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Chapter 0

Abstract

This thesis is based on the paper ”The Modal Logic of Forcing”[5] by Prof. Dr.
J.D. Hamkins and Prof. Dr. B. Löwe. We will follow their lead and interpret
the modal operators 3 and � in the language of set theory such that 3φ is taken
to mean ”there is a forcing extension in which φ holds” and �φ abbreviates ”φ
holds in every forcing-extension”. The above mentioned paper then detaills how
to link forcing and modal logic together and, modifying the arguments in [5]
slightly, enables to prove that the modal logic of forcing is S4.2. We then take a
step further and restrict ourselves to ω-closed forcing, obtaining the main result
that the modal logic of ω-closed forcing is also S4.2. A simple generalisation
proves the same for < κ-closed forcings where κ is definable by some formula φ
(see chapter 4 for details).

While the reader is expected to understand all the basic concepts of forcing
as presented in [10], in chapter 1 we see a thorough introduction to modal logic
from the very basics to all the results needed in this thesis. In chapter 2 a rough
outline of our argumentation is presented, notations are given and some basic
facts not covered by [10] are proven. Then we define countably many sentences
in L∈ which will be used as the backbone of our argument in the following
chapters. Chapter 3 is basically a reformulation of the first part of [5] while
chapter 4 takes the ideas presented in chapter 3 and applies them to special
classes of forcings.
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Chapter 1

Modal Logic

This chapter follows the structure of the excellent book ”Modal Logic” by P.
Blackburn, M. de Rijke and Y. Venema[1] very closely.
The language of modal logic1 is defined by enriching the language of proposi-
tional logic with a new symbol: 3. The interpretation of 3 makes it a very
useful tool in expressing relations between structures. And that is all modal
logic is about: relational structures. These strucures are called Kripke frames.
As always with logic, truth is a key concept and the modal language gives rise
to different kinds of truth: local and global, and an even more general concept
of truth: validity. Local and global truth need a fixed valuation which tells us
whether or not some statement φ is true at a given point in our Kripke Frame
or not. Local truth means truth in one point, global truth means truth in all
points of the given structure. Validity on the other hand means ”global truth
for all valuations over a given frame”.
Once we define this we have all we need to state what is meant by ”a modal
logic” and we will then quickly focus on well-behaved ones: the normal modal
logics. They are essentially sets of formulas with nice closure conditions. There
is a minimal normal modal logic, K, and by adding certain new formulas to
K one generates new normal modal logics. One of them will be of particular
importance in this thesis: S4.2.
Thus far the normal modal logics have been semantically defined. On the other
hand a class of frames F gives rise to a completely syntactically defined logic:
ΛF, the set of formulas valid on every frame in F. It seems natural to ask under
what circumstances these logics coincide.
Section 2 of this chapter discusses the basic notations of soundness and com-
pleteness needed to answer this question. Soundness means that for a semanti-
cally defined normal modal logic Λ every φ ∈ Λ is true on the class of frames
F, which is just Λ ⊆ ΛF. Completeness implies that the semantically defined
logic completely captures all validities in the class of frames. Therefore showing

1Just like the expression ”the first order logic” it is a slight abuse of notation to talk about
the language of modal logic. There are many of them! But we will not bother with this nicety,
mainly because we will only need the so-called ”basic modal logic”.
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10 CHAPTER 1. MODAL LOGIC

soundness and completeness of some logic Λ with respect to a class of frames
establishes an equality of Λ and the logic that is syntactically defined by the
class of frames.
As will be seen, showing soundness boils down to an easy task. Section 3 then
discusses one method to show completeness: canonical models. Generated from
maximal consistent sets of formulas, canonical models have very nice proper-
ties that will lead directly to the Canonical Model Theorem 1.3.7, which states
that any normal modal logic is (strongly) complete with respect to its canonical
model. This will help us to show that the above mentioned logics K, S4, S4.2
and S5 are complete for certain classes of frames.
S4.2 suffices for the discussion of the modal logic of forcing in this thesis, while
S4 will be a lower bound for the modal logic of c.c.c. forcings. S5 is the modal
logic of forcing restricted to a model where every button is pushed (see defini-
tions in chaper 2). This will not be proven in this thesis and we refer the reader
to Hamkins paper [4] for a proof. Other logics may occur when one restricts
oneself to another class of forcings. For example is a work by Hamkins and
Löwe to appear in which they prove the modal logic of Col(ω, θ)-forcing to be
S4.3, a normal modal logic not discussed in this thesis (see [6]).
Once the completeness results are established we will see a surprising result: ev-
ery formula not in S4.2 can be falsified on a finite Kripke Model. This property
is called the Finite Frame Property and we will introduce the filtration method
in order to show it. We will make heavy use of the finite frame property when
we show that the modal logic of forcing is S4.2.

1.1 The Basics

As stated, the modal language, and hereby I mean the basic modal language, is
defined by enriching the propositional language by a modal operator.

Definition 1.1.1 The basic modal language is defined by a countable set of
propositional letters Φ and an unary modal operator 3. The well-defined for-
mulas of the basic modal language are defined by recursion as follows:

• every p is a formula for every p ∈ Φ.

• ⊥ is a formula.

• if φ is a formula, then ¬φ is a formula.

• if φ and ψ are formulas, then φ ∨ ψ is a formula.

• if φ is a formula, then 3φ is a formula.

Just as with the quantifiers in first order logic we have a duality with the
modal operator. The � is then interpreted as shorthand for:

�φ := ¬3¬φ
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This duality actually only holds for modal logics which contain the (Dual) axiom,
as we will see later. But throughout this paper we will only be interested in
so called normal modal logics, and those contain (Dual) by definition. See
Definition 1.1.8.

The 3 is called diamond and � is called box. They can be thought of
as ”something is possible” and ”something is necessary” respectively. But as
the modal language gives rise to a variety of different interpretations, the possi-
ble/necessary interpretation is not always the best. There are two more readings
of the modal operators that have been extremely influential:
First the epistemic reading ”�φ= the agent knows φ”. Here it is normal to write
Kφ for �φ. The diamond is then interpreted as ”it is consistent with what the
agent knows” and is usually called M.
Secondly, in provability logic �φ is read as ”φ is provable”.
But there are even more readings. In the forcing interpretation of the modal
language, for example, the diamond is thought of as ”there is a forcing extension
such that...”.
From all those different readings comes the great power of the modal language.
But the power can be extended still:

Remark 1.1.2 One does not have to restrict oneself to a modal language with
only one modal operator or the demand on the operator(s) to take only a single
formula as argument. But we will not need this generalization, so we will only
consider the so-called basic modal language, which was defined above. We will
also refer to this language as the modal language.

With this generalized modal language one can obviously read the (now many
different) modal operators as even more different statements.
Now that the modal language is defined, we are interested in a definition of
truth. One defines Kripke Frames to fix the relational structure. Enriching
these Kripke Frames by a valuation generates Kripke Models and allows a truth
definition.

Definition 1.1.3 A Kripke Frame for the modal language is a pair F = (W,R)
such that:

(i) W is a non-empty set

(ii) R is a binary relation on W

The elements of W are called nodes, states, or worlds. R is referred to as the
accessibility relation.
We also say frame when we mean Kripke frame.
A Kripke Model of the modal language is a pair M = (F ,V), where F is a
frame for the modal logic and V is a function

V : Φ→P(W)
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V is called the valuation and for M = (F ,V) we say that M is based on F
or F is the underlying frame of M.
Again we omit Kripke and say model most of the time.

With the above notation we will sometimes write w ∈ F or ”F has property
P” when in fact we mean w ∈ W or ”R has property P”. The same goes for
models.

We defined V in such a way that we can construct a definition of truth where
p is true at some world w iff w ∈ V(p). We can think of this as the world w
having the property p.

Definition 1.1.4 For M=(W,R,V) and w ∈ W we define the notion of a
formula φ being satisfied (or true) in M at a state w inductively:

M, w |= p iff w ∈ V(p), where p ∈ Φ

M, w |=⊥ iff never

M, w |= ¬φ iff not M, w |= φ

M, w |= φ ∨ ψ iff M, w |= φ or M, w |= ψ

M, w |= 3φ iff there is some v ∈ W such that wRv and M, v |= φ

As always, a set of formulas Σ is true at a world w in a model M if all
members of Σ are true at w. This is abbreviated by M, w |= Σ

Now a formula is locally true if it holds at a world inW. A formula is globally
true if it holds in every world of W.
Consider now a reflexive frame, i.e. a frame whose relation is reflexive. Then
wRw for all w ∈ W. So for every valuation: if M, w |= φ then M, w |= 3φ.
HenceM, w |= φ→ 3φ for all valuations and all worlds w. So we have found a
formula that is true for all frames with a reflexive relation. Those formulas are
called valid on the class of reflexive frames.

Definition 1.1.5 For a formula φ we say:

φ is valid at a world w in a frame F , abbreviated by F , w |= φ, if φ is
true at w for every model (F ,V) based on F .

φ is valid in a frame F , abbreviated by F |= φ, if φ is valid at every state
in F .

φ is valid on a class of frames F, F |= φ, if φ is valid on every frame F in
F.

φ is valid, |= φ, if φ is valid on the class of all frames.

The set of all formulas valid in a class of frames F is referred to as the
logic of F and is called ΛF
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The following example points out the difference between truth and validity.

Example 1.1.6 As mentioned above, truth is a local attribute while validity
is global. This difference becomes clear when one thinks of the formula φ ∨ ψ.
If, for some modelM=(F ,V) and some world w,M, w |= φ∨ψ then φ or ψ (or
both) are true in M at w. On the other hand, if F |= φ ∨ ψ, it is generally not
true that F |= φ or F |= ψ. p ∨ ¬p gives a simple counter-example.

We now know what our language looks like, what frames and models are,
and what is meant by truth and validity. We have also seen the syntactically
defined logic for a class of frames: ΛF. The next step is to define semantically
what is meant by logic and what is considered well-behaved. This gives a good
understanding of the logic, but also obliges one to link those two definitions of
logic. As said in the introduction of this chapter, section 2 will provide us with
the definitions and section 3 with the tools needed to complete this task.

Definition 1.1.7 A set Λ of modal formulas that contains all propositional
tautologies and is closed under modus ponens (i.e., φ ∈ Λ and φ → ψ ∈ Λ
implies ψ ∈ Λ) and uniform substitution (i.e., if ψ ∈ Λ then all substitution
instances of ψ belong to Λ) is called a modal logic.

Elements of Λ are called theorems and we write `Λ φ if φ is a theorem of Λ
and 0Λ φ if not.

As a convention, the ”modal” shall usually be droped and we only talk about
logics.
Some logics seem rather odd. Imagine for example a logic Λ that contains some
formula φ, but not �φ. To build a frame that satisfies this logic one has to
build a world w and a valuation such that �φ does not hold at w, even though
φ holds in all worlds. Such w are called non-normal worlds, for if �φ does not
hold for all φ ∈ Λ, these worlds see other worlds where even tautologies are
wrong2. To navigate around this one defines:

Definition 1.1.8 A (modal) logic Λ is normal if it contains the formulas

(K) �(p→ q)→ (�p→ �q),

(Dual) 3p↔ ¬�¬p,

2A model for a non-normal modal logic is of the form M = (W,N ,R,V), where W and
R are as above and N ⊆ W. The worlds in N are called normal and worlds in W \ N non-
normal. The truth conditions for the truth functions ∨,∧,¬ are as in definition 1.1.4. The
truth conditions for � and 3 at normal worlds are also as in 1.1.4, but if w is a non-normal
world one defines:

• M, w |= �φ iff never

• M, w |= 3φ iff always

Then the tautologie �(p ∨ ¬p) fails at w. As we are not intested in non-normal logics in this
thesis we refer the reader to [9] chapter 4 for a thorough treatment.



14 CHAPTER 1. MODAL LOGIC

and is closed under necessitation:

(nec) if `Λ φ then `Λ �φ.

With this definition our difficulty disappears by demanding that Λ has to be
normal. When we say logic in this thesis we usually mean normal modal logic.
We are now ready to define the important concept of consistency. It will enable
us to define canonical models in section 3.

Definition 1.1.9 Let Γ ∪ {φ} be a set of formulas and Λ be a logic. We say
that φ is deducible in Λ from Γ or φ is Λ-deducible from Γ if `Λ φ or there are
formulas ψ1, ..., ψn ∈ Γ such that

`Λ (ψ1 ∧ ... ∧ ψn)→ φ.

If this is the case we write Γ `Λ φ and Γ 0Λ φ otherwise.
A set of formulas Γ is Λ-consistent if Γ 0Λ⊥, and Λ-inconsistent otherwise.
Consistency of φ means that {φ} is Λ-consistent.

1.2 Soundness and Completeness

We are looking for a class of frames F such that Λ=ΛF for a given logic Λ.
The direction Λ ⊆ ΛF is referred to as soundness and the other direction as
completeness. Since it is far more difficult for a given class of frames to show
completeness than soundness, we begin gradually and start with the soundness
definition.

Definition 1.2.1 Let F be a class of structures3. A normal logic Λ is sound
with respect to F if Λ ⊆ ΛF

A simple corollary eases the use of this definition.

Lemma 1.2.2 Λ is sound w.r.t.4 F iff for all formulas φ and all F ∈ F :
`Λ φ implies F |= φ.

Proof. Let Λ ⊆ ΛF and let `Λ φ. Then, by definition, φ ∈ Λ ⊆ ΛF. So φ holds
on all structures in F, i.e. F |= φ ∀F ∈ F.

On the other hand: if there is a φ ∈ Λ with ¬(φ ∈ ΛF), then there is a
F ∈ F with F 2 φ, i.e. `Λ φ but F 2 φ.

We now have established the left to right inclusion from our main task. To
apply this to the cases that remain interesting throughout this thesis, K, S4,
S4.2 and S5, we have to define them first:

Consider the following axioms:

3We refer to structures when we want to talk about models as well as frames.
4means: with respect to



1.2. SOUNDNESS AND COMPLETENESS 15

(K) �(p→ q)→ (�p→ �q)

(Dual) 3p↔ ¬�¬p

(S) �p→ p

(4) �p→ ��p

(.2) 3�p→ �3p

(5) 3�p→ p

One then defines the logic K(see5) to be the minimal normal modal logic,
i.e., K consists of all propositional tautologies, the axioms (K) and (Dual) and
is closed under modus ponens, uniform substitution, and necessitation.

Definition 1.2.3 For axioms A1, ..., An let KA1...An be the normal logic
generated by A1, ..., An. One then defines:

S4 = KS4

S4.2 = KS4.2

S5 = KS45

There are (countably) many more axioms and named logics one might con-
sider. See [1] for a further discussion.

Lemma 1.2.4 The above defined modal logics we achieve the following sound-
ness results:

(i) K is sound with respect to the class of all frames.

(ii) S4 is sound w.r.t. the class of reflexive and transitive frames.

(iii) S4.2 is sound w.r.t. the class of frames whose relation is a directed partial
order6.

(iv) S5 is sound w.r.t. the class whose relation is an equivalence relation.

Proof. (i) Let F=(W,R) be an arbitrary frame. To show that modus ponens
holds, let F |= φ→ ψ and F |= φ. Then for all w ∈ W and all valuations
V (F ,V), w |= φ → ψ and (F ,V), w |= φ. Because (F ,V) is a model we
have (F ,V), w |= (φ → ψ) ∧ φ by definition. So (F ,V), w |= ψ, and by
arbitrarity modus ponens holds.
If F |= p, then for all w ∈ W F , w |= p. So for all v with wRv F , v |= p

5Note the difference between the logic K and the axiom (K).
6A partial order R is called directed iff ∀x, y, z(xRy ∧ xRz → ∃u(yRu ∧ zRu)).
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(by F |= p), so F , w |= �p. (nec) follows from arbitrarity.
To show that (K) holds in F , let F |= �(p → q) ∧ �p. Then at every
w ∈ W F , w |= �(p→ q)∧�p. So for every v with wRv F , v |= (p→ q)∧p.
By modus pones F , v |= q for all wRv, hence F |= (K).
For (Dual) consider F |= 3p. Then for all w ∈ W F , w |= 3p. Now
suppose there is a v ∈ W with F , v |= �¬p. Then for all v′ with vRv′
F , v′ |= ¬p. But by F |= 3p there is a v′ with vRv′ and F , v′ |= p.
Contradiction!
On the other hand, F |= ¬�¬p means that for every w ∈ W there is a
v ∈ W such that wRv and F , v |= p. Hence F |= 3p as desired.
Now let φ(p) be a formula with at least one occurence of the propositional
variable p. Write φ(p | q) for the formula obtained by taking φ and replac-
ing every instance of p by q, where q is again a propositional variable7. If
F |= φ(p), then (F ,V) |= φ(p) for every valuation V. But that means that
(F ,V) |= φ(p | q) and hence F |= φ(p | q).
Because models cannot falsify tautologies, the above argument also works
for tautologies.
This completes the proof of (i).

(ii) Because (K) holds on arbitrary frames it only remains to show the axioms
(S) and (4).
For (4) it suffices to show that 33p→ 3p holds8.
So let F |= 33p where F=(W,R) such that R is reflexive and transitive.
Then F , w |= 33p for all w ∈ W. Let v, v′ ∈ W be such that wRv and
F , v |= 3p and vRv′ and F , v′ |= p. By transitivity of R it follows that
wRv′. Hence F , w |= 3p.
For (S)
Let F |= �p. So for all w ∈ W we have F , w |= �p. wRw because R is
reflexive, hence F , w |= p for all w ∈ W. So F |= p.

(iii) Let F=(W,R) be a frame and R be a directed partial order. Since R is
reflexive and transitive only (.2) remains to be shown.
Let F |= 3�p, i.e. for all worlds w0 there is a world w1 such that w0Rw1,
F , w0 |= 3�p and F , w1 |= �p. Let w2 be arbitrary with w0Rw2. By
directedness there is a w3 with w1Rw3 ∧ w2Rw3. So F , w3 |= p which
implies F , w2 |= 3p and because w2 was arbitrary F , w0 |= �3p.

(iv) Let F=(W,R) where R is an equivalence relation. It only remains to show
(5) by (ii).
Let F |= 3�p. So for all w ∈ W there is a v ∈ W with wRv and

7This is called the uniform substitution of p by q in φ.
8This is because of the equivalence of the formula with (S) in K:

33p → 3p iff (Dual) ¬(¬�¬¬�¬p) ∨ ¬�¬p iff ��¬p ∨ ¬�¬p iff �¬p → ��¬p iff (uni sub)
�p→ ��p
The formula 33p→ 3p is sometimes also called (T).
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F , v |= �p. So for all v′ ∈ W with vRv′ we have F , v′ |= p. But R is
symmetric, so vRw and therefore F , w |= p

The task of showing that the logic generated by a given class of frames is
completely captured by a (semantically defined) logic leads to the concept of
completeness. There are two different kinds of completeness: strong and weak.
As expected, strong completeness implies weak completeness. We will make use
of this, for canonical models show strong completeness. We then conclude weak
completeness and thereby complete our task.

Definition 1.2.5 Let F be a class of structures and Γ∪{φ} be a set of fomulas.
We say that φ is a local semantic consequence of Γ over F, abbreviated by
Γ |=F φ, if for all models M built out of F (see 9) and all states w in M:
if M, w |= Γ then M, w |= φ.
A logic Λ is strongly complete w.r.t. F if Γ |=F φ implies Γ `Λ φ.
A logic Λ is weakly complete w.r.t. F if for any formula φ: if F |= φ then `Λ φ.

The following corollary states again what already has been said.

Corollary 1.2.6 Λ strongly complete w.r.t. F ⇒ Λ weakly complete w.r.t. F

Proof. Take Γ = ∅. By strong completeness ∅ |=F φ implies `Λ φ. But ∅ |=F φ
is just F |= φ.

The following corollary just says that what we have defined is precisely what
is needed to complete our task.

Corollary 1.2.7 Λ is weakly complete w.r.t. F iff ΛF ⊆ Λ.

Proof. ”⇒” Let φ ∈ ΛF. Then F |= φ by definition of ΛF. So by weak com-
pleteness `Λ φ i.e. φ ∈ Λ.
”⇐” Let F |= φ, then φ ∈ ΛF ⊆ Λ, i.e. φ ∈ Λ.

Now that we have defined soundness and completeness, we have all we need
to link syntactically and semantically specified logics but let us first have a few
words on the symmetry of this definition to the one given in [5]:
Hamkins and Löwe define a class of frames F to be complete for a logic Λ if
every F ∈ F is a Λ-frame and any φ true in all Kripke Models having frames in
F is in Λ.
Here a Λ-frame is a frame such that every model based on this frame satisfies
Λ.
This definition is essentially dual to the one given in this thesis in the following
way:

9i.e., if F is a class of frames, M has a frame in F, if F is a class of models, M is an
element of F.
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Saying that F is a class of Λ-frames just means that Λ is sound w.r.t. F, while
the second condition can be restated as: if F |= φ then `Λ φ, which is precicely
the definition of weak completeness of Λ w.r.t. F.
The difference is of course that Hamkins and Löwe defined what it means for a
class of frames to be complete for some logic, while we defined what it means
for some logic to be sound and complete for some class of frames.

We will need a technical lemma:

Lemma 1.2.8 (Contradiction Lemma) Let Γ ∪ {φ} be a set of formulas such
that Γ ∪ {φ} `Λ⊥. Then Γ `Λ ¬φ.

Proof. A proof can be found for example in [10], where the proof is done for
first order logic, but it also works for modal formulas.

The following lemma gives us a neat re-definition of strong completeness.

Lemma 1.2.9 A logic Λ is strongly complete w.r.t. a class of structures F iff
every Λ-consistent set of formulas Γ is satisfiable on some F ∈ F, i.e., there is
a state w in F such that every φ ∈ Γ is true at w in F .

Proof. To show right to left argue by contraposition:
Suppose Λ is not strongly complete w.r.t. F. Then there is a set of formulas
Γ ∪ {φ} such that Γ `F φ but Γ 0Λ φ. Then Γ ∪ {¬φ} is Λ-consistent by the
Contradiction Lemma 1.2.8, but not satisfiable on any structure in F.
To show left to right suppose there is a Λ-consistent set Γ. Then Γ 0Λ⊥ by
definition. So, because Λ is strongly complete w.r.t. F, Γ 2F⊥. By definition
this means that there is a F ∈ F and a w ∈ F and a valuation V such that
(F ,V), w |= Γ and (F ,V), w 2⊥. Especially (F ,V), w |= Γ is proven.

Corollary 1.2.10 Λ is weakly complete w.r.t. a class of structures F iff every
Λ-consistent formula is satisfiable on some F ∈ F.

Proof. Use 1.2.6 and 1.2.9.

Soundness was, as we have seen in the proof of 1.2.4, rather easy to show.
Completeness on the other hand is more difficult. By 1.2.9 one has to build
(suitable) models such that every Λ-consistent set of formulas can be satisfied
in these models.
One good technique is to build models out of maximal consistent sets of for-
mulas. This approch leads to canonical models and is probably the most basic
algorithm to show (strong) completeness. However, it does not work all the
time, but it suffices for our purposes. See [1] for more details on this.
Canonical models show strong completeness, so once we have established the
completeness results for the modal logics defined in 1.2.3 we can use 1.2.6 to
obtain a weak completeness result. With this, we will have linked those logics
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to a class of frames (see 10) and therefore have completed our task.

1.3 Canonical Models

As said before, we want to build models such that for some given logic Λ every
Λ-consistent set of formulas can be satisfied in these models. And building these
models from maximal consistent sets is a very good way to do so, as will become
apparent in this section. But first we have to define what is meant by a maximal
consistent set.

Definition 1.3.1 A set of formulas Γ is maximal Λ-consistent for a logic Λ if
Γ is Λ-consistent and any Θ with Γ ( Θ is Λ-inconsistent.
Maximal Λ-consistent sets are called Λ-MCS’s or just MCS’s when Λ is unam-
biguous from the context.

Such MCS’s have some nice properties.

Lemma 1.3.2 Let Λ be a logic and Γ a Λ-MCS.

(i) for all formulas φ: φ ∈ Γ or ¬φ ∈ Γ

(ii) Γ is closed under modus ponens

(iii) Λ ⊆ Γ

(iv) for all formulas φ, ψ: φ ∨ ψ ∈ Γ iff φ ∈ Γ or ψ ∈ Γ

Proof. Let Γ, Λ, φ and ψ be as above. Then

(i) It can not be that both Γ∪ {φ} and Γ∪ {¬φ} are inconsistent, because if
it were so we would have Γ `Λ φ and Γ `Λ ¬φ by the contradiction lemma
1.2.8. But this would mean that Γ is inconsistent, a contradiction! So let
Γ ∪ {φ} be consistent. By maximality of Γ: Γ = Γ ∪ {φ}, so φ ∈ Γ.

(ii) Let φ ∈ Γ and (φ → ψ) ∈ Γ and suppose ψ /∈ Γ. So by (i) ¬ψ ∈ Γ. But
φ ∧ (φ→ ψ) ∧ ¬ψ `Λ⊥, in contradiction to the consistency of Γ!

(iii) Supposing the opposite and using (i) gives a φ ∈ Λ with ¬φ ∈ Γ, which
contradicts consistency.

(iv) Suppose φ ∨ ψ ∈ Γ and φ /∈ Γ and ψ /∈ Γ. By (i) the negations are in Γ.
But (φ ∨ ψ) ∧ ¬φ ∧ ¬ψ `Λ⊥, a contradiction to consistency.
For right to left suppose φ ∈ Γ and ψ arbitrary and φ ∨ ψ /∈ Γ. Then
¬(φ ∨ ψ) ∈ Γ, i.e. (¬φ ∧ ¬ψ) ∈ Γ which leads to inconsistency of Γ by
φ ∈ Γ.

10The class is not unique. For example [5] shows that S4.2 is also weakly complete w.r.t.
the class of baled trees and the class of finite pre-lattices.
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Definition 1.3.3 The canonical model MΛ for a normal modal logic Λ is a
triple (WΛ,RΛ,VΛ) where

(i) WΛ is the set of all Λ-MCSs.

(ii) RΛ is a binary relation on WΛ defined by (w,u)∈ RΛ if for all formulas
φ, φ ∈ u implies 3φ ∈ w.
RΛ is called the canonical relation.

(iii) VΛ is the valuation defined by VΛ(p) = {w ∈ WΛ | p ∈ w}.
VΛ is called the canonical valuation.

FΛ = (WΛ,RΛ) is called the canonical frame of Λ.

As we will see in the Truth Lemma 1.3.6, a formula is true in the canonical
model at w iff the formula is an element of w. So to satisfy every consistent set
of formulas, it would be very convenient to just enrich the set to an MCS. That
this is in fact possible is the statement of Lindenbaum’s Lemma:

Lemma 1.3.4 (Lindenbaum’s Lemma) Let Λ be a logic. If Σ is a Λ-consistent
set of formulas, then there is a Λ-MCS Σ+ with Σ ⊆ Σ+.

Proof. Let φ0, φ1, ... be an enumeration of the modal formulas. Let

Σ0 = Σ

Σn+1 =

{
Σn ∪ {φ} if this is Λ -consistent

Σn ∪ {¬φ} otherwise

Σ+ =
⋃
n≥0

Σn

Claim 1. Σn is Λ-consistent for all n
Proof of Claim 1. Ind(n)
For n = 0 this is true by the hypothesis that Σ is Λ-consistent. For n + 1,
Σn+1 is either Σn∪{φn} and Λ-consistent by definition, or Σn+1 = Σn∪{¬φn}.
In this case Σn ∪ {φn} is inconsistent and by the contradiction lemma 1.2.8:
Σn `Λ ¬φn. By induction hypothesis Σn is consistent, hence Σn ∪ {¬φn} is
consistent. (Claim 1)

Claim 2. For every formula φ either φ ∈ Σ+ or ¬φ ∈ Σ+.
Proof of Claim 2. φ ∈ Σ+ and ¬φ ∈ Σ+ implies φ ∈ Σn and ¬φ ∈ Σn for some
n, and hence inconsistency of Σn, a contradiction to Claim 1.
Furthermore we find an m such that φ = φm. So φ ∈ Σm or ¬φ ∈ Σm. The
claim follows. (Claim 2)
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Claim 3. Σ+ is a Λ-MCS.
Proof of Claim 3. If Σ+ were inconsistent we would find a finite (!) sequence
φ1, ..., φn such that `Λ φ1 ∧ ... ∧ φn →⊥. But such a sequence would be in Σk
for some k < ω big enough, contradicting Claim 1.
For maximality let Σ+ ( Γ for some set of formulas Γ and let φ be a witness.
By Claim 2 ¬φ ∈ Σ+ so by definition Σ+ `Λ ¬φ. By Σ+ ( Γ: Γ `Λ ¬φ. But
φ ∈ Γ by hypothesis, hence Γ is inconsistent. (Claim 3)

The next lemma states that there are enough MCS for our purposes.

Lemma 1.3.5 (Existence Lemma) For any normal modal logic Λ and any
state w ∈ WΛ, if 3φ ∈ w then there is a state v ∈ WΛ such that wRΛv and
φ ∈ v.

Proof. Let 3φ ∈ w and define v− = {φ} ∪ {ψ | �ψ ∈ w}.
Claim 1. v− is consistent
Proof of Claim 1. Suppose not. Then by the Contradiction Lemma 1.2.8
{ψ | �ψ ∈ w} `Λ ¬φ, i.e. there are ψ1, ..., ψn such that `Λ (ψ1∧ ...∧ψn)→ ¬φ.
So by (nec) `Λ �((ψ1 ∧ ... ∧ ψn) → ¬φ). By (K) `Λ �(ψ1 ∧ ... ∧ ψn) → �¬φ.
Now �(ψ1 ∧ ... ∧ ψn)→ (�ψ1 ∧ ... ∧�ψn) is a theorem of every normal modal
logic, so `Λ (�ψ1 ∧ ... ∧ �ψn) → �¬φ. Since w is a MCS and �ψi ∈ w for
i < n, the conjunction is also in w. By consistency �¬φ is also in w and hence
by (Dual) ¬3φ ∈ w, a contradiction to 3φ ∈ w and w is MCS. (Claim 1)

Now let v be an MCS-extension of v−, whose existence is granted by Lin-
denbaum’s Lemma. Then φ ∈ v by construction and for all ψ: �ψ ∈ w implies
ψ ∈ v. This yields wRΛv by the following argument:
Let φ ∈ v and suppose 3φ /∈ w. Because w is a MCS ¬3φ ∈ w. Hence
¬3¬¬φ ∈ w and by (Dual) �¬φ ∈ w. It follows that ¬φ ∈ v, a contradiction
to v being a MCS (see 11).

We now have everything we need to establish the ”truth = membership”
equation.

Lemma 1.3.6 (Truth Lemma) For any normal modal logic Λ and any
formula φ

MΛ, w |= φ iff φ ∈ w.

Proof. By induction on the complexity of φ.
The base case follows from definition. The Boolean Cases follow from 1.3.2.

11The reverse of the last argument is also true: Let wRΛv and φ /∈ v. Then ¬φ ∈ v and
therefore 3¬φ ∈ w. w consistently yields ¬3¬φ /∈ w, i.e., �φ /∈ w. So �φ ∈ w ⇒ φ ∈ v holds
for all φ.
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We have MΛ, w |= 3φ iff
∃v(wRΛv ∧MΛ, v |= φ) iff (by induction hypothesis)
∃v(wRΛv ∧ φ ∈ v) implies (by def of RΛ) 3φ ∈ w.
For the reverse direction, suppose 3φ ∈ w. By the above equivalence it suffices
to find some v such that v is a MCS, wRΛv and φ ∈ v. But this is precisely
what the Existence Lemma gives us.

We have the definitions and properties needed to work out some completeness
results. The next theorem puts together what we have constructed and analysed
so far in this section.

Theorem 1.3.7 (Canonical Model Theorem) Any normal modal logic is strongly
complete with respect to its canonical model.

Proof. Given a consistent set of formulas Σ of the modal logic Λ. By Linden-
baum’s Lemma we find some MCS Σ+ such that Σ ⊆ Σ+. Now by the Truth
Lemma above: MΛ,Σ+ |= Σ. The theorem follows by 1.2.9.

At first glance, the Canonical Model Theorem 1.3.7 seems rather abstract
and not very helpful. To show completeness for some logic Λ w.r.t. the singleton
class of its canonical model does not seem useful. But by lemma 1.2.9 we only
have to show that the canonical model is an element of the class considered.
Then for every consistent set Γ of this logic, the canonical model contains a
state Γ+ extending Γ such that Γ holds in the canonical model at state Γ+. By
1.2.9 we have shown strong completeness.

To put this to work, the following lemma shows slightly more than we actu-
ally need.

Lemma 1.3.8 For any normal modal logic Λ with canoncal model MΛ

(i) (4) ∈ Λ ⇒ RΛ is transitive.

(ii) (S) ∈ Λ ⇒ RΛ is reflexive.

(iii) (S), (4),(.2) ∈ Λ ⇒ RΛ is a directed partial order.

(iv) (5) ∈ Λ ⇒ RΛ is symmetrical.

Proof. (i) Suppose w, v, u ∈ MΛ such that wRΛv and vRΛu. We need to
show that wRΛu. Suppose φ ∈ u. By vRΛu we have 3φ ∈ v and by
wRΛv 33φ ∈ w. But (4)∈ Λ and w is a Λ-MCS. So by modus ponens
3φ ∈ w and hence wRΛu.

(ii) By (S)∈ Λ we have (φ→ 3φ) ∈ Λ (see 12). Let w be a world inMΛ with

12

Proof. �p→ p iff (Dual) ¬(¬3¬p) ∨ p iff 3¬p ∨ p iff (uni.sub.) 3q ∨ ¬q iff q → 3q
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φ ∈ w. Because w is a Λ-MCS and (φ → 3φ) ∈ Λ it follows from modus
ponens that 3φ ∈ w. Thus wRΛw.

(iii) It only remains to show directedness, i.e.

∀x, y, z(xRΛy ∧ xRΛz → ∃u(yRΛu ∧ zRΛu)).

Suppose w0, w1, w2 ∈ WΛ with w0RΛw1 and w0RΛw2. Define

w3 = {φ | �φ ∈ w1} ∪ {¬ψ | 3ψ /∈ w2}.

We will see that w3 is Λ-consistent which enables us to use Lindenbaum’s
Lemma to enrich the set to a maximal Λ-consistent set. This enriched set
will be RΛ-greater than w1, w2.
Suppose w3 is not Λ-consistent. So there are φi and ψj with i ≤ n and
j ≤ m such that �φi ∈ w1, 3ψj /∈ w2 and `Λ (

∧
i≤n φi ∧

∧
j≤m ¬ψj)→⊥.

Set φ =
∧
i≤n φi and ¬ψ =

∧
j≤m ¬ψj . Then φ ∧ ¬ψ implies ⊥ in Λ, so

φ→ ψ is an element of every maximal Λ consistent set. So φ→ ψ is in w1.
By distribution of ”�” over ”∧”: �φ ∈ w1. This implies �ψ ∈ w1 because
if �ψ /∈ w1 then ¬�ψ = 3¬ψ ∈ w1, i.e. ∃v w1RΛv and φ ∧ ¬ψ ∈ v, a
contradiction to the consistency of v. Hence �ψ ∈ w1, i.e. 3�ψ ∈ w0.
By (.2) also �3ψ ∈ w0 which implies 3ψ ∈ w2, a contradiction!
Let w+

3 be a maximal consistent enrichment of w3. By �φ ∈ w1 ⇒ φ ∈ w+
3

we have w1RΛw+
3 . Also 3ψ /∈ w2 implies ψ /∈ w+

3 , i.e. ψ ∈ w+
3 ⇒ 3ψ ∈

w2, so w2RΛw+
3 .

(iv) By (5)∈ Λ: (φ → �3φ) ∈ Λ (see 13). Suppose w is a world in MΛ and
φ ∈ w. By the above argument �3φ ∈ w. Now suppose a world v inMΛ

such that wRΛv. By the footnote in the proof of the Existence Lemma
1.3.5 �3φ ∈ w ∧ wRΛv implies 3φ ∈ v. By φ ∈ w it follows that vRΛw
as desired.

It is now just a matter of selecting and combining the right pieces to establish
the completeness results we will need during the further discussion of the modal
logic of forcing.

Theorem 1.3.9 We have the following completeness results:

(i) K is strongly complete with respect to the class of all frames.

(ii) S4 is strongly complete with respect to the class of all reflexive and tran-
sitive frames.

13

Proof. 3�p→ p iff (Dual) ¬(¬¬3¬p)∨p iff �3¬p∨p iff (uni.sub.) �3q∨¬q iff q → �3q)
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(iii) S4.2 is strongly complete with respect to the class of all frames whose order
is a dirceted partial order.

(iv) S5 is strongly complete with respect to the class of frames whose relation
is an equivalence relation.

Proof. Given a set of formulas Γ consistent for the logic in question. By 1.2.9
it then will do to find a model (F ,V) such that:

a) there is a state w in (F ,V) such that (F ,V), w |= Γ.

b) F satisfies the claimed attribute(s).

Now the canonical model satisfies, at the state Γ+, where Γ+ is a MCS
extending Γ, condition a). So it remains to show that b) holds for the canonical
frame. This was already done by the preceding lemma.

Putting 1.3.9 and 1.2.4 together, we have shown that the considered logics
are sound and (strongly) complete w.r.t. the given class of frames.

We now introduce a notion which will help us to see that we can demand an
additional property of the frames, namely that the frames are rooted.

Definition 1.3.10 LetM=(W, R, V) be a model. A model N=(W ′, R′, V ′)
is called a submodel of M, N ⊆M, if

• W ′ ⊆ W

• R′ = R �W ′

• ∀p ∈ Φ : V ′(p) = V(p) ∩W ′

N is called a generated submodel of M, N v M, if N ⊆ M and W ′ is an
upwards closed subset of W.
N is called generated by the set X if

W ′ = {x ∈ W | ∃y ∈ X : yRx}

and point generated if X is a singleton.

The following theorem is easy to proof but still very helpful.

Theorem 1.3.11 (Generation Theorem) Suppose N = (W ′,R′,V ′) is a gen-
erated submodel ofM = (W,R,V). Then for every formula φ and every x ∈ W ′

N , x |= φ iff M, x |= φ

Proof. Ind(φ)
The atomic case follows from definition.
The case φ = φ1 ∧ φ2 is also trivial.
Let φ = ¬ψ. Then N , x |= φ iff N , x 2 ψ iff (by induction hypothesis)M, x 2 ψ
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iff M, x |= φ.
Now let φ = 3ψ.
N , x |= φ iff
∃y ∈ W ′ : xR′y ∧ N , y |= ψ iff (by induction hypothesis, note that we use that
W ′ is upwards closed in W and x ∈ W ′ for the direction from bottom to top)
∃y ∈ W : xRy ∧M, y |= ψ iff
M, x |= φ.

The Generation Theorem yields that a normal modal logic Λ which is sound
and complete w.r.t. some class of frames satisfying some property P is also
sound and complete w.r.t. the class of rooted frames with property P . We will
show this for S4.2 in the next lemma.

Definition 1.3.12 A frame is called rooted if it has a unique minimal element.

Corollary 1.3.13 Every point generated submodel is rooted.

Lemma 1.3.14 S4.2 is sound and complete w.r.t. the class of rooted frames
whose order is a directed partial order.

Proof. Let F be the class of frames whose order is a directed partial order and
Fr ⊂ F be the subclass of rooted frames in F. We need to see that S4.2 = ΛFr .
Suppose φ ∈ S4.2 and assume that there is some Fr ∈ Fr such that Fr 2 φ. By
Fr ⊂ F we have Fr ∈ F, contradicting the soundness result from lemma 1.2.4.
On the other hand: φ /∈ S4.2 and S4.2 = ΛF gives us some F ∈ F and some
w ∈ F such that for any model M over F : M, w 2 φ. Fix such an M. Now
let N be the submodel of M that was generated by w. Then N , w 2 φ by the
Generation Theorem. Hence φ /∈ ΛFr .

1.4 Filtration and the Finite Frame Property

The canonical model for a given (consistent and normal) logic Λ refutes every
φ with 0Λ φ at some world. While this property is very nice, the model itself
is very big and clumsy (it contains continuum many worlds). We would like to
have a smaller model to handle it more elegantly. This can, for some logics, in
fact be done, as this section will show.

Definition 1.4.1 A logic Λ has the finite frame property if for every φ /∈ Λ
there is a finite frame F such that F , w 2 φ for some world w in F and F |= Λ.

We will see that S4.2 has the finite frame property by using a method that
is called filtration. The idea is to take any model that refutes every φ not in
S4.2 at some world (those models exist, the canonical model is an example) and
a (well-behaved) set of formulas. Then we define an equivalence class on this
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model by using the set. When we take the ”quotient” of the model through the
equivalence class, the resulting model will be called the filtration of the model
through the set (assuming some properties for our equivalence class). The Fil-
tration Theorem then states that every formula in the given set holds in the
model if and only if it holds in the filtration, i.e. if φ is in the set of formuals,
then the filtration falsifies it at some world. Because the filtration will be finite
and its order is a directed partial order, we have shown that S4.2 has the finite
frame property.
This section uses the notation from [2] and follows their construction very closely.

Let M = (F ,V) be a model, F = (W,R), and Σ be a set of formulas
which is closed under subformulas. Given two worlds x, y ∈ W we say that x is
Σ-equivalent to y in M, x ∼Σ y, if

M, x |= φ iff M, y |= φ for every φ ∈ Σ

Note that ∼Σ is trivially an equivalence relation on W, so we denote the equiv-
alence class of x by [x]Σ = {y ∈ W | x ∼Σ y}. We will drop the subscribt Σ if
this does not involve ambiguity.

Definition 1.4.2 A filtration of M through Σ is any model N = (G,U) based
on a frame G = (O,S) such that

(i) O = {[x] | x ∈ W}

(ii) U(p) = {[x] | x ∈ V(p)} for every variable p ∈ Σ

(iii) xRy ⇒ [x]S[y] for all x, y ∈ W

(iv) if [x]S[y] then M, x |= �φ implies M, y |= φ for x, y ∈ W and �φ ∈ Σ

Remark 1.4.3 In general the conditions (iii) and (iv) do not determine S
uniquely. In fact one can show that S ⊆ S ⊆ S for any filtration where

S = {([x], [y]) | ∀�φ ∈ Σ(M, x |= φ→M, y |= φ)}
S = {([x], [y]) | ∃x′, y′ ∈ W(x ∼ x′ ∧ y ∼ y′ ∧ x′Ry′}

S is called the finest filtration of M through Σ, while S is called the coarsest.
We will only use the finest filtration, so we do not bother with a proof of the
above and its implications. The interested reader is referred to [2], proposition
5.27 and page 141 and following.

Corollary 1.4.4 With the notation as above: |G| ≤ 2|Σ|.

Proof. Define

π : G → Σ2
[x] 7→ fx
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where

fx(φ) =

{
1 if M, x |= φ

0 otherwise

To see that π is well-defined let y, z ∈ [x] where [x] ∈ G. For all φ ∈ Σ we
use the definition of the equivalence relation to obtain: fy(φ) = 1 iff M, y |= φ
iff M, x |= φ iff M, z |= φ iff fz(φ) = 1.

This shows that π is not dependent on the choice of the member of an
equivalence class and is hence well-defined.

Now let fx 6= fy. Without loss of generality there then is some φ ∈ Σ where
fx(φ) = 1 and fy(φ) = 0. So M, x |= φ and M, y |= ¬φ. Because φ ∈ Σ this
means [x] 6= [y], i.e. π is injective. This proves the corollary.

We now show that a filtration is well-behaved.

Theorem 1.4.5 (Filtration Theorem) Let M be a model and N a filtration
of M through a set of formulas Σ that is closed under subformulas. Then for
every world x ∈M and every formula φ ∈ Σ

M, x |= φ iff N , [x] |= φ

Proof. By induction on the complextity of φ.
The base case follows from (ii) from the above definition.
The Boolean combinations follow directly from the truth-definitions and the
induction hypothesis.
Let �φ ∈ Σ andM, x |= �φ. We need to show that N , [y] |= φ for every [y] with
[x]S[y]. Take such a [y]. By (iv) we see M, y |= φ, so by induction hypothesis
N , [y] |= φ (note that φ ∈ Σ by the closure properties of Σ). Conversely suppose
N , [x] |= �φ. Let y be such that xRy. So [x]S[y] by (iii). Therefore N , [y] |= φ
and hence, by induction hypothesis and closure properties, M, y |= φ. By
arbitrarity of y: M, x |= �φ.

Lemma 1.4.6 S4.2 has the finite frame property.

Proof. Suppose φ /∈S4.2. By 1.3.14 there is a model M = (W,R,V) whose
relation is a rooted directed partial order such that there is a world w with
M, w 2 φ. Let Γ = Γφ = {ψ | ψ is subformula of φ}.
LetN be the finest filtration ofM through Γ and letN t be its transitive closure.
Claim 1. N t is a filtration of M through Γ.
Proof of Claim 1. Suppose that S is the relation on N . The relation on N t is

St = {([x], [y]) | ∃n > 0 [x]Sn[y]}

where xSny iff ∃x0, ..., xn−1 x = x0 ∧ x0Sx1 ∧ ... ∧ xn−1Sy.
Note that condition (i) and (ii) were not affected by making S transitive, so
they hold in N t.
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For (iii) we have xRy =⇒ [x]S[y] =⇒ [x]St[y], so the condition is satisfied.
To see (iv) suppose [x]St[y] and M, x |= �ψ for some x, y ∈ W and �ψ ∈ Γ.
Then there is a finite sequence [u], ..., [v] such that [x]S[u]S...S[v]S[y]. Because
S is the finest filtration there are x′, u′ such that x′ ∼ x and u′ ∼ u and
x′Ru′. Because R is transitive we know M, u′ |= �ψ. Since �ψ was in Γ and
u ∼ u′ we have M, u |= �ψ. Using this argument finitely often we eventually
see M, v |= �ψ, so, by (iv) for S and [v]S[y], we see M, y |= ψ as desired.

(Claim 1)

By the Filtration Theorem we now have

M, x |= ξ iff N t, [x] |= ξ for all ξ ∈ Γ, x ∈ W.

Therefore N t, w 2 φ.
Since every formula is finite, the set Γφ is finite and hence, by 1.4.4, N t is finite.
It only remains to show that N t has a S4.2 frame. Because S4.2 is sound and
complete with respect to the class of directed partial orders it is sufficient to
show that St is such a order. Now, St is transitive by definition. It is also
reflexive because R was reflexive, i.e. ∀x ∈ W : xRx which implies [x]St[x] for
all [x] by (iii).
To see that St is directed let [x]St[y] and [x]St[z] for some worlds [x], [y], [z] in
N t. If [y] = [z] we are done by reflexivity, so suppose [y] 6= [z]. Then there
are u, v ∈ W and y′, z′ ∈ W such that y ∼ y′, z ∼ z′ and uRy′ and vRz′
because St includes the finest filtration. Clearly y′ 6= z′. Because M had a
rooted and transitive frame we have for the root r that rRy′ ∧ rRz′ and since
R is directed there is a w such that y′Rw ∧ z′Rw which implies [y′] = [y]St[w]
and [z′] = [z]St[w] by (iii). Hence St is directed.

The following lemma reformulates the characterisation of S4.2 and provides
us with the characterisation we will use throughout the rest of the thesis. Note
that a lattice is a partially ordered set such that every two elements of the lattice
have a unique least upper bound and a unique greatest lower bound, called join
and meet respectively. A pre-lattice is a partially ordered set F such that F/ ≡
forms a lattice, where ∀a, b ∈ F : a ≡ b iff a ≤F b ≤F a.

Lemma 1.4.7 S4.2 is sound and complete with respect to the class of frames
whose relation is a finite pre-lattice.

In order to prove this, we will take a model with a directed partial order frame
and construct a new model out of it whose relation is a finite pre-lattice and
which is ”similar” to the model we started with. The construction is essentially
”tree-unravelling”, a standard method used to obtain trees from partial orders,
see the proof of theorem 2.19 in [2]. But first we state what is meant by ”similar”:

Definition 1.4.8 Two Kripke-models M = (W,R,V) and M′ = (W ′,R′,V ′)
are called bisimilar if there is a correspondence of their worlds a ∼ a′ for a ∈
M, a′ ∈M′ such that if a ∼ a′ then
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• a ∈ V(p) iff a′ ∈ V ′(p) for every propositional variable p

• aRb ⇒ ∃b′ ∈M′ a′R′b′ and b′ ∼ b

• a′Rb′ ⇒ ∃b ∈M aRb and b ∼ b′

Note that it follows from induction that corresponding worlds have exactly
the same modal truths. Also note that the correspondence is not required to be
functional or one-to-one.

With this definition at hand we can now start the missing proof.

Proof of lemma. Let φ /∈ S4.2. Because S4.2 has the finite frame property by
1.4.6 there is a model M = (F ,V) such that φ fails at some world w0 in M
and the relation inM is a directed partial order. Without loss of generality we
may assume that w0 is in the smallest cluster (see 14) of F . By directedness
and because F is finite there is a largest cluster in F . Call it [z].

Recall that F/ ≡ is a finite directed partial order where a ≡ b iff a ≤F b ≤F
a. Therefore, for any [x] ∈ F/ ≡, the interval [[w0], [x]] is a union of linearly
ordered sets. We define

t is a path from [w0] to [x] if t is a maximal linearly ordered subset of [[w0], [x]].

Then

T = {t | ∃x such that t is a path from [w0] to [x]}

is a tree if ordered by end-extension.
We now define the bisimilar model as follows:
W ′ = {(x, t) | t is path from [w0] to [x] in F/ ≡ and [x] 6= [z]} ∪ {[z]}
We order the elements by end-extension of the paths and the order in F/ ≡

with [z] still maximal, i.e.
R′ = {((x, t), (y, s)) |

(x, t), (y, s) ∈ W ′ ∧ t ⊆ s ∧ x ≤F/≡ y} ∪ {((x, t), [z]) | (x, t) ∈ W ′}
Now define a valuation on F ′ = (W ′,R′) by
V ′(p) = {(x, t) | x ∈ V(p)}

Claim 1. F ′ is a baled pre-tree, i.e. a partial order such that the quotient
forms a partial order with a maximal element and without the maximal element
the partial order is a tree.
Proof of Claim 1. F ′/ ≡ certainly has a maximal element, namely [z]. Now
F ′/ ≡ \{[z]} is a partial order because both F/ ≡ and the order on T are
reflexive and transitive.

To see that F ′/ ≡ \{[z]} forms a tree it remains to show that the predecessors
of any element of W ′ \ {[z]} are linearly ordered in R′. So let (x, t) ∈ W ′ \ {[z]}
and Y = {(y, s) | (y, s)R′(x, t)} be the set of all predecessors. For any two
elements (y, s), (y′, s′) ∈ Y we know that s ⊆ s′ or s′ ⊆ s because T forms a
tree. Say s ⊆ s′. Then [y] is a node in the path from [w0] to [y′] and hence

14A cluster is a set C of one or more elements of F such that for all a, b ∈ C : a ≤F b ≤F a,
i.e. all elements in C are equivalent under ≡.



y ≤ y′. So Y is linearly ordered. (Claim 1)

Since every finite baled pre-tree is a finite pre-lattice the proof is complete.



Chapter 2

Forcing

This chapter will demonstrate a rough outline of how we are going to argue
when we link modal logic and forcing together. We will then prove some facts
about very specific forcings and show that they behave in a suitable way. Once
this is done we are ready to prove our main results in the following chapters.
Throughout this chapter it is assumed that the reader is familiar with the basic
concepts of forcing as they can be found in [10].
Notations are as usual, i.e. M marks a countable transitive model of ZFC, P
and Q are partial orders, forcing extensions of M are called M[G] where G is
a generic filter for some partial order. τ and σ will be used to denote names
unless otherwise defined. κ, λ are cardinals and α, β mark ordinals. Other greek
letters may occure and it will follow from the context what they mean.

2.1 Motivation

Let 3φ mean ”there is a forcing extension where φ holds” and �φ abbreviate
”φ holds in every forcing extension”. Then the diamond can be replaced by
”there is a partial order P and an element p ∈ P such that p forces φ”. This
can of course be expressed in the language of set theory, i.e. 3φ is a sentence
of the language of set theory. The same treatment goes for �φ, so under this
interpretation of the modal operators every model of set theory knows how to
understand 3φ and �φ.
We will see more on this in the next chapter, and postpone a more precise treat-
ment of this matter until then. For now we just need the forcing-interpretation
of the modal operators.
We are now ready to give an important definition. This definition is the main
idea in our proof that the modal logic of forcing is S4.2, as we will see in the
next chapter.

Definition 2.1.1 A button is a statement φ such that �3�φ holds. A button
is called unpushed in M if furthermore ¬φ holds inM. A switch is a statement
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φ such that �3φ as well as �3¬φ hold.

The idea is that a button is a statement that can be ’turned on’ via forcing
and stays on in every further extension. So an unpushed button can be pushed,
but cannot be unpushed again. A switch on the other hand is a statement that
can be turned on and off as we please.
In the above definition we omitted the specific notion of the model where φ is
a button or switch. As we will see later, this is not needed, as a button stays
a button in every forcing extension (assuming no restrictions on the class of
forcings). It will also always be clear from the context where a statement is
supposed to be a button or a switch.
There are some simple facts about buttons and switches that we can prove right
away just to get a better understanding of this definition. First of all there
are buttons and switches in set theory. Consider for example the statement
”V 6= L”. This is forceable over every model of set theory, and once it becomes
true it stays true in all forcing extensions. Hence this is a button. A switch
would be the CH for example, because with forcing we can always ensure that
CH or ¬CH holds in the extension. But this goes even further. Not only are
there buttons and switches, but every statement is either a switch, a button or
the negation of a button. To see this we have to show that any statement φ
that is neither a button nor a switch inM is the negation of a button. Because
φ is not a switch there is a partial order P such that in MP φ or ¬φ is no
longer forceable. By the product lemma this means that either φ or ¬φ is not
forceable in any further extension ofMP. But because φ is not a button there is
no extension such that φ holds in every further extension. Hence MP |= �¬φ.
But this means there is a forcing extension of M such that in every further
extension ¬φ holds, i.e. ¬φ is a button (see 1).

As we have seen in the previous chapter, S4.2 is complete with respect to
the class of finite pre-lattices. In order to show that the modal logic of forcing is
S4.2 we will first of all show that all of the axioms of S4.2 hold for forcing. As a
second step we will then find a link between forcing and finite pre-lattices. This
is where the idea of buttons and switches comes into play. We shall show that
any given finite pre-lattice can be labeled by suitable statements of the language
of set theory in such a way that a statement φ is forceable overMP if and only
if φ was labelled to a node in the pre-lattice that is bigger in the pre-lattice
sense than the node we reached by forcing with P. These statements are the
buttons and switches such that the buttons will determine which cluster we are
in and the switches will tell us our precise node in the cluster. This construction
only works if we have an independence of the buttons and switches, i.e. we do
not want to force some statement and thereby affect the truth value of any of
the other statements. So we say a collection of buttons bn and switches sm is

1We are a bit sloppy in our argumentation. We actually only have shown thatM |= 3�¬φ.
But this suffices as the following argument shows: Let Q be an arbitrary forcing. Then
MQ×P = MP×Q again by the product lemma and is hence an extension of MP, i.e. ¬φ
holds in this extension. Also every further extension of MQ×P is an extension of MP, i.e.
MQ×P |= �¬φ. Because Q was arbitrary M |= �3�¬φ and hence our proof is complete.
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independent if all the buttons are unpushed in the ground model M and for
any extension MP that models some pattern of the bn, sm any button can be
turned on by forcing to some MP×Q without affecting the truth value of any
of the other buttons and switches and any switch can be turned on or off by
forcing to some MP×R without affecting the truth value of any of the other
buttons and switches. We give a formal definition of this idea:

Definition 2.1.2 Let I, J be arbitrary subsets of ω and let A ⊆ I and B ⊆ J .
Let bn, n ∈ I, be a collection of buttons and sm, m ∈ J , a collection of switches.
Define

ΘA,B = (
∧
i∈A�bi) ∧ (

∧
i/∈A ¬�bi) ∧ (

∧
j∈B sj) ∧ (

∧
j /∈B ¬sj)

which states that the pattern of buttons and switches that holds is specified by
A and B. The family {bi}i∈I ∪ {sj}j∈J is called independent in M if

M |= (
∧
i∈I ¬�bi) ∧ (

∧
A⊆I
B⊆J
�(ΘA,B →

∧
A⊆A′⊆I
B′⊂J

3ΘA′,B′))

So what we have to find is a sufficiently large collection of independent
buttons and switches to label any finite pre-lattice. This means we will have to
show that there is an arbitrary large family of independent buttons and switches.
The rest of this chapter is devoted to prove that in fact there is such a family.

2.2 The Switches

In this section we will prove that φn ≡ ”The GCH holds at ℵω+2n” is a switch.
Furthermore we will see that this switch can be turned on and off by ω-closed
forcing and is therefore a switch for ω-closed forcing. We will not use this fact
until chapter 4 where we will show that the modal logic of ω-closed forcing
equals S4.2.
We will see some very basic definitions and lemmata at the beginning of the
next subsection. This is mainly to avoid any confusion in notations.
When we prove that the modal logic of forcing is S4.2 we will start in L. Notice
that L |= GCH, i.e. all the switches are turned on in L. This is why we start
with the discussion on how to turn them off. However, turning off these switches
is possible in arbitrary models of set theory and the following takes this into
account.

2.2.1 ¬ GCH at λ

In this subsection we will show that there is an ω-closed forcing that turns the
switch off.

The following definition is very basic and it is only included to make clear
that we shall distinguish between λ-closed and < λ-closed forcings as opposed
to [8].
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Definition 2.2.1 A partial order P is called λ-closed if whenever γ ≤ λ for
every descending chain {pξ | ξ < γ} of elements of P there is a master condition
q ∈ P such that q ≤ pξ for every ξ < γ. P is called < λ-closed if the above
holds for every γ strictly less than λ.

We shall now prove some facts about < λ-closed forcings that we will need
later during our construction.

The following theorem is a tool for working with < λ-closed forcings and we
will use it in many proofs in this section.

Theorem 2.2.2 Assume P ∈ M, A,B ∈ M, (λ is a cardinal)M, (P is < λ-
closed)M and (|A| < λ)M. Let G be a P-generic filter over M and let
f ∈M[G] with f : A→ B. Then f ∈M.

Proof. Without loss of generality we can restrict ourselves to the case A = α
for some ordinal α < λ, for we can then prove the general case by letting j ∈M
be a 1-1 map from α = |A|M < λ onto A and apply the special case with
f ◦ j : α→ B to show that f ◦ j, and hence f , is in M.
Now fix A = α and B and let K = (αB)M= αB ∩M. Let f ∈ αB ∩M[G]. We
need to show that f ∈ K.
Suppose not. We can then fix a name τG ∈MP for f and a p ∈ G such that

(∗) p 
(τ is a function from α̌ to B̌ and τ /∈ Ǩ).

We will now construct a sequence of elements of G such that each element of
the sequence will define the function τ a bit further. In the end we will be able
to construct from our sequence a new function g inM such that g will be in K,
but not its name, a contradiction.
Consider the following sequences: {pη | η ≤ α} in P and {zη | η < α} in B such
that

(i) p0 = p

(ii) pη ≤ pξ for all ξ ≤ η

(iii) pη+1 
 τ(η̌) = žη.

These sequences can be chosen in the following way:
For successor steps we are given pη and we want to find pη+1 and zη. Since
pη ≤ p we have

pη 
 τ is a function from α̌ to B̌

so pη 
 ∃x ∈ B̌(τ(η̌) = x), since a consequence of a forced statement is forced.
By definition of 
 there is an a ∈ B such that (τG(η) = a)M[G]. Every statement
true in M[G] is forced by some element in G, so there is a r ∈ G such that
r 
 τG(η̌) = ǎ. Let q ∈ G be a common extension of r and pη. Then

q 
”τ is a function from α̌ into B̌ and τ(η̌) = ǎ”
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Then set pη+1 = q and zη = a.
At limit steps, pη, for η limit, may be chosen to satisfy (ii) because P is < λ-
closed.
Now, in M, define a function g with domain α such that g(η) = zη for each
η < α. Then certainly g ∈ K. Now let H be a P-generic filter over M with
pα ∈ H. By the closure properties of a filter, every pη ∈ H, so τH(η) = zη
for each η < α. Hence τH = g ∈ K. But p0 = p 
 τ /∈ Ǩ, so τH /∈ K.
Contradiction!

As we want to show that our switches are independent we will have to show
that our forcing does not destroy the GCH at any other point. To do so we
shall first show that < λ-closed forcings preseve cofinalities and cardinals ≤ λ.
The next lemma displays that in order to show that P preserves cardinals it
suffices to prove that regularity is preserved in M[G].

Lemma 2.2.3 Assume that P ∈M, λ infinite cardinal of M, P is < λ-closed
and whenever κ is a regular cardinal of M, κ < λ, and G is a P generic filter
over M, then (κ is regular)M[G]. It then follows that P preserves cofinalities
less than λ.

Proof. Let γ be a limit ordinal in M such that, in M, cf(γ) = κ for some
cardinal κ ≤ λ. Then κ is regular in M. So by assumption κ is regular in
M[G].
In M[G] let f be a strictly increasing cofinal map from κ into γ. Then f ∈
M by the above theorem and, because f is a strictly increasing cofinal map,
(cf(γ) = κ)M[G].

Lemma 2.2.4 If P preserves cofinalities less than λ then P preserves cardinals
less than λ.

Proof. Let P preserve cofinalities less than λ and let α be a regular cardinal of
M with ω ≤ α ≤ λ. Then by assumption cf(α)M[G] =cf(α)M = α, i.e. α is a
regular cardinal in M[G]. For a limit cardinal β ≤ λ the regular cardinals < β
in M are unbounded in β. Since these cardinals remain regular in M[G], β is
a limit cardinal inM[G] as well. Because every cardinal is either a regular or a
limit cardinal (or both) the claim follows.

Corollary 2.2.5 Assume P ∈M, (λ is a cardinal)M and (P is < λ-closed)M.
Then P preserves cofinalities ≤ λ (and hence, by 2.2.4, cardinals ≤ λ).

Proof. Suppose not. We then find a κ ≤ λ such that (κ is regular)M but (κ is
singular)M[G] using 2.2.3. Thus, in M[G], there is a cofinal function f : α→ κ
for some α < κ ≤ λ. So by 2.2.2 f ∈ M, which means that f is a cofinal
function from α to κ in M, a contradiction!

We shall start with the general definition of our forcing and prove the relevant
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facts before stating the precise partial order that is needed to turn the switch
off.

Definition 2.2.6 Let us denote the forcing of partial functions from some set
I into some set J by Fn(I, J, λ), where every function in Fn(I, J, λ) has cardi-
nality less than λ (see 2). As usual, the conditions of this forcing are ordered
by end-extension, so

Fn(I, J, λ) = {p | p is a function ∧dom(p) ⊆ I ∧ ran(p) ⊆ J ∧ |p| < λ}

and p ≤ q iff p ⊇ q.

Since we now have established an easy way to prove that cardinals ≤ λ are
preserved, we just need to show that Fn is < λ-closed. This is not always, but
in many cases, true, as the following lemma ensures.

Lemma 2.2.7 If λ is regular, then Fn(I, J, λ) is < λ-closed.

Proof. Given a decreasing sequence {pξ | ξ < γ} of elements of Fn(I, J, λ) for
some γ < λ, set q =

⋃
{pξ | ξ < γ}. Then q ≤ pξ∀ξ < γ, |q| < λ since |pξ| < λ

and λ is regular.

Corollary 2.2.8 If λ is regular, then Fn(I, J, λ) preserves cardinals ≤ (λ)M

Proof. Use 2.2.7 for < λ-closedness and then apply 2.2.5.

We now want to see that Fn-forcing may destroy the GCH at regular car-
dinals of the form λ = ℵω+2n+1. Actually it destroys the GCH for arbitrary
cardinals. But what we now need to verify is that Fn-forcing is precise enough
to only change the cardinality of the power set at ℵω+2n+1 and does not inter-
fere with cardinals of the form ℵω+2m+1 for m 6= n. We will need this precision
when we want to show independence of the switches.

Theorem 2.2.9 Fix some n < ω and let λ = ℵω+2n+1. Let M |= 2λ = λ+

and set P = Fn(λ++ × λ, 2, λ) and let G be a P-generic filter over M. Then
M[G] |= 2ℵω+2n+1 > ℵω+2n+2. Furthermore it follows that for all m < ω with
m 6= n if M |= 2ℵω+2m+1 = ℵω+2m+2 then M[G] |= 2ℵω+2m+1 = ℵω+2m+2.

Proof. Note that λ is a successor cardinal and hence regular. Therefore Theorem
2.2.2 applies and yields (θ2)M = (θ2)M[G] for all θ < λ by < λ-closedness. The
claim follows for all m < n.

In order to show (2λ ≥ λ++)M[G] we use a density argument. Since G is a
generic filter we know that

⋃
G is a function from λ++ × λ into 2. So we can

obtain a λ++-sequence (fα | α < λ++) of functions from λ into 2 by letting

2This notation is taken from Kunen[8]
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fα(δ) = (
⋃
G)(α, δ).

This sequence is in M[G] by the preservation of cardinals below λ and the fact
that G ∈M[G]. To prove that all the fα are distinct consider

Dα,β = {p ∈ P | ∃θ < λ((α, θ) ∈ dom(p) ∧ (β, θ) ∈ dom(p) ∧ p(α, θ) 6= p(β, θ)}.

This set is dense because for every p ∈ P that is not in Dα,β one can extend p
to some q such that q ∈ Dα,β : just let q � dom(p) = p and pick some θ such that
(α, θ) and (β, θ) are not in dom(p) and let q(α, θ) = 0 and q(β, θ) = 1. Such
α, β can be found because the elements of P have cardinality less than λ.
Using genericity of G it is now clear that (

⋃
G)(α, δ) 6= (

⋃
G)(β, δ) for all

α, β < λ++, α 6= β. So all the fα’s are distinct and hence (2λ ≥ λ++)M[G].

It remains to show the claim for m > n. We will show the stronger statement
(2θ = κ)M =⇒ (2θ = κ)M[G] for all θ ≥ λ++. This is done by a nice-name
argument.

Fix some arbitrary (θ ≥ λ++)M and let τG ⊂ θ be a subset of θ in M[G].
Suppose σ is a nice-name for τG, so

σ = {((α, ipα)ˇ, pα) | pα ∈ Aα, ipα =

{
1 if pα 
 α ∈ τ
0 if pα 
 α /∈ τ

}

where the Aα’s are maximal antichains in P and (α < θ)M. We want to see
that there are many such nice-names. In order to do so we need the following
claim.

Claim 1. P has the (2<λ)+-c.c.

Proof of Claim 1.

Let χ = (2<λ)+ and suppose {pξ | ξ < χ} forms an antichain in P. Because
λ is regular (2<λ)<λ = 2<λ, so ∀α < χ : (

∣∣α<λ∣∣ ≤ ∣∣(2<λ)<λ
∣∣ =

∣∣2<λ∣∣ < χ).
We now apply the ∆-system-lemma to obtain a set A ⊂ χ with cardinality χ
such that {dom(pξ) | ξ ∈ A} forms a ∆-system with some root r. Because pξ ∈
Fn(λ++ × λ, 2, λ) we have pξ < λ and hence r < λ. But then 2r < χ by the
above argument, so there are less than χ possibilities for pξ � r. So we find a

B ⊂ A, B = χ, such that pξ � r = pξ′ � r for every ξ, ξ′ ∈ B. So all those pξ, pξ′

are compatible, thus the {pξ | ξ < χ} did not form an antichain. (Claim 1)

So every antichainAα that occurs in the nice-name has cardinality< (2<λ)+ ≤
(2λ)+ = λ++ in M by M |= 2λ = λ+.

Still working in M the cardinality of P equals (λ++ · λ)<λ = (λ++)<λ =
λ++ · λ<λ = λ++ by (2λ = λ+)M and Hausdorff. Therefore there are at

most (2λ
++

)λ
++

many antichains in M and hence at most ((2λ
++

)λ
++

)θ =

2λ
++·λ++·θ = 2θ many nice-names for θ in M. This proves the theorem.
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2.2.2 GCH at λ

Now that we have seen that the GCH can be turned off at any given cardinal
λ it remains to show that 2λ = λ+ is also forceable in any model of set theory.
The forcing used will again be ω-closed and will behave nicely, which will allow
us to show independence of the switches in the next section. ω-closedness is not
needed until chapter 4.

Definition 2.2.10 Suppose that κ, λ are cardinals. The collapse-forcing is a
forcing, i.e., a partial order, of the form

Col(κ, λ) = {p | ∃ξ ∈ Ord less than κ (p : ξ → λ)} (see 3)

ordered by end-extension, i.e. p ≤ q iff p � dom(q) = q.

Suppose that (λ < κ)M. Now the union over any Col(κ, λ)-generic filter
G is a surjection from κ onto λ (see proof of 2.2.13). But such a surjection is
already in M by the assumption (λ < κ)M. The extension may include some
Cohen generics but we are not interessted in this matter. We shall therefore
always implicitly assume that (κ < λ)M when forcing with Col(κ, λ).

Lemma 2.2.11 Let κ be a regular cardinal and λ be a cardinal. Then Col(κ, λ)
has the (λ<κ)+-c.c. and is < κ-closed.

Proof. To prove the (λ<κ)+-c.c. bear in mind that P = λ<κ. But every an-
tichain is at most as big as the partial order. So the claim follows.
To show that Col(κ, λ) is < κ-closed let {pξ | ξ < δ} be a descending chain in

Col(κ, λ) with pξ : ξ → λ where δ < κ. Then |pξ| = ξ so
⋃
{pξ | ξ < δ} is a

union of δ-many elements, each smaller than κ. So
⋃
{pξ | ξ < δ} < κ because

κ is regular. Hence
⋃
{pξ | ξ < δ} ∈ Col(κ, λ). Trivially

⋃
{pξ | ξ < δ} ≤P pξ

holds for every ξ < δ.

Corollary 2.2.12 Suppose that, in M, κ is a regular cardinal and λ is a
cardinal. Then Col(κ, λ) preserves cardinals ≤ κ and ≥ ((λ<κ)+)M

Proof. Preservation of cardinals ≤ κ is due to the fact that Col(κ, λ) is < κ-
closed (see Lemma 2.2.11) For cardinals ≥ ((λ<κ)+)M use the λ<κ-c.c. (again,
Lemma 2.2.11).

Theorem 2.2.13 Suppose that κ and λ are infinite cardinals, M |= κ < λ
and take P to be Col(κ, λ). For any P-generic filter G over M we then have:

M[G] |= κ = λ.

3Note that Col(κ, λ)-forcing is basically Fn(κ, λ, κ)-forcing. We introduced this forcing-
notion for two reasons. First of all the Col-forcing is well known and the Col-notation is usual.
Secondly it makes understanding easier to insert a different name for the forcing that turns
the switch back on again.
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Proof. InM[G] we need to find a surjection from κ onto λ. As mentioned above,⋃
G is the needed function. To prove this set F =

⋃
G and

Dξ = {p | ξ ∈ dom(p)}

Now Dξ is dense in P since if ξ /∈ dom(q), then p with p � dom(q) = q and
p(ξ) = 0 is stronger than q in P and p ∈ Dξ. Hence, F is a well-defined
function.
To show that F is onto, suppose δ < λ and let

Dδ = {p | δ ∈ ran(p)}

For any q /∈ Dδ there is a p ∈ Dδ with p < q. This is because κ is an infinite
cardinal, so κ is a limit ordinal. Therefore there is some ξ < κ with ξ /∈ dom(q).
Then simply set p � dom(q) = q and p(ξ) = δ.
We have shown that Dδ is dense for all δ < λ. That means that for all δ < λ
there is a ξ < κ and a p ∈ G such that (p(ξ) = δ), i.e., there is some ξ < κ with
(F (ξ) = δ), so F is a surjection from κ onto λ.

The proof is completed as the injection from κ into λ witnessingM |= κ ≤ λ
is still an element of the extension.

2.3 The Buttons

In this section we shall see that, in L, there are ω-many buttons. In 2.4 we will
prove that these buttons and the switches defined in the previous section form
an independent family. As mentioned before, this is what we need in order to
show that the modal logic of forcing is included within S4.2, as will be shown
in chapter 3.

Hamkins and Löwe defined (see 4)

φ′n = ”ωL2n+1 is not a cardinal”.

They claimed that these buttons form an independent family of buttons in
any model of V = L. They did not prove this but referred the reader to [7]
15.21, i.e. collapse forcing. But the following shows that collapse forcing is in
fact not precise enough to prove independence.

We have seen in the previous section that forcing of the form

P = Col(ωL2n, ω
L
2n+1)

makes φ′n true, as it forces ωL2n = ωL2n+1 in the extension. Obviously once φ′n
is true in one extension it stays true in every further extension, so the φ′n’s are
buttons and Col-forcing proves it. So problems only arise when we want to
show independence by using collapse forcing.

4To be more precise they defined ψ′n ≡ ”ωL
n is not a cardinal”. See [5] page 1768, proof of

Lemma 6.1. Such a ψ′n generates the same results as the φ′n presented here, one only has to
restrict the possible n. With the φ′n we work around this subtlety.
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Claim 1. The use of Col-forcing to push the φ′n is not sufficient when proving
independency.
Proof of Claim 1.

Consider the buttons φ′1 and φ′2. Obviously L 2 ¬φ′1∧¬φ′2. Now consider the
forcing P = Fn(ω6 × ω1, 2, ω1) and let G be P-generic over L. By the previous
results we now know that L[G] |= 2ω1 = ω6. Furthermore P preserves cardinals
(see section 2.2), hence L[G] 2 ¬φ′1 ∧ ¬φ′2. If we now try to push φ′1 we would
ordinarily force with Q = Col(ω2, ω3). But because we have set the cardinality
of the power set of ω1 ”high enough” we also collapse ω6. To see this let G be
the Col(ω2, ω3)-generic filter. Then

⋃
G is a surjection from ω2 onto ω3. We

now define

F : P(ω1)→ ω2

by

F (x) = ”The smallest ξ such that
⋃
G � [ω1 · ξ, ω1 · (ξ + 1)) is characteristic

function of x”

To see that this function is well-defined consider, for any set A ⊂ ω1, the set

DA = {q ∈ Col(ω2, ω3) |
∃ξ q � [ω1 · ξ, ω1 · (ξ + 1)) is characteristic function of A}

Now for every p : α→ ω3 in Col(ω2, ω3) we may assume α = ω1 · ξ for some
ξ as one could enlarge the domain if needed. We then define a p′ as follows:

p′ : α+ ω1 → ω3

with

p′(β) = p(β) if β < α and p′(α+ β) = χA(β)

Certainly p′ � dom(p) = p, hence p′ ≤ p. But also p′ ∈ DA, which implies
that DA is dense. Therefore F is well-defined.

F is also injective because if F (x) = F (y) = ξ then
⋃
G � [ω1 · ξ, ω1 · (ξ+ 1))

is characteristic function of x and of y which implies x = y.
Therefore ω6 got collapsed and hence especially ω5 got collapsed. But that

means that φ′2 was pushed when we only wanted to push φ′1.
(Claim 1)

Note that we needed the exact forcing to show that F is well-defined. We
hence have not shown that ω5 gets collapsed in every forcing extension. So it
might be that there is some forcing that only pushes φ′1 and not φ′2. We have
therefore only shown that the argument presented in [5] is incorrect but not
that the family of the φ′n is not-independent.

Instead of looking for a proof that only φ′1 can be pushed we define new
buttons which are easier to be seen independent. They will also allow us to
generalise the proof to ω-closed forcings, and, for some κ, < κ-closed forcings.
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The main idea is the following:
We still want to use the idea that ”ωLm is not a cardinal” is a button. But we

modify it to ensure that the GCH holds at ωLm (note that the lack of the GCH
was what caused the problems with the buttons as defined by Hamkins and Löwe
in [5]). Also it turns out that the independence proof becomes much easier once
we ensure that the next two successor cardinals of ωLm are still cardinals, which
is why we define

φn ≡ ”ωL3n /∈ Card ∨ ωL3n+1 /∈ Card ∨ ωL3n+2 /∈ Card ∨
∣∣P(ωL3n)

∣∣ > ∣∣ωL3n+1

∣∣ ”
To see that φn is a button note that if a model M models ¬φn then

Col(ωL3n, ω
L
3n+2) computed in M ensures �φn in every further extension of M,

since a collapsed cardinal can not be ”uncollapsed” by means of forcing.

2.4 Independence

This section is divided into three parts: the first is devoted to the proof that
the switches we defined form an independent family in L.

We first consider the case of a forcing extensionM of L where the GCH fails
at some cardinals, and we want to recover it at one explictit cardinal while not
affecting the cardinality of the powerset of any other cardinal. There are some
subtleties to be taken care of and a technical treatment seemed unavoidable.
The idea is: because we need the GCH at some points for nice chain-condition-
properties we start by forcing it wherever we need it. Then we destroy it again
at all the points we did not want to obtain it. Once all this is done we code the
forcings used into one forcing using the concept of iterated forcing. This will
have made sure that the GCH was only destroyed at one point of interest.

To force ¬GCH at a certain cardinal does not involve any difficulties.
The second part shows that the buttons are independent. We will also see

a brief note on what happens when we do not incorporate ”ωL3n+2 is not a
cardinal” into the buttons.

The last part then shows that the buttons and switches are independent from
one another. This is merely uses closedness and chain condition properties.

Note that we only show that an arbitrary large but finite family of these
buttons and switches is independent, while our definition of independence did
not request the family to be finite. However, finite families suffice by the finite
frame property of S4.2, as will be seen in the next chapter.

2.4.1 Independence of the switches

Let

ψn ≡ 2κn = κ+
n

where

κn = ℵω+2n+1.
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We have already seen that the ψn are switches and now we want to show that
they can be turned on and off individually.

Let A ⊂ ω be finite. The goal of this subsection is to show that {ψn | n ∈ A}
is an independent family.

Let M = L[H] be a forcing extension of L and suppose

M |=
∧
n∈A′ ψn ∧

∧
n/∈A′ ¬ψn for some A′ ⊂ A (see 5)

We need to see that there is a partial order P and a generic filter G such
that

(F) M[G] |=
∧
n∈A′′ ψn ∧

∧
n/∈A′′ ¬ψn for any A′′ ⊂ A.

Since A is finite it suffices to show that

(i) there is a partial order P and a generic filter G with

M[G] |=
∧
n∈A′∪{m} ψn ∧

∧
n/∈A′∪{m} ¬ψn for all m ∈ A

and

(ii) there is a partial order P and a generic filter G with

M[G] |=
∧
n∈A′\{m} ψn ∧

∧
n/∈A′\{m} ¬ψn for all m ∈ A.

If (i) and (ii) hold, then (F) can be achieved by iterated forcing.
We will first show (i).
Note that in M ψm can be forced by

P∗ = Col(κ+
m, 2

κm).

Because P∗ is < κ+
m-closed we have

(AB)M = (AB)M[G∗]

if G∗ is P∗-generic over M and |A| < κ+
m. Hence M |= ψn iff M[G∗] |= ψn

for all n < m.
But P∗ does not suffice as the following shows.
P∗ has the ((2κm)<κ

+
m)+ = (2κm)+-c.c. Suppose there is a l such that

m < l, l ∈ A, M |= ψl and M |= κl < 2κm . Such l may exist, because M
was an arbitrary forcing extension of L. Then there are at most (|P∗|(2

κm )
)κl =

((2κm)(2κm ))κl = 2(2κm )- many nice-names for subsets of κl. But we want inde-
pendence, i.e. we need to show M[G∗] |= ψl. By ((2κm) > κl)

M we see that
the upper bound for subsets of the κl is too big, i.e. κl got collapsed and we
therefore affected the GCH at κl.

We work around this problem by using iterated forcing. The idea is to ensure
the GCH at all important stages, i.e. at every κl with l ∈ A, starting with the

5n /∈ A′ is taken to mean n ∈ A \A′.
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GCH at κm. Once this is established we destroy the GCH again at every κl
where M |= ¬ψl.

To show that this works let

• n0 = m

• ni+1 = min{n ∈ A \ {n0, ..., ni} | m ≤ n}

End the sequence of the ni if there is no n′ ∈ {n ∈ A\{no, ..., ni}} with m ≤ n′.
Now let Pni = Col(κ+

ni , 2
κni ). Note that we do not want to calculate these

forcings in M but rather want to use a short notation of the forcings which we
are going to use when we calculate these forcings in the extensions.

Let Gn0 be Pn0 -generic over M. Then

M |= ψn iff M[Gn0
] |= ψn for all n < n0, n ∈ A

by < κ+
n0

-closedness (see above). Furthermore M[Gn0
] |= ψn0

. Now con-
struct Pn1 in M[Gn0 ] to arrive at a forcing extension M[Gn0 ][Gn1 ] where
Claim 2. M[Gn0 ][Gn1 ] |= ψn0 ∧ ψn1

Proof of Claim 2. M[Gn0
][Gn1

] |= ψn1
is clear by definition of the partial order.

Because Pn1
is < κ+

n1
-closed we know that the GCH below κ+

n1
did not get

changed. Especially 2κn0 = κ+
n0

holds in the extension, i.e. (ψn0
)M[Gn0

][Gn1
].

(Claim 2)

We now repeat this operation finitely many times until we arrive at some
partial order Pnk and a generic Gnk such that M′ := M[Gn0

], ..., [Gnk ] |= ψn
for all n ≥ m, n ∈ A. We have hence ensured that the GCH holds at all κn with
n ≥ m, n ∈ A. We now have to destroy it again at all κn where M |= ¬ψn and
n > m. Note that, for obvious reasons, we leave the GCH at κm untouched.

Define

• n0 = min{n ∈ A | m < n ∧M |= ¬ψn}

• ni+1 = min{n ∈ A \ {n0, ..., ni} | m < n ∧M |= ¬ψn}

and let the sequence end if there is no n ∈ A\{n0, ..., ni} withm < n∧M |= ¬ψn.
Write Qni for Fn(κ++

ni
× κni , 2, κni). Again the construction of the partial

orders will take place in various models.
Let Gn0 be a Qn0-generic filter over M′ and let n0 < l. By the (2<κn0 )+ ≤

(2κn0 )+ = κ++
n0

-c.c. there are at most (|Qni |
κ+
n0 )κl = (((κn0

)<κn0 )κ
+
no )κl ≤

(((κl)
κl)κl)κl = 2κl = κ+

l many nice-names for subsets of κl in M′, i.e.

M′[Gn0
] |= ψl for all l > no, l ∈ A.

InM′[Gn0 ] we then construct Qn1 and arrive at an extensionM′[Gn0 ][Gn1 ]
where ¬ψn0

∧ ¬ψn1
holds. Repeat this operation until ¬ψni holds for all ni.

Say we need k-many steps. Call the obtained model M′′.
Because Qni is < κni-closed we do not affect any ψn with n < ni. We have

hence obtained a model M′′ with
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M |= ψn iff M′′ |= ψn for all n ∈ A \ {m} and M′′ |= ψm.

Therefore M′′ is a model as we wanted it to be, if it is a forcing extension
ofM. But this holds by iterated forcing, i.e. M′′ =M[G] for a P-generic filter
G where

P = Pn0
∗ ... ∗Pnk ∗Qn0 ∗ ... ∗Qnk

Remark 2.4.1 Note that every Pni , Qni was ω-closed. Hence P is also ω-
closed. We will need this fact in chapter 4.

It is now easy to see that (ii) can also be achieved. We are in a situation
where ψm holds inM (i.e. (GCH at κm)M) and we need to see that we can force
¬ψm. As seen in 2.2 this may be done by forcing of the form Q = Fn(κ++

m ×
κm, 2, κm). Because this forcing is < κm-closed no new subsets below κm are
added. Hence for n < m

• M |= ψn iff MQ |= ψn

Now let m < l. Because Q has the κ++
m -c.c. and (κ++

m ≤ κl)
M there are at

most (|Q|κ
++
m )κl = |Q|(κ

++
m ·κl) = |Q|κl = |Q| · 2κl = 2κl many nice-names for

subsets of κl in M by Hausdorff and the fact that the forcing is small relative
to 2κl . This has shown

• M |= ψl iff MQ |= ψl

So the proof for (ii) is complete.

2.4.2 Independence of the buttons

Recall that

φn ≡ ”ωL3n /∈ Card ∨ ωL3n+1 /∈ Card ∨ ωL3n+2 /∈ Card ∨
∣∣P(ωL3n)

∣∣ > ∣∣ωL3n+1

∣∣ ”
Because we only need to show that the φn form a finite independent family

of buttons in L we argue as we did for the independence of the switches to see
that the following suffices to show:

• Let m < n < k < ω and M be a forcing extension of L such that M |=
¬φm ∧ ¬φn ∧ ¬φk. Then there is a forcing P such that MP |= ¬φm ∧
�φn ∧ ¬φk.

• L |= ¬φm ∧ ¬φn ∧ ¬φk.

The second point is trivial by the GCH in L. So only the first point remains
to be shown. But we can weaken it to:

• ∃P :MP |= ¬φm ∧ φn ∧ ¬φk.



2.4. INDEPENDENCE 45

This is because once φn becomes true, it stays true in all further extensions.
A proof of this obviously only needs to consider an extension N of L with
N |= ωL3n, ω

L
3n+1, ω

L
3n+2 ∈ Card ∧

∣∣P(ωL3n)
∣∣ > ωL3n+1. Then of course N |= φn.

If we were to ensure the GCH at ωL3n again we would have to collapse P(ωL3n).
By

∣∣P(ωL3n)
∣∣ > ωL3n+1 this implies that ωL3n+2 would get collapsed as well and

hence would not be a cardinal in the extension, i.e. φn would still be pushed in
the extension.

Suppose we had not included ”ωL3n+2 /∈ Card” into the φn. Then a model
N may exist with N |= φn ∧ ¬�φn because the GCH at ωL3n may be recovered
without affecting ωL3n and ωL3n+1. To see that this is a problem recall the defini-
tion of independence. We needed the buttons to be pushed, i.e. �φm to hold.
Therefore in our above example even though φn holds in N we would still have
to ensure that �φn holds. We could do this by collapsing ωL3n+1 onto ωL3n using
Col-forcing. But suppose that n = 1 and (

∣∣P(ωL1 )
∣∣ =

∣∣P(ωL2 )
∣∣ = ωL5 )N . Then

the Col-forcing is big (has cardinality ωL5 ) and, using the proof presented at the
beginning of section 2.3, collapses ωL4 . But that means that φ2 would have been
pushed (ωL4 is no longer a cardinal) when we only wanted to push φ1.

If we were to try and recover the GCH first and then use Col-forcing we
would collapse ωL4 while recovering the GCH.

This is the reason why we included ”ωL3n+2 /∈ Card” into the φn.
So let M be a forcing extension of L and M |= ¬φm ∧ ¬φn ∧ ¬φk where

m < n < k < ω. Let P = Col(ωL3n, ω
L
3n+1) and G be a P-generic filter over M.

We claim:

M[G] |= ¬φm ∧ φn ∧ ¬φk

Of course M[G] |= φn because ωL3n+1 got collapsed by P and is hence no
longer a cardinal.

Notice thatM |= ¬φi means (ωL3i, ω
L
3i+1, ω

L
3i+2 ∈ Card∧

∣∣P(ωL3i)
∣∣ = ωL3i+1)M.

We shall use this extensively.
By lemma 2.2.11 P is < ωL3n-closed which implies (ωL3m, ω

L
3m+1, ω

L
3m+2 ∈

Card)M[G] by corollary 2.2.5. Theorem 2.2.2 implies that no new subsets below
ωL3n are added by P and hence (

∣∣P(ωL3m)
∣∣ = ωL3m+1)M[G]. This provesM[G] |=

¬φm.

We already know that P has the ((ωL3n+1)<ω
L
3n)+-c.c. Using Hausdorff and

the GCH at ωL3n in M we obatain ((ωL3n+1)<ω
L
3n = ωL3n+1 · 2<ω

L
3n = ωL3n+1)M,

i.e. P has the (ωL3n+1)+-c.c. Because ωL3n+1 and ωL3n+2 are both cardinals inM
P has the ωL3n+2-c.c. This implies (ωL3k, ω

L
3k+1, ω

L
3k+2 ∈ Card)M[G] by corollary

2.2.12.
To see that the GCH at ωL3k is preserved we use a nice-name argument once

more:
|P| = (ωL3n+1)<ω

L
3n = ωL3n+1 so by the (ωL3n+1)+-c.c. there are at most

(ωL3n+1)ω
L
3n+1 many antichains in P. So there are at most ((ωL3n+1)ω

L
3n+1)ω

L
3k =

(ωL3n+1)ω
L
3n+1·ω

L
3k = (ωL3n+1)ω

L
3k = 2ω

L
3k · ωL3n+1 = 2ω

L
3k = ωL3k+1 many nice-names

for substes of ωL3k in M and hence M[G] |= 2ω
L
3k = ω3k+1, i.e. M[G] |= ¬φk.
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This completes the proof of independence for the buttons.

2.4.3 Independence of the buttons and switches

The point is that we have arranged the switches ”high enough” so that they do
not interfere with our buttons. More precisely note that every forcing that was
used to turn a switch on or off was especially < ℵω-closed, i.e. no new subsets
below ℵω were added. Hence no new models that would push the buttons were
generated and therefore the buttons were not affected.

On the other hand the forcing used to push φm has the (ωL2m+1)+-c.c., which

implies that ”only few” subsets above (ωL2m+1)+ are added. Especially the GCH
above ℵω did not get affected.

Hence the buttons and switches are independent from one another.



Chapter 3

The Forcing Interpretation
Of Modal Logic

In this chapter we will interpret the modal operator 3 as ”there is a forcing
extension such that...” and the � as ”in every forcing extension...”. We will
then establish that, if ZFC is consistent, exactly every assertion of the modal
theory S4.2 holds for the forcing interpretation of modal logic.

In his paper ”A simple maximality principle” [4] Hamkins introduced the
following forcing interpretation of modal logic: the statement 3φ is true in
some model M of ZFC if there is a forcing extension MP of M such that
MP |= φ. In this case we will also call φ possible or forceable. The statement
�ψ then holds inM if for every extensionMP ofM: MP |= ψ. In which case
ψ is called necessary.
The modal operators are eliminable in the language of set theory. 3φ can be
expressed as the statement ”∃P ∃p ∈ P (P is partial order ∧ p 
P φ)”. The
statement �φ can be re-stated as ”∀P ∀p ∈ P (P is partial order ∧ p 
P φ)”.
We will therefore use a mixed language of set theory and the modal operators,
understood as abbreviations for their forcing interpretations.
Now that we have an interpretation of the modal operators, it is a natural
question to ask what principles are valid for this construction. Let us write
φ(p1, ..., pn) for a modal assertion φ with p1, ..., pn occurring. Recall that a
formula φ(p1, ..., pn) (of the modal language) is called valid on a frame if it
holds under every valuation, i.e. if φ(p1, ..., pn) is true in every model based on
that frame. Now consider a frame of models of set theory with the accessibility
relation given by the forcing interpretation of the modal operators. A valuation
on this frame then decides for every modal assertion φ(p1, ..., pn) and every node
w if φ(p1, ..., pn) is true in w. Now w is a model of set theory and therefore for
every ψ ∈ L∈ the information if ψ holds in w is already coded in w. We have
seen that the modal operators are eliminable, so the question if φ(p1, ..., pn)
holds at w depends on how the p1, ..., pn are interpreted in the language of set

47
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theory. We shall connect the pi to sentences of L∈. Formally this is a function
χ : Ψ→ L∈ where Ψ is the set of propositional variables of the modal language.
So φ(p1, ..., pn) is true in w if φ(χ(p1), ..., χ(pn)) holds in w. Hence φ(p1, ..., pn) is
valid if for every function χ as above and every node w: w |= φ(χ(p1), ..., χ(pn)).
We therefore define

Definition 3.0.2 A modal assertion φ(p1, ..., pn) is a ZFC-provable principle
of forcing (see 1) if for all sentences ψi, 0 < i ≤ n, of the language of set theory,
ZFC proves every substitution instance φ(ψ1, ..., ψn).

Our main goal is to show that the valid principles of forcing are excatly those
of the modal theory S4.2. To do so we will prove a lemma that connects the
modal language to set theory. Let us look at this lemma now:

Lemma 3.0.3 Given some finite pre-lattice F . Let M be a model based on F
an let w0 be a world in M. Let W be a model of set theory with a sufficiently
large independent family of buttons and switches. Then there is an assignment
χ : Ψ→ L∈ such that for every modal assertion φ we have

(M, w0) |= φ(q0, ..., qn) iff W |= φ(χ(q0), ..., χ(qn))

The above lemma will be the heart of our argument for it sets an upper
bound to the ZFC-provable principles of forcing. A lower bound can be easily
found and it happens to equal the upper bound. In fact, the lower bound is
found by just verifying that every assertion in the modal theory S4.2 holds under
the forcing interpretation. We shall do so right away.

Lemma 3.0.4 S4.2 is included within the ZFC-provable principles of forcing.

Proof. (K)≡ �(φ→ ψ)→ (�φ→ �ψ)
Suppose some modelM where �(φ→ ψ) holds. If then �φ holds it means that
in every extension φ holds. But by assumption M |= �(φ → ψ), so ψ holds in
the extension by modus ponens.
(Dual) ≡ ¬3φ↔ �¬φ
From left to right note that if no extension believes φ, then every extension
believes ¬φ. On the other hand if every extension believes ¬φ then there can
not be an extension believing φ.
(S) ≡ �φ→ φ
Every model is a (trivial) forcing extension of itself.
(4) ≡ �φ→ ��φ
A forcing extension of a forcing extension is a forcing extension of the ground

1We will refer to the ZFC-provable principles of forcing as the valid principles of forcing.
This is somewhat informal because usually the validity depends on the valuation functions
(which are functions from Φ to an element of the powerset of the worlds). But in the forcing
interpretation validity depends on the functions χ from Φ to L∈.
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model, i.e. if φ holds in all extensions of M, then so does �φ.
(.2) ≡ 3�φ→ �3φ
Let φ be necessary in V P and V Q be an arbitrary extension, then φ holds in
V P×Q as this extends V P. So φ is forceable over any such extension V Q by the
Product Lemma.
Closure under modus ponens and substitution is trivial. For closure under
necessitation note that if φ holds in all models of set theory, then φ holds in all
extensions of any given model, i.e. �φ holds in all models of set theory.

To see explicit failing instances for any theory beyond S4.2 the reader is
invited to have a look at observation 4 in [5].

Denote the ZFC-provable principles of forcing by Force. We have just proven
that S4.2 ⊆ Force. To see the inverse we will use the above mentioned lemma
and shall now commence the proof of it by showing some lemmata.

Lemma 3.0.5 If V = L then there are arbitrarily large (but finite) families of
buttons bi and switches sj such that the family is independent.

Proof. This was shown in section 2.4

We have seen in chapter 1 that every modal assertion φ not in S4.2 fails in
some Kripke Model whose frame is a finite pre-lattice. We want to make use of
this fact by finding a labeling of any given finite pre-lattice with statements in
L∈ such that they imitate the modal behaviour of the structure in the forcing
interpretation. We will use the concept of buttons and switches for that, so we
want to find a labeling such that if a set of statements A was labeled to some
world w and wRv in the lattice-order, then v was labeled by some statements
B such that every statement in B is forceable over any model of set theory
satisfying every statement in A. We shall use buttons to determine the cluster of
the lattice and switches to determine the node within the cluster. The following
lemmata show that this can be done, starting with the easier case of a finite
lattice, where we only need buttons.

Lemma 3.0.6 Let F be a finite lattice with a minimal node w0 and M a
model of set theory with a sufficiently large independent family of buttons bi.
Then there is an assignment that connects each node w ∈ F to an extended
Boolean combination (see 2) pw of the buttons such that:

(i) In any forcing extension exactly one of the pw is true and M |= pw0

(ii) If M[G] |= pw then pv is forceable over M[G] iff w ≤F v

Proof. Associate every w ∈ F with a button bw. For any A ⊆ F let bA =
(
∧
u∈A�bu) ∧ (

∧
u/∈A ¬�bu) be the sentence asserting that exactly the buttons

2ψ is an extended Boolean combination of some formulas φi if ψ is a Boolean combination
of the φi or, if ψ′ is an extended Boolean combination of the φi, ψ = 3ψ′.



50 CHAPTER 3. THE FORCING INTERPRETATION OF MODAL LOGIC

bu have been pushed for u ∈ A.
(i) Set pw =

∨
{bA |

∨
(A) = w} (see 3). . Note that every subset of a finite

lattice has a unique upper bound by definition. So pw assets that some pattern
A of buttons has been pushed with

∨
A = w.

In any given forcing extension (of M) exactly one pattern of buttons has been
pushed. Fix some extension and call the pattern that happens to hold in this
extension A. So bA holds in this extension and therefore pw holds for w =

∨
A.

Now assume that pw holds in the extension. It then follows, because the pat-
tern A was pushed, that

∨
A = w. So pw is true in the extension if and only if∨

A = w. Thus only one pw can hold in any given extension.
In M no button has been pushed (recall that we required this for independent
buttons), so A = ∅. By definition

∨
∅ = minimal node in F , which is w0, so

M |= pw0
.

(ii) AssumeM[G] |= pw and call the pattern of buttens pushed inM[G] A. So
by (i) we know

∨
A = w. Let v ∈ F such that w ≤F v. By independency of the

buttons we can push the button bv inM[G] without affecting the truth value of
the other buttons, arriving at an extension M[G][H] where the pattern of but-
tons pushed is A∪{v}. By w ≤F v we know

∨
(A∪{v}) = v, soM[G][H] |= pv

by (i). Therefore pv is forceable in M[G] as desired.
Conversely suppose there is an extension M[G][H] satisfying pv. Call the pat-
tern of buttons pushed in this extension B. Then

∨
B = v by (i). Because

M[G] ⊆ M[G][H] and buttons can not be unpushed by forcing we know that
A ⊆ B. Thus

∨
A ≤F

∨
B, i.e. w ≤F v.

We shall now implement the switches to obtain the above result for (finite)
pre-lattices.

Lemma 3.0.7 Let F be a finite pre-lattice such that the largest cluster contains
k nodes for some k < ω and let there be m clusters in F . Let n be such that
k ≤ 2n. Then let and {bi, sj}i≤m,j≤n be a independent family of buttons and
switches in a model of set theory M. Suppose w0 is any node in the minimal
cluster of F .
There is an assignment from the elements of F to an extended Boolean combi-
nation of the buttons and switches such that if w 7→ pw

(i) In any forcing extension of M exactly one pw holds and M |= pw0 .

(ii) If M[G] |= pw for any G then M[G] |= 3pv iff w ≤F v

Proof. As said before the buttons will determine the cluster (using the above
lemma) while the switches determine which node in the cluster is intended.
Denote the equivalence class of u in the quotient lattice F� ≡ by [u]. Note
that F� ≡ is a lattice and let p[u] be as in the lemma above.
For a set A ⊆ n let sA = (

∧
i∈A si) ∧ (

∧
i/∈A ¬si) be the assertion that exactly

the pattern A of switches holds. Because any pattern of switches is possible by

3It is common practice to write
∨
A instead of sup(A) when dealing with lattices.
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forcing over M sA is necessarily possible. Note that in any forcing extension
exactly one sA holds.
For any cluster [u] let < Aw | w ∈ [u] > be a partition of P(n), i.e. P(n) =⋃•
w∈[u]Aw. Recall that the largest cluster contained k elements and k ≤ 2n, so

such a partition can be found. If the pattern of switches B holds in M, then
set Aw0

= {B}.
Now set sw =

∨
A∈Aw

sA which asserts that the switches occur in a pattern
appearing in Aw. Finally define pw = p[w] ∧ sw.
We now want to see that this construction works.
For (i) we know, by the above lemma, that exactly one p[u] holds in any given
forcing extension of M. Such an extension satisfies exactly one pattern A of
switches and A is an element of exactly one Aw because the Aw form a partition.
So exactly one sw is true for w ∈ [u]. Thus in any forcing extension exactly one
pw = p[u] ∧ sw holds (for w ∈ [u]).
By construction Aw0

= {B}, the pattern of switches that happens to hold in
M, so M |= sw0

and by the above lemma it follows that M |= pw0
.

To see (ii) suppose M[G] |= pw for some filter G. Then M[G] |= p[w] ∧ sw, so
if w ≤F v we already know that p[v] is forceable over M[G] by the the above
lemma. sv is always forceable without affecting the buttons (independence!), so
p[v] ∧ sv is forceable over M[G].
On the other hand, if pv is forceable over M[G], then p[v] is forceable, i.e.
[w] ≤F�≡ [v] which implies w ≤F v.

We will now prove a lemma that is a little stronger than the lemma mentioned
at the beginning of this chapter. A following corollary will then prove this first
lemma.

Lemma 3.0.8 Let N = (F ,V) be a Kripke Model, F a finite pre-lattice and
w0 ∈ F . Let M be a model of set theory with a sufficiently large independent
family of buttons and switches. One can find an assignment qi 7→ ψi from
the propositional variables to set theoretical assertions such that for any modal
assertion φ:

(N , w) |= φ(q0, ..., qn) iff M |= �(pw → φ(ψ0, ..., ψn))

where the pw are defined as in the above lemma.

Proof. First of all notice that we can trim F in such a way that we cut off all
worlds in F not accessible from w0. By doing so we make w0 a minimal node.
Let us therefore assume without loss of generality that w0 is a minimal node in
F . Hence we may assume that M |= pw0

.
Set ψi =

∨
(N ,w)|=qi pw. We now show the claim by induction on the complexity

of φ.
Let φ be atomic. If M[G] |= pw then M[G] |= ψi because (N , w) |= qi iff pw is
one of the disjuncts of ψi. So M |= �(pw → ψi). Conversely, if (pw → ψi) is
true in some extension where pw holds, then ψi is true in this extension. This
implies (N , w) |= qi.
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Suppose the claim holds for φ0 and φ1. Then (N , w) |= φ0(~q0) ∧ φ1(~q1) iff

(N , w) |= φ0(~q0) and (N , w) |= φ1(~q1) iff M |= �(pw → φ0( ~ψ0)) and M |=
�(pw → φ1( ~ψ1)) iff M |= �(pw → (φ0( ~ψ0) ∧ φ1( ~ψ1)).
For negation let (N , w) |= ¬φ(q1, ..., qn). By induction hypothesis we know
that M 2 �(pw → φ(ψ1, ..., ψn)) so we find some partial order P such that
MP |= pw ∧ ¬φ(ψ1, ..., ψn). But the thruthvalue of the ψi necessarily de-
pends only on the truth value of pv for the various v ∈ F , so it follows that
pw → ¬φ(ψ1, ..., ψn) holds in every extension.
On the other hand from M |= �(pw → ¬φ(ψ1, ..., ψn)) we derive that M 2
�(pw → ψ(ψ1, ..., ψn)), so by induction hypothesis (N , w) |= ¬φ(q1, ..., qn).
To see the claim for the modal operator first suppose that (N , w) |= 3φ(q1, ..., qn).
We find a v ∈ F with w ≤F v such that (N , v) |= φ(q1, ..., qn). By induction
M |= �(pv → φ(ψ1, ..., ψn)). But the construction of the pw’s ensured that
M |= �(pw → 3pv) which implies M |= �(pw → 3φ(ψ1, ..., ψn)).
Now suppose M |= �(pw → 3φ(ψ1, ..., ψn)). So φ(ψ1, ..., ψn) is forceable over
any extension of M satisying pw. So we find a v ∈ F with w ≤F v and
some partial order P such that MP |= pv ∧ φ(ψ1, ..., ψn). Again the truth
value of the ψi depends only on the truth values of the various pu, so it must
be that M |= �(pv → φ(ψ1, ..., ψn)). By induction hypothesis this equals
(N , v) |= φ(q1, ..., qn), so by w ≤F v we have (N , w) |= 3φ(q1, ..., qn) as desired.

Corollary 3.0.9 With the notation from above: If [(N , w) |= φ(q1, ..., qn) iff
M |= �(pw → φ(ψ1, ..., ψn)] then [(N , w0) |= φ(q0, ..., qn) iffM |= φ(ψ1, ..., ψn)].

Proof. From left to right remember that M |= pw0
by construction. By as-

sumption (N , w0) |= φ(q1, .., qn) implies M |= �(pw0
→ φ(ψ1, ..., ψn)), so

M |= φ(ψ1, ..., ψn) because M is a forcing extension of itself. The converse
also holds because if (N , w0) |= ¬φ(q1, ..., qn) then the above has shown M |=
¬φ(ψ1, ..., ψn).

Theorem 3.0.10 The modal logic of forcing is S4.2

Proof. We have already seen that every assertion in S4.2 holds under the forcing
interpretation. So let φ be a modal assertion not in S4.2. Because S4.2 is sound
and complete for the class of finite pre-lattices we know that there is a Kripke
Model N whose frame F is a finite pre-lattice and φ fails in N at some world
w. Without loss of generality w is an initial world in N .
Assuming consistency of ZFC we know that ZFC + V = L is consistent, so
there is a model, namely L, with a sufficiently large family of independent
buttons and switches by lemma 3.0.5. So there is an assignment from the
propositional variables of φ to sentences ψi in the language of set theory such
that L |= ¬φ(ψ0, ..., ψn). Therefore φ is not a valid principle of forcing in L and
hence not a ZFC-provable principle of forcing.



Chapter 4

Restriction to a class of
forcings

In this chapter we will investigate how the modal validities of forcing may change
when we restrict ourselves to a class of forcings. First we will have a look at
c.c.c.-forcings to point out the difficulties that may occur in these circumstances.
Secondly we will consider ω-closed forcings and give prove that the ZFC-provable
principles for these forcings equal S4.2.

4.1 Restriction to c.c.c.-forcings

Recall the following definitions.

Definition 4.1.1 A tree T is called special if there is a function f : T → ω
such that ∀x, y ∈ T : x < y ⇒ f(x) 6= f(y). A tree T is called Aronszajn if
|T | = ω1, ∀α < ω1 (|LevαT | < ω1) and every chain in T is countable.

Now suppose some M such that M |= ”T is special” and some partial
order P and a P-generic filter G such that M[G] |= ”T is special and non-
Aronszajn”. Let B =< bξ | ξ < ωM1 > be a branch through T in M[G].
It follows from ”T is special” in M[G] that there is an f such that for all
bξ, bγ with bξ < bγ : f(bξ) < f(bγ), i.e. f : B → ω is injective and hence
(ωM1 = |B| = ω)M[G]. So ω1 was collapsed by P, hence P did not have the
c.c.c.

In L consider a Souslin-tree T . The following lemmata will show that, in
any c.c.c-extension of L, it is possible to find c.c.c.-extensions where T is either
special or non-Aronszajn. The above shows that no further c.c.c.-forcing makes
both statements true at the same time. So φ′= ”The L-least Souslin-tree is
special” and ψ′= ”The L-least Souslin-tree is non-Aronszajn” are both forceable
and we will see that they are forceably necessary by c.c.c.-forcing. But 3�(φ′∧
ψ′) does not hold in L (as the above has shown).

53
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This is certainly a difference between the ZFC-provable validities of the class of
all forcings and the ZFC-provable validities of the class of c.c.c.-forcings as for
now we were used to the fact that two forceably necessary statements could be
conjuncted by forcing. This was represented by the lattice structure of S4.2, in
particular that every two elements of a lattice have a join.
For c.c.c.-forcing the statements φ′ and ψ′ would refer to two worlds with no
join, so c.c.c.-forcing does not seem to embody the same structure as the class
of all forcings.
This motivates us to ask ”What are the ZFC-provable principles of Γ-forcing?”
for any class of forcings Γ. There are many open questions here and this thesis
is not the right place to answer all of them. However, in the next section we will
see a detailed treatment of ω-closed forcings as well as < κ-closed forcings (for
definable κ). Hamkins and Löwe have settled the question for collapse forcing of
the form Col(ω, θ) for any θ, for which the ZFC-provable validities have proven
to be S4.3. The paper is yet to appear, see ??.

Lemma 4.1.2 S4.2 implies the directedness axiom, i.e.

S4.2 ` 3�φ ∧3�ψ → 3�(φ ∧ ψ)

Proof. To show: For every S4.2-frame F and every world w in F if F |= 3�φ∧
3�ψ then F , w |= 3�(φ ∧ ψ).
By the results of chapter 1 assume that F is a directed partial order.
F , w |= 3�φ ∧3�ψ implies F , w |= 3�φ and F , w |= 3�ψ. So there are u, v
such that wRu and wRv and F , u |= �φ and F , v |= �ψ. Because R is directed
there is a z such that uRz and vRz. Hence F , z |= φ and F , z |= ψ.
Let zRz′. By transitivity of R we have uRz′ and vRz′ and hence F , z′ |= φ∧ψ.
So F , z |= �(φ ∧ ψ). Using transitivity again we see wRz and hence F , w |=
3�(φ ∧ ψ).

Once we have shown that φ′ and ψ′ are forceably necessary the directedness
axiom shows that not all of S4.2 holds for c.c.c.-forcing.

Lemma 4.1.3 Let T be Souslin in M. There is a partial order which satisfies
the c.c.c. such that in MP T is no longer Aronszajn.

Proof. Take P to be the inverse order on T . Then P satisfies the c.c.c. because
T was Souslin and T is no longer Aronszajn because P adds a branch through
T .

Thus ψ′ is forceable over L.

Lemma 4.1.4 Let T be Aronszajn inM. Then there is a partial order P which
satisfies the c.c.c. such that T is special in theM[G] for every G P-generic over
M.

Proof. Define P as a set of functions such that for all p ∈ P:
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(i) dom(p) ⊂fin T

(ii) ran(p) ⊂ ω

(iii) if x, y ∈ dom(p) ∧ x ‖ y ⇒ p(x) 6= p(y)

and order P by end-extension. Then for each x ∈ T the set

Dx = {p ∈ P | x ∈ dom(p)}

is clearly dense in P, so for any P-generic filter G the domain of f =
⋃
G equals

T , so f maps T into ω. Now let x, y ∈ f−1(n) for any n < ω and x ‖ y in T .
By (iii): p(x) 6= p(y) so f(x) 6= f(y), a contradiction. Hence every f−1 forms
an antichain. So f witnesses that T is special (see 1).

It only remains to show that P has the c.c.c.. We need the following claim
Claim 1. If T is an Aronszajn tree and W an uncountable collection of finite
pairwise disjoint subsets of T , then there exists S, S′ ∈ W such that any x ∈ S
is incomparable with any y ∈ S′.
Proof of Claim 1. Without loss of generality assume that, for some n < ω,
|S| = n for all S ∈W (because |S| = n holds for uncountably many S ∈W ).
Fix an enumeration {z1, ..., zn} for each S ∈ W . Because W is uncountable
there are ultrafilters on W whose elements are uncountable (see 2). Let D be
such an ultrafilter.
Assume the claim is false. For each x ∈ T and each k ∈ {1, ..., n} let Yx,k be
the set of all S ∈ W such that x is comparable with the k-th element of S. By
assumption, any S, S′ contains comparable elements, so⋃

x∈S
⋃n
k=1 Yx,k = W

holds for every S ∈ W . Because S is finite at least one of the Yx,k has to
be uncountable. Because D is an ultrafilter we may pick, for any S ∈ W , an
x = xS , an element of S, and a k = kS such that Yx,k ∈ D. Now define

Zk = {S ∈W | kS = k} for k ≤ n

Then there is a k′ such that Zk′ is uncountable. This will lead to a contra-
diction because we will show that the elements of {xS | S ∈ Zk′} are pairwise
comparable i.e. generate an uncountable branch through T .
Let S1, S2 ∈ Zk′ , x = xS1

, y = xS2
. Then Yx,k′ and Yy,k′ are elements of D, so

Y = Yx,k′ ∩ Yy,k′ ∈ D. Therefore Y is uncountable. So for any S ∈ Y the k′-th
element of S is comparable with x and y. x and y are elements of an Aronszajn
tree so they have at most countably many predecessors. But Y is uncountable,
so there is some S ∈ Y such that the k′-th element of S is greater than both x
and y. But then the k′-th element of S witnesses that x and y are comparable.

1T =
⋃

n<ω f
−1(n), i.e. T is a countable union of antichains. One can now define a

function g that sends every x ∈ T to the minimal n such that x ∈ f−1(n) and ∀y <T x with
g(y) ∈ f−1(m): m < n.

2This is a result of Posṕı̌sil, see [7], Theorem 7.6
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(Claim 1)

Now let W be an uncountable subset of P. Then {dom(p) | p ∈ W} is
uncountable because if not there would be uncountably many functions from a
finite set into ω. Using the ∆-system-lemma we find an uncountable W1 ⊂ W
and a finite S ⊂ T such that dom(p) ∩ dom(q) = S for all p, q ∈ W1 distinct.
We then find a W2 ⊂ W1 uncountable such that p � S = q � S for all p, q ∈ W2

by pigeonhole. So by the above claim there are p, q ∈ W2 such that any x ∈
dom(p) \ S is incomparable with any y ∈ dom(q) \ S. Then p∪ q ∈ P, i.e. p ‖ q
in P, hence P has the c.c.c.

So we have proven that φ′ and ψ′ are both forceable over L. To see that
once φ′ or ψ′ holds it stays true in all further c.c.c. extensions note that a tree
that is Aronszajn in the ground model and was made non-Aronszajn in a c.c.c.
extension has an uncountable branch. To make the tree Aronszajn again one
would have to make the branch countable again, i.e. collapse ω1. This can not
be done by c.c.c. forcing. So ψ′ is forceably necessary by c.c.c.-forcing.
φ′ stays true in all further c.c.c. extension because the f that witnessed that T
was special is definable and hence an element of every further forcing extension.

Let us write 3Γφ and �Γφ when we mean that φ is forceable or necessary
by Γ-forcing respectively. So 3c.c.c.�c.c.c.φ′ and 3c.c.c.�c.c.c.ψ′ hold. Denote
the ZFC-provable principles of Γ-focing by ForceΓ. Thus far we have shown in
this chapter

S4.2 * Forcec.c.c.

because the directedness axiom does not hold.
Let us quickly show that:

Lemma 4.1.5 S4 ⊆ Forcec.c.c.

Proof. To see (K) suppose φ and φ → ψ holds in all c.c.c.-extensions. Then ψ
holds in all c.c.c. extensions, so �c.c.c.(φ→ ψ)→ (�c.c.c.φ→ �c.c.c.ψ) holds.
For (Dual) note that if there is no c.c.c. extension such that φ holds, then
in every c.c.c.-extension ¬φ. On the other hand, if in every c.c.c. extension
¬φ holds, then there is no c.c.c.-extension where φ holds. Hence ¬3c.c.c.φ ↔
�c.c.c.¬φ.
For (S) we use the same argument as for the class of all forcings: Every model
of ZFC is a (c.c.c.)-extension of itself, so �c.c.c.φ→ φ.
(4) holds because if P has the c.c.c. in the ground model M and in M[G],
where G is a P-generic filter over M, there is a partial order Q that satisfies
the c.c.c., then, because ω1 is a regular uncountable cardinal, P∗ Q̇ satisfies the
c.c.c. in M (see [7] Theorem 16.4 for details). Hence �c.c.c.φ → �c.c.c.�c.c.c.φ
holds.
Forcec.c.c. is clearly closed under modus ponens and uniform substitution and
if φ holds in every model of set theory, then so does �c.c.c.φ.
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4.2 The modal logic of ω-closed forcing

As seen in the previous section, restricting oneself to a class of forcings may
result in various difficulties, for the internal structure of forcing may change
drastically. However, for ω-closed forcing we manage to apply the same algo-
rhithm used to show Force = S4.2 fruitfully. This is the main result of this
thesis.

Theorem 4.2.1 (Main Theorem) Forceω−closed = S4.2

Proof. To see the right to left inclusion one argues as we have done for arbitrary
forcing. Note that, unlike c.c.c.-forcing, the product of two ω-closed forcings is
again ω-closed, hence the proof for (.2) works as well.

For the left to right inclusion note that every switch we defined was especially
ω-closed. There was a remark on this when we saw the independence of the
switches.

For all n > 0 the buttons φn defined in section 2.3 are ω-closed buttons
because we pushed a button by forcing with Col(ωL3n, ω

L
3n+1). This forcing is

< ωL3n-closed and therefore, for any set A ⊂fin (ω\{0}), the family {φn | n ∈ A}
forms an arbitrarily large but finite family of ω-closed buttons in L. Note that,
if n > 0, the case (

∣∣ωL3n∣∣ = ω)M were M is some ω-closed extension of L may
not occur because ω-closed forcing can not collaps an uncountable cardinal onto
ω.

Hence the buttons and switches are ω-closed and section 2 has already shown
their independence. Therefore we argue just as in 3.0.10 to conclude the theo-
rem.

4.3 The modal logic of < κ-closed forcing

In this section we want to examine what happens when we extend our class of
forcings to < κ-closed forcings.

A first and obviously important question is: ”What is meant by κ?”. We
know that κ may well change its cardinality by forcing and the property to be
< δ-closed was only defined for cardinals δ. Therefore it does not seem to make
sense to talk about the modal logic of < κ-closed forcings, unless we specify
what is meant by κ.

The easiest way to deal with this difficulty is to request κ to be definable by
some formula φ. As an example one may think of a φ that says ”x is the third
uncountable cardinal”. One then calculates κ in the various extensions using
φ and looks at the class of < κ-closed forcings calculated in the model. Note
that we did this already for ω-closed forcing, only that we did not mention the
formula φ that defines ω because it is clear that such a formula exists.

Our goal is to show the follwing theorem.
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Theorem 4.3.1 Let κ be a cardinal definable by some formula φ. Then the
modal logic of < κ-closed forcing is S4.2

Obviously S4.2 ⊆ Force<κ−closed for one uses exactly the same arguments
presented to show this for ω-closed forcing. Therefore only the other inclusion
remains to be shown. As we already know by now this boils down to the task
of finding independent families of buttons and switches. These families will be
basically the same as in the previous section with only minor changes to the
buttons and switches. The idea is to arrange the buttons and switches ”high
enough” to make them < κ-closed switches while keeping them independent
from one another. More precisely define

φn ≡ ℵLκ+3n /∈ Card ∧ ℵLκ+3n+1 /∈ Card ∧ ℵLκ+3n+2 /∈ Card ∧
∣∣P(ℵLκ+3n)

∣∣ >
ℵLκ+3n+1

and

ψm ≡ 2ℵℵκ+2m+1 = (ℵℵκ+2m+1)+

We claim that for any A,B ⊂fin ω the set {φn | n ∈ A} ∪ {ψm | m ∈ B} is
an independent family of < κ-closed buttons and switches in L.

Let us consider the buttons first. We have to see that they are in fact
< κ-closed buttons and that they are independent.

Suppose some < κ-closed extension M of L where �φn does not hold. By
precisely the same argument used in 2.3 we see that M |= ¬φn. In order to
push φn we force with Col(ℵLκ+3n,ℵLκ+3n+1). Because ¬φn holds in M we have
that ℵLκ+3n is still a cardinal inM. It follows that the forcing is < ℵLκ+3n-closed
in M. Notice that M is a < κ-closed forcing extension of L, so L and M have
the same cardinals below κ. We then see that (κ ≤

∣∣ℵLκ+3n

∣∣)M, so the forcing
defined in M is especially < κ-closed. Therefore the buttons are < κ-closed
buttons.

To show their independence first notice that no φn holds in L by L |= GCH.
To see that the φn can be pushed independently we may now use the proof
presented in 2.4 where we replace any occurance of ωLi by ℵLκ+i. Independence
follows easily.

Now consider the switches. To turn ψn on we force with Fn((ℵℵκ+2n+1
)++×

ℵℵκ+2n+1 , 2,ℵℵκ+2n+1). By the results of chapter 2 this forcing is < ℵℵκ+2n+1-
closed (note especially that ℵℵκ+2n+1 is a successor and hence regular).

To turn ψn off we use collapse-forcing of the form Col(ℵℵκ+2n+1
,P(ℵℵκ+2n+1)).

This is < ℵℵκ+2n+1
-closed as well. By (κ ≤ ℵℵκ+2n+1

)M, for any < κ-closed forc-
ing extension M of L, this has shown that ψn is a < κ-closed switch.

Modulo minor changes the independence of the switches was proven by the
general results in chapter 2.

Independence of the whole family uses the same argument as independence
for the ω-closed family:
The switches are < ℵℵκ -closed, hence no new subsets are added below ℵℵκ ,
which is to say: The switches do not affect the truth value of the buttons.
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The forcings used to turn on the buttons on the other hand have the ℵℵκ -c.c.
so ”not many” subsets are added to cardinals above ℵℵκ , i.e. the GCH above
ℵℵκ does not get affected.

We have hence shown that there is an independent family of < κ-closed
buttons and switches in L. This in turn proves the above stated theorem.
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