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Preface

The covering lemma is one of the most central theorems of inner model theory.
In fact it is not a single theorem, it is rather a family of theorems which apply
to different core models under specific smallness assumptions. The first proof of a
covering lemma is due to Jensen and proved for the constructible hierarchy L in [2].
The covering lemma for L is the following theorem:

Theorem (Jensen). Exactly one of the following statements holds.

• L covers , i.e. for all sets X of ordinals there is some Y ∈ L such, that X ⊆ Y
and Y 6 X + ℵ1.

• 0] exists.

Thus, in the latter case, higher core models can be constructed. The proof relies on
fine structure theory, which was developped by Jensen in [9] to allow an in depth
study of the constructible hierarchy. Later Dodd and Jensen constructed a new
core model K in [3] and proved covering for it in [4] and [5]. We want to rework
the proof of these papers, to be precise, we want to prove the following theorem:

Theorem (Dodd-Jensen). Assume ¬(0†) then one of the following statements
holds true:

• K covers, i.e. for all sets X of ordinals there is some Y ∈ K such, that

X ⊆ Y and Y 6 X + ℵ1.

• There is a Prikry generic sequence C over K such that K[C] covers, i.e. for all

sets X of ordinals there is some Y ∈ K[C] such, that X ⊆ Y and Y 6 X+ℵ1.

Notice that the assumption ¬(0†) implies that no inner model has two measurable
cardinals. If one allows the core models to have a regular limit of measurables,
then covering may fail, that is, one can no longer expect finding a maximal Prikry
system such that K[C] covers. If one allows such cardinals in the core model, the
covering lemma will have to be be different, but one can still prove that for every
set x one can find a Prikry system Cx such that K[Cx] covers x, an in depth study
of the behavior of such Prikry sequences can be found in [7].

We assume the reader is familiar with fine structure theory as in [11], with inner
model theory as in [12] and with basic facts about Prikry forcing, mainly about
Prikry sequences as in [8].

This paper has the following structure:

In the first section we will fix our notation and recall some definition and properties
of premice and of K.

The second section introduce collapsing mice and presents in lemma 2.12 how to
get an inner model theoritic grasp on the question. It’s a crucial lemma which is
needed in every proof of covering in a form or another. As a matter of fact this
lemma restates the covering theorem as a pure inner model theoritic problem.

Then to prove covering we will split the proof in two parts, by considering a new
hypothesis:

(H) If µ > ℵ2 is singular in V, then µ is singular in K too.

and proving the following: Suppose ¬(0†)

2



i. (H) implies that K covers.

ii. If (H) fails there is a Prikry generic C over K such that K[C] covers.

section three is devoted to a more detailed analysis of elementary substructures
of K, which leads to the main lemma of the proof of covering: the fact, that for
carefully chosen –but nonetheless sufficiently many– elementary substructures of K,
their transitive collapses are not moved in the coiteration with K. In the second
part of section two, we will prove the first part of covering, i.e. under (H) the core
model already covers.

In section four we will study the ¬(H) case, we will show how the above mentioned
coiterations give rise to Preprikry sequences and we will derive a unique sequence,
which will behave well enough to be ”truly” Prikry.

In the fifth section, we prove the measurability of the least counter example to (H),
and finish the proof of the covering theorem by using all methods of section two
and the insights given by section three.

I want to thank Professor Dr. Ralf Schindler for allowing me to work on this
interesting subject and his advice while writing this paper, Philipp Doebler for his
corrections of my grammar and spelling errors, Klaus Loerke for his LATEX advice
and last but not least, my parents for their unconditional support during my studies.

Benjamin Claverie
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1 Preliminaries

If not noted elsewhere, every notation is supposed to be found in [11] for fine
structural notations or [12] for Σ∗-theoretic or inner model theoretic concepts.

We write cf(µ) for the cofinality of µ, and cp(π) for the critical point of π.

• LetM be a premouse, ρn(M) is the nth projectum ofM, as in [11] definition
5.1,

• p(M) the standard parameter of M, as in [11] definition 6.3,

• we write Mn for Mn,p(M), as in [11] definition 5.1,

• Hn
M = HMρn(M) as in [12] p. 18.

• hn+1
M (ξ, p) is the iterated composition of the Σ1 skolem functions of the ap-

propriated reducts as in [11] p. 33,

• hM(X) denotes the Σ1 skolem hull of M with parameter from X as in [11]
convention, p. 14,

• hn+1
M (X) is the hull formed by the iterated composition of the Σ1 skolem

functions of the appropriated reducts as in [11] p. 33, these are denoted
h̃n+1
M (X) in [12].

• Γ(κ,M) is the set of all good Σ
(n)
1 (M)-functions f : κ→M for n such that

ρn+1(M) > κ as in [12] p. 73.

• Let σ : JEτ → JE
′

τ ′ cofinally, M B JEτ such that τ is a cardinal in M, then

Γ(σ,M) is the set of all good Σ
(n)
1 (M) functions f : γ →M such that γ < τ

and ρn+1(M) > τ as in [12] p. 96.

• Γk(κ,M) is the set of all good Σ
(n)
1 (M)-functions f : κ→M for n < k such

that ρn+1(M) > κ as in [12] p. 93.

• Ult(M, U) denotes the coarse ultrapower by a measure U .

• Ult∗(M, E) denotes the Σ∗ ultrapower as in [12] section 3.1; typical elements
are of the form [α, f ] with α < lh(E) and f ∈ Γ(cp(E),M), one can show
that they have the form π(f)(α) too ([12], lemma 3.1.5).

• Ult(n)(M, E) denotes the Σ(n) ultrapower as in [12] section 3.5; typical ele-
ments are of the form [a, f ] with a ∈ E and f ∈ Γk(cp(E),M).

• Let σ : Q→ Q′, for MBQ‖τ such that τ is a cardinal in M. We denote by
Ult(M, σ � τ) the model N such that σ̃ :M→ N is the canonical extension
of σ � κ : Q|τ → Q′| supσ”τ as in [12] p. 102.

We use the iterability concepts of [12]. K[C] is the model given by Prikry forcing
over the filter generated by C, for more on Prikry forcing see [8].

In diagrams representing iteration a curly arrow means that we allow drops to occur,
a normal arrow means an iteration map, hence that no drop occurs.

Definition 1.1 ([12] p. 109). A premouse is an acceptable J-structure M =
(JEα , Eωα) satisfying:

i. E ⊆ {(ν, x); ν < ωα ∧ x ⊆ ν}. Set Eν = {x; (ν, x) ∈ E}.
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ii. ∀ν < ωα, either Eν = ∅ or ν is a limit, SEν has a largest cardinal κ and Eν
is a normal measure over SEν with critical point κ and the stucture M‖ν =
(JEν , Eων) is amenable.

iii. (Coherency) Let ν 6 ωα and

π : SEν →Eν N weakly

where N = (|N |; E′). Then ν + 1 ⊆ wfcore(N ), E ′ � ν = E � ν and E′ν = ∅.

iv. M‖ν is sound for all ν < α.

We will call the mouse active (or having an active measure) if Eωα 6= ∅ and passive
otherwise.

As said before M‖ν = (JE
M

ν , EMων ), let further M|ν = (JE
M

ν , ∅).
We write MEN if M = N‖ν for some ν 6 OR ∩N andMCN if M = N‖ν for
some ν < OR ∩ N

Definition 1.2.

• (0]) is the statement: There is an iterable premouse with an active measure.

• (0†) is the statement: There is an iterable premouse M and α, β ∈ OR such
that EMα and EMβ are active measures and β < α.

• (0‡) is the statement: There is an iterable ”premouse” M = (JEν , Eν , Eν+1)
such that both Eν and Eν+1 have same critical point, further Eν+1 is a mea-
sure of order 1 in M. For an exact definition of 0‡ see [12] p. 200.

Notice that the mouse in the (0‡) case doesn’t match with our definition, one should
weaken the conditions on premice to allow such a mouse, but since we work under
¬(0‡) during all this work, we won’t formulate it, the only thing to remember, is
that no mouse can have two measures with the same critical point.

Definition 1.3. A weasel W is a class sized model of the form L[E] such that W‖α
is a mouse for all α ∈ OR, see [12] p. 175.

A weasel W is universal if and only if the coiteration of W with any coiterable
premouse terminates, i.e. its length is strictly less than ∞, see [12] p. 184.

Let W be a universal weasel. A measure U on W with critical point κ is W -correct
if and only if

• setting ν = κ+W , (JEν , U) is a premouse;

• Ult(W,U) is well-founded.

We stress that we do not assume that U ∈ W . ([12], p. 218)

Definition 1.4 ([12] p. 212 ff.). (¬0‡)

A mouse M is strong if and only if there is a universal weasel W such that M =
W‖α for an α ∈ OR
The measure sequence EK is inductively define as follows:

EKων =

{
F if F is the only measure such that (JEν , F ) is strong;

∅ if JEν is strong and for no measure F is (JEν , F ) strong.
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We set
K = L[EK ] =

⋃

α∈OR
JE

K

α .

K is called the core model; if ¬(0†) then K is called the Dodd-Jensen core model.

Theorem 1.5 ([12] p. 226 and 232). Suppose ¬(0‡).

• K is a universal weasel.

• Let U be K-correct, then there is a ν such that U = EKν .

• Let σ : K →W be an elementary map from K to a universal weasel, then W
is a simple iterate of K and σ is the iteration map.
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2 Collapsing mice and embeddings

To prove covering, we must first give it more structure, i.e. reduce the problem to
something on which we can ”unleash” inner model theory and fine structure theory,
this will be done in the next lemma in which we show, that ”good” maps already
covers V , such that we only have to check, that such maps have their range in K
or K[C].

Definition 2.1. Let N be a premouse with a largest cardinal η. A mouseMDN
is called a collapsing mouse for N if and only if

• N ∩ OR is a cardinal of M, if MBN , and

• there is some n such that ρn+1(M) 6 η < ρn(M) and

M = hn+1
M (η ∪ {p(M)}),

hence M is η-sound.

Lemma 2.2. For a given N , there is at most one collapsing mouse for N .

Proof. Deny. Let M,M′ be two collapsing mice for N and ν = N ∩OR and η the
largest cardinal of N . We coiterate M and M′. Let Q be the last model on the
M-side and Q′ the last model of the M′-side. As both are mice only one side is
non simple(c.f. [12] lemma 5.3.1), let us suppose without loss of generality that the
M-side is simple and let π be the associated iteration map:

4|

M π // Q

M′ ///o/o/o/o/o/o/o/o/o/o/o Q′

As the M′-side is the non-simple side, Q E Q′(c.f. [12] lemma 4.4.2). Further as
M‖ν = N =M‖ν both iterations are above η as η is the largest cardinal in M‖ν.
LetM′i be the structure of theM′-side of the coiteration,Mi the structure on the
M-side, (νi, αi) the indices of the coiteration. Let n be such that ρn+1(M) 6 η <
ρn(M).

1. Case QCQ′.
Then Q is sound hence Q =M. Let

a ∈
(
Σ

(n+1)
1 (M) ∩ P(η)

)
\M,

We have that a ∈ Q′, hence a ∈ M′ as P(η) ∩ Q′ ⊆ P(η) ∩M′ (c.f. [12] 4.2.2).
But P(η) ∩M′ = P(η) ∩M as ν is a cardinal in both structures, hence a ∈ M, a
contradiction.

2. Case Q = Q′.

Suppose Q 6=M then Q is not η-sound, hence Q = Q′ 6=M′. Since Q and M are
mice they are solid (c.f. [12] 5.2.1). As Q is solid, we have that π(p(M)) = p(Q).
Let X be the closure of η∪p(Q) under functions of Γ(η,Q). The transitive collapse
of X is M, since M is transitive and π(hn+1

M (ξ, p(M))) = hn+1
Q (ξ, p(Q)) as ξ < η.

Thus π :M ∼−→ X . Let M∗ be the last truncate on the M′-side, hence:

‖

M π // Q

M′ ///o/o/o/o/o/o/o M∗ σ // Q′
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Since M∗ is a truncate, it is sound, let σ be the associated iteration map from N ∗
to Q′. We also have that Q′ and M∗ are solid and that the standard parameter of
M∗ is mapped on the standard parameter of Q′, thus

M∗ = hn+1
M∗ (η ∪ {p(M∗)}) ∼= hn+1

Q (η ∪ {p(Q)}),

thus M =M∗. Let i be such that M∗ =M′i‖αi. Let νj be the index of the first
used measure on the M-side. Suppose i > j. By the normality of the iteration

EMi
νj = E

M′i
νj = ∅, but on the other side E

M′i
νj = EMνj 6= ∅ since that measure was

used. Thus i = j but then as νj = νi we have that EMνj = EM
∗

νi , thus we wouldn’t
use that measure, a contradiction.

The only possibillity to getM = Q = Q′, ifM′ is moved, Q′ could not be η-sound,
hence M′ is not moved and M =M′ (Lemma 2.2)

Remark 2.3. If N = K|γ, such that N has a largest cardinal η with K � ”η is a
cardinal”, and MDN is a collapsing mouse for N , then MCK.

Proof. We coiterate N with K, since K is universal the N side is simple. We have
the following diagram, where Q is the last structure on the N -side and Q′ the last
structure on the Q′ side, let π be the associated iteration map.

4|

N π // Q

K ///o/o/o/o/o/o/o/o/o/o/o Q′

1. Case N is not moved.

Then N C Q′, this is clear if there is no drop on the K-side, if there is a drop it
suffices to notice that Q′ is not η-sound if a measure is used on the K side. Let ν
be the index of the first measure used in the K-side, ν is a cardinal in all structure
of the K-side with the possible exception of K and γ 6 ν, but then N EQ′‖ν since
N projects to η < ν and ν is a cardinal in Q′. Then as K‖ν = Q‖ν we have in fact
that N CK.

2. Case N is moved.

Hence Q is not sound, thus K must be moved, and there is a drop on the K-side.
Q = Q′, since Q′ is a mouse and Q is not sound. Recall that N BK|γ, hence the
coiteration is above η. Hence we are in the same case as case 2 of the proof of 2.2
the same argument leads to N CK. (Remark 2.3)

Definition 2.4. Let N be a premouse. A mouse M D N is called a generalized
collapsing mouse for N if and only if

• N ∩ OR = τ is a cardinal of M, if MBN , and

• if N has a largest cardinal µ, then M is µ-sound or else

• there is a n < ω such that ρn+1(M) < τ 6 ρn(M) and

M = hn+1
M (τ ∪ {p(M)}).

In this situation, we say that M is τ -sound.

Remark 2.5. IfM is a collapsing mouse for N , thenM is a generalized collapsing
mouse for N .
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Remark 2.6. If M is a generalized collapsing mouse for N , and if M D N such
that τ = N ∩ OR is a cardinal of M (if N CM), ρn+1(M) 6 τ and M =
hn+1

M (τ ∪
{
p(M)

}
), then MEM.

In particular, there is at most one generalized collapsing mouse for N .

Proof. If N has a largest cardinal, then we have already proved this result. If τ is
a limit cardinal, then the coiteration of M with M is above τ and the arguments
of 2.2 shows that there are no step in the coiteration, hence MEM or MCM.

Let us suppose thatMCM, as ρn+1(M) < τ , τ can not be a cardinal in a extension
of M, but it is one in M, a contradiction! (Remark 2.6)

Notation 2.7. Let µ be a regular cardinal, K ∼= X ≺ K‖µ such that K is transitiv
and π : K → K‖µ the uncollapsing map.

Let (κπi : i < απ) be an enumeration of the transfinite cardinals of K, and κπαπ =
OR ∩ K. Let κπ−i be either the cardinal predecessor of κπi in K if it exists or κπi
else. For i 6 απ let Mπ

i be either

i. K, if π � κπ−i = id and P(κπ−i ) ∩K ⊆ K, or else

ii. the generalized collapsing mouse for K|κπi if it exists.

For each i 6 απ let nπi be either

i. 0, if Mπ
i = K, or else

ii. the n such that ρn+1(Mπ
i ) < κπi 6 ρn(Mπ

i ).

We write M̃π
i for Ult(Mπ

i , π � κπi ) and call it the lift up of Mπ
i through π. For

X ≺ K‖µ, let πX : KX
∼= KX → K‖µ be the uncollapsing map.

Definition 2.8. Let µ be a regular cardinal and π : H → Hµ fully elementary such
that H is transitive. We call π almost good if and only if for all i 6 απ if Mπ

i

exists, then M̃π
i is normally iterable above π(κπ−i ).

Remark 2.9. Mπ
i is undefined if and only if π � κπ−i 6= id and there is no gener-

alized collapsing mouse for K|κπi .

Lemma 2.10. Let π, K as above, then for all i < απ such that Mπ
i exists and is

not K, M̃π
i is π(κπ−i )-sound, further the following is equivalent:

i. M̃π
i is normally iterable above κπ−i ,

ii. M̃π
i is an initial segment of K,

iii. M̃π
i is iterable.

Hence if one of these conditions holds, M̃π
i is the generalized collapsing mouse for

K|π(κπi ).

Proof. We already know that M̃π
i BK|π(κπi ) (c.f. [12] 3.6.3), by [12] lemma 3.6.9

M̃π
i is π(κπ−i )-sound asMπ

i is κπ−i -sound.

The only non trivial part of the equivalence is (i)⇒(ii). Let M̃ = M̃π
i , we drop

all π and i in the notation and write τ for κπi , κ for κπ−i . Suppose M̃ is normally
iterable above κ. As M̃|τ = K|τ we can coiterate M̃ and K since coiterations are
normal iterations and the coiteration will be above κ. Thus we are strictly in the
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same situation as in the proof of remark 2.3 if κ < τ , and thus it leads to the same
result. If κ = τ , then Case 1 of the proof of 2.3 still holds, and the other part as
well using the fact that the coiteration is above τ . (Lemma 2.10)

Lemma 2.11. Let X ≺ K‖µ and i < απX such that MπX
i = K then the following

is equivalent:

i. M̃πX
i is normally iterable above κπX−i ,

ii. M̃πX
i is iterable.

Proof. We only have to show (i)⇒(ii). Let W = Ult(K,πX � κπXi ), η = κπX−i and
τ = κπXi . If πX � τ = id then W = K and we have nothing to show, thus we can
suppose that η is the critical point of πX . As K|τ = W |τ the coiteration is above
η, hence W and K are coiterable. Let Q be the last model on the W -side, K∗ the
last model on the K-side. As K is universal the W -side is simple, let π be the
associated iteration map:

4|

W
π // Q

K ///o/o/o/o/o/o/o/o/o/o/o K∗

ThusQ is iterable. Thus, as π is fully elementary, W is also iterable. (Lemma 2.11)

Lemma 2.12 (frequent extension of embeddings). Let θ be a cardinal and
κ ≥ ℵ1 be a regular cardinal. The set

S = {ran(π) ∩ θ;π is almost good and card(π) = κ}

is stationary in [θ]κ.

Proof. Let A = (θ; (fi : i < κ)) be an algebra. Let µ be a regular cardinal which
is large enough. We recursively define sequences (Yi : i ≤ κ), (Ki : i ≤ κ) and
(πi : i ≤ κ) such that:

i. Yi ≺ K‖µ, for all i ≤ κ,

ii. Yi < κ, for all i < κ,

iii. Yλ =
⋃
i<λ Yi, for all limit ordinals λ ≤ κ,

iv. Yi+1 ⊇ fj”Y <ωi , for all j < i < κ,

v. πi : Ki
∼= Yi, where Ki is transitiv, and

vi. If j 6 απi and M̃πi
j is not normally iterable above πi(κ

πi−
j ), then let

Ni,j ∼= Xi,j =
{

[αi,jk , f
i,j
k ]; k < ω

}
≺ M̃πi

j ,

where αi,jk ∈ πi(dom(f i,jk )) and f i,jk ∈ Γ(πi,Mπi
j ), be such that Ni,j is transi-

tive and Xi,j is a witness for M̃πi
j not being normally iterable above πi(κ

πi−
j ).

In this situation let
{
αi,jk ; k < ω

}
⊆ Yi+1 for each such j.
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Let σij : Ni,j → M̃πi
j be the uncollapsing map, πi,j = π−1

j ◦ πi, for i < j 6 κ, and

Y i = π−1
κ ”Yi = ran(πi,κ).

We claim that (Yκ, πκ) is as desired. Obviously Yκ is closed under the fi’s. Let us
assume that πκ is not as desired and work toward contradiction. By assumption
there is a j < απκ such that M̃πκ

j is not normally iterable above πκ(κπκ−j ). Let

X =
{

[ακ,jk , fκ,jk ]; k < ω
}
≺ M̃πκ

j ,

where ακ,jk ∈ πκ(dom(fκ,jk )) and fκ,jk ∈ Γ(πκ,Mπκ
j ), be a witness to the non normal

iterability above πκ(κπκ−j ), Nκ,j its transitive collaps and σκj : Nκ,j → Mπκ
j the

uncollapsing map.

Let µ̃ > µ be a regular cardinal which is large enough and pick a Z ≺ Hµ̃ with the
following property:

i. Z < κ

ii.
{
fκ,jk ; k < ω

}
∪
{
Kκ

}
⊆ Z, and

iii. Z ∩Kκ = Y i0 for an i0 < κ,

We construct Z in ω steps, first pick a Z0 ≺ Hµ̃ such that (i) and (ii) holds, if Zn
is defined then pick a in+1 such that Zn ∩Kκ ⊆ Y in+1 , there is such a Y in+1 by the

regularity of κ, and let Zn+1 ≺ Hµ̃ such that Y n+1 ∪ sup
{
α;α ∈ Y n+1 ∩ OR

}
⊆

Zn+1 and (i) and (ii) holds for Zn+1. Then

Z =
⋃

n<ω

Zn

is a structure with the properties (i),(ii) and (iii). The construction shows that
Z ∩ κ ∈ κ. Let σ : K̃ → Z be the uncollapsing map, we have that σ(K i0) = Kκ

and σ � Ki0 = πi0,κ. Further let j be such that σ(κ
πi0
j

) = κπκj und n = n
πi0
j

. We

have that:

Z � ”Mπκ
j is the generalized collapsing mouse for Kκ|κπκj ”,

hence

K̃ � ”σ−1(Mπκ
j ) is the generalized collapsing mouse for σ−1(Kκ|κπκj )”,

but as Kκ|κπκj = σ(Ki0 |κ
πi0
j

), we have that σ−1(Mπκ
j ) = Mπi0

j
as generalized

collapsing mice are unique. Hence, by the elementarity of σ, n = nπκj . We define:

Φ : Nκ,j → M̃πi0
j

(σκj )−1([α, f ]) 7→ [α, σ−1(f)],

where α ∈ πκ(dom(f)) and f ∈ Γ(πκ,Mπκ
j ). For a Σ

(n)
0 formula ϕ we have following

11



equivalences:

M̃πi0
j
� ϕ(Φ((σκj )−1([α, f ])))

⇐⇒ M̃πi0
j
� ϕ([α, σ−1(f)])

⇐⇒ α ∈ πi0(
{
u;u ∈ dom(σ−1(f)) ∧ M̃πi0

j
� ϕ(σ−1(f)(u))

}
)

⇐⇒ α ∈ πκ ◦ πi0,κ(
{
u;u ∈ dom(σ−1(f)) ∧ M̃πi0

j
� ϕ(σ−1(f)(u))

}
)

⇐⇒ α ∈ πκ ◦ σ(
{
u;u ∈ dom(σ−1(f)) ∧ σ−1(Mπκ

j ) � ϕ(σ−1(f)(u))
}

)

⇐⇒ α ∈ πκ(
{
u;u ∈ dom(f) ∧Mπκ

j � ϕ(f(u))
}

)

⇐⇒ M̃πκ
j � ϕ([α, f ])

⇐⇒ X � ϕ([α, f ])

Hence Φ is well defined and Φ : Nκ,j →Σ
(n)
0
M̃πi0

j
.

Suppose M̃πi0
j

is normally iterable above πi0(κ
πi0−
j

), then by 2.10 it is already

iterable. Thus it is normally iterable above Φ(ρn+1(Nκ,j)) and hence by [12]
4.3.7 Nκ,j is normaly iterable above ρn+1(Nκ,j), but this is a contradiction to

ρn+1(Nκ,j) 6 (σκj )−1(κπκ−κ ). Thus M̃πi0
j

is not iterable, hence not normally it-

erable above πi0 (κ
πi0−
j

), and we already had choosen a witness Ni,j ≺ M̃
πi0
j

to the

non normal iterability above πi0 (κ
πi0−
j

). We define Ψ as follows:

Ψ : Ni0,j →M
πκ
j

(σi0
j

)−1([αi0 ,jk , f i0,jk ]) 7→ πi0,κ(f i0,jk )(π−1
κ (αi0,jk ))

Let (σi0
j

)−1([αi0,jk , f i0,jk ]) ∈ Ni0,j and ϕ be a Σ
(n)
0 -formula, we write α, f for αi0 ,jk , f i0,jk .

Ni0,j � ϕ((σi0
j

)−1([α, f ])) ⇐⇒ M̃πi0
j
� ϕ([α, f ])

⇐⇒ α ∈ πi0(
{
u;u ∈ dom(f) ∧Mπi0

j
� ϕ(f(u))

}
)

⇐⇒ π−1
κ (α) ∈ πi0,κ(

{
u;u ∈ dom(f) ∧Mπi0

j
� ϕ(f(u))

}
)

⇐⇒ π−1
κ (α) ∈

{
u;u ∈ dom(πi0,κ(f)) ∧Mπκ

j � ϕ(πi0,κ(f)(u))
}

⇐⇒ Mπκ
j � ϕ(πi0,κ(f)(π−1

κ (α)))

⇐⇒ Mπκ
j � ϕ(Ψ((σi0

j
)−1([α, f ])))

The fourth equivalence holds since σ(Mπi0
j

) =Mπκ
j and σ � Ki0 = πi0,κ. Hence Ψ is

Σ
(n)
0 . Ni0,j is not iterable above (σi0j )−1(κ

πi0−
j

), butMπκ
j is iterable, a contradiction

to [12] 4.3.7! (Lemma 2.12)

Corollary 2.13. Let K ∼= X ≺ K‖µ such that πX is almost good, cp(πX) = κ
exists and P(κ) ∩K = P(κ) ∩K. Then Ult(K,U) is iterable, where

U = {x ∈ P(κ) ∩K; κ ∈ πX(x)} .

Proof. We define an embedding from Ult(K,U) in K̃, the lift up of K through

π � cp(π)+K .

k : Ult(K,U)→ K̃

[f ] 7→ [κ, f ]

12



Let f : κ→ K and ϕ be a formula, then κ ∈ πX (dom(f)) and

Ult(K,U) � ϕ([f ]) ⇐⇒ {α;K � ϕ(f(α))} ∈ U
⇐⇒ κ ∈ πX({α;K � ϕ(f(α))})
⇐⇒ κ ∈ πX({α;α ∈ dom(f) ∧K � ϕ(f(α))})
⇐⇒ K̃ � ϕ([κ, f ])

Hence k is elementary and thus Ult(K,U) is iterable.

Remark that, if iU is the cannonical ultrapowermap and π̃ the cannonical map
from K to K̃, then k ◦ iU = π̃ by definition, moreover, as U is a normal ultrafilter,
k(κ) = k([id]) = [κ, id] = πX (id)(κ) = κ, hence κ < cp(k). Further

κ+K 6 κ+ Ult(K,U) 6 κ+K̃ 6 κ+K

hence all are equal and cp(k) > κ+ Ult(K,U). (Corollary 2.13)
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3 When K covers

Definition 3.1. Let W be an inner model, that is W � ZFC and W ⊆ V and
OR ⊆ W . We say W covers if and only if for all sets X of ordinals there is some

Y ∈W such, that X ⊆ Y and Y 6 X + ℵ1.

We say W covers strongly if and only if the following holds:

if κ > ℵ1 is a cardinal and θ > κ, then [θ]κ ∩W is stationary in [θ]κ.

Theorem 3.2 (Covering). Assume ¬(0†) then one of the following statements
holds true:

• K covers.

• There is a Prikry generic sequence C over K such that K[C] covers.

We will prove a stronger version:

Theorem 3.3. Assume ¬(0†). Exactly one of the following statements holds true.

i. K covers strongly.

ii. There is a µ > ℵ2 such that K �”µ is measurable” and there is some C ⊆ µ
Prikry generic over K such that K[C] covers strongly.

We want to restrict the study of this problem to regular κs:

Lemma 3.4. Let W be a inner model and κ > ℵ1 a singular cardinal, such that
[θ]λ∩W is stationary in [θ]λ for all θ > λ and all λ < κ, then [θ]κ∩W is stationary
in [θ]κ for all θ > κ.

Proof. Let κ > ℵ1 be as in the lemma (κi; i < cf(κ)) a witness to the singularity
of κ. Let further A = (θ, (fj ; j < κ)) be an algebra with θ > κ a cardinal. By

assumption for all i and all n < ω and for all Xm ∈ [θ]6κi m < n, we can find a X̃
such that X̃ is closed under (fj ; j < κi) and

⋃
m<nXm ⊆ X̃ . Hence there is (in V )

a function
Φni : [[θ]6κi ]n ∩W → [θ]6κi ∩W,

such that for all (Xm;m < n) ∈ [[θ]6κi ]n, Φni ((Xm;m < n)) is closed under (fj ; j <
κi).

Let Bi = ([θ]6κ; (Φni ;n < ω ∧ i < cf(κ))); as we can choose in W a bijection
between [θ]6κ and some θ′ and ω · cf(κ) < κ there is a Z ⊆ [θ]6κ such that Z ∈W
and Z is closed under all Φn

i . We want to show that
⋃
Z is closed under all fj .

Let α1, . . . , αn ∈
⋃
Z and j < κ. There are X1, . . . , Xn ∈ Z and i < cf(κ) such

that j < κi and αm ∈ Xm for all m 6 n. Then Φni ((Xm;m 6 n)) ∈ Z and
fj(α1, . . . , αn) ∈ Φni ((Xm;m 6 n)) thus fj(α1, . . . , αn) ∈ ⋃Z. (Lemma 3.4)

Let us now consider the following hypothesis:

(H) If µ > ℵ2 is singular in V, then µ is singular in K too.

We will split the proof of covering in two parts:

i. (H) implies that K covers strongly.

ii. If (H) fails and 0† doesn’t exist, then there is a Prikry generic C over K such
that K[C] covers strongly.
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We intend to prove the first part in this section, but as most of the lemmata don’t
use (H) and in fact are needed in later sections, it will be explicitely stated in the
lemmata if the results are proven under (H).

Definition 3.5. Let π : H → Hµ be elementary and H transitive. The embedding
π will be called a good map if π is almost good as defined in 2.8, is iterable and if
π is continuous at points of cofinality ω.

Until the end of this section fix a π such that π is good and κ = cp(π) exists, let
further K = Kdom(π).

Lemma 3.6. P(κ) ∩K * K.

Proof. Deny. As P(κ) ∩K = P(κ) ∩K, κ+K = κ+K . Let

U = {X ⊆ κ; X ∈ P(κ) ∩K,κ ∈ π(X)} .

By Corollary 2.13, we know that K∗ = Ult(K,U) is iterable, even k : K∗ → K̃ is

an elementary embedding such that cp(k) > κ+K = κ+K∗ = κ+K̃ , where K̃ was
the lift up of K trough π. Hence

(∗) K∗‖κ+K = K̃‖κ+K̃ = K‖κ+K.

We coiterate K∗ with K, since both are universal weasels, we get the following
diagram:

K
iU // K∗

j

&&NNNNNNNNNNNNN

Q

K

i

88ppppppppppppp

where iU is the ultrapower map by U . Because of (∗), i � κ+K + 1 = j � κ+K = id
and cp(j ◦ iU ) = κ and cp(j) > κ+K + 1. This is an outright contradiction to the
fact that there can be only one elementary embedding from K to a universal weasel,
as we have noted in 1.5. (Lemma 3.6)

Lemma 3.7. Let η be minimal such that P(η) ∩K 6= P(η) ∩K, then

η < κ⇒ κ = η+K .

Proof.

As GCH holds in K, if δ < κ, then cardK(P(δ)) = δ+K 6 κ.

1.Case κ = δ+K .

Because of acceptability, we have a one to one function f : κ ∼−→ PK(δ). Thus a one
to one function π(f) : π(κ) ∼−→ PK(δ), since π(δ) = δ. As cardK(κ) < cardK(π(κ)),

card(PK(δ)) < card(PK(δ)). Hence P(δ) ∩K ( P(δ) ∩K, since π(f) � κ = f .

2. Case δ+K < κ.

We have a one to one function f : δ+K ∼−→ PK(δ). Hence π(f) : δ+K ∼−→ PK(δ),

as π(δ+K) = δ+K and π(δ) = δ. But for a X ⊆ δ π(X) = X , hence for all α < δ+K

f(α) = π(f)(α) and therefore π(f) = f . Thus P(δ) ∩K = P(δ) ∩K.
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Hence if κ is a limit cardinal only case 2 occurs and µ = κ and if κ is a successor

cardinal then case 1 shows that µ+K = κ. (Lemma 3.7)

Therefore the coiteration of K with K is above η and as K is a universal weasel,
the K-side is simple. There must be a drop in the first step of the coiteration since

η+K < η+K . Let M0 = K‖ζ denote the truncated model.

Lemma 3.8. K is not moved in the coiteration of K and K.

Proof. Let νi be the iteration indices, κi the associated critical points and let Ki

andMi be the structures on the K- side andM0-side of the coiteration. We write
Eνi for EKi

νi and Eνi for EMi
νi . We treat the coiteration of K with K as if it were

the coiteration of M0 with K.

4|

K // K∞

M0
///o/o/o/o/o/o/o/o/o/o/o M∞

As we work towards contradiction, let us suppose that K is moved. Let ζi be the
maximal ζ such that νi is the cardinal successor of κi in Mi‖ζ or, in other words,
the maximal ζ such that Eνi is a total measure over the corresponding truncate.
Claim 1. Every mouse M∗i =Mi‖ζi projects to κi and is κi-sound.

Proof.

Suppose first that ζi < ht(Mi).

M∗i is a truncate of Mi hence it is sound, hence it is sound above κi. Thus

P(κi) ∩Ki ( P(κi) ∩Mi,

hence κ+Ki

i is not a cardinal in Mi, and it will be collapsed in Mi‖ζi + ω, by the
definition of ζi, thusMi‖ζi projects to κi. Suppose now that ξi < htMi, we prove
this case by induction on i. For the successor step: let Mi+1 = Ult∗(M∗i , Eνi),
where M∗i = Mi‖ζi satisfies the claim. Let n be such that ρn+1(M∗i ) 6 κi <
ρn(M∗i ).
Each x ∈ Mi+1 is of the form πMi,i+1(f)(κi) where πMi,i+1 is the associated ultrapower

map and f ∈ Γ(κi,M∗i ). There is a good Σ
(n−1)
1 (M∗i ) function g such that f '

g(ξ, p) with a parameter p ∈M∗i .
As M∗i is κi-sound by induction hypothesis for all p ∈M∗i :

p = hn+1
M∗i (ξ, p(M∗i )),

where ξ < κi. Hence

πi,i+1(p) ∈ hn+1
Mi+1

(κi ∪ {p(Mi+1)}),

as iteration maps are Σ∗-preserving. Thus we even get:

x = g′(κi, h
n+1
Mi+1

(ξ, πi,i+1(p(Mi+1)))),

where g′ is a good Σ
(n−1)
1 (Mi+1) function with the same functionally absolute

definition as g, as
πMi,i+1(p(M∗i )) = p(Mi+1).

We just have seen that x is Σ
(n)
1 (M)-definable with parameters less than κi + 1.

Hence:
Mi+1 = hn+1

Mi+1
((κi + 1) ∪ {p(Mi+1)}).
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If λ is a limit ordinal, then every x ∈ Mλ is of the form πMi,λ(xi) for an i large
enough and an xi ∈Mi. By induction hypothesis we know that for every xi:

xi ∈ hn+1
Mi

(κi ∪ {p(Mi)}),

where n is such that ρn+1(M∗i ) 6 κi < ρn(M∗i ). Without loss of generality one can
choose i large enough such that there is no truncation between i and λ and that

ρn+1(M∗j ) 6 κj < ρn(M∗j )

for all i 6 j 6 λ. Because of the elementarity of the iteration maps, the claim
follows as in the successor step. (Claim 1)

Let i be the first index such that EKi
νi 6= ∅. Then we have that Ki = K. Let

EKi
νi = Eνi .

Claim 2. The model Ult∗(M∗i , Eνi) is iterable above κi.

Proof. Let σ :M∗i →∗Eνi M̃ = Ult∗(M∗i , Eνi)
We have that M∗i ‖κi = K‖κi and that M∗i is κi-sound and that it projects to κi.
Hence M∗i is the collapsing mouse to K|νi. Hence M the liftup of M∗i through π
is iterable, as π is good. ThusMCK by 2.10. Let π :M∗i →M be the associated
liftup of π. Since Eνi is a measure on M∗i , we have that π(Eνi) is a total measure
on K too and Ult(K,π(Eνi)) is iterable. Let σ′ : K → Ult(K,π(Eνi)) be the
associated ultrapower map. K � ”M is iterable”, hence

Ult(K,π(Eνi)) � ”σ′
(
M
)

is iterable”,

and thus σ′(M) is truly iterable. We want to embed M̃ in σ′
(
M
)
:

M∗i π //

σ

��

M
σ′

��

M̃ Φ // σ′
(
M
)

Therefore we define:

Φ : M̃ → σ′
(
M
)

[f ] 7→ σ′(π(f))(π(κi)).

Let us compute the level of elementarity of Φ. For a function f ∈ Γ(κi,M∗i ) and a

Σ
(m)
0 fomula ϕ, with m such that ρm+1(M∗i ) 6 κi < ρm(M∗i ) we have that:

M̃ � ϕ([f ]) ⇐⇒ {ξ < κi;M∗i � ϕ(f(ξ))} ∈ Eνi
⇐⇒ π({ξ < κi;M∗i � ϕ(f(ξ))}) ∈ π(Eνi)

⇐⇒
{
ξ < π(κi);M � ϕ(π(f)(ξ))

}
∈ π(Eνi)

⇐⇒
{
ξ < π(κi);K � ”M � ϕ(π(f)(ξ))”

}
∈ π(Eνi)

⇐⇒ Ult(K,π(Eνi)) � ”σ′
(
M
)
� ϕ (σ′ (π(f)(π(κi)))) ”

⇐⇒ M � ϕ(π(f)(ξ)).

Notice for the second equivalence that as π is the lift up of π, π � K|νi = π � K|νi.
Hence Φ is Σ

(m)
0 -elementary (notice that we used that π was Σ

(m)
0 -elementary too).

As σ′
(
M
)

is iterable, M̃ is normally iterable above ρm+1(M̃) by [12] 4.3.7. Hence

it is iterable above κi if ρm+1(M̃) 6 κi, but since M∗i is m-sound, ρm+1(M̃) 6
ρm+1(M∗i ) (c.f. [12] 3.2.3),thus we have proved the claim. (Claim 2)
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Since M∗i ‖κi = M̃‖κi and κi is a cardinal in both structures, the coiteration is
above κi and exists. Let Q0 be the last sturcture on the M∗i -side and Q1 the last
structure on the M̃-side. By [12] 5.1.6. the M∗i -side of the coiteration is simple,
and we get the following diagram:

4|

M∗i //

σ

��

Q0

M̃ ///o/o/o/o/o/o/o/o/o/o/o Q1

Claim 3.

i. M∗i coiterate simply with M̃ above κi to a common mouse Q.

ii. π̃ ◦ σ = π∗, where π̃ and π∗ are the respective iteration maps.

iii. E
M∗i
νi = Eνi

Proof.

i. We know that the M∗i -side must be simple, hence Q0 CQ1 or Q0 = Q1.

Let us suppose that Q0 CQ1.

Let
a ∈

(
Σ

(m)
1 (M∗i ) ∩ P(κi)

)
\M∗i .

Then a ∈ Σ
(m)
1 (Q0). We can see Q0 as an iterate of M̃, if we extend the

iteration of M̃ to Q1 with a truncation to Q0. But then a has to be in Q1

and therefore in M̃ too, as the coiteration is above κi. If we lengthen the
iteration at the beginning, by regarding M̃ as an iterate ofM∗i , the iteration
is still above κi and we have that a ∈ M∗i , a contradiction! Now we have the
following diagramm:

M∗i
π∗

))SSSSSSSSSSSSSSSSSS

σ

��

Q

M̃
π̃

55kkkkkkkkkkkkkkkkkkk

ii. As the coiteration is above κi, we have that:

π̃ ◦ σ � κi = π∗ � κi

Because of the soundness ofM∗i , every x ∈ M∗i is of the form hm+1
M∗i (ξ, p(M∗i ))

for a ξ < κi. From the elementarity of the maps we now get that:

π∗(x) = hm+1
Q (ξ, π∗(p(M∗i ))) = hm+1

Q (ξ, π̃ ◦ σ(p(M∗i ))) = π̃ ◦ σ(x).

iii. Now cp(π∗) = κi, hence, the first measure of the M∗i -side had to be E
M∗i
νi .

Hence E
M∗i
νi 6= ∅ and for a ∈ P(κi) ∩M∗i , we have that:

a ∈ EM
∗
i

νi ⇐⇒ κi ∈ π∗(a) = π̃ ◦ σ(a) ⇐⇒ κi ∈ σ(a) ⇐⇒ a ∈ Eνi .
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For the second equivalence we have to check that cp(π̃) > κi. We already
know that M∗i BK|νi, hence M̃ = Ult(M∗i , Eνi) B Ult(K|νi, Eνi) = N . By

coherency ENνi = ∅, thus EM̃νi = ∅ and the measure used in the first step had
a critical point greater than κi, but as the iteration is normal, κi can not be
a critical point later.

(Claim 3)

But as Eνi was used in the coiteration with K, they can’t be equal, a contradiction!

(Lemma 3.8)

Now we know that for a good π, if I is the K-side of the coiteration of K with K,
then for all i < lh(I)

K‖κ+K
i CMIi

andMIi is the collapsing mouse for K|κ+K
i , where in a slight abuse of notation we

allow κ+K
i to be K ∩ OR if κi is the largest cardinal of K.

Theorem 3.9 (weak covering). Suppose 0‡ does not exist, then for all β > ℵ2,

cfV (β+K) > β
V

.

Proof. Deny. Let β be minimal with θ = cfV (β+K) < β
V

. Remark that all we have
proved thus far was only under ¬(0‡). Let π be good such that {βi; i 6 θ} ⊆ ran(π),
where (βi, i < θ) is a strictly monotonous sequence witnessing the cofinality of β+K ,
βθ = β+K and card(dom(π)) = ℵ1· θ. Let K = Kdom(π). As we have seen there is a

collapsing mouse for K‖β+K and its lift up M̃ is an initial segment of K, moreover
(c.f.[12] 3.6.5.)

β+M̃ = supπ”
{
α;α < (π−1(β))+K

}
= β+K .

Further M̃ is a collapsing mouse for K|β+M̃, hence M̃ projects to β, hence there is
a subset of β that is not in M̃ thus β+K will be collapsed to β in K, a contradiction
to the fact that β+K is a cardinal in K! (Theorem 3.9)

Lemma 3.10. (H)

Let π be good and K = Kdom(π). In the coiteration of K with K, there are only
finitely many measures that are used on the K-side.

Proof. Deny. Let I be the iteration tree of the K-side. Then there is a i such
that i + ω < lh(I) and πIi,i+n(κi) = κi+n, where κn = cp(πIi+n,i+n+1). Let κ =
sup {κj ; i 6 j < i+ ω}.
As κ is measurable inMIi+ω , it has to be inaccessible in K, hence π(κ) is inaccessible
in K. But π” {κj ; i 6 j < i+ ω} is cofinal in πκ, hence with (H) it must be less
than ℵ2. A contradiction if we suppose that ran(π) ∩ ℵ2 ∈ ω2 + 1.

(Lemma 3.10)

Lemma 3.11. (H)

K covers strongly.

Proof. We prove this by induction on θ, for regular θ. We know that if κ > ℵ1 and
θ > κ, then {ran(π) ∩ θ;π is good and card(π) = κ} is stationary in [θ]κ. We now
have to check that for such a π:

ran(π) ∩ θ ∈ K.
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Let K = Kdom(π), I the iteration tree of the K side of the coiteration of K with K,

k such thatMIk is the collaps mouse for K|θ+K , n such that ρn+1(M) 6 π−1(θ) <

ρn(M), M̃ the lift up of M through π. Then:

ran(π) ∩ θ = hn+1

M̃
(
π”ρn+1(MI0 ) ∪

{
π(p(MIk )), π(κI0 ), . . . , π(κIk )

})
∩ θ,

By induction hypothesis π”ρn+1(MI0 ) ∈ K and thus ran(π)∩ θ ∈ K. (Lemma 3.11)
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4 Towards a unique Prikry generic sequence

Lemma 4.1. LetM be a sound mouse and I a simple iteration ofM above ρω(M).
Then κ ∈ MI∞ is a critical point of the iteration if and only if κ ∈ hn+1

MI∞
(κ ∪{

p(MI∞)
}

), with n is such that ρn+1(M) 6 κ < ρn(M).

Proof. Let κj be the critical points of the iteration. Suppose κ is a critical point
and κ ∈ hn+1

MI∞
(κ∪

{
p(MI∞)

}
). Let πIi,i+1 :MIi →MIi+1 be the iteration map such

that cp(πIi,i+1) = κ. Then κ /∈ hn+1
MI∞

(κ ∪
{
p(MI∞)

}
) implies that

κ ∈ hn+1
MIi+1

(κ ∪
{
p(MIi+1)

}
),

but
hn+1
MIi+1

(κ ∪
{
p(MIi+1)

}
) ⊆ ran(πIi,i+1),

a contradiction!

Suppose conversly that κ /∈ hn+1
MI∞

(κ ∪
{
p(MI∞)

}
. Suppose κ is not a critical point.

Let i be minimal such that either:

• cp(πIi,i+1) > κ, or

• if there are no j sich that cp(πIj,j+1) > κ, then i = lh(I) = θ.

Then πIi,θ � κ+ 1 = id, as κ is not a critical point. By [12] 4.2.4.

MIi = hn+1
MIi

(ρn+1(M) ∪ {κj ; j < i} ∪
{
p(MIi )

}
).

But we have chosen i such that κ > sup {κj ; j < i}, hence

MIi = hn+1
MIi

(ρn+1(M) ∪ sup {κj ; j < i} ∪
{
p(MIi )

}
) = hn+1

MIi
(κ ∪

{
p(MIi )

}
).

Hence ranπIi,θ = hn+1
MI∞

(κ ∪
{
p(MI∞)

}
), since πIi,θ � κ + 1 = id, but therefore κ ∈

ranπi,θ too, thus κ ∈ hn+1
MI∞

(κ ∪
{
p(MI∞)

}
), a contradiction! (Lemma 4.1)

We now work under (¬H), let µ > ℵ2 be minimal with cf(µ) < µ and µ regular in
K.

Definition 4.2. A map π : H → Hθ, with θ > µ+V a large enough regular cardinal,
will be said to be very good if:

• every M̃π
i , as defined in 2.7, is iterable,

• π is continuous at points of cofinality ω,

• µ ∈ ran(π),

• ran(π) ∩ µ is cofinal in µ,

• π = cf(µ)· ℵ1.

Such πs exist, since cf(µ)· ℵ1 < µ.

Let I = Iπ be the K-side of the coiteration with K‖π−1(µ), where K = Kdom(π).
MI∞ cannot be a finite iterate of K, else µ would be singular in K. On the other
side there can be no κ < µ, which would be the supremum of the first ω many
critical points of the iteration, because of the minimality of µ, therefore cf(µ) = ω
and MI∞ =MIω.
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Notation 4.3. Let {κπn;n < ω} be the first ω many critical points of the iteration
I, we write Cπ for {κπn;n < ω} and Cπ for {π(κπn);n < ω}.
Further X ⊆fin Y , if X \ Y is finite and X =fin Y , if X ⊆fin Y and Y ⊆fin X .

Lemma 4.4. Let π, π′ be very good and ran(π′) ⊆ ran(π),then Cπ ∩ ran(π′) ⊆fin

Cπ′ .

Proof. Let M̃ = Ult(MIπ
′

∞ ;π−1 ◦ π′ � π′−1(µ)), write µ = π−1(µ).

M̃ is µ-sound, and ρω(M̃) 6 µ. But since MIπ∞ µ-sound and ρω(MIπ∞ ) < µ, we

have M̃EMIπ
′

∞ , by 2.5.

1. Case M̃ =MIπ∞ , in this case we want to show even more:

Cπ ∩ ran(π′) =fin Cπ′ .

Let
ξ ∈ Cπ ∩ ran(π−1 ◦ π′).

If
(π−1 ◦ π′)−1(ξ) = ξ /∈ Cπ′

then it is generated by ~η′ < ξ, that is there is a term τ such that:

ξ = τM
Iπ
′

∞ (~η′, p(MIπ
′

∞ )),

but then
ξ = π−1 ◦ π′(ξ) = τM̃(~η, p(M̃))

with ~η < ξ. Thus it could not have been in Cπ.

On the other side, if ξ ∈ Cπ′ and ξ = π−1 ◦ π′(ξ) /∈ Cπ then there is a term τ such
that

ξ = τM̃(~η, p(M̃))

with ~η < ξ and ξ is uniquely determined by:

M̃ � ∃~η < ξ ξ = τM̃(~η, p(M̃)).

Thus it holds for ξ in MIπ
′

∞ and ξ /∈ Cπ′ . Hence Cπ ∩ ran(π) =fin Cπ′ .

2. Case M̃CMIπ∞
There is a term τ such that

{
M̃, p(M̃)

}
= τM

Iπ
∞ (~ξ, ~η, p(MIπ

′

∞ ))

where ~ξ < ρω(MIπω ) and ~η ∈ Cπ. Let

κ ∈ ran(π−1 ◦ π′) \ (π−1 ◦ π′)”Cπ′

large enough, i.e. ~η < κ, such that κ = σM̃(~ξ′, p(M̃)), with ~ξ′ < κ and σ some
term. Since M̃ and p(M̃) are terms in MIπ∞ , there is a term τ∗ such that

κ = τ∗M
Iπ
∞ (~ξ∗, ~η∗, p(MIπ

′

∞ ))

with ~ξ∗ < ρω(MIπ∞ ) and ~η∗ ∈ Cπ ∩ κ. Thus κ /∈ Cπ. (Lemma 4.4)

Lemma 4.5. There are cofinally many very good π such that for all very good
π1 with ran(π) ⊆ ran(π1) there is a very good π2 with ran(π1) ⊆ ran(π2) and
Cπ2 ⊆ ran(π).
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Proof. Deny. Let (πi; i 6 ω1) be continuous at ω1 such that for all i there is no π̃
with ran(πi+1) ⊆ ran(π̃) and Cπ̃ ⊆ ran(πi). But since otp(Cπω1

) = ω there must

be a i with Cπω1
⊆ ran(πi), and ran(πi) ⊆ ran(πω1). Contradiction!

(Lemma 4.5)

Lemma 4.6. There is a very good π such that for all very good π1 with ran(π) ⊆
ran(π1) there is some very good π2 with ran(π1) ⊆ ran(π2) and Cπ2 =fin Cπ.

Proof. Deny. Let (πi; i 6 ω1) be continuous at ω1 such that for all i < ω1 ran(πi) ⊆
ran(πi+1), and whenever π̃ is such that ran(πi+1) ⊆ ran(π̃) then Cπ̃ 6=fin Cπi . We
write Ii for Iπi . We want to thin out this sequence until we get a contradiction.
We already know by Lemma 4.4 that Cπω1

∩ ran(πi) ⊆fin Cπi for all i < ω1. Hence

Cπω1
⊆fin Cπi for all but boundedly many i < ω1. Let us assume without loss of

generality that γ0 < µ is such that Cπω1
\ γ0 ⊆ Cπi for all i < ω1. Further, with the

help of lemma 4.5 we may choose the πi such that Cπi ⊆ ran(π0), thus by lemma
4.4 we can find a γ0 < γ1 < µ such that for all i Cπi \ γ1 ⊆ Cπ0 .

Let M̃i = Ult(MIi∞, π−1
ω1
◦πi � π−1

i (µ)) and ˜π−1
ω1 ◦ πi the associated lift up of π−1

ω1
◦πi.

We may assume that M̃iCMI
ω1

∞ = N , because otherwise Cπi =fin Cπω1
as we have

seen in the first case of the proof of lemma 4.4.

Claim 1. N‖µ′+N =
⋃
i<ω1

M̃i, where µ′ = π−1
ω1

(µ).

Proof. For i 6 ω1 let π̃i be the associated map of the liftup ofMIπi∞ to K, to prove
the claim it suffices to show that

P(µ) ∩ ran(π̃ω1) =
⋃

i<ω1

P(µ) ∩ ran(π̃i).

For i 6 ω1 let MIik be the kth-structure of the iteration Ii, πIik,l the compositions

of the associated iteration maps and κπ
i

k the associated critical points. Let ã ∈
P(µ) ∩ ran(π̃ω1) and

a = π̃−1
ω1

(ã) ∈ P(µ′) ∩ N .
As a is in a direct limit there is some n and some a such that for the iteration map
πI

ω1

n,ω , a = πI
ω1

n,ω (a), with

a ∈ P(κ
πω1
n ) ∩MIω1

n .

There is an i such that for some m:

πω1(κ
πω1
n ) = πi(κ

πi
m ),

since Cπω1
\ γ0 ⊆ Ci. Let b, b such that

a = π−1
ω1
◦ πi(b) and b = πI

i

m,ω(b).

It suffices to prove that π̃i(b) = ã, since ran(π̃i) ∩ P(µ) ⊆ ran(πi+1).

b = τM
Ii
m (~γ, p(MIim )) with ~γ < κπim ,

hence

b = τM
Ii
∞ (~γ, p(MIi∞)).

Without loss of generality:

p(M̃i) = ˜π−1
ω1 ◦ πi(p(MI

i

∞)) ∈ ran(πI
ω1

n,ω )
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and π−1
ω1
◦ πi(~γ) ∈ ran(πI

ω1

n,ω ).

We have then:

˜π−1
ω1 ◦ πi(b) = ˜π−1

ω1 ◦ πi(πI
i

m,ω(b))

= τM̃i(π−1
ω1
◦ πi(~γ), p(M̃i))

∈ ran(πI
i

n,ω).

Say ˜π−1
ω1 ◦ πi(b) = πI

i

n,ω(a′). We want to show a′ = a. For δ < κI
ω1

n :

δ ∈ a′ ⇐⇒ δ ∈ πIω1

n,ω (a′)

⇐⇒ δ ∈ ˜π−1
ω1 ◦ πi(b)

⇐⇒ δ ∈ ˜π−1
ω1 ◦ πi(πI

i

m,ω(b))

⇐⇒ δ ∈ ˜π−1
ω1 ◦ πi(b) as b ⊆ κIim

⇐⇒ δ ∈ π−1
ω1
◦ πi(b) = a.

(Claim 1)

In particular cfV (µ′+N ) = ω1. As N is the generalized collapsing mouse for µ′,
there is a n such that ρn+1(N ) 6 µ′ < ρn(N ).

Claim 2. cf(N n ∩OR) = ω1

Proof. Let us suppose the contrary and work toward contradiction.

1. Case cf(N n ∩OR) = ω.

Let (ηk, k < ω) be a monotonous sequence, cofinal in N n ∩OR. We have that

h1
Nn‖ηk (µ′ ∪ {p(Nn)}) ≺Σ1 Nn‖ηk

But as N is µ′-sound, it follows that

N = h1
Nn(µ′ ∪ {p(N )})

=
⋃

k<ω

h1
Nn‖ηk(µ′ ∪ {p(Nn)})

Let µk = sup
(
h1
N‖ηk (µ′ ∪ {p(Nn)}) ∩ µ′+Nn

)
, µk < µ′+N as the skolemhulls all

have cardinality µ. but then (µk, k < ω) is a monotonous sequence, cofinal in µ+N ,
a contradiction to cf(µ′+N ) = ω1!

2. Case cf(N n ∩OR) > ω1.

We use the same argument, pick a monotonous, cofinal sequence (ηk; k < θ) with
θ = cf(Nn ∩ OR) > ω1. Define (µk, k < θ) as above, then the µk are a sequence
which is cofinal in µ′+N and of order type θ > ω1, a contradiction! (Claim 2)

Let (ηi; i < ω1) be a monotonous cofinal sequence in N n ∩OR, let

σi : N i
∼−→ hNn‖ηi(µ

′ ∪ {p(N )}) ≺Σ1 Nn‖ηi
where σi is the uncollapsing map and let pi be such that σi(pi) = p(Nn). We know
that N i ∈ N . Hence N i ∈ N‖µ+N , thus we can fix a j(i) for all i < ω1 such that
N i ∈ M̃j(i). Thus

{
N i, pi

}
∈ M̃j(i), further

{
N i, pi

}
∈ hnj(i)+1

M̃j(i)
(µ′ ∪

{
p(M̃j(i))

}
),

for nj(i) such that ρnj(i)+1(M̃j(i)) 6 µ′ < ρnj(i) (M̃j(i)). Pick a monotonous se-
quence (εk, k < ω) cofinal in µ′. For all i choose a γ̃i such that:
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•
{
N i, pi

}
∈ hnj(i)+1

M̃j(i)
(γ̃i ∪

{
p(M̃j(i))

}
),

• γ̃i = εk for some k.

By the pigeonhole principle, there must be a k < ω such that for ω1 many i’s
γi = εk. Hence without loss of generality γ̃i = γ̃j = γ2 < µ′ for all i, j < ω1. We
have now that Cπi \ γ1 ⊆ Cπ0 for all i 6 ω1, Cπω1

\ γ0 ⊆ Cπi for all i 6 ω1 and

Cπω1
6=fin Cπi for all i < ω1, since we are working towards contradiction. Hence we

can choose a ξ ∈ Cπ0 \ γ1 such that ξ ∈ Cπi \ Cπω1
and ξ = π−1

ω1
(ξ) > γ2.

We are now ready to produce the contradiction:

ξ ∈ hNn(ξ ∪ {p(N n)}), hence ξ ∈ hNn‖ηi(ξ ∪ {p(N n)}) for almost all i. Thus

ξ ∈ hN i(ξ ∪ pi). Let j = j(i), then ξ ∈ hnj+1

M̃j
(ξ ∪ γ̃i ∪

{
p(M̃j)

}
), but γ̃i = γ2 < ξ.

Hence
ξ ∈ hnj+1

M̃j
(ξ ∪

{
p(M̃j)

}
),

and thus ξ couldn’t have been in a Cπi , a contradiction! (Lemma 4.6)
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5 When K[C] covers

We still work under (¬H). As all results are based on 5.2, all the following only
holds below ¬(0†).

Notation 5.1. Let π be a very good function (in the sense of definition 4.2).

Let M̃π = Ult
(
MIπ∞ , π � π−1(µ)

)
be the liftup of MIπ∞ to K, π̃ its associated

ultrapower map.

Then let Ũπ denote the active measure of M̃π and Uπ that of MIπ∞ , further let

U =
⋃{

Ũπ;π very good
}

.

Remark 5.2. For all X ∈ P(µ) ∩ ran(π) ∩K either Cπ ⊆fin X or Cπ ⊆fin µ \X .

Proof. Let X ∈ P(µ) ∩ ran(π) ∩ K, X = π−1(X) and {κπk ; k < ω} be the crit-
ical points of the iteration Iπ , MIπk the structures of the iteration and πI

π

k,l the
compositions of the associated iteration maps, then

X ∈MIπ∞ = hn+1
MIπ∞

(
ran(πI

π

0,∞) ∪ {κπk ; k < ω}
)
,

with n such that ρn+1(MIπ∞ ) 6 π−1(µ) < ρn(MIπ∞ ). Therefore there is a term τ
such that

X = τM
Iπ
∞
(
πI

π

0,∞(x), κπ0 , . . . , κ
π
l−1

)
.

But then for all k > l

X = πI
π

k,∞
(
τM

Iπ
k (πI

π

0,k(x), κπ0 , . . . , κ
π
l−1)

)
.

Let Xk = τM
Iπ
k

(
πI

π

0,k(x), κπ0 , . . . , κ
π
l−1

)
, we have:

κπl ∈ Xl = πIl+1,∞ ◦ πIl,l+1(Xl) ⇐⇒ κπl ∈ Xl+1 = πIl,l+1(X l)

⇐⇒ X l ∈ EI
π

l

⇐⇒ πIl,k(Xl) = Xk ∈ πIl,k(EI
π

l ) = EI
π

k (∗)
⇐⇒ κπk ∈ Xk+1

⇐⇒ κπk ∈ X

(∗): That equality holds because we work below 0†, and therefore there can be only
one active measure on a mouse. Notice that we only need 0‡ to prove this, since
under 0‡ there can be no mouse with two measure having the same critical point.

(Remark 5.2)

We want to prove that U is a < µ-complete ultrafilter over K. In order to prove it,
we will heavily use that it is in fact generated by the Cπ:

Lemma 5.3. For all very good π and for all X ∈ M̃π

X ∈ Ũπ ⇐⇒ Cπ ⊆fin X.

Proof. It suffices to show that for all X ∈ M̃π = M̃:

X ∈ Ũπ ⇒ Cπ ⊆fin X.

Let X ∈ P(µ) ∩ M̃ then there is a δ < µ+M̃ such that X ∈ M̃‖δ. Since M̃ is
acceptable there is an

f : µ→ P(µ) ∩ M̃‖δ
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with f surjective and
f ∈ hn+1

M̃ (δ′ ∪ {p}) ,

where p is the standard parameter of M̃, n is such that ρn+1(M̃) 6 µ < ρn(M̃)

and i < δ′ < µ such that δ′ ∈ ran(π). Hence f = ~X = (Xi; i < µ) ∈ ran(π̃) and
there is an i such that Xi = X . Then

π̃−1( ~X) � π−1(δ′) ∈ hn+1
MIπ∞

(
π−1(δ′) ∪ {p}

)
,

where p is the standard parameter of MIπ∞ and n is such that ρn+1(MIπ∞ ) 6
π−1(µ) < ρn(MIπ∞ ).

If ξ ∈ Cπ, ξ large enough, then

MIπ∞ � ∀j < π−1(δ′)

[(
π−1( ~X)

)
j
∈ Uπ ↔ ξ ∈

(
π−1( ~X)

)
j

]
.

This is proved as in 5.2. Hence

M̃ � ∀j < δ′
(

( ~X)j = Xj ∈ Ũπ ↔ π(ξ) ∈ ( ~X)j = Xj

)
.

Thus X ∈ Ũπ ⇐⇒ ξ∗ ∈ X for all sufficiently large ξ∗ ∈ Cπ ; and this is what we
wanted to prove. (Lemma 5.3)

Now we want to show that U is an ultrafilter, therefore we need to show that the
Ũπ are compatible enough, i.e. if an X has measure one somewhere, then for every
other measure, that measures X , the set X is still measure one.

Lemma 5.4. For all very good π and π′, for all X ∈ ran(π)∩ ran(π′) we have that

X ∈ Ũπ ⇐⇒ X ∈ Ũπ′ .

Proof. Pick a π̃ such that ran(π)∪ ran(π′) ⊆ ran(π̃), then by lemma 4.4 Cπ̃ ⊆fin Cπ
and Cπ̃ ⊆fin Cπ′ . If X ∈ Ũπ then Cπ ⊆fin X , hence Cπ̃ ⊆fin X . On the other hand
if X ∈ Ũ π̃, then Cπ̃ ⊆fin X . As Cπ̃ is cofinal in Cπ (as each Cπ has order type ω),
Cπ cannot be in µ \X modulo finitely many elements, therefore Cπ ⊆fin X , hence
X ∈ Ũπ.

Analogously, one can prove X ∈ Ũπ′ ⇐⇒ X ∈ Ũ π̃. (Lemma 5.4)

Lemma 5.5. U is a < µ-complete ultrafilter on K.

Proof. Deny. Let ~X ∈ K be such that
⋂
i<λ( ~X)i is a counter-example. Then there

is a very good π such that ~X, λ ∈ ran(π). Thus for all i ∈ λ ∩ ran(π), ( ~X)i ∈ Ũπ.

Hence ~X = τM
Iπ
∞ (κπ0 , . . . , κ

π
n,
{
p(MIπ∞ )

}
) with κπi being the critical points of the

iteration Iπ, and as we have seen before:

for all κπk > κπn, π
−1(λ) and for all i < π−1(λ)

κπk ∈ (π−1( ~X))i.

This shows that
Cπ ⊆fin

⋂{
(π−1( ~X))i; i < π−1(λ)

}
,

hence Cπ ⊆fin
⋂{

( ~X)i; i < λ
}

; a contradiction! (Lemma 5.5)

The same argument proves that U is a < µ-complete normal ultrafilter on K. In
order to prove that U ∈ K it suffices to verify (c.f. Theorem 1.5):
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Lemma 5.6. Ult(K;U) is iterable.

Proof. We already know that for cofinally many α, the ultrapower Ult(K‖α,U) is
iterable, as cofinally many are liftups from very good maps. Suppose that Ult(K;U)
is not iterable. Let σ : V → Vθ be an elementary embedding with θ large enough,
such that

• σ(K) = K‖θ,
• σ(U) = U ,

• σ(µ) = µ and

• Ult(K,U) is not iterable.

Let K̃ = Ult(K|µ+K ;σ � µ+K), then Ult(K̃, U) is not iterable. We coiterate K
and K̃. The same argument as in the proof of 3.8 shows that there is a drop in

the first step, say α > µ+K̃ , such that α is minimal with ρω(K‖α) 6 µ moreover

µ+K̃ = supσ”µ+K < µ+K (c.f. 3.6.4) since cf(µ+K) > ω1 by weak covering.
Therefore the coiteration of K̃ with K is in fact a coiteration of K̃ with K‖α for
some α < µ+K . Let K̃∗ the last model on the K̃-side and K∗ that on the K-side,
the K̃-side is simple, further K̃∗ EK∗.

4|
K̃ // K̃∗

K ///o/o/o K‖α ///o/o/o/o/o/o/o K∗

Let N , N ∗, N ′ and N ′∗ be respectively the U -ultrapower of K‖α, K∗, K̃ and K̃∗

and i, i∗U , ĩU and ĩ∗U the respective ultrapower map.

U U

U U

K̃
τ //

ĩU

!!DDDDDDDDD K̃∗

ĩ∗U

!!CCCCCCCC

N ′ |4 N ′∗

K‖α ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o

i

""EEEEEEEE K∗

i∗U

!!DDDDDDDD

N N ∗

We know that N is iterable and N ′ is not. We want to show that N ′∗ is neither.
We define:

Φ : N ′ → N ′∗

ĩU (f)(µ) 7→ ĩ∗U (τ(f))(µ),

where τ is the coiteration map from K̃ to K̃∗ and iU s beeing the right ultrapower
map (using U) as in the diagramm. Now we have:

N ′ � ϕ(̃iU (f)(µ)) ⇐⇒
{
ξ < µ; K̃ � ϕ(f(ξ))

}
∈ U

⇐⇒
{
ξ < µ; K̃∗ � ϕ(τ(f)(ξ))

}
∈ U

⇐⇒ N ′∗ � ϕ(̃i∗U (τ(f))(µ)).
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Notice that the second equivalence holds since
{
ξ < µ; K̃∗ � ϕ(τ(f)(ξ))

}
= τ”

{
ξ < µ; K̃ � ϕ(f(ξ))

}
=
{
ξ < µ; K̃ � ϕ(f(ξ))

}
,

as τ � µ = id. Now if we prove that N ∗ is iterable we get an outright contradiction.
We want to copy the iteration of K‖α to K∗ to an iteration of N to N ∗∗.

K‖α

i

��

///o/o/o/o/o/o/o/o/o/o/o

�� ��

K∗

��

""DDDDDDDDD

N ∗

||xxxxxxxx

N ///o/o/o/o/o/o/o/o/o/o/o/o N ∗∗

There can be no drop at the beginning, else we just had chosen α a little smaller.
As i is at least Σ∗ preserving, we can copy the iteration (c.f. [12] 4.3.1). We want to
analyze the copy maps further. Let Nj and Kj be the structures of the iterations.
Let ν = νi+1 be an index and its critical point κ. Let iEKν : Kj →EKν

Kj+1, and
iEN

i(ν)
: Nj →EN

i(ν)
Nj+1, where i : Kj → Nj is the ultrapower map by U . We know

that we can complete the diagram such that it commutes,

Kj
iEKν

//

ij

��

Kj+1

ij+1

��
Nj

i
EN
i(ν)

// Nj+1

by defining:

ij+1 : Kj+1 → Nj+1

iEKν (f)(κ) 7→ iEN
ij(ν)

(ij(f))(ij(κ)).

Then we want to show :

µ ∈ ij+1(X) ⇐⇒ µ ∈ ij(X)

⇐⇒ X ∈ U.

If κ > µ then

µ ∈ ij(X) ⇐⇒ µ ∈ iEN
ij (ν)
◦ ij(X)

⇐⇒ µ ∈ ij+1 ◦ iEKν (X)

⇐⇒ µ ∈ ij+1(X).

If µ = κ (this can only happen in the first step of the iteration),

then X = iEKν (X) ∩ κ thus:

µ = κ ∈ ij+1(X) ⇐⇒ µ ∈ ij+1 ◦ iEKν (X) ∩ ij+1(κ)

⇐⇒ µ ∈ iEN
ij (ν)
◦ ij(X)

⇐⇒ µ ∈ ij(X).

Remark that this holds since there is no drop in the first step. We want to show
that we can embed Ult(Kj+1, U) in Nj+1. Let k : Ult(Kj+1, U)→ Nj+1 such that

k(i
Kj+1

U (f)(µ)) = ij+1(f)(µ),

29



where i
Kj+1

U is the associated ultrapower map. Let f : µ→ K∗ be a map in K∗ and
ϕ a formula.

Ult(Kj+1, U) � ϕ(i
Kj+1

U (f)(µ) ⇐⇒ {α < µ;Kj+1 � ϕ(f(α))} ∈ U
⇐⇒ µ ∈ ij({α < µ;Kj+1 � ϕ(f(α))})
⇐⇒ µ ∈ ij+1({α < µ;Kj+1 � ϕ(f(α))})
⇐⇒ µ ∈ {α < ij(µ);Nj+1 � ϕ(f(α))}
⇐⇒ Nj+1 � ϕ(f(µ))

Thus we can embedd N ∗ in N ∗∗, and we arrive at the announced contradiction.

(Lemma 5.6)

We now let C = Cπ with a π as in lemma 3.6. All that remain to be shown is that
if κ > ℵ1 is a cardinal and θ > κ then [θ]κ ∩K[C] is stationary in [θ]κ. Therefore
it suffices to proof the following:

Lemma 5.7. Suppose 0† does not exists. Let π̃ : H → Hη be elemantary such

that H is transitive. Let K = KH . Let us assume that π̃ is very good and that
C ∈ ran(π̃). Then π̃”(H ∩ OR) ∈ K[C].

Proof.

First, as we work below 0†, there can be no µ̃ above µ which is regular in K and
singular in V , as we could repeat the arguments of the last two sections, and this
would lead to mice having two active measures. Thus (H) holds above µ and by
repeating the arguments of 3.10 we get: if I denotes the shortest normal tree on K
such that K EMI∞ and if Cπ̃ denotes

{
π̃(cp(πIi,i+1)); i+ 1 < lh(I)

}
, then

i. for all ε < µ , Cπ̃ ∩ ε is finite, and

ii. Cπ̃ \ µ is finite.

There is a π as given by 4.6 with π ∈ ran(π̃) and Cπ =fin C, therefore Cπ̃ ⊆fin Cπ.
Let M̃ be the liftup ofMIi via π̃, where i 6∞ is the least such thatK‖π̃−1(µ)EMIi .
As C is Prikry-generic over K, for all but finitely many ξ < ξ ′ ∈ C:

ξ ∈ hn+1

M̃ (ξ ∪
{
p(M̃)

}
) ⇐⇒ ξ′ ∈ hn+1

M̃ (ξ′ ∪
{
p(M̃)

}
),

where n is such that ρn+1(M̃) 6 π̃−1(µ) < ρn(M̃). Therefore if Cπ̃∩µ is unbounded
in µ then C \Cπ̃ cannot be infinite. Thus if ran(π̃)∩OR /∈ K then Cπ̃ =fin C. And
for all K cardinals κ,

π̃”(κ) = hn+1

M̃ (π̃”(ρn+1(MI∞)) ∪ C ∪ {p}) ∩ π̃(κ) ∈ K[C].

(Lemma 5.7)
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