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Introduction

Generic absoluteness is undoubtedly a popular topic in the field of set
theory. This is not surprising, given the fact that forcing is the major
tool in extending models of ZFC and also a very flexible one. Thus
whenever the truth of a sentence remains unchanged by forcing, it is
reasonable to claim that it has some form of logical stability. For simple
formulas, such as Σ1

2, one can derive their generic absoluteness directly
from ZFC [15], 13.14, but as more complex ones are considered, the
need to use large cardinal axioms emerges. This begins from Σ1

3 formulas,
whose absoluteness requires closure under sharps [15], 15.13, [2], and Σ1

n+3

formulas which require n strong cardinals [35]. The picture then expands
up to the existence of a fully iterable M ]

ω to get L[R] absoluteness [32],
[34], [20] and further on.

Changing the range of the collection of formulas which should remain
frozen under forcing is not the only parameter that alters the consistency
strength requirements. Actually one can also reach different consistency
strength levels by changing the range of the forcing notions that preserve
those formulas. For example, suppose we fix the collection of formulas to
L(R). Then absoluteness for c.c.c. forcings is at the level of a weakly com-
pact cardinal (Kunen) and for proper forcings at the level of a remarkable
cardinal [27], [30]. The collection we will be interested in is the collection
of stationary preserving forcings.

To force absoluteness for stationary preserving forcings, one can clearly
use the results applying to the case of all possible notions. This way we get
the same upper bounds on the consistency strength of the corresponding
absolutenesses. The inverse direction, i.e. getting lower bounds, remains
more unexplored. The main reference in this direction is [28]. There, the
lower bound of the existence of a strong cardinal is reached for 2-step
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Introduction vi

Σ1
4 absoluteness of reasonable or stationary preserving forcings. It is also

conjectured there that, consistency strength-wise, the 2-step absoluteness
of stationary preserving, as well as reasonable forcings, behaves the same
way as for all forcing notions. This is the case of interest for us and it
will be proved that approaches like the one of Woodin and Wilson cannot
produce absoluteness for more complicated formulas than the ones allowed
by this conjecture. This is the content of theorems 7.8 and 7.9.

The main technique used in [28] as well as in this thesis is that of coding
over canonical inner models1. This uses the combination of the almost
disjoint coding and the reshaping forcing [13]. The idea behind using
those tools, in order to get lower bounds, is quite straightforward. One
codes a well-ordering of R into a real r by almost disjoint forcing and over
some canonical inner model, say K. Then in the generic extension, this
well-ordering can be defined using K|ω2[r]. The new definition depends
on the complexity of K up to ω2, which is known and relatively low, for
the case we are below a Woodin cardinal and assuming just the existence
of some strong cardinals [10], [26]. At the same time, using additional
ideas from [31] one can show that the coding forcing is stationary pre-
serving. Therefore we get a method of producing low-complexity defined
well-orderings of the reals, while being stationary preserving, and this
blocks 2-step absoluteness for stationary preserving forcings and formulas
of complexity above that of the well-ordering.

Following the above reasoning, we produce two coding theorems. The
first one is theorem 5.1 and it deals with coding a subset of ω1 into a
real over a sequence of mice whose complexity is the same as that of
K|ω1. We assume here that we are below a Woodin cardinal and that
there are no strong cardinals above ω1 in K. The second one is theorem
6.1, where a subset of a successor cardinal κ = ι+, ι is regular, is coded
to a subset of ι over K[ ~A]. The model K[ ~A] has the flavor of Chang’s
model, as the sequence ~A is one which lets K view which ordinals in (ι, κ)

have countable cofinalities. Those two theorems are the core of the work
appearing in this thesis.

1Hence the title!



Overview

This thesis consists roughly of four components. In the beginning, chap-
ters 1 and 2 provide a background on core models and almost disjoint
coding. This material is basic knowledge needed for an understanding
of the rest of the text. The next two chapters serve as an intermediate
passing, as 3 motivates the strategy of our proofs and 4 deals with some
preliminary steps of them. Right after, comes the main content of this
thesis, which consist of the coding theorems of chapters 5 and 6. Finally,
we finish with chapter 7, where we apply the results of chapter 5 to get in-
formation about 2-step generic absoluteness. Below we give more details
for each individual chapter.

Chapter 1 contains a collection of basic results concerning the core model
below a Wooding cardinal, as well as below a given number of strong car-
dinals in K|ω1. In the first case we include mainstream weak covering,
maximality, correctness and absoluteness theorems and also a pinch of
combinatorial properties of K. We spend afterwards some time in de-
scribing the definition of K|ω1 and making some remarks on how it gets
more complicated moving from the environment below a measurable to
that below a Woodin. Finally, we give some idea on how the complex-
ity of this definition lies in-between the aforementioned cases and gets
progressively more complicated while adding strong cardinals in K|ω1.

Chapter 2 provides some background on almost disjoint coding and re-
shaping, which are the basic tools for coding with sets of smaller size
without collapsing certain cardinals. The forcings are tested on simple
settings and on an inner model M which strongly resembles L. Almost
disjoint coding is first tested with very restrictive assumptions on V and,
later on, reshaping is used to relax them. After reshaping, it is possible
to apply almost disjoint coding and perform the decoding inductively. In
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every case we are interested in the preservation of cardinals and also in
examining which parts of the proofs are directly transferable to K. In the
end, we give some motivation for the use of coding and reshaping, as well
as mention some more general results, such as Jensen’s coding theorem
which enables one to get V = L[x], x ∈ R, in a class generic extension.

Chapter 3 serves mostly motivational purposes. Assuming the existence
of an α-strong cardinal κ, where κ++ ≤ α, we produce embeddings into
K which resemble the ones appearing in the proof of distributivity of
reshaping. Those embeddings are actually counterexamples to the sort of
condensation we required fromM in chapter 1. The first case describes an
embedding into K||α and the second one to K|θ, for any regular cardinal
θ ≥ α. The latter indicates that we should avoid using K as a model to
code over, as the distributivity proof, the way we presented it in chapter
2, will break down.

Chapter 4 prepares the ground for the coding theorem in chapter 5. We
prove the existence of an ordinal δ, where weak covering holds and the
overlap of extenders in K is as small as possible in order to allow enough
condensation for the proof of distributivity. The latter actually uses the
assumption that the strong cardinals of K are all strictly below ω1. After
picking such a δ, we collapse it to ω1 and show that resulting extension is
“coding friendly” in the interval (ω1, ω2).

Chapter 5 is the place where the first coding theorem is proved. As always,
we assume we are below a Woodin cardinal, and we additionally require
that there are no strong cardinals above ω1 in K, in order to start from
the extension produced in chapter 2. In this setting we code a subset
A of ω1 to a real over some sequence of nicely definable mice. Due to
this coding, the definition of A in the final extension is ∆1

n+3 if there are
at most n strong cardinals in K|ω1, or in J1+α(R) if the order type of
the strong cardinals in K|ω1 is strictly less than ωα. The proof consists
of three parts. The first one is coding Hω2 over K|ω2, the second one
reshaping ω1 over the sequence of mice and the last one coding down to
a real over this sequence.

Chapter 6 contains our second coding theorem. This time we shift the
situation up and we code below a regular cardinal ι, working in the inter-
vals (κ, κ+) and (ι, κ), where κ = ι+. Our assumption is the non-existence
of an inner model with a Woodin cardinal and we code an A ⊂ κ to a
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set C ⊂ ι over K[ ~A]. ~A is a collection of countable ordinal sequences
enabling K to see the real cofinality of ω-cofinal ordinals in the interval
(ι, κ). This time we deal with the distributivity of reshaping by using the
condensation from the proof of weak covering as well as the ability of the
mixed model K[ ~A] to spot ω-cofinal sequences2.

Chapter 7 is where we use our result from chapter 5 to force definable
well-orderings of the reals which block specific forms of 2-step generic ab-
soluteness. The first part here, describes how to force the well-orderings.
Right after, we describe how the ability to force definable well-orderings
prevents us from forcing 2-step absoluteness for stationary preserving forc-
ings. Finally, in the third section, we show that restricting the existence
of strong cardinals in K, it is not possible to force generic absoluteness
by the usual technique of collapsing a cardinal which lies a bit above a
strong cardinal.

2Remember that those where the ordinals creating problematic situations in the
results of [18].



Chapter 1

Some properties of the core
model

This chapter serves as a short exposition of the basic properties of the
core model below a Woodin cardinal and also of the additional definability
properties it acquires in the case we are below a fixed number of strong
cardinals inK|ω1. The material is divided into two parts. The first focuses
on the treatment of the core model in the general case, where the only
assumption is that there is no inner model with a Woodin cardinal. The
highlight of this section is the weak covering lemma, which will be used
in a crucial way later on. Towards the end of this part, we talk about
the complexity of the definition of K and K|ω1, which is unfortunately
too high for our goals. The second part deals with the case where K|ω1

contains at most a given number of strong cardinals. When we add this
stronger anti-large cardinal assumption, the definition of K|ω1 becomes
simpler and depends on the order type of the strong cardinals we allow to
exist. The rest of this section deals with the analysis of this complexity.

1.1 Below a Woodin cardinal

The core model below a Woodin cardinal has been well studied and two
basic references are the monographs [19] and [33]. The first one describes
the construction of canonical L[ ~E] models below a Woodin cardinal and
the second one -building on Kc- analyzes the structure of the core model

1



Chapter 1. Some properties of the core model 2

K. Simplified versions of those two monographs exist in [36] and [23]
respectively, appearing as consecutive chapters of the handbook of set
theory. [23], also contains a proof of the weak covering theorem for K, a
list of properties of K as well as some applications.

The full-detailed proof of weak covering can be found in [18] for the case
of countably closed cardinals, and [17] adds the ingredients needed to
remove this assumption. Combinatorial principles of K such as square
and diamond can be found in [21], [22] and [25]. [24] contains some
theorems which deal with the maximality of K, namely the fact that
it is as close as possible to V consistency strength-wise while remaining
canonical. Though a first order definition of K already exists in [33], there
is a significant simplification of it at the levels above ℵ2. This appears in
[9]. Finally, we have to note that in all the above references, Kc and K
are built with the additional assumption of the existence of a measurable
cardinal Ω. For the sake of a simpler exposition, we also assume its
existence and we will fix a corresponding measure U . The reader should
keep in mind that K can be defined without this additional assumption
and [14] contains a method of removing it.

1.1.1 Weak covering theorems

Covering theorems form one of the most popular category of core model
properties. In our setting below a Woodin cardinal, they express the
closeness of the core model to V by requiring that for specific V -cardinals
κ, there are no extra cardinals of K in the interval (κ, κ+). One of their
weakest forms already appears in the construction of Kc and K.

Theorem 1.1. ([33], 3.5, 5.10, 5.18) Assume there is no inner model
with a Woodin cardinal. Then the following hold:

(a) {κ < Ω : (κ+)K
c

= κ+} ∈ U .

(b) {κ < Ω : (κ+)K = κ+} ∈ U .

Though quite direct to prove, the above covering property already ensures
that Kc and K are universal weasels. This means that they capture all
the consistency strength of V which is contained in extenders that appear
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in mice below Ω. It is actually enough for this statement, to assume that
weak covering holds on a stationary set of cardinals below Ω.

Definition 1.2. A premouse W is a weasel if it is (Ω + 1)-iterable and
its height is Ω. A weasel W is called universal if it wins the comparison
with any mouse of height smaller or equal to Ω.

Theorem 1.3. ([33], 3.5) Suppose W is a weasel. If {κ < Ω : (κ+)W =

κ+} is stationary, then W is universal.

With significantly more effort, one can prove for K that weak covering
holds for all singular cardinals above ω2. This is the main result of [18],
which is completed in [17].

Theorem 1.4. ([17], 0.1) Assume there is no inner model with a Woodin
cardinal and that κ is a cardinal of K such that ω2 ≤ κ < Ω. Then
cf(κ+)K ≥ κ, i.e. (κ+)K = κ+ or cf(κ+)K = κ.

Corollary 1.5. In the above setting, if κ is singular cardinal of V , then
(κ+)K = κ+.

1.1.2 Maximality, correctness and absoluteness

There exist several theorems that express the closeness of K to V in terms
of consistency strength. Several of them appear on [24], which deals with
the maximality of K. Here we mention two of them. The first one consists
of the extension of the universality of K to lower levels. Note that for
all the results below, the non-existence of inner models with a Woodin
cardinal is assumed.

Theorem 1.6. ([24], 3.4) For every cardinal ω2 ≤ κ < Ω, K||κ1 is
universal for all premice of height < κ.

In the statement of the above theorem, in [24], it is claimed that K|κ is
universal for all premice of height ≤ κ. Unfortunately there was a gap in
the proof which rendered it non-functional for premice of height κ.

1Remember that the || notation means that the extender indexed on α is contained
in the model, i.e. K||α = (K|α,Eα).
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The second theorem is the main maximality result appearing in [24], which
describes the absorption of weakly countable certified extenders that co-
here with K. Moreover the same is true for normal iterates of it.

Theorem 1.7. ([24], 2.3) Suppose T is a normal iteration tree on K

with last modelMT
∞. Let F be an extender such that (MT

∞, F ) is weakly
countably certified, with lh(ETα ) < lh(F ) for each α < lh(T ) and such that
(MT

∞|lh(F ), F ) is a premouse. Then F is actually on theMT
∞-sequence.

Another significant property expressing the closeness of K to V is its
Σ1

3-correctness, i.e. its agreement with V on Σ1
3 formulas.

Theorem 1.8. ([33], 7.9) Assume that for every x ∈ R, x† exists. Then
K is Σ1

3-correct, i.e. K ≺Σ1
3
V .

While achieving to be close enough to V , K behaves at the same time in
a way that it resembles L. This is already evident from its canonical defi-
nition. Probably its most significant and useful property in this direction
is its absoluteness under set forcing.

Theorem 1.9. ([33], 5.18) If P ∈ VΩ, then 
P K = KV

1.1.3 Combinatorial principles

In order to give some more evidence of the correspondence of K with
L, we mention a couple of combinatorial principles that hold true for K.
Actually the theorem below is more general as it applies not only to K,
but to any weasel.

Theorem 1.10. Every weasel W satisfies the following statements.

(a) If κ is a cardinal, then ♦+
κ+ holds. ([21], 1.2, I)

(b) If κ is an inaccessible cardinal, then ♦+
κ holds ⇔ κ is not ineffable.

([21], 1.2, II)

(c) If κ is a cardinal, then �κ holds ⇔ κ is not subcompact. ([25], 15)
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1.2 Complexity of the definition of K

Since K is built in a way that it should resemble L, it is of great interest
to have a level-by-level inductive definition of it. It turns out that the
complexity of this definition depends on the large cardinal strength that
K is called to absorb. To get a flavor of what we opt for, we first have a
look at the case where there is no inner model with a measurable cardinal2.

Definition 1.11. ([4]) Suppose there is no inner model with a measurable
cardinal. Then the core model K can be defined in the following way:

(a) K|ω = J1.

(b) K|(κ+)K =
⋃
{M : M is an iterable premouse which is ω-sound,

ρω(M) = κ and K|κEM}.

(c) K|λ =
⋃
κ<λ

K|κ, for limit cardinals λ of K.

The main part of the definition is (b), where one needs to verify that
the premice with the specific properties line up and form K|(κ+)K . To
check this, compare two premice M, N with those properties. Since
there is no inner model with a measurable cardinal, no extender should
strictly overlap κ in either M or N , because otherwise we would have
two measures on different cardinals and the biggest one could be used to
iterateM or N to an inner model with a measurable. This non-overlap
means that the extenders used in the comparison will have critical points
at least κ. But since both M and N project at κ, each side of the
comparison either drops or doesn’t move.

If both mice iterate to the same model, then neither side moves, thus
M = N . Otherwise, assume without loss of generality thatM wins the
comparison. Then N does not move and there is a last modelMT

∞ BN
on the M-side iteration. If M moved, then there would be at least one
cardinal inMT

∞, inside the interval (κ, ht(N )), created by some extender
used along the final branch. ButMT

∞ strictly contains N , which projects
to κ, thus it sees no cardinals in this interval, contradiction.

2Note that here the measurable Ω that simplifies the construction is not needed at
all. The definition of K simply consists of 1.11.
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Equipped with this simple definition, one can get low complexity defini-
tions of initial segments of K. For example:

Corollary 1.12. ([4]) Suppose there is no inner model with a measurable
cardinal. Then,

(a) K|ωK1 is Σ1
3, when coded by reals.

(b) There is a Σ1
3 well-ordering of RK.

(c) K|ω1 is Σ1
4, when coded by reals.

Sketch of proof.

(a) a ∈ K|ωK1 iff there exists an M satisfying 1.11(b) for κ = ω and such
that x ∈ M . The complexity of 1.11(b) is exactly the complexity of
a countable premouse being iterable which is Π1

2, thus K|ωK1 is Σ1
3.

In order to be precise, one would have to restate the whole definition
above by replacing the countable objects by reals coding them. As
this does not raise the complexity, K|ωK1 with its elements coded by
reals is literally Σ1

3

(b) Every real of K is already in K|ωK1 by acceptability. So the con-
structibility ordering of K|ωK1 defines a well-ordering of RK which is
Σ1

3.

(c) a ∈ K|ω1 iff:

∃α < ω1∃f (f(α) = a ∧ dom(f) = α ∧ f(0) = J1 ∧ ∀β ∈ α + 1

[β limit→ f(β) = ∪
γ∈β

f(γ) ∧ β = γ + 1→ (x ∈ f(β)↔

∃M satisfying 1.11(b) for κ = γ and such that x ∈M)])

By (a), the last line is a conjunction of a Σ1
3 and a Π1

3 formula, there-
fore the whole expression is Σ1

4.
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The definition of K gets more and more complicated as we weaken our
anti-large cardinal hypothesis. The problem is that, in general, there
will be extenders overlapping κ, thus we will need stronger restrictions
imposed to our premice to show that they line up. Those extra require-
ments are what is actually raising the complexity. We can view those
extra requirements as a demand of a stronger iterability property on the
premice and, below a Woodin cardinal, this is implemented by the notion
of α−strongness, α ∈ Ω ([33], 6.1). Actually α-strongness can be defined
simultaneously with the new levels ofK using the notion of phalanges (see
[33], 6.6 for the definition and [19], 8.1 to get an idea of how it was first
introduced).

Theorem 1.13. ([33], 6.11, 6.14) Suppose there is no inner model with a
Woodin cardinal. Then K can be inductively defined in the following way:

(a) K|ω = J1.

(b) M is κ-strong iff M |κ = K|κ and for every premouse N which is
α-strong for every α < κ and N = κ, the phalanx (N ,M, κ) has no
countable bad iteration trees.

(c) K|(κ+)K =
⋃
{M :M is a κ-strong premouse which is ω-sound and

ρω(M) = κ}.

(d) K|λ =
⋃
κ<λ

, for limit cardinals λ of K.

Just as in the case below a measurable, one can derive complexity bounds
for the levels of K below ω1.

Corollary 1.14. ([33], 6.15) Suppose there is no inner model with a
Woodin cardinal. Then, K|ω1 is Σ1-definable over Jω1(R).

Though we needed the more complicated definition of K, involving the
iterability of certain phalanges, it turns out that this is not actually needed
above ω2. In fact after that layer of K, we can return to the inductive
definition which was used in the case below a measurable. Just to get an
idea why this phenomenon takes place, one should consider that above ω2

the powerful machinery appearing in the proof of covering can be used to
carry out this simplification.
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Theorem 1.15. ([9], 3.5) Suppose there is no inner model with a Woodin
cardinal. If κ ≥ ω2, then

K|(κ+)K =
⋃
{M :M is an iterable premouse which is ω-sound

above κ, ρω(M) = κ and K|κEM}.

1.3 Below a fixed number of strong cardinals

As we saw in the previous paragraph, K can be quite complicated below
ω2 and in particular below ω1. The latter level is important because it is
the place where all the elements of K which can be coded by reals appear.
If we strengthen the anti-large cardinal hypothesis to the non-existence of
more than n ∈ ω or, respectively, α < ω1 many strong cardinals in K|ω1,
we can get definitions of lower complexities. Actually the complexity can
be directly computed from n or α. Those results appear in [10] and [26].

First we consider the case of at most n ∈ ω many strong cardinals in
K|ω1. This is true if we assume there is no inner model with more than
n strong cardinals.

Theorem 1.16. ([10], 3.4, 3.6) Assume there are at most n strong car-
dinals in K|ω1 . Then K|ω1, coded by reals, is ∆1

n+5.

In a setting higher above, where we have at most α < ω1 strongs below
ω1 in K, we get the following:

Theorem 1.17. ([26], 1.1) Assume the strong cardinals in K|ω1 have
order type < ωα. Then K|ω1, coded by reals, is definable over Jα(R).

The above two results, reveal a clear dependence of the level of L(R)

where K|ω1 belongs and the number of strongs inside it. Actually what
is happening is that one can simplify the definition of Steel for mice be-
low a Woodin, in a way that the complexity does not raise while being
in-between two strong cardinals. The idea is to relativize the notions ap-
pearing in the second order definition of K to the the number of strong
cardinals appearing at different times. Then it is enough to give an in-
ductive definition of the relativized structures whose successor steps move
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on the strong cardinals below ω1. Below we give a very short sketch of
the finite case.

We define the notion of an n-cutpoint and n-fullness just to give a flavor of
the relativization to the current number of strongs. We remind the reader
that a cutpoint in a premouseM is an ordinal such that the extenders in
the sequence ofM do not overlap it.

Definition 1.18. SupposeM, N are premice. M is an n-cutpoint in N
iff:

(a) MEN ,M is passive.

(b) M and N agree on the cardinals of M and M � “λ is the largest
cardinal”.

(c) For every extender ENν with critical point κ ≤ λ and natural length
> OR ∩M, either

(a) dM(κ) < n, where dM(κ) denotes the order type of the strong
cardinals ofM|κ3, or

(b) ENν is partial.

The notion of an n-cutpoint will be used everywhere in order to relativize
to n and focus only on extenders that drag models with less than n strongs.
The same happens with n-fullness. Remember that the original notion of
fullness requires that the definability property holds for a universal weasel
containing a mouse, as well as for its iterates, at the points above the
extenders which are used.

Definition 1.19. M is n-full iff there is a universal weasel W BM such
that:

(a) M is an n-cutpoint of W .

(b) Suppose W ∗ is an iterate of W with iteration map i : W → W ∗ and
such that for every extender E used in the iteration, di(M)(crit(E)) ≥
n. Then W ∗ has the definability property at all W ∗-cardinals κ ∈

3Note that in the finite case, the number of strongs is dM(κ)− 1 according to this
definition.
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[ν,OR ∩ i(λ)) with the property dW
∗
(κ) < n, where ν is the least

ordinal above the generators of extenders used in the iteration and λ
is the largest cardinal ofM.

M is strongly n-full if additionally cf(λ)M = ω and OR ∩M = (λ+)W .

Using the notions of being strongly n-full, n-full and n-collapsing, one can
define K in a way similar to its usual second order definition.

Remark 1.20. (derived from [10], 3.4, 3.6) Suppose K|ω1 � “There are at
most n strong cardinals”. Then K|ω1 can be defined using:

(a) n-fullness and strong n-fullness, if ω1 is inaccessible in K.

(b) n-collapsing premice, if ω1 is a successor in K.

The above remark reduces the definition of K to the definition of n-
fullness. The way to get a low complexity for the latter is by the use
of n-beavers. Those are auxiliary premice whose purpose is to enable us
to prove that certain extenders lie on given mice or their iterates. This
further leads to the definition of internal n-fullness. We will avoid defining
those concepts here and the interested reader can find this material in
[10] and [26]. The only information we will add is the dependency of
those notions according to 2.15-2.17 of [10]. Just keep in mind that the
definition ofKc is altered a bit in this context in order to absorb extenders
coming from < n beavers. This dependency shows how to get an inductive
definition by climbing up the strong cardinals and thus eventually being
projective in case they are finitely many.

Remark 1.21. (Derived from [10], 2.15-2.17) AssumeM is a premouse.
The properties of being strongly n-full, n-full, n-collapsing and an n-
beaver can be inductively defined using the steps below. Each step adds
one real quantifier to the definition and eventually the complexity of each
notion is Π1

3.

(a) Strong i-fullness can be defined by internal i-fullness and < i-beavers.

(b) i-beavers can be defined by internal (i− 1)-fullness and < i-beavers.

(c) Being i-collapsing can be defined by i-fullness.
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Note here that the definition of internal i-fullness is independent of i,
thus the induction can be carried along. We finally get the complexity in
1.16 combining 1.20 and 1.21, respectively for the cases where ω1 is an
inaccessible or a successor.



Chapter 2

Some Coding

In this chapter we describe the procedure of coding a subset A of κ+ to
a subset B of κ over some inner model M , where κ is a regular cardinal
which (weakly) bounds the continuum function for ordinals below it. By
that, we mean the process which, given A, produces a generic extension
where A ∈M [B]. This roughly breaks down into two parts. The first one
is applying almost disjoint coding to shrink A to B over M . Ideally this
forcing would do the trick, but unfortunately it has the heavy requirement
thatM should see enough almost disjoint subsets of κ. In order to achieve
this, we need the second part which is a forcing called reshaping. In this
case, reshaping means adding more information to A in order to give
M [A] the ability to see, for all ξ < κ+, that ξ = κ, using only the
information from A ∩ ξ. Afterwards, the decoding procedure works by
inductively recovering A in M [B]. We will focus here on the case where
M behaves just like L, following the first chapter of [1]. We consider three
simple situations where we describe respectively almost disjoint coding,
reshaping and the inductive procedure of decoding after having reshaped.
In each one of the forcings we will prove the preservation of cardinals,
which is crucial in making sense of coding1. Finally, at the end of each
case we give a flavor of how it could be extended to more complicated
models like K and indicate the difficulties that one faces in this task.

1Otherwise why not just collapse κ+ to κ?

12
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2.1 Almost disjoint coding

Assume M is an inner model of ZFC, κ is a regular cardinal such that
(κ+)M = κ+, 2α ≤ κ, for all α < κ, and A ⊂ κ+ . As mentioned in the
introduction, there is a forcing coding A to a B ⊂ κ. In order to shrink A
in size, we use κ+ many subsets of κ in M to code its content. The next
lemma ensures their existence.

Definition 2.1. Two subsets A, B of κ are called almost disjoint (a.d.)
if A = B = κ and A ∩B < κ.

Lemma 2.2. There exist at least κ+ pairwise a.d. subsets of κ.

Proof. To begin with, there are at least κ many a.d. subsets of κ. Just
pick a bijection f : κ×κ→ κ and Ai = f ′′({i}×κ) will witness this fact.
Now suppose ~A = (Ai : i < κ) is any sequence of a.d. sets. Then by the
regularity of κ, ~B = (Bi : i < κ), where Bi = Ai \

⋃
j<i

Aj, is a sequence

of disjoint sets of size κ. The set B = {min(Bi) : i < κ} is a.d. from
every element of ~A as each intersection B ∩ Ai has size at most i < κ.
This allows us to construct a sequence ~A = (Ai : i < κ+) of a.d. sets by
transfinite induction.

Our assumption that (κ+)M = κ+ and the above lemma allow us to fix a
sequence ~A ∈ M of a.d. sets. After applying a.d. forcing, this sequence
will code A into B in the following way:

i ∈ A↔ B ∩ Ai < κ.

Remark 2.3. In order to keep things simple and precise, we use p̆ =

{β ∈ α : p(β) = 1} to denote the subset of α with characteristic function
p : α → 2. In the same fashion, “a will denote the characteristic function
p of a truncated on the length of a, i.e. dom(p) = sup(a) and p(α) = 1 if
α ∈ a else p(α) = 0. We also use the ⊕ operator to glue sets of ordinals
together. If a, b ⊂ α, then a ⊕ b = p̆, where p(2β + 1) = “a(β) and
p(2β) = “b(β), for β < α. We set (a⊕ b)even = a and (a⊕ b)odd = b.

Definition 2.4 (Almost disjoint coding, [13]). The almost disjoint coding
P consists of tuples (p, p∗) such that:
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1. p : α→ 2, α < κ.

2. p∗ ⊂ κ+, p∗ < κ.

3. (p, p∗) ≤ (q, q∗) iff p ⊇ q, p∗ ⊇ q∗ and for all i ∈ q∗, (p̆ \ q̆)∩Ai = ∅.

The idea is that the “p” parts of the tuples approximate the set B while
the “p∗” parts make the promises that for some elements of A, the sets of ~A
with the corresponding indices will not be met any more while extending
p. Suppose now that G is generic over P. We set B = proj1(∪G).

Lemma 2.5. The following hold for P:

(a) A ∈M [B].

(b) P has the κ+-cc property.

(c) P is < κ-closed.

Proof.

(a) We just need to prove that i ∈ A⇔ B ∩ Ai < κ. For the⇒ direction,
notice that given an i ∈ A, every condition (p, p∗) can be extended
to (p, p∗ ∪ {i}), thus G contains a condition (p, p∗) such that i ∈ p∗.
This in turn implies that B ∩ Ai ⊂ p̆ which is enough since p̆ < κ.

For the ⇐ direction, assume we are given a condition (p, p∗) and an
ordinal α < κ. Since p∗ < κ, Ai \

⋃
j∈p∗

Aj = κ. Given that i /∈ A ⇒

i /∈ p∗, we may extend (p, p∗) by adding some element of Ai above
α to p. This implies that there are cofinally many elements of Ai in
B, hence those two sets can not be almost disjoint as κ is a regular
cardinal.

(b) First we observe that one can freely extend a condition by just adding
elements to the second coordinate. Namely for every pair of condi-
tions, (p, p∗), (p, q∗) ∈ P, (p, p∗ ∪ q∗) witnesses their compatibility.
This way every anti-chain must contain elements with pairwise dif-
ferent first coordinates, and given that the possibilities are at most∑
α∈κ

2α = κ, we get κ+-cc.
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(c) As κ is regular, for every decreasing sequence ((pβ, p
∗
β) : β < α), where

α < κ, (
⋃
β<α

pα,
⋃
β<α

p∗α) is a lower bound in P.

What happens over K?

The above lemma shows that in this simple setting we were able to code
overM while preserving cardinalities. SinceM could be any inner model,
the same results hold true for K, as long as κ has the required properties.
To find such a cardinal, we have to make sure that weak covering holds
at κ and also that for every α < κ, 2α ≤ κ. The second property holds
on a club of cardinals below Ω and the first one on the stationary set of
singular cardinals, provided that there is no inner model with a Woodin
cardinal. Therefore we are able to apply this coding procedure at any of
those stationarily many available cardinals.

2.2 Reshaping

In the previous sections we coded at cardinals where M satisfied weak
covering. This gives us some options when M is close to V , but still
if our goal is to code below a specific cardinal, e.g. ω1, then we need
some stronger technique. This technique is called reshaping and what it
does, is to add some more information to the set A ⊂ κ+ to assist the
coding. The information is just enough to help M slowly collapse the
possible cardinals in (κ, κ+) while at the same time κ+ remains intact in
the forcing extension.

We also introduce this forcing using a simple example (see [1], 1.3). This
time we will makeM more specific since we need to add some condensation
properties. The setting is the following:

(a) M = L[E], where E is a class predicate2.
2There is no harm for the reader to imagine E as a sequence of extenders, like

in the case of K. It will be evident though, from the condensation property below,
that this is not a good candidate in case it contains large cardinals which have enough
consistency strength.
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(b) A is a subset of κ+, P (κ+) ⊂M [A] and 2<κ = κ.

(c) M condenses, in the sense that for every model N of size κ and every
elementary embedding j : N → M |µ, where µ is a cardinal ≥ κ+,
N = M |α for some α < κ+.

We continue with the forcing of this section:

Definition 2.6 (Reshaping). The reshaping forcing P consists of condi-
tions p such that:

(a) p : α→ 2, α < κ+.

(b) For every ξ ≤ α, M [A ∩ ξ, p � ξ] � ξ = κ.

The idea behind this forcing, is to add a generic G which gives the ability
toM of collapsing level-by-level possible cardinals which are not cardinals
in V [G]. Thus it can see more almost disjoint subsets of κ each time some
cardinal is collapsed to κ. Afterwards we may code using those a.d. sets
which appear at the right time. The decoding procedure will then be
inductive, as we will use at each step all the information we decoded up
to that point, in order to fetch the next a.d. set which enables us to
further decode and so on. Of course we have to check first that reshaping
adds such a generic without collapsing any cardinals. Here are the basic
properties of P.

Lemma 2.7. Supposing G is a generic for P, the following hold true:

(a) For every ordinal α < κ+, M [A ∩ α,G � α] � α = κ.

(b) P has the κ+-cc.

(c) P is < κ+-distributive.

Proof.

(a) Fixing α, we notice that every condition p can be extended to one
of domain containing α. Simply set q = p_f_0α, where f : κ → 2

codes a function collapsing dom(p) + κ+ α to κ. Therefore there is a
p ∈ G such that dom(p) ≥ α. But then by the definition of being a
condition, M [A ∩ α, p � α] � α = κ and since G � α = p � α, we are
done.
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(b) The size of the forcing is
∑
α<κ+

2α = 2κ · κ+ = κ+.

(c) Suppose (Di : i < κ) is a sequence of dense open subsets of P and p0 a
given condition. We will produce a decreasing sequence (pi : i ≤ κ) of
conditions such that pi+1 ∈ Di and eventually pκ is in the intersection
of the elements of (Di : i < κ). The successor steps can be dealt with,
using the trick from (a) but at limit steps we take unions and thus
need to ensure they will still be conditions. To do this we will define
each extension in a minimal over M way so that M will be able to
see enough of the (pi : i ≤ κ) sequence on the limit cases.

Since every subset of κ+ is in M [A], we may use the condensation
of M to get an embedding j : M |α[A] → M |µ[A], α < κ++, which
witnesses that P, p0, (Di : i < κ) ∈ M |κ++[A]. We proceed by
defining a strictly increasing tower of structures Xi, which are all
elementary embedded inside the model A = (M |κ++[A],P, p0, (Di :

i < κ), <). This tower will assist us in picking the decreasing sequence
of conditions in a canonical way. We define for i ≤ κ,

(a) X0 = HullA(κ+ 1);

(b) Xi+1 = HullA(Xi ∪ {Xi});

(c) Xi =
⋃
j<i

Xj, for limit i;

(d) fi : Ai
tr.coll.' Xi;

By the condensation of M and the fact that κ+1 ⊂ A, there exist αi,
κi, i ≤ κ, such that Ai = M |αi[A∩ κi]. In fact κi is the critical point
of fi for i ≤ κ. Now that we have constructed the canonical tower of
structures, we may also pick the pi’s:

(a) p0 is the initial condition.

(b) pi+1 = the M |κ+[A]-least p, such that p < pi, otp(dom(p)) ≥ αi
and pi+1 ∈ Di.

(c) pi =
⋃
j<i

pj, for limit ordinals i.

Since Ai ∈ Ai+1, there is already a p in Ai+1 with the properties of
(b) maybe without minimality. But this means that pi+1 ∈ Ai+1, as
Ai+1 has the form M |αi+1[A ∩ κi+1] and the conditions appear below
κi+1. The idea now is to prove that this also holds for limit ordinals
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i < κ and that the unions considered are already conditions. Given
that this is true below some limit i, (pj : j < i) is definable in Ai+1

exactly the same way as in V , therefore
⋃
j<i

pj = pi ∈ Ai+1. In fact the

aforementioned sequence is definable over Ai = M |(αi+1)[A∩κi]. By
the requirement that the conditions’ lengths each time exceed αj and
the fact that i is limit, we have that sup

j<i
αj = κi = dom(pi). Thus

M |(αi + 1)[A ∩ κi] � αi ≤ i · κ = κ implying directly that pi is a
condition.

By the above we have that pκ is a condition below all the dense open
sets and p0, thus we have κ-distributivity.

What happens over K?

In contrast with almost disjoint coding, reshaping cannot be applied to
K, at least not in the way it is defined in our simple example. The
reason for that is that we cannot always get for K the condensation we
used here. In the next chapter we will see such a failure of condensation
assuming consistency strength a little below a strong cardinal. Exactly
this problem is forcing us to switch from K to other structures in chapters
5 and 6 where the main coding results are presented.

2.3 Almost disjoint coding on a reshaped set

We will see now how to apply almost disjoint coding after we have re-
shaped below κ+. The situation is exactly as we left it at the end of the
previous section. Thus κ is a regular cardinal that bounds the continuum
function and M has the properties we mentioned. The interval (κ, κ+) is
reshaped, i.e. for every κ < α < κ+, M [A ∩ α] � α = κ, where A ⊂ κ+ is
the set we want to code.

The forcing used is the same as the one in definition 2.4. The only differ-
ence is that the choice of the sequence ~A = (Ai : i < κ+) of almost disjoint
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sets, is now dictated by the reshaping. More specifically, the sequence is
defined as follows:

Ai = the M [A ∩ i]− least set a.d. from all the elements

of (Aj : j < i) and such that κ \
⋃
j≤i

Aj = κ.

The existence of each Ai is directly guaranteed by the reshaping condition.
The κ+-cc property and the < κ-closeness of the forcing can be proved the
same way as before. The part which needs checking is that the decoding
of A can be carried out successfully.

Lemma 2.8. Given the reshaping assumptions mentioned above, in the
generic extesion of a.d. forcing A ∈M [B].

Proof. Assume that B = proj1(∪G), like before. We prove inductively
that for every i < κ+, M [A∩ i] ⊂M [B], thus A ∈M [B]. For a successor
ordinal i+1, ifM [A∩ i] ⊂M [B], then Ai ∈M [B]. ThusM [A∩ (i+1)] ⊂
M [B], as i ∈ A is equivalent to Ai ∩B < κ. If i is a limit ordinal and
M [A ∩ j] ⊂M [B] for every j < i, then for every j < i, Ai ∈M [B] and it
is additionally defined in a canonical way, thus (Aj : j < i) ∈M [B]. The
latter sequence contains enough information to define A ∩ i by checking
the cardinalities of Aj ∩B, so finally M [A ∩ i] ⊂M [B].

What happens over K?

Just like the first case of a.d. coding, everything mentioned in this section
can be directly transferred to K. The main difficulty again lies in finding
or creating the interval (κ, κ+) which is reshaped. After this interval is
fixed, the coding forcing does not produce any complications.

2.4 Why force, why reshape and coding the
universe

Finally, we give justification for what we discussed in the previous sections
as well as present some general coding results. We first prove that there
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are generic extensions of M , where forcing is needed in order to reshape.
Those extensions exist if there is a Mahlo cardinal in M . If there is no
Mahlo cardinal inM , one can actually run the reshaping by just using sets
of V . The second part provides some arguments on why reshaping makes
the coding procedure easier and helps avoid collapsing cardinals. The last
part focuses on Jensen’s coding theorem and some generalizations of it.

Why force?

Let’s have a look first at the simple case of reshaping, where there are
no inaccessible cardinals in our interval of interest. Suppose we have an
A ⊂ (κ, κ+) which we wish to reshape. Furthermore, assume that there
are no inaccessible cardinals in M in the interval (κ, κ+) and M has the
properties (a) and (b) mentioned in section 2.2. Define the set B ⊂ κ+, so
that for every cardinal κ < µ < κ+ of M , B ∩ [µ, µ+ κ) codes a function
that collapses µ to κ. Set C = A ⊕ B. Then C is reshaped at successor
cardinals of M in [κ, κ+). For any limit cardinal µ in the aforementioned
interval, let cf(µ) = ν < µ. Then in M [C ∩ µ], the cardinality of µ is
ν · κ = κ, assuming that C is reshaped below µ. Thus inductively C is
reshaped in the whole interval [κ, κ+).

In the above case we didn’t need to force in order to reshape. The same
idea would work in the case where κ+ is not Mahlo in M . In this situa-
tion, some inaccessible cardinals might exist, but they are non-stationarily
many. Thus extending B to include those cardinals will still do the trick
(see 5.12). Unfortunately this idea fails in case κ+ is Mahlo in M . More-
over, we may produce a generic extension ofM , where there is no reshaped
subset of κ+. Therefore forcing is indeed needed in order to perform re-
shaping.

Lemma 2.9. Assume λ is Mahlo in M and κ < λ is a regular cardinal
of M . Then if G is Col(κ,< λ)-generic over M , there is no reshaped set
A ⊂ κ+ in M [G].
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Proof. Assume ȦG ⊂ κ+ is an element of M [G]. Since G is Col(κ,< λ)-
generic/M , for every inaccessible in M cardinal, G � ξ is Col(κ,< ξ)-
generic/M . Additionally, there is a club set of ordinals such that ȦG�ξ∩ξ3

is defined and equal to ȦG∩ξ. Since we have stationary many inacessibles
below κ+, there is a ξ such that ȦG ∩ ξ ∈ M [Gξ] and at the same time
M [Gξ] is a Col(κ,< ξ)-generic extension. But then M [A ∩ ξ] � ξ = κ+,
which means that AG is not reshaped.

The same result holds true for coding. Assume that we are in the same
situation described in the above lemma. Then if there was a set B ⊂ κ

in M [G], such that M [B] = M [G], then the interval [κ, κ+) would be
trivially reshaped by B -as M [B] = M [G] knows there are no cardinals
in (κ, κ+)-, contradicting what we proved above. Thus even under the
existence of a little consistency strength, forcing may be required to carry
out coding.

Why reshape?

A direct answer to this question is that reshaping pushes the requirements
of coding one cardinal above. To make this concrete, imagine the situation
where we want to code a set A ⊂ (κ, κ+) below κ over M . In our first
attempt, we managed to perform this coding by assuming thatM satisfies
weak covering at κ. If this is not true, there are not enough a.d. sets inM
to carry out the coding and the only direct way to proceed is to collapse
κ+ to κ.

The other alternative is to reshape A and then code it. Going back to the
requirements of the forcing on M , we see that we need P (κ+) ⊂M [A]. If
we are lucky enough and there is a λ ≥ κ++ where weak covering holds
and we can also find a set A′ ⊂ λ+ such that P (λ) ⊂M [A′], then we can
collapse λ to κ+ and get the environment we needed to reshape. In this
situation, we were still quite invasive on V , by collapsing a lot of cardinals
above κ+, but κ+ remained intact, thus the problem of not collapsing is
shifted one step above. This procedure is described in [28], section 2, and
we analyze it here in chapter 4 for the cases we will be interested in.

3Note that here we slightly abuse the notation. The formal way to define ȦG�ξ ∩ ξ
is (Ȧ �rec Col(κ,< ξ))G�ξ ∩ ξ, where Ȧ �rec Col(κ,< ξ) is A with all the pairs with
first element in Col(κ,< λ) \ Col(κ,< ξ) recursively removed.
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If one tries to keep shifting the collapses further above, he would have to
reshape further above, in the interval (κ+, κ++), then code below κ+ and
then repeat the procedure mentioned above. By extending this idea to
a class forcing, we could potentially code all of V into a real x over M ,
given that M satisfies enough covering and condensation properties. For
the case of L, this is Jensen’s “coding the universe” theorem.

Coding the universe

Though the idea we describe above is a reasonable basis to begin coding
V over L, the forcing required is actually quite more involved, as one has
to simultaneously perform the a.d. codings and the reshapings between
all cardinals, as well as take care of the limit ordinals. This forcing is
described on the first half of [1]. A guide for reading this book is contained
in [5] and shorter version of the proof appears in [7], sections 4.2, 4.3. This
coding result has been improved by R. David, who coded V into a Π1

2-
definable real over L.

Theorem 2.10. Suppose GCH holds in V . Then,

(a) ([1], 0.1) There is a class forcing P which codes the universe to a real,
i.e. if G is P-generic over V , then V [G] = L[x], x ⊂ ω. Furthermore,
V [G] also satisfies GCH and the large cardinal properties of being
Mahlo, weakly compact, indescribable, subtle, ineffable and α-Erdös,
α < ω1 are preserved.

(b) ([3], Thm 4) An elaboration of the above forcing produces a generic
G such that V [G] = L[r] and V [G] � “r is a Π1

2 singleton”.

There exist further extensions of Jensen’s coding theorem to inner models
which contain more large cardinal consistency strength. At [6], one can
find a version of the coding over L[µ, x], where µ is a normal measure on a
measurable cardinal and x ∈ R. For an overview of such generalizations,
look at [8]. On the direction of forcing to locally code a set and add a
well-ordering of the reals there is [28] where the coding is performed over
K under the non-existence of inner models with strong cardinals. In the
chapters to follow, we attempt to generalize the latter result at the level
below the existence of strong cardinals of a specific order-type.
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Failures of Condensation

Up to now we have considered only coding into an inner model M which
almost resembles L, mainly due to its condensation properties. When
one decides to switch to some other inner model, such as K, we have
already seen that new difficulties arise, due to the fact that condensation
might fail for those models. Condensation was crucial in the proof of
distributivity of reshaping, where the collapsed structures were of the
form Ai = M |κi[A∩αi]. If we replace M with K = L[E] those structures
will be Ai = Jκi [A∩αi, E � µ]. To ensure condensation, we would have to
prove that E � µ is an initial segment of E. As we will see in this chapter,
ifK contains an α-strong cardinal κ, α ≥ κ++, then there exist elementary
embeddings into initial segments of K, such that condensation fails. This
will be an indication that we have to work with models different than K
to carry out coding, or alternatively build A in a more elaborate way. In
the subsequent chapters, we will focus on the first approach.

3.1 An embedding into K||α, where α is the
length of the extender

Assume the existence and fix a total-for-K extender F of the K-sequence
with critical point κ and length α ≥ κ++. We will show that after collaps-
ing the cardinals below κ in K, we can find an embedding j :M→ K||α,
for a countable mouseM, which fails to satisfy the strong condensation

23
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hypothesis we used for coding. In fact, by the homogeneity of the collapse,
there will be 2ω such counterexample embeddings.

Note that in the section 3.2, we will prove that this still holds true if we
replace α with any regular cardinal θ ≥ α.

Lemma 3.1. KCol(ω,<κ) � “ there exists an α and a set A of 2ω many
extenders, such that for each F ′ ∈ A:

(a) F ′ /∈ K;

(b) (K|α, F ′) is a premouse;

(c) there is an elementary embedding π′ : (K|α, F ′)→ K||α with critical
point κ such that π′(κ) = κ = ω1.”

Proof.

Step 1: There is at least one such F ′.

Suppose π : K → Ult(K;F ) = M is the embedding induced by F . We are
going to extend π to π̃ : K[H] → M [G], where H is Col(ω,< κ)-generic
over K and G is Col(ω,< π(κ))-generic over M (see Figure 3.1). We are
able to do this because of the next claim.

Claim 3.2. If G is MCol(ω,<π(κ))-generic, then H = π−1”G is KCol(ω,<κ)-
generic.

Proof. Let A be a maximal antichain of Col(ω,< κ). The size of A is
strictly less than κ since the Levy collapse has the κ-cc property. This
implies that π(A) = π”A1. But π(A) is a maximal antichain of Col(ω,<
π(κ)) because of elementarity, thus there is a p ∈ G ∩ π”A. This implies
that π−1(p) ∈ H ∩ A. Since H intersects every antichain of Col(ω,< κ),
it is generic over K.

We lift π to π̃ : K[H] → M [G] in the usual way, i.e. π̃(ȧH) = π(ȧ)G.
We only need to check that π̃ is elementary. The following argument is
enough:

K[H] � φ(ȧH)⇔ ∃p ∈ H K � p 
 φ(ȧ)⇔M � π(p) 
 φ(π(ȧ))

1In fact π(A) = A in this case but the way we form the proof it a applies for every
forcing satisfying the κ-cc.
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⇔ ∃q ∈ G M � q 
 φ(π(ȧ))⇔M [G] � φ(π(ȧ)G).

Everything is direct except from the left direction of the first equivalence
in the second line, which requires the claim above. We apply the argument
for A = {p ∈ Col(ω,< κ) : p 
 φ(ȧ) ∨ p 
 ¬φ(ȧ)} which is dense. Since
M � q 
 φ(π(ȧ)) for some q ∈ G and Gmust meet π(A) at some condition
r, r 
 φ(π(ȧ)). The inverse image of r is the condition needed in H.

K[H]

�
�
�
�
�
�
�
�
�
�
�

ω1

F

κ

ω1

π(κ)

π̃

M [G]

Figure 3.1: Lifting π to π̃

Now consider the restricted embedding π � (K||α) and also pick G so that
it is Col(ω,< π(κ))-generic over both K and M . In the current situation,
π � α lies in K and K[G] sees additionally that K||α is countable. Our
strategy is to pull π � α inside M [G] and then using π̃ pull it back to
K[H]. This way, the final embedding will have the desired form. To carry
out the first step, we use the sublemma below. This is a very standard
and simple way of pulling an embedding inside a structure.

Sublemma 3.3. Suppose (M,F ), (N,E,E ′) are given structures, where
M is countable. Furthermore, the relations F and E are of the same arity.
Then there is a tree T of at most countable height looking for an F ′ and
an elementary embedding π : (M,F, F ′)→ (N,E,E ′).



Chapter 3. Failures of Condensation 26

Proof. Let (ai : i ∈ ω) be an enumeration of the elements of M and l the
arity of E ′. We define the tree

T = {(F ,~b) ∈ <ω(M l)× <ωN : such that for some n ∈ ω,

length(~b) = n, F ⊆ {a0, . . . , an}l and for each formula φ,

(M,F, F ) � φ(a0, . . . , an)⇔ (N,E,E ′) � φ(~b)}.

This tree is actually building all possible finite predicates F ⊂ ωM and
for each one of them, all the finite elementary embeddings from (M,F, F )

to (N,E,E ′). Therefore the existance of a predicate F ′ and a full corre-
sponding embedding is equivalent to the existence of an infinite branch
on T .

Note that this argument is quite flexible and it can be applied at any
complicated situation2 in order to translate the existence of an object to
the ill-foundedness of a tree. As long as the tree has countable hight
and exists in the structure of interest, one can use absoluteness to find a
similar object inside the structure.

Now let T ∈M [G] be the tree looking for an F ∗ together with an embed-
ding π∗ : (K|α, F ∗)→ π(K||α). By the existence of F ′, T is ill-founded in
V and by the absoluteness of well-foundedness, it is also ill-foundedM [G].
Consider a embedding π∗ and an extender F ∗ inM [G] witnessing the cor-
responding ill-foundedness. This embedding still satisfies π∗(κ) = π(κ).
By pulling back the statement “∃F ′ ∃α ∃π′ π′ : (K|α, F ′) → (K||π(α))”

via π̃, we get an embedding π′ : K||α → K||α in K[H] such that
π′(κ) = κ = ω

K[H]
1 and crit(π′) = κ. Let F ′ be the top extender of

K||α.

To complete the proof of step 1, we need to check that F ′ /∈ K. Suppose
not. Since K|α is the ultrapower of K|α by F ′, α is a cardinal in K|α
thus also in K. But then since F ′ ∈ K, α ⊆ {iF ′(f)(a) : f : [κ]a →
κ, a ∈ [λ]<ω ∈ K}, where λ is the supremum of the generators of F ′. So
card(α) ≤ κ+ · λ < α, which is a contradiction.

2E.g. looking for a countable iteration of countable premice.
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ω1

ν

κ

ω1

ν

π̃

KColl(ω,<κ)

ω1

π∗

Figure 3.2: Pulling π∗ back to π′

Step 2: There are 2ω such extenders.

Since N = (K|α, F ′) is countable, we can code it to into a real and find
a nice name Ṅ for it. Ṅ has size µ < κ because Col(ω,< κ) satisfies the
κ-cc. This means that Ṅ is already a name of Col(ω, µ) for some µ < κ.
Therefore, we may split Col(ω,< κ) to the forcings P = Col(ω, µ) and
Q = Col(µ,< κ). For those notions we get:

(a) P < κ.

(b) Ṅ ∈ P.

(c) Col(ω,< κ) = P ∗Q.

Since P is countable inKCol(ω,<κ), it contains an enumeration (An : n ∈ ω)

of the maximal antichains of P. This enables us to define inductively
a binary tree S = ((px : x ∈<ω 2), <) of conditions and a sequence
((an, Xn) : an ∈ [α]<ω), Xn ⊆ [κ]an with the following properties:

(a) x ≤lex y ⇒ px ≤ py;
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(b) x = 2n+ 1 ∧ x = y_1⇒ px 
 (ǎn, X̌n) ∈ Ḟ ′;

x = 2n+ 1 ∧ x = y_0⇒ px 
 (ǎn, X̌n) /∈ Ḟ ′;

(c) x = 2n⇒ ∃q ∈ An px ≤ q.

This is possible because F ′ is countable so we can always pick a pair (a,X)

not decided by the finitely many conditions in hand and each p can be
strengthened to hit one of the maximal antichains.

In K[H], T has 2ℵ0 many branches which are all generic for P. Each one
of the generics defines a different extender F ′ hence there are 2ℵ0 many
such extenders in K[H].

3.2 Embeddings to K|θ, θ ≥ α

Here we make the lemma of the previous section a bit more flexible by
creating an embedding K|θ, where θ is a regular cardinal above the length
of the extender we used. This slight generalization is enough to disprove
the condensation for the case we are interested in. The proof is almost
identical to the one in the preceding subsection.

Lemma 3.4. Assume F is a (κ, α) total-for-K extender on theK-sequence
and θ some regular cardinal ≥ α. Then KCol(ω,<κ) � “ there exists an α

and a set A of 2ω many extenders such that for each F ′ ∈ A:

(a) F ′ /∈ K;

(b) (K|α, F ′) is a premouse;

(c) there exists a premouse M B (K|α, F ′) and an elementary embedding
π′ : M → K|θ with critical point κ, such that π′(κ) = κ = ω1.”

Proof.

Suppose π : K → Ult(K,F ) = M . Just as before, π can be lifted to an
embedding π̃ : K[H]→M [G].

Let N be the transitive collapse of HullK|θ(α + 1) and σ : N → K|θ the
uncollapsing map. The composition π◦σ : N → π(K|θ) will now play the
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role of π � K||α. This composition witnesses the existence of an infinite
branch of T ∈ K[G] searching for N , j such that:

(a) N is a premouse.

(b) N|α = K|α and ENα 6= ∅.

(c) j : N → π(K|θ) and j extends the ultrapower map of K||α with ENα .

T also has an infinite branch in M [G] and by pulling back via π, we get
the desired π′ : N → K|θ. To verify that ENα /∈ K, we need to notice
that N|α = K|α, π′ extends the ultrapower of K|α by ENα and then work
exactly like in the previous section. Also in the same fashion, we may get
2ℵ0 many such extenders.

The above lemma implies that we do not have enough condensation to
run the reshaping for K the same way we did in the previous chapter.
This is summed up in the following:

Corollary 3.5. Assume an α-strong cardinal κ exists in the sequence of
K and κ++ < ω2. Then for every regular cardinal θ ≥ ω2, there is an
elementary embedding j : P → K|θ such that P 6EK.

Proof. The embedding π′ : N → K|θ derived from the above lemma is
enough, since N contains an extender which is not in K.



Chapter 4

Preparing V for Coding

Near the end of chapter 2 and while justifying the use of reshaping, we
argued that one could potentially code below some cardinal without col-
lapsing it. Now we give a detailed account of the first step towards this
direction. This step involves picking an appropriate cardinal δ and col-
lapsing it to ω1. Once this is done the right way, we should be ready
to directly code from the interval (ω1, ω2) below ω1. δ will be a cardinal
where weak covering holds in order to enable coding, but at the same
time it will be a cutpoint allowing only extenders from strong cardinals
to overlap it. Its second property will come in handy in chapter 5, where
we will need to reshape the interval (ω, ω1). The procedure we are fol-
lowing here is a straightforward generalization of the one which appears
in section 2 of [28], and it is appropriate for the case where the existence
of strong cardinals is not ruled out. Nevertheless, we assume that the
strong cardinals of K lie below ω1 and as always, we are below a Woodin
cardinal.

4.1 Stationary preserving forcings

There are several properties of a forcing notion which imply the preserva-
tion of ω1 and in their individual ways express that Hω1 does not change
a lot in the generic extension. They begin from the strongest ones such as
c.c.c. and ω-closedness and progress to weaker ones like properness and
even weaker ones such as semiproperness and stationary preservation. In

30
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many ways those properties are connected to large cardinal consistency
strength. The usual pattern is that one requires for some proposition to
hold for all forcings with a given property. When this property is replaced
by a weaker one -thus the class of considered forcings gets larger- more
consistency strength is needed to prove the consistency of the proposi-
tion holding for those forcings. In our context, where we are interested
in adding well orderings of the reals at the level of strong cardinals, the
corresponding property seems to be stationary preservation. To get more
motivation, one could look at the introduction of [27], especially the table
on the 4th page, as well as jump to the 7th chapter where we talk about
absoluteness and well-orderings.

Definition 4.1. A forcing notion P is called stationary preserving if every
stationary subset of ω1 remains stationary in the generic extension.

4.2 Picking a starting point

Throughout this chapter and chapter 5, we make the following assumption
regarding the strong cardinals of K:

K � “κ is a strong cardinal⇒ κ < ω1”

Given the assumption that there is no inner model with aWoodin cardinal,
we know by weak covering that K is close to V at several cardinals. To
be more precise, we know that for the stationary set of singular cardinals
below Ω, their successors are computed correctly. This is enough to run
a first almost disjoint coding. We need to make sure though that some
additional properties hold so that we can further reshape and code. We
are looking for a δ which satisfies the following:

(a) δω = δ;

(b) δ is singular;

(c) δ is a cutpoint of K above ω1.

(d) δ is such that K|δ agrees with K on which cardinals are strong.
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We give the definition of (c) below.

Definition 4.2. δ is a cutpoint of an extender model M = L[ ~E] above
some ordinal η ∈ OR∩M iff for each extender Eβ ofM with crit(Eβ) ≥ η,
β ≥ δ ⇒ crit(Eβ) ≥ δ.

This means that the only extenders from ~E which are allowed to overlap
δ, are the ones that have critical point below η (see figure 4.1). Since we
assume that every strong cardinal ofK is below ω1, we have the possibility
to find such cardinals.

η

JJ



M

δ

Figure 4.1: Cutpoint above η

Property (a) ensures that δ+ will be preserved while collapsing δ to ω1.
Property (b) implies, by weak covering, that (δ+)K = δ+, so [δ, δ+) is
already reshaped in K. Property (c) renders δ to be a point in the core
model where there the extenders do not overlap that much.If there were
no strong cardinals, this could actually be a real cut point separating
the extenders of K into two disjoint parts. However we will allow strong
cardinals to exist below ω1, thus we have to accept overlaps with their
extenders. Later on, this property of δ will give us some form of conden-
sation for some premice and this is why we need it. Finally, property (d)
is used to transfer the fact that K �“κ is a strong cardinal ⇒ κ < ω1”

from K to K|δ.
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Lemma 4.3. Let K �“κ is a strong cardinal⇒ κ < ω1” hold and assume
there is no inner model with a Woodin cardinal. Then there exists a δ

satisfying (a)-(d).

Proof. First we need to verify that the set D of ordinals where (c) holds
is a club below Ω. Given an α < Ω, and the fact that there are no
strongs above ω1, we may construct a sequence (αi : i < ω) such that
α0 = max(α, ω1) and αi+1 is the supremum of the lengths of extenders
in the K-sequence with critical points in [ω1, αi). The supremum of this
sequence satisfies (c), thus D is unbounded. D is also closed as any
extender overlapping the supremum of a sequence from D will overlap
some element below it.

There is also a club D′, where property (d) holds. Let D′ be the set
of ordinals below Ω, such that α ∈ D′ iff for every β < α, if K �
“β is not strong”, then α is larger than the supremum of the heights
of extenders in K with critical point β. This set is obviously closed and
it is also unbounded. This is true since above every ordinal, one can con-
sider the first limit of the closures under the aforementioned supremums,
which lies in D′.

Now let D′′ = D ∩ D′, thus a club where (c) and (d) hold. Pick an
increasing sequence (δi : i < ω1) of its elements, such that δωi < δi+1 and
ω1 < δ0. Its supremum, δ, will satisfy δω =

∑
i<ω

δωi = δ and cf(δ) = ω1 < δ.

Thus δ satisfies (a)-(d), as needed.

The first forcing we apply will code Hδ+ over Jδ+ . In order to proceed
this way, we need that 2δ = δ+, otherwise any Jδ+ [B], B ⊂ δ+ will have
smaller cardinality than Hδ+ . To make sure this requirement is fulfilled,
we apply first the preliminary forcing Col(δ+, 2δ).

Lemma 4.4. Assume K �“κ is a strong cardinal ⇒ κ < ω1” and the
non-existence of inner models with Woodin cardinals. Then there is a
B0 ⊂ δ+ such that Hδ+ = Jδ+ [B0].

Proof. Every x ∈ Hδ+ can be coded into an ax ⊂ δ. This is possible,
since there is a bijection f : x → δ from the transitive closure of x to
δ that copies the predicate ∈ on x, to the binary relation ∈′, i.e. m ∈′
n ⇔ f−1(m) ∈ f−1(n). Then ∈′ can be coded to ax ⊂ δ by Gödel’s
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pairing function. This means that ax contains all the information needed
to reconstruct x, in the sense that for some α < δ+, x ∈ Jα[ax] ⊂ Jδ+ [ax].
We glue now all those sets together, with the function h. Let h : δ+ → 2,
h(δα + γ) = g(α)(γ), where α < δ+, γ < δ and g is a bijection between
δ+ and δ2. Then h̆ = B0 ⊂ δ+ has the desired property.

4.3 Collapsing δ to ω1

After picking the right δ we have an environment just like the one in the
a.d. coding section of chapter 2. The only procedure left before beginning
to code, is to move this environment at the level we are interested in.
This means that we have to collapse δ to ω1 and verify that we still have
the required conditions. K does not change after applying Col(ω1, δ),
therefore δ remains a cutpoint above ω1. Due to the fact that δω = δ,
(δ+)K = ω2, so the only property left to verify is that Hω2 is still of the
form Jω2 [B] for some B ⊂ ω2.

Lemma 4.5. Assume K �“κ is a strong cardinal ⇒ κ < ω1” and the
non-existence of inner models with Woodin cardinals. Then Hω2 = Jω2 [B1]1,
where B1 = B0 ⊕G0.

Proof. Suppose x ∈ Hω2 . We can convert x to an ax ⊂ ω2, as in lemma
4.4, and then choose a nice name ȧx for it. Since P0 satisfies the δ+-cc,
ȧx ∈ HV

δ+ = Jδ+ [B] = J
ω
V1
2

[B] which in turn implies that

ax = ȧGx ∈ Jω2 [B0 ⊕G0] = Jω2 [B1].

The inverse inclusion is immediate by the definition of Hω2 .

Note here, that in the above proof we assumed that ω2 = δ+. This still
holds true because the forcing has size δω = δ, thus it satisfies the δ+-cc.
The same forcing is ω-closed so it preserves stationary subsets of ω1. The
current situation is depicted in figure 4.2.

1We write Hω2
for the corresponding model defined in V1, i.e. for HV1

ω
V1
2

, in order to
avoid an excessive use of superscripts. This will be done without warning in the next
proofs.
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In the next chapter we will begin from this nice environment in the
interval [ω, ω2] and proceed to code below ω. The reader has to al-
ways keep in mind though, that apart from the non-existence of inner
models with Woodin cardinals, we made heavy use of the assumption
K �“κ is a strong cardinal ⇒ κ < ω1”. Without it, we could not rule
out the existence of strong cardinals in the interval [ω1, δ], which create
further complications, as we will see later on.

(δ+)K

@@

@@

δ

ω1 ω1

δ

V V1

ω2 = (δ+)K

B1

B0

Figure 4.2: P0



Chapter 5

When the Strong Cardinals are
below ωV1

We prove in this chapter the first of our two coding results. Our task is
to code a given set A ⊂ ω1 into a real x over some reasonably definable
structures, using a stationary preserving forcing. The result of this pro-
cedure is producing a generic extension where A is ∆1

n+3(x) or it belongs
to Jα(x). The actual complexity of A in the extension is determined in a
straightforward way by the order type of the strong cardinals of K which
exist below ω1. In our setting, we assume that we are below a Woodin
cardinal and furthermore that there are no strong cardinals in K above
ωV1 .

5.1 The theorem, a sketch of the proof

We assume by stating in full detail the theorem we will prove and giving
a short diagram of the proof. The proof consists of four forcings which
produce the final coding. In particular they are a collapse, an a.d. coding,
a reshaping and another a.d. coding. The most elaborate part which will
occupy most of the chapter, is the reshaping forcing. Another interesting
part is also the decoding procedure in the final coding, which also jus-
tifies our choice of coding structures. The first forcing produces a nice
environment and has already been described in chapter 4 and the others

36
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are simple variations of what appeared in chapter 2. We will prove the
following:

Theorem 5.1. Suppose there is no inner model with a Woodin cardinal
and K �“κ is a strong cardinal ⇒ κ < ω1”. Let also A ⊂ ω1 and Ã be
the set of reals coding A. Then there is a forcing P such that:

(a) if there are at most n strong cardinals in JKω1
, then Ã is ∆1

n+3 in the
generic extension;

(b) if the order type of the set of strong cardinals in JKω1
is strictly below

ωθ ≤ ω1, then Ã ∈ J1+θ(R) in the generic extension;

(c) P preserves stationary subsets of ω1.

We are going to split the proof of the above theorem into four steps,
where in each step we force with the notion Pi extending the universe
to Vi+1 = Vi[Gi] (V0 = V ) and coding the new information into the set
Bi+1, where 0 ≤ i ≤ 3. The final part of the coding will be performed
using the mice (Mα : α < ω1) instead of K. We will give a detailed
description of them later on and also prove that they are produced in
a canonical fashion. The forcing notions used in those steps are briefly
described below (see also figures 1-4):

(a) P0 = Col(δ+, 2δ) ? Col(ω1, δ), where δ is the appropriate cardinal
mentioned in the previous chapter. We have that Hω2 = Lω2 [B1],
B1 ⊂ ω2, in V1.

(b) P1 codes B1 into B2 ⊂ ω1 over K|ω2. In V2, Hω2 = K|ω2[B2].

(c) P2 reshapes ω1 over the elements of (Mα : α < ω1). B3 is produced
by merging B2 with the reshaping function and K|δ.

(d) P3 codes B3 together with A into a real x over the sequence (Mα :

α < ω1).

Throughout our exposition and without further reference, we will assume
that there exists no inner model containing a Woodin cardinal and addi-
tionally that K � “κ is an strong cardinal⇒ κ < ω1”.
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5.2 Coding into a subset of ω1

We continue exactly from the point we reached at the end of chapter 4.
Namely, δ is a cutpoint of K above ω1 and it has been collapsed to ω1.
Furthermore, Hω2 = Jω2 [B1]. Now in K[G0], 2ω

V
1 = 2δ = δ+ = (ω+

1 )K[G0],
since δ = ωV1 and 2δ = (δ+)K . Therefore, we can use lemma 2.2 to produce
a sequence (yi : i < ω2) ∈ K[G0] of a.d. sets. We use this sequence to
code down to ω1 (see figure 5.1).

Let P1 be the a.d. forcing which codes B1 to a subset of ω1 using the
a.d. sets from (yi : i < ω2). Let

⋃
pr1(G1) = P ,

⋃
pr2(G1) = P ∗ and

set B2 = P ⊕ G0. We check below that P1 satisfies the usual properties
of almost disjoint coding along with (b). We include a shorter version
of the proofs appearing in chapter 2 for convenience and since the same
argument appears a couple of pages later.

Lemma 5.2. The following hold true for P1:

(a) B1 ∈ K[B2].

(b) Hω2 = K|ω2[B2].

(c) P1 has the ω2-c.c.

(d) P1 is ω-closed.

Proof.

(a) We have that P ∗ = B1 which implies that p(i) = 1 ⇔ p̆ ∩ yi = ∅, by
a density argument. Therefore, B1 ∈ K[B2].

(b) Since (yi : i < β) ∈ K|ω2[G0] for every β < ω2, we may refine
the above argument to B1 ⊂ K|ω2[B2], which implies that HV1

ω2
=

Lω2 [B1] ⊂ K|ω2[B2]. We can code each x ∈ Hω2 into ax ⊂ ω1 and find
a nice name ȧx ∈ HV1

ω2
for it, because of (c). But then ȧx ∈ K|ω2[B2]

and since P ∈ K|ω2[B2], ax ∈ K|ω2[B2]. Hence Hω2 ⊂ K|ω2[B2]. To
verify the inverse inclusion, one has to notice that for every α < ω2,
K|β[B2] is transitive and has cardinality ω1, thus belongs to Hω2 .
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(c) We have to see here that two conditions with the same first coordi-
nates are compatible, thus the size of a maximal antichain can be at
most equal to the number of possible first coordinates. But they are
2<ω1 = ω1 many so ω2-c.c. holds.

(d) Suppose ((pn, p
∗
n) : n < ω) is a decreasing sequence of conditions in

P1. Then (∪n∈ωpn,∪n∈ωp∗n) is still a condition which extends each pn,
n < ω.

ω2 = (δ+)K

@@

@@

δ δ

ω1ω1

B1

B2

V1 V2

ω2 = (δ+)K

Figure 5.1: P1

Before proceeding further on, we add the information contained in K|δ to
B2. Let f : K|δ → ω1 be a bijection in K|ω2[B2] and B′2 be B2 ⊕ af .

5.3 Coding down to a real

What we achieved up to now, is to code Hω2 with a subset of ω1 over K
and at the same time make sure that the extenders of K are as separated
as possible in the interval (ω1, ω2) at δ. The latter is what enables us to
get some kind of condensation which is used in the proof of distributivity
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and stationary preservation of the reshaping of B′2. Since K is not a good
candidate to get this condensation, according to chapter 3, we change our
coding structures.

The idea is to pick directly the structures which might occur in the tran-
sitive collapses which appear in the proof of distributivity. More specif-
ically, we code over the sequence (Mα : α < ω1), where Mα is a large
enough mouse produced by a transitive collapse from the distributivity
proof, which has critical point α. The latter statement is not completely
accurate but contains the main idea and will make more sense once the
reader goes through the details of this section. The major step here is
to prove that the candidates for Mα are lined up, which is actually the
condensation property we were talking about.

The whole procedure is organized into three sections. On the first one
we motivate and derive a definition of the coding structures by looking
at specific embeddings. The second one contains the definition of our re-
shaping as well as a proof of its distributivity and stationary preservation.
Finally, the third one is the place where we perform the final coding and
also describe the procedure of picking the a.d. sets and simultaneously
decoding B′2.

5.3.1 Choosing the coding structures

We begin by making some observations which allow us to view K as a
stack of certain mice. The following lemma will not be used directly,
but the idea of constructing K this way will be imitated in defining our
sequence of mice. Furthermore, the proof that we have indeed defined a
stack will also provide inspiration for the proof that the mice which are
candidates for a given place in the sequence will line up.

Before moving further, we state a fact which enables us to use phalanges
with first root K, instead of the appropriate, for each case, P witnessing
the A0-soundness of an initial segment of K. The reason for doing that
is mostly aesthetic and it happens quite often in the bibliography that
(K,N , α) is to be interpreted as (P,N , α), where P is the appropriate
witness.
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Fact 5.3. SupposeM is a mouse and P is a witness of the A0-strongness
of K|δ =M|δ. Then (K,M, δ) is iterable iff (P,M, δ) is iterable.

The lemma below contains the properties a mouse N , containing K|δ,
has to satisfy in order to be an initial segment of K|ω2. Keep in mind
that this definition is possible since we are in a very special case. In our
context, ω2 is δ+ and δ was chosen to be singular and a cutpoint above
ω1. Furthermore we assumed that the strong cardinals of K lie below
ω1. The general idea of stacking mice already appears in some way in the
definition of K below a measurable and is further explored in [12].

Lemma 5.4. Suppose we are in the setting of the generic extension de-
scribed in section 5.2. Then N CK|ω2 iff there is an N ′ DN such that:

(a) K|δ EN ′;

(b) ρω(N ′) ≤ δ;

(c) N ′ is ω-sound;

(d) N ′ � “η strong ⇒ η < ωV1 ”;

(e) (K,N ′, ω1) is iterable.

Proof.

(⇒)

LetNCK|ω2. EveryN∪K|δEN ′CK|ω2 satisfies immediately properties
(a) and (c). For (e) just notice that any iteration of (K,N ′, ω1) can be
embedded to an iteration of K, since both K,N ′ are initial segments of
K.

Now consider a cardinal µ ≥ ω2 which is such that K|µ agrees with K

on which cardinals are strong1. Then the transitive collapse N ′ of the
Σ1-hull of ht(N ) in K|µ, is an initial segment of K, which projects to δ
and also satisfies (d). Therefore N ′ satisfies (a)-(e), and finishes the proof
of this direction.

1This µ can be produce exactly the way we defined δ so that K|δ agrees with K on
strong cardinals.
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(⇐)

Let N ,N ′ satisfy (a)-(e). By the fact 5.3 we may work with witnesses
of strong soundness instead of K. We compare P and (P,N ′, ω1), where
P witnesses the A0-soundness of K|lh(N ′). LetMT

θ andMU
θ be the last

models produced by this comparison. First we fix the root of (P,N ′, ω1).

Claim 5.5. The root of (P,N ′, ω1) is N ′.

Proof. Suppose on the contrary that the root is P . We can use the
fact that P computes successors correctly on a stationary set of regular
cardinals and show that (P,N ′, ω1) behaves like a universal weasel in the
iteration2. As P is also a universal weasel, MT

θ = MU
θ and none of the

sides drops. Suppose α, α′ are the critical points of the first extenders
ET
β , E

U
γ appearing on the corresponding cofinal branches -thus also the

critical points of the embeddings iT0,θ : P →MT
θ and iU0,θ : P →MU

θ . Then
both α, α′ are the least ordinal inMT

θ =MU
θ not having the definability

property, so α = α′.

Now Φ = {ξ ∈ OR : iT0,θ(ξ) = iU0,θ(ξ) = ξ} is thick in P , hence by the hull
property at α, for each X ⊂ α there is a Skolem term τ and a parameter
c ∈ Φ<ω so that X = τP [c]. Suppose without loss of generality that
α∗ = min{iT0,θ(α), iU0,θ(α)} = iT0,θ(α). We have then that

iT0,θ(X) ∩ α∗ = iT0,θ(τ
P [c]) ∩ α∗ = τM

T
θ [c] ∩ α∗ =

= iU0,θ(τ
P [c]) ∩ α∗ = iU0,θ(X) ∩ α∗

The latter implies that ET
β = (EU

γ � ν)∗ for some ν < α∗. But this means
that the two extenders are compatible, which is impossible since they were
used in a comparison.

P is universal, so it wins the comparison and the (P,N ′, ω1) side has no
drops. But the first extender used on the cofinal branch of that side has
critical point above ω1, according to the previous claim. Moreover, its
index is above δ since N ′ and P agree up to that level and given that
δ is a cutpoint above ω1, its critical point is actually above δ. But N ′
projects below δ, hence this extender can not be used without creating a

2This runs essentially the same way as the proof of the fact that every weasel
computing successors correctly on a stationary set of regular cardinals, is universal.
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non-sound model in the iteration. This means that MU
θ = N ′, i.e. the

(P,N ′, ω1) side does not move.

Now we look at the P side. The length of the first extender used in
the cofinal branch of the iteration is a cardinal in MT

0,θ so it cannot be
in (δ, ht(N ′)], as N ′ is sound and projects below δ. It is also above δ,
because P and N ′ agree up to that point, hence it is also above ht(N ′),
which is a contradiction. Thus the P side also doesn’t move implying that
N ′ C P ⇒ N ′ CK.

The rough idea behind the proof of reshaping ω1, is to collapse a countable
hull of K|ω2[B′2] along with some sequence (Di : i < ω) of dense sets and a
condition p0 to some modelK. Then ideally we would be able to construct
a sequence (pi : i < ω) in K which hits the dense sets (Di : i < ω). Then
it is possible to see definably over K that this sequence of conditions is
countable.

At this point we would like to be able to pull this fact back to K but it
is not generally true that K is contained in there. Therefore, we choose
to reshape directly over the structure K instead of reshaping over K. In
order to get nice definability properties when we decode, we use a version
of lemma 5.4 that describes the structures K in a similar way. This is
actually the place where the assumption that the strong cardinals are
below ω1 is used.

Lemma 5.6. Suppose j : K[B′2∩α]→ K|ω2[B′2] is an elementary embed-
ding with critical point α, thus j(α) = ω1. Let δ = j−1(δ) and Nα = K|δ
be the structure coded by B′2 ∩ α. Then K has the following properties:

(a) δ is the largest cardinal of K;

(b) K �“η is strong ⇒ η < α”;

(c) (K,K, α) is iterable.

Proof. Everything is immediate from elementarity except from (c). Since
j � K : K → K|ω2 is elementary, we can lift any putative iteration of
(K,K, α) to an iteration of (K,K|ω2, α), therefore (K,K, α) is iterable.
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Definition 5.7. We use C∗ to denote the the set of all α < ω1 which
are critical points of embeddings of the form described above and Nα to
denote the structure coded by B′2 ∩ α with the technique of lemma 4.4.
This set contains a club subset of ω1.

Note that Nα is the Mostowski collapse of the part ofK|δ coded by B′2∩α,
hence it is the same for any K and j with critical point α. We define now
the property (∗)α which restricts us to mice over Nα that line up and also
contain any K derived from a j as in lemma 5.6.

Definition 5.8. N has the (∗)α property iff:

(a) Nα EN ;

(b) N is ω-sound;

(c) δ is the largest cardinal of N , where δ = Nα ∩OR;

(d) N � “η strong ⇒ η < α”;

(e) (K,N , α) is iterable.

j
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Figure 5.2: The structures Nα

Lemma 5.9. Let N ,N ′ satisfy (∗)α. Then N EN ′ or N ′ EN .
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Proof. Suppose P is a universal weasel witnessing the A0-strongness of
K|α. By α-goodness and the above fact, we can compare (P,N , α) with
(P,N ′, α). Let MT

θ and MU
θ be the last models produced by this com-

parison.

Claim 5.10. It cannot be the case that the root of both (P,N , α) and
(P,N ′, α) is P .

Proof. Suppose on the contrary that both phalanges root on P . We can
use the fact that P computes successors correctly on a stationary set of
regular cardinals and show that (P,N ′, ω1) behaves like a universal weasel
in the iteration3. As the same holds for (P,N , α), MT

θ = MU
θ and none

of the sides drops. Suppose α, α′ < ω1 are the critical points of the first
extenders ET

β , E
U
γ appearing on the corresponding cofinal branches -thus

also the critical points of the embeddings iT0,θ : P → MT
θ and iU0,θ : P →

MU
θ . Then both α, α′ are the least ordinal inMT

θ =MU
θ not having the

definability property, so α = α′.

Now Φ = {ξ ∈ OR : iT0,θ(ξ) = iU0,θ(ξ) = ξ} is thick in P , hence by the hull
property at α, for each X ⊂ α there is a Skolem term τ and a parameter
c ∈ Φ<ω so that X = τP [c]. Suppose without loss of generality that
α∗ = min{iT0,θ(α), iU0,θ(α)} = iT0,θ(α). We have then that

iT0,θ(X) ∩ α∗ = iT0,θ(τ
P [c]) ∩ α∗ = τM

T
θ [c] ∩ α∗ =

= iU0,θ(τ
P [c]) ∩ α∗ = iU0,θ(X) ∩ α∗

The latter implies that ET
β = (EU

γ � ν)∗ for some ν < α∗. But this means
that the two extenders are compatible, which is impossible since they were
used in a comparison.

Assume now without loss of generality that the root of (P,N , α) is N .
We will use the following claim to deal with the possibility that the other
root is P and also to complete the proof of the lemma.

Claim 5.11. Suppose that one of the phalanges, assume (P,N , α), is
rooted on N . Then this side of the iteration does not move.

3This runs essentially the same way as the proof of the fact that every weasel
computing successors correctly on a stationary set of regular cardinals, is universal.
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Proof. The first extender E used on the (P,N , α) side must have height
at least δ, given that the structures agree below this ordinal. By (c) of
the definition of N , the critical point of this extender has to be below
α or above δ. The first case is impossible because N is the root of the
phallanx, thus no extenders with critical point below α are used in the
comparison. Given that δ is the largest cardinal of N , the critical point
can also not be above δ, therefore the (P,N , α)-side does not move.

Now assuming that the second phalanx has root P , we get by the above
claim that N is an initial segment of an iterate of P . Since N ,N ′ agree up
to δ, the index of the first extender used should be strictly above δ. But
then this means that some cardinal would exist in the interval (δ, ht(N ))

in the iterate of P thus also in N , contradicting the maximality of δ.

Therefore the only possibility is that the roots of the phalanges are N ,N ′
which proves the lemma by claim 5.11.

5.3.2 Reshaping

We proceed by reshaping below ω1. The first observation here is that we
only need to reshape on a club.

Lemma 5.12. Suppose C is a club below ω1 which is reshaped over some
inner model M , i.e. for every α ∈ C, M [C ∩ α] � α = ω. Then there is
a g : ω1 → 2 which reshapes ω1 over M .

Proof. First assume that C has been reduced to a club of limit ordinals.
Let f be such that for every α ∈ C, f � [α, α + ω) codes an h : ω → α′

collapsing α′, where α′ = min(C \ (α+ ω)). If f ′ : ω1 → 2 is the function
reshaping C overM set g = f⊕f ′. Suppose now that β /∈ C. Then C∩β
has a maximum β0 and the successor β′0 of β0 in C is bigger than β. Hence
if β ∈ (β0, β0 + ω), then it is reshaped due to the fact that β0 is already
reshaped, else f � [β0, β0 + ω) ⊂ g � β so again M [g � β] � β = ω.

The set we are going to reshape is C∗, which contains a club (see definition
5.7). In the definition below we define simultaneously what a condition is
as well as a sequence of structures which we reshape and a canonical se-
quence of a.d. sets. Notice that though the structures Nξ are chosen from
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the lined up collection of mice satisfying (∗)ξ, they might have different
heights for different conditions. The same holds for the a.d. sets.

Definition 5.13. p ∈ P2 iff:

(a) p : α→ 2, α < ω1;

(b) there exist sequences (N ξ : ξ ∈ (α + 1) ∩ C∗) and (zξ : ξ ∈ α ∩ C∗)
such that N ξ is the least in height model N satisfying:

1. N [B′2 ∩ ξ, p � ξ] � ξ = ω where N .

2. N has the (∗)ξ property;

3. {zi : i < ξ} ⊂ N [B′2 ∩ ξ, p � ξ], where zi ⊂ ω, i < ξ, is the
N i[B′2 ∩ i, p � i]-least set almost disjoint from all elements of {zj :

j < i}.4

p ≤ q iff p ⊇ q.

We set B3 = B′2⊕G3. The next step is to prove that P2 is ω-distributive,
thus it preserves ω1. Using this fact we will show then that it is actually
stationary preserving.

Lemma 5.14. P2 is ω-distributive.

Proof. Let p ∈ P2 and (Di : i < ω) be a countable sequence of dense sets.
We must find some q ≤ p which hits every Di, i < ω. This will happen at
some countable elementary substructure containing enough information to
construct q. Pick a countable X ≺ (K|ω2[B′2], (Di : i < ω),P, p, ~E � ω2),
where ~E is the extender sequence of K. LetM = (K[B′2 ∩ α], (Di : i <

ω),P, p, ~E � ω2) be its transitive collapse and j be the collapsing map.
Clearly α ∈ C∗, K satisfies (∗)α by lemma 5.6.

4This definition makes sense because the mice satisfying (∗)i are lined up, therefore
they define the same zi. Namely, if k ≤ i, j, then N i and N j define the same minimal
sequence of a.d. sets {zl : l < k}.
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Figure 5.3: The collapsed structures

Now, insideM, we consider a Σn elementary subset X ′ for some n large
enough to preserve the needed properties of the predicates we considered.
Let N be its transitive collapse and j′ the corresponding map (see figure
5.3). The reason for considering the second hull, is that nowM � N = α.
Let (Ek : k < α) ∈ M be an enumeration of the club subsets of α in N .
ThenM contains E = 4i<αEi which is a fast club for α in N . The idea
now is to define a decreasing sequence of conditions (pi : i < ω) which
extend p = p0 and hit the dense sets (D

′
i : i < ω) in such a way that the

lengths of the conditions do not belong to any of the elements of some
sequence (Eki : i < ω) of clubs. This will enable us to code information
in E which guarantees that q = ∪i∈ωpi is actually a condition of P2.

If r ∈ P′, γ < α, |r| ≤ ξ and ξ + ω < γ then we define:

(a) rξ,γ,1 = r_x_0otp(ξ\|r|)_1_0γ\(ξ+ω), where x is a real collapsing the
length of rξ,γ,1 and coding the almost disjoint sets (zi : i < |r|) asso-
ciated with r;

(b) rξ,γ,i,2 is the <N -least element of D′i extending rξ,γ,1;

(c) fr,i : [|r|, α)→ [|r|, α) is such that fr,i(γ) = supξ<γ(|rξ,γ,i,2|+ 1);
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(d) Er,i = {fβr,i(|r|+ω) : β < α}∩E, where fβ is the continuous iteration
of f , β many times5.

The notation above seems to be a little complicated, but the situation it
describes is fairly simple. We are given r and we wish to extend it by
marking one ordinal. This is simple, but if we wish to further extend
it and hit D′, we have no control over the length of the new condition.
Hence for each γ < α we consider all the possible ways of extending r by
adding x, a string of zeros and a 1 on the ξth position. Then fr,i maps
each γ to the supremum of the lengths of such extensions. Finally we
form Er,i by applying fr,i to |p| + ω iteratively and keeping the images.
We also intersect this set with E in order to be in this fast club which
is common for all the clubs that might come up this way. Note that Er,i
contains a final segment of E. The situation now, is such that whenever
we extend some condition r to rξ,ξ+ω,i,2, for some ξ ∈ Er,i, then no element
of E apart from ξ is changed.

Being able to add information on the conditions and recover it from E,
we begin defining the pi’s. Fix an E∗ ⊂ E cofinal and of order-type ω.6

We set then pi+1 = pξi,ξi+ω,i,2i , where ξi is the least element of E∗ in the
interval [|pi|, α). Then the condition q = ∪i<ωpi has value 1 exactly at
those elements of E we marked while extending p. Since E ∈M, K[B′2, q]

contains a cofinal subsequence of E∗ which collapses α. This means that
q satisfies property (ii)(a) of being a condition of P and by elementarily
and the fact it is the limit of the conditions pi, it also satisfies (ii)(b). So
we have that q is a condition which hits all the dense sets, therefore we
are done.

Lemma 5.15. P2 preserves the stationary subsets of ω1.

Proof. Suppose S ⊂ ω1 is a stationary set and p 
“Ċ is a club”. Working
as in lemma 4.5, we may assume Ċ ∈ Hω2 . We fix an α ∈ S ∩ C∗ which
is also the critical point of some elementary embedding j : A → B, where
A = (K[B′2 ∩ α], Ċ, P , p0, ~E � ω2) and
B = (K|ω2[B′2], Ċ,P, p0, ~E � ω2).

5I.e. f0 = f , fβ+1 = f ◦ fβ and for limit ordinals β, fβ = supi<βf
i.

6E∗ will probably not even be in M, but part of it will be recovered by our final
condition and E ∈M.
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Pick a cofinal sequence (αi : i ∈ ω) which converges to α and define
the sets Di = {r : dom(r) ≥ αi ∧ ∃β ≥ αi r 
 β̌ ∈ Ċ} which are
open dense, since by the previous lemma, 
 ω̇1 = ω̌1. It is clear that
if we construct a decreasing sequence (pi : i < ω) such that p0 = p

and pi ∈ Di, then q = ∪
i<ω

pi will force α̌ to be in Ċ as long as q is a
condition. Working exactly the same way as in the above lemma, with
the aforementioned dense sets, we get this condition q. But then this
means that 
 “ǎ ∈ Ċ ⇒ Š ∩ Ċ 6= ∅”.

5.3.3 The final coding and complexity analysis

Now that we have reshaped on the ordinals of ω1 over a sequence of
structures, we can inductively define a sequence of almost disjoint sets
needed for the final coding. This sequence is defined using the reshaped
structures which are associated to the conditions contained in the generic.

Definition 5.16.

(a) reshaped structures: For every α ∈ C∗, we call a structure Mα

α − reshaped , if it is equal to N α relative to the condition G3 ∩ α,
in the sense of definition (b), 1. of 5.13.

(b) coding sets: We define the sequence (zα : α ∈ ω1) exactly as in (b),
3. of definition 5.13 and relative to the conditions G3 ∩ α, α < ω1.

The final forcing we apply, is the almost disjoint coding of B3 ⊕ A =

B′3 to a real, where A ⊂ ω1. The almost disjoint sets come from the
sequence (zα : α ∈ ω1), as defined above. Note that every notion is
defined according to definition 5.13 and using the generic G3 to generate
the conditions required.

Definition 5.17. (p, p∗) ∈ P3 iff:

(a) p : α→ 2, α < ω;

(b) p∗ ⊂ B′3, p∗ < ω.

(p, p∗) ≤ (q, q∗) iff:
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(a) p ⊇ q, p∗ ⊇ q∗;

(b) ∀i ∈ q∗ (p̆ \ dom(q)) ∩ zi = ∅

In the same fashion as in the last almost disjoint coding, we have that P3

satisfies the c.c.c. and we let r be the real added by this forcing. We are
now ready to prove the theorems mentioned in the first section.

Proof. (of Theorem 5.1) At this point everything is set and we only
need to check (a)-(c).

(a): First we show that (∗)α is Π1
n+2. The most complicated part of the

definition of (∗)α is the iterability of (K,M, α) which is actually Π1
n+2.

This is by [10], proof of corollary 2.18, and using the fact that there are
have at most n strong cardinals below ωV1 . Then “Mα is an α-reshaped
structure” is Π1

n+2 (we code α by a real).

Let:

• φ(b, x) =“x is a β-reshaped structure, where β is the ordinal coded
by b ⊂ ω”;

• ψ(x, y, z) = “x is the <y-least set almost disjoint from the elements
of the sequence z”.

Then a ∈ Ã is defined by

∃(Mβ : β ≤ α) ∃(z′β : β ≤ α) ∀β ≤ α

[φ(β,Mβ) ∧ ψ(z′β,Mβ[B′3 ∩ β], (z′γ : γ < β)) ∧ r ∩ z′α < ω].

The above sentence is Σ1
n+3 as φ is Π1

n+2. Here (z′β : β ≤ α) = (zβ : β ≤
α), since the β-reshaped structures, for β ≤ α, are lined up. This way we
are able to use r together with the a.d. sets to decode.

Since the sequence (Mβ : β ≤ α) is uniquely determined, we may switch
the quantifier in the above formula to a universal one and thus get a Π1

n+3

definition of Ã. Therefore, there is a ∆1
n+3 definition of it.

(b): This works using the definition mentioned above and deriving the
appropriate definition of being having the (∗)α property, along with lemma
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2.3 of [26]. This way we get that “Mα is an α-reshaped structure” is in
J1+θ(R).

(c): Our forcing construction is the iteration of the four forcings we intro-
duced and since each one of them is stationary preserving, their iteration
is also stationary preserving.



Chapter 6

Coding higher above

On chapter 5 we have focused on coding a subset of ω1 to a real. Now
we have a look at the possibilities of running a similar coding on larger
cardinals. Namely, we wish to code a subset of κ = ι+, where ι is a regular
cardinal greater than ω1, to a subset of ι. We follow the same strategy
as before, i.e. we collapse an appropriate cardinal δ to κ and afterwards
code in two steps. Once more, most of the difficulties arise at the proof of
distributivity of the reshaping, which is needed to run the second coding.

Remember that proving distributivity involved constructing a countable
decreasing sequence of conditions. Then using the “fast club” trick from
[31] we were able make sure that their union was also a condition. Addi-
tionally, our choice of coding structures provided us with enough conden-
sation for the latter argument. In the current situation, in which we want
to code above ω1, we have some extra tools in our disposal, but at the
same time new difficulties arise. The main advantage comes from the fact
that we can get enough condensation by simply using the argument form
the proof of weak covering in [18]. The new difficulty that arises, is the
need to build a decreasing sequence of conditions of uncountable length
for the proof of distributivity. This creates complications as we are not
able to apply the “fast club” trick since we have to deal with several limit
points of our sequence. Furthermore, the condensation we derive can only
be applied at stages of uncountable cofinality.

Due to the above complications, we choose to code over the model K[ ~A]

instead of K. ~A is a sequence of countable cofinal subsets of the ordinals

53
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below κ with cofinality ω. This sequence enables K to see countable cofi-
nalities and thus deal with the problematic limit points. The mixed model
K[ ~A] looks like the Chang model, in the sense that it is enchanted with
specific countable sequences but it satisfies AC due to its construction.

6.1 Massaging the universe

We choose δ the way we did in chapter 4, though this time we don’t need
to require that it is any sort of cutpoint. This is because we will get
condensation by covering and the ~A sequence instead of using the col-
lapsed structuresMα, whose canonicity depended on the lack of extender
overlap. Thus δ satisfies,

(a) δι = δ.

(b) δ is singular.

We force with Col(δ+, 2δ)?Col(κ, δ) in order to ensure that the subsets of
δ appear below δ+, which is now equal to κ+. In the produced extension
we have that Hκ+ = Jκ+ [B′] for some B′ ⊂ κ+. Then it is enough to
apply an a.d. coding to code B′ to a subset B of κ, in order to end up in
the following setting:

(a) There is no inner model with a Woodin cardinal.

(b) κ = ι+, where ι ≥ ω1. Set κ+ = λ.

(c) K|λ[B] = Hλ, for some B ⊂ κ.

(d) There is an ordinal δ ∈ (κ, κ+) such that (δ+)K = λ.

(e) Bodd codes K|δ in a trivial way over L.

(f) We fix a sequence ~A = (ai ⊂ i : i < κ, cf(i) = ω), where ai is cofinal
below i and otp(ai) = ω. Those sets are witnesses of the true cofinality
of the ordinals which have countable cofinality.
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Assuming we are in the above configuration, we are going to prove the
coding theorem below, which is the main theorem of this chapter.

Theorem 6.1. Assume we are in the situation described by (a)-(f) above.
Then there is a forcing notion such that in the generic extension, Hλ =

K|λ[ ~A,C], for some C ⊂ ι. Moreover, this extension preserves cardinals
and cofinalities.

The critical step, as before, is reshaping the interval [ι, κ) so that we can
further code to a subset of ι. Before performing the reshaping though,
we must go once more through an analysis of the structures which are
produced from the collapses and of how they condense.

6.2 Analyzing the collapsed structures

Before defining the reshaping forcing, we introduce the structures Nγ and
their extensionsMγ, which will play a central role later on in the coding
procedure. Note that the analysis of those structures is very close to the
one appearing in the proof of the weak covering lemma (see [18], [17]).
For this reason we try to be as consistent as possible with the notation
appearing in those papers and we redirect the reader there for the proofs
of certain arguments.

Definition 6.2. Suppose Ω is a measurable cardinal andW is a universal
weasel witnessing the strong soundness of K|λ. Let π : H → HΩ+1 be the
transitive collapsing map of Y CHΩ+1, with ι, δ,Ω ∈ Y , Y = ι and such
that crit(π) = γ. As usual, we denote the collapsed images of objects by
π with bars, e.g. δ = π−1(δ), W = π−1(W ). Let also Nγ be the model
coded by (B ∩ γ)odd over L|λ. Finally, we denote by C∗ the set of all γ
which are critical points of such maps. One can observe that C∗ contains
a club below κ.

As we have already seen in previous cases of coding, one would like to
use A ∩ γ in order to decode one more level of A. The generic which will
carry out the coding will eventually provide us this information, but we
also need to decode some part of W in order to run this decoding. This
part will come from the comparison of Nγ with K, which up to some level
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is essentially identical with the comparison of W with W . As we will see,
in some specific cases, the last model of the W -side will contain W |λ as
an initial segment. Before moving to this step though, we use the proof of
the covering lemma to show that we can create situations where the last
model of the W -side of the W,W comparison contains W |λ as an initial
segment. In such cases, the elementary submodel which is collapsed will
be called “good”.

Definition 6.3. Let Y,W,W be as in definition 6.2. Suppose also that
Wθ is the last model of the W -side of the comparison of W,W . Then we
will call Y good, iff W |λCWθ.

Lemma 6.4. [a combination of [18], [17] and [29], 11.55] Suppose Y is
as in definition 6.2. Then there is a good X ⊃ Y such that X = ι.

Proof. As mentioned in the comments, this proof is nearly identical with
the one of weak covering in [18]. The only difference here is that we
remove the assumption that H is countably closed using the technique
appearing in [29] and the pull-back argument from [17].

The idea is to define H as the transitive collapse of X =
⋃
i<ι

Xi, X0 =

Y , which is a union of structures elementary embedded into HΩ+1. In
[18] there is a list of inductive steps (1)α − (6)α which are eventually
satisfied. When passing from Xi to Xi+1, we add a witness for every
possible ill-foundedness or badness of iteration trees that might occur in
one of (1)α − (6)α for the reason that Xi is not omega closed. Then
using a reflection argument we show that the induction can be carried out
successfully for H. We avoid repeating the whole proof here. Instead, we
mention the definitions of the main objects and provide an exposition of
the proofs which need to be changed.

Suppose that W η and Wη, η ≤ θ, are the models produced in the com-
parison of W and W . We define the following:

(a) κ = (κα : α ≤ ε) is an enumeration of the cardinals of W θ below λ.

(b) λ = (λα : α < ε), where λα = κα+1.

(c) Let η(α) be the least ordinal η ≤ θ such that κα < νη if one exists,
otherwise η(α) = θ. Pα is the least initial segment of Wη(α) which
projects below κα, if it exists, else Pα = Wα.
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(d) Rα = ult(Pα, Eπ � π(κα)), πα is the ultrapower map, if this ultrapower
is well-founded. mα = n(Pα, κα) is the largest integer m such that
ρPαm > κα, if one exists, else m = ω.

(e) Λ = (Λα : α < ε), where Λα = sup(πα”λα) = (πα(κα)+)Rα .

(f) Sβ is defined by induction. If Rβ is a premouse, then Sβ = Rβ.
Otherwise, if Rβ is just a protomouse, there is an α < β such that
crit(FRβ) = πα(κα) and Sβ = ult(Sα, F

Rβ).

(g) Qβ is also defined by induction. If Rβ is a premouse, then Qβ = Pβ.
Otherwise, there is a α < β such that crit(F Pβ) = κα and Qβ =

ult(Qα, F
β).

Comments 1. The proof consists of an induction on α showing at each
step that W agrees with Wθ up to λα. One can imagine Pα as the least-
/earliest place of the W -side iteration where the models stabilize below
λα. By the agreement we are opting for, and the the fact that W is the
winning side, we may think of Pα as a local approximation of W up to
some point. Then πα locally simulates π and Rα accordingly approximates
W .

The reason why Sα and Qα are defined, is to replace Rα with a premouse
in case it fails to be one and then compute the corresponding version of
Pα. It is easy to check that Sα = ult(Qα, Eπ � π(κα)) (see [18], lemma
3.13).

In order to ensure the consistency of the definitions of (d)-(g), we must
make sure that certain ultrapowers are well founded and that certain
phalanges are special (see below). This is taken care of in several lemmas
appearing later on.

Definition 6.5. A phalanx (P ;λ) of length ε is special iff there is a
sequence κ such that:

(a) If α ≤ β < ε, then κα is a cardinal of Pβ and λβ = (κ+
β )Pβ .

(b) Pα is κα-sound, if it is a set protomouse.

(c) Pα satisfies κ(Pα) ≤ κα in case it is a weasel.
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(d) If Pβ is not a premouse, then there is a unique α < β such that F Pβ

is a (κα, OR
Pβ) extender over Pα.

(P ;λ) is very special if additionally:

(e) When Pα is a weasel, c(Pα) \ κα = ∅.

(f) If Pα is not a premouse, then it is an active protomouse of type I or
II and n(Pα, κα) = 0.

The induction steps used in the proof of the lemma are listed below:

(1)α If Eη 6= ∅, then lh(Eη) > λα.

(2)α (W,Sα; π(κα)) is an iterable phalanx of premice.

(3)α (W,Qα;κα) is an iterable phalanx of premice.

(4)α (P � α,W ;λ � α) is an iterable, very special phalanx.

(5)α (R � α,W ; Λ � α) is an iterable with respect to special trees, very
special phalanx of protomice.

(6)α (S � α,W ; Λ � α) is an iterable with respect to special trees, very
special phalanx.

Assuming that (1)<α holds, the induction step is split into two paths:

(4)<α ⇒ (3)α ⇒ (2)α ⇒ next step,

(2)<α ⇒ (6)α ⇒ (5)α ⇒ (4)α ⇒ (1)α ⇒ next step

The only one of the above implications which really depends on the count-
able closure of κ, in [18], is (3)α ⇒ (2)α. In order to surpass this obsticle
we will construct X as the union of elementary substructures of HΩ+1, as
mentioned before. At each level of this construction we will throw in a
witness of a possible failure of (3)α ⇒ (4)α at the previous step. We begin
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by defining this tower of elementary structures. For each one of them, the
objects Pα, Rα, . . . can be defined as before and we distinguish them by
a power, e.g. P i

α, R
i
α . . . correspond to the structure Xi. As for the final

structures, Xι, P
ι, Rι, . . . we omit the ι.

Definition 6.6. We define inductively for every i ≤ ι the following em-
beddings:

(a) X0 = Y . π0 : H0 → HΩ+1 is the transitive collapsing map of X0.

(b) Xi+1 is the least elementary substructure of HΩ+1 such that:

• Xi+1 ⊃ Xi ∪ {Xi}.

• If α′ is the least α < εi such that the phallanx (W i, Siα; π(κiα))

is not iterable, then the <-least witness of this non-iterability
is contained in Xi+1. This witness will consist of a well-founded
relation R, rudimentary overW i, an ill-founded relation R, rudi-
mentary over some iterate of W i with the same definition as R,
and an infinite decreasing sequence ([an, fn] : n < ω) witnessing
its ill-foundedness.

(c) Xi =
⋃
j<i

Xi, for limit ordinals i ≤ ι.

Lemma 6.7 (“3.1”). For every α ≤ ε, (W,Sα, π(κα)) is iterable.

Proof. Look at sections 2 and 3 of [17]. The procedure is the same, with
the difference that we replace Xj with X. Again some Xi can be picked
so that Xi ∩ ran(ψ) ⊂ Xi and the rest of the proof is essentially the
same.

Now by the fact that (1)α holds for all α < ε, we get that W |λCWθ.

Lemma 6.8. Assume W , W and Nγ are as in definition 6.2. Let also
Wθ′ be the last model of the W -side of the comparison between W and Nγ.
Then W |λEWθ′.
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Proof. Assume thatWθ is the last model of theW -side of the comparison
between W and W . The comparison between Nγ,W is contained in the
comparison between W,W , thus from lemma 6.4, Nγ does not move in
the comparison. But then the extenders that are used in the W -side
below the height of Nγ, which is above δ, are the same in both iterations.
But the comparison between Nγ,W ends at the height of Nγ and the
only differences above that point will be due to extenders used in the
comparison of W,W . But from lemma 6.4, W |λEW , therefore there are
no cardinals in Wθ, in the interval (δ, λ). This in turn implies that no
extenders with indices in this interval were used, thus Wθ′|λ = Wθ|λ =

W |λ, which is what we wanted.

6.3 Reshaping

Now we turn to the definition of the reshaping forcing. This is exactly like
the one appearing in chapter 2, with the only difference that it is applied
on K[ ~A]:

Definition 6.9. p ∈ P iff:

1. p : γ → 2, γ ∈ C∗;

2. for every γ′ ∈ C∗ ∩ (γ + 1) such that cf(γ′) > ω,

K[ ~A,B ∩ γ′, p � γ′] � γ′ = ι.

3. p ≤ q iff q ⊆ p.

Since we require that κ must not be collapsed after forcing, we need to
make sure that P preserves it. This can be derived, like before, from
distributivity.

Lemma 6.10. P is ι-distributive.

Proof. Let (Di : i ∈ ι) be a sequence of open dense sets and p ∈ P. We
use the following tower of structures to construct a condition q ≤ p that
meets all the elements of (Di : i < ι).
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(a) Y0 = HullHλ((ι+ 1) ∪ {P, (Di : i < ι), p, <});

(b) Yi+1 is the <-least good Y such that Yi ∪ {Yi} ⊂ Y and Y ≺ Hλ.

(c) Yη =
⋃
i∈η
Yi, for limit ordinals η ≤ ι.

Let π̃i : H i = Ki[B∩γi]→ Hλ be the uncollapsing map for Yi -notice that
crit(π̃i) = γi. Before proceeding, we need to check that the structures H i

are also good at limit steps. It is enough to check this for ordinals of
uncountable cofinality, since ~A provides enough information at countable
cofinality levels.

Claim 6.11. Assume η is a limit ordinal ≤ ι, such that cf(η) > ω. Then
Hη is good.

Proof. Fix an η with the properties of the above statement. We begin by
noticing that we are high enough to use the covering lemma. Therefore,
if ℵV2 ≤ κ ≤ µ, then cf((µ+)K) ≥ µ ≥ κ. This implies that for all such
ordinals µ, the set Yη ∩ (µ+)K is bounded below (µ+)K . As a result of
that, if µ ∈ Yη, then cf(Yη ∩ (µ+)K) = cf(η) > ω.

In order to prove that Yη is good, we use the above observation and repeat
the argument of the covering lemma in order to get enough agreement
between Kη and the corresponding W . For this, it is enough to prove
that the phalanx (W η, Sηα; π̃η(κ

η
α)) [(3)α] is iterable, for every α < εη, as

the rest of the implications hold true automatically from the proof in [18].
Until the end of the proof of this claim, for aesthetically reasons, we omit
the superscript η.

Assume that the above is not true and let i be the least α such that
(W,Sα, π̃η(κα)) is not iterable. Then by [9], lemma 3.3, Si is also not
iterable. We split into two cases depending on the cofinality of κi+1 and
prove in both of them that Si is iterable, thus a contradiction.

• cf(κi+1) > ω:

Assume σ : H → Hθ is an elementary embedding respecting a well-
ordering < of Hθ and that θ is large enough so that Hθ contains
Qi, Si as well as all the corresponding embeddings and phalanxes
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that appear up to that level in the proof of covering. Let also Qi, Si
be the inverse images of Qi, Si via σ and Q̃i = Ult0(Qi, σ � κi+1),
S̃i = Ult0(Si, σ � κi+1). Then, if k : Q̃→ Qi is the map factoring the
ultrapower map, Q̃i EQi by condensation, thus Q̃i EKη. But then
S̃i = Ult0(Q̃i, π̃η � (κ+

i )Q̃i)→ π̃(Q̃i)EW . Therefore Si is iterable.

• cf(κi+1) = ω:

Fist notice that κi+1 is not a cardinal of Kη. If it were, then the
embedding π̃η would map it to π̃η(κi+1) which would in turn be a
cardinal of the corresponding W . But then cf(π̃η(κi+1) ≥ κ. But
this in turn implies that cf(κi+1) = cf(Yη ∩ π̃η(κi+1)) = cf(η) 6= ω,
contradiction.

As a result, there exists some ζ ≥ κi+1 such that ρω(Kη||ζ) ≤ κ. But
the phalanx (Q � i,Kη||ζ, κ) is iterable as every element of Q � i is
embedded to some Sj, j < i, which in turn is embedded to W and
Kη||ζ is embedded into W . Thus comparing (Q � i,Kη||ζ, κ) and
Q � i + 1, we get that Qi = Kη||ζ. Therefore Si is iterable as it is
produced by a segment of the map π from an initial segment of W .

One can notice from the proofs above that we are actually making con-
stantly use of the arguments from [18], except from the successor cases,
where an argument alike to the one in [17] is used to produce good struc-
tures, and also excluding the countable cofinality limit cases, where ~A is
used.

Now that enough condensation is available, we use the collapsed structures
H i to define a decreasing chain of conditions pi such that

(a) p0 = p;

(b) pi+1 = “the constructibly least r ∈ Ki+1[B ∩ γi+1] such that r ≤ pi,
r ≥ γi and r ∈ Di ∩ Yi+1”;

(c) pβ = ∪
i∈β

pi.

Claim 6.12. K[ ~A,B ∩ γi] � pi ≤ ι, for every i ≤ ι.
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Proof. We prove this by induction on i ≤ κ. We consider the follow-
ing two possibilities (for successor ordinals there is nothing to be done),
depending on the cofinality of γi:

• cf(γi) > ω :

We will prove in the next sublemma that K[ ~A,B ∩ γi] can see all the
structures (Yj : j < i) and their transitive collapses, (Kj : j < i), just
the way they are defined in K[B]. Then by lemma 6.4, if j < i, then
Ki ∈ K[ ~A,B ∩ γi] since the cofinality of i is uncountable. Therefore
we may reconstruct the sequence (pj : j < i) in K[ ~A,B ∩ γi], which
witnesses that pi = γi = i · ι = ι. The aforementioned argument is
based on the sublemma stated below. Notice that in order to distinguish
between the corresponding objects defined in K[ ~A,B ∩ γi] and K[B], we
use parentheses and a superscript i for the objects of K[ ~A,B ∩ γi].

Subclaim 6.13. Suppose ((Xl)
i : l < ι) is the sequence witnessing the

goodness of (Yj)
i, for some j < i, as it is built in K[ ~A,B ∩ γi]. Let

(Xl : l < ι) be the same sequence, but built in K[B]. Then for every
l < ι, (Xl)

i and Xl are isomorphic and therefore they collapse to the same
structures.

Proof. It is enough to check this for the successor steps, as at limits we
consider unions. If the induction is true up to some l < ι, then the process
of passing from (Xl)

i to (Xl+1)i or from Xl to Xl+1, consists of adding a
witness of the failure of (2)α for the least α where it fails. Therefore, it is
in enough to prove that this will happen for the same α for both (Xl)

i and
Xl. To get this we will show that (W j, Sjα,Λ

j
α)i is iterable iff (W j, Sjα,Λ

j
α)

is iterable. Like before, we fix j and omit it from the superscript for the
sake of simplicity.

Assuming the induction holds up to α, the iterability of the second pha-
lanx implies the iterability of the first one. This is because Ki[ ~A,B ∩ γi]
is embedded into K[ ~A,B] via π̃i, thus (S)iα can also be embedded to Sα,
therefore, any iteration of (W,Sα,Λα)i is embeddable to an iteration of
(W,Sα,Λα).

For the other direction, assume (W,Sα,Λα)i is iterable and let’s consider
first the case where (S)iα is a set mouse. By factoring the map π̃j we get
Ult((Q)iα, π̃i◦(π̃j)i � (λα)i) = Ult(Ult((Q)iα, (π̃j)

i � (λα)i), π̃i � (Λα)i). But
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(Sα)i = Ult((Qα)i, π̃i � (λα)i)CWi and Ult((Sα)i, π � ((Λα)i)) embeds to
π((Sα)i). Since Ult(Siα, π � ((Λα)i)) is an initial segment of Sα up to Λα

and (W,π((Sα)i),Λα)) is iterable, (W,Sα,Λα) is also iterable.

To deal with the case where (Sα)i is a proper class we use the fact
that (Sα)i = Ult(Wi, E

Wi

(Λα)i
). Like before we get Ult(Wi, π̃i ◦ πEWi

(Λα)i
) =

Ult(Ult(Wi, E
Wi

(Λα)i
), π̃i) = Ult((Sα)i, π̃i). Once more the iterability of

(W,π((Sα)i),Λα)) and the agreement of Ult(Siα, π � ((Λα)i)) with (Sα)i

guarantee the iterability of (W,Sα,Λα).

Using the above subclaim, we get that the sequence (Kj : j < i) can be
constructed in K[ ~A,B ∩ γi] as exactly as in K[B], thus (pj : j < i) is also
contained in K[ ~A,B ∩ γi]. Therefore K[ ~A,B ∩ γi] � pi = ι.

• cf(γi) = ω :

By the induction hypothesis, for every j < i,K[ ~A∩(γi+1), B∩γi] � pj ≤ ι.
On the other hand, K[ ~A,B ∩ γi] � cfγi = ω, which resolves the case as
pi = ∪

j<i
pj.

Following the above, K[ ~A∩ (γι + 1), B ∩ γι] � pι ∈ P and this finishes the
lemma because pι meets every set of (Di : i < ι).

Remark 6.14. Suppose G is the generic added by P and set B̃ = B⊕∪G.
B̃ is the reshaped version of B.

Having reshaped the interval [ι, κ), we can proceed to the almost disjoint
coding which will eventually code B̃ into C. This coding will be done using
a collection of almost disjoint sets (Bi : i < κ) which will be inductively
generated in K[ ~A] along with the initial segments of B̃. In the final
extension we want B̃ to be coded by i ∈ B̃ ⇔ “Bi ∩ C is bounded”.

Definition 6.15. For a limit i < κ, let Bγi be the constructibly least set
in K[ ~A, B̃ ∩ γi] which is almost disjoint to the elements of the sequence
(Bj : j < i). For i = j + 1 < κ, let (Bk : k ∈ (γj, γi]) be the constructibly
least in K[ ~A, B̃ ∩ γi] sequence extending (Bk : k ≤ γj) to a sequence of
pairwise almost disjoint sets . It is easy to notice that (Bj : i < κ) is
definable because we have performed the reshaping.
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Now we apply the a.d. coding Q which is using the sets defined above.
Let C be the union of the first coordinates of the generic added by Q.
Then the usual properties hold true:

Lemma 6.16.

(a) Q is < ι-closed.

(b) Q satisfies the ι-cc.

(c) ∀i ∈ κ (i ∈ B̃ ⇔ Bi ∩ C is bounded).

Proof. They are all basic properties of the a.d. forcing.

Having performed all the codings required we can derive theorem 6.1 once
we show that we can effectively decode.

Proof. (of Theorem 6.1)

We prove by induction on i ≤ ι that (B̃ ∩ γj : j < i), (Bj : j < γi) ∈
K[ ~A,C]. Suppose this is true for every j < i. Then B̃ ∩ γi ∈ K[ ~A,C]

which implies that Bγi ∈ K[ ~A,C] ⊃ K[ ~A,B ∩ γi, (Bj : j < γi)]. But
now γi ∈ B̃ iff C ∩ Bγi is bounded. Therefore B̃ ∩ γi ∈ K[ ~A,C] thus
(B̃ ∩ γj : j ≤ i) is also contained in the same set. Here we are using the
fact that every almost disjoint set is defined in a unique way using the
constructibility structure of K[ ~A,C].

Finally B ∩ sup
i<κ

γi = B ∈ K[ ~A,C] which is what we wanted to prove.

Both of the forcings which were mentioned preserve cofinalities, thus the
same holds for their two steps iteration that carries out the coding.
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Connections with Absoluteness

One long series of questions in set theory concerns the potential of forcing
well-orderings of the reals which are definable in a simple way. On the
other hand, for every such result there exists a -somehow complementary-
one, about forcing absoluteness of certain categories of forcings and for
formulas of a certain complexity (for our purposes let’s say in L(R)).

The factor that determines the category of forcings for which L(R) is
absolute, is the large cardinal consistency strength of the universe. For
example, a weakly compact cardinal is needed to get absoluteness for c.c.c.
forcings, a remarkable cardinal for proper forcings and the existence and
full iterability of M ]

ω for all forcings. Correspondingly, if there is no inner
model with a weakly compact cardinal we may add a well-ordering of R
with a c.c.c. forcing. If there is no inner model with a remarkable cardinal
we may add this well-ordering with a proper forcing and if there is no inner
model with ω Woodin cardinals and an extender above them, then we can
only say that there is some forcing that adds such a well-ordering1.

The case we are interested in here, is the one related to the collection of
stationary preserving forcings. The consistency strength of those problems
lies at the level of strong cardinals. It is already known by [28] that
below a strong cardinal one can force a well-ordering which is ∆1

3 using
a stationary preserving notion. Here we extend this to the case where
strong cardinals are allowed to exist in K, but every ω2-strong must lie

1For a more detailed description of this situation, look at the introduction of [27].

66
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below ωV1 . We will use the coding theorem we produced in chapter 5 in
order to get those results.

7.1 Definable well-orderings via coding

Using the coding theorem (5.1), we may force the existence of nicely
definable well-orderings of R. Just like before, the complexity of those
orderings directly depends on the number of strong cardinals in K|ω1.

Theorem 7.1. Suppose there is no inner model with a Woodin cardinal
and K �“κ is a strong cardinal ⇒ κ < ω1”. Then there is a forcing P
such that:

(a) if there are n strong cardinals in K below ω1, then there is a ∆1
n+3

well-ordering of the reals in the generic extension;

(b) if the ordertype of the set of strong cardinals in JKω1
is strictly below

ωθ ≤ ω1, then there is a well-ordering of the reals in J1+θ(R) in the
generic extension;

(c) P preserves stationary subsets of ω1.

Proof.

(a) We repeat the proof of theorem 5.1 with a few modifications. In the
beginning we choose a δ which is additionally above 2ω. This way
R = ω1 in all the generic extensions after P0. Now let < be a well-
ordering of R. Using a bijection f : ω1 → R, we may view < as a
subset of ω1 × ω1 which is easily coded to a subset A0 of ω1 using
Gödel’s pairing function. Using again standard techniques, we may
also code f to an A1 ⊂ ω1

2.

If A2 is the set derived from P1, which codes Hω2 over K|ω2, then
we set A = A0 ⊕ A1 ⊕ A2. We continue by coding A down to a real
and getting a ∆1

n+3 definition for it. Since the procedure of retrieving
the information of < does not increse this complexity, it is still ∆1

n+3

when viewed as a set of reals.
2See the proof of lemma 4.4.
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(b) We use the same procedure as in (a). Namely we run the proof of
theorem 5.1 by shifting δ up if needed and adding the information
of < to the set to be coded. The final comlplexity is formed by the
order-type of the strongs in K|ω1.

(c) Since in both (a) and (b) we used essentially the forcing of theorem
5.1, the proof of this property is the same.

Remark 7.2. This is one of the main ways this kind of coding theorems
can be applied. One transforms some structure M of size ω1 to a subset
of ω1, then adjoins it to the set coding Hω2 and codes it down to a real.
The low complexity of the coding structures will then guarantee that M
also has a low complexity, as it can be decoded using only them and a
real.

7.2 Definable well-orderings and absoluteness

The ability to force well-orderings of the reals blocks generic absolute-
ness, even for categories of forcings so small as the c.c.c. forcings. The
absoluteness which is blocked, is that of formulas which have complexity
one real quantifier above the complexity of the well-ordering we can add.
Furthermore, the weaker form of 2-step absoluteness also fails in the same
manner. Before proceeding we define the notions of absoluteness we will
need.

Definition 7.3. Suppose P is a category of forcings. Then,

(a) Σ1
n formulas are absolute for P forcings iff for every P ∈ P , every Σ1

n

formula φ and every vector ~x of reals, φ(~x)↔ 
P φ(~̌x).

(b) Jα(R) is absolute for P forcings iff for every P ∈ P , every formula φ
and every vector ~x of reals, Jα(R) � φ(~x)↔ 
P [Jα(R) � φ(~̌x)].

(c) Σ1
n formulas are 2-step absolute for P forcings iff for every P ∈ P ,

P “Σ1

n formulas are absolute for P forcings”.
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(d) Jα(R) is 2-step absolute for P forcings iff for every P ∈ P , 
P “Jα(R)

is absolute for P forcings”.

Below we describe the cases of interest were well-orderings block absolute-
ness. The proofs are straightforward and they can be applied the same
way in different settings.

Lemma 7.4. Suppose a well-ordering of R which is Π1
n+3 can be added

using a forcing of some category P extending the c.c.c forcings category.
Then there is no forcing extension where Π1

n+4 formulas are 2-step abso-
lute for forcings of type P.

Proof. Assume towards a contradiction that Π1
n+4 formulas become ab-

solute for P forcings after applying any P notion. First use the forcing
which adds a Π1

n+3 well-ordering of the reals defined by ψ(x). The exis-
tence of a Π1

n+3 well-ordering defined by φ can be expressed by a Π1
n+4

formula. The latter states that for every real, coding in a simple way a
countable sequence of reals, φ is a linear ordering (here we need just the
first two reals of the sequence) and the sequnce is not strictly decreasing
realtive to φ.

Therefore, by our assumption, after further using a P notion, ψ(x̌) should
still define a well-ordering of R. Now add ω many Cohen reals with a c.c.c.
forcing. By Cohen’s argument for the independence of AC3, there is no
well-ordering of the reals definable with real parameters. But this forcing
is in P and ψ(x̌) defines still a well-ordering, contradiction.

Lemma 7.5. Suppose a well-ordering of R which is in Jα(R) can be added
using a forcing of some category P containing the c.c.c. notions. Then
there is no forcing extension where Jα(R) is 2-step absolute for forcings
of type P.

Proof. It is the same idea as above. We add a well-ordering in Jα(R)

with a P forcing. Since Jα(R) is closed under real quantifiers, Jα(R)

absoluteness is enough to guarantee that this well-ordering will remain
in further P-extensions. But then, adding ω cohen reals, we destroy it
getting a contradiction.

3Look e.g. [11], 14.36.
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7.3 Limitations on forcing stationary preserv-
ing absoluteness

Following the aforementioned connections of coding with absoluteness the
reader should not be surprized that we will apply our coding theorem
get information about absoluteness. Ideally we would like to directly
extend the coding result of [28] and get lower consistency strength bounds.
Unfortunately, our assumption of the non-existence of strong cardinals in
K|ω2 above ω1 does not allow us to proceed this way.

Nevertheless, we can prove that the standard methods of producing abso-
luteness by collapsing cardinals above strongs cannot be used to get more
absoluteness than the one allowed by the ordertype of the strong cardinals
of K|ω1. The main result of this form is the following:

Theorem 7.6 (H. Woodin). Suppose κ is a strong cardinal. Then 2-step
generic absoluteness for Σ1

4 formulas holds in the extension by Col(ω, 22κ).

The above is easily extended to the case where more strongs exist below κ.
Note though that one cannot reach only absoluteness below Jω1(R) since
all the strongs are collapsed to ω. For more absoluteness one needs more
consistency strength than the mere existence of strong cardinals. This
theorem has recently been refined by Trevor Wilson who reduced 22κ to
κ+ in [37].

Theorem 7.7 (T. Wilson). Suppose κ is a strong cardinal. Then 2-step
generic absoluteness for Σ1

4 formulas holds in the extension by Col(ω, κ+).

The following two theorems provide a limit to the complexity of the sen-
tences which become 2-step absolute by the above collapsing forcings.
Furthermore, one only needs to consider stationary preserving forcings
to get the limitations. The corresponding complexities depend on the
number of strong cardinals of K.

Theorem 7.8. Suppose λ is a cardinal of K which is not strong and such
that there exist n many strong cardinals below it. Then 2-step Σ1

n+4 abso-
luteness for stationary preserving forcings can not be forced by collapsing
λ to ω over K.
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Proof. After applying Col(ω, λ), all the strong cardinals of K|ω2 are be-
low ω1. Thus we may apply 5.1 to get an extension containing a ∆1

n+3

well-ordering of the reals using a stationary preserving notion. By 7.4,
this makes 2-step Π1

n+4 absoluteness false.

Theorem 7.9. Suppose λ is a cardinal of K which is not strong and
such that there exist < ωθ many strong cardinals below it. Then 2-step
J1+θ[R] absoluteness for stationary preserving forcings can not be forced
by collapsing λ to ω over K.

Proof. Exactly as above, by using 7.5 instead of 7.4.

One may hope that by Levy collapsing a strong to ω1, the desired abso-
luteness might be produced. Nevertheless, this is also not the case as we
will see below. In general every forcing which leaves the interval [ω1, ω2]

clean of strong cardinals will not be able to produce the desired absolute-
ness. We leave it to the imagination of the reader to produce results of
the same flavor.

Theorem 7.10. Let κ be a strong cardinal of K such that there are n or
< ωθ strong cardinals below it. Then Col(ω,< κ) over K does not produce
2-step Π1

n+4 or respectively Jθ[R] absoluteness for stationary preserving
forcings.

Proof. Let G be a generic for the Col(ω,< κ) over K. We have that
κ = ω

K[G]
1 and (κ+)K = ω

K[G]
2 . We run exactly the argument of chapter 5

to reshape over the collapsed structures and then code down to a real. Ev-
erything functions the same way, except from the proof that the collapsed
structures are lined up. This actually gets simpler in this case, as there
are no cardinals of K in (ω1, ω2), therefore both sides in the comparison
of the phalanges trivially don’t move.

This way we get a version of theorem 5.1 with the current assumptions.
Then using 7.4 and 7.5 we get the 2-step-non-absoluteness.
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K, 5, 7, 8
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♦+
κ+ , 4

♦+
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n(P, κ), 57

U, 2
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