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Introduction

Valued fields: basics and notation

Let K be a field and Γ = (Γ, 0,+, <) an ordered abelian group.
A map val : K → Γ∞ = Γ∪̇{∞} is a valuation if it satisfies
1. val(x) =∞ iff x = 0;
2. val(xy) = val(x) + val(y);
3. val(x + y) ≥ min{val(x), val(y)}.

(Here, ∞ is a distinguished element > Γ and absorbing for +.)

I Γ = ΓK is called the value group.
I O = OK = {x ∈ K | val(x) ≥ 0} is the valuation ring, with

(unique) maximal ideal m = mK = {x | val(x) > 0};
I res : O → k = kK := O/m is the residue map, and kK is

called the residue field.
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Introduction

The valuation topology

Let K be a valued field with value group Γ.
I For a ∈ K and γ ∈ Γ let B≥γ(a) := {x ∈ K | val(x − a) ≥ γ}

be the closed ball of (valuative) radius γ around a.
I Similarly, one defines the open ball B>γ(a).
I The open balls form a basis for a topology on K , called the
valuation topology, turning K into a topological field.

I Both the ’open’ and the ’closed’ balls are clopen sets in the
valuation topology. In particular, K is totally disconnected.

I Let V be an algebraic variety defined over K .
Using the product topology on Kn and gluing, one defines the
valuation topology on V (K ) (also totally disconnected).
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Fields with a (complete) non-archimedean absolute value
Assume that K is a valued field such that ΓK ≤ R.
I | · |: K → R≥0, |x |:= e− val(x), defines an absolute value.
I (K , | · |) is non-archimedean, and any field with a

non-archimedean absolute value is obtained in this way.
I (K , | · |) is called complete if it is complete as a metric space,

i.e. if every Cauchy sequence has a limit in K .

Examples of complete non-archimedean fields

I Qp (the field p-adic numbers), and any finite extension of it

I Cp = Q̂a
p (the p-adic analogue of the complex numbers)

I k((t)), with the t-adic absolute value (k any field)
I k with the trivial absolute value (|x |= 1 for all x ∈ k×)
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Non-archimedean analytic geometry

I For K a complete non-archimedean field, one would like to do
analytic geometry over K similarly to the way one does analytic
geometry over C, with a ’nice’ underlying topological space.

I There exist various approaches to this, due to Tate (rigid
analytic geometry), Raynaud, Berkovich, Huber etc.

Berkovich’s approach: Berkovich (analytic) spaces (late 80’s)
I provide spaces endowed with an actual topology (not just a

Grothendieck topology), in which one may consider paths,
singular (co-)homology etc.;

I are obtained by adding points to the set of naive points of an
analytic / algebraic variety over K ;

I have been used with great success in many different areas.
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Berkovich spaces in a glance
We briefly describe the Berkovich analytification (as a topological
space) V an of an affine algebraic variety V over K .

I Let K [V ] be the ring of regular functions on V . As a set, V an

equals the set of multiplicative seminorms | · | on K [V ]
(| fg |=| f |·|g | and | f + g |≤ max(| f |, |g |)) which extend | · |K .

I V (K ) may be identified with a subset of V an, via a 7→| · |a,
where | f |a:=| f (a) |K .

I Note V an ⊆ RK [V ]. The topology on V an is defined as the
induced one from the product topoloy on RK [V ].

Remark
Let (L, | · |L) be a normed field extension of K, and let b ∈ V (L).
Then b corresponds to a map ϕ : K [V ]→ L, and | · |b∈ V an, where
| f |b=|ϕ(f ) |L. Moreover, any element of V an is of this form.
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A glimpse on the Berkovich affine line

Example
Let V = A1, so K [V ] = K [X ].
I For any r ∈ R≥0, we have ν0,r ∈ A1,an, where

|
n∑

i=0

ciX i |ν0,r := max
0≤i≤n

(
|ci |K ·r i

)
.

I ν0,0 corresponds to 0 ∈ A1(K ), and ν0,1 to the Gauss norm.

I The map r 7→ ν0,r is a continuous path in A1,an.

I In fact, the construction generalises suitably, showing that
A1,an is contractible.
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Topological tameness in Berkovich spaces

Berkovich spaces have excellent general topological properties, e.g.
they are locally compact and locally path-connected.

Using deep results from algebraic geometry, various topological
tameness properties had been established, e.g.:

I Any compact Berkovich space is homotopic to a (finite)
simplicial complex (Berkovich);

I Smooth Berkovich spaces are locally contractible
(Berkovich).

I If V is an algebraic variety, ’semi-algebraic’ subsets of V an

have finitely many connected components (Ducros).
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Hrushovski-Loeser’s work: main contributions
Foundational
I They develop ’non-archimedean (rigid) algebraic
geometry’, constructing a ’nice’ space V̂ for an algebraic
variety V over any valued field K ,

I with no restrictions on the value group ΓK ;
I no need to work with a complete field K .

I Entirely new methods: the geometric model theory of ACVF
is shown to be perfectly suited to address topological tameness
(combining stability and o-minimality).

Applications to Berkovich analytifications of algebraic varieties
They obtain strong topological tameness results for V an,
I without smoothness assumption on the variety V , and
I avoiding heavy tools from algebraic geometry.
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A review of the model theory of ACVF and stable domination

Valued fields as first order structures

I There are various choices of languages for valued fields.

I Ldiv := Lrings ∪ { div } is a language with only one sort VF for
the valued field.

I A valued field K gives rise to an Ldiv-structure, via

x div y :⇔ val(x) ≤ val(y).

I OK = {x ∈ K : 1 div x}, so OK is Ldiv-definable
⇒ the valuation is encoded in the Ldiv-structure.

I ACVF: theory of alg. closed non-trivially valued fields
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QE in algebraically closed valued fields

Fact (Robinson)
The theory ACVF has QE in Ldiv. Its completions are given by
ACVFp,q, for (p, q) = (char(K ), char(k)).

Corollary

1. In ACVF, a set is definable iff it is semi-algebraic, i.e. a finite
boolean combination of sets given by conditions of the form
f (x) = 0 or val(f (x)) ≤ val(g(x)), where f , g are polynomials.

2. Definable sets in 1 variable are (finite) boolean combinations
of singletons and balls.

3. ACVF is NIP, i.e., there is no formula ϕ(x , y) and tuples
(ai )i∈N, (bJ)J⊆N (in some model) such that ϕ(ai , bJ) iff i ∈ J.
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A variant: valued fields in a three-sorted language

Let Lk,Γ be the following 3-sorted language, with sorts VF for the
valued field, Γ∞ and k:

I Put Lrings on K = VF, {0,+, <,∞} on Γ∞ and Lrings on k;
I val : K → Γ∞, and
I RES : K → k as additional function symbols.

A valued field K is naturally an Lk,Γ-structure, via

RES(x , y) :=

{
res(xy−1), if val(x) ≥ val(y) 6=∞;
0 ∈ k , else.
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ACVF in the three-sorted language
Fact
ACVF eliminates quantifiers in Lk,Γ.

Corollary
In ACVF, the following holds:
1. Γ is a pure divisible ordered abelian group: any definable

subset of Γn is {0,+, <}-definable (with parameters from Γ).
In particular, Γ is o-minimal.

2. k is a pure ACF: any definable subset of kn is Lrings -definable.
3. k ⊥ Γ, i.e. every definable subset of km × Γn is a finite union

of rectancles D × E.
4. Any definable function f : Kn → Γ∞ is piecewise of the form

f (x) = 1
m [val(F (x))− val(G (x))], for F ,G ∈ K [x ] and m ≥ 1.
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A description of 1-types over models of ACVF
Let K 4 U |= ACVF, with U suff. saturated. A K -(type-)definable
subset B ⊆ U is a generalised ball over K if B is equal to one of
the following:
I a singleton {a} ⊆ K ;
I a closed ball B≥γ(a) (a ∈ K , γ ∈ ΓK );
I an open ball B>γ(a) (a ∈ K , γ ∈ ΓK );
I a (non-empty) intersection

⋂
i∈I Bi of K -definable balls Bi

with no minimal Bi ;
I U.

Fact
By QE, we have S1(K )

1:1↔ {generalised balls over K}, given by
I p = tp(t/K ) 7→ Loc(t/K ) :=

⋂
b, where b runs over all

generalised balls over K containing t;
I B 7→ pB | K, where pB | K is the generic type in B

expressing x ∈ B and x 6∈ b′ for any K-def. ball b′ ( B.
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Imaginaries

Context

I L is some language (possibly many-sorted);

I T is a complete L-theory with QE;

I U |= T is a fixed universe (i.e. very saturated and
homogeneous);

I all models M (and all parameter sets A) we consider are
small, with M 4 U (and A ⊆ U).
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Imaginaries

Imaginary Sorts and Elements
I Let E is a definable equivalence relation on some D ⊆def Un.

If d ∈ D(U), then d/E is an imaginary in U.
I If D = Un for some n and E is ∅-definable, then Un/E is

called an imaginary sort.
I Recall: Shelah’s eq-construction is a canonical way to pass

from L,M,T to Leq,Meq,T eq, adding a new sort (and a
quotient function) for each imaginary sort.

I Given ϕ(x , y), let Eϕ(y , y ′) := ∀x [ϕ(x , y)↔ ϕ(x , y ′)].
Then b/Eϕ may serve as a code pW q for W = ϕ(U, b).

Example
Consider K |= ACVF (in Ldiv).
I k, Γ ⊆ K eq, i.e. k and Γ are imaginary sorts.
I More generally, Bo ,Bcl ⊆ K eq (the set of open / closed balls).
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Imaginaries

Elimination of imaginaries
Definition (Poizat)
The theory T eliminates imaginaries if every imaginary element
a ∈ Ueq is interdefinable with a real tuple b ∈ Un.

Examples of theories which eliminate imaginaries

1. T eq (for an arbitrary theory T )
2. ACF (Poizat)
3. The theory DOAG of non-trivial divisible ordered abelian

groups (more generally every o-minimal expansion of DOAG)

Fact
ACVF does not eliminate imaginaries in the 3-sorted language Lk,Γ
(Holly), even if sorts for open and closed balls Bo and Bcl are
added (Haskell-Hrushovski-Macpherson).
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Imaginaries

The geometric sorts
I s ⊆ Kn is a lattice if it is a free O-submodule of rank n;
I for s ⊆ Kn a lattice, s/ms is a definable n-dimensional
k-vector space.

For n ≥ 1, let
Sn := {lattices in Kn} ,

Tn :=
⋃̇

s∈Sn
s/ms.

Fact

1. Sn and Tn are imaginary sorts, S1 ∼= Γ (via aO 7→ val(a)), and
also k = O/m ⊆ T1.

2. Sn ∼= GLn(K )/GLn(O); for Tn, there is a similar description
as a finite union of coset spaces.
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Imaginaries

Classification of Imaginaries in ACVF

G = {VF} ∪ {Sn, n ≥ 1} ∪ {Tn, n ≥ 1} are the geometric sorts.
Let LG be the (natural) language of valued fields in G.

Theorem (Haskell-Hrushovski-Macpherson 2006)
ACVF eliminates imaginaries down to geometric sorts, i.e. the
theory ACVF considered in LG has EI.

Convention
From now on, by ACVF we mean any completion of this theory,
considered in the geometric sorts.
Moreover, any theory T we consider will be assumed to have EI.
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Definable types

The notion of a definable type

Definition
I Let M |= T and A ⊆ M. A type p(x) ∈ Sn(M) is called

A-definable if for every L-formula ϕ(x , y) there is an
LA-formula dpϕ(y) such that

ϕ(x , b) ∈ p ⇔ M |= dpϕ(b) (for every b ∈ M)

I We say p is definable if it is definable over some A ⊆ M.
I The collection (dpϕ)ϕ is called a defining scheme for p.

Remark
If p ∈ Sn(M) is definable via (dpϕ)ϕ, then the same scheme gives
rise to a (unique) type over any N < M, denoted by p | N.
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Definable types

Definable types: first properties

I (Realised types are definable)
Let a ∈ Mn. Then tp(a/M) is definable.
(Take dpϕ(y) = ϕ(a, y).)

I (Preservation under algebraic closure)
If tp(a/M) is definable and b ∈ acl(M ∪ {a}), then tp(b/M) is
definable, too.

I (Transitivity) Let a ∈ N for some N < M, A ⊆ M. Assume
I tp(a/M) is A-definable;
I tp(b/N) is A ∪ {a}-definable.

Then tp(ab/M) is A-definable.
We note that the converse of this is false in general.
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Definable types

Definable 1-types in o-minimal theories

Let T be o-minimal (e.g. T = DOAG) and M |= T .

I Let p(x) ∈ S1(M) be a non-realised type.
I Recall that p is determined by the cut

Cp := {d ∈ M | d < x ∈ p}.
I Thus, by o-minimality, p(x) is definable
⇔ dpϕ(y) exists for ϕ(x , y) := x > y
⇔ Cp is a definable subset of M
⇔ Cp is a rational cut

I e.g. in case Cp = M, dpϕ(y) is given by y = y ;
I in case Cp =]−∞, δ], dpϕ(y) is given by y ≤ δ

(p(x) expresses: x is "just right" of δ; this p is denoted by δ+).
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Definable types

Definable 1-types in ACVF

Fact
Let K |= ACVF and p = tp(t/K ) ∈ S1(K ). TFAE:
1. tp(t/K ) is definable;
2. Loc(t/K ) is definable (and not just type-definable).

Proof.
If tp(t/K ) is definable, then the set of K -definable balls containing
t is definable over K , so is its intersection. (2)⇒(1) is clear.

For t 6∈ K , letting L = K (t), we get three cases:
I L/K is a residual extension, i.e. kL ) kK . Then t is generic in

a closed ball, so p is definable.
[Indeed, replacing t by at + b, WMA val(t) = 0 and
res(t) 6∈ kK , so t is generic in O.]
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Definable types

Definable 1-types in ACVF (continued)

I L/K is a ramified extension, i.e. ΓL ) ΓK . Up to a translation
WMA γ = val(t) 6∈ Γ(K ).
p is definable ⇔ the cut def. by val(t) in ΓK is rational.
[Indeed, p is determined by pΓ := tpDOAG(γ/ΓK ), so p is
definable ⇔ pΓ is definable.]

I L/K is an immediate extension, i.e. kK = kL and ΓK = ΓL.
Then p is not definable.
[Indeed, in this case, letting B := Loc(t/K ), we get
B(K ) = ∅. In particular, B is not definable.]
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Definable types

Definability of types in ACF

Proposition
In ACF, all types over all models are definable.

Proof.
Let K |= ACF and p ∈ Sn(K ).
Let I (p) := {f (x) ∈ K [x ] | f (x) = 0 is in p} = (f1, . . . , fr ).
By QE, every formula is equivant to a boolean combination of
polynomial equations. Thus, it is enough to show:

For any d the set of (coefficients of) polynomials g(x) ∈ K [x ] of
degree ≤ d such that g ∈ Ip is definable. This is classical.

Remark
The above result is a consequence of the stability of ACF.
In fact, it characterises stability.
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Definable types

Products of definable types
I Assume p = p(x) and q = q(y) are A-definable types.
I There is a unique A-definable type p ⊗ q in variables (x , y),

constructed as follows: Let b |= q | A and a |= p | Ab. Then

p ⊗ q | A = tp(a, b/A).

I The n-fold product p ⊗ · · · ⊗ p is denoted by p(n).

Remark

1. ⊗ is associative.
2. ⊗ is in general not commutative, as is shown by the following:

Let p(x) and q(y) both be equal to 0+ in DOAG. Then
p(x)⊗ q(y) ` x < y, whereas q(y)⊗ p(x) ` y < x.

3. In a stable theory, ⊗ corresponds to the non-forking extension,
so ⊗ is in particular commutative.
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Stable domination

The stable part

Let T be given and A ⊆ U a parameter set.
Recall that an A-definable set D is stably embedded if every
definable subset of Dn is definable with parameters from D(U) ∪ A.

Definition
I The stable part over A, denoted StA, is the multi-sorted

structure with a sort for each A-definable stable stably
embedded set D and with the full induced structure (from LA).

I For a ∈ U, set StA(a) := dcl(Aa) ∩ StA.

Fact
StA is a stable structure.
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Stable domination

The stable part in ACVF
Consider ACVF in LG . Given A, we denote by VSk,A the many
sorted structure with sorts s/ms, where s ∈ Sn(A) for some n.

Fact (HHM)
Let D be an A-definable set. TFAE:
1. D is stable and stably embedded.
2. D is k-internal, i.e. there is a finite set F ⊆ U such that

D ⊆ dcl(k ∪ F )

3. D ⊆ dcl(A ∪VSk,A)

4. D ⊥ Γ (def. subsets of Dm× Γn are finite unions of rectangles)

Corollary
Up to interdefinability, StA is equal to VSk,A. In particular, if
A = K |= ACVF, then StA may be identified with k.
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Stable domination

Stable domination (in ACVF)
I Idea: a stably dominated type is ’generically’ controlled by its

stable part.
I To ease the presentation and avoid technical issues around

base change, we will restrict the context and work in ACVF.

Definition
Let p be an A-definable type. We say p is stably dominated if for
a |= p | A and every B ⊇ A such that

StA(a) |̂
A

StA(B) (in the stable structure StA = VSk,A),

we have tp(a/A) ∪ tp(StA(a)/StA(B)) ` tp(a/B).
(We will then also say that p | A = tp(a/A) is stably dominated.)

Fact
The above does not depend on the choice of the set A over which
p is defined, so the notion is well-defined.
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Stable domination

Stably dominated types inherit many nice properties from stable
theories. Here is one:

Fact
If p is stably dominated type and q an arbitrary definable type, then
p ⊗ q = q ⊗ p. In particular, p commutes with itself, so any
permutation of (a1, . . . , an) |= p(n) |A is again realises p(n) |A.

Examples

1. The generic type of O is stably dominated.
Indeed, let a |= pO | K and K ⊆ L. Then StK (a) |̂

K
StK (L) just

means that res(a) 6∈ kalg
L , forcing a |= pO | L.

2. The generic type of m is not stably dominated.
Indeed, we have pm(x)⊗ pm(y) ` val(x) < val(y), whereas
pm(y)⊗ pm(x) ` val(x) > val(y).

3. On Γm
∞ , only the realised types are stably dominated.



Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

A review of the model theory of ACVF and stable domination

Stable domination

Characterisation of stably dominated types in ACVF

Definition
Let p be a definable type. We say p is orthogonal to Γ (and we
denote this by p ⊥ Γ) if for every model M over which p is defined,
letting a |= p | M, one has Γ(M) = Γ(Ma).

Remark
Equivalently, in the defintion we may require the property to hold
only for some model M over which p is defined.

Proposition
Let p be a definable type in ACVF. TFAE:
1. p is stably dominated.
2. p ⊥ Γ.
3. p commutes with itself, i.e., p(x)⊗ p(y) = p(y)⊗ p(x).
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Stable domination

Stably dominated types in ACVF: some closure properties

I Realised types are stably dominated.

I Preservation under algebraic closure:
Suppose tp(a/A) is stably dominated for some A = acl(A),
and let b ∈ acl(Aa). Then tp(b/A) is stably dominated, too.
In particular, if p is stably dominated on X and f : X → Y is
definable, then f∗(p) is stably dominated on Y .

I Transitivity:
If tp(a/A) and tp(b/Aa) are both stably dominated, then
tp(ab/A) is stably dominated, too.

The converse of this is false in general. (See the examples
below.)
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Stable domination

Examples of stably dominated types in ACVF

I The generic type of a closed ball is stably dominated.

I The generic type of an open ball is not stably dominated.

I It follows that if K |= ACVF and K ⊆ L = K (a) with
tr. deg(L/K ) = 1, then tp(a/K ) is stably dominated iff
tr. deg(kL/kK ) = 1.

I If tr. deg(L/K ) = tr. deg(kL/kK ), then tp(a/K ) is stably
dominated.

I There are more complicated stably dominated types: for every
n ≥ 1, there is K ⊆ L = K (a) such that

I tr. deg(L/K ) = n,
I tr. deg(kL/kK ) = 1, and
I tp(a/K ) is stably dominated.
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Stable domination

Maximally complete models and metastability of ACVF

I A valued field K is maximally complete if it has no proper
immediate extension.

I When working over a parameter set A, it is often useful to
pass to a maximally complete M |= ACVF containing A,
mainly due to the following important result.

Theorem (Haskell-Hrushovski-Macpherson)
Let M be a maximally complete model of ACVF, and let a be a
tuple from U. Then tp(a/M, Γ(Ma)) is stably dominated.

Remark
In abstract terms, the theorem states that ACVF is metastable
(over Γ), with metastability bases given by maximally complete
models.
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The space V̂ of stably dominated types

Uniform definability of types
Fact

1. Let T be stable and ϕ(x , y) a formula. Then there is a
formula χ(y , z) such that for every type p(x) (over a model)
there is b such that dpϕ(y) = χ(y , b).

2. The same result holds in ACVF if we restrict the conclusion
to the collection of stably dominated types.

Proof.
For every formula ϕ(x , y) there is n ≥ 1 such that whenever p is
stably dominated and A-definable and (a0, . . . , a2n) |= p(2n+1) | A,
then for any b ∈ U, the majority rule holds, i.e.,

ϕ(x , b) ∈ p iff U |=
∨

i0<···<in

ϕ(ai0 , b) ∧ · · · ∧ ϕ(ain , b).
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Prodefinability and type spaces

Prodefinable sets

Definition
A prodefinable set is a projective limit D = lim←−i∈I

Di of definable
sets Di , with def. transition functions πi ,j : Di → Dj and I some
small index set. (Identify D(U) with a subset of

∏
Di (U).)

We are only interested in countable index sets ⇒ WMA I = N.

Example

1. (Type-definable sets) If Di ⊆ Un are definable sets,
⋂

i∈NDi
may be seen as a prodefinable set: WMA Di+1 ⊆ Di , so the
transition maps are given by inclusion.

2. Uω = lim←−i∈NUi is naturally a prodefinable set.
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The space V̂ of stably dominated types

Prodefinability and type spaces

Some notions in the prodefinable setting

Let D = lim←−i∈I
Di and E = lim←−j∈J

Ej be prodefinable.

I There is a natural notion of a prodefinable map f : D → E
[f is given by a compatible system of maps fj : D → Ej , each
fj factoring through some component Di(j)]

I D is called strict prodefinable if it can be written as a
prodefinable set with surjective transition functions.

I D is called iso-definable if it is in prodefinable bijection with
a definable set.

I X ⊆ D is called relatively definable if there is i ∈ I and
Xi ⊆ Di definable such that X = π−1i (Xi ).
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Prodefinability and type spaces

The set of definable types as a prodefinable set (T stable)

I Assume T is stable with EI (e.g. T = ACFp)

I For any ϕ(x , y) fix χϕ(y , z) s.t. for any definable type p(x) we
have dpϕ(y) = χϕ(y , b) for some b = pdpϕq.

I For X definable, let Sdef ,X (A) be the A-definable types on X .

Proposition

1. There is a prodefinable set D such that Sdef ,X (A) = D(A)
naturally. (Identify p | U with the tuple (pdpϕq)ϕ).

2. If Y ⊆ X is definable, Sdef ,Y is relatively definable in Sdef ,X .
3. The subset of Sdef ,X corresponding to the set of realised types

is relatively definable and isodefinable. (It is ∼= X (U).)
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The space V̂ of stably dominated types

Prodefinability and type spaces

Strict pro-definability and nfcp
Problem
Let Dϕ,χ = {b ∈ U | χ(y , b) is the ϕ-definition of some type}.
Then Dϕ,χ is not always definable.

Fact
In ACF, all Dϕ,χ are definable. More generally, for a stable theory
T this is the case iff T is nfcp.
Corollary
1. If T is stable and nfcp (e.g. T = ACF), then Sdef ,X is strict

pro-definable.
2. If C is a curve definable over K |= ACF, then Sdef ,C is

iso-definable.
3. Sdef ,A2 is not iso-definable in ACF: the generic types of the

curves given by y = xn cannot be seperated by finitely many
ϕ-types.
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The space V̂ of stably dominated types

Prodefinability and type spaces

The set of stably dominated types as a prodefinable set

For X an A-definable set in ACVF, we denote by X̂ (A) the set of
A-definable stably dominated types on X .

Theorem
Let X be C-definable. There exists a strict C-prodefinable set D
such that for every A ⊇ C, we have a canonical identification
X̂ (A) = D(A).

Once the theorem is established, we will denote by X̂ the
prodefinable set representing it.
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Prodefinability and type spaces

Proof of the theorem.
For notational simplicity, we will assume C = ∅.
I Let f : X → Γ∞ be definable (with parameters) and let

p ∈ X̂ (U). Then f∗(p) is stably dominated on Γ∞, so is a
realised type x = γ. We will denote this by f (p) = γ.

I Now let f : W × X → Γ∞ be ∅-definable, fw := f (w ,−).
Then there is a set S and a function g : W × S → Γ∞, both
∅-definable, such that for every p ∈ X̂ (U), the function

fp : W → Γ∞, w 7→ fw (p)

is equal to gs = g(s,−) for a unique s ∈ S .

This follows from
I uniform definability of types for stably dominated types, and
I elimination of imaginaries in ACVF (in LG).
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Prodefinability and type spaces

End of the proof
Choose an enumeration fi : Wi × X → Γ∞ (i ∈ N) of the functions
as above (with corresponding gi : Wi × Si → Γ∞).

Then p 7→ c(p) := {(si )i∈N | fi ,p = gi ,si for all i} defines an
injection of X̂ into

∏
i Si .

The strict prodefinable set we are aiming for is D = c(X̂ ).
Let I ⊆ N be finite and πI (D) = DI ⊆

∏
i∈I Si . We finish by the

following two facts:
I DI is type-definable. (This gives prodefinability of D.)

[This is basically compactness and QE.]

I DI is a union of definable sets.
[This uses StA = VSk,A, and these are ’uniformly’ nfcp.]

⇒ the DI are definable, proving strict prodefinability of D.
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Prodefinability and type spaces

Some definability properties in X̂

I Functoriality:
For any definable f : X → Y , we get a prodefinable map
f̂ : X̂ → Ŷ .

I Passage to definable subsets:
If Y is a definable subset of X , then Ŷ ⊆ X̂ is a relatively
definable subset.

I Simple points:
The set of realised types in X̂ , in natural bijection with X (U),
is iso-definable and relatively definable in X̂ .
Elements of X̂ corresponding to realised types will be called
simple points.
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Prodefinability and type spaces

Isodefinability in the case of curves

Theorem
Let C be an algebraic curve. Then Ĉ is iso-definable.

Proof.
I WMA C is smooth and projective, C ⊆ Pn. Let g = genus(C ).
I In K (P1) = K (X ), any element is a product of linear

polynomials in X . The following consequence of
Riemann-Roch gives a generalisation of this to arbitrary genus:
There exists an N (N = 2g + 1 is enough) s.t. any non-zero
f ∈ K (C ) is a product of functions of the form (g/h) �C ,
where g , h ∈ K [X0, . . . ,Xn] are homogeneous of degree N.

I Thus any valuation on K (C ) is determined by its values on a
definable family of polynomials, proving iso-definability.
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Prodefinability and type spaces

Isodefinability in the case of curves (continued)
From now on, we will write Bcl for the set of closed balls including
singletons (closed balls of radius ∞).

Examples
1. If C = A1, the isodefinability of Ĉ is clear, as then Â1 = Bcl

(which is a definable set).

2. Ô2 is not isodefinable. Indeed, let pO be the generic of O, and
pn(x , y) ∈ Ô2 be given by pO(x) ∪ {y = xn}.
No definable family of functions to Γ∞ allows to separate all
the pn’s, as val(f (pn)) = val(f (pO(x)⊗ pO(y))) for all
f ∈ K [X ,Y ] of degree < n.

Remark
For X ⊆ Kn definable, X̂ is iso-definable iff dim(X ) ≤ 1.
(Here, dim(X ) denotes the algebraic dimension of XZar .)



Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

The space V̂ of stably dominated types

Definable topologies and the topology on V̂

Prodefinable topological spaces
Definition
Let X be (pro-)definable over A.
A topology T on X (U) is said to be A-definable if
I there are A-definable families W i = (W i

b)b∈U (for i ∈ I ) of
(relatively) definable subsets of X such that

I the topology on X (U) is generated by the sets (W i
b), where

i ∈ I and b ∈ U.
We call (X , T ) a (pro-)definable space.

Remark
1. Given a (pro-)definable space (X , T ) (over A) and

A ⊆ M 4 U, the M-definable open sets from T define a
topology on X (M).

2. The inclusion X (M) ⊆ X (U) is in general not continuous.
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Definable topologies and the topology on V̂

Examples of definable topologies
1. If M is o-minimal, then Mn equipped with the product of the

order topology is a definable space.

2. Let V be an algebraic variety over K |= ACVF. Then the
valuation topology on V (K ) is definable.

3. The Zariski topology on V (K ) is a definable topology.

Remark
I The topologies in examples (1) and (2) are definably
generated, in the sense that a single family of definable open
sets generates the topology. (There is even a definable basis of
the topology in both cases.)

I The Zariski topology in (3) is not definably generated, unless
dim(V ) ≤ 1.
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Definable topologies and the topology on V̂

V̂ as a prodefinable space
Given an algebraic variety V defined over K |= ACVF, we will
define a definable topology on V̂ , turning it into a prodefinable
space, the Hrushovski-Loeser space associated to V .

The construction of the topology is done in several steps:

I We will give an explicit construction in the case V = An.

I If V is affine, V ⊆ An a closed embedding, we give V̂ the
subspace topology inside Ân.

I The case of an arbitrary V done by gluing affine pieces: if
V =

⋃
Ui is an open affine cover, V̂ =

⋃
Ûi is an open cover.

I Let X ⊆ V be a definable subset of the variety V . Then we
give X̂ the subspace topology inside V̂ .
Subsets of V̂ of the form X̂ will be called semi-algebraic.
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Definable topologies and the topology on V̂

The topology on Ân

Recall that any definable function f : X → Γ∞ canonically extends

to a map f : X̂ → Γ∞ (given by the composition X̂ f̂→ Γ̂∞
=→ Γ∞).

Definition
We endow Ân(U) with the topology generated by the (so-called
pre-basic open) sets of the form

{a ∈ Ân | val(F (a) < γ} or {a ∈ Ân | val(F (a) > γ},

where F ∈ U[x1, . . . , xn] and γ ∈ Γ(U).

Remark

1. The topology is the coarsest one such that for all polynomials
F , the map val ◦F : Ân → Γ∞ is continuous.
(Here, Γ∞ is considered with the order topology.)

2. It has a basis of open semialgebraic sets.
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Definable topologies and the topology on V̂

Proposition
The topology on V̂ is pro-definable, over the same parameters over
which V is defined.

Proof.
I By our construction, it is enough to show the result for

V = An.

I For any d , the pre-basic open sets defined by polynomials of
degree ≤ d form a definable family of relatively definable
subsets of Ân.
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Definable topologies and the topology on V̂

Relationship with the order topology

I For a closed ball b, let pb be the generic type of b. The map

γ : Γm
∞ → Âm, (t1, . . . , tm) 7→ pB≥t1 (0) ⊗ · · · ⊗ pB≥tm (0)

is a definable homeomorphism onto its image, where Γm
∞ is

endowed with the (product of the) order topology.

I Let f = id× (val, . . . , val) : V × Am → V × Γm
∞ .

On V̂ × Γm
∞ we put the topology induced by f̂ , i.e.

U ⊆ V̂ × Γm
∞ is open iff f̂ −1(U) is open in V̂ × Am.

Fact
Γ̂m
∞ = Γm

∞ . Moreover, the map V̂ × Γm
∞ → V̂ × Γ̂m

∞ = V̂ × Γm
∞ is a

homeomorphism, where Γ∞ is endowed with the order topology.
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Definable topologies and the topology on V̂

Example (The topology on Â1)
I Recall that Â1 = Bcl as a set.
I A semialgebraic subset X̂ ⊆ Â1 is open iff X is a finite union

of sets of the form Ω \
⋃n

i=1 Fi , where
I Ω is an open ball or the whole field K ;
I the Fi are closed sub-balls of Ω.

I m̂ and m̂ \ {0} are open, with closure equal to m̂ ∪ {pO}, a
definable closed set which is not semi-algebraic.

I {pb | rad(b) > α} (α ∈ Γ) is def. open and non semi-algebraic.

I The topology is definably generated by the family {Ω̂ \ F}Ω,F .
I There is no definable basis for the topology.

Fact
For any curve C, the topology on Ĉ is definably generated.
[This follows from the proof of iso-definability of Ĉ .]
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First properties of the topological space V̂
Fact
Let V be an algebraic variety defined over M |= ACVF.

1. The topologicy on V̂ (M) is Hausdorff.
2. The subset V (M) of simple points is dense in V̂ (M).
3. The induced topology on V (M) is the valuation topology.

Proof.
We will assume that V is affine, say V ⊆ An.
For (1), let p, q ∈ V̂ (M) with p 6= q. There is F (x) ∈ K [x ] such
that val(F (p)) 6= val(F ((q)), say val(F (p)) < α < val(F ((q)),
where α ∈ Γ(M). Then val(F (x)) < α and val(F (x)) > α define
disjoint open sets in V̂ , one containing p, the other containing q.
(2) and (3) follows from the fact that there is a basis of the
topology given by semialgebraic open sets.
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The v+g-topology

I Let V be a variety and X ⊆ V definable. We say
I X is v-open (in V ) if it is open for the valuation topology;
I X is g-open (in V ) if it is given (inside V ) by a positive

Boolean combination of Zariski constructible sets and sets
defined by strict valuation inequalities val(F (x)) < val(G (x));

I X v+g-open (in V ) if it is v-open and g-open.

I We say X ⊆ V × Γm
∞ is v-open iff its pullback to V × Am is.

(Similarly for g-open and v+g-open.)

Remark
The g-open and the v+g-open sets do not give rise to a definable
topology. Indeed, O is not g-open, but O =

⋃
a∈O a + m, so it is a

definable union of v+g-open sets.
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Why consider the v-topology and the g-topology?
I With the two topologies (v and g), one may separate continuity

issues related to very different phenomena in Γ∞, namely

I the behaviour near ∞ (captured by the v-topology) and
I the behaviour near 0 ∈ Γ (captured by the g-topology).

I It is e.g. easier to check continuity separately.
I v+g-topology on V ←→ topology on V̂ (see on later slides)

Exercise
I The v-topology on Γ∞ is discrete on Γ, and a basis of open

neighbourhoods at ∞ is given by {(α,∞], α ∈ Γ}.
I The g-topology on Γ∞ corresponds to the order topology on Γ,

with ∞ isolated.
I Thus, the v+g-topology on Γ∞ is the order topology.
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Limits of definable types and definable compactness

Limits of definable types in (pro-)definable spaces

Definition
Let p(x) a definable type on a pro-definable space X .
We say a ∈ X is a limit of p if p(x) ` x ∈W for every U-definable
neighbourhood W of a.

Remark
If X is Hausdorff space, then limits are unique (if they exist), and
we write a = lim(p).

Example
Let M be an o-minimal structure and α ∈ M. Then α = lim(α+).
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Describing the closure with limits of definable types

Proposition
Let X be prodefinable subset of V̂ × Γm

∞ .
1. If X is closed, then it is closed under limits of definable types,

i.e. if p is a definable type on X such that lim(p) exists in
V̂ × Γm

∞ , then lim(p) ∈ X.
2. If a ∈ cl(X ), there is a def. type p on X such that a = lim(p).

Thus, X closed under limits of definable types ⇒ X closed.

Example
Recall that cl(m̂ \ {0}) = m̂ ∪ {pO}.
I Let q0+ be the (definable) type giving the generic type in the

closed ball of radius ε |= 0+ around 0. Then pO = lim(q0+).
I Similarly, 0=̂B≥∞(0) = lim(q∞−).
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Definable compactness

Definition
A (pro-)definable space X is said to be definably compact if every
definable type on X has a limit in X .

Remark
In an o-minimal structure M, this notion is equivalent to the usual
one, i.e. a definable subset X ⊆ Mn is definably compact iff it is
closed and bounded.
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Lemma (The key to the notion of definable compactness)
Let f : X → Y be a surjective (pro-)definable map between
(pro-)definable sets (in ACVF). Then the induced maps
fdef : Sdef ,X → Sdef ,Y and f̂ : X̂ → Ŷ , are surjective, too.

Corollary
Assume f : V̂ × Γm

∞ → Ŵ × Γn
∞ is definable and continuous, and

X ⊆ V̂ × Γm
∞ is a pro-definable and definably compact subset. Then

f (X ) is definably compact.

Proof of the corollary.
I By the lemma, any definable type p on f (X ) is of the form

f∗q = fdef (q) for some definable type q on X .
I As X is definably compact, there is a ∈ X with lim(q) = a.
I By continuity of f , we get lim(p) = f (a).
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Bounded subsets of algebraic varieties
Definition
I Let V ⊆ Am be a closed subvariety. Wa say a definable set

X ⊆ V is bounded (in V ) if X ⊆ cOm for some c ∈ K .
I For general V , X ⊆ V is called bounded (in V ) if there is an

open affine cover V =
⋃n

i=1 Ui and Xi ⊆ Ui with Xi bounded
in Ui such that X =

⋃n
i=1 Xi .

I X ⊆ V × Γm
∞ is said to be bounded (in V × Γm

∞ ) if its pullback
to V × Am is bounded in V × Am.

I Finally, we say that a pro-definable subset X ⊆ V̂ is bounded
(in V̂ ) if there is W ⊆ V bounded such that X ⊆ Ŵ .

Fact
The notion is well-defined (i.e. independent of the closed embedding
into affine space and of the choice of an open affine cover).
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Bounded subsets of algebraic varieties (continued)

Examples

1. X ⊆ Γ∞ is bounded iff X ⊆ [γ,∞] for some γ ∈ Γ.

2. Pn is bounded in itself, so every X ⊆ Pn is bounded.
Indeed, if An ∼= Ui is the affine chart given by xi 6= 0 and
Ui (O) ⊆ Ui corresponds to On ⊆ An, then we may write
Pn =

⋃n
i=0 Ui (O).

3. A1 is bounded in P1 and unbounded in itself, so the notion
depends on the ambient variety.
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A characterisation result for definable compactness

Theorem
Let X ⊆ V̂ × Γm

∞ be pro-definable. TFAE:
1. X is definably compact.
2. X is closed and bounded.

To illustrate the methods, we will prove that if X ⊆ V̂ × Γm
∞ is

bounded, then any definable type on X has a limit in V̂ × Γm
∞ .

Corollary
Let W ⊆ V × Γm

∞ .

1. Ŵ is closed in V̂ × Γm
∞ iff W is v+g-closed in V × Γm

∞ .

2. Ŵ is definably compact iff W is a v+g-closed and bounded
subset of V × Γm

∞ .
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Some further applications of the characterisation result

The results below are analogous to the complex situation.

Corollary
A variety V is complete iff V̂ is definably compact.

Proof.
I By Chow’s lemma, if V is complete there is f : V ′ → V

surjective with V ′ projective. This proves one direction.

I For the other direction, use that every variety is an open
Zariski dense subvariety of a complete variety.

Corollary
If f : V →W is a proper map between algebraic varieties, then
f̂ : V̂ → Ŵ as well as f̂ × id : V̂ × Γm

∞ → Ŵ × Γm
∞ are closed maps.
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Proof that definable types on bounded sets have limits
Lemma
Let p be a definable type on a bounded subset X ⊆ V̂ × Γm

∞ . Then
lim(p) exists in V̂ × Γm

∞ .

Proof.
I First we reduce to the case where V = An and m = 0.

I Let K |= ACVF be maximally complete, with p K -definable,
d |= p | K and a |= pd | Kd , where pd is the type coded by d .

I As pd ⊥ Γ, we have ΓK ⊆ Γ(K (d)) = Γ(K (d , a)) =: ∆.

Let ∆0 := {δ ∈ ∆ | ∃γ ∈ ΓK : γ < δ}.
I p definable ⇒ for δ ∈ ∆0, tp(δ/ΓK ) is definable and has a

limit in ΓK ∪ {∞}.
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End of the proof
(Recall: ∆0 := {δ ∈ ∆ | ∃γ ∈ ΓK : γ < δ})

I We get a retraction π : ∆0 → ΓK ∪ {∞} preserving ≤ and +.

I O′ := {b ∈ K (a) | val(b) ∈ ∆0} is a valuation ring on K (a).

I As K ⊆ O′, putting ṽal(x + m′) := π(val(x)), we get a valued
field extension K̃ = O′/m′ ⊇ K , with ΓK̃ = ΓK .

I The coordinates of a lie in O′, by the boundedness of X .

I Consider the tuple ã := a + m′ ∈ K ′.

I Then r = tp(a′/K ) is stably dominated as Γ(Ka′) = Γ(K ) and
K is maximally complete.

I One checks that r = lim(p). (Indeed, one shows
f (r) = lim(f∗(p)) for every f = val ◦F , where F ∈ K [x ].)



Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

Strong deformation retraction onto a Γ-internal subset

Γ-internality

Γ-internal subsets of V̂
Convention
From now on, all varieties are assumed to be quasi-projective.

Definition
A subset Z ⊆ V̂ × Γm

∞ is called Γ-internal if
I Z is iso-definable and
I there is a surjective definable f : D ⊆ Γn

∞ � Z .

Remark
If we drop in the definition the iso-definability requirement, we get
the weaker notion called Γ-parametrisability.

Fact
Let f : C → C ′ be a finite morphism between algebraic curves.
Assume that Z ⊆ Ĉ is Γ-internal. Then f̂ −1(Z ) is Γ-internal.
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Strong deformation retraction onto a Γ-internal subset

Γ-internality

Topological witness for Γ-internality
Proposition
Let Z ⊆ V̂ × Γm

∞ be Γ-internal. Then there is an injective
continuous definable map f : Z ↪→ Γn

∞ for some n. If Z is definably
compact, such an f is a homeomorphism.

The question is more delicate if one wants to control the
parameters needed to define f . Here is the best one can do:

Proposition
Suppose that in the above, both V and Z are A-definable, where
A ⊆ VF ∪ Γ. Then there is a finite A-definable set w and an
injective continuous A-definable map f : Z ↪→ Γw

∞ .

Example
Let A = Q ⊆ VF, V given by X 2 − 2 = 0. Then V̂ is Γ-internal,
with a non-trivial Galois action, so cannot be Q-embedded into Γn

∞.
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Strong deformation retraction onto a Γ-internal subset

Γ-internality

Generalised intervals

We say that I = [o I, e I] is a generalised closed interval in Γ∞ if
it is obtained by concatenating a finite number of closed intervals
I1, . . . , In in Γ∞, where < Ii is either given by <Γ∞ or by >Γ∞ .

Remark
I The absence of the multiplication in Γ∞ makes it necessary to

consider generalised intervals.

I E.g., there is a definable path γ : I→ P̂1 with γ(o I) = 0 and
γ(e I) = 1, but only if we allow generalised intervals in the
definition of a path.
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Strong deformation retraction onto a Γ-internal subset

The curves case

Definable homotopies and strong deformation retractions
Definition
Let I = [o I, e I] be a generalised interval in Γ∞ and let
X ⊆ V × Γm

∞ , Y ⊆W × Γ∞ be definable sets.

1. A continuous pro-definable map H : I× X̂ → Ŷ is called a
definable homotopy between the maps Ho ,He : X̂ → Ŷ ,
where Ho corresponds to H �{o I}×X̂ (similarly for He).

2. We say that the definable homotopy H : I× X̂ → X̂ is a
strong deformation retraction onto the set Σ ⊆ X̂ if

I H0 = idX̂ ,
I H � I×Σ= id I×Σ,
I He(X̂ ) ⊆ Σ, and
I He(H(t, a)) = He(a) for all (t, a) ∈ I× X̂ .

We added the last condition, as it is satisfied by all the retractions we will
consider.
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Strong deformation retraction onto a Γ-internal subset

The curves case

The standard homotopy on P̂1

I We represent P1(U) as the union of two copies of O(U),
according to the two affine charts w.r.t. u and 1

u , respectively.

I In this way, unambiguously, any element of P̂1 corresponds to
the generic type pB≥s(a) of a closed ball of val. radius s ≥ 0.

Definition
The standard homotopy on P̂1 is defined as follows:

ψ : [0,∞]× P̂1 → P̂1, (t, pB≥s(a)) 7→ pB≥min(s,t)(a)

Lemma
The map ψ is continuous. Viewing [0,∞] as a (generalised)
interval with o I =∞ and e I = 0, ψ is a strong deformation
retraction of P̂1 onto the singleton set {pO}.
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Strong deformation retraction onto a Γ-internal subset

The curves case

A variant: the standard homotopy with stopping time D

I P1(U) has a tree-like structure: any two elements a, b ∈ P1(U)

are the endpoints of a unique segment, i.e. a subset of P̂1

definably homeomorphic to a (generalised) interval in Γ∞.
I Given D ⊆ P1 finite, let CD be the convex hull of D ∪ {pO} in

P̂1, i.e. the image of [0,∞]× (D ∪ {pO}) under ψ.

I CD is closed in P̂1 and Γ-internal, and the map τ : P̂1 → Γ∞,
τ(b) := max{t ∈ [0,∞] | ψ(t, b) ∈ CD} is continuous.

Lemma
Consider the standard homotopy with stopping time D,

ψD : [0,∞]× P̂1 → P̂1 (t, b) 7→ ψ(max(τ(b), t), b).

Then ψD defines a strong deformation retraction of P̂1 onto CD .
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Strong deformation retraction onto a Γ-internal subset

The curves case

A strong deformation retraction for curves

Theorem
Let C be an algebraic curve. Then there is a strong deformation
retraction H : [0,∞]× Ĉ → Ĉ onto a Γ-internal subset Σ ⊆ Ĉ .

Sketch of the proof.

I WMA C is projective.

I Choose f : C → P1 finite and generically étale.

I Idea: one shows that there is D ⊆ P1 finite such that
ψD : [0,∞]× P̂1 → P̂1 ’lifts’ (uniquely) to a strong
deformation retraction H : [0,∞]× Ĉ → Ĉ , i.e., such that
H ◦ f̂ = ψD ◦ (id× f̂ ) holds.
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Strong deformation retraction onto a Γ-internal subset

The curves case

Outward paths on finite covers of A1

Definition
I A standard outward path on Â1 starting at a = pB≥s(c) is

given by γ : (r , s]→ Â1 (for some r < s) such that
γ(t) = pB≥t(c).

I Let f : C → A1 be a finite map. An outward path on Ĉ
starting at x ∈ Ĉ (with respect to f ) is a continuous
definable map γ : (r , s]→ Ĉ for some r < s such that

I γ(s) = x and
I f̂ ◦ γ is a standard outward path on Â1.

Lemma
Let f : C → A1 be a finite map. Then, for every x ∈ Ĉ , there
exists at least one and at most deg(f ) many outward paths starting
at x (with respect to f ).



Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

Strong deformation retraction onto a Γ-internal subset

The curves case

Finiteness of outward branching points

I Let f : C → A1 be a finite map, d = deg(f ).

I Note that for all x ∈ Â1, we have | f̂ −1(x) |≤ d .

I We say y ∈ Ĉ is outward branching (for f ) if there is more
than one outward path on Ĉ starting at y . In this case, we
also say that f̂ (y) ∈ Â1 is outward branching.

Key lemma
The set of outward branching points (for f ) is finite.



Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

Strong deformation retraction onto a Γ-internal subset

The curves case

End of the proof

Suppose f : C → P1 is finite and generically étale.

By the key lemma, there is D ⊆ P1 finite such that
I f is étale above P1 \ D;
I CD contains all outward branching points, with respect to the

maps restricted to the two standard affine charts.

Lemma
Under the above assumptions, the map ψD : [0,∞]× P̂1 → P̂1 lifts
(uniquely) to a strong deformation retraction H : [0,∞]× Ĉ → Ĉ .
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Strong deformation retraction onto a Γ-internal subset

The curves case

Example
Consider the elliptic curve E given by the affine equation
y2 = x(x − 1)(x − λ), where val(λ) > 0 (in char 6= 2).
Let f : E → P1 be the map to the x-coordinate.
I f is ramified at 0, 1, λ and ∞.
I Using Hensel’s lemma, one sees that the fiber of f̂ above

x ∈ Â1 has two elements iff x is neither in the segment joining
0 and λ, nor in the one joining 1 and ∞.

I Thus, for B = B≥val(λ(0), the point pB is the unique outward
branching point on the affine line corresponding to x 6=∞.

I On the affine line corresponding to x 6= 0, pO is the only
outward branching point.

I We may thus take D = {0, λ, 1,∞}.
I If H is the unique lift of ψD , then H defines a retraction of Ê

onto a subset of Ê which is homotopic to a circle.
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Strong deformation retraction onto a Γ-internal subset

GAGA for connected components

Definable connectedness
Definition
Let V be an algebraic variety and Z ⊆ V̂ strict pro-definable.
I Z is called definably connected if it contains no proper

non-empty clopen strict pro-definable subset.
I Z is called definably path-connected if any two points

z , z ′ ∈ Z are connected by a definable path.

The following lemma is easy.

Lemma

1. Z definably path-connected ⇒ Z definably connected
2. For X ⊆ V definable, X̂ is definably connected iff X does not

contain any proper non-empty v+g-clopen definable subset.
3. If V̂ is definably connected, then V is Zariski-connected.
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Strong deformation retraction onto a Γ-internal subset

GAGA for connected components

GAGA for connected components

I For X ⊆ V definable, we say X̂ has finitely many connected
components if X admits a finite definable partition into
v+g-clopen subsets Yi such that Ŷi is definably connected.

I The Ŷi are then called the connected components of X̂ .

Theorem
Let V be an algebraic variety.

I V̂ is definably connected iff V is Zariski connected.
I V̂ has finitely many connected components, which are of the

form Ŵ , for W a Zariski connected component of V .
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Strong deformation retraction onto a Γ-internal subset

GAGA for connected components

Proof of the theorem: reduction to smooth projective curves
Lemma
Let V be a smooth variety and U ⊆ V an open Zariski-dense
subvariety of V . Then V̂ has finitely many connected components
if and only if Û does. Moreover, in this case there is a bijection
between the two sets of connected components.

We assume the lemma (which will be used several times).

I WMA V is Zariski-connected.
I WMA V is irreducible.
I Any two points v 6= v ′ ∈ V are contained in an irreducible

curve C ⊆ V . This uses Chow’s lemma and Bertini’s theorem.
⇒ WMA V = C is an irreducible curve.

I WMA C is projective (by the lemma) and smooth (passing
to the normalisation C̃ � C )
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Strong deformation retraction onto a Γ-internal subset

GAGA for connected components

The case of a smooth projective curve C

We have already seen:
Ĉ retracts to a Γ-internal (PL) subspace S ⊆ Ĉ
⇒ Ĉ has finitely many conn. components (all path-connected)

I If g(C ) = 0, C ∼= P1, so Ĉ is contractible (thus connected).

I If g(C ) = 1, C ∼= E , where E is an elliptic curve.

I (E (U),+) acts on Ê (U) by definable homeomorphisms;
I this action is transitive on simple points (which are dense).

⇒ E (U) acts transitively on the (finite!) set of connected
components of Ê .
⇒ Ê is connected, since E (U) is divisible.
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Strong deformation retraction onto a Γ-internal subset

GAGA for connected components

The case of a smooth projective curve C , with g(C ) ≥ 2.

I Let Ĉ0, . . . , Ĉn−1 be the connected components of Ĉ .

I For I = (i1, . . . , ig ) ∈ ng , CI := Ci1 × · · · × Cig is a v+g-clopen
subset of C g , and ĈI is definably connected.

I Thus, Ĉ g has ng connected components. If n ≥ 2, Ĉ g as well
as Ĉ g/Sg has finitely many (>1) connected components.

I Recall: C g/Sg is birational to the Jacobian J = Jac(C ) of C .

I Using the lemma twice, we see that Ĵ has finitely many (>1)
connected components. (Both C g/Sg and J are smooth.)

I But, as before, (J(U),+) is a divisible group acting transitively
on the set of connected components of Ĵ. Contradiction !
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Strong deformation retraction onto a Γ-internal subset

GAGA for connected components

The main theorem of Hrushovski-Loeser (a first version)
Theorem
Suppose A = K ∪ G, where K ⊆ VF and G ⊆ Γ∞. Let V be a
quasiprojective variety and X ⊆ V × Γn

∞ an A-definable subset.
Then there is an A-definable strong deformation retraction
H : I× X̂ → X̂ onto a (Γ-internal) subset Σ ⊆ X̂ such that Σ
A-embeds homeomorphically into Γw

∞ for some finite A-definable w.

Corollary
Let X be as above. Then X̂ has finitely many definable connected
components. These are all semi-algebraic and path-connected.

Proof.
Let H and Σ be as in the theorem. By o-minimality, Σ has finitely
many def. connected components Σ1, . . . ,Σm. The properties of H
imply that H−1e (Σi ) = X̂i , where Xi = H−1e (Σi ) ∩ X
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Strong deformation retraction onto a Γ-internal subset

GAGA for connected components

The main theorem of Hrushovski-Loeser (general version)
Theorem
Let A = K ∪ G, where K ⊆ VF and G ⊆ Γ∞. Assume given:
1. a quasiprojective variety V defined over K;
2. an A-definable subset of X ⊆ V × Γm

∞ ;

3. a finite algebraic group action on V (defined over K);

4. finitely many A-definable functions ξi : V → Γ∞.

Then there is an A-definable strong deformation retration
H : I× X̂ → X̂ onto a (Γ-internal) subset Σ ⊆ X̂ such that

I Σ A-embeds homeomorphically into Γw
∞ for some finite

A-definable w;
I H is equivariant w.r.t. to the algebraic group action from (3);
I H respects the ξi from (4), i.e. ξ(H(t, v)) = ξ(v) for all t, v.
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Strong deformation retraction onto a Γ-internal subset

GAGA for connected components

Some words about the proof of the main theorem
I The proof is by induction on d = dim(V ), fibering into
curves.

I The fact that one may respect extra data (the functions to Γ∞
and the finite algebraic group action) is essential in the proof,
since these extra data are needed in the inductive approach.

I In going from d to d + 1, the homotopy is obtained by a
concatenation of four different homotopies.

I Only standard tools from algebraic geometry are used, apart
from Riemann-Roch (used the proof of iso-definability of Ĉ ).

I Technically, the most involved arguments are needed to
guarantee the continuity of certain homotopies. There are nice
specialisation criteria (both for the v- and for the g-topology)
which may be formulated in terms of ’doubly valued fields’.
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Transfer to Berkovich spaces and applications

Berkovich spaces slightly generalised
A type p = tp(a/A) ∈ S(A) is said to be almost orthogonal to Γ
if Γ(A) = Γ(Aa).

I Let F a valued field s.t. ΓF ≤ R.
I Set F = (F ,R), where R ⊆ Γ.

I Let V be a variety defined over F , and X ⊆ V × Γm
∞ an

F-definable subset.

I Let BX (F) = {p ∈ SX (F) | p is almost orthogonal to Γ}.
I In a similar way to the Berkovich and the HL setting, one

defines a topology on BX (F).

Fact
If F is complete, then BV (F) and V an are canonically
homeomorphic. More generally, BV×Γm

∞ (F) = V an × Rm
∞.
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Transfer to Berkovich spaces and applications

Passing from X̂ to BX (F)
Given F = (F ,R) as before, let Fmax |= ACVF be maximally
complete such that
I F ⊆ (Fmax ,R);
I ΓFmax = R, and
I kFmax = kalg

F .

Remark
By a result of Kaplansky, Fmax is uniquely determined up to
F-automorphism by the above properties.

Lemma
The restriction of types map π : X̂ (Fmax)→ SX (F), p 7→ p |F
induces a surjection π : X̂ (Fmax)� BX (F).

Remark
There exists an alternative way of passing from X̂ to BX (F), using
imaginaries (from the lattice sorts).
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Transfer to Berkovich spaces and applications

The topological link to actual Berkovich spaces

Proposition

1. The map π : X̂ (Fmax)� BX (F) is continuous and closed. In
particular, if F = Fmax , it is a homeomorphism.

2. Let X and Y be F-definable subsets of some V × Γm
∞ , and let

g : X̂ → Ŷ be continuous and F-prodefinable.
Then there is a (unique) continuous map g̃ : BX (F)→ BY (F)
such that π ◦ g = g̃ ◦ π on X̂ (Fmax).

3. If H : I× X̂ → X̂ is a strong deformation retraction, so is
H̃ : I(R∞)× BX (F)→ BX (F).

4. BX (F) is compact iff X̂ is definably compact.

Remark
The proposition applies in particular to V an.
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Transfer to Berkovich spaces and applications

The main theorem phrased for Berkovich spaces

Theorem
Let V be a quasiprojective variety defined over F , and let
X ⊆ V × Γm

∞ be an F-definable subset.
Then there is a strong deformation retraction

H : I(R∞)× BX (F)→ BX (F)

onto a subspace Z which is homeomorphic to a finite simplicial
complex.
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Transfer to Berkovich spaces and applications

Topological tameness for Berkovich spaces I
Theorem (Local contractibility)
Let V be quasi-projective and X ⊆ V × Γm

∞ F-definable. Then
BX (F) is locally contractible, i.e. every point has a basis of
contractible open neighbourhoods.

Proof.
I There is a basis of open sets given by ’semi-algebraic’ sets, i.e.,

sets of the form BX ′(F) for X ′ ⊆ X F-definable.
I So it is enough to show that any a ∈ BX (F) is contained in a

contractible subset.
I Let H and Z be as in the theorem, and let He(a) = a′ ∈ Z. As
Z is a finite simplicial complex, it is locally contractible, so
there is a′ ⊆W with W ⊆ Z open and contractible.

I The properties of H imply that H−1e (W ) is contractible.
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Transfer to Berkovich spaces and applications

Topological tameness for Berkovich spaces II

Here is a list of further tameness results:

Theorem

1. If V quasiprojective and X ⊆ V × Γm
∞ vary in a definable

family, then there are only finitely many homotopy types for
the corresponding Berkovich spaces. (We omit a more precise
formulation.)

2. If BX (F) is compact, then it is homeomorphic to lim←−i∈I
Zi,

where the Zi form a projective system of subspaces of BX (F)
which are homeomorphic to finite simplicial complexes.

3. Let d = dim(V ), and assume that F contains a countable
dense subset for the valuation topology. Then BV (F) embeds
homeomorphically into R2d+1 (Hrushovski-Loeser-Poonen).
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