Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

Martin Hils

Institut de Mathématiques de Jussieu Université Paris Diderot – Paris 7

Model Theory 2013 Ravello (Italy), 10th – 15th June 2013

Outline

Introduction

- A review of the model theory of ACVF and stable domination
- The space \widehat{V} of stably dominated types
- Topological considerations in \widehat{V}
- Strong deformation retraction onto a Γ-internal subset Γ-internality The curves case GAGA for connected components

Transfer to Berkovich spaces and applications

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \sqcup Introduction

Valued fields: basics and notation

Let K be a field and $\Gamma = (\Gamma, 0, +, <)$ an ordered abelian group. A map val : $K \to \Gamma_{\infty} = \Gamma \dot{\cup} \{\infty\}$ is a valuation if it satisfies 1. val $(x) = \infty$ iff x = 0; 2. val(xy) = val(x) + val(y); 3. val $(x + y) > min\{val(x), val(y)\}$.

(Here, ∞ is a distinguished element $> \Gamma$ and absorbing for +.)

- $\Gamma = \Gamma_K$ is called the value group.
- ▶ $\mathcal{O} = \mathcal{O}_K = \{x \in K \mid val(x) \ge 0\}$ is the valuation ring, with (unique) maximal ideal $\mathfrak{m} = \mathfrak{m}_K = \{x \mid val(x) > 0\};$
- res : O → k = k_K := O/m is the residue map, and k_K is called the residue field.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \sqcup Introduction

The valuation topology

Let K be a valued field with value group Γ .

- For a ∈ K and γ ∈ Γ let B≥γ(a) := {x ∈ K | val(x − a) ≥ γ} be the closed ball of (valuative) radius γ around a.
- Similarly, one defines the **open ball** $B_{>\gamma}(a)$.
- The open balls form a basis for a topology on K, called the valuation topology, turning K into a topological field.
- Both the 'open' and the 'closed' balls are clopen sets in the valuation topology. In particular, K is totally disconnected.
- Let V be an algebraic variety defined over K.
 Using the product topology on Kⁿ and gluing, one defines the valuation topology on V(K) (also totally disconnected).

Fields with a (complete) non-archimedean absolute value

Assume that K is a valued field such that $\Gamma_K \leq \mathbb{R}$.

- ▶ $|\cdot|: K \to \mathbb{R}_{\geq 0}$, $|x|:= e^{-\operatorname{val}(x)}$, defines an absolute value.
- ► (K, |·|) is non-archimedean, and any field with a non-archimedean absolute value is obtained in this way.
- (K, |·|) is called complete if it is complete as a metric space,
 i.e. if every Cauchy sequence has a limit in K.

Examples of complete non-archimedean fields

- \mathbb{Q}_p (the field *p*-adic numbers), and any finite extension of it
- $\mathbb{C}_p = \widehat{\mathbb{Q}_p^a}$ (the *p*-adic analogue of the complex numbers)
- k((t)), with the *t*-adic absolute value (*k* any field)
- ▶ k with the trivial absolute value (|x|=1 for all $x \in k^{ imes}$)

Non-archimedean analytic geometry

- ► For K a complete non-archimedean field, one would like to do analytic geometry over K similarly to the way one does analytic geometry over C, with a 'nice' underlying topological space.
- There exist various approaches to this, due to Tate (rigid analytic geometry), Raynaud, Berkovich, Huber etc.

Berkovich's approach: Berkovich (analytic) spaces (late 80's)

- provide spaces endowed with an actual topology (not just a Grothendieck topology), in which one may consider paths, singular (co-)homology etc.;
- are obtained by adding points to the set of naive points of an analytic / algebraic variety over K;
- have been used with great success in many different areas.

Berkovich spaces in a glance

We briefly describe the Berkovich analytification (as a topological space) V^{an} of an affine algebraic variety V over K.

- Let K[V] be the ring of regular functions on V. As a set, V^{an} equals the set of multiplicative seminorms |·| on K[V] (|fg|=|f|·|g| and |f+g|≤ max(|f|,|g|)) which extend |·|_K.
- V(K) may be identified with a subset of V^{an}, via a →|·|_a, where |f|_a:=|f(a)|_K.
- Note V^{an} ⊆ ℝ^{K[V]}. The topology on V^{an} is defined as the induced one from the product topoloy on ℝ^{K[V]}.

Remark

Let $(L, |\cdot|_L)$ be a normed field extension of K, and let $b \in V(L)$. Then b corresponds to a map $\varphi : K[V] \to L$, and $|\cdot|_b \in V^{an}$, where $|f|_b = |\varphi(f)|_L$. Moreover, any element of V^{an} is of this form.

A glimpse on the Berkovich affine line

Example Let $V = \mathbb{A}^1$, so K[V] = K[X]. For any $r \in \mathbb{R}_{\geq 0}$, we have $\nu_{0,r} \in \mathbb{A}^{1,an}$, where

$$|\sum_{i=0} c_i X^i|_{\nu_{0,r}} := \max_{0 \le i \le n} (|c_i|_K \cdot r^i).$$

- ▶ $\nu_{0,0}$ corresponds to $0 \in \mathbb{A}^1(K)$, and $\nu_{0,1}$ to the *Gauss norm*.
- The map $r \mapsto \nu_{0,r}$ is a continuous path in $\mathbb{A}^{1,an}$.
- ► In fact, the construction generalises suitably, showing that A^{1,an} is contractible.

Topological tameness in Berkovich spaces

Berkovich spaces have excellent general topological properties, e.g. they are **locally compact** and **locally path-connected**.

Using deep results from algebraic geometry, various **topological tameness** properties had been established, e.g.:

- Any compact Berkovich space is homotopic to a (finite) simplicial complex (Berkovich);
- Smooth Berkovich spaces are locally contractible (Berkovich).
- If V is an algebraic variety, 'semi-algebraic' subsets of V^{an} have finitely many connected components (Ducros).

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \sqcup Introduction

Hrushovski-Loeser's work: main contributions

Foundational

- They develop 'non-archimedean (rigid) algebraic geometry', constructing a 'nice' space V for an algebraic variety V over any valued field K,
 - with no restrictions on the value group $\Gamma_{\mathcal{K}}$;
 - no need to work with a complete field K.
- Entirely new methods: the geometric model theory of ACVF is shown to be perfectly suited to address topological tameness (combining stability and *o*-minimality).

Applications to Berkovich analytifications of algebraic varieties

They obtain strong topological tameness results for V^{an},

- without smoothness assumption on the variety V, and
- avoiding heavy tools from algebraic geometry.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \Box A review of the model theory of ACVF and stable domination

Valued fields as first order structures

- There are various choices of languages for valued fields.
- *L*_{div} := *L*_{rings} ∪ { div } is a language with only one sort VF for the valued field.
- A valued field K gives rise to an \mathcal{L}_{div} -structure, via

 $x \operatorname{div} y :\Leftrightarrow \operatorname{val}(x) \leq \operatorname{val}(y).$

- ▶ $\mathcal{O}_{\mathcal{K}} = \{x \in \mathcal{K} : 1 \operatorname{div} x\}$, so $\mathcal{O}_{\mathcal{K}}$ is $\mathcal{L}_{\operatorname{div}}$ -definable ⇒ the valuation is encoded in the $\mathcal{L}_{\operatorname{div}}$ -structure.
- ACVF: theory of alg. closed non-trivially valued fields

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \square A review of the model theory of ACVF and stable domination

QE in algebraically closed valued fields

Fact (Robinson)

The theory ACVF has QE in \mathcal{L}_{div} . Its completions are given by ACVF_{p,q}, for (p,q) = (char(K), char(k)).

Corollary

- In ACVF, a set is definable iff it is semi-algebraic, i.e. a finite boolean combination of sets given by conditions of the form f(x̄) = 0 or val(f(x̄)) ≤ val(g(x̄)), where f, g are polynomials.
- 2. Definable sets in 1 variable are (finite) boolean combinations of singletons and balls.
- 3. ACVF is NIP, i.e., there is no formula $\varphi(\overline{x}, \overline{y})$ and tuples $(\overline{a}_i)_{i \in \mathbb{N}}, (\overline{b}_J)_{J \subseteq \mathbb{N}}$ (in some model) such that $\varphi(\overline{a}_i, \overline{b}_J)$ iff $i \in J$.

A variant: valued fields in a three-sorted language

Let $\mathcal{L}_{k,\Gamma}$ be the following 3-sorted language, with sorts VF for the valued field, Γ_{∞} and k:

- ▶ Put \mathcal{L}_{rings} on $\mathcal{K} = VF$, $\{0, +, <, \infty\}$ on $\Gamma_{\!\infty}$ and \mathcal{L}_{rings} on k;
- val : $K \to \Gamma_{\infty}$, and
- RES : $K \rightarrow \mathbf{k}$ as additional function symbols.

A valued field K is naturally an $\mathcal{L}_{k,\Gamma}$ -structure, via

$$\operatorname{RES}(x,y) := \begin{cases} \operatorname{res}(xy^{-1}), \text{ if } \operatorname{val}(x) \ge \operatorname{val}(y) \neq \infty; \\ 0 \in k, \text{ else.} \end{cases}$$

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \square A review of the model theory of ACVF and stable domination

ACVF in the three-sorted language

Fact ACVF eliminates quantifiers in $\mathcal{L}_{k,\Gamma}$.

Corollary

In ACVF, the following holds:

- Γ is a pure divisible ordered abelian group: any definable subset of Γⁿ is {0,+,<}-definable (with parameters from Γ). In particular, Γ is o-minimal.
- 2. **k** is a **pure ACF**: any definable subset of \mathbf{k}^n is \mathcal{L}_{rings} -definable.
- 3. $\mathbf{k} \perp \Gamma$, *i.e.* every definable subset of $\mathbf{k}^m \times \Gamma^n$ is a finite union of rectancles $D \times E$.
- 4. Any definable function $f : K^n \to \Gamma_{\infty}$ is piecewise of the form $f(\overline{x}) = \frac{1}{m} [val(F(\overline{x})) val(G(\overline{x}))]$, for $F, G \in K[\overline{x}]$ and $m \ge 1$.

A description of 1-types over models of ACVF

Let $K \preccurlyeq \mathbb{U} \models \text{ACVF}$, with \mathbb{U} suff. saturated. A *K*-(type-)definable subset $B \subseteq \mathbb{U}$ is a **generalised ball over** *K* if *B* is equal to one of the following:

- a singleton $\{a\} \subseteq K$;
- ► a closed ball $B_{\geq \gamma}(a)$ $(a \in K, \gamma \in \Gamma_K)$;
- ► an open ball $B_{>\gamma}(a)$ $(a \in K, \gamma \in \Gamma_K)$;
- ► a (non-empty) intersection ∩_{i∈I} B_i of K-definable balls B_i with no minimal B_i;
- ► U.

Fact

By QE, we have $S_1(K) \stackrel{1:1}{\leftrightarrow} \{\text{generalised balls over } K\}$, given by

- p = tp(t/K) → Loc(t/K) := ∩ b, where b runs over all generalised balls over K containing t;
- ▶ $B \mapsto p_B \mid K$, where $p_B \mid K$ is the generic type in B expressing $x \in B$ and $x \notin b'$ for any K-def. ball $b' \subsetneq B$.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)
A review of the model theory of ACVF and stable domination
Imaginaries

Context

- *L* is some language (possibly many-sorted);
- ► *T* is a **complete** *L*-theory with QE;
- ► U ⊨ T is a fixed universe (i.e. very saturated and homogeneous);
- all models *M* (and all parameter sets *A*) we consider are small, with *M* ≼ U (and *A* ⊆ U).

 \square A review of the model theory of ACVF and stable domination

- Imaginaries

Imaginary Sorts and Elements

- ▶ Let *E* is a definable equivalence relation on some $D \subseteq_{def} \mathbb{U}^n$. If $d \in D(\mathbb{U})$, then d/E is an **imaginary** in \mathbb{U} .
- If D = Uⁿ for some n and E is Ø-definable, then Uⁿ/E is called an imaginary sort.
- Recall: Shelah's eq-construction is a canonical way to pass from L, M, T to L^{eq}, M^{eq}, T^{eq}, adding a new sort (and a quotient function) for each imaginary sort.
- Given φ(x, y), let E_φ(y, y') := ∀x[φ(x, y) ↔ φ(x, y')]. Then b/E_φ may serve as a code ¬W¬ for W = φ(U, b).

Example

Consider $K \models ACVF$ (in \mathcal{L}_{div}).

- $\mathbf{k}, \Gamma \subseteq K^{eq}$, i.e. \mathbf{k} and Γ are imaginary sorts.
- More generally, $\mathcal{B}^o, \mathcal{B}^{cl} \subseteq \mathcal{K}^{eq}$ (the set of open / closed balls).

 igsir A review of the model theory of ACVF and stable domination

Imaginaries

Elimination of imaginaries

Definition (Poizat)

The theory T eliminates imaginaries if every imaginary element $a \in \mathbb{U}^{eq}$ is interdefinable with a real tuple $\overline{b} \in \mathbb{U}^n$.

Examples of theories which eliminate imaginaries

- 1. T^{eq} (for an arbitrary theory T)
- 2. ACF (Poizat)
- 3. The theory DOAG of non-trivial divisible ordered abelian groups (more generally every *o*-minimal expansion of DOAG)

Fact

ACVF does not eliminate imaginaries in the 3-sorted language $\mathcal{L}_{k,\Gamma}$ (Holly), even if sorts for open and closed balls \mathcal{B}° and \mathcal{B}^{cl} are added (Haskell-Hrushovski-Macpherson).

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) A review of the model theory of ACVF and stable domination Imaginaries

The geometric sorts

- ▶ $s \subseteq K^n$ is a **lattice** if it is a free \mathcal{O} -submodule of rank n;
- for s ⊆ Kⁿ a lattice, s/ms is a definable n-dimensional k-vector space.

For $n \ge 1$, let $S_n := \{ \text{lattices in } K^n \},\$

$$T_n:=\bigcup_{s\in S_n}s/\mathfrak{m}s.$$

Fact

- 1. S_n and T_n are imaginary sorts, $S_1 \cong \Gamma$ (via $a\mathcal{O} \mapsto val(a)$), and also $\mathbf{k} = \mathcal{O}/\mathfrak{m} \subseteq T_1$.
- 2. $S_n \cong \operatorname{GL}_n(\mathcal{K})/\operatorname{GL}_n(\mathcal{O})$; for T_n , there is a similar description as a finite union of coset spaces.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)
A review of the model theory of ACVF and stable domination
Imaginaries

Classification of Imaginaries in ACVF

 $\mathcal{G} = {\mathbf{VF}} \cup {S_n, n \ge 1} \cup {T_n, n \ge 1}$ are the geometric sorts. Let $\mathcal{L}_{\mathcal{G}}$ be the (natural) language of valued fields in \mathcal{G} .

Theorem (Haskell-Hrushovski-Macpherson 2006)

ACVF eliminates imaginaries down to geometric sorts, i.e. the theory ACVF considered in $\mathcal{L}_{\mathcal{G}}$ has El.

Convention

From now on, by ACVF we mean any completion of this theory, considered in the geometric sorts.

Moreover, any theory T we consider will be assumed to have EI.

 igsir A review of the model theory of ACVF and stable domination

Definable types

The notion of a definable type

Definition

• Let $M \models T$ and $A \subseteq M$. A type $p(\overline{x}) \in S_n(M)$ is called A-definable if for every \mathcal{L} -formula $\varphi(\overline{x}, \overline{y})$ there is an \mathcal{L}_A -formula $d_p\varphi(\overline{y})$ such that

$$\varphi(\overline{x},\overline{b})\in p \ \Leftrightarrow \ M\models d_p\varphi(\overline{b}) \ \ \text{(for every} \ \overline{b}\in M)$$

- We say p is **definable** if it is definable over some $A \subseteq M$.
- The collection $(d_p \varphi)_{\varphi}$ is called a **defining scheme** for *p*.

Remark

If $p \in S_n(M)$ is definable via $(d_p \varphi)_{\varphi}$, then the same scheme gives rise to a (unique) type over any $N \succcurlyeq M$, denoted by $p \mid N$.

 igsir A review of the model theory of ACVF and stable domination

Definable types

Definable types: first properties

- (Realised types are definable)
 Let ā ∈ Mⁿ. Then tp(ā/M) is definable.
 (Take d_pφ(ȳ) = φ(ā, ȳ).)
- (Preservation under algebraic closure)
 If tp(ā/M) is definable and b
 ∈ acl(M ∪ {ā}), then tp(b/M) is definable, too.
- (Transitivity) Let $\overline{a} \in N$ for some $N \succcurlyeq M$, $A \subseteq M$. Assume
 - $tp(\overline{a}/M)$ is A-definable;
 - $\operatorname{tp}(\overline{b}/N)$ is $A \cup \{\overline{a}\}$ -definable.

Then $tp(\overline{a}\overline{b}/M)$ is A-definable.

We note that the converse of this is false in general.

A review of the model theory of ACVF and stable domination

└─ Definable types

Definable 1-types in o-minimal theories

Let T be o-minimal (e.g. T = DOAG) and $M \models T$.

- Let $p(x) \in S_1(M)$ be a non-realised type.
- Recall that p is determined by the cut $C_p := \{d \in M \mid d < x \in p\}.$
- Thus, by *o*-minimality, p(x) is definable $\Leftrightarrow d_p \varphi(y)$ exists for $\varphi(x, y) := x > y$ $\Leftrightarrow C_p$ is a definable subset of M $\Leftrightarrow C_p$ is a rational cut
- e.g. in case $C_p = M$, $d_p \varphi(y)$ is given by y = y;
- in case C_p =] −∞, δ], d_pφ(y) is given by y ≤ δ (p(x) expresses: x is "just right" of δ; this p is denoted by δ⁺).

A review of the model theory of ACVF and stable domination

Definable types

Definable 1-types in ACVF

Fact

Let $K \models \text{ACVF}$ and $p = \text{tp}(t/K) \in S_1(K)$. TFAE:

- 1. tp(t/K) is definable;
- 2. Loc(t/K) is definable (and not just type-definable).

Proof.

If tp(t/K) is definable, then the set of K-definable balls containing t is definable over K, so is its intersection. (2) \Rightarrow (1) is clear.

For $t \notin K$, letting L = K(t), we get three cases:

L/K is a residual extension, i.e. k_L ⊋ k_K. Then t is generic in a closed ball, so p is definable.
 [Indeed, replacing t by at + b, WMA val(t) = 0 and

 $\operatorname{res}(t) \notin k_{\mathcal{K}}$, so *t* is generic in \mathcal{O} .]

A review of the model theory of ACVF and stable domination

Definable types

Definable 1-types in ACVF (continued)

- L/K is a ramified extension, i.e. Γ_L ⊋ Γ_K. Up to a translation WMA γ = val(t) ∉ Γ(K).
 p is definable ⇔ the cut def. by val(t) in Γ_K is rational.
 [Indeed, p is determined by p_Γ := tp_{DOAG}(γ/Γ_K), so p is definable ⇔ p_Γ is definable.]
- L/K is an immediate extension, i.e. k_K = k_L and Γ_K = Γ_L. Then p is not definable.
 [Indeed, in this case, letting B := Loc(t/K), we get B(K) = Ø. In particular, B is not definable.]

 \square A review of the model theory of ACVF and stable domination

Definable types

Definability of types in ACF

Proposition In ACF, all types over all models are definable.

Proof.

Let $K \models ACF$ and $p \in S_n(K)$. Let $I(p) := \{f(\overline{x}) \in K[\overline{x}] \mid f(\overline{x}) = 0 \text{ is in } p\} = (f_1, \ldots, f_r)$. By QE, every formula is equivant to a boolean combination of polynomial equations. Thus, it is enough to show:

For any *d* the set of (coefficients of) polynomials $g(\overline{x}) \in K[\overline{x}]$ of degree $\leq d$ such that $g \in I_p$ is definable. This is classical.

Remark

The above result is a consequence of the **stability** of ACF. In fact, it characterises stability.

 \square A review of the model theory of ACVF and stable domination

Definable types

Products of definable types

- Assume p = p(x) and q = q(y) are A-definable types.
- ► There is a unique A-definable type p ⊗ q in variables (x, y), constructed as follows: Let b ⊨ q | A and a ⊨ p | Ab. Then

$$p\otimes q\mid A={
m tp}(a,b/A).$$

• The *n*-fold product $p \otimes \cdots \otimes p$ is denoted by $p^{(n)}$.

Remark

- 1. \otimes is associative.
- ⊗ is in general not commutative, as is shown by the following: Let p(x) and q(y) both be equal to 0⁺ in DOAG. Then p(x) ⊗ q(y) ⊢ x < y, whereas q(y) ⊗ p(x) ⊢ y < x.
- 3. In a stable theory, \otimes corresponds to the non-forking extension, so \otimes is in particular commutative.

 \square A review of the model theory of ACVF and stable domination

Stable domination

The stable part

Let T be given and $A \subseteq \mathbb{U}$ a parameter set.

Recall that an A-definable set D is stably embedded if every definable subset of D^n is definable with parameters from $D(\mathbb{U}) \cup A$.

Definition

- ► The stable part over A, denoted St_A, is the multi-sorted structure with a sort for each A-definable stable stably embedded set D and with the full induced structure (from L_A).
- For $\overline{a} \in \mathbb{U}$, set $St_A(\overline{a}) := dcl(A\overline{a}) \cap St_A$.

Fact

St_A is a stable structure.

 \square A review of the model theory of ACVF and stable domination

Stable domination

The stable part in ACVF

Consider ACVF in $\mathcal{L}_{\mathcal{G}}$. Given A, we denote by $VS_{\mathbf{k},A}$ the many sorted structure with sorts $s/\mathfrak{m}s$, where $s \in S_n(A)$ for some n.

Fact (HHM)

Let D be an A-definable set. TFAE:

- 1. D is stable and stably embedded.
- 2. D is k-internal, i.e. there is a finite set $F \subseteq \mathbb{U}$ such that $D \subseteq dcl(\mathbf{k} \cup F)$
- 3. $D \subseteq \mathsf{dcl}(A \cup VS_{\mathbf{k},A})$
- 4. $D \perp \Gamma$ (def. subsets of $D^m \times \Gamma^n$ are finite unions of rectangles)

Corollary

Up to interdefinability, St_A is equal to $VS_{\mathbf{k},A}$. In particular, if $A = K \models ACVF$, then St_A may be identified with \mathbf{k} .

 \square A review of the model theory of ACVF and stable domination

Stable domination

Stable domination (in ACVF)

- Idea: a stably dominated type is 'generically' controlled by its stable part.
- ► To ease the presentation and avoid technical issues around base change, we will restrict the context and work in ACVF.

Definition

Let p be an A-definable type. We say p is **stably dominated** if for $\overline{a} \models p \mid A$ and every $B \supseteq A$ such that

 $\operatorname{St}_{\mathcal{A}}(\overline{a}) \underset{\mathcal{A}}{ot} \operatorname{St}_{\mathcal{A}}(\mathcal{B})$ (in the stable structure $\operatorname{St}_{\mathcal{A}} = \operatorname{VS}_{\mathbf{k},\mathcal{A}}$),

we have $tp(\overline{a}/A) \cup tp(St_A(\overline{a})/St_A(B)) \vdash tp(\overline{a}/B)$.

(We will then also say that $p \mid A = tp(\overline{a}/A)$ is stably dominated.) Fact

The above does not depend on the choice of the set A over which *p* is defined, so the notion is well-defined.

 \square A review of the model theory of ACVF and stable domination

Stable domination

Stably dominated types inherit many nice properties from stable theories. Here is one:

Fact

If p is stably dominated type and q an arbitrary definable type, then $p \otimes q = q \otimes p$. In particular, p commutes with itself, so any permutation of $(a_1, \ldots, a_n) \models p^{(n)} | A$ is again realises $p^{(n)} | A$.

Examples

1. The generic type of ${\cal O}$ is stably dominated.

Indeed, let $a \models p_{\mathcal{O}} \mid K$ and $K \subseteq L$. Then $\operatorname{St}_{K}(a) \bigcup_{K} \operatorname{St}_{K}(L)$ just means that $\operatorname{res}(a) \notin k_{L}^{alg}$, forcing $a \models p_{\mathcal{O}} \mid L$.

- 2. The generic type of \mathfrak{m} is not stably dominated. Indeed, we have $p_{\mathfrak{m}}(x) \otimes p_{\mathfrak{m}}(y) \vdash \operatorname{val}(x) < \operatorname{val}(y)$, whereas $p_{\mathfrak{m}}(y) \otimes p_{\mathfrak{m}}(x) \vdash \operatorname{val}(x) > \operatorname{val}(y)$.
- 3. On Γ_{∞}^{m} , only the realised types are stably dominated.

 \square A review of the model theory of ACVF and stable domination

Stable domination

Characterisation of stably dominated types in ACVF

Definition

Let p be a definable type. We say p is **orthogonal to** Γ (and we denote this by $p \perp \Gamma$) if for every model M over which p is defined, letting $\overline{a} \models p \mid M$, one has $\Gamma(M) = \Gamma(M\overline{a})$.

Remark

Equivalently, in the definiton we may require the property to hold only for some model M over which p is defined.

Proposition

Let p be a definable type in ACVF. TFAE:

- 1. p is stably dominated.
- 2. $p \perp \Gamma$.
- 3. p commutes with itself, i.e., $p(x) \otimes p(y) = p(y) \otimes p(x)$.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)
A review of the model theory of ACVF and stable domination
Stable domination

Stably dominated types in ACVF: some closure properties

- Realised types are stably dominated.
- Preservation under algebraic closure:

Suppose $tp(\overline{a}/A)$ is stably dominated for some A = acl(A), and let $\overline{b} \in acl(A\overline{a})$. Then $tp(\overline{b}/A)$ is stably dominated, too. In particular, if p is stably dominated on X and $f : X \to Y$ is definable, then $f_*(p)$ is stably dominated on Y.

► Transitivity:

If $tp(\overline{a}/A)$ and $tp(\overline{b}/A\overline{a})$ are both stably dominated, then $tp(\overline{a}\overline{b}/A)$ is stably dominated, too.

The converse of this is false in general. (See the examples below.)

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)
A review of the model theory of ACVF and stable domination
Stable domination

Examples of stably dominated types in ACVF

- ► The generic type of a closed ball is stably dominated.
- The generic type of an open ball is not stably dominated.
- It follows that if K ⊨ ACVF and K ⊆ L = K(ā) with tr. deg(L/K) = 1, then tp(ā/K) is stably dominated iff tr. deg(k_L/k_K) = 1.
- If tr. deg(L/K) = tr. deg(k_L/k_K), then tp(ā/K) is stably dominated.
- There are more complicated stably dominated types: for every n ≥ 1, there is K ⊆ L = K(ā) such that
 - tr. deg(L/K) = n,
 - tr. deg $(k_L/k_K) = 1$, and
 - $tp(\overline{a}/K)$ is stably dominated.

Stable domination

Maximally complete models and metastability of ACVF

- ► A valued field *K* is maximally complete if it has no proper immediate extension.
- ▶ When working over a parameter set A, it is often useful to pass to a maximally complete M ⊨ ACVF containing A, mainly due to the following important result.

Theorem (Haskell-Hrushovski-Macpherson)

Let *M* be a maximally complete model of ACVF, and let \overline{a} be a tuple from \mathbb{U} . Then $tp(\overline{a}/M, \Gamma(M\overline{a}))$ is stably dominated.

Remark

In abstract terms, the theorem states that ACVF is **metastable** (over Γ), with metastability bases given by maximally complete models.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \Box The space \widehat{V} of stably dominated types

Uniform definability of types

Fact

- 1. Let T be stable and $\varphi(x, y)$ a formula. Then there is a formula $\chi(y, z)$ such that for every type p(x) (over a model) there is b such that $d_p\varphi(y) = \chi(y, b)$.
- 2. The same result holds in ACVF if we restrict the conclusion to the collection of stably dominated types.

Proof.

For every formula $\varphi(x, y)$ there is $n \ge 1$ such that whenever p is stably dominated and A-definable and $(a_0, \ldots, a_{2n}) \models p^{(2n+1)} \mid A$, then for any $b \in \mathbb{U}$, the **majority rule** holds, i.e.,

$$\varphi(x,b) \in p \text{ iff } \mathbb{U} \models \bigvee_{i_0 < \cdots < i_n} \varphi(a_{i_0},b) \land \cdots \land \varphi(a_{i_n},b).$$
Let The space \widehat{V} of stably dominated types

Prodefinability and type spaces

Prodefinable sets

Definition

A prodefinable set is a projective limit $D = \lim_{i \in I} D_i$ of definable sets D_i , with def. transition functions $\pi_{i,j} : D_i \to D_j$ and I some small index set. (Identify $D(\mathbb{U})$ with a subset of $\prod D_i(\mathbb{U})$.)

We are only interested in **countable** index sets \Rightarrow WMA $I = \mathbb{N}$.

Example

- 1. (Type-definable sets) If $D_i \subseteq \mathbb{U}^n$ are definable sets, $\bigcap_{i \in \mathbb{N}} D_i$ may be seen as a prodefinable set: WMA $D_{i+1} \subseteq D_i$, so the transition maps are given by inclusion.
- 2. $\mathbb{U}^{\omega} = \varprojlim_{i \in \mathbb{N}} \mathbb{U}^i$ is naturally a prodefinable set.

Let The space \widehat{V} of stably dominated types

Prodefinability and type spaces

Some notions in the prodefinable setting

Let
$$D = \varprojlim_{i \in I} D_i$$
 and $E = \varprojlim_{j \in J} E_j$ be prodefinable.

- ► There is a natural notion of a **prodefinable map** $f : D \to E$ [*f* is given by a compatible system of maps $f_j : D \to E_j$, each f_j factoring through some component $D_{i(j)}$]
- D is called strict prodefinable if it can be written as a prodefinable set with surjective transition functions.
- D is called iso-definable if it is in prodefinable bijection with a definable set.
- $X \subseteq D$ is called **relatively definable** if there is $i \in I$ and $X_i \subseteq D_i$ definable such that $X = \pi_i^{-1}(X_i)$.

Let The space \widehat{V} of stably dominated types

Prodefinability and type spaces

The set of definable types as a prodefinable set (T stable)

- Assume T is stable with EI (e.g. $T = ACF_p$)
- For any φ(x, y) fix χ_φ(y, z) s.t. for any definable type p(x) we have d_pφ(y) = χ_φ(y, b) for some b = [¬]d_pφ[¬].
- For X definable, let $S_{def,X}(A)$ be the A-definable types on X.

Proposition

- 1. There is a prodefinable set D such that $S_{def,X}(A) = D(A)$ naturally. (Identify $p \mid \mathbb{U}$ with the tuple $(\ulcorner d_p \varphi \urcorner)_{\varphi}$).
- 2. If $Y \subseteq X$ is definable, $S_{def,Y}$ is relatively definable in $S_{def,X}$.
- 3. The subset of $S_{def,X}$ corresponding to the set of realised types is relatively definable and isodefinable. (It is $\cong X(\mathbb{U})$.)

Let The space \widehat{V} of stably dominated types

Prodefinability and type spaces

Strict pro-definability and nfcp

Problem

Let $D_{\varphi,\chi} = \{b \in U \mid \chi(y, b) \text{ is the } \varphi\text{-definition of some type}\}.$ Then $D_{\varphi,\chi}$ is not always definable.

Fact

In ACF, all $D_{\varphi,\chi}$ are definable. More generally, for a stable theory T this is the case iff T is nfcp.

Corollary

- 1. If T is stable and nfcp (e.g. T = ACF), then $S_{def,X}$ is strict pro-definable.
- 2. If C is a curve definable over $K \models ACF$, then $S_{def,C}$ is iso-definable.
- S_{def,A²} is not iso-definable in ACF: the generic types of the curves given by y = xⁿ cannot be seperated by finitely many φ-types.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \Box The space \hat{V} of stably dominated types \Box Prodefinability and type spaces

The set of stably dominated types as a prodefinable set

For X an A-definable set in ACVF, we denote by $\widehat{X}(A)$ the set of A-definable stably dominated types on X.

Theorem

Let X be C-definable. There exists a strict C-prodefinable set D such that for every $A \supseteq C$, we have a canonical identification $\widehat{X}(A) = D(A)$.

Once the theorem is established, we will denote by \widehat{X} the prodefinable set representing it.

Let The space \widehat{V} of stably dominated types

Prodefinability and type spaces

Proof of the theorem.

For notational simplicity, we will assume $C = \emptyset$.

- Let f : X → Γ_∞ be definable (with parameters) and let p ∈ X̂(U). Then f_{*}(p) is stably dominated on Γ_∞, so is a realised type x = γ. We will denote this by f(p) = γ.
- ▶ Now let $f : W \times X \to \Gamma_{\infty}$ be Ø-definable, $f_w := f(w, -)$. Then there is a set S and a function $g : W \times S \to \Gamma_{\infty}$, both Ø-definable, such that for every $p \in \widehat{X}(\mathbb{U})$, the function

$$f_p: W \to \Gamma_{\!\infty}, \ w \mapsto f_w(p)$$

is equal to $g_s = g(s, -)$ for a unique $s \in S$.

This follows from

- uniform definability of types for stably dominated types, and
- elimination of imaginaries in ACVF (in $\mathcal{L}_{\mathcal{G}}$).

Let The space \widehat{V} of stably dominated types

Prodefinability and type spaces

End of the proof

Choose an enumeration $f_i : W_i \times X \to \Gamma_{\infty}$ $(i \in \mathbb{N})$ of the functions as above (with corresponding $g_i : W_i \times S_i \to \Gamma_{\infty}$).

Then $p \mapsto c(p) := \{(s_i)_{i \in \mathbb{N}} \mid f_{i,p} = g_{i,s_i} \text{ for all } i\}$ defines an injection of \widehat{X} into $\prod_i S_i$.

The strict prodefinable set we are aiming for is $D = c(\hat{X})$.

Let $I \subseteq \mathbb{N}$ be finite and $\pi_I(D) = D_I \subseteq \prod_{i \in I} S_i$. We finish by the following two facts:

- D_I is type-definable. (This gives prodefinability of D.) [This is basically compactness and QE.]
- D_I is a union of definable sets.

[This uses $St_A = VS_{\mathbf{k},A}$, and these are 'uniformly' nfcp.]

 \Rightarrow the D_I are definable, proving strict prodefinability of D.

Let The space \widehat{V} of stably dominated types

Prodefinability and type spaces

Some definability properties in \widehat{X}

Functoriality:

For any definable $f: X \to Y$, we get a prodefinable map $\widehat{f}: \widehat{X} \to \widehat{Y}$.

Passage to definable subsets:

If Y is a definable subset of X, then $\widehat{Y} \subseteq \widehat{X}$ is a relatively definable subset.

Simple points:

The set of realised types in \widehat{X} , in natural bijection with $X(\mathbb{U})$, is iso-definable and relatively definable in \widehat{X} . Elements of \widehat{X} corresponding to realised types will be called **simple** points.

The space \widehat{V} of stably dominated types

Prodefinability and type spaces

Isodefinability in the case of curves

Theorem Let C be an algebraic curve. Then \hat{C} is iso-definable.

Proof.

- WMA C is smooth and projective, $C \subseteq \mathbb{P}^n$. Let g = genus(C).
- In K(P¹) = K(X), any element is a product of linear polynomials in X. The following consequence of Riemann-Roch gives a generalisation of this to arbitrary genus: There exists an N (N = 2g + 1 is enough) s.t. any non-zero f ∈ K(C) is a product of functions of the form (g/h) ↾_C, where g, h ∈ K[X₀,...,X_n] are homogeneous of degree N.
- Thus any valuation on K(C) is determined by its values on a definable family of polynomials, proving iso-definability.

Let The space \widehat{V} of stably dominated types

Prodefinability and type spaces

Isodefinability in the case of curves (continued)

From now on, we will write \mathcal{B}^{cl} for the set of closed balls including singletons (closed balls of radius ∞).

Examples

- 1. If $C = \mathbb{A}^1$, the isodefinability of \widehat{C} is clear, as then $\widehat{\mathbb{A}^1} = \mathcal{B}^{cl}$ (which is a definable set).
- O² is not isodefinable. Indeed, let p_O be the generic of O, and p_n(x, y) ∈ O² be given by p_O(x) ∪ {y = xⁿ}. No definable family of functions to Γ_∞ allows to separate all the p_n's, as val(f(p_n)) = val(f(p_O(x) ⊗ p_O(y))) for all f ∈ K[X, Y] of degree < n.

Remark

For $X \subseteq K^n$ definable, \widehat{X} is iso-definable iff dim $(X) \leq 1$. (Here, dim(X) denotes the algebraic dimension of X^{Zar} .)

 ${}^{igsir }$ The space \widehat{V} of stably dominated types

Lefinable topologies and the topology on \widehat{V}

Prodefinable topological spaces

Definition

Let X be (pro-)definable over A.

A topology \mathcal{T} on $X(\mathbb{U})$ is said to be A-definable if

- ► there are A-definable families Wⁱ = (Wⁱ_b)_{b∈U} (for i ∈ I) of (relatively) definable subsets of X such that
- ▶ the topology on $X(\mathbb{U})$ is generated by the sets (W_b^i) , where $i \in I$ and $b \in \mathbb{U}$.

We call (X, \mathcal{T}) a (pro-)definable space.

Remark

- 1. Given a (pro-)definable space (X, \mathcal{T}) (over A) and $A \subseteq M \preccurlyeq \mathbb{U}$, the M-definable open sets from \mathcal{T} define a topology on X(M).
- 2. The inclusion $X(M) \subseteq X(\mathbb{U})$ is in general not continuous.

Let The space \widehat{V} of stably dominated types

Lefinable topologies and the topology on \widehat{V}

Examples of definable topologies

- 1. If M is *o*-minimal, then M^n equipped with the product of the order topology is a definable space.
- 2. Let V be an algebraic variety over $K \models ACVF$. Then the valuation topology on V(K) is definable.
- 3. The Zariski topology on V(K) is a definable topology.

Remark

- The topologies in examples (1) and (2) are definably generated, in the sense that a single family of definable open sets generates the topology. (There is even a definable basis of the topology in both cases.)
- ► The Zariski topology in (3) is not definably generated, unless dim(V) ≤ 1.

Let The space \widehat{V} of stably dominated types

Lefinable topologies and the topology on \widehat{V}

\widehat{V} as a prodefinable space

Given an algebraic variety V defined over $K \models \text{ACVF}$, we will define a definable topology on \hat{V} , turning it into a prodefinable space, the **Hrushovski-Loeser space** associated to V.

The construction of the topology is done in several steps:

- We will give an explicit construction in the case $V = \mathbb{A}^n$.
- ▶ If V is affine, $V \subseteq \mathbb{A}^n$ a closed embedding, we give \widehat{V} the subspace topology inside $\widehat{\mathbb{A}^n}$.
- The case of an arbitrary V done by gluing affine pieces: if V = ∪ U_i is an open affine cover, V = ∪ Û_i is an open cover.
- Let X ⊆ V be a definable subset of the variety V. Then we give X the subspace topology inside V.
 Subsets of V of the form X will be called semi-algebraic.

 \square The space \widehat{V} of stably dominated types

Lefinable topologies and the topology on \widehat{V}

The topology on $\widehat{\mathbb{A}^n}$

Recall that any definable function $f: X \to \Gamma_{\infty}$ canonically extends to a map $f: \widehat{X} \to \Gamma_{\infty}$ (given by the composition $\widehat{X} \xrightarrow{\widehat{f}} \widehat{\Gamma_{\infty}} \xrightarrow{=} \Gamma_{\infty}$).

Definition

We endow $\widehat{\mathbb{A}^n}(\mathbb{U})$ with the topology generated by the (so-called *pre-basic open*) sets of the form

$$\{a\in\widehat{\mathbb{A}^n}\mid \mathsf{val}(F(a)<\gamma\} ext{ or } \{a\in\widehat{\mathbb{A}^n}\mid \mathsf{val}(F(a)>\gamma\},$$

where $F \in \mathbb{U}[x_1, \ldots, x_n]$ and $\gamma \in \Gamma(\mathbb{U})$.

Remark

- 1. The topology is the coarsest one such that for all polynomials F, the map val $\circ F : \widehat{\mathbb{A}^n} \to \Gamma_{\infty}$ is continuous. (Here, Γ_{∞} is considered with the order topology.)
- 2. It has a basis of open semialgebraic sets.

Let The space \widehat{V} of stably dominated types

Lefinable topologies and the topology on \widehat{V}

Proposition

The topology on \widehat{V} is pro-definable, over the same parameters over which V is defined.

Proof.

- By our construction, it is enough to show the result for $V = \mathbb{A}^n$.
- For any d, the pre-basic open sets defined by polynomials of degree ≤ d form a definable family of relatively definable subsets of Âⁿ.

 ${}^{igsir }$ The space \widehat{V} of stably dominated types

Lefinable topologies and the topology on \widehat{V}

Relationship with the order topology

For a closed ball b, let p_b be the generic type of b. The map

$$\gamma: \Gamma_{\infty}^{m} \to \widehat{\mathbb{A}^{m}}, (t_{1}, \ldots, t_{m}) \mapsto p_{B_{\geq t_{1}}(0)} \otimes \cdots \otimes p_{B_{\geq t_{m}}(0)}$$

is a definable homeomorphism onto its image, where Γ_{∞}^{m} is endowed with the (product of the) order topology.

► Let
$$f = id \times (val, ..., val) : V \times \mathbb{A}^m \to V \times \Gamma_{\infty}^m$$
.
On $\widehat{V \times \Gamma_{\infty}^m}$ we put the topology induced by \widehat{f} , i.e.
 $U \subseteq \widehat{V \times \Gamma_{\infty}^m}$ is open iff $\widehat{f}^{-1}(U)$ is open in $\widehat{V \times \mathbb{A}^m}$.

Fact $\widehat{\Gamma_{\infty}^{m}} = \Gamma_{\infty}^{m}$. Moreover, the map $\widehat{V \times \Gamma_{\infty}^{m}} \to \widehat{V} \times \widehat{\Gamma_{\infty}^{m}} = \widehat{V} \times \Gamma_{\infty}^{m}$ is a homeomorphism, where Γ_{∞} is endowed with the order topology.

—The space \widehat{V} of stably dominated types

Lefinable topologies and the topology on \widehat{V}

Example (The topology on \mathbb{A}^1)

- Recall that $\widehat{\mathbb{A}^1} = \mathcal{B}^{cl}$ as a set.
- A semialgebraic subset $\widehat{X} \subseteq \widehat{\mathbb{A}^1}$ is open iff X is a finite union of sets of the form $\Omega \setminus \bigcup_{i=1}^n F_i$, where
 - Ω is an open ball or the whole field K;
 - the F_i are closed sub-balls of Ω .
- *m̂* and *m̂* \ {0} are open, with closure equal to *m̂* ∪ {*p*_O}, a definable closed set which is not semi-algebraic.
- ► $\{p_b \mid rad(b) > \alpha\}$ $(\alpha \in \Gamma)$ is def. open and non semi-algebraic.
- The topology is definably generated by the family $\{\widehat{\Omega \setminus F}\}_{\Omega,F}$.
- There is no definable basis for the topology.

Fact

For any curve C, the topology on \widehat{C} is definably generated. [This follows from the proof of iso-definability of \widehat{C} .] Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \Box Topological considerations in \widehat{V}

First properties of the topological space \widehat{V}

Fact

Let V be an algebraic variety defined over $M \models ACVF$.

- 1. The topologicy on $\widehat{V}(M)$ is Hausdorff.
- 2. The subset V(M) of simple points is dense in $\widehat{V}(M)$.
- 3. The induced topology on V(M) is the valuation topology.

Proof.

We will assume that V is affine, say $V \subseteq \mathbb{A}^n$.

For (1), let $p, q \in \widehat{V}(M)$ with $p \neq q$. There is $F(\overline{x}) \in K[\overline{x}]$ such that val $(F(p)) \neq$ val(F((q)), say val $(F(p)) < \alpha <$ val(F((q)), where $\alpha \in \Gamma(M)$. Then val $(F(\overline{x})) < \alpha$ and val $(F(\overline{x})) > \alpha$ define disjoint open sets in \widehat{V} , one containing p, the other containing q. (2) and (3) follows from the fact that there is a basis of the topology given by semialgebraic open sets.

The v+g-topology

- Let V be a variety and $X \subseteq V$ definable. We say
 - ► X is **v-open** (in V) if it is open for the valuation topology;
 - ► X is g-open (in V) if it is given (inside V) by a positive Boolean combination of Zariski constructible sets and sets defined by strict valuation inequalities val(F(x̄)) < val(G(x̄));</p>
 - ► X **v+g-open** (in V) if it is v-open and g-open.
- We say X ⊆ V × Γ_∞^m is v-open iff its pullback to V × A^m is. (Similarly for g-open and v+g-open.)

Remark

The g-open and the v+g-open sets do not give rise to a definable topology. Indeed, \mathcal{O} is not g-open, but $\mathcal{O} = \bigcup_{a \in \mathcal{O}} a + \mathfrak{m}$, so it is a definable union of v+g-open sets.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \sqcup Topological considerations in \widehat{V}

Why consider the v-topology and the g-topology?

- With the two topologies (v and g), one may separate continuity issues related to very different phenomena in Γ_∞, namely
 - \blacktriangleright the $behaviour~near~\infty$ (captured by the v-topology) and
 - the **behaviour near** $0 \in \Gamma$ (captured by the g-topology).
- It is e.g. easier to check continuity separately.
- ▶ v+g-topology on $V \longleftrightarrow$ topology on \widehat{V} (see on later slides)

Exercise

- The v-topology on Γ_∞ is discrete on Γ, and a basis of open neighbourhoods at ∞ is given by {(α, ∞], α ∈ Γ}.
- \blacktriangleright The g-topology on $\Gamma_{\!\infty}$ corresponds to the order topology on $\Gamma,$ with ∞ isolated.
- Thus, the v+g-topology on Γ_{∞} is the order topology.

- Topological considerations in \widehat{V}

Limits of definable types and definable compactness

Limits of definable types in (pro-)definable spaces

Definition

Let p(x) a definable type on a pro-definable space X.

We say $a \in X$ is a **limit** of p if $p(x) \vdash x \in W$ for every \mathbb{U} -definable neighbourhood W of a.

Remark

If X is Hausdorff space, then limits are unique (if they exist), and we write $a = \lim(p)$.

Example

Let *M* be an *o*-minimal structure and $\alpha \in M$. Then $\alpha = \lim(\alpha^+)$.

 \square Topological considerations in \widehat{V}

Limits of definable types and definable compactness

Describing the closure with limits of definable types

Proposition

Let X be prodefinable subset of $V \times \Gamma_{\infty}^{m}$.

- 1. If X is closed, then it is closed under limits of definable types, i.e. if p is a definable type on X such that $\lim(p)$ exists in $\widehat{V \times \Gamma_{\infty}^{m}}$, then $\lim(p) \in X$.
- 2. If $a \in cl(X)$, there is a def. type p on X such that a = lim(p). Thus, X closed under limits of definable types $\Rightarrow X$ closed.

Example

Recall that $cl(\widehat{\mathfrak{m} \setminus \{0\}}) = \widehat{\mathfrak{m}} \cup \{p_{\mathcal{O}}\}.$

Let q₀₊ be the (definable) type giving the generic type in the closed ball of radius e ⊨ 0⁺ around 0. Then p_O = lim(q₀₊).

► Similarly,
$$0 = B_{\geq \infty}(0) = \lim(q_{\infty^-})$$
.

— Topological considerations in \widehat{V}

Limits of definable types and definable compactness

Definable compactness

Definition

A (pro-)definable space X is said to be **definably compact** if every definable type on X has a limit in X.

Remark

In an o-minimal structure M, this notion is equivalent to the usual one, i.e. a definable subset $X \subseteq M^n$ is definably compact iff it is closed and bounded.

— Topological considerations in \widehat{V}

Limits of definable types and definable compactness

Lemma (The key to the notion of definable compactness) Let $f : X \to Y$ be a surjective (pro-)definable map between (pro-)definable sets (in ACVF). Then the induced maps $f_{def} : S_{def,X} \to S_{def,Y}$ and $\hat{f} : \hat{X} \to \hat{Y}$, are surjective, too.

Corollary

Assume $f: \widehat{V} \times \Gamma_{\infty}^{m} \to \widehat{W} \times \Gamma_{\infty}^{n}$ is definable and continuous, and $X \subseteq \widehat{V} \times \Gamma_{\infty}^{m}$ is a pro-definable and definably compact subset. Then f(X) is definably compact.

Proof of the corollary.

- ▶ By the lemma, any definable type p on f(X) is of the form $f_*q = f_{def}(q)$ for some definable type q on X.
- As X is definably compact, there is $a \in X$ with $\lim(q) = a$.
- By continuity of f, we get $\lim(p) = f(a)$.

- Topological considerations in \widehat{V}

Limits of definable types and definable compactness

Bounded subsets of algebraic varieties Definition

- ▶ Let $V \subseteq \mathbb{A}^m$ be a closed subvariety. Wa say a definable set $X \subseteq V$ is **bounded** (in V) if $X \subseteq c\mathcal{O}^m$ for some $c \in K$.
- ▶ For general $V, X \subseteq V$ is called bounded (in V) if there is an open affine cover $V = \bigcup_{i=1}^{n} U_i$ and $X_i \subseteq U_i$ with X_i bounded in U_i such that $X = \bigcup_{i=1}^{n} X_i$.
- X ⊆ V × Γ_∞^m is said to be bounded (in V × Γ_∞^m) if its pullback to V × A^m is bounded in V × A^m.
- Finally, we say that a pro-definable subset $X \subseteq \widehat{V}$ is bounded (in \widehat{V}) if there is $W \subseteq V$ bounded such that $X \subseteq \widehat{W}$.

Fact

The notion is well-defined (i.e. independent of the closed embedding into affine space and of the choice of an open affine cover).

— Topological considerations in \widehat{V}

Limits of definable types and definable compactness

Bounded subsets of algebraic varieties (continued)

Examples

- 1. $X \subseteq \Gamma_{\infty}$ is bounded iff $X \subseteq [\gamma, \infty]$ for some $\gamma \in \Gamma$.
- 2. \mathbb{P}^n is bounded in itself, so every $X \subseteq \mathbb{P}^n$ is bounded. Indeed, if $\mathbb{A}^n \cong U_i$ is the affine chart given by $x_i \neq 0$ and $U_i(\mathcal{O}) \subseteq U_i$ corresponds to $\mathcal{O}^n \subseteq \mathbb{A}^n$, then we may write $\mathbb{P}^n = \bigcup_{i=0}^n U_i(\mathcal{O})$.
- 3. \mathbb{A}^1 is bounded in \mathbb{P}^1 and unbounded in itself, so the notion depends on the ambient variety.

— Topological considerations in \widehat{V}

Limits of definable types and definable compactness

A characterisation result for definable compactness

Theorem Let $X \subseteq V \times \Gamma_{\infty}^m$ be pro-definable. TFAE:

- 1. X is definably compact.
- 2. X is closed and bounded.

To illustrate the methods, we will prove that if $X \subseteq V \times \Gamma_{\infty}^{m}$ is bounded, then any definable type on X has a limit in $V \times \Gamma_{\infty}^{m}$.

Corollary

Let $W \subseteq V \times \Gamma_{\infty}^m$.

- 1. \widehat{W} is closed in $\widehat{V \times \Gamma_{\infty}^{m}}$ iff W is v+g-closed in $V \times \Gamma_{\infty}^{m}$.
- W is definably compact iff W is a v+g-closed and bounded subset of V × Γ_∞^m.

— Topological considerations in \widehat{V}

Limits of definable types and definable compactness

Some further applications of the characterisation result

The results below are analogous to the complex situation.

Corollary

A variety V is complete iff \widehat{V} is definably compact.

Proof.

- ► By Chow's lemma, if V is complete there is f : V' → V surjective with V' projective. This proves one direction.
- For the other direction, use that every variety is an open Zariski dense subvariety of a complete variety.

Corollary

If $f: V \to W$ is a proper map between algebraic varieties, then $\widehat{f}: \widehat{V} \to \widehat{W}$ as well as $\widehat{f} \times \operatorname{id}: \widehat{V} \times \Gamma_{\infty}^{m} \to \widehat{W} \times \Gamma_{\infty}^{m}$ are closed maps.

 \square Topological considerations in \widehat{V}

Limits of definable types and definable compactness

Proof that definable types on bounded sets have limits

Lemma

Let p be a definable type on a bounded subset $X \subseteq V \times \overline{\Gamma_{\infty}^m}$. Then $\lim(p)$ exists in $V \times \overline{\Gamma_{\infty}^m}$.

Proof.

- First we reduce to the case where $V = \mathbb{A}^n$ and m = 0.
- Let K ⊨ ACVF be maximally complete, with p K-definable, d ⊨ p | K and a ⊨ p_d | Kd, where p_d is the type coded by d.
- As p_d ⊥ Γ, we have Γ_K ⊆ Γ(K(d)) = Γ(K(d, a)) =: Δ.
 Let Δ₀ := {δ ∈ Δ | ∃γ ∈ Γ_K : γ < δ}.
- *p* definable ⇒ for δ ∈ Δ₀, tp(δ/Γ_K) is definable and has a limit in Γ_K ∪ {∞}.

— Topological considerations in \widehat{V}

Limits of definable types and definable compactness

End of the proof

 $(\mathsf{Recall}: \ \Delta_0 := \{ \delta \in \Delta \ | \ \exists \gamma \in \mathsf{\Gamma}_{\mathcal{K}} : \gamma < \delta \})$

- We get a retraction $\pi : \Delta_0 \to \Gamma_{\mathcal{K}} \cup \{\infty\}$ preserving \leq and +.
- $\mathcal{O}' := \{b \in K(a) \mid \mathsf{val}(b) \in \Delta_0\}$ is a valuation ring on K(a).
- ► As $K \subseteq \mathcal{O}'$, putting val $(x + \mathfrak{m}') := \pi(\operatorname{val}(x))$, we get a valued field extension $\tilde{K} = \mathcal{O}'/\mathfrak{m}' \supseteq K$, with $\Gamma_{\tilde{K}} = \Gamma_K$.
- The coordinates of a lie in \mathcal{O}' , by the boundedness of X.
- Consider the tuple $\tilde{a} := a + \mathfrak{m}' \in K'$.
 - ► Then r = tp(a'/K) is stably dominated as Γ(Ka') = Γ(K) and K is maximally complete.
 - One checks that $r = \lim(p)$. (Indeed, one shows $f(r) = \lim(f_*(p))$ for every $f = \operatorname{val} \circ F$, where $F \in K[\overline{x}]$.)

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) └─ Strong deformation retraction onto a Γ-internal subset └─ Γ-internality

Γ -internal subsets of \widehat{V}

Convention

From now on, all varieties are assumed to be quasi-projective.

Definition

A subset $Z \subseteq \widehat{V \times \Gamma_{\infty}^m}$ is called Γ -internal if

- Z is iso-definable and
- there is a surjective definable $f : D \subseteq \Gamma_{\infty}^n \twoheadrightarrow Z$.

Remark

If we drop in the definition the iso-definability requirement, we get the weaker notion called Γ -parametrisability.

Fact

Let $f : C \to C'$ be a finite morphism between algebraic curves. Assume that $Z \subseteq \widehat{C}$ is Γ -internal. Then $\widehat{f}^{-1}(Z)$ is Γ -internal. Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) └─ Strong deformation retraction onto a Γ-internal subset └─ Γ-internality

Topological witness for Γ-internality

Proposition

Let $Z \subseteq V \times \Gamma_{\infty}^{m}$ be Γ -internal. Then there is an injective continuous definable map $f : Z \hookrightarrow \Gamma_{\infty}^{n}$ for some n. If Z is definably compact, such an f is a homeomorphism.

The question is more delicate if one wants to control the parameters needed to define f. Here is the best one can do:

Proposition

Suppose that in the above, both V and Z are A-definable, where $A \subseteq \mathbf{VF} \cup \Gamma$. Then there is a finite A-definable set w and an injective continuous A-definable map $f : Z \hookrightarrow \Gamma_{\infty}^{w}$.

Example

Let $A = \mathbb{Q} \subseteq \mathbf{VF}$, V given by $X^2 - 2 = 0$. Then \widehat{V} is Γ -internal, with a non-trivial Galois action, so cannot be \mathbb{Q} -embedded into Γ_{∞}^n .

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) └─ Strong deformation retraction onto a Γ-internal subset └─ Γ-internality

Generalised intervals

We say that $I = [o_I, e_I]$ is a generalised closed interval in Γ_{∞} if it is obtained by concatenating a finite number of closed intervals I_1, \ldots, I_n in Γ_{∞} , where $<_{I_i}$ is either given by $<_{\Gamma_{\infty}}$ or by $>_{\Gamma_{\infty}}$. Remark

- The absence of the multiplication in Γ_∞ makes it necessary to consider generalised intervals.
 - E.g., there is a definable path γ : I → P¹ with γ(o_I) = 0 and γ(e_I) = 1, but only if we allow generalised intervals in the definition of a path.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) └─Strong deformation retraction onto a Γ-internal subset └─The curves case

Definable homotopies and strong deformation retractions

Definition

Let $I = [o_I, e_I]$ be a generalised interval in Γ_{∞} and let $X \subseteq V \times \Gamma_{\infty}^m$, $Y \subseteq W \times \Gamma_{\infty}$ be definable sets.

- 1. A continuous pro-definable map $H : I \times \widehat{X} \to \widehat{Y}$ is called a **definable homotopy** between the maps $H_o, H_e : \widehat{X} \to \widehat{Y}$, where H_o corresponds to $H \upharpoonright_{\{\sigma_I\} \times \widehat{X}}$ (similarly for H_e).
- 2. We say that the definable homotopy $H: I \times \widehat{X} \to \widehat{X}$ is a strong deformation retraction onto the set $\Sigma \subseteq \widehat{X}$ if

•
$$H_0 = \operatorname{id}_{\widehat{X}}$$
,

•
$$H \upharpoonright_{I \times \Sigma} = \operatorname{id}_{I \times \Sigma},$$

•
$$H_{e}(\widehat{X}) \subseteq \Sigma$$
, and

• $H_e(H(t,a)) = H_e(a)$ for all $(t,a) \in I \times \widehat{X}$.

We added the last condition, as it is satisfied by all the retractions we will consider.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) └─ Strong deformation retraction onto a Γ-internal subset └─ The curves case

The standard homotopy on \mathbb{P}^1

- We represent P¹(U) as the union of two copies of O(U), according to the two affine charts w.r.t. u and ¹/_u, respectively.
- In this way, unambiguously, any element of P¹ corresponds to the generic type p_{B>s(a)} of a closed ball of val. radius s ≥ 0.

Definition

The standard homotopy on $\widehat{\mathbb{P}^1}$ is defined as follows:

$$\psi: [0,\infty] imes \widehat{\mathbb{P}^1} o \widehat{\mathbb{P}^1}, \ (t, p_{B_{\geq s}(a)}) \mapsto p_{B_{\geq \min(s,t)}(a)}$$

Lemma

The map ψ is continuous. Viewing $[0, \infty]$ as a (generalised) interval with $o_I = \infty$ and $e_I = 0$, ψ is a strong deformation retraction of $\widehat{\mathbb{P}^1}$ onto the singleton set $\{p_{\mathcal{O}}\}$.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) └─ Strong deformation retraction onto a Γ-internal subset └─ The curves case

A variant: the standard homotopy with stopping time D

- ▶ P¹(U) has a tree-like structure: any two elements a, b ∈ P¹(U) are the endpoints of a unique segment, i.e. a subset of P¹ definably homeomorphic to a (generalised) interval in Γ_∞.
- Given $D \subseteq \mathbb{P}^1$ finite, let C_D be the convex hull of $D \cup \{p_O\}$ in $\widehat{\mathbb{P}^1}$, i.e. the image of $[0, \infty] \times (D \cup \{p_O\})$ under ψ .
- C_D is closed in $\widehat{\mathbb{P}^1}$ and Γ -internal, and the map $\tau : \widehat{\mathbb{P}^1} \to \Gamma_{\infty}$, $\tau(b) := \max\{t \in [0,\infty] \mid \psi(t,b) \in C_D\}$ is continuous.

Lemma

Consider the standard homotopy with stopping time D,

$$\psi_D: [0,\infty] imes \widehat{\mathbb{P}^1} o \widehat{\mathbb{P}^1} (t,b) \mapsto \psi(\max(\tau(b),t),b).$$

Then ψ_D defines a strong deformation retraction of $\widehat{\mathbb{P}^1}$ onto C_D .
A strong deformation retraction for curves

Theorem

Let C be an algebraic curve. Then there is a strong deformation retraction $H : [0, \infty] \times \widehat{C} \to \widehat{C}$ onto a Γ -internal subset $\Sigma \subseteq \widehat{C}$.

Sketch of the proof.

- WMA C is projective.
- Choose $f : C \to \mathbb{P}^1$ finite and generically étale.
- ▶ Idea: one shows that there is $D \subseteq \mathbb{P}^1$ finite such that $\psi_D : [0, \infty] \times \widehat{\mathbb{P}^1} \to \widehat{\mathbb{P}^1}$ 'lifts' (uniquely) to a strong deformation retraction $H : [0, \infty] \times \widehat{C} \to \widehat{C}$, i.e., such that $H \circ \widehat{f} = \psi_D \circ (\operatorname{id} \times \widehat{f})$ holds.

Outward paths on finite covers of \mathbb{A}^1 Definition

- A standard outward path on A¹ starting at a = p_{B≥s}(c) is given by γ : (r, s] → A¹ (for some r < s) such that γ(t) = p_{B≥t}(c).
- Let f : C → A¹ be a finite map. An outward path on Ĉ starting at x ∈ Ĉ (with respect to f) is a continuous definable map γ : (r, s] → Ĉ for some r < s such that</p>
 - $\gamma(s) = x$ and • $\hat{f} \circ \gamma$ is a standard outward path on $\widehat{\mathbb{A}^1}$.

Lemma

Let $f : C \to \mathbb{A}^1$ be a finite map. Then, for every $x \in \widehat{C}$, there exists at least one and at most deg(f) many outward paths starting at x (with respect to f).

Finiteness of outward branching points

- Let $f : C \to \mathbb{A}^1$ be a finite map, $d = \deg(f)$.
- Note that for all $x \in \widehat{\mathbb{A}^1}$, we have $|\widehat{f}^{-1}(x)| \le d$.
- We say y ∈ C is outward branching (for f) if there is more than one outward path on C starting at y. In this case, we also say that f(y) ∈ A¹ is outward branching.

Key lemma

The set of outward branching points (for f) is finite.

End of the proof

Suppose $f : C \to \mathbb{P}^1$ is finite and generically étale.

By the key lemma, there is $D \subseteq \mathbb{P}^1$ finite such that

- f is étale above $\mathbb{P}^1 \setminus D$;
- C_D contains all outward branching points, with respect to the maps restricted to the two standard affine charts.

Lemma

Under the above assumptions, the map $\psi_D : [0,\infty] \times \widehat{\mathbb{P}^1} \to \widehat{\mathbb{P}^1}$ lifts (uniquely) to a strong deformation retraction $H : [0,\infty] \times \widehat{\mathcal{C}} \to \widehat{\mathcal{C}}$.

Example

Consider the elliptic curve *E* given by the affine equation $y^2 = x(x-1)(x-\lambda)$, where val $(\lambda) > 0$ (in char $\neq 2$). Let $f : E \to \mathbb{P}^1$ be the map to the *x*-coordinate.

- f is ramified at $0, 1, \lambda$ and ∞ .
- Using Hensel's lemma, one sees that the fiber of f̂ above x ∈ Â¹ has two elements iff x is neither in the segment joining 0 and λ, nor in the one joining 1 and ∞.
- Thus, for B = B_{≥val(λ}(0), the point p_B is the unique outward branching point on the affine line corresponding to x ≠ ∞.
- ► On the affine line corresponding to x ≠ 0, p_O is the only outward branching point.
- We may thus take $D = \{0, \lambda, 1, \infty\}$.
- ► If *H* is the unique lift of ψ_D , then *H* defines a retraction of \widehat{E} onto a subset of \widehat{E} which is homotopic to a circle.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

Strong deformation retraction onto a Γ -internal subset

GAGA for connected components

Definable connectedness

Definition

Let V be an algebraic variety and $Z \subseteq \widehat{V}$ strict pro-definable.

- Z is called definably connected if it contains no proper non-empty clopen strict pro-definable subset.
- ► Z is called definably path-connected if any two points z, z' ∈ Z are connected by a definable path.

The following lemma is easy.

Lemma

- 1. Z definably path-connected \Rightarrow Z definably connected
- 2. For $X \subseteq V$ definable, \widehat{X} is definably connected iff X does not contain any proper non-empty v+g-clopen definable subset.
- 3. If \hat{V} is definably connected, then V is Zariski-connected.

GAGA for connected components

GAGA for connected components

- For X ⊆ V definable, we say X̂ has finitely many connected components if X admits a finite definable partition into v+g-clopen subsets Y_i such that Ŷ_i is definably connected.
- The \hat{Y}_i are then called the **connected components** of \hat{X} .

Theorem

Let V be an algebraic variety.

- \hat{V} is definably connected iff V is Zariski connected.
- ▶ V has finitely many connected components, which are of the form W, for W a Zariski connected component of V.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)
Strong deformation retraction onto a Γ-internal subset
GAGA for connected components

Proof of the theorem: reduction to smooth projective curves

Lemma

Let V be a smooth variety and $U \subseteq V$ an open Zariski-dense subvariety of V. Then \widehat{V} has finitely many connected components if and only if \widehat{U} does. Moreover, in this case there is a bijection between the two sets of connected components.

We assume the lemma (which will be used several times).

- ► WMA *V* is Zariski-connected.
- ► WMA *V* is irreducible.
- Any two points v ≠ v' ∈ V are contained in an irreducible curve C ⊆ V. This uses Chow's lemma and Bertini's theorem.
 ⇒ WMA V = C is an irreducible curve.
- ► WMA C is projective (by the lemma) and smooth (passing to the normalisation C̃ → C)

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)
Strong deformation retraction onto a Γ-internal subset
GAGA for connected components

The case of a smooth projective curve $\ensuremath{\mathcal{C}}$

We have already seen:

 \widehat{C} retracts to a Γ -internal (PL) subspace $S\subseteq \widehat{C}$

- $\Rightarrow \widehat{C}$ has finitely many conn. components (all path-connected)
 - If g(C) = 0, $C \cong \mathbb{P}^1$, so \widehat{C} is contractible (thus connected).
 - If g(C) = 1, $C \cong E$, where E is an elliptic curve.
 - $(E(\mathbb{U}), +)$ acts on $\widehat{E}(\mathbb{U})$ by definable homeomorphisms;
 - this action is transitive on simple points (which are dense).

 $\Rightarrow E(\mathbb{U})$ acts transitively on the (finite!) set of connected components of \widehat{E} .

 $\Rightarrow \widehat{E}$ is connected, since $E(\mathbb{U})$ is divisible.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)
Strong deformation retraction onto a Γ-internal subset
GAGA for connected components

The case of a smooth projective curve C, with $g(C) \ge 2$.

- Let $\widehat{C_0}, \ldots, \widehat{C_{n-1}}$ be the connected components of \widehat{C} .
- For I = (i₁,..., i_g) ∈ n^g, C_I := C_{i1} × ··· × C_{ig} is a v+g-clopen subset of C^g, and C_I is definably connected.
- ▶ Thus, $\widehat{C^g}$ has n^g connected components. If $n \ge 2$, $\widehat{C^g}$ as well as $\widehat{C^g/S_g}$ has finitely many (>1) connected components.
- Recall: C^g/S_g is birational to the Jacobian J = Jac(C) of C.
- ► Using the lemma twice, we see that J has finitely many (>1) connected components. (Both C^g/S_g and J are smooth.)
- ▶ But, as before, (J(U), +) is a divisible group acting transitively on the set of connected components of J. Contradiction !

GAGA for connected components

The main theorem of Hrushovski-Loeser (a first version)

Theorem

Suppose $A = K \cup G$, where $K \subseteq VF$ and $G \subseteq \Gamma_{\infty}$. Let V be a quasiprojective variety and $X \subseteq V \times \Gamma_{\infty}^{n}$ an A-definable subset.

Then there is an A-definable strong deformation retraction $H: I \times \widehat{X} \to \widehat{X}$ onto a (Γ -internal) subset $\Sigma \subseteq \widehat{X}$ such that Σ A-embeds homeomorphically into Γ_{∞}^w for some finite A-definable w.

Corollary

Let X be as above. Then \widehat{X} has finitely many definable connected components. These are all semi-algebraic and path-connected.

Proof.

Let H and Σ be as in the theorem. By *o*-minimality, Σ has finitely many def. connected components $\Sigma_1, \ldots, \Sigma_m$. The properties of Himply that $H_e^{-1}(\Sigma_i) = \widehat{X}_i$, where $X_i = H_e^{-1}(\Sigma_i) \cap X$ Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) └─ Strong deformation retraction onto a Г-internal subset └─ GAGA for connected components

The main theorem of Hrushovski-Loeser (general version) Theorem

Let $A = K \cup G$, where $K \subseteq VF$ and $G \subseteq \Gamma_{\infty}$. Assume given:

- 1. a quasiprojective variety V defined over K;
- 2. an A-definable subset of $X \subseteq V \times \Gamma_{\infty}^{m}$;
- 3. a finite algebraic group action on V (defined over K);
- 4. finitely many A-definable functions $\xi_i : V \to \Gamma_{\infty}$.

Then there is an A-definable strong deformation retration $H: I \times \widehat{X} \to \widehat{X}$ onto a (Γ -internal) subset $\Sigma \subseteq \widehat{X}$ such that

- Σ A-embeds homeomorphically into Γ_∞^w for some finite A-definable w;
- ▶ H is equivariant w.r.t. to the algebraic group action from (3);
- *H* respects the ξ_i from (4), i.e. $\xi(H(t, v)) = \xi(v)$ for all t, v.

Some words about the proof of the main theorem

- The proof is by induction on d = dim(V), fibering into curves.
- ► The fact that one may respect extra data (the functions to Γ_∞ and the finite algebraic group action) is essential in the proof, since these extra data are needed in the inductive approach.
- ► In going from d to d + 1, the homotopy is obtained by a concatenation of four different homotopies.
- ► Only standard tools from algebraic geometry are used, apart from Riemann-Roch (used the proof of iso-definability of C).
- Technically, the most involved arguments are needed to guarantee the continuity of certain homotopies. There are nice specialisation criteria (both for the v- and for the g-topology) which may be formulated in terms of 'doubly valued fields'.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

Transfer to Berkovich spaces and applications

Berkovich spaces slightly generalised

A type $p = tp(\overline{a}/A) \in S(A)$ is said to be almost orthogonal to Γ if $\Gamma(A) = \Gamma(A\overline{a})$.

- Let F a valued field s.t. $\Gamma_F \leq \mathbb{R}$.
- Set $\mathbb{F} = (F, \mathbb{R})$, where $\mathbb{R} \subseteq \Gamma$.
- ► Let V be a variety defined over F, and $X \subseteq V \times \Gamma_{\infty}^{m}$ an \mathbb{F} -definable subset.
- Let $B_X(\mathbb{F}) = \{ p \in S_X(\mathbb{F}) \mid p \text{ is almost orthogonal to } \Gamma \}.$
- In a similar way to the Berkovich and the HL setting, one defines a topology on B_X(𝔅).

Fact

If F is complete, then $B_V(\mathbb{F})$ and V^{an} are canonically homeomorphic. More generally, $B_{V \times \Gamma_{\infty}^m}(\mathbb{F}) = V^{an} \times \mathbb{R}_{\infty}^m$. Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

Transfer to Berkovich spaces and applications

Passing from \widehat{X} to $B_X(\mathbb{F})$

Given $\mathbb{F} = (F, \mathbb{R})$ as before, let $F^{max} \models \operatorname{ACVF}$ be maximally complete such that

• $\mathbb{F} \subseteq (F^{max}, \mathbb{R});$ • $\Gamma_{F^{max}} = \mathbb{R}, \text{ and }$

$$\blacktriangleright \mathbf{k}_{F^{max}} = \mathbf{k}_{F}^{alg}.$$

Remark

By a result of Kaplansky, F^{max} is uniquely determined up to \mathbb{F} -automorphism by the above properties.

Lemma

The restriction of types map $\pi : \widehat{X}(F^{max}) \to S_X(\mathbb{F}), p \mapsto p | \mathbb{F}$ induces a surjection $\pi : \widehat{X}(F^{max}) \twoheadrightarrow B_X(\mathbb{F}).$

Remark

There exists an alternative way of passing from \widehat{X} to $B_X(\mathbb{F})$, using imaginaries (from the lattice sorts).

The topological link to actual Berkovich spaces Proposition

- 1. The map $\pi : \widehat{X}(F^{max}) \to B_X(\mathbb{F})$ is continuous and closed. In particular, if $F = F^{max}$, it is a homeomorphism.
- 2. Let X and Y be \mathbb{F} -definable subsets of some $V \times \Gamma_{\infty}^{m}$, and let $g: \widehat{X} \to \widehat{Y}$ be continuous and \mathbb{F} -prodefinable.

Then there is a (unique) continuous map $\tilde{g} : B_X(\mathbb{F}) \to B_Y(\mathbb{F})$ such that $\pi \circ g = \tilde{g} \circ \pi$ on $\widehat{X}(F^{max})$.

- 3. If $H : I \times \widehat{X} \to \widehat{X}$ is a strong deformation retraction, so is $\widetilde{H} : I(\mathbb{R}_{\infty}) \times B_X(\mathbb{F}) \to B_X(\mathbb{F}).$
- 4. $B_X(\mathbb{F})$ is compact iff \widehat{X} is definably compact.

Remark

The proposition applies in particular to V^{an} .

The main theorem phrased for Berkovich spaces

Theorem

Let V be a quasiprojective variety defined over F, and let $X \subseteq V \times \Gamma_{\infty}^{m}$ be an \mathbb{F} -definable subset. Then there is a strong deformation retraction

 $H: \operatorname{I}(\mathbb{R}_{\infty}) \times B_X(\mathbb{F}) \to B_X(\mathbb{F})$

onto a subspace **Z** which is homeomorphic to a finite simplicial complex.

Topological tameness for Berkovich spaces I

Theorem (Local contractibility)

Let V be quasi-projective and $X \subseteq V \times \Gamma_{\infty}^{m} \mathbb{F}$ -definable. Then $B_{X}(\mathbb{F})$ is locally contractible, i.e. every point has a basis of contractible open neighbourhoods.

Proof.

- ► There is a basis of open sets given by 'semi-algebraic' sets, i.e., sets of the form B_{X'}(𝔅) for X' ⊆ X 𝔅-definable.
- So it is enough to show that any a ∈ B_X(𝔽) is contained in a contractible subset.
- Let H and Z be as in the theorem, and let H_e(a) = a' ∈ Z. As
 Z is a finite simplicial complex, it is locally contractible, so there is a' ⊆ W with W ⊆ Z open and contractible.
- The properties of H imply that $H_e^{-1}(W)$ is contractible.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser)

Topological tameness for Berkovich spaces II

Here is a list of further tameness results:

Theorem

- 1. If V quasiprojective and $X \subseteq V \times \Gamma_{\infty}^{m}$ vary in a definable family, then there are only finitely many homotopy types for the corresponding Berkovich spaces. (We omit a more precise formulation.)
- 2. If $B_X(\mathbb{F})$ is compact, then it is homeomorphic to $\varprojlim_{i \in I} \mathbf{Z}_i$, where the \mathbf{Z}_i form a projective system of subspaces of $B_X(\mathbb{F})$ which are homeomorphic to finite simplicial complexes.
- 3. Let $d = \dim(V)$, and assume that F contains a countable dense subset for the valuation topology. Then $B_V(\mathbb{F})$ embeds homeomorphically into \mathbb{R}^{2d+1} (Hrushovski-Loeser-Poonen).

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) References

- V. Berkovich. Spectral theory and analytic geometry over non-archimedean fields. Mathematical Surveys and Monographs 33, AMS, Provodence, RI, 1990.
- A. Ducros. Espaces analytiques *p*-adiques au sens de Berkovich. *Séminaire Bourbaki*, exposé **958**, *Astérisque* **311**, 137–176.
- A. Ducros. Les espaces de Berkovich sont modérés, d'après E. Hrushovksi et F. Loeser. Séminaire Bourbaki, exposé 1056, June 2012.
- D. Haskell, E. Hrushovski, D. Macpherson, Dugald. Definable sets in algebraically closed valued fields: elimination of imaginaries. *J. Reine Angew. Math.* **597** (2006), 175–236.
- D. Haskell, E. Hrushovski, D. Macpherson. Stable domination and independence in algebraically closed valued fields. ASL, Chicago, IL, 2008.

Tameness in non-archimedean geometry through model theory (after Hrushovski-Loeser) \bigsqcup References

- E. Hrushovski, F. Loeser. Non-archimedean tame topology and stably dominated types. *arXiv:1009.0252*.
- E. Hrushovski, F. Loeser, B. Poonen. Berkovich spaces embed in euclidean spaces. *arXiv:1210.6485*.