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Generic automorphisms and green fields

Martin Hils

Abstract

We show that the generic automorphism is axiomatizable in the green field of Poizat (once
Morleyized) as well as in the bad fields that are obtained by collapsing this green field to
finite Morley rank. As a corollary, we obtain ‘bad pseudofinite fields’ in characteristic 0. In
both cases, we give geometric axioms. In fact, a general framework is presented allowing this
kind of axiomatization. We deduce from various constructibility results for algebraic varieties in
characteristic 0 that the green and bad fields fall into this framework. Finally, we give similar
results for other theories obtained by Hrushovski amalgamation, for example, the free fusion of
two strongly minimal theories having the definable multiplicity property. We also close a gap in
the construction of the bad field, showing that the codes may be chosen to be families of strongly
minimal sets.

1. Introduction

For more than two decades now, new and often unexpected stable structures have been
constructed using Hrushovski’s amalgamation method, starting in 1988 when Hrushovski
obtained a strongly minimal theory that violated Zilber’s trichotomy conjecture (see [14]).
This construction is called the ab initio case. The fusion of two strongly minimal structures
having the definable multiplicity property (DMP) (that is, definable Morley degrees) into a
single one [13] then showed that the realm of strongly minimal theories is vast, even when one
only looks at strongly minimal expansions of algebraically closed fields.

Poizat’s bicoloured fields are expansions of algebraically closed fields by a new predicate.
The black fields (where a new subset is added) answer a question of Berline and Lascar about
possible ranks of superstable fields [23]. The construction of the green fields, algebraically
closed fields of characteristic 0 with a proper subgroup of the multiplicative group of the
field, requires non-trivial results from algebraic geometry, in order to establish the relevant
definability properties needed for the amalgamation construction to work [24]. Poizat’s green
fields are infinite rank analogues of so-called bad fields, fields of finite Morley rank with a
definable proper infinite subgroup of the multiplicative group. In positive characteristic, bad
fields are very unlikely to exist, by a result of Wagner [28]. Their absence would have simplified
the study of groups of finite Morley rank, in particular that of infinite simple groups of finite
Morley rank which according to Cherlin–Zilber’s Algebraicity Conjecture should be algebraic
groups. Baudisch, Martin Pizarro, Wagner and the author showed in [3] that Poizat’s green
field may be collapsed into a bad field.

The positivity of the predimension is one of the key features of Hrushovski’s amalgamation
method. Zilber suggested that one interprets this as a generalized Schanuel condition, due to
the analogy with Schanuel’s Conjecture (SC) which asserts that, for any Q-linearly independent
tuple (y1, . . . , yn) of complex numbers one has tr.deg(y1, . . . , yn, ey1 , . . . , eyn/Q) ! n. This
conjecture is wide open. Ax [1] proved a differential version of it. In the case of the green
fields, the analogy raised by Zilber is supported by two facts. On the one hand, assuming (SC),
Zilber constructs a natural model of the theory of the green field of Poizat, with universe
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the complex numbers, and which has an ‘analytic’ flavour. On the other hand, Ax’s result,
or rather a consequence thereof, a weak version of Zilber’s Conjecture on Intersections with
Tori (weak CIT), is essentially used in the construction by Poizat. Weak CIT is a finiteness
result on intersections of algebraic varieties with cosets of tori in characteristic 0 which allows
to control atypical components of such intersections, that is, those having a greater dimension
than the expected one.

If T is a stable model-complete theory, then one may build the theory Tσ of models of T with
a distinguished automorphism. It is an interesting question to determine whether Tσ admits a
model-companion. If it does, then we denote it by TA and say that the generic automorphism
is axiomatizable in T . The geometric model theory of TA (paradigmatically that of ACFA in
[6]) has proved to be a powerful tool when applied to problems in algebraic geometry, number
theory and algebraic dynamics (see, for example, [7, 8, 15, 17, 25]). Whether TA exists or not
is a test question on how well one definably controls ‘multiplicities’ in T . Existence of ACFA,
for example, is an easy consequence of the fact that being irreducible is definable in families of
algebraic varieties; the abstract analogue of this for a theory of finite Morley rank is the DMP.

For many structures obtained by Hrushovski amalgamation (when definably expanded to
a language in which they become model-complete), it is quite elementary to show that the
generic automorphism is axiomatizable, using so-called ‘geometric axioms’. However, in the
green fields of Poizat and in the bad fields, using just weak CIT one only gains good definable
control of dimension and rank. In this vein, there is the result of Evans that the green fields do
not have the finite cover property [10]. But in order to axiomatize the generic automorphism,
we also need a definable control of ‘multiplicities’. There are difficulties related to a necessary
choice of green roots, and Kummer theory comes into the picture.

The paper is organized as follows. In Section 2, we present a framework for ‘geometric
axioms’ for TA in the case where T is a stable, complete and model-complete theory: we show
in Proposition 2.5 that such an axiomatization may be given if T admits a geometric notion
of genericity (see Definition 2.4). We then review the construction of the green fields of Poizat
and of the bad fields, including the relevant uniformity results from algebraic geometry used
in the course of the construction (Section 3).

Section 4 is devoted to the proof of a definability result in characteristic 0. We show
that being Kummer generic is definable for algebraic varieties V among an algebraic family
(Proposition 4.5), where Kummer genericity of V is a property defined in terms of Kummer
extensions of the field of rational functions K(V ). Definability of Kummer genericity is then
used to overcome the difficulties related to the choice of green roots that were mentioned above.
This also enables us to close a gap in the construction of the bad field which had been observed
by Roche (see Corollary 4.8).

In Section 5, we use the definability of Kummer genericity to prove the main results of the
paper, namely that the generic automorphism is axiomatizable in the green field of Poizat
(Theorem 5.2) and in the bad fields (Theorem 5.5). From the latter result, passing to the fixed
structure, we deduce the existence of ‘bad pseudofinite fields’ (Corollary 5.6).

Finally, in the last section, we mention existence results of TA for other theories obtained by
Hrushovski amalgamation. The common feature is that a geometric notion of genericity may
be exhibited in these theories in a straightforward way, using the respective ‘base theories’. A
full proof is presented in the case of the free fusion of two strongly minimal theories having
DMP. The section also includes a brief review of Hrushovski’s amalgamation method.

2. Generic automorphisms of stable theories

Let T be a complete L-theory, and let Lσ = L ∪{ σ}, where σ is a new unary function symbol.
We consider the Lσ-theory Tσ obtained by adding to T axioms expressing that σ is an
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L-automorphism of the corresponding model of T . If T is model-complete, it follows that
Tσ is an inductive theory, so it has a model-companion (which we denote by TA if it exists) if
and only if the class of its existentially closed models is elementary. In this case, we say that
the generic automorphism is axiomatizable in T , or that TA exists.

If T is an arbitrary complete theory, then we say that the generic automorphism is
axiomatizable in T if this holds for some expansion by definitions T ∗ of T , which is model-
complete. This does not depend on the choice of T ∗, and so we may as well assume that T ∗

eliminates quantifiers, by taking the Morleyization of T . Hence, we really deal with some kind
of relative existence of a model-companion.

If TA exists for some stable theory T , then all its completions are simple (see Fact 2.1), and
in general unstable. The reader may consult [26] for a survey on simple theories, although we
shall make no real use of them in the present paper.

Some notation: in any model (M,σ) of Tσ we denote by acl(A) the algebraic closure of A
in the sense of M eq |= T eq, and by aclσ(A) the set acl(

⋃
z∈Z σ

z(A)), a subset of M eq that is
easily seen to be closed under (the induced actions on M eq of) σ and σ−1, and algebraically
closed in the sense of T eq.

2.1. Some known results

If T has the strict order property, then TA does not exist [19]. Kikyo and Pillay [18] conjectured
that the existence of TA implies that T is stable. In the following, we concentrate on stable
theories. For the rest of this section, we assume that T is complete, model-complete and stable.
Fact 2.1 lists some basic results shown by Chatzidakis and Pillay [9].

Fact 2.1. Let T be a stable complete theory with quantifier elimination, such that TA
exists.

(1) The algebraic closure in models of TA is given by aclσ.
(2) For Ai ⊆ Mi |= TA, i = 1, 2, one has A1 ≡Lσ A2 if and only if aclσ(A1) ∼=Lσ aclσ(A2)

(over the map sending A1 to A2). In particular, the completions of TA are given by the
Lσ-isomorphism types of acl(∅) = aclσ(∅).

(3) Any completion T̃ of TA is simple (supersimple if T is superstable), and the following
characterization of non-forking holds:

A
T̃

|"
B

C ⇔ aclσ(AB)
T

|"
aclσ(B)

aclσ(BC).

(4) Assume in addition that T eliminates imaginaries and that any algebraically closed set
is a model of T . Then any completion of TA eliminates imaginaries, and the definable set
F = Fix(σ) = {m ∈ M | σ(m) = m} is stably embedded in M .

The existence of TA may be considered as a (very nice) property of the initial theory T .
Kudaiberganov observed that for a stable theory T , this implies T does not have the finite
cover property (that is, is nfcp). Baldwin and Shelah [2] gave an abstract characterization of
those stable theories T for which TA exists. (It consists of a strengthening of nfcp, is purely
in terms of T and uses ∆-types.) In this direction, one may also mention the following result
due to Hasson and Hrushovski.

Fact 2.2 [12]. Let T be a strongly minimal theory. Then TA exists if and only if T has
the DMP.
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Recall that a theory T of finite Morley rank has the DMP if, for any pair of natural numbers
(r, d) and any formula ϕ(x̄, b̄) with MRD(ϕ(x̄, b̄)) = (r, d), there exists θ(z̄) ∈ tp(b̄), such that
MRD(ϕ(x̄, b̄′)) = (r, d) whenever |= θ(b̄′). (See [13] for a discussion of the DMP.)

2.2. A framework for geometric axioms

The framework we present here allows to unify existing proofs showing that TA exists for
specific stable theories T . The common feature of these proofs is the axiomatization of TA in
terms of what is called ‘geometric axioms’. In a way, we give in what follows a general principle
to organize such proofs. Compared with the characterization of stable complete theories in
which the generic automorphism is axiomatizable given in [2], the criterion we present is of a
more ‘geometric’ nature, since it brings global considerations into play.

Before we give definitions, let us start with a motivating example. If (M,σ) |= Tσ and X ⊆
Mn is LM -definable, say X = ϕ(M, b̄) for some L-formula ϕ(x̄, ȳ) and b̄ ∈ M , let Xσ = {σ(c) ∈
Mn | c̄ ∈ X} = ϕ(M,σ(b̄)). Clearly, MRD(X) = MRD(Xσ).

Example 2.3 [9]. Let T be a theory of finite Morley rank with DMP and such that MR
is additive: for all ā, b̄ and C one has MR(āb̄/C) = MR(ā/b̄C) + MR(b̄/C).

Then TA exists. More precisely, if (M,σ) |= Tσ, then (M,σ) is existentially closed (that is,
a model of TA) if and only if the following condition holds:

(∗) Assume that X ⊆ Mn and Y ⊆ X ×Xσ are LM -definable sets of Morley degree 1, such
that if (ā, ā′) is generic in Y (over M), then ā is generic in X and ā′ is generic in Xσ.
Then there exists c̄ ∈ Mn, such that (c̄,σ(c̄)) ∈ Y .

If f : Y → X is a definable function, with MRD(Y ) = (n, 1), MRD(X) = (m, 1), then, by the
additivity of MR, f maps the generic type of Y to the generic type of X if and only if MR({ā ∈
X | MR(f−1(ā)) = n−m}) = m. Since MR and MD are definable in T by assumption, this
shows that the condition (∗) may be expressed in a first-order way.

Let Rg be a relation defined on pairs of the form (p(x̄),ϕ(x̄)), where p(x̄) ∈ S(M) is a finitary
type over some model M |= T and ϕ(x̄, b̄) ∈ p is a formula.

(1) If (p,ϕ) is in Rg, then we say that p is generic in ϕ. A tuple ā ∈ N " M is generic in ϕ
over M (where ϕ is a formula with parameters from the model M) if p := tp(ā/M) is generic
in ϕ, that is, if the pair (p,ϕ) is in Rg.

(2) A formula ψ(x̄, z̄) (without parameters) is called nice if, for any b̄ with ψ(x̄, b̄) ,= ∅ and
any model M containing b̄, there is a unique type p ∈ S(M) which is generic in ψ(x̄, b̄). A
formula ψ(x̄, b̄) ,= ∅ is called nice if ψ(x̄, z̄) is nice.

(3) A type p ∈ S(M) is nice if N(p) - p holds, where

N(p) := {ψ(x̄, b̄) nice | p is generic in ψ(x̄, b̄)}.

Definition 2.4. The relation Rg is a geometric notion of genericity (for T ) if the following
properties hold:

(1) Invariance. Rg is invariant under automorphisms.
(2) Coherence. Let p ∈ S(N), M # N and ϕ be a nice formula with parameters from M .

Then the (unique) generic type of ϕ over N restricts to the generic type of ϕ over M .
(3) Enough nice types. For every n-type p0 over some model M , there is (for some m) a nice

type p ∈ Sn+m(M), such that π(p) = p0, where π is the natural projection Sn+m(M) →
Sn(M).

(4) Definability of generic projections. Let x̄ ⊇ x̄1, and let ψ(x̄, b̄) and ϕ(x̄1, b̄1) be nice
formulas, with generic types p(x̄) and p1(x̄1) in S(M), respectively. Assume that |=
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ψ(x̄, b̄) → ϕ(x̄1, b̄1) and π1(p) = p1. Then there is θ(z̄, z̄1) ∈ tp(b̄b̄1), such that, for all
b̄′b̄′1 |= θ(z̄, z̄1), one has ψ(x̄, b̄′) ,= ∅, |= ψ(x̄, b̄′) → ϕ(x̄1, b̄′1) and the unique generic type
p′ of ψ(x̄, b̄′) projects onto the unique generic type p′1 of ϕ(x̄1, b̄′1).

In a stable theory the non-forking extension of a stationary type is the unique extension
which is invariant under automorphisms. Thus, for a nice formula ϕ(x̄, b̄) and b̄ ∈ M # N , the
generic type of ϕ over N is the non-forking extension of the generic type over M .

Here is the result the notion is made for.

Proposition 2.5. Suppose that T admits a geometric notion of genericity Rg. Then TA
exists.

Proof. We give ‘geometric axioms’ for TA, using the relation Rg. Let (M,σ) |= Tσ and
p̃(x̄, x̄′, x̄r) ∈ S2n+k(M) be a nice type restricting to nice types p(x̄) and p′(x̄′) in Sn(M), such
that p′ = σ(p). Let ψ(x̄, x̄′, x̄r, b̃) ∈ N(p̃), ϕ(x̄, b̄) ∈ N(p) and thus (by invariance) ϕ(x̄′,σ(b̄)) ∈
N(p′), such that

|= ψ(x̄, x̄′, x̄r, b̃) → ϕ(x̄, b̄) ∧ ϕ(x̄′,σ(b̄)).

Moreover, let θ(z̃, z̄) and θ′(z̃, z̄′) be given by property (4) applied to the pairs of formulas
(ψ(x̄, x̄′, x̄r, b̃),ϕ(x̄, b̄)) and (ψ(x̄, x̄′, x̄r, b̃),ϕ(x̄′,σ(b̄))). Put Θ(z̃, z̄) := θ(z̃, z̄) ∧ θ′(z̃,σ(z̄)). The
corresponding axiom for this choice of formulas is

∀z̃z̄∃x̄ x̄r[Θ(z̃, z̄) → ψ(x̄,σ(x̄), x̄r, z̃)].

We call these axioms the geometric axioms. We will show that a model of Tσ is existentially
closed if and only if it satisfies the geometric axioms. This is straightforward and will complete
the proof.

Let (M,σ) be an existentially closed model of Tσ, and suppose that (M,σ) |= Θ(b̃, b̄). This
means that the unique generic type p̃(x̄, x̄′, x̄r) of ψ(x̄, x̄′, x̄r, b̃) (over M) restricts to the
unique generic types p and p′ = pσ of ϕ(x̄, b̄) and ϕ(x̄′,σ(b̄)), respectively (p′ = σ(p) being a
consequence of invariance). Choose ã = (ā, ā′, ār) |= p̃ (with ã from some M∗ "L M). So ā |= p
and ā′ |= pσ. Going to some extension of M∗ if necessary, we may thus assume that there is σ∗ ∈
Aut(M∗) extending σ, such that σ∗(ā) = ā′. In particular, (M∗,σ∗) |= ∃x̄ x̄rψ(x̄,σ(x̄), x̄r, b̃).
So the same is true in (M,σ), as this is an existentially closed model, and (M,σ) satisfies the
geometric axiom corresponding to ψ and ϕ.

Conversely, let (M,σ) be a model of Tσ together with all geometric axioms. Let (M,σ) ⊆
(N,σ) |= Tσ and ā0 ∈ N , satisfying some quantifier-free Lσ-formula with parameters from M . A
standard reduction shows that we may assume that this formula is of the form χ(x̄0,σ(x̄0), b̄0),
where χ(x̄0, x̄′

0, z̄0) is an L-formula (without quantifiers). Put p0 := tpL(ā0/M) and p′0 = pσ0 :=
tpL(σ(ā0)/M) ∈ Sn(M). By condition (3) in Definition 2.4, there is a nice type p ∈ Sn+m(M)
restricting to p0. Replacing (N,σ) by some extension (Ñ , σ̃) if necessary, we may assume that
there exists a tuple ā ∈ N containing ā0, such that |= p(ā). So σ(ā) ⊇ σ(ā0). Again by (3),
applied to tpL(ā,σ(ā)/M), we may choose a nice type p̃(x̄, x̄′, x̄r) ∈ S(M) restricting to p(x̄)
and p′ = pσ, respectively.

Now we choose some arbitrary ϕ(x̄, b̄) ∈ N(p), then we choose ψ(x̄, x̄′, x̄r, b̃) ∈ N(p̃), such
that ψ(x̄, x̄′, x̄r, b̃) implies χ(x̄0, x̄′

0, b̄0) ∧ ϕ(x̄, b̄) ∧ ϕ(x̄′,σ(b̄)) (this is possible since N(p̃) - p̃).
Since (M,σ) |= Θψ,ϕ(b̃, b̄), the corresponding axiom ensures that there are tuples ᾱ, ᾱr ∈ M ,

such that M |= ψ(ᾱ,σ(ᾱ), ᾱr, b̃). In particular, (M,σ) |= χ(ᾱ0,σ(ᾱ0), b̄0), where ᾱ0 denotes the
appropriate subtuple of ᾱ. This shows that (M,σ) is an existentially closed model.
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Example 2.6. The following known proofs of existence of TA are instances of Proposi-
tion 2.5. The first two examples are from [9], the third example from [4].

(1) Let T be a theory of finite additive Morley rank with DMP (see Example 2.3).
Genericity with respect to MR gives rise to a geometric notion of genericity. Nice formulas

correspond to formulas with all instances of degree 1. Properties (1) and (2) from Definition 2.4
are easily verified, (4) follows from the additivity of MR combined with the DMP as indicated
in Example 2.3, and (3) is a consequence of the DMP (this is a degenerate case since all types
over models are nice).

(2) Let T be the theory of a totally transcendental module, or more generally a complete
theory of a one-based group G that is totally transcendental. Any definable subset of Gn is
given by a boolean combination of cosets of acleq(∅)-definable (connected) subgroups of Gn

(see, for example, [22, Corollary 4.4.6]); any strong type p is the (unique) generic type of a
coset of its stabilizer Stab(p).

It is straightforward to check that genericity with respect to Morley rank (or with respect to
stable group theory; this amounts to the same in this context) gives rise to a geometric notion
of genericity. Nice formulas are formulas with all instances of Morley degree 1.

(3) Let DCF0 be the theory of differentially closed fields in characteristic 0. It is shown in
[4, Corollary 2.15] (rephrased in our terminology) that D-genericity with respect to the Kolchin
topology is a geometric notion of genericity.

3. Green fields

We present in this section a sketch of Poizat’s construction of a green field in characteristic
0 (see [24]) as well as the construction of a bad field [3]. The green field is obtained using
Hrushovski’s amalgamation method (without collapse), whereas the bad field is constructed
by collapsing the former to a field of finite Morley rank. (We refer to Section 6 for a more
systematic treatment of this amalgamation method.)

In both constructions, uniformity results for intersections of tori with algebraic varieties in
characteristic 0 have to be used in order to establish the necessary definability properties which
make Hrushovski’s amalgamation method work. We recall these uniformity results (called weak
CIT) since they will be used in our construction of a geometric notion of genericity in the green
field and also in the proof that the bad fields have the DMP (see Section 5).

3.1. Dimension, codimension and predimension

In the following, we gather the results that will be needed to get a definable control on the
(pre-)dimension in the green fields.

Let us fix some notation (mainly following [3]): C denotes an algebraically closed field of
characteristic 0. A variety V will always be a closed subvariety of some Gn

m (which may be
identified with the set (C∗)n of its C-rational points). A torus is a connected algebraic subgroup
of Gn

m. It is described by finitely many equations of the form xr1
1 · . . . · xrn

n = 1, where ri ∈ Z.
If T is a torus and ā is generic in T over C, then the Q-linear dimension of ā over C∗ (modulo
torsion) equals the algebraic dimension of T (as a variety) and will be denoted by l.dimQ(T ) or
dim(T ). Given a closed and irreducible subvariety W in Gn

m, its minimal torus is the smallest
torus T , such that W lies in some coset ā · T . In this case, we define its codimension cd(W ) :=
dim(T )− dim(W ) = l.dimQ(W )− dim(W ), where l.dimQ(W ) := dim(T ). The predimension
of W is given by δ(W ) := 2 dim(W )− dim(T ) = dim(W )− cd(W ).

An irreducible subvariety W ⊆ V is cd-maximal in V if cd(W ′) > cd(W ) for every irreducible
subvariety W ! W ′ ⊆ V . Clearly, irreducible components of V and cosets of tori maximally
contained in V are examples of cd-maximal subvarieties.
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We now present a result that was stated by Poizat [24, Corollaire 3.7]. It is a reformulation of
a result proved by Zilber [30] (and later generalized by Kirby [20] to the context of semiabelian
varieties).

Fact 3.1. Let V = {Vb̄ | b̄ |= θ(z̄)} be a uniformly definable family of closed subvarieties
of Gn

m. There exists a finite collection of tori T (V) = {T0, . . . , Tr}, such that, for any member
Vb̄ of the family and any cd-maximal subvariety W of Vb̄, the minimal torus of W belongs to
T (V).

This property, which Zilber called weak CIT, is at the origin of a series of definability results,
as we shall see in what follows.

A matrix M = (mi,j) ∈ Mat(n× n, Z) acts on Gn
m. For ā ∈ Gn

m we put

āM :=




n∏

j=1

a
m1,j

j , . . . ,
n∏

j=1

a
mn,j

j



 .

Definition 3.2. Let V ⊆ Gn
m be an irreducible variety defined over the algebraically closed

field K. The variety V is called free if its minimal torus is equal to Gn
m. It is called rotund

if it is free and if, for any K-generic tuple ā in V and any M ∈ Mat(n× n, Z), putting W :=
locus(āM/K), one has δ(W ) ! 0 (In Zilber’s terminology [31], our notion of rotund corresponds
to ‘G-normal’ and ‘G-free’; the term ‘rotund’ is taken from [20]. Since we only use rotund
varieties that are free as well, we include the freeness condition in our definition.).

A property P of algebraic varieties is called definable if, for any uniformly definable family
of algebraic varieties V = {Vb̄ | b̄ |= θ(z̄)}, the set of parameters b̄, such that Vb̄ has the property
P is definable.

Fact 3.3 [20]. (1) Freeness is a definable property.
(2) Rotundity is a definable property.

Proof. For convenience, we include the argument. Let Vb̄ be an instance of a uniformly
definable family V of irreducible varieties in Gn

m. Since the minimal torus of Vb̄ lies in the finite
collection of tori {T0, . . . , Tr} attached to V, it is sufficient to avoid all Ti ,= Gn

m from this
collection to force the minimal torus of Vb̄ to be equal to Gn

m. This can be done definably and
shows (1).

To prove (2), we may assume that the dimension of Vb̄ is equal to k throughout the family,
and that all instances are free. Thus, 2k − n = d ! 0, and it suffices to impose the following
crucial condition:

(∗) For generic g ∈ Vb̄ and T ∈ T (V) and any irreducible component W of Vb̄ ∩ ḡ · T of
maximal dimension, dim(W )− cd(W ) $ d holds.

The finiteness of T (V) implies that cd is definable. It is well known that dim is definable
as well. Using definability of types in ACF , it follows that (∗) is a definable condition. It
is not hard to see that (∗) is enough to guarantee the rotundity of Vb̄ (cf. the proof of
[3, Lemma 4.3]).

Let us mention that freeness is also a definable property in positive characteristic. One may
prove this using Zilber’s Indecomposibility Theorem. (We thank Martin Bays for pointing this
out to us.)
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Lemma 3.4. Let V be an irreducible subvariety of Gn
m and let T (V ) be the finite family

of tori given in Fact 3.1. Assume that V is free. Let W ! V be a proper irreducible subvariety,
such that δ(W ) ! δ(V ).

Then the minimal torus of W is contained in some T ∈ T (V ) with T ! Gn
m.

Proof. From dim(W ) < dim(V ) and δ(W ) ! δ(V ), we infer cd(W ) < cd(V ). Let W ′ be cd-
maximal, such that W ⊆ W ′ ⊆ V and cd(W ′) $ cd(W ). The minimal torus of W is contained
in the minimal torus T of W ′. Clearly, T is a proper subtorus of Gn

m; moreover, T ∈ T (V ) by
Fact 3.1.

3.2. Green colour, green fields of Poizat and bad fields

We now recall the construction of the green field of Poizat [24] and of the bad field [3]. We
expand the language of rings by a new unary predicate Ü and thus work in L = Lrings ∪ {Ü}.
Elements in Ü will be called green, those not in Ü are white. We consider L-structures of the
form K = (K,+,−,×, 0, 1, Ü(K)), such that K is an algebraically closed field of characteristic
0 and Ü(K) a subgroup of the multiplicative group K× which is divisible and torsion-free. So
Ü is a vector space over Q. If we write K ⊆ L, then we mean that K is an L-substructure of
L, in particular Ü(L) ∩K = Ü(K).

We call K a green field if δ(k) = 2 tr.deg(k)− l.dimQ(Ü(k)) ! 0 for every k ⊆ K of finite
transcendence degree. Here δ(k) is called the predimension of (k, Ü(k)). More generally, for
K ⊆ L, such that tr.deg(L/K) and l.dimQ(Ü(L)/Ü(K)) are finite, we put

δ(L/K) = 2 tr.deg(L/K)− l.dimQ(Ü(L)/Ü(K)).

An extension K ⊆ L of green fields is called self-sufficient if δ(L′/K) ! 0 for every green field
L′, such that K ⊆ L′ ⊆ L and tr.deg(L′/K) is finite; we write K $ L if this holds. If A ⊆ L
is any subset, then there is a minimal (with respect to inclusion) green field K ′, such that
A ⊆ K ′ $ L; this is called the self-sufficient closure of A in L and denoted by clω(A) = clLω(A).
Note that this notion depends on L, but often we omit the superscript if L is clear from the
context. If A contains a Q-basis of the green points of its self-sufficient closure in L, then we
also write A $ L (by a slight abuse of notation), and A is called a self-sufficient subset of L.
Note that in this case clLω(A) is given by Aalg, the algebraic closure of A in the field sense.

If ā is a finite tuple from L and B ⊆ L, then the dimension of ā over B is given by d(ā/B) =
dL(ā/B) = δ(clω(Bā)/ clω(B)). Note that if K ⊆ A ⊆ L for some K $ L with tr.deg(A/K) <
∞, then tr.deg(clω(A)/K) < ∞ as well.

The following lemma is a direct consequence of the definitions.

Lemma 3.5. Let K ⊆ L be an extension of green fields. Assume that (g1, . . . , gn) is a basis
of Ü(L) over Ü(K). Then K $ L if and only if locus(ḡ/K) is rotund.

Let (C0,$) be the class of green fields with self-sufficient embeddings.

Fact 3.6 [24]. (a) The class C0 is elementary, and (C0,$) has the amalgamation property
(AP) and the joint embedding property (JEP). Moreover, up to L-isomorphism, the subclass
Cfin
0 of green fields of finite transcendence degree is countable.
(b) Let Kω be the Fräıssé–Hrushovski limit of (Cfin

0 ,$). Then Kω is a saturated model of
its L-theory Tω.

(c) The algebraic closure in Tω equals the self-sufficient closure.
(d) Let A,A′ ⊆ K |= Tω. Then tpTω

(A) = tpTω
(A′) ⇔ clω(A) 4L clω(A′) (over the map

sending A to A′).



GENERIC AUTOMORPHISMS AND GREEN FIELDS 231

(e) The theory Tω is ω-stable of Morley rank ω · 2, with MR(Ü) = ω. Moreover, MR(ā/A) <
ω ⇔ d(ā/A) = 0 for all sets A and finite tuples ā.

(f) Let K |= Tω. Then any non-zero element of K may be written in the form (a + b)×
(c + d) for some green elements a, b, c, d. In particular, K is in the definable closure of Ü(K).

Remark 3.7. Assuming SC, Zilber shows in [31] that there is a natural model of Tω,
namely, the structure (C,+,×, Ü), where the set of green points is given by Ü := {exp(t(1 +
i) + q) | t ∈ R, q ∈ Q}.

The construction of Poizat provides a ‘bad field of infinite rank’ in characteristic 0. It is
possible to collapse the theory Tω to obtain a bad field, that is, a field of finite Morley rank with
a definable infinite proper subgroup of the multiplicative group of the field. In [3], Baudisch,
Martin-Pizarro, Wagner and the author construct an elementary subclass Cµ

0 ⊆ C0, such that
(Cµ

0 ,$) has (AP) and (JEP). Let Kµ be the corresponding Fräıssé–Hrushovski limit, and Tµ

be its L-theory.

Fact 3.8 [3]. (a) The Fräıssé–Hrushovski limit Kµ is saturated.
(b) Let A,A′ ⊆ K |= Tµ. Then tpTµ

(A) = tpTµ
(A′) ⇔ clω(A) 4L clω(A′) (over the map

sending A to A′).
(c) The theory Tµ is of Morley rank 2, and Ü is strongly minimal.
(d) For all A ⊆ K |= Tµ and ā ∈ K, one has d(ā/A) = MR(ā/A). In particular, aclµ(A) =

{a ∈ K | d(a/A) = 0}, where aclµ denotes the algebraic closure in Tµ.
(e) Let K |= Tµ. Then any non-zero element of K may be written in the form (a + b)×

(c + d) for some green elements a, b, c, d. In particular, K is in the definable closure of Ü(K),
so Tµ is almost strongly minimal.

(f) The L-theory Tµ is model-complete.

The following result will thus apply to the theory Tµ.

Fact 3.9 [27]. Let K be a field of finite Morley rank (in some expansion L of the language
of rings).

(a) Any algebraically closed subset of K is an elementary substructure.
(b) The theory ThL(K) eliminates imaginaries.

We mention another fact which will be needed later on. It is a direct consequence of Baudisch,
Hils, Martin Pizarro and Wagner [3, Lemma 10.3(2)].

Fact 3.10. We work in Tω or in Tµ. For any d ! 0 and any variable tuples x̄ and z̄, there is
a partial type πd(x̄, z̄), such that, for any ā and b̄, one has |= πd(ā, b̄) if and only if d(ā/b̄) ! d.

We finish this section with an example showing that in both Tω and Tµ, we cannot infer from
the characterizations of types in Facts 3.6(d) and 3.8(b), respectively, that two self-sufficient
green tuples having the same field type (over an algebraically closed and self-sufficient base)
must have the same type. The problem is that one has to choose green roots.

Example 3.11. Let L be a model of Tω or Tµ, K = Qalg ⊆ L, and let ā = (a1, a2, a3), ā′ =
(a′

1, a
′
2, a

′
3) ∈ L be green tuples. Put A = K(ā)alg, A′ = K(ā′)alg. Suppose that A and A′ are

self-sufficient in L, and that ā is a Q-basis of Ü(A) over K, and similarly for ā′ and Ü(A′).
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Suppose that both ā and ā′ are generic in the variety V given by the equation X = (Y + Z)2.
Note that exactly one of the two square roots of a1 (and of a′

1) is green. Suppose that a2 + a3

and −a′
2 − a′

3 are green. Then ā and ā′ do not have the same type over K (not even over ∅).

4. A definability result for algebraic varieties

In this section, we prove a definability result for varieties in characteristic 0, which will allow
us to deal with uniformity issues around multiplicity in green fields: it is the major ingredient
in the proof to show that the bad fields constructed in [3] have the DMP and that the green
fields of Poizat admit a geometric notion of genericity.

Definition 4.1. (1) Let L/K be a field extension with K |= ACF0, and let l ! 2
be an integer. A tuple ā = (a1, . . . , an) from L× is called l-Kummer generic over K if
Gal(K( l

√
a1, . . . , l

√
an)/K(ā)) 4 (Z/lZ)n.

The tuple ā is called Kummer generic over K if it is l-Kummer generic over K for every
l ! 2.

(2) Let V ⊆ Gn
m be an irreducible closed subvariety of the standard torus Gn

m, V defined
over K |= ACF0. The variety V is called l-Kummer generic or Kummer generic if every tuple
ā = (a1, . . . , an) which is generic in V over K is l-Kummer generic or Kummer generic over K,
respectively.

The notion of a Kummer generic tuple is taken from [32], although Zilber calls such a tuple
simple. Note that the definition of a Kummer generic variety does not depend on the choice of
the algebraically closed field K.

Let A be an abelian group, B be a subgroup of A and l ! 2 be a natural number. Recall
that B is an l-pure subgroup of A if whenever the equation lx = b has a solution in A, where
b ∈ B, then it has already a solution in B. If B is l-pure in A for every l, then it is called a
pure subgroup. Note that if Tor(A) ⊆ B, then B is l-pure in A if and only if A/B has trivial
l-torsion.

For a field extension L/K and X ⊆ L×, we denote K×〈X〉 the subgroup of L× generated
by K× ∪X. Let M be an algebraically closed field and Γ be a subgroup of the multiplicative
group M× of M . Then the divisible hull of Γ (that is, the set of elements m ∈ M×, such that
mn ∈ Γ for some n ! 1) is denoted by div(Γ).

Fact 4.2. Let K be an algebraically closed field of characteristic 0 and V ⊆ Gn
m be a closed

irreducible subvariety defined over K.
(1) Let L/K be a field extension, ā be an n-tuple from L× and l ! 2 be an integer. The

following are equivalent:
(a) ā is l-Kummer generic over K;
(b) ā is multiplicatively independent over K× and (L×

0 )l ∩ 〈a1, . . . , an〉 = 〈al
1, . . . , a

l
n〉,

where L0 = K(ā) and (L×
0 )l = {bl | b ∈ L×

0 };
(c) the elements a1/K×, . . . , an/K× generate an l-pure subgroup of rank n inside the

group K(ā)×/K×; and
(d) if αi is an lth root of ai, then tpACF0

(α1, . . . ,αn/Kā) is determined by the formulas
{xl

i = ai}1!i!n.
(2) The following are equivalent:

(a) V is l-Kummer generic; and
(b) the variety l

√
V ⊆ Gn

m given by ‘(X l
1, . . . , X

l
n) ∈ V ’ is irreducible.
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(3) Let ā be generic in V over K. Then the following are equivalent:
(a) V is Kummer generic;
(b) any group automorphism of div(K×〈ā〉) fixing K×〈ā〉 pointwise lifts to a field auto-

morphism of K(ā)alg, that is, the natural map (given by restriction) Gal(K(ā)) →
Autgp(div(K×〈ā〉)/K×〈ā〉) is surjective;

(c) V is p-Kummer generic for every prime number p; and
(d) the elements a1/K×, . . . , an/K× generate a pure subgroup of K(ā)×/K× of rank n.

Proof. Note that, with the notation from (1.b), letting A := (L×
0 )l〈a1, . . . , an〉, one has

A/(L×
0 )l ∼= 〈a1, . . . , an〉/〈a1, . . . , an〉 ∩ (L×

0 )l, so (a) ⇐⇒ (b) in (1) follows from Kummer theory
(see, for example, [21, VI. Theorem 8.1]). The other equivalences are easily verified.

In (2), note that if W is an irreducible component of maximal dimension of l
√

V , then all
the other irreducible components are multiplicative translates of W by some l-torsion element
ζ ∈ Gn

m. In particular, l
√

V is equidimensional. Now (2) follows, using (a)⇔(d) in (1). Part (3)
is left to the reader.

The pathology we encountered in Example 3.11 does not exist in case the tuples are Kummer
generic, as is shown by the following corollary.

Corollary 4.3. Let K = Kalg $ L |= T, where T equals Tω or Tµ. Let ā, ā′ ∈ L be such
that Kā $ L and Kā′ $ L. Suppose that ā and ā′ are coloured in the same way and that ā
and ā′ have the same field type over K. Moreover, suppose that ā is Kummer generic over K.
Then tpT (ā/K) = tpT (ā′/K).

Proof. Note that since Kā $ L, we have clω(Kā) = K(ā)alg (similarly for ā′). Choose a field
isomorphism α : K(ā)alg 4 K(ā′)alg extending the map Kā :→ Kā′. We have α(div(K×〈ā〉)) =
div(K×〈ā′〉), and it is easy to see that there exists σ0 ∈ Autgp(div(K×〈ā〉)/K×〈ā〉), such that

α0 ◦ σ0 : (div(K×〈ā〉), Ü ∩ div(K×〈ā〉)) 4 (div(K×〈ā′〉), Ü ∩ div(K×〈ā′〉))

is an isomorphism of groups respecting the green points (here α0 denotes the map α %div(K×〈ā〉)).
Since ā contains a basis of Ü ∩K(ā)alg over Ü(K), necessarily Ü ∩K(ā)alg = Ü ∩ div(K×〈ā〉)
(similarly for ā′). By Fact 4.2 there exists σ ∈ Gal(K(ā)) restricting to σ0, and we obtain an
L-isomorphism

α ◦ σ : (K(ā)alg, Ü ∩K(ā)alg) 4 (K(ā′)alg, Ü ∩K(ā′)alg).

The result follows, using Facts 3.6(d) or 3.8(b), respectively.

Fact 4.4 [32, Lemma 2.1]. Let K be an algebraically closed field and L/K be a finitely
generated field extension. Then L×/K× is a free abelian group.

This fact is proved by embedding L×/K× into the group of Weil divisors of a suitably chosen
variety V , such that K(V ) = L. In the proof of the following key definability result, we give
an effective version of this argument.

Proposition 4.5. Being a Kummer generic (irreducible) variety is a definable property in
characteristic 0.
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Proof. Let V = {Vb̄ | |= θ(b̄)} be a uniformly definable family of closed subvarieties of
Gn

m. If Vb̄ is not Kummer generic, then it is easy to construct a formula θ′(z̄) ∈ tp(b̄), such
that whenever |= θ′(b̄′), then Vb̄′ is not Kummer generic. By compactness, it thus suffices to
construct, for every tuple b̄0, such that Vb̄0 is Kummer generic, some θ0(z̄) ∈ tp(b̄0), such that
Vb̄′ is Kummer generic whenever |= θ0(b̄′).

So assume that Vb0 is Kummer generic. Suppose that Vb̄0 is irreducible of dimension d.
Choose I ⊆ {1, . . . , n}, |I| = d, such that, for generic ā in Vb̄0 (over K |= ACF0 containing b̄0),
one has ā ∈ K(āI)alg, with āI = (ai)i∈I (that is, āI is a transcendence basis of K(Vb̄0) = K(ā)
over K). Strengthening θ and choosing appropriate natural numbers m and k, we may assume
that every variety V = Vb̄ from the family V satisfies the following conditions (below, we shall
always work over an algebraically closed field K over which V is defined).

(a) The variety V is irreducible of dimension d.
(b) Let ā be generic in V . Then āI is a transcendence basis of K(V ) = K(ā) over K.

Moreover, [K(ā) : K(āI)] $ m.
(c) Let ā be generic in V , and ε : I → {−1, 1} be any function. Denote the tuple (aε(i)i )i∈I

by āεI . Then any aj satisfies a polynomial equation over K(āεI) of the form

Y m +
fm−1(āεI)
gm−1(āεI)

Y m−1 + . . . +
f0(āεI)
g0(āεI)

= 0,

where fl(āεI) and gl(āεI) are polynomials in āεI of total degree at most k (for 0 $ l < m).
(d) Let ā be generic in V . Then ā is multiplicatively independent over K×.
By standard arguments we may achieve (a)–(c). The property (d) is definable by Fact 3.3(1).

Claim. For a given l ! 2 there is θl(z̄) ∈ tp(b̄0/K), such that, for any b̄ with |= θl(b̄), the
variety Vb̄ is l-Kummer generic.

By Fact 4.2, Vb̄ is l-Kummer generic if and only if the variety defined by the condition
‘(X l

1, . . . , X
l
n) ∈ Vb̄’ is irreducible. This proves the claim, for the latter condition is definable in

b̄.
Since a variety is Kummer generic if it is p-Kummer generic for every prime number p, using

the previous claim, the proof of the proposition is thus completed once the following lemma is
established.

Lemma 4.6. Let V ⊆ Gn
m be as above, satisfying (a)–(d) (with m and k as in (b) and (c),

respectively). Let p > n!mnkn be a prime number. Then V is p-Kummer generic.

Proof. (i) We consider the group of (Weil) divisors of the function field K(V )/K, given by

Div(K(V )/K) :=
⊕

v∈Reg

Z · v,

where Reg = Reg(K(V )/K) denotes the set of all discrete valuations of K(V ) that are trivial
on K and such that the residue field is of transcendence degree d− 1 over K. (Alternatively, the
classical and more geometric way would be to work with the group of Weil divisors of a certain
projective variety V ′, namely, the normalization of Pd in the field K(V ) ⊇ K(Pd) = K(āI).).

For any f ∈ K(V ) there is only a finite number of v ∈ Reg(K(V )/K), such that v(f) ,= 0,
and one has f ∈ K if and only if v(f) = 0 for all v ∈ Reg(K(V )/K). This follows from standard
arguments in valuation theory. (We refer to [29, VI.§ 14 and VII.§ 4bis].) The following map is
thus a group homomorphism that induces an embedding of K(V )×/K× into Div(K(V )/K):

K(V )× −→ Div(K(V )/K), f :−→ (f) :=
∑

v

v(f) · v.
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(ii) Let v′ be in Reg(K(āI)/K). Suppose v′(ai) ! 0 for all i ∈ I. (Replacing āI by a suitable
āεI , we may always achieve this.) It follows from the assumption on v′ that the ideal of K[āI ]
given by the elements of positive valuation is a prime ideal of height 1, and so equal to (P ) for
some irreducible polynomial P = P (āI). This means that v′(P zf(āI)/g(āI)) = z for all f and
g that are not divisible by P . Denote this valuation by v′

P .
(iii) Let v ∈ Reg(K(ā)/K), let v′ be its restriction to K(āI)/K (which is an element of

Reg(K(āI)/K) by standard properties of algebraic extensions of valuations). By (ii), we may
assume that v′ = v(P )v′

P for some irreducible polynomial P = P (āI).
We will show that |v(aj)| $ mk for all j $ n. By (c),

am
j +

fm−1(āI)
gm−1(āI)

am−1
j + . . . +

f0(āI)
g0(āI)

= 0,

so there exists r < m, such that v(am
j ) = v((fr(āI)/gr(āI))ar

j) and thus

(m− r)v(aj) = v

(
fr(āI)
gr(āI)

)
.

By (b) and the fundamental inequality, |v(f)| $ m|v′
P (f)| for any f ∈ K(āI).

Moreover, since the total degrees of fr and gr are bounded by k (by (c)), it follows that
|v′

P (fr(āI)/gr(āI))| $ k. Thus, |v(aj)| is bounded by mk.
(iv) Consider the elements (a1), . . . , (an) of Div(K(V )/K). By (d) and (i), they are linearly

independent over Z, so there are valuations v1, . . . , vn ∈ Reg(K(V )/K), such that the square
matrix M = (vi(aj))i,j has non-zero determinant. Now |det(M)| $ n!mnkn by (iii) and the
Leibniz formula, so det(M) ,≡ 0 mod p (as p > n!mnkn by assumption). This means that no
element of the form

∑n
i=1 ri(ai), with 0 $ ri < p not all 0, is divisible by p in Div(K(V )/K).

It follows that
∏n

i=1 ari
i does not have a pth root in K(ā). By Fact 4.2, this shows that V is

p-Kummer generic.

Remark 4.7. Gabber suggested a completely different proof for definability of Kummer
genericity, a proof which generalizes to semiabelian varieties in arbitrary characteristic.

In joint work with Bays and Gavrilovich (see the forthcoming paper ‘Some definability results
in abstract Kummer theory’), we extract the ‘Galois theoretic’ essence of Gabber’s argument
and give a model-theoretic proof that applies to any definable abelian group of finite Morley
rank with the DMP.

Before we finish this section, let us mention an important corollary of Proposition 4.5.
It was observed by Roche that there is a gap in the construction of the bad field as given
in [3]. The reason for this is intimately related to the problem raised in Example 3.11. In fact,
[3, Bemerkung 6.7] is not true in general, and so the proof of the economic amalgamation lemma
[3, Satz 9.2] is not correct. Fortunately, we may provide the necessary technical improvement,
the existence of strongly minimal codes, in Corollary 4.8, so that the proof of the economic
amalgamation lemma goes through without any changes.

In his thesis (see the forthcoming dissertation ‘Fusion d’un corps algébriquement clos avec un
sous-groupe non-algébrique d’une variété abélienne’), Roche considers so-called octarine fields,
certain expansions of abelian varieties by a predicate for a non-algebraic subgroup, a context
that is similar to bad fields. It is explained in detail there how strongly minimal codes are used
to prove the economic amalgamation lemma. The same arguments apply in the context of bad
fields.
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Corollary 4.8. There is a collection of codes satisfying all the requirements of Baudisch,
Hils, Martin Pizarro and Wagner [3, Definition 4.7] and, moreover, that the instances of any
code are strongly minimal definable sets.

Proof. We adopt the terminology and notation from [3, Definition 4.7], restricting our
attention to minimal prealgebraic formulas ϕ(x̄), such that the corresponding variety is
Kummer generic (equivalently, any generic solution of ϕ over an algebraically closed field
is Kummer generic). We strengthen the definition of a code ϕα(x̄, z̄) by adding that, for any
non-empty instance ϕα(x̄, b̄), its Zariski closure Vα(x̄, b̄) is a Kummer generic variety (this is a
definable property by Proposition 4.5).

It follows from Corollary 4.3 that ϕα(x̄, z̄) ∧
∧

i Ü(xi) is a family of strongly minimal sets.

5. Generic automorphisms of green and bad fields

In this section, we will establish the axiomatizability of the generic automorphism in the green
and bad fields. We use the notation from Section 3.

5.1. Generic automorphisms of the green field of Poizat

Lemma 5.1. The theory Tω admits a geometric notion of genericity.

Proof. Consider a type tp(ã/K) where ã is a finite tuple from C " K |= Tω of the form
ḡg′w̄w′ (maybe after reordering), satisfying the following conditions:

(i) the elements from ḡg′ are green, and those from w̄w′ are white;
(ii) Kã $ C, and ḡ = (g1, . . . , gn) is a basis of Ü(K(ã)alg) over Ü(K), such that ḡ′ ∈ 〈Ü(K)ḡ〉;
(iii) w̄ is multiplicatively independent over Kḡ, and w̄′ ∈ K×〈ḡw̄〉;
(iv) w̄ ∈ K[g1, . . . , gn, 1/g1, . . . , 1/gn]; and
(v) ḡ is Kummer generic over K.
Call a type special if it satisfies (i)–(v) above.
Below, we define a geometric notion of genericity where the nice types are given by the

special types. Let us first show that there are ‘enough’ special types. Let K |= Tω and ā be an
arbitrary finite tuple from C " K. Choose some finite green tuple ū, such that ā ∈ K[ū]. Such
a tuple exists by Fact 3.6(f).

Combining the fact that tr.deg(clω(Kū)/K) is finite with Fact 4.4, we may find some finite
tuple ã containing ā, ã = ḡg′w̄w′ (where all the elements outside ā may be taken to be green),
such that tp(ã/K) is special.

Now suppose that tp(ã/K) is special, with ã = ḡg′w̄w′ as above. Choose a finite b̄ ∈ K such
that the following properties are satisfied:

(1) locus(ḡ/K) = U(x̄, b̄) is defined over b̄, similarly locus(ḡ, w̄/K) = V (x̄, ȳ, b̄) and
locus(ã/K) = W (x̄, x̄′, ȳ, ȳ′, b̄) (this is equivalent to CbACF(ã/K) ⊆ b̄);

(2) for any g′ from g′ there exists a green bg′ from b̄ and m1,g′ , . . . ,mn,g′ ∈ Z, such that

g′ = bg′

n∏

i=1

g
mi,g′
i ; (5.1)

(3) for any w′ from w′ there exists some bw′ from b̄, integers mi,w′ , 1 $ i $ n and ni,w′ ,
1 $ i $ l, such that

w′ = bw′

n∏

i=1

g
mi,g′
i

l∏

i=1

w
ni,w′
i . (5.2)
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Moreover, if ni,w′ = 0 for all i, then bw′ is a white element; and
(4) for any w from w̄ there is a polynomial fw ∈ K[ū, v̄] with coefficients from b̄ (so we may

write i as fw = Fw(ū, v̄, b̄)), such that

w = Fw

(
g1, . . . , gn,

1
g1

, . . . ,
1
gn

, b̄

)
. (5.3)

Let k := dim(U) = dim(W ) = tr.deg(ḡ/K) and d := d(ã/K) = 2k − n. The following con-
ditions (a)–(g) hold for b̄′ = b̄, and they are definable in b̄′ (definability follows from Fact 3.3
and Proposition 4.5):

(a) U(x̄, b̄′) is irreducible of dimension k;
(b) U(x̄, b̄′) is rotund;
(c) U(x̄, b̄′) is Kummer generic;
(d) V (x̄, ȳ, b̄′) is equal to the variety given by U(x̄, b̄′) together with the equations from (5.3),

that is, yw = Fw(x1, . . . , xn, 1/x1, . . . , 1/xn, b̄′), where yw is the variable corresponding
to w;

(e) V (x̄, ȳ, b̄′) ⊆ Gn+l
m is free (where l = lg(ȳ)); and

(f) W (x̄, x̄′, ȳ, ȳ′, b̄′) is equal to the variety given by V (x̄, ȳ, b̄′) together with the correspond-
ing equations from (5.1) and (5.2); and

(g) the quantifier-free types of b̄ and b̄′ in the language {Ü,=} coincide.

Let θ(z̄) be an L-formula, such that |= θ(b̄′) if and only if the conditions (a)–(g) are satisfied.

Claim. Suppose that b̄′ ∈ K |= Tω, such that |= θ(b̄′). Let ã = ḡg′w̄w′ be a K-generic
solution of Wb̄′ , and let L := K(ã)alg = K(ḡ)alg, Ü(L) := div(〈Ü(K)ḡ〉). Then (L, Ü(L)) is
a self-sufficient extension of (K, Ü(K)), with δ(L/K) = d. The tuple ḡg′ consists of green
elements, whereas the elements from w̄w′ are white. Assume in addition that L is self-sufficient
in C. Then tpL(ã/K) is uniquely determined by: ã is (field) generic in Wb̄′ over K, ḡg′ is green,
w̄w′ is white and Kã $ C.

By construction, Kã $ L (and so also K $ L) follows from (b). The fact that ḡg′ is a green
tuple is true by construction, together with (f) and (g). The colour assigned to each element w of
w̄ is white, since this is a multiplicatively independent tuple over Kḡ by (e) and (d). Combining
(f) and (g), we see that w̄′ consists of white elements only. Note that the irreducibility of Wb̄′

as well as δ(L/K) = d is an easy consequence of (a) together with the other conditions.
Finally, if L $ C (from which we deduce Kã $ C), then the type of ã over K is determined

in the described way, since Ub̄′ is Kummer generic (and Wb̄′ irreducible). This follows from
Corollary 4.3 and proves the claim.

Assume that U, V,W, θ, d are given as before, in the variables x̃, z̄, where x̃ = x̄x̄′ȳȳ′.

(1) Let ϕÜ(x̃) be a formula expressing that the elements from x̄, x̄′ are green, and those from
ȳ, ȳ′ white.

(2) Let ϕd(x̃, z̄) be an arbitrary formula from the partial type πd(x̃, z̄) (introduced in
Fact 3.10).

(3) Let Z(x̃, z̄) be a uniform family of varieties.
(4) Let χ1(z̄) be a formula, such that |= χ1(b̄′) if and only if Zb̄′ is a proper subvariety of

Wb̄′ .
(5) Let χ(z̄) = χ1(z̄) ∧ θ(z̄).

A special formula is a formula of the form

ϕ(x̃, z̄) = W (x̃, z̄) ∧ ¬Z(x̃, z̄) ∧ ϕÜ(x̃) ∧ ϕd(x̃, z̄) ∧ χ(z̄). (5.4)

A non-empty instance of a special formula will also be called special.
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By the claim, for any b̄′ ∈ K |= Tω, such that |= χ(b̄′) there is a unique special type p(x̃) ∈
S(K) containing ϕ(x̃, b̄′), such that any realization ã of p is generic (in the field sense) in
Wb̄′ over K. Moreover, using Fact 3.10, it is easy to see that the set of (instances of) special
formulas in a given special type is dense in it.

We now define a notion of genericity, only using special formulas and special types. Let
ϕ(x̃, b̄′) and p ∈ S(K) be special, and assume that p contains ϕ(x̃, b̄′). We say that p is generic
in ϕ(x̃, b̄′) if any ã |= p is field generic in Wb̄′ , where W (x̃, b̄′) is as in (5.4).

By what we have seen, special formulas correspond to nice formulas, and special types
correspond to nice types. Since there are enough special types, in order to show that the
notion of genericity we defined is a geometric notion of genericity, it is sufficient to show that
it satisfies property (4) from Definition 2.4 (the remaining properties are clear).

To prove property (4), assume that p is generic in ϕ(x̃, b̄), p0 is generic in ϕ0(x̃0, b̄0), x̃0 is a
subtuple of x̃ and that p restricts to p0. We have to find δ(z̄, z̄0) ∈ tp(b̄b̄0), such that whenever
|= δ(b̄′, b̄′0), the generic type of ϕ(x̃, b̄′) restricts to the generic type of ϕ0(x̃0, b̄0). Choose ã |= p.
Then ã0 = ḡ0ḡ′0w̄0w̄′

0 |= p0 and we observe

Kã0 $ K(ã)alg =: L or, equivalently, Kḡ0 $ L, (5.5)

W (x̃, b̄) projects onto a generic subset of W0(x̃0, b̄0). (5.6)

Extend ḡ0 to a (green) basis ḡ0ḡ1 ⊆ ḡḡ′ of Ü(L) over Ü(K), and let x1 be the variable tuple
corresponding to ḡ1. Choose a formula δ(z̄, z̄0) ∈ tp(b̄, b̄0), such that, for any pair (b

′
, b

′
0) with

|= δ(b̄′, b̄′0), the following three conditions hold:
(1) |= χ(b̄′) ∧ χ0(b̄′0));
(2) W (x̃, b̄′) projects onto a generic subset of W0(x̃0, b̄′0); and
(3) for generic ã = ḡḡ′w̄w̄′ in Wb̄′ , the variety locus(ḡ1/Q(b̄′b̄′0ḡ0)alg) is rotund.

Note that the last property can be guaranteed using the definability of types in algebraically
closed fields, combined with Fact 3.3.

Let b̄′, b̄′0 ∈ K ′ |= Tω, such that K ′ |= δ(b̄′, b̄′0). By the above conditions on δ, the generic type
p′(x̃) ∈ S(K ′) of the special formula ϕ(x̃, b̄′) restricts to the generic type p′0(x̃0) of ϕ0(x̃0, b̄′0).
This is clear for the algebraic part of the type as for the colouring. Moreover, if ã |= p′, then
Kã0 $ L = K(ã)alg follows from (3) and Lemma 3.5. Since L $ C, we deduce that Kã0 $ C,
and so ã0 |= p′0.

Theorem 5.2. Let Tω be the theory of the green field of Poizat (considered in an expansion
by definition so that it eliminates quantifiers). Then TωA exists. Its reduct to the language of
difference fields is equal to ACFA0.

Proof. Lemma 5.1 shows that Tω admits a geometric notion of genericity. Thus, TωA exists
by Proposition 2.5.

Now consider (K, Ü(K),σ) |= TωA. Suppose that (K,σ) ⊆ (L,σ) |= ACFA0. Putting
Ü(L) := Ü(K), we may expand the difference field (L,σ) to a green field with automorphism
(L, Ü(L),σ). Then K $ L, and there is (L, Ü(L),σ) ⊆ (M, Ü(M),σ) |= TωA, such that L $ M .
Since (K, Ü(K),σ) # (M, Ü(M),σ), it follows in particular that (K,σ) is existentially closed
in (L,σ). Thus, (K,σ) is an existentially closed difference field, that is, a model of ACFA0.

Let us now show that every completion of ACFA0 is attained in this manner. Note that, for
any σ ∈ Gal(Q), the green field with automorphism (Qalg, {1},σ) embeds (in a self-sufficient
way) into a model of TωA. By Fact 2.1(2), any completion of ACFA0 is determined by the
action of σ on Qalg. This shows the result.

We already mentioned that, for stable T , the existence of TA implies that T does not have
the finite cover property. Thus, Theorem 5.2 implies the following result of Evans [10].
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Corollary 5.3. The green field of Poizat does not have the finite cover property.

5.2. Generic automorphisms of bad fields

Theorem 5.4. The theory Tµ has the DMP.

Proof. Since Morley rank is finite, definable and additive in Tµ, to show the DMP, it is
sufficient to find, for any type p ∈ Sm(M) over a model M , a formula ϕ(x̄, b̄) ∈ p, such that
MRD(p) = MRD(ϕ(x̄, b̄)) = (d, 1) and MRD(ϕ(x̄, b̄′) = (d, 1) whenever ϕ(x̄, b̄′) is consistent.
We call such a type p good.

Claim. Suppose that q(x̃) ∈ Sm(M) is a good type which is a finite cover of p(x̄) ∈ Sn(M),
that is, there is a partial M -definable function f with finite fibres, such that f∗(q) = p. Then
p is good. (The proof is left to the reader.)

Now let p = tp(b̄/M) ∈ Sm(M) for M |= Tµ. Note that there is a finite green tuple ā′ that is
algebraic (in the sense of Tµ) over Mb̄ and such that b̄ ∈ dclµ(Mā′) (since M ′ := aclµ(Mb̄) " M
and dclµ(Ü(M ′)) = M ′ by Facts 3.9 and 3.8). We may even assume that ā′ is a green basis of
a self-sufficient extension of M . By Fact 4.4 there are elements a1, . . . , an ∈ M(ā′), the field
generated by ā′ over M , such that M×〈ā〉 = div(M×〈ā′〉) ∩M(ā′), that is, ā is Kummer generic
over K. Replacing ai by ζ(i)ai for some root of unity ζ(i), we may arrange that ai is green for
all i.

We still have ā ∈ aclµ(Mb̄) and b̄ ∈ dclµ(Mā). So by the claim, it is sufficient to show
that q = tp(ā/M) is good. Note that V = locus(ā/M) is a Kummer generic variety. Thus,
by Corollary 4.3, one has ā1 |= q if and only if the following conditions hold:

(1) ā1 is generic (in the field sense) in V over M , that is, locus(a1/M) = V ;
(2) the tuple ā1 consists of green elements; and
(3) d(ā1/M) = δ(ā1/M) = 2 dim(V )− n = δ(V ) = d.
Suppose MRD(V (x̄) ∧

∧n
i=1 Ü(xi)) = (d′,m′) > (d, 1). Then there is a proper subvariety W

of V containing a type of maximal Morley rank d′. Since MR = d $ δ, W is contained in a
coset of some T ∈ T (V ), T ,= Gn

m, by Lemma 3.4. It will suffice to remove from V (performing
an induction) a finite number of such cosets to get a definable set of MRD equal to (d, 1), for
at each such step, either the Morley rank or the Morley degree will drop. After a finite number
of steps we thus arrive at a formula of the form

ϕ(x̄, b̄, c̄) =
n∧

i=1

Ü(xi) ∧ x̄ ∈ Vb̄ \




⋃

Gn
m (=T∈T

nT⋃

i=1

c̄T,i · T



 ,

such that MR(ϕ(x̄, b̄, c̄)) = (d, 1) with q as its unique generic type.
The following are definable conditions in the parameters b̄′, c̄′ (by Proposition 4.5 and

Fact 3.8, since Morley rank is definable in an almost strongly minimal theory):
(∗) Vb̄′ is Kummer generic and δ(Vb′) = d;

(∗∗) MR(ϕ(x̄, b̄′, c̄′)) = d; and
(∗ ∗ ∗) for any T ∈ T (V ), such that T ,= Gn

m, the intersection of ϕ(x̄, b̄′, c̄′) with any coset of
T is of Morley rank < d.

If (∗), (∗∗) and (∗ ∗ ∗) are satisfied, then MRD(ϕ(x̄, b̄′, c̄′)) = (d, 1), showing that q is a good
type.

Note that in the previous proof, the conditions (∗), (∗∗) and (∗ ∗ ∗) guarantee that when
assigning the green colour to a generic point ā′ of Vb̄′ (over K ′ |= Tµ), we obtain a self-sufficient
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extension of K ′ that stays in the class Cµ
0 . A priori, it is not clear that this is a definable

condition in the parameters.

Theorem 5.5. The theory TµA exists. The Lrings ∪ {σ}-reduct of TµA equals ACFA0.

Proof. The existence of TµA follows from Theorem 5.4, using Example 2.3.
Note that if (K, Ü(K)) is a green field from the class Cµ

0 and L is an algebraically closed field
containing K, then (L, Ü(K)) ∈ Cµ

0 (see [3, Folgerung 8.3]). Using this, the argument concerning
the reduct to the language of difference fields is the same as in the proof of Theorem 5.2.

5.3. Bad pseudofinite fields

We now give an application to pseudofinite fields, showing that the fixed field of a model of
TµA is what might be called a ‘bad pseudofinite field’ of characteristic 0.

Recall that every pseudofinite field is supersimple of SU-rank 1, with SU(ā/K) =
tr.deg(ā/K) (see [16, 26] for pseudofinite fields and simple theories).

Corollary 5.6. Let F ′ be a pseudofinite field of characteristic 0. Then there is F " F ′

and an infinite divisible torsion-free subgroup Ü of the multiplicative group of F , such that
(F,+,×, Ü) is supersimple of SU-rank 2, with Ü of SU-rank 1.

Proof. Choose K |= TµA (sufficiently saturated), such that the fixed field F is an elementary
extension of F ′. (It is easy to see that there is (K,σ) |= ACFA0 with this property [6]; by
Theorem 5.5, this is sufficient.) Note that F is stably embedded, by Facts 2.1(4) and 3.9. We
first show that the full induced structure on F is supersimple of SU-rank 2, with SU(Ü) = 1.
We denote this theory by Th(F ). Choose an element g ∈ Ü(F ). Note that aclTh(F )(B) =
aclTµA(B) ∩ F = aclµ(B) ∩ F for any B ⊆ F (by Fact 2.1(1)). Now assume g ,∈ aclµ(∅). Then
d(g) = MRTµ(g/∅) = 1. For every B ⊆ F the following holds:

g
Tµ

|" B ⇔ g ,∈ aclµ(B) ⇔ g ,∈ aclTh(F )(B) ⇔ g
Th(F )

|" B.

So the only forking extensions of tpTh(F )(g) are algebraic, from which we deduce SUTh(F )

(g) = 1, thus SUTh(F )(Ü) = 1. Next we show that there is a 1-type in Th(F ) of rank 2. Choose
generic independent green elements g1, g2 in F , and put w = g1 + g2. Then δ(g1, g2/w) = 0, so
w and (g1, g2) are interalgebraic (in Tµ, hence also in Th(F )). By the Lascar inequalities, we
compute SUTh(F )(w) = SUTh(F )(g1, g2) = 2.

On the other hand, using the characterization of non-forking in Fact 2.1(3), by an easy
induction on Morley rank we show that, for any ā ∈ F and B ⊆ F , one has MRTµ(ā/B) !
SUTh(F )(ā/B).

The structure FÜ = (F,+,×, Ü) is a reduct of the full induced structure on F . Moreover, as
Ü is an infinite definable subgroup of infinite index in the multiplicative group of F , it follows
that SU(FÜ) ! 2. We complete the proof using the following general lemma (it is folklore; for
convenience, we include a proof).

Lemma 5.7. Let T ′ be a reduct of the simple theory T, and π′ be a partial T ′-type, such
that SUT (π′) < ω. Then SUT ′(π′) $ SUT (π′).
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Proof. We argue by induction on SUT ′(π′) = n ∈ N, the case n = 0 being trivial. Suppose
SUT ′(π′) = n + 1, where π′ is a partial type over A. Taking a T ′-non-forking extension if
necessary, we may suppose A = M |= T . Let B ⊃ M and a |= π′, such that SUT ′(a/B) = n.
By induction, we know that SUT (a/B) ! n. Moreover, since a , |"

T ′

M
B is witnessed by any T ′-

Morley sequence in tpT ′(B/M) (see, for example, [26, Theorem 2.4.7]), in particular by any
T -coheir sequence in tpT (B/M), we may deduce a , |"

T

M
B from a , |"

T ′

M
B.

Question 5.8. Is it possible to obtain the green pseudofinite field (F, Ü) of rank 2 (or the
one of infinite rank) as an ultraproduct of coloured finite fields (Fq, Nq)?

6. Other Hrushovski amalgams

We briefly review Hrushovski’s amalgamation method (see [11] for a detailed account of this
method). It is a variation of Fräıssé’s original method, and a powerful tool to construct stable
structures with prescribed pregeometry.

Let C be a class of L-structures, Cfin ⊆ C be the class of finite (or ‘finitely generated’ in some
sense) structures in C and δ : Cfin → Z be a predimension function satisfying some natural
conditions. For A ⊆ B in Cfin put δ(B/A) := δ(B)− δ(A) (this definition may be extended to
infinite A, as long as B is finitely generated over A). The structure A is said to be self-sufficient
in B (denoted by A $ B) if δ(B′/A) ! 0 for any A ⊆ B′ ⊆ B with B′ finitely generated over
A. Let C0 = {M ∈ C0 | ∅ $ M} and consider the class (C0,$). In all the examples that we
consider, C0 is an elementary class, Cfin

0 is countable up to isomorphism, and (C0,$) has AP
and JEP. So there is a unique countable structure Mω in C0 which is homogeneous with respect
to (C0,$), the Fräıssé–Hrushovski limit of (Cfin

0 ,$). In order to establish the desired properties
for Tω = Th(Mω), one has to show that Mω is saturated.

The theory Tω obtained in this way is usually of infinite (Morley) rank, and a more intricate
second step, the so-called collapse, is needed to obtain a theory of finite Morley rank, where
the rank is given by the dimension (that is, the ‘eventual predimension’) that comes out of
the construction, d(A) := min{δ(A′) | A ⊆ A′ ⊆ K}. The rough idea is to bound uniformly
the number of realizations of types in Tω of dimension 0. Technically, this is done by choosing
families of strongly minimal sets in Tω that coordinatize all such types of dimension 0 and to
associate to any such family F a natural number µ(F). One obtains an elementary subclass
Cµ
0 ⊆ C0. The most delicate parts of the construction are to establish that (Cµ

0 ,$) has AP, and
the fact that the Fräıssé–Hrushovski limit Mµ of the finite structures in (Cµ

0 ,$) is saturated. All
this is analogous to the construction of green and bad fields, which was outlined in Section 3.

A famous instance of the aforementioned amalgamation method is Hrushovski’s fusion
construction, where two arbitrary strongly minimal theories (with DMP) are fused into a
single strongly minimal theory ([13]; see also [11] for a detailed exposition of the uncollapsed
fusion). For i = 1, 2, let Ti be strongly minimal Li-theories with DMP. We may assume
that L1 and L2 are disjoint relational languages and that Ti has quantifier elimination. For
L := L1 ∪ L2 consider the class C of models of the L-theory T ∀

1 ∪ T ∀
2 and, for finite A ∈ C,

put δ(A) = d1(A) + d2(A)− |A|, where di(A) is Morley rank in the sense of Ti. The above
techniques apply. The theory Tω is called the free fusion of T1 and T2 (over equality); the
desired strongly minimal fusion is given by Tµ.

Fact 6.1. Let Tω be the free fusion of the strongly minimal theories T1 and T2.
(1) The free fusion Tω is ω-stable.
(2) Let A and A′ be self-sufficient subsets of C |= Tω. Then tpω(A) = tpω(A′) if and only if

tpTi
(A) = tpTi

(A′) for i = 1, 2.
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(3) Let K # C and ā ∈ C be a finite tuple. There is some finite â ⊇ ā, such that Kâ $ C.
(4) Let x̄ = (x0, . . . , xn−1), 0 $ d $ n and z̄ be an arbitrary tuple of variables. Then there

is a partial type πd(x̄, z̄), such that, for any ā, b̄, one has |= πd(ā, b̄) if and only if d(ā/b̄) ! d.

Proof. The first three items are proved in [11], and the last part is an easy consequence of
definability of Morley rank in strongly minimal theories.

Theorem 6.2. For the following theories obtained by Hrushovski’s amalgamation method
without collapse, all ω-stable of infinite rank, the generic automorphism is axiomatizable.

(1) The ab initio construction [14].
(2) The free fusion of two strongly minimal theories T1 and T2, where both T1 and T2 have

DMP [13] (see also [11]).
(3) The free fusion of two strongly minimal theories T1 and T2 over a common subtheory T0,

where both T1 and T2 have DMP and T0 is ω-categorical, modular and satisfies aclT0 = dclT0

(for example, for T0 the theory of an infinite vector space over some finite field) [11].
(4) The black fields of Poizat in all characteristics [23].
(5) The red fields of Poizat in positive characteristic [24].
(6) The theory of the generic plane curve over an algebraically closed field constructed in [5].

Proof. We give the argument for (2), the other cases being similar. So let Tω be the free
fusion of two strongly minimal theories T1 and T2 having DMP. We shall exhibit a geometric
notion of genericity and apply Proposition 2.5. The construction is parallel to the one given
in Lemma 5.1, although the definability problems we encountered in the case of Poizat’s green
fields do not arise in the context of the free fusion.

Let K # C and let ā ∈ C be a finite tuple. Then tpω(ā/K) is called special if Kā $ C.
Now let p(x̄) = tpω(ā/K) be special. For convenience we assume that ā = (a0, . . . , an−1)
enumerates Kā \ K (without repetitions). By Fact 6.1, p is determined by p1 = tp1(ā/K) and
p2 = tp2(ā/K). For I ⊆ {0, . . . , n− 1} = n, let kI

i := MRTi(aI/K). Then (by the assumptions)
the following constraints are satisfied:

kI
1 > 0 and kI

2 > 0 whenever I ,= ∅, (6.1)
kI
1 + kI

2 − |I| ! 0 for all I ⊆ n, (6.2)
d(ā/K) = δ(ā/K) = kn

1 + kn
2 − n. (6.3)

We choose Li-formulas ϕi(x̄, z̄i) and b̄i ∈ K, such that the following conditions are satisfied:

(i) pi is the unique Li-generic type in ϕi(x̄, b̄i) over K (for i = 1, 2);
(ii) the formulas ϕi(x̄, z̄i) avoid all diagonals;
(iii) if ϕi(x̄, b̄′) ,= ∅, then this is a formula of Morley degree 1; and
(iv) if ā′ is Li-generic in ϕi(x̄, b̄′i) over K ′ (where b̄′i ∈ K ′), then MRTi(a′

I/K ′) = kI
i for all

I ⊆ n.

Using DMP in Ti, it is easy to see that formulas of the form ϕi(x̄, b̄i) exist and are dense in pi.
Put d = d(ā/K) = kn

1 + kn
2 − n. A special formula is a formula of the form

ϕ(x̄, z̄) = ϕ1(x̄, z̄1) ∧ ϕ2(x̄, z̄2) ∧ ϕd(x̄, z̄),

where z̄ ⊇ z̄1, z̄2 is some tuple of variables, ϕd(x̄, z̄) is a formula from πd(x̄, z̄) (see Fact 6.1)
and ϕ1,ϕ2 are as above, satisfying (i–iv).

If p(x̄) = tpω(ā/K) is special with d(ā/K) = d, then p1(x̄) ∪ p2(x̄) ∪ πd(x̄,K) - p(x̄), where
pi = p%Li . It follows that (instances of) special formulas are dense in any special type.
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Claim. Let ϕ(x̄, z̄) = ϕ1(x̄, z̄1) ∧ ϕ2(x̄, z̄2) ∧ ϕd(x̄, z̄) be a special formula and b̄′ ∈ K ′ |=
Tω, such that ∃x̄ϕ1(x̄, b̄′1) ∧ ∃x̄ϕ2(x̄, b̄′2). Then there is a unique special type p ∈ Sn(K ′), such
that pi = p%Li is generic in ϕi(x̄, b̄′i) for i = 1, 2.

Let pi be the (by (iii) unique) generic Li-type in ϕi(x̄, b̄′i). Note that by (ii) the types p1 and
p2 agree on their reduct to mere equality. By Hasson and Hils [11, Lemma 3.10] and (6.2) there
is ā′ |= p1 ∪ p2, such that K ′ā′ $ C. Then tp(ā′/K ′) is special and uniquely determined by these
data by Fact 6.1(2). From Kā′ $ C we deduce that d(ā′/K ′) = δ(ā′/K ′) = kn

1 + kn
2 − n = d,

so |= πd(ā′, b̄′) and in particular |= ϕ(ā′, b̄′). This proves the claim.
We now define a notion of genericity Rg for special types and formulas. We say that the

special type p(x̄) ∈ S(K) is generic in the special formula ϕ(x̄, b̄) = ϕ1(x̄, b̄1) ∧ ϕ2(x̄, b̄2) ∧
ϕd(x̄, b̄) if pi = p%Li is generic in ϕi(x̄, b̄i) for i = 1, 2.

It follows from the claim that the special types/formulas are precisely the nice types/formulas
with respect to Rg. Clearly, Rg is invariant and coherent. Moreover, by Fact 6.1(3), there are
enough nice types. In order to prove that Rg is geometric, it remains to show property (4) from
Definition 2.4, that is, the definability of generic projections.

Let x̄ = x̄′ ·∪x̄′′, x̄′ = xI′ for I ′ ⊆ n, and let ϕ′(x̄′, z̄′) = ϕ′
1(x̄′, z̄′1) ∧ ϕ′

2(x̄′, z̄′2) ∧ ϕ′
d′(x̄′, z̄′)

and ϕ(x̄, z̄) = ϕ1(x̄, z̄1) ∧ ϕ2(x̄, z̄2) ∧ ϕd(x̄, z̄) be special formulas, where the integers kI
i are

associated with ϕ(x̄, z̄). Let b̄, b̄′ ∈ K |= Tω be such that both ϕ(x̄, b̄) and ϕ′(x̄′, b̄′) are non-
empty. Clearly, the projection of ϕ(x̄, b̄) onto the x̄′-variables is generic in ϕ′(x′, b

′
) if and only

if, for any generic (over K) ā |= ϕ(x̄, b̄), the tuple ā′ = aI′ is generic in ϕ′(x̄′, b̄′) over K, that
is, if ā′ is Li-generic in ϕ′

i(x̄′, b̄′i) over K for i = 1, 2 and Kā′ $ C, or equivalently Kā′ $ Kā.
This is the case if and only if the following two definable properties hold (note that the second
one is either always or never satisfied for a given pair of special formulas):

(1) ∃x̄′′ϕi(x̄′x̄′′, b̄i) is Li-generic in ϕ′
i(x̄′, b̄′i) for i = 1, 2; and

(2) kJ
1 + kJ

2 − |J | ! kI′

1 + kI′

2 − |I ′| for all I ′ ⊆ J ⊆ n.

It is known that all the theories from Theorem 6.2 may be collapsed onto theories of finite
rank. Using arguments that are similar (albeit much simpler) to the proof of Theorem 5.4, one
obtains the following result.

Theorem 6.3. The collapsed versions of all the theories from Theorem 6.2 have finite and
additive Morley rank with DMP. In particular, the generic automorphism is axiomatizable in
these collapsed theories using geometric axioms as in Example 2.3.

Acknowledgement. I would like to thank Zoé Chatzidakis, Frank Wagner and Boris Zilber
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