1€T} =
E —Prog(<,X),t1 ¢ X,...,tn ¢ X, A[X,Y]
then we have by induction hypothesis

NE\/A[RY(H, ... 1), S] (ii)

forall. € J. HenceN | \/ Au[R%(#1,...,t,),S] for all . € J which by the soundness of the
inferences entail®l |= \/ A[R%(t1,...,t,),S].
The really interesting case is

=2 —Prog(<,X),t1 ¢ X,.. . ta ¢ X,(Vy<s)ly€ X]As ¢ X,A[X,Y] =

E —Prog(<,X),t1 ¢ X,...,t, ¢ X,A[X,Y]. o

From the premise in (iii) we obtain

2 —Prog(<,X),t1 ¢ X,...,t, ¢ X, (Vy < s)[y € X], A[X,Y] (iv)
and

2 ~Prog(<, X),t1 ¢ X,...,tn ¢ X,s ¢ X, A[X,Y]. v)
From the induction hypothesis for (v) we obtain

NE\/ARY®E,. ...t 8),5] (vi)
which together with (1.15) imply

N \/ARYM(#,. .., 1) U {3}, S]. (vii)
Assuming

N i \/ A[RY(#,. .., 1), S] (viii)
we also have

N \/ ARY (f,. .., ), S] (ix)
which together with the induction hypothesis for (iv) imply

N (Vy<s)y € R2(f1,...,6)] ie. s €T (RY{t1,...,tn})). (X)
Hence

s € RYYY(E, ..., E0) CR(E:, ..., ). (i)

By (xi) and (vii) we finally obtain
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1.8. Thelll-ordinal of an axiom system

N \/ A[RY(t, .- tn), S).
So we have (i). The Lemma, however, follows from (i) and (1.16). O
From the Boundedness Lemma together with (1.13) we obtain the next theorem.

1.7.12 Theorem(Boundedness Theorem) For any arithmetical definable transitive relation
and a finite set oX —positive arithemetical formulas we have

2 ~Prog(<, X),A[X,Y] = N (VY) (\/A[Acc“(<),y]).

1.7.13 Theoremltis & = w*.

Proof If < is a recursive well-ordering then by Observation 1.7.10 we ohtajp(<) <
lo<| < kM. Sincew™ = sup {otyp(<)| < is recursivg this impliesw{™ < &N
For anX - positive formulap(X, #) we have

§el, & NEWX)[(VD)(e(X,8) > L€ X) - FeX]
& (Ba<wi)[E - (Vi) (p(X,7) - 7€ X),5€ X] (i)
= (Ja<w™)[NEFell].

Sincea < wf® implies2* < w{* we have|yp| < w® for all positive elementary inductive
definitions. Hence:™ < w{*. O

1.8 Thellj-ordinal of an axiom system

1.8.1 Definition For a theoryAz in the language ofX*?—order) arithmetic we define
Az ||y = sup {tc(F)| F € I} A Az} F}.

We call|| Az|r: theTTj—ordinal of Az.

We are going to show that tH&t—ordinal and the proof theoretic ordinal defined in (1.1) coincide.

1.8.2 Lemma For a well-ordering< we have

otyp(<) < te(TI(<, X)).

Proof Apply the Boundedness Theorem (Theorem 1.7.12) and Observation 1.7.10. O

For a primitive recursive well-ordering ands € field(<) we obtain by an easy induction on
otyp - (s)

5-(otyp(s)+1)

———-(V2)[(Vy<2)(ye X) sz e X],s € X. (1.18)

From (1.18) and Lemma 1.8.2 we obtain the following theorem.

1.8.3 Theorem For an arithmetical definable well-ordering we have

otyp(<) = te(TI(<,X)).

We just want to remark that this can be extendell }edefinable well-orderings. Details are in [2].
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1.8.4 Lemma For any axiom systemz in the language ofy*?—order) arithmetic we have
[Az|| < || Azl -

Proof This is an immediate consequence of Theorem 1.8.3. O

1.8.5Lemmalf Az is an axiom system comprisidtd then||Az|| = || Az||.

Sketch of the proof Assume thatdz is a theory comprising’A and let(VY)F(Y) be alll-
sentence. Denote bySF(?) the KLEENE-BROUWERordering in the search treg; ) for F(Y)
and assume thadz [~ TI(<SF(?),X) . Then there is a modéh |= Az and an assignment
T C Mifor X such thadnt (£ TI(<5F(?),X)[T]. Therefore there is an infinite path, sByC 9,
throughSF(?) which is definable by an first order formula with paraméterAccording to the
Semantical Main Lemma we get assignmehtd;) C 9t for all ; belonging toY which are

definable by first order formulas with parameferSince we have induction i for first order
formulas we obtaidt = F'(Y')[®] as in the proof of the Semantical Main Lemma using a local

truth predicate. Hencdz /- F(Y) and we have shown

Azl F(Y) = Az} TI(<s, ., X).
Since<s, . is primitive recursively definable and we hawgF(Y)) < otyp(<s, ) < [ Az]|
for Az} F(Y) this implies| Az || < || Az]]. O

1.8.6 Theorem Let Az be a¥l-set of arithmetical sentences. The thedry is IT{—sound iff
|Az|| < w*.

Proof If [|Az| < w{™ we havel|Az||m < wi™ and thusN |= F for all ' such thatdz |— F by
Theorem 1.3.17. If converselyz is I} —sound ther{ tc(F)| Az} F} is aX}-definable subset
of wi*. Hence|| Az|| = | Az = sup {tc(F)| Az|-F} < wf*. 0

The following theorem is an immediate consequence of Theorem 1.8.3.

1.8.7 Theorem

|Az| < sup {otyp(<)| <€ PR A Az} TI(<)}
< sup {otyp(<)| <€ P A Az}— TI(<)}
<sup {otyp(X)| <€ | A Az |- TI(<)}
< | Azllny = [|Az]|

1.8.8 Theorem (Kreisel) LetAz be atheory which containBA. Then
lAz|lmy = |42 + Fllm
holds for every tru&:}—sentencé .

Proof Assume

Az + F|- TI(<, X) (i)
for a primitive recursive ordering. Then
Azl -F Vv TI(<,X) (ii)
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which implies
E-F TI(<,X) (iii)
for somea < ||Az|p. ForF = (3Y)Fyp(Y) we obtain from (iii)

E = Prog(<,X),~Fy(Y), (Vx € field(<))[z € X] (iv)
which by the Boundedness Theorem (Theorem 1.7.12) implies
N | —Fy[S] V (Vz € field(<))[x € Acc®(<)] (v)

for every setS C N. SinceN | (3Y)Fy(Y) there is a sef C N such thatN = Fy[S] and we
obtain from (v)

N |= (Vz € field(<))[otyp - (x) < a]. (vi)
Hence

I4z + Fllny = [[Az + Fl| < [[Az]m;-
The opposite inequality holds obviously. d

It follows from KREISEL'S theorem that th&ll —ordinal of an axiom system does not characterize
its arithmetical power. Therefore more refined notions of proof theoretic ordinals have been
developed (e.g. in [12]). Most recentlyeRLEMISHEV could define thdl’—ordinal of a theory

for all levels of the arithmetical hierarchy using iterated reflection principles. All these notions,
however, need a representation of ordinals either by notation systems or by elementarily definable
order relations oiN. But it can be shown that different representations satisfying mild conditions
yield the same proof theoretic ordinals.

In this lecture we will concentrate on the computation of Fieordinals. In the second part
Weierman will say something about thi—ordinal of PA which characterizes its provably recur-
sive functions. We just want to mention that the computations we are going to shpvofmend
ordinal analysesn the sense of [11] and [12] and thus also comprise a computation of tfiE) the
ordinals. But we don’t want to give details about that here.
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2. The ordinal analysis faPA

2.1 Logic

To fix the logical frame we introduce a formal system for first order logic (without identity) which
is based on a one sided sequent calcallsTAIT.

2.1.1 Definition
(AxL) }ﬁ A, A,—A foranym, if A is an atomic formula

(V) 1f 22 A, A4; for somei € {1,2}, then|= A, A, v A, forall m > my

(A 1 A Ay andm; < mforalli € {1,2}, then}= A, 4; A A,

@) If 2 A, A®%), thenfE A, (z) A(z) for all m > mg

) I 22 A, A(u) andu not free inA, (Vz) A(z), then}= A, (Vz) A(z) for all m > my.

One should observe the similarity of this calculus to the truth definition given in Definition 1.3.10.
By an easy induction om we obtain

2.1.2 Lemmalf = A thenE= \/ A.

Using the technique of search trees one can also prove the completeness of this calculus. l.e. we
have

2.1.3 Theorem A formula of first order predicate calculus is logically valid iff there is a natural
numbenn such that— F.

We will omit the proof which is very similar to the proof of the-completeness theorem. One

has to modify the definition of search tree in the obvious way. The Syntactical Main Lemma
then follows as before. To show the Semantical Main Lemma one assumes that the search tree
contains an infinite path and constructs a term model together with an assignment of terms to
the free variables such that all formulas occurring in the infinite path become false under this
assignment.

One of the consequences of the completeness theorem foathecklculus is the admissibility

of the cut rule. We obtain

2.1.4 TheoremIf 2 A, F and [~ A, —F then there is & such thatl® A.

But Theorem 2.1.5 does not say anything about the size ©herefore one augments the clauses
in Definition 2.1.1 by a cut rule

(Cut) Ifrnk(F) <r, b= A, Fandf~  A=F then}- A foralln > m

and replaces*,ﬁ A, ... Iin all clauses bylrﬂ A,.... The subscript is thus a measure for the
complexity of all cut formulas occurring in the derivation. Obviously we h}énvek & }Oﬁ A,
2.1.5 Theorem (Gentzen’s Hauptsatz) ||1”1 A thenw A where2,(z) is defined by (z) =

rand2,,(z) = 2>®)
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2. The ordinal analysis faPA

We will not prove the Hauptsatz but leave it as an exercise which should be solved after having
seen the cut—elimination for the semi—formal calculus which we are going to introduce in 2.3.3.

2.1.6 Theorem Let A(Z) be a finite set of formulas in the the language of arithmetic with all
number variables shown. Thé& A(Z) implies = A (i) for all tuplesi of numerals.

Theproofof Theorem 2.1.6 is straightforward by inductionmnusing the obvious property
sST=tNand BEA(s) = EA®). (2.1)

2.2 ThetheoryNT

Instead of analyzing the axioms P4 we do that for a richer language which has constants for
all primitive recursive functions and relations.

The language&(NT) is a first order language which contains set parameters denoted by capital
Latin lettersX, Y, Z, Xy, ...and constants fdr and all primitive recursive functions and rela-
tions. We assume that the symbols for primitive recursive functions are built up from the symbols
C} for the constant function?? for the projection on the-th componentS for the successor
function by a substitution operatdi:b and the recursion operat®ec.

The theoryNT comprises the universal closure of the following formulas:

The successor axioms
(V2)[~0 = Sa]
(Vz)(Vy)[S(z) = S(y) = = =y]

The defining axioms for function and relation symbols which are the universal closures of the
following formulas

Ci(xy,...,zn) =k

Pl (x1,...,2pn) =y,

Sub(g,h1,. .., hw)(T1, .. 20) = g(h1(x1,. .. 20)) .. (B (1, .., Tp))
Rec(g,h)(0,21,...,2,) = g(x1,...,24)

Rec(g,h)(Sy,z1,...,2n) = h(y, Rec(g,h) (Y, Z1, ..., Tn), T1,. .., Tpn)
(1,...,2n) E R xR(T1,...,2n) =0

The scheme of Mathematical Induction

FQ) A (Va)[F(x) = F(S(x))] = (V2)F(x)
for all L(NT)-formulasF (u).
The identity axioms

(Vx)[z = x]

(Vz)(Vy)lz =y = y = 7]

Vx)Vy)(V2)lz =y ANy =2z = & = 2]

VEYVD[z1 =1 A oo Axp=yn = fz1,-. . 20) = flyr, - -, yn)]

VEYVP[z1 =1 A ... ANxp=yn — (R(x1,...,20) = Ry, .-, yn))]
[

Vz)(Vy)lzr =y — (ze€ X —-yeX)].

If NT}— F there are finitely many axiomé,, ..., 4,, of NT suchthat-4, v --- v -4, V F
is logically valid. Due to the completeness of theT—calculus (cf. Theorem 2.1.3) we therefore
have the following theorem.
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2.3. The upper bound

2.2.1 Theorem Let F' be a formula which is provable iNT. Then there are finitely many axioms
Ay, ..., A, and anm < w such thatf~ = Ay, ..., = Ay, F.

2.3 The upper bound

It follows from Theorems 2.1.3 and 2.1.6 that we have
2 —Ay,...,—An F (2.2)

for the provable pseudd!—sentences aNT'. In order to determine thH}-ordinal of NT we
have to computec(F). Our strategy will be the following. First we compute an upper bound,
say«, for the truth complexities of all axioms iNT'. This gives

Ig A; (2.3)

for all axiomsA;. Then we extend the infinitary calculus for the truth definition to an infinitary
calculus with cut and use the cut rule to get rid of all the axioms. Then we eliminate the cuts. If
we succeed in controlling the length of an infinite derivation during the cut elimination procedure
we will obtain an upper bound for the truth complexityof

We start with the computation of the truth complexities of the axiom¥ of

All numerical instances of the defining axioms for primitive recursive function and relations be-
long to the diagranD(NN). Therefore we obtain their universal closure by a finite number of
applications of thq’\—rule. The same is true for all identity axioms except the last one. But there
we observe

Ié(‘v’x)(‘v’y)[a::y = (zeX —oyeX)|.
So we have
te(F) < w (2.4)

for all mathematical and identity axioms except induction. What really needs checking is the truth
complexity of the scheme of Mathematical Induction. Here we need the following lemmas.

2-rnk(F
2.3.1 Lemma (Tautology Lemma) For every( NT')-formula we havé# A,-F F.

The proof is by induction omnk(F).

2.3.2 Lemma (Induction Lemma) For any natural numberand anyL(NT)-sentence(n)
we have
2:[rnkF(n))+n]

F——=-F(0),~(Y2)[F(z) = F(S(2))], F(w) -

The proof by induction om is very similar to that of (1.18). Fot = 0 this is an instance of the
Tautology Lemma. For the induction step we have

2:[rnkF(n))+n]

F——=-F(0), ~(V2)[F(z) = F(S(x))], F(n) (i)
by the induction hypothesis and obtain
EE) R (0), ~(Va)[F(x) = F(S(2)], ~F(S(n)), F(S(n)) (i

by the Tautology Lemma. From (i) and (ii) we get by )

2:[rnkF(n))+n]+1

= S P(0), ~(Va)[F(2) — F(S(@))], F(n) A =F(S(n), F(S()) . (i)
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2. The ordinal analysis faPA

By a clausg3) we finally obtain

2:[rnkF(n))+n]+2

F—=-F(0).~(¥2)[F(z) = F(S(x))], F(S(n)) . 0

By Lemma 2.3.2 we havée(G) < w + 4 for all instances5 of the Mathematical Induction
Scheme. Together with (2.4) we get

22 4, e te(Ay) < w + 4 (2.5)
for all identity and non-logical axiomd; of NT'.

2.3.3 Definition For a finite set\ of pseuddI}—sentences we define the semi—formal provability
relation }% A inductively by the following clauses

(Az) sN=t" = }%A,SEX,tgéX

(\) 1f F e \-typen A and(VG € CS(F)) [}% AG & ag < a] then|> A

¢

(\/) 1 Fe\/~typenAand(3G € CS(F)[E< A,G & ag < o] thenf> A

(cut)y If B A F; B2 A, =F andrk(F) < pthenf> A for all a > ap.
We call F' themain formulaof the clause$/\) and(\/). The main formulas of an axioifiz)

ares € X andt ¢ X. A cut possesses no main formula.
Observe that we have

EA & FA. (2.6)
Hence
A = A 2.7)

by Theorem 2.1.6. There are some obvious propertié% af which are proved by induction on
Q.

2.3.4 Lemma (Soundness) Ik% Fi,...,F,thenN |= (F} V --- V F,)[®] for every assign-
ment® of subsets oN to the set parameters ify, ..., F,.

2.3.5 Lemma (Structural Lemma) If% A then }g ' holds forall@ > a, 0 > pandl’ D A.

2.3.6 Lemma (Inversion Lemma) Iff" € /\—type and}% A, F then }% A,G for all G €
CS(F).

2.3.7 Lemma (V—Exportation) If> A, Fy v -+ V F, thenE A Fy, ... F,.

2.3.8Lemmalf F € D(N) and > A, =F then|> A,

2.3.9 Lemma (Reduction Lemma) Let= rnk(F) for F € /\—type,F =(se X)orF
(s ¢ X). If |2 A, Fand [’ T,~F then|>*” A/ T.
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2.3. The upper bound

Proof The proof is by induction o@. If =F is not the main formula idg I', -~ F then we have
the premise$% T,,Ffor, eI If I =0thenI' ND(N) # § which entailsA, ' N D(N) # § and
we obtain}j—w A, T byan inferenceé/\) with empty premise. Otherwise we get

N ()

by the induction hypothesis and obtéﬁqﬂ A, T from (i) by the same inference.
Now assume that F' is the main formula. Ip = 0 then—F is atomic. IfF € /\—type we have

F € D(N) and obtain}j—w A,T by Lemma 2.3.8 and Lemma 2.3.4.Af= (s € X) we show
AT (ii)
by a side induction on. First we observe that there is a formula X with t¥ = s" in T since

}gr, -F holds by(Az) . If F is not the main formula of% A, F then we have the premises

}% A, FforrelI. If I =0we get}% A, T directly and forl # () from the induction hypothesis
by the same inference. F is the main formula we are in the case(efz) which entails that
there is a formula ¢ X in A with »N = s™ = N, But then we obtaid% A,T by (Az). The

caseF = (s ¢ X) is symmetrical. From (ii) we gd{ziﬁ A, T by the Structural Lemma.
Now assume > 0. Then—F € \/—type and we have the premise

AT, =F, -G (iii)
for someG € CS(F'). Then we obtain

NS e (iv)
by induction hypothesis. Frmﬁf A, F we obtain

NS e (v)
by the Inversion and the Structural Lemma. Sime&(G) < rnk(F) = p we obtain the claim
from (iv) and (v) by (cut). O

a

2.3.10 Lemma (Basic Elimination Lemma) Ilt;% A then }z— A.

Proof Induction ona. If the last inference is not a cut of complexjpywe obtain the claim
immediately from the induction hypothesis and CEhe fact th@at2¢ is order preserving. The
critical case is a cu% A F; }% A-F = }m A with rnk(F) = p. By the induction

hypothesis and the Reduction Lemma we obtgilgﬁﬂ A and we hav@®o + 2% = 200+1 <
2%, (]

Observe that our language so far only comprises formulas of finite rank. But we have designed
the semi—formal calculus in such a way that it will also work for languages with formulas of
complexities> w. The following results masters also this situation.

2.3.11 Lemma (Predicative Elimination Lemma) 11‘;+7 A then };"—m) A.

Proof Induction onp with side induction ore. Forp = 0 we obtain}ﬁ— A by the Basic
Elimination Lemma which, sinc2* < w® = ¢o(«a), entails the claim. Now assume> 0. If
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2. The ordinal analysis faPA

the last clause was not a cut of rank3 we obtain the claim from the induction hypotheses and
the fact that the functiongs, are order preserving. Therefore assume that the last inference is
@p @p @
}WA,F }mA,ﬂF = }WA

such thap < rnk(F) < §+w?. Butthen there is an ordinalsuch thatnk(F) = 8+ ¢ which,
writing ¢ in CANTOR normal form, meansnk(F') = f+w?+.. 4w < f+w”. Hencer; < p
and, puttingr := o1, we getrnk(F) < f+w?-(n+1). By the side induction hypothesis we have

w AF andw A,—-F.Byacutit foIIows}% A. If we definep? (¢) := ¢ and

e () == ¢, (92 (€)) we obtain fromo < p by n + 1-fold application of the main induction

95 (9o (a0)+1) . . .
hypothess}ﬁi A. Finally we showp? (¢,(ao) + 1) < ¢,(a) by induction omnn.
Forn = 0 we havep? (¢, () + 1) = p,(ao) + 1 < p,(a) sinceay < a andp,(a) € Cr(0).
For the induction step we hay& ™ (o, (ap) + 1) = o (92 (p,(a0) + 1)) < p,(a) sinces < p

andy” (p,(ap) + 1) < ¢, () by the induction hypothesis. Hen%"(ﬁ A. O

By iterated application of the Predicative Elimination Lemma we obtain

2.3.12 Theorem(Elimination Theorem) Led%A such thatp =np wf* + ... + wPn.
ThenIgm(@pz(““ﬂpn(a)“')) A

2.3.13 Theorem(The upper bound foNT) If NT | F thentc(F) < &o. Hence
INT|| = [NT [ < éo-

Proof If NT | F we get by (2.3) and (2.5)

R 0}

for r := max{rnk(A;),...,mk(4,)} < w. By the Elimination Theorem (or just by iterated
application of the Basis Elimination Lemma) this entails

) p, (i)
"(wHw
Hence)g F and we gete(F) < e sincep)(w + w) < g for all finite r. O

2.4 The lower bound

We want to show that the bound given in Theorem 2.3.13 is the best possible one. By Theo-
rem 1.8.7 it suffices to have Theorem 2.4.1 below.

2.4.1 Theorem For every ordinala < g9 there is a primitive recursive well-ordek on the
natural numbers of order type such thatNT — T1(<, X).

The first step in proving Theorem 2.4.1 is to represent ordinals bejdowy primitive recursive
well-orders. This is done by an arithmetization. We simultaneously define@nset N and a
relationa < b for a,b € On together with an evaluation map|: On — On such thaiOn and
< become primitive recursive and< b < |a| < |b|. We put

e 0€Onand|0]=0
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2.4. The lower bound

o Ifz,...,2, COnandz > ... > z, then(z,...,z,) € Onand|(zi,...,z,)| = wl*l +
A wlEnd

and

e a<b:e acOnNADEONA[(a=0AD#0)
V (Ih(a) < Ih(b) A (Vi <Ih(a))((a); = (b);))
V (3i < min{ih(a), Ih(b)})(Vj <i)((a); = (b); A (a)i < (b)i)].

Observe thaOn and < are defined by simultaneous course of values recursion and thence are
primitive recursive. It is also easy to check thatk b < |a| < |b|. The order(On, <) is

a well-order of order type,. We may therefore represent every ordinak ¢y by an initial
segment<,, of the well-order<. Thus we can talk about ordinatseo in L(NT). We will not
distinguish between ordinals and their representatiod$ M1') and regard formulas d5a)]. . .]

as abbreviations fofvz)[z € On — ...] as well as(3a)[...] as abbreviation fo(3z)[z €

On A ...]. We also writew < 3 instead ofx < 3. We introduce the following formulas:

e aCX & MO <a—oEeX]
e Prog(X) & (Va)laCX —acX]

o Tl(o,X) :& Prog(X) —aCX

Our aim is to shovT I(a, X) for all & < £9. Sincezq = sup { exp” (w,0)| n € w} andTI(0, X)
holds trivially we are done as soon as we succeed in proving

NTFTl(a, X) = NT} Tl(w?, X) (2.8)
becauseVT |- Tl(a, X) and8 < a obviously entailsNT |- TI(3, X). The first observation is
NTF(X) = NTFRF({z| G(z)}) (2.9)

for all L(NT)-formulasG. The formulaF'({z| G(z)}) is obtained from#(X) by replacing all
occurrences of € X by G(t) and those of ¢ X by ~G(t). To prove (2.9) assume

NT|- F(X) (i)

and let& be an arbitranyC (N T)-structure and an assignment of subsetshfo the set variables
such that

S = NT[9]. (i)
We have to show

& = F({z| G(2)})[a]. (i
Define a new assignment

3(Y) ifYy #£X
YY) = { {ne6| & G(z)[n,®]} otherwise.

Then

& = F(X)[¥] iff & F({z| G(z)})[®]. (iv)
We claim

G E NT[¥]. (v)

Then (v) together with (i) and (iv) prove (iii). To check (v) we have only to take care of formulas
in NT which contain the set variabl&. This can only happen in instances of the scheme of
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2. The ordinal analysis faPA

Mathematical Induction or in identity axioms. Let
I(X) & H(X,0) A (Vz)[H(X,z) - H(X,S(z))] = (Vz)H (X, x)

be an instance of Mathematical Induction. We have

& F I(X)[¥] iff & F I({z] G(x)})[®). (vi)
The right formula in (vi), however, holds by (i) sindé({z| G(z)},z) is also a formulainVT.
Instances of identity axioms are treated analogously. O

The above proof shows the importance of formulating Mathematical Induction as a scheme.
Let

J(X) = {a| (V)[ECX - E+w* CX]}

denote thgumpof X. Then, if we assume

NT |- Prog(X) — Prog(J (X)), (i)
we obtain

NTH Tl(a, 7 (X)) = Tl(w®, X). (ii)
To prove (ii) assume (working informally ivT) Tl(«, J (X)), i.e.

Prog(J7 (X)) — a C J(X) (i)
which entails

Prog(J (X)) = a € J(X). (iv)
Choosing = 0 in the definition of the jump turns (iv) into

Prog(J (X)) = w® C X, (V)

which, together with (i), gives
Prog(X) —» w* C X, (vi)

which isTl(w®, X'). Once we have (ii) we also get (2.8) becati$gy, X) impliesTl(a, J (X))
by (2.9).
It remains to prove (i). Again we work informally iNT'. Assume

Prog(X). (vii)
We want to provéProg(7 (X)) i.e. (Va)[a C J(X) = a € J(X)]. Thus, assuming also
a C J(X), (vii)

we have to show € 7(X). i.e.(V¢)[¢ C X — {+w* C X]. That means that we have to prove
17 € X under the additional hypotheses

§CX (ix)
and
n <&+ w®. (x)

If n < & we obtaing € X by (ix). Leté <n < {+w®. If a = 0then = ¢ and we obtaim € X

by (ix) and (vii). If « > 0 then there is @ < « and a natural number (i.e. a numeralii{’),

such thatt < w? + ...+ w’ =: w? - n (c.f. the proof of the Predicative Elimination Lemma).
N —

n—fold
We show
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2.4. The lower bound

c<a—=€&+w -nCX (xi)
by induction onn. Forn = 0 this is (ix). Forn := m + 1 we have
4w -mCX (xii)

by the induction hypothesis. From< « we obtaine € J(X) from (viii). This together with
(xii) entailsé + w? - n = +w? -m 4+ w? € X. This finishes the proof of (i), hence also that of
(2.8) which in turn implies Theorem 2.4.1. O

Summing up we have shown
2.4.2 Theorem (Ordinal Analysis ofNT)  |INT|| = [NT|m = &o.

As a consequence of Theorem 2.3.13 and Theorem 2.4.1 we get

2.4.3 Theorem There is dli—sentencévX ) (Vz) F (X, z) which is true in the standard structure
N such thatNT |- F(X,n) foralln € Nbut NT f~ (Vz)F(X,z).

To prove the theorem choo$& X, z) :& Prog(X) -2 € On — 2 € X. O

Theorem 2.4.3 is a weakened form obGEL's Theorem. @DEL's Theorem says that Theo-
rem 2.4.3 holds already forl&-sentencéVz) F(x).
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3. Ordinal analysis of non iterated inductive
definitions

3.1 The theoryID;

We want to axiomatize the theory for positively definable inductive definitions over the natural
numbers. According to Theorem 1.7.7 we can expfgsgelations by inductiviey defined rela-

tions. Therefore we can dispend with set parameters in the theory and we will do so to save some
case distinctions (and also to give examples for some of the phenomena which are characteristic
for impredicative proof theory).

3.1.1 Definition The languageC(ID;) comprises the language &fT. For everyX—positive
formulaF'(X, ¥) we introduce a new relation symbgl whose arity is the length of the tupige

The theoryID, comprisesNT (but in the language without set parameters) together with the
defining axioms for the set constants

(ID1")(V2)[F(Ip,Z) — z€lp]
and
(ID1*) Clp(G) — (Va)[z € lp = G(z)],
where
Clr(G) = (V2)[F(G, &) — G(Z)]

expresses that the “clas§’| G(Z)} is closed under the operatby. induced byF (X, #). The
notion F'(G, ¥) stands for the formula obtained from( X, #) replacing all occurrencdse X
by G(t) andt ¢ X by -G ().

The standard interpretation fof is of course the least fixed poift as introduced in Definition
1.6.1. The following theorem is left as an exercise.

3.1.2 Theorem
NEdelp & NEWVX)[Clp(X)—7deX]

IDi | (Vo) [F(Ip, Z) <> & € Ip]

3.2 The languagel,(NT)

We extend the language 6{ NT') to an infinitary language containing infinitely long formulas.

3.2.1 Definition (The languagef, ,(NT)) We define the languagé, ., (NT) as a RIT—
language parallel to Definition 1.3.1. It contains the same non logical symbols. The logical
symbols are augmented by the infinite boolean operaﬁyfnmd/\. The atomic formulas are

unaltered. The language is closed under all first order operations and we have the additional
clause
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3. Ordinal analysis of non iterated inductive definitions

o |If (F¢ | ¢ € I)is ainfinite sequence &, (NT)-formulas containing at most finitely many
free variables thepf\geIFg and\/geIFE areL ., (NT)-formulas.

Again we are interested in the sentencesCef ,(NT). The set of sentences is denoted by
Loo(NT).

The semantics fof .. (NT) is defined in the obvious way. We get
E/A\F & NEF forall €T
ger
and
=\ F & NEF; forsome¢ el
ger

Then it is obvious that we have

o N\ F: e N\-type

cel
and
o \/ F:e\/-type
cer
and
o CS(\Fo)=CS(\| Fe) =(F¢|¢e).
cer cer

The definition of the validity relation as given in Definition 1.3.10 now carries over to the language
L~ (NT). Observe that we can dipsense with r@ler) because we don’t have set parameters.
By an easy induction on we get

3.2.2 Lemma For any finite seA of £, (NT)—sentences we have

FAa = NEVA

Since we only deal with sentences the completeness of the validity relation is much easier to
show.

3.2.3 Definition For every formulaF' in L (NT) we define its ranknk (F’) by
rnk(F) :=sup {rnk(G) + 1| G € CS(F)}.

By an easy induction omnk(F’) we obtain

3.2.4 LemmaFor F' € L(NT) we have

k(F

NP - B p

3.3 Inductive definitions and £, (NT')
The stages of an inductive definition ovéican be easily expressedh,(NT).
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3.4. The semi—formal system f&, (NT)

3.3.1 Definition Let F'(X, #) be a formula inC(NT). By recursion orx < w; we define

telpr:=\/ FO:5D)

(<a
and dually
t¢ iz = \ ~FO:5D.
(<a

As a shorthand we also use
tels = F(l3e,1)
and
t¢ 1% = -F(15%,1).
It it obvious that we have
NEiely o iVelg (3.1)

wherely denotes the stages of the inductive definiton induced’by the sense of Definition
1.6.1.

For the rest of the lecture we will only regard the fragmenf£f(NT') which is obtained from
the sentences defined in Definition 3.3.1 by closing them under first order operations.

If F(X,Z) is an X—positiveL(NT)—formula, we know by Theorem 1.7.1B| < w{*. Hence

Ir = IE““CK = I*". Let us use? as a symbol for eithev{™ or w;. There is an obvious
embedding of the languag¥ D, ) into our fragment of . (N T').

3.3.2Lemmalf G is anL(ID;)—sentence we obtai* by replacing all occurrences ¢f in G
by 5. Then

NEG & NEG.

3.4 The semi—formal system foil,(NT)

We introduced the theoryD, as a pure first order theory (i.e. a theory wich does not allow
the formation of pseud®i}—sentences). Our observations in Section 1.1, however, based on the
possibility of formation of pseudt ] —sentences. Therefore we have to start with a discussion in
what sense a computation of thig—ordinal forID; is possible.

Our first observation is that extending the thediBy to a theoryID ¢** by adding free set param-
eters yields a conservative extension. This is obvious because any moHe| foan be extended

to a model forID*" by assigning first order definable subsets of the domain of the model to
the set variables. In the extended thedBt** is makes sents to talk about provable pseudo
I1}-sentences.

We are going to show that the computation of the ordinal

&Pt = sup {|n|p| F(X,z) is X—positive A ID\Fne Iy}

yields an ordinal analysis fdiD{**. First we remarke thaf|n|r| ID:}-n € 15} is a recursiv-
ley enumerable set which implied?: < w{*.
Next we observe

D TI(<,X) & ID | (Vx € field(<)) [z € Ace(<)]. (3.2)
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3. Ordinal analysis of non iterated inductive definitions

To check (3.2) letFL (X, z) := = € field(<) A (Vy <z)[y € X]. ThenID¢' |- TI(<, X)
meansID{™ |- Clp, (X) — (Vz € field(<))[z € X]. HenceID{" |- Clr (Acc(<)) —
(Vz € field(<))[z € Acc(<)]. But since Clp, (Acc(<)) is an axiom of ID{* this entails
ID{™ | (Y € field(<))[z € Acc(<)]. For the opposite direction we observe tidg_ (X) —
(Vz)[z € Acc(<) — = € X]is an axiom ofID{™. So from ID" |- (Vz € field(<))[z €
Acc(<)] we immediatly geClr_ (X) — (Vz)[z € field(<) — = € X],i.e. ID{" |- TI(<, X).
From (3.2) we gebtyp(<) = sup {otyp<(z)| = € field(<)} < sup{|z|p, | = € Acc(<)} <
x!P1 for every relation< with ID¢™ |- TT(<, X).

But we also have

IDtely & IDE| Clp(X) —te X. (3.3)

The direction from left to right holds sind&z)Clr(X) — i€lr — #ec X isaninstance
of the axiomID; 2 and the opposite direction follows becaug® }— i € Iy is obvious from the
the instantiatiorClp(Ir) — t € I and the axiom&lp(IF).

By the Stage Theorem 1.7.8 and (3.3) we then obt&it < ||ID{*||y;. Hence

D < k™20 <NIDF™||ny = | IDF™|

which confirms our decision not to include set parameters.
First we observe

3.4.1 Lemma We have

EAicls? = EA IR
which means

In|r < te(n € 159).
The proof is a straightforward induction enwhich we omit since a similar property (Lemma
3.4.13) will be needed and proved for the semi—formal calculus below.
It becomes clear from Lemma 3.4.1 that the computation of an upper boundHercan be
done analogously to that of an upper bound|fafT'||;;:. Therfore the first step should be the
computation of the truth complexities for the axiomsIéf;. Here we have even to be carful
in transfering Theorem 2.1.6. The sentence |z is an atomic sentence @fID,) but not an

atomic sentence of ., (NT). But observe that because ofk(# € 15) < Q we obtain by the
Tautology Lemma (Lemma 2.3.1)

EAT¢I52 Fels® (3.4)

Thus Theorem 2.1.6 modifies to

3.4.2 TheoremIf | A(&) holds for a finite set of:(1D;)—formulas theri2 A (i) for all
tuplesiz of numerals.

The truth complexities of the defining axioms for primitive recursive functions and relations are of
course not altered. More caution is again needed for the identity axioms which of course include
the scheme

(VE(VPE=y - TE€lp > 7Elp]

But here we get
Q+n . NN N N <Q R <Q
F=a)(vyli =7 - Feli® > jel?]

for somen < w. By the Induction Lemma (Lemma 2.3.2) we obtain
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3.4. The semi—formal system f&, (NT)

Q+w+4 o

for all instanceg? of the scheme of Mathematical Induction/if; . It remains to check the truth
complexities for the axiom&D, ! andID,%. By Lemma 3.2.4 we obtain

= Clp(152)

sincernk(Clr(15%)) = Q + n for somen < w.

The same is of course also true for all instances of the aXiop.

These observations show that the ordinal analysigfgrneeds something new. The truth com-
plexities for the axioms of D; are above. The ordinals’”1, however, is an ordinak Q
(regardless of the interpretation @j. Since a validation proof for a sentengec 15 does not
containQ-branchings it is also clear that(i € 15%) < Q. So we need additional conditions
which allow us to collapse the ordinal assigned to the infinitary derivations for sentences of the
formii € 15 into ordinals below2.

But there is still another reason why cut—elimination alone cannot solve our problem. We define
the semi—formal system for the languagg (NT) as in Definition 2.3.3. Again we can dispense
with the rule(Az) because we do not have set parameters. But now we obtain the following
theorem.

3.4.3 Theorem LetI be a finite sets of .. (NT)—sentences. Then
}% r = Er.

Proof We prove
ET,A andN £ F forall FeA = [ET 0)

by induction onx. The proof depends heavily on the fact that we only have senten€es(iNT').
In the case of a cut we have the premises

PSALF (i)
and

B AT -F (ii)
and eitheiN [~ F or N [£ —F'. Using the induction hypothesis on the corresponding premise we
get the claim. The remaining cases are obvious. O

It follows from Theorem 3.4.3 that cut—elimination cannot be the crucial point in the ordinal anal-
ysis of ID;. The same is of course also true for stronger theotibe.hallmark for impredicative
proof theory is not longer cut—elimination but collapsirgjnce ordinals abov@ are in general

not collapsable into ordinal belo@ we have to control the ordinals assigned to the derivations.
We follow the concept obperator controlled derivationg/hich was introduced in [3] as a sim-
plification of the method of local predicativity introduced in [9]. However, we will not copy
BucHHoLZ' proof but introduce a variant which even sharper pinpoints the role of collapsing.

3.4.4 Definition A Skolem-hull operatois a function?{ which maps sets of ordinals on sets of
ordinals satisfying the conditions
e ForallX C Onitis X CH(X)

o IfY CH(X)thenH(Y) C H(X).

3.4.5 Definition For a sentencé in our fragment ofL ., (NT') we define
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3. Ordinal analysis of non iterated inductive definitions

par(G) := {a| I5* occursinG}.

For a finite setA of sentences of our fragment 6f,(NT') we define

par(A) := U par(F).
FeA

3.4.6 Definition For a Skolem-hull operator we define the relaﬂe)hj— A by the clause$/\),
(\/) and (cut) of Definition 2.3.3 with the additional conditions that we always have
e a € H(par(A))
and for an inference
HESA foriel = HEA
with finite I also
o par(A,) € H(par(A)).
We define
Hi CHy & (VX)COn[Hi(X) CH2(X)]
A Skolem-hull operatot is Cantorian closedff
e {0,0} CHO),
e H(0)NQis transitive
and it satisfies
e acH(X) & SC(a) CH(X) forany setX of ordinals.
For a setX C On and an operatdH let
o H[X]:=AZ.H(XUZ).
When writingH }% A we tacitly assume tha&i is a Cantorian closed Skolem—hull operator. The
Structural Lemma of Section 2.3 extents to

34.7Lemmalf Hy CHa,a<B,p< 0o, ACT,B € Ha(par(T)) andH, }% A then?, }5 T.

The remaining facts of Section 2.3 carry over to controlled semi—formal derivations.

3.4.8 Lemma (Inversion Lemma) IF € A\-type andH | A, F thenH[par(F)]|; A, G for
all G € CS(F).

3.4.9 Lemma (v-Exportation) IfH[> A, F v -+ v FthenH[Z A Fy,... F,.
3.4.10 Lemmalf F' € D(N) and#|> A, =F then’{ |- A.

3.4.11 Lemma (ReductionLemma) Lét € /\—type,p = rnk(F) andpar(F) C H(par(A)).
If #|> A, F and#[2 T, F then# |~ A,T.

42



3.4. The semi—formal system f&, (NT)

Proof The proof is of course very similar to that of Lemma 2.3.9 but we need to put extra care
on the controlling operator. We induct gh Let us first assume that the critical formula of

the last inference ’H}% r,,-Fforrel = ’H}g I, —-F " is different from—F. Then we

still have par(F) C H(par(A)) and obtairﬁ-l}jLﬁL A, T, by the induction hypothesis. Since
a+ B, < a+ B —and in the case of finité also par(A,T,) C H(par(A,T)) — we obtain

H }j—w A, T by the same inference.
Now assume thatF' is the main formula of the last inference’m}g I',—=F. Then we have the
premise }? A, —F, -G for someG € CS(F) with

par(A, F,G) C H(par(A, F)) (i)

and obtaier}jLﬁ0 A, T, -G by the induction hypothesis. By inversion, the Structural Lemma
and the hypothesigar(F) C H(par(A)) C H(par(A,T')) we also havéﬂiﬁ0 AT, G. ltis
rnk(G) < p but to apply a cut we also have to check

par(A, T, G) C H(par(A,T)). (i)

But this is secured by (i) and the hypothesis (F) C H(par(A)) C H(par(A,T)). O

3.4.12 Theorem (Cut elimination for controlled derivations) L&t be a Cantorian closed Skolem—
hull operator. Then

. o 2
(i) ’H}mA = Hi-A
and

()  HE— A and pe H(par(A) = H}:“—@A.

Proof We show (i) by induction ofv. If the last inferencé—t}% A forrel = ’H% A

is not a cut of rank we haveH }i—m A, by induction hypothesis angir(A,) C H(par(A)) in
the case of finitd. So we get{ }p— A by the same inference.

In case that the last inference is a (t‘ult% AF ’H% A -F = 7—[}% A of rankp we
obtain?—t}? AF and?—t}i;o A, —~F by the induction hypothesis. But eithé&f ¢ /\—type or
-F € /\—type andpar (F) = par(—F) C H(par(A)). Therefore we may apply the Reduction
Lemma (Lemma 3.4.11) and the fact tR&t + 2% < 2% to obtain’]—[}i—& A. O

We close this section by showing a extension of Lemma 3.4.1 to operator controlled derivations.
This will be one of the key properties of the collapsing procedure in the following section.

3.4.13 Lemma (Boundedness) I#|> A(#'e I57) then H[{B}]|> A(#'€ I57) holds for all y
such thate < v < .

Proof We induct onx. In the cases thate I<[” is not the main formula of the last inference

a,

p
we get

H{BHE-A(Felf) (ii)
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3. Ordinal analysis of non iterated inductive definitions

by induction hypothesis. If is finite we havepar (A, (i’ € 157)) C H(par(A(F € 157))) which
entailspar (A, (f € 157)) C H[{B}](par(A(f € 157))) and we obtain

HI{BHE AFe 1) (i)
from (ii) by the same inference.
If i’ e Ifﬁ is the main formula we are in the case of(;%yf) inference with the premise

HES Ao, e li’ Fels W)
for some¢ < 3. Applying the induction hypothesis twice we obtain
HIB, ENF Ao, Fe 157, T e 190, V)

Fromag € H(par(Ao,i € 15°,7 € 15)) and¢ € H(par(Ao, i € 157)) we obtaina, €
H(par(Lo, 15%)) C HI{BY(par(Do,157)) andH[{3, €}](par (=) H[{B}] (par()). Sincea, <
a < v we can apply an infereno{é‘/) to obtain

HI{BYE Ao, Te 15 O

3.5 The collapsing theorem foriD;

Let H by an Cantorian close operator. We define its iteratidns

3.5.1 Definition For X C On let H,(X) be the least set of ordinals containidgu {0, Q}
which is closed undeH and the collapsing functioiy, [a where

Yn(a) = min {¢] € ¢ Ha(0)}.

We need a few facts about the operathfs. Here it is comfortable to think of as the first
uncountable cardinal. Interpretifibasw{™ makes the following considerations much harder.
First we observe

[Ha (X)| = max{| X],w} (3.5)
which implies
Pu(a) <Q (3.6)

showing that), is in fact collapsing. Clearly the operatdis, are Cantorian closed and cumu-
lative, i.e.

a<f = Mo CHg and y(a) < y(B). (3.7)
Since fora € Hz(0) N 3 we getyy () € Hp(0) we have

a€Hs@)NB = Pula) <yPu(B). (3.8)
From (3.8) we get

Hao(0) NQ =y (). (3.9)

The “D"—direction follows from the definition of)4 («) and (3.6). For the opposite inclusion
observe thaty; («) is strongly critial and show

EEHLMNO = €< Yy(a)
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3.5. The collapsing theorem féD,

by induction on the definition of € H, (). In case that = 4 (n) we haven € H,(0) N«
which by (3.8) impliest = ¥ (n) < ¥ ().
From (3.9) we see that all the iteratioHs, are again Cantorian closed operators.

3.5.2 Lemma LetH be an Cantorian closed operator. ThéH,,)3(X) = Hays(X) forall X
andiy, (8) = Y (a + B).

Proof This is a straight forward induction gh d

The following observation will be crucial for the ordinal analysis/b¥ .

Q
3.5.3 Definition We say that a sentence in our fragmentgf(NT) isin \/ —type if it does not
contain subformulas of the shapg 15°.

Q

3.5.4Lemma (Collapsing Lemma) Let\ C \/ ~type such thapar(A) C #(0) and
5 Y (w?)

H}aﬁglFlagfl),_._,ﬁCJFka;f),A. Thent, e, QH ~A.

The proof is by induction o. The key property is

BeH®) andw’ <v = Py(W?) <yu(y) (i)
which is obvious by (3.8) since we havé € #(#) N~ C #H.,(#) N~. Other observations are

H(par(A)) = H(0) (ii)
becausear(A) C H(0) and

BeH®O®) = w’eHyey () and Yy (w?) € Hyoyr (D) (iii)

which is clear by (3.7) and definition.
Let us first assume that the main part of the last inference

B
’H}Eﬁczpluglﬂ),...,ﬁCle(lgf),AL} = H%ﬁczFla;y),,_,,ﬁCJFka;y),A (iv)

forvel
belongs to a sentence i. Observe thapar(~Clp, (I5°),...,~Clp,(157) = {2}. So we
only have to bother about the parameteraofVe claim
par(A,) € H(D). (v)

If T is finite then we havear(A,) C Har1(par(A)) = H(D) becausaar(A) C H(D).
- Q
If T is infinite the main formula of the inferencedigt I5° for ¢ < Q because C \/ —type.

ThenA, = A,G forG € CS(f' ¢ I§5) which means thapar(A,) C par(A) U {n} for some
n < & Buté € H(D) N Q entails¢ C H(0) by transitivity. Hencepar(A,) C H(0) forall . € T
and the proof of (v) is completed.

Next we claim

A, c\/"-type (vi)

Q
This follows fromA C \/ —type for inferences which are no cuts. In case that the inference

Q
in (iv) is a cut its cut—sentence is of rark (2 which ensures that it belongs \9( —type, too.
Because of (v) and (vi) the induction hypothesis applies to the premises of (iv) and we obtain

B .
Hos 11 % A,. (vii)
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3. Ordinal analysis of non iterated inductive definitions

From B, € H(D) we obtamgzm(w@) < y(B) by (i) and fromB € H(}) alsoy(wP) €
H.541(0). Since alsgar(A,) C H(D) C H,s41(0) we obtain
Ho g I A (i)

from (vii) by the same inference.
Now assume that the main formula ot the last inference is

~Clr,(15") = Co)[F (157, 2) Az ¢ 157 ()

Then we have the premise

HID ~Clp, (150), -, ~Clr (50, F(OF2, ) A t ¢ 152,A x)
with 3y € H(par(A) U {Q}) = H(}). By inversion we obtain from (x)
HID ~Clr, (152), ..., ~Clp, (15), Fi(152,1), A (xi)
and
HI i, (152), ..., Cli, (152),8 ¢ 152, A, (i)
Applying the induction hypothesis to (xi) and then using boundedness gives
wh
Homo o1 2 R 5047 ), 4, (xiii)
ie.
wPo .
H. 50 +1 % t e |%H () AL (XIV)
From (xii) we obtain by inversion
HIE ~Cln (IFD), .., ~Clr (50,1 ¢ 1577, A (xv)
which entails
Hoto oy |2 ~Cl (152), .., = Clr (152), ¢ ¢ 1247 AL (xvi)

Q
Sincey, (w) € H,5041(B) the induction hypothesis applies to (xvi) and we obtain

o Bo 4 ,P0 B ..
(Hepo11)who 11 }%t ¢ Iﬁf(“’ 0),A. (xvii)
By Lemma 3.5.2 this entails
wP0 4w
H 50 41405 41 }QH(; t¢ IW VA, (xviii)
Now we obtain
P (W’
Heop 1 }% A
from (xiv) and (xvii) by the Structural Lemma and (cut). O

3.5.5 Remark Although we will not need it for the ordinal analysis 6D, we want to remark
that the Collapsing Lemma may be strengthened to

P
HEe— 0l (150, ~Clr (5. A = HWH}%A

Fork = 0 it can be modified to
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B Y (B)
HiSA = Hgﬂ}w:—(ﬁ)A

Proof We have to do three things. First we observe that in the case of a cut okrdnhkve
havepar (F) C H(0) N Q C H,s NQ = thy(w?). Sincernk(F) < max par(F) + w we obtain
rnk(F) < 1 (w?). If the cut rank i) + 1 we have the additional case of a cut of r&hkThen
the cut sentence ise |5 and we have the premises

HE <l (150 ~Clp, (150). At € 157 (i)
and
HE— ~Clp (150), .. ~Clp, (50), At ¢ 157, (il

But then we may apply the induction hypothesis to (i) and then proceed as in the last case in the

proof of the Collapsing Lemma. The resulting cut sentemteeisI;W(“BO) which shows that
the cut sentence has rarkiz (w?).

Finally we observe that only in this case we needed the fact.tha additively indecomposable.
This case is not neededkf= 0 and we may replace”® by §. d

3.6 The upper bound
In order to get an upper bound fef”* Theorem 3.4.2 is not longer sufficient. What we need is

3.6.1 Theorem If |> A(Z) holds for a finite set of (ID;)—formulas theﬂ{};Zﬂ A(r) for all

tuplesii of numerals and all Cantorian closed Skolem—hull operafdrs

The key here is

3.6.2 Lemma (Controlled Tautology) Foreverng..(NT)-sentence and Cantorian closed Skolem—
hull operatorH we haveH }(?LMF) A -FF.

The proof by induction omnk(F') is easy. First observe that rnk(F) € H(par(F)) for every
Cantorian closed Skolem—hull operator becausg F') = max par(F') + n for somen < w.

Assume without loss of generality thate /\—type. By induction hypothesis we have

HEMD N -F F,G, -G (i)
forall G € CS(F). Sincepar(A,—F,F,G,~G) C H(par(A,—F, F,G)) we obtain from (i)
HETHON A R RG, (i

forall G € CS(F) by an inferencé\/). From (i) and2 - rnk(G) +1 < 2 (rnk(G) + 1) <
2 - rnk(F), however, we immediately get

HETE N R, F
by an inferencé /\ ). 0

Now7i7t1 is an easy exercise to prove Theorem 3.6.1 by inductiom asing Lemma 3.6.2 in case
that|— A, 7 € |, =t € | holds by (AxL).
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3. Ordinal analysis of non iterated inductive definitions

It is obvious that all defining axioms and also all identity axioms are controlled derivable with a
derivation depth below. Ruminating the proof of the Induction Lemma (Lemma 2.3.2) shows
that this proof is controlled by any Cantorian closed Skolem—hull operator. Summing up we get

pflEett e (3.10)

for every axiom of NT in the languag€ (/D) where?{ may be an aribtrary Cantorian closed
Skolem-hull operator.

So it remains to check the schem®3,' andID,2. By the Collapsing Lemma (Lemma 3.5.4)
we have only to deal withiD,?.

3.6.3 Lemma (Generalized Induction) Lef' (X, ) be anX—positiveNT formula. Then

OO 0, (G), 7 ¢ 13, G)

holds for any sentend@&(+) in our fragment ofZ,(NT) and for any Cantorian closed Skolem—
hull operatorH.

From the Generalized Induction Lemma we obtain
HEZE 01 (@), (V)T € 152 = G(&)] (3.11)

which is the translation of the schemi®, .
The proof of Lemma 3.6.3 still needs a preparing lemma.

3.6.4 Lemma (Monotonicity Lemma) LeF (X, Z) be anX—positiveL(NT)—formula. Then
HIZ A, -GG), H() forall @ = H|T2" M N Sp(@,7), F(H,7)

for all 7.

Proof Induction onrnk(F). In the case thak does not occur iF' (X, #) we have

HET DN R F

by the Tautology Lemma (Lemma 3.6.2). In the case that (# € X) we obtain the claim from
the hypothesig-l}% A,-G(7), H(i7). The remaining cases are as in the proof of the controlled
Tautology Lemma. O

Proof of the Generalized Induction Lemma. We have

2-rnk(G)4w-a R a _ .
HETHER (@), 7 ¢ 15°, G (i)

by an inference(/\) with empty premises itk = 0 or by induction hypothesis. From (i) we
obtain

2.rnk(G)4+w-a+2-rnk(F N o R ..
IO” SOl (G ¢ 1, F(GL7) (i)

by the Monotonicity Lemma. By controlled Tautology we have
HE™MD 01 (@), 7 ¢ 158, -G(), G (7). (i

From (ii) and (iii) we get

|2-rnk(G)+w-a+(2~rnk(F))+1
o

_'CZF(G)a i ¢ I%‘, F(Ga ﬁ) A _'G(ﬁ)a G(ﬁ) (IV)
by an inferencé/\). From (iv) we finally obtain
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|2-7‘nk(G)+w-oz+2-rnk(F)+2
o
by an inferencé\/). Since2 - rnk(G) +w-a+2-mk(F)+2<2-mk(G)+w- (a+1)we
are done. 0O

-Clp(G),7 ¢ 1%, G(7)

3.6.5 Theorem If ID; |- F(&) then there are finitely many axion@ r, (15°), . .., Clp, (I57)
and ann < w such that

HIEZ2 0l (150), . ~ Ol (15, F (i)
holds for any tuplen of the length off and for any Cantorian closed Skolem—hull operator.

Proof If ID, - F(&) then there are finitely many axioms,, ..., A, and a natural number
such thad£ —Ay,...,—A,, F(Z). By Theorem 3.6.1 this implies

Q+ * * * (= )
M= —A], . = AL P () 0)
for any Cantorian closed Skolem-hull operatarFrom (i), (3.10) and (3.11) we obtain the claim
by some cuts. O

Let Bo(X) the least set” O X such that{0,2} C Y andY is closed undes andy. Then
By is Cantorian closed and we obtain a hieraréhy of Cantorian closed operators. We put
Y(a) = ¢p,(a). The ordinak)(eq1) is then the BCHMANN—HOWARD ordinal.

3.6.6 Theorem (The Upper Bound fofD;) Itis x'Pt < 4(eqy1).

Proof If ID,|—m € | we obtain by Theorem 3.6.5

Q24w .
Bolgr™ = Clp, (15, ..., ~Clp (152), m € 157 0

By Theorem 3.4.12 we obtain an< eq; such that
BO%ﬁClFlaglg),,ﬂCleO;‘kQ),mE |§.Q (")

From (ii) and the Collapsing Lemma (Lemma 3.5.4) it follows

P(w™)
Bt }Q— m € 15

which by Theorem 3.4.3 implieg(m € 15%) < ¥(w®) < ¢(eq+1). By Lemma 3.4.1 the claim
follows. 0O

3.7 The lower bound
3.7.1 Coding ordinals inL(NT)

It follows from the previous sections th&t,,,, (0) is the set of ordinals which turned out to be
relevantin the computation of an upper bounds&?:. To prove that)(eq ) is the exact bound
it suffices to prover € Acc® (<) for some arithmetical definable relatienand alla: < 1(gq41).

If we succeed in showing that for a primitive recursive relatiowe have by Observation 1.7.10
I1D1]| = ¢ (eat1)-

Since we cannot talk about ordinals4it/D;) we need codes for the ordinalsfh,, , , (9). The

only parameters occurring df.,, ., (#) are0 andQ. Therefore every ordinal i8.,, , (#) pos-
sesses a term notation which is built up frorf2 by the functionst, ¢ andi). This term notation,
however, is not unique. In order to show that the set of term notations together with the induced
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3. Ordinal analysis of non iterated inductive definitions

<—relation on the terms is primitive recursive we need a unique term notation. This forces us to
inspect the seB,, (#) more closely.

We define
a=nrY(B) & a=¢(B) A3 e Bs).
Then
a=nr Y(B1) Na=NrY(B2) = B =P (3.12)

since; < B2 would imply ) (81) < ¢(32) by (3.8) becausg; € Bg, (0) C Bg,(#). Now we
define a set obrdinal termsT by the clauses

(To) {0,Q}CT
(Th) a¢SCASC@)CT = acT
(Tb) BeTANa=nr¢(B) = a€T.
We want to prove
T = Bqr(0) (3.13)

for @ := min {a € SC| Q < a}.
The inclusionC in (3.13) is obvious. Troublesome is the converse inclusion. The idea is of course
to prove

EE€EBar(0) = €€T (3.14)

by induction on the definition of € Bqr (). We will therefore redefine the sel, () more
carefully by the following clauses.

(Bo) {0,9} C By

(Bi) £€¢SCASCE)CBY" = ¢eB

(B:) neBy 'na = () € By

(B3)  Ba:=Upe, By A(a) :=min {¢| € ¢ B}

It is easy to check thaB, = B, (0) for all @ < Q" which justifies the use of the same symigol
for the functionsnin {¢| & ¢ B, (0)} andmin {¢| £ ¢ B, }. So (3.14) can be shown by proving

EeBl = £eT (3.15)
forall « < Q' by induction oma. What is still troublesome in pursuing this strategy is qa3g.
In this case we don’t know i»(n) is in normal—form, i.e. ify € B,,. Therefore we show first

3.7.1 Lemma For every ordinale < Q" the ordinalas := min {¢| a < ¢ € B, } exists and it

istY(a) =nr Y (anf).

Proof SinceQ' = sup, ., ¢&(0) andp’(0) € B, for any« it follows thata, exists. By
definition [, anf) N B, = 0 which impliesB, = B, and thus alsa)(a) = 1 (anf). Since
Qnf € By = By, we havey(a) =nr ¢(anf). O

Our troubles are solved as soon as we can show
n € Bl = nn € BY. (3.16)

Then we may argue in cag®,) that forn € B?~! we also havey,s € B2~! and thus),s € T
which entailsy)(n) =nr () € T
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3.7. The lower bound

We obtain (3.16) as a special case of the following lemma whose proof is admittedly tedious.
Also we cannot learn much from its proof. Therefore one commonly includes the normal—form
condition into clausé B,) which then becomes

(B) neB'naAneB, = () € B

The proof of (3.15) then becomes trivial.

3.7.2Lemmaletd(a) := min {¢| a <& € B;}. Thena € Bj impliesé(a) € By for all
a<Qr,

Proof We show the lemma by induction en First observe that by the miminality 6fa) we
get

a€H = dfla)eH anda e SC = §(a) € SC. 0]
The lemma is trivial ifa € Bs. Thend(a) = . Therefore we assume
a ¢ Bs. (i)

Thena < 0(a) and fora < Q we get by (3.99(a) = Q € By for anyn. Therefore we may
also assume

Q< a. (iii)
We have

§¢SCAEeBy = SCE) CBy (iv)
Since(Q2, QY) N SC = () we obtain by induction hypothesis

3(SC(e) :={8(¢)| £ € SC(a)} C By~ N Bs. )
We are done if we can prove

SC(6(a)) C Bg*1 N Bs. (vi)

We prove (vi) by induction on the number of ordinalsd6'(«). Firstassume: =np a3 + - -+
ag. Sincea; < §(a;) € Hwe obtaine < §(aq) +-- -+ 0(ay) and becaus&ai) + - - - d(ay,) €
Bs evena < 6(ov) + - -+ 0(ay). Leti :=min {j < k| a; < d(ay)}. We claim

da)=ar+---+a;—1+6(a) =(ar) + -+ 0(ai—1) + 5(c;). (vil)

From (vii) we obtain (vi) by induction hypothesis. Let:= a; + --- + a;—1. We havea <
N+ d(a;). Henced(a) < n+ (). If we assumé(a) < n+ d(«;) there is are € Bs such that
n+a; < a <e < n+d(a;). Butthen we obtain apy such that = n+¢; anda; < &1 < §(a;).
Bute € Bs entailse; € Bs which contradicts the definition @fa; ).

Nextassume: =nr pq, (a2). If §(a1) = a; we immediately obtaid(pq, (@2)) = v, (0(as)) =
©5(ar) (6(a2)) which entails (vi) byinduction hypothesis. dfi < J(a1) anda < §(a2) we ob-
taind(a) < é(as) < 6(a) and (vi) follows by induction hypothesis. So assume< ¢(a;) and
d(a2) < a. Let

a3 := min {§| a < wg(al)(f)}. (viii)
We claim
a3 € Bgil N Bs. (ix)

From (ix) we get(a) < @j(a,)(as). If we assumeé(a) < @s(a,)(as) We haven = ¢q, (a2) <
©5(ar)(3). Sinced(a) € H we obtaind(a) =nr ¢, (§&2). The assumptiod; = §(ay) yields
a < 0(a) = Psiar)(§2) < Ps(ar)(az) and thust, < az conctradicting the minimality ofvs.
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3. Ordinal analysis of non iterated inductive definitions

Assumingd(a1) < & yieldsd(a) < az anda < §(a) = @s(a,)(6(ar)) again contradicting the
minimality of a3. So it remaing; < d(ay). But sinceé; € B, this impliesé; < «; which in
turn entails < & € Bs N §(a) contradiction the definition of(«). Therefore we have

() = @s(ar) (@) )

and obtain (vi) from (x) by induction hypothesis and (ix).

It remains to prove (ix). We are donedf; = 0. If we assumexs € Lim we geta =nr
Yoy (02) = Ps(a,) (a3) by the continuity ofp;,,). Becausey; < §(a;) we then obtaim, = «
contradictingr, < d(az) < a. Itremains the case thag = 1 + 1. Theny;,,)(7) < a =nF
Yoy (02) < @5(a1)(n + 1). Because oty < () this impliesps,,)(n) < az < 0(az) <
@ = P5(a,) (N +1). Butas = @504, (n) is excluded because otherwise we ggt (az2) = az <
P, (2). Sinced(az) € BS~' N Bs we have shown

Bs N By ' N (@s5(a1) (1), Ps(ar) (1 + 1)) # 0. (xi)
To finish the proof we show that in general we have
By N (pen),pcm+1)) #0 = n+1€ Bj. (3.17)

From (xi) and (3.17) we then obtain, € B; N B, i.e. (ix).
To prove (3.17) we first show

v € [pe(m), pe(n+1)) = SC(n) C SC(v) (xii)

by induction on the number of elementsyg' (7).
Ity =nF 71+ 47 We havey, € [pe(n), pe(n+1)) and obtainSC(n) C SC(y1) € SC(v).
If v =nF ¢, (12) theny, < ¢ becausg < v, entailsy < n+1 < ¢(n). If £ = v thenn =,
andSC(n) = SC(y2) C SC(y). If y1 < &thenpe(n) < 72 < v < @e(n + 1) and we obtain
SC(n) C SC(y2) C SC(v) by induction hypothesis. If finally € SC theny = () = n and
the claim is obvious.
We prove (3.17) by induction on. Leto € By N (pe(n), pe(n +1)). Theno ¢ SC and we
haveSC(s) C B;~". By (xii) we getSC(n) C SC(o) C B;~'. Sinced € B;~" we also have
SC(n+1) C B;~" and thus obtain + 1 € Bj. O
Having establisheBqr () = Bor = T we want to develop a primitive recursive notation system
for the ordinals inT'. What is still annoying is the normal—form condition in cla@4s). In order
to define a seOn of notions for ordinals inl” together with a<—relation inOn by simultaneous
course—of—values recursion we should try to replace the conditierBs in a =nr ¥(5) by a
condition which refers only to proper subtermsffWe observe that we have
£€Bg & £E=0VvE=QV
(¢ SCASC(E) CBs)V (3.18)
(€ =4(n) An€Bsnp).
From (3.18) we read off the following definition.

3.7.3 Definition Let

0 if¢=00ré&=0Q
K(¢) = {U {Km)| nesSCE)} if¢g¢sc
{nyUK(n) if & =1(n).

From (3.18) and Definition 3.7.3 we immediately get

3.7.4Lemmaltis ¢ € Bgiff K(§) C 5.
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3.7. The lower bound

3.7.5 Corollary We havex =y 1(B) iff a = (8) andK (3) C B.

3.7.6 Definition We use the facts about ordinals i to define setSC C H C On C N
of ordinal notations together with a finite s€fa) C On of subterms ofa € On, relations
<C On x On and=C On x On and an evaluation function/o: On — T by the following
clauses.

Definition of SC, H andOn.
e (0) € On, (1) € SC, |(0)|o :=0and|(1}|o := w;

e Ifay,...,a, € Handa; = --- = a, then(l,a4,...,a,) € Onand|(1,a4,...,a,)|0 :=
lailo + -+ |an|o

e Ifa,bec Onthen(2,a,b) € Hand|(2,a,b)|o = ¢|a/, (|bl0)

e Ifa€ Onandb < aforallbe K(a)then(3,a) € SCand|(3,a)|o := ¢¥(|alo)
Definition of K(a).

o K((0)=K(1) =0

o K({(L,a1,...,a,)) =K(a1)U---UK(ay)

o If b < (2,a,b) thenK((2,a,b)) = K(a) UK(b)

o K(3,a) = {a} UK(a)

Leta,b € On. Thena < b iff one of the following conditions is satisfied.

e a=(0)andb # (0)

e a = (l,al,...,am>, b= (l,bl,...,bn> and(EIz<m)(V]§z)[a] = b]’ A aip1 < bi-i-l] or
(Vj<m)a; =bj] Am<n

e a=(l,a1,...,a,),b€ Handa; <b

e acHb=(1,by,...,b,) anda < b;

e a=1(2a1,as),b=(2,b1,by) and one of the following conditions is satisfied
a; < by andas < b
a1 = by andas < by

b1 < a; anda < bs

e a=1(2,a1,as),a2 <a,beSCanday,as <b

e a€SCb=1(2b;,b3),by <banda < by ora < by
e a=(3,a1),b=(3,b;) anda; < by

a = (3,a,) andb = (1)

Fora,b € On we definea = b if one of the following conditions is satisfied
e (a)o #2and(b)o #2anda =b
e a€SC b <aandb=(2,b1,a)
e beSC a <banda = (2,a;,b)
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3. Ordinal analysis of non iterated inductive definitions

e a=1(2,a1,as),b=(2,b1,by) and one of the following conditions is satisfied
a1 < by andas =0
a1 = by andas = by

b1 < a1 anda = bs.
e The relation= is transitive, reflexive and symmetrical.

Collecting all the known facts abofitand observing than, SC, H, K (a), < and= are defined
by simultaneous course—of—values recursion we obtain the following theorem.

3.7.7 Theorem The set®©n, H and SC as well as the relations; and= are primitive recursive.
The mag |p:On — T is onto such that < biff |a|o < |blo anda = biff |alo = |b|o.

3.7.8 Corollary ¢(eq41) < w*.

3.7.2 The well-ordering proof

In view of Theorem 3.7.7 we may talk about the ordinal$ (#) in £(NT) and thus also in
L(IDy). For the sake of better readability we will, however, not use the codes but identify ordinals
in Bor (0) and their codes. We will denote (codes of ) ordinals by lower case greek letters and
write o < 3 instead of < 3. We use the abbreviations introduced in Section 2.4.

The aim of this section is to show that there is a primitive recursiv relatipsuch that for every

a < P(eqs1) we getID - a € Ace(<o). The strategy of the proof will be the following.

o We first define a relatior ; which is not longer arithmetical definable but needs a fixed point
in its definition such thaTl; (2, X') holds trivially and then use the well-ordering proof of
Section 2.4 to obtaifl; (a, X) porvable inID*" for all a <; eq1.

e Then we use aondensing argumei show thafTl; (o, X') impliesy(a) € Ace(<p).

3.7.9 Definition For ordinalsx, 3 we define
e a<gf & a<p<N.

By £ Co X we denote the formulévn<, &)[n € X].
Let Acc be the fixed point of the operator induced$¥, X, i.e. Acc = Ace(<p).
Fora, 8 € On we define

e a<1f & a<fBASCa)NnQCAcc.

¢ Cy X stands forVn<; &)[n € X].
Let

o Prog;(F) := (V€ € field(<;))[(Vn<; ) F(n) — F()]
e Tli(a,F):=ace€ field(<;) AProg;,(F) — (Vé<; a)F(§).

Observe that by the axioms @b, and Theorem 3.1.2 we have

IDi-aeAcc & a<QAaCAc (3.19)
ID; |- Prog,(Acc) (3.20)
ID{ | Prog,(F) — (Y&)[¢ € Acc — F(¢)] (3.21)
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3.7. The lower bound

3.7.10 Lemma ID; |- Acc C Q.

Proof = Since Prog,(field(<o)) holds trivially we getAcc C field(<o) = {a]| a < Q} by
(3.21). O
3.7.11 Lemma Let Prog(F) := (V )[(vg <a)F(¢) — F(a). ThenID;} Prog(F) —
Prog,(F) and thus alsdD, }— Prog(F) — (V€€ Acc)F(E).

Proof (Vé<o a)F (&) implies (V€ < a)F(€) for a < . Together withProg(F') we therefore
getF(a), i.e. we haveProg, (F'). Together with (3.21) we obtain the second claim, too, O
3.7.12Lemma (ID;) The clasd\cc is closed under ordinal addition.

Proof LetAccy := {&| (Vn€ Acc)[n + £ € Acc]}. We claim

Prog,(Accy). 0]
To prove (i) we have the hypothesis
a< QA VE<a)€ € Accy] (i)

and have to show € Accy i.e.

(Vn € Acc)[n + a € Acc]. (iii)
By (3.19) it suffices to have

n+a C Acc (iv)

to get (iii). Leté < n+a. If £ < nthenwe get € Accfromn € Accby (3.19). Ifp < ¢ < n+a
there is g < a such that = n + p. Then we obtaim + p € Acc by (ii).
From (i) we obtain

(V€ € Acc)[€ € Accy] (v)
by (3.21) which means
(V€ € Acc)(Vn € Acc)[€ +n € Acc]. O

3.7.13LemmaID, |- Prog,(F) — Prog,(F).

Proof We have the premisé¥og, (F), @ < Q and(Vé<y a)F(£) and have to show' (). If
& <1 awe gete <p abya < QandthusF'(€) by (Vé<o a)F(€). Hence(Vé<; a)F(€) which
entailsF' («) by Prog, (F). O
3.7.14 Lemma (ID1) The clasAccis closed undeAs,n. pe(n).

LetM := {a] SC(a) N Q C Acc} and define

Acc, = {a| (VE€A)E < palé) = pa(f) EAc]VagMV Q<al. (i)
We claim

Prog; (Acc,,). (i)
To prove (ii) we have the hypothesis

(V€<1 a)[€ € Accy] (iii)
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3. Ordinal analysis of non iterated inductive definitions

and have to show
a € Accy,. (iv)

Fora ¢ M orQ < « (iii) is obvious. Therefore assume

a€eMNQ. v)
we have to show

(V€ € AcO)[€ < pa(€) = ¢a(€) € Acc]. (vi)
According to Lemma 3.7.11 we may assume that we have

(Vn <& < ¢a(n) = ¢a(n) € Acc (vii)
and have to show

va(€) € Acc (viii)

for which by (3.19) ist suffices to prove

p<¢al§) — p€Acc (ix)

We show (ix) by Mathematical Induction on the length of the term notatiop.off p =nF
p1 + -+ + pn We havep; € Acc by induction hypothesis and obtaine Acc by Lemma 3.7.12.
If p € SCthenwe have < aorp <& If p < Ewegetp € AccfromE € Ace. If p < a we
havep < u for someu € SC(a). Sincea € M we haveu € Acc and thence alsp € Acc.

Now assume € H \ SC. Thenp =nr ¢,, (p2). There are the following cases.

1. p1 = aandp, < & Thenwe obtairp,, (p2) € Acc by (vii).

2. a < p;andp < & Thenp € Acc follows from¢ € Acc.

3. p1 < aandpy < pq(§). ThenSC(p1) N Q is majorized by somg € SC(a) N Q2 C Acc
which meansSC(p1) N C Acc and therefore; <; «. By (ii) we obtainp; € Acc,. By
induction hypothesis we haye € Acc and which entailg,, (p2) € Acc. This finishes the proof
of (ii). We have to show

a,B € Acc = pq(B) € Acc. (X)

Froma, 8 € Acc we geta, 5 < Q. ThereforeSC(a) C a which impliesSC(a) N Q C Acc.
Hencea € MN Q. From (ii) and Lemma 3.7.13 we obtafog, (Acc,,) and thencé\cc, C Acc
by (3.21). Together witl$ € Acc this impliesy, (3) € Acc. O

3.7.15Lemma(ID;) DefineAcco := {a| a ¢ MV (3¢ € K(a))[a <& V ¥(a) € Acc}.
Then we obtaiProg, (Accg).

Proof Assume

a € field(<y) and (Vn<; a)[n € Accg). @
We have to show

o € Accg. (i)

Fora ¢ Mor (3¢ € K(a))[a < €] (i) is obvious. Therefore assuneee M and K (a) C . To
prove (i) it remains to show

() € Acc. (iii)
For (iii) in turn it suffices to have

p<i(a) — p€ Acc. (iv)
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We prove (iv) by Mathematical Induction on the length of the term notatign tfp ¢ SC we get
SC(p) C Acc by induction hypothesis and thengee Acc by Lemma 3.7.12 and Lemma 3.7.14.
If p € SC then there is @y such thaiK(pg) C po < aandp = 1(po). Foré € SC(po) N Q we
either havet = 0 or ¢ =nr 1 (n) for somen. In the second case we gek K(¢) C K(po) C
which implies¢ = ¥(n) < ¥(a). HenceSC(py) N 2 C ¢(a). By induction hypothesis we
therefore obtair6C'(py) N C Acc. Hencep, <1 « and therefore, € Accq by (i). Since we
haveK(pp) C po and just showeg, € M this impliesp = ¢ (pg) € Acc. O

3.7.16 Lemma (Condensation Lemma) K(a) C a anda € M thenID; |- Tl;(a, F), im-
pliesID; |- ¢(a) € Acc.

Proof We especially have

ID{ Tl (o, Accq). (i)
From (i) and Lemma 3.7.15 we obtain

(Vé<1 a)[€ € Accq] (i)
and from (ii) and Lemma 3.7.15

a € Accq. (iii)
But (iii) together with the other hypotheses yielda) € Acc. O

3.7.17LemmalD - Th(Q+ 1, F) AKQ+ 1) CQ+1AQ+1EM.

Proof SinceSC(2+1) = {0} andK(Q+1) = ( we obviously hav&(Q+1) C Q+1 A Q+1 €
M. AssumingProg; (F') we have to shoyv¢ <, Q+1)[F(§)]. If € <1 Q@ we obtainSC(£) C Acc
and thus¢ € Acc by Lemma 3.7.12 and Lemma 3.7.14. By Lemma 3.7.13 wePget, (F)
which then by (3.21) entailB'(¢). So we havéV¢<; Q)[F(£)] which byProg, (F') also implies
F(Q). O

3.7.18 Lemma
IDiTh(, F) AK(@) CaAa €M = ID | Th(w* F) A Kw®) Cw® Aw® € M.

Proof We showID; - Tly(a, F) = ID} Tl (w®, F) literally as (2.8). Because &fC (w®)N
Q= S5C(a) N QU {0} andK(w™) = K(a) the remaining claims follow trivially. O

3.7.19 Theorem(The lower bound fofD;) For every ordinaky < v (eq1) there is a primitiv
recursive ordering< such that’/D; - n € Ace(<) anda < 2| Ace(<)-

Proof We have outlined in Theorem 3.7.7 tha is primitive recursive. Defining a sequence
Co = Q4+ 1and¢, 1 = w we obtain by Lemma 3.7.17 and Lemma 3.7.18

ID1 =Tl (G, F) AK(Gr) CCn AGn EM

for all n. Hencey((,) € Acc = Acc(<p) by the Condensation Lemma (Lemma 3.7.16). By
Observation 1.7.10 we ha\®| 4..(<,) = otyp_,(n) = |n|o. Hencel(¢u)lace(<q) = ¥ (Cn)
and the claim follows becausep,, ¢, = ¥(eq+1)- O

ext

3.7.20 Corollary We have|ID, || = #'P* = ¢(eq11) and |ID™|| = |ID{™ |l = £'P17 =
Y(ea+1).
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