Introduction to Model Theory

Martin Hils

Équipe de Logique Mathématique, Institut de Mathématiques de Jussieu Université Paris Diderot – Paris 7

Second International Conference and Workshop on Valuation Theory Segovia / El Escorial (Spain), 18th – 29th July 2011

Outline

Basic Concepts

Languages, Structures and Theories Definable Sets and Quantifier Elimination Types and Saturation

Some Model Theory of Valued Fields

Algebraically Closed Valued Fields
The Ax-Kochen-Eršov Principle

Imaginaries

Imaginary Galois theory and Elimination of Imaginaries Imaginaries in valued fields

Definable Types

Basic Properties and examples Stable theories Prodefinability

First order languages

A first order language \mathcal{L} is given by

- ▶ constant symbols $\{c_i\}_{i \in I}$;
- ▶ **relation symbols** $\{R_j\}_{j\in J}$ $(R_j \text{ of some fixed arity } n_j);$
- ▶ function symbols $\{f_k\}_{k\in K}$ $(f_k \text{ of some fixed arity } n_k)$;
- a distinguished binary relation "=" for equality;
- ▶ an infinite set of variables $\{v_i \mid i \in \mathbb{N}\}$ (we also use x, y etc.);
- ▶ the connectives \neg , \land , \lor , \rightarrow , \leftrightarrow , and
- ▶ the quantifiers \forall , \exists .

First order languages (continued)

L-formulas are built inductively (in the obvious manner).

Let φ be an \mathcal{L} -formula.

- ightharpoonup A variable x is **free** in φ if it is not bound by a quantifier.
- $\triangleright \varphi$ is called a **sentence** if it contains no free variables.
- ▶ We write $\varphi = \varphi(x_1, ..., x_n)$ to indicate that the free variables of φ are among $\{x_1, ..., x_n\}$.

In what follows, we will only consider countable languages.

First order structures

Definition

An \mathcal{L} -structure \mathcal{M} is a tuple $\mathcal{M} = (M; c_i^{\mathcal{M}}, R_i^{\mathcal{M}}, f_k^{\mathcal{M}})$, where

- ▶ M is a non-empty set, the **domain** of \mathcal{M} ;
- ▶ $c_i^{\mathcal{M}} \in M$, $R_j^{\mathcal{M}} \subseteq M^{n_j}$, and $f_k^{\mathcal{M}} : M^{n_k} \to M$ are **interpretations** of the symbols in \mathcal{L} .

To interpret an \mathcal{L} -formula φ in \mathcal{M} , note that the quantified variables **run over** M.

Let $\varphi(x_1,\ldots,x_n)$ and $\overline{a}\in M^n$ be given.

We set $\mathcal{M} \models \varphi(\overline{a})$ if and only if φ holds for \overline{a} in \mathcal{M} .

Examples of languages and structures

- ▶ $\mathcal{L}_{rings} = \{0, 1, +, -, \cdot\}$ (language of rings). Any (unitary) ring is naturally an \mathcal{L}_{rings} -structure, e.g. $\mathcal{C} = (\mathbb{C}; 0, 1, +, -, \cdot)$ and $\mathcal{R} = (\mathbb{R}; 0, 1, +, -, \cdot)$. $\varphi \equiv \forall x \exists y \ y \cdot y = x$ is an \mathcal{L}_{rings} -formula (even a sentence), with $\mathcal{C} \models \varphi$ and $\mathcal{R} \models \neg \varphi$.
- ▶ $\mathcal{L}_{\mathrm{oag}} = \{0, +, <\}$ (language of ordered abelian groups) Let $\mathcal{Z} = (\mathbb{Z}; 0, +, <)$ and $\mathcal{Q} = (\mathbb{Q}; 0, +, <)$. Let $\psi(x, y) \equiv \exists z (x < z \land z < y)$. Then $\mathcal{Q} \models \psi(1, 2)$, $\mathcal{Z} \not\models \psi(1, 2)$ and $\mathcal{Z} \models \psi(0, 2)$.

We will often write M instead of \mathcal{M} , if the structure we mean is clear from the context.

First order theories

An \mathcal{L} -theory T is a set of \mathcal{L} -sentences.

- ▶ An \mathcal{L} -structure \mathcal{M} is a **model** of T if $\mathcal{M} \models \varphi$ for every $\varphi \in T$. We denote this by $\mathcal{M} \models T$.
- T is called consistent if it has a model.

Examples

- 1. The usual field axioms, in \mathcal{L}_{rings} , give rise a theory T_{fields} , with $\mathcal{M} \models T_{fields}$ if and only if $\mathcal{M} = (M; 0, 1, +, -, \cdot)$ is a field.
- 2. Let $\varphi_n \equiv \forall z_0 \cdots \forall z_{n-1} \exists x \, x^n + z_{n-1} x^{n-1} + \ldots + z_0 = 0$. ACF= $T_{fields} \cup \{ \varphi_n \mid n \geq 2 \}$. (Models are alg. closed fields.)
- 3. There is an $\mathcal{L}_{\mathrm{oag}}$ -theory DOAG whose models are preciseley the non-trivial divisible ordered abelian groups.
- 4. If \mathcal{M} is an \mathcal{L} -structure, $\mathsf{Th}(\mathcal{M}) = \{ \varphi \ \mathcal{L}$ -sentence $| \ \mathcal{M} \models \varphi \}$.

The expressive power of first order logic

Theorem (Compactness Theorem)

Let T be a theory. Suppose that any finite subtheory T_0 of T has a model. Then T has a model.

Corollary

- If T has arbitrarily large finite models, it has an infinite model. Thus, there is e.g. no theory whose models are the finite fields.
- If T has an infinite model, it has models of arbitrarily large cardinality. In particular, an infinite L-structure is not determined (up to L-isomorphism) by its theory.

To prove (1), consider $\psi_n \equiv \exists x_1, \dots, x_n \bigwedge_{i < j} x_i \neq x_j$, and apply compactness to $T' = T \cup \{\psi_n \mid n \in \mathbb{N}\}.$

Complete theories

Let T be a theory. A sentence ψ is a **consequence** of T, denoted $T \models \psi$, if every model of T is also a model of ψ .

 \mathcal{M} and \mathcal{N} are called **elementarily equivalent** if $\mathsf{Th}(\mathcal{M}) = \mathsf{Th}(\mathcal{N})$. We write $\mathcal{M} \equiv \mathcal{N}$.

A consistent theory T is complete if all its models are elementarily equivalent. Alternatively, for every φ , either $T \models \varphi$ or $T \models \neg \varphi$.

Examples

- 1. $\mathsf{Th}(\mathcal{M})$ is complete, for any structure \mathcal{M} .
- 2. ACF_p is a complete \mathcal{L}_{rings} -theory, for p = 0 or a prime.
- 3. DOAG is a complete $\mathcal{L}_{\mathrm{oag}}$ -theory.

Definable sets

Let \mathcal{M} be an \mathcal{L} -structure. A set $D \subseteq M^n$ is said to be definable if there is a formula $\varphi(\overline{x}, \overline{y})$ and parameters \overline{b} from M such that

$$D = \varphi(\mathcal{M}, \overline{b}) := \left\{ \overline{a} \in M^n \ | \ \mathcal{M} \models \varphi(\overline{a}, \overline{b}) \right\}.$$

If \overline{b} may be taken from $B \subseteq M$, we say D is B-definable.

Convenient to add parameters, passing to $\mathcal{L}_B = \mathcal{L} \cup \{c_b \mid b \in B\}$. Then \mathcal{M} expands naturally to an \mathcal{L}_B -structure \mathcal{M}_B .

Examples

- 1. In \mathbb{R} , the set $\mathbb{R}_{\geq 0}$ is \mathcal{L}_{rings} -definable, as the set of squares.
- 2. Let $K \models ACF$, and let $V = V(K) \subseteq K^n$ be an affine variety. Then V is definable in \mathcal{L}_{rings} by a quantifier free formula. More generally, this is the case for every constructible subset of K^n .

Elementary substructures

 $ightharpoonup \mathcal{M} \subseteq \mathcal{N}$ is a substructure if

$$c^{\mathcal{M}} = c^{\mathcal{N}}, f^{\mathcal{N}} \upharpoonright_{M^n} = f^{\mathcal{M}} \text{ and } R^{\mathcal{N}} \cap M^n = R^{\mathcal{M}}.$$

▶ We say \mathcal{M} is an **elementary** substructure of \mathcal{N} , $\mathcal{M} \leq \mathcal{N}$ if for every \mathcal{L} -formula $\varphi(\overline{x})$ and every tuple $\overline{a} \in M^n$ one has

$$\mathcal{M} \models \varphi(\overline{a}) \text{ iff } \mathcal{N} \models \varphi(\overline{a}).$$

In other words, the embedding respects all definable sets.

Note: $\mathcal{M} \preccurlyeq \mathcal{N} \Rightarrow \mathcal{M} \equiv \mathcal{N}$.

Quantifier elimination

Definition

A theory T has quantifier elimination (QE) if for every formula $\varphi(\overline{x})$ there is a quantifier free (q.f.) formula $\psi(\overline{x})$ such that

$$T \models \forall \overline{x} \ (\varphi(\overline{x}) \leftrightarrow \psi(\overline{x})).$$

Proposition

Let T be a (consistent) theory with QE.

- In M ⊨ T, every definable set is q.f. definable. Equivalently, projections of q.f. definable sets are q.f. definable.
- ▶ Let \mathcal{M} and \mathcal{N} be models of T. Then $\mathcal{M} \subseteq \mathcal{N} \Rightarrow \mathcal{M} \preccurlyeq \mathcal{N}$. (T is model complete).
- If any two models of T contain a common substructure, then T is complete.

Examples of theories with QE

Theorem (Chevalley-Tarski Theorem)

ACF has quantifier elimination.

Corollary

In algebraically closed fields, a set is definable iff it is constructible.

Corollary

 ACF_p is complete and strongly minimal: in every model $\mathcal{M} \models ACF_p$, every definable subset of M is finite or cofinite.

Remark

Model-completeness of $ACF \stackrel{.}{=} Hilbert's$ Nullstellensatz.

Example

The theory of the real field $\mathcal{R} = (\mathbb{R}; 0, 1, +, -, \cdot)$ does not have QE. (The set of squares is not q.f. definable.)

Tarski's theorem

Let $\mathcal{L}_{o.rings} = \mathcal{L}_{rings} \cup \{<\}$, and let RCF (the theory of real closed fields) be the $\mathcal{L}_{o.rings}$ -theory whose models are

- ordered fields F such that
- every positive element in F is a square in F and
- every polynomial of odd degree over F has a zero in F.

Theorem (Tarski 1951)

RCF is complete (so equal to $Th(\mathbb{R})$) and has QE.

Corollary

The definable sets in RCF are precisely the semi-algebraic sets (sets defined by boolean combinations of polynomial inequalities).

0-minimal theories

Definition

Let $\mathcal{L} = \{<, \ldots\}$. An \mathcal{L} -theory T is o-minimal if in any $M \models T$, any definable subset of M is a finite union of intervals and points.

Corollary

RCF is an o-minimal theory.

Proof.

Clearly, $p(X) \ge 0$ defines a set of the right form, for p a polynomial. We are done by Tarski's QE result.

Proposition

- 1. DOAG is complete and has QE (in $\mathcal{L}_{\mathrm{oag}}$).
- 2. Definable sets in DOAG are piecewise linear (given by bool. comb. of linear inequalities). In particular, DOAG is o-minimal.

The notion of a complete type

Definition

Let \mathcal{M} be a structure and $B \subseteq M$. A set $p(\overline{x})$ of \mathcal{L}_B -formulas $\varphi(x_1, \ldots, x_n)$ is a (complete) n-type over B if

- ▶ $p(\overline{x})$ is finitely satisfiable, i.e. for any $\varphi_1, \dots, \varphi_k \in p$ there is $\overline{a} \in M^n$ such that $\mathcal{M} \models \varphi_i(\overline{a})$ for all i;
- ▶ $p(\overline{x})$ is maximal with this property.

Example

Let $\mathcal{N} \succcurlyeq \mathcal{M}$. For $\overline{a} \in \mathcal{N}^n$, $\operatorname{tp}(\overline{a}/B) := \{ \varphi(\overline{x}) \in \mathcal{L}_B \mid \mathcal{N} \models \varphi(\overline{a}) \}$ is a complete *n*-type over B, the **type of** \overline{a} **over** B.

Lemma

Every complete type p is of the form $p(\overline{x}) = tp(\overline{a}/B)$. Such a tuple \overline{a} is called a realisation of p.

Type Spaces

- ▶ For $B \subseteq M$, let $S_n^{\mathcal{M}}(B)$ be the set of complete *n*-types over B.
- ▶ $\mathcal{M} \preccurlyeq \mathcal{N} \Rightarrow S_n^{\mathcal{M}}(B) = S_n^{\mathcal{N}}(B)$ canonically, so we write $S_n(B)$.
- ▶ For $\varphi = \varphi(x_1, ..., x_n) \in \mathcal{L}_B$, put $U_{\varphi} = \{p \in S_n(B) \mid \varphi \in p\}$. The sets U_{φ} form a basis of clopen sets for a topology on $S_n(B)$, the space of complete n-types over B, a profinite space.

Example (Type spaces in ACF)

Let $K \models ACF$ and let $K_0 \subseteq K$ be a subfield. Then, by QE,

$$S_n(K_0) \cong \operatorname{Spec}(K_0[x_1, \dots, x_n])$$
, via $p(\overline{x}) \mapsto \{f(\overline{x}) \in K_0[\overline{x}] \mid f(\overline{x}) = 0 \text{ is in } p\},$

as types are determined by the polynomial equations they contain.

Space of 1-types in o-minimal theories

Let T be o-minimal (e.g. T = DOAG or RCF) and $D \models T$.

Note $D \hookrightarrow S_1(D)$ naturally, via $d \mapsto \operatorname{tp}(d/D)$.

For $p(x) \in S_1(D) \setminus D$, let $C_p := \{d \in D \mid d < x \text{ is in } p\}$.

The map $p \mapsto C_p$ induces a bijection between

- $ightharpoonup S_1(D) \setminus D$ and
- cuts in D (viewed as initial pieces).

Hence, we have

$$S_1(D) \stackrel{1:1}{\longleftrightarrow} D \dot{\cup} \{ \text{cuts in } (D,<) \}.$$

Saturation

Definition

Let κ be an infinite cardinal. An \mathcal{L} -structure \mathcal{M} is κ -saturated if for every $B\subseteq M$ with $|B|<\kappa$, every $p\in\mathcal{S}_n(B)$ is realised in \mathcal{M} .

Remark

It is enough to check the condition for n = 1.

Examples

- 1. $K \models ACF$ is κ -saturated if and only if tr. $deg(K) \ge \kappa$.
- 2. $\mathbb{R} \models \mathrm{RCF}$ is not \aleph_0 -saturated: the type $p_{\infty}(x) \in S_1(\emptyset)$ determined by $\{x > n \mid n \in \mathbb{N}\}$ is not realised in \mathbb{R} .

Homogeneity

Definition

Let κ be given. An \mathcal{L} -structure \mathcal{M} is κ -homogeneous if for all $B \subseteq M$ with $|B| < \kappa$ and all $\overline{a}, \overline{b} \in M^n$ with $\operatorname{tp}(\overline{a}/B) = \operatorname{tp}(\overline{b}/B)$ there is $\sigma \in \operatorname{Aut}_B(\mathcal{M})$ s.t. $\sigma(\overline{a}) = \overline{b}$.

Remark

It is enough to check the condition for n = 1.

Example

Let $K \models ACF$. Then K is |K|-homogeneous.

Fact

Let κ and \mathcal{M} be given. There exists an elementary extension $\mathcal{N} \succcurlyeq \mathcal{M}$ which is κ -saturated and κ -homogeneous.

The Universe

Let T be complete and κ a very big cardinal.

A universe \mathcal{U} for T is a κ -saturated and κ -homogeneous model.

When working with a universe \mathcal{U} ,

- ▶ "small" means "of cardinality $< \kappa$ ";
- ▶ " $\mathcal{M} \models \mathcal{T}$ " means " $\mathcal{M} \preccurlyeq \mathcal{U}$ and M is small";
- ▶ similarly, all parameter sets *B* are small subsets of *U*.

We write \mathcal{U} for some **fixed universe** (for \mathcal{T}).

Fact

Let D be a definable set in U, and let $B \subseteq U$ be a set of parameters. TFAE:

- 1. D is B-definable.
- 2. $\sigma(D) = D$ for all $\sigma \in Aut_B(\mathcal{U})$.

Definable and algebraic closure I

Definition

Let $B \subseteq \mathcal{U}$ be a set of parameters and $a \in \mathcal{U}$.

- ▶ a is definable over B if {a} is a B-definable set;
- ▶ a is algebraic over B if there is a finite B-definable set containing a.
- ▶ The **definable closure of** *B* is given by

$$dcl(B) = \{a \in \mathcal{U} \mid a \text{ definable over } B\}.$$

▶ Similarly define acl(B), the algebraic closure of B.

Definable and algebraic closure II

Examples

- ▶ In **ACF**, if K denotes the field generated by B, then $dcl(B) = K^{1/p^{\infty}}$ and $acl(B) = K^{alg}$.
- ▶ In **DOAG**, dcl(B) = acl(B) is the divisible hull of $\langle B \rangle$.
- In RCF, dcl(B) = acl(B) equals the real closure of the field generated by B.

Fact

- 1. $a \in dcl(B)$ if and only if $\sigma(a) = a$ for all $\sigma \in Aut_B(U)$
- 2. $a \in \operatorname{acl}(B)$ if and only if there is a finite set A_0 containing a which is fixed set-wise by every $\sigma \in \operatorname{Aut}_B(\mathcal{U})$.

A criterion for QE

The following criterion is often useful in practice.

We will use it in the context of valued fields.

Theorem

Let T be a theory and κ an infinite cardinal. TFAE:

- 1. T has QE.
- 2. Let $A \subseteq \mathcal{M}, \mathcal{N} \models T$. Assume
 - ▶ $|M| < \kappa$ and
 - \mathcal{N} is κ -saturated.

Then \mathcal{M} may be embedded into \mathcal{N} over \mathcal{A} .

Valued fields: notations and choice of a language

Let K be a valued field. We use standard notation:

- ▶ val : $K^{\times} \to \Gamma$ (the valuation map)
- ▶ $\Gamma = \Gamma_K$ is an ordered abelian group (written additively), plus a distinguised element ∞ (+ and < are extended as usual);
- $\triangleright \mathcal{O} = \mathcal{O}_K \supseteq \mathfrak{m} = \mathfrak{m}_K;$
- ▶ res : $\mathcal{O} \to k = k_K := \mathcal{O}/\mathfrak{m}$ is the **residue map**.
- ▶ For $a \in K$ and $\gamma \in \Gamma$ denote $B_{\geq \gamma}(a)$ (resp. $B_{>\gamma}(a)$) the closed (resp. open) ball of radius γ around a.
- ▶ K gives rise to an $\mathcal{L}_{\text{div}} = \mathcal{L}_{\textit{rings}} \cup \{ \text{div} \}$ -structure, via $x \text{div } y : \Leftrightarrow \text{val}(x) < \text{val}(y)$.
- ▶ $\mathcal{O}_K = \{x \in K : x \operatorname{div} 1\}$, so \mathcal{O}_K is $\mathcal{L}_{\operatorname{div}}$ -definable \Rightarrow the valuation is encoded in the $\mathcal{L}_{\operatorname{div}}$ -structure.

QE in algebraically closed valued fields

ACVF: \mathcal{L}_{div} -theory of alg. closed non-trivially valued fields

Theorem (Robinson)

The theory ACVF has QE. Its completions are given by $ACVF_{p,q}$, for (p,q) = (char(K), char(k)).

Corollary

- 1. In ACVF, a set is definable iff it is semi-algebraic, i.e. a boolean combination of sets given by polynomial equations and valuation inequalities.
- 2. In particular, definable sets in 1 variable are (finite) boolean combinations of singletons and balls.
- 3. If $K_0 \subseteq K \models \operatorname{ACVF}$ is a subfield, then $\operatorname{acl}(K_0) = K_0^{alg}$ and $\operatorname{dcl}(K_0) = \left(K_0^{1/p^{\infty}}\right)^h$.

Classification of purely transcendental extensions

For i = 1, 2, let $L_i = K(t_i)$ be valued fields, with $t_i \notin K = K^{alg}$.

- ▶ (residual case) If $val(t_i) = 0$ and $res(t_i) \notin k_K$ for i = 1, 2, then $t_1 \mapsto t_2$ induces an isomorphism $L_1 \cong_K L_2$.
- ▶ (ramified case) If $\gamma_i = \operatorname{val}(t_i) \notin \Gamma_K$ for i = 1, 2, and γ_1 and γ_2 define the same cut in Γ_K , then $L_1 \cong_K L_2$ via $t_1 \mapsto t_2$.
- (immediate case) If there is a pseudo-Cauchy sequence (a_{ρ}) in K without pseudo-limit in K such that $a_{\rho} \Rightarrow t_i$ for i = 1, 2, then $L_1 \cong_K L_2$ via $t_1 \mapsto t_2$.

The proof of QE in ACVF

We use the criterion.

Let $L, L^* \models \text{ACVF}$, and $A \subseteq L, L^*$ a common \mathcal{L}_{div} -substructre. Assume L is countable and L^* is \aleph_1 -saturated. We have to show that L embeds into L^* over A.

- ▶ WMA A = K is a field. (Easy)
- ▶ WMA $K = K^{alg}$. (Extensions of \mathcal{O}_K to K^{alg} are Gal(K)-conj.) \Rightarrow Enough to K-embed K(t) into L^* , for $t \notin K = K^{alg}$:
- ▶ K(t)/K is either residual, or ramified, or immediate.
- ▶ Residual case: replacing t by at + b for $a, b \in K$, WMA val(t) = 0 and $res(t) \notin k = k^{alg}$. By saturation $\exists t^* \in \mathcal{O}_{L^*}$ s.t. $res(t^*) \notin k$, so $t \mapsto t^*$ works.
- ▶ The other cases are treated similarly.

Multi-sorted languages and structures

A multi-sorted language \mathcal{L} is given by

- ▶ a non-empty family of sorts $\{S_i \mid i \in I\}$;
- **constants** c, where c specifies the sort $S_{i(c)}$ it belongs to;
- ▶ relation symbols $R \subseteq S_{i_1} \times \cdots \times S_{i_n}$, for $i_1, \ldots, i_n \in I$;
- ▶ function symbols $f: S_{i_1} \times \cdots \times S_{i_n} \rightarrow S_{i_0}$;
- ▶ variables $(v_j^i)_{j\in\mathbb{N}}$ running over the sort S_i (for every i).

 \mathcal{L} -formulas are built in the obvious way.

An \mathcal{L} -structure \mathcal{M} is given by

- ▶ non-empty base sets $S_i^{\mathcal{M}} = M_i$ for every $i \in I$;
- ▶ **interpretations** of the symbols, subject to the sort restrictions, e.g. $c^{\mathcal{M}} \in M_{i(c)}$.

A variant: valued fields in a three-sorted language

Let $\mathcal{L}_{k,\Gamma}$ be the following 3-sorted language, with sorts K, Γ and k:

- ▶ Put \mathcal{L}_{rings} on K, $\{0,+,<,\infty\}$ on Γ and \mathcal{L}_{rings} on k;
- ▶ val : $K \rightarrow \Gamma$, and
- ▶ RES: $K^2 \rightarrow k$ as additional function symbols.

A valued field K is naturally an $\mathcal{L}_{k,\Gamma}$ -structure, via

$$\operatorname{RES}(x,y) := \begin{cases} \operatorname{res}(xy^{-1}), & \text{if } \operatorname{val}(x) \ge \operatorname{val}(y) \ne \infty; \\ 0 \in k, & \text{else.} \end{cases}$$

ACVF in the three-sorted language

Theorem

ACVF eliminates quantifiers in $\mathcal{L}_{k,\Gamma}$.

Remark

The proof is similar to the one in the one-sorted context (in $\mathcal{L}_{\mathrm{div}}$).

Corollary

In ACVF, the following holds:

- 1. Γ is a pure divisible ordered abelian group: any definable subset of Γ^n is $\{0,+,<\}$ -definable (with parameters from Γ).
- 2. k is a pure ACF: any definable subset of k^n is \mathcal{L}_{rings} -definable.

The Ax-Kochen-Eršov principle

Lemma

The class of henselian valued fields is axiomatisable in $\mathcal{L}_{k,\Gamma}$.

Theorem (Ax-Kochen, Eršov)

Let K and K' be henselian valued fields of equicharacteristic 0. Then, the following holds:

- 1. $K \equiv K'$ iff $k \equiv k'$ and $\Gamma \equiv \Gamma'$;
- 2. if $K \subseteq K'$, then $K \preceq K'$ iff $k \preceq k'$ and $\Gamma \preceq \Gamma'$.

A general transfer principle

Corollary

For any $\mathcal{L}_{k,\Gamma}$ -sentence φ there is $N \in \mathbb{N}$ s.t. for any p > N,

$$\mathbb{Q}_p \models \varphi \quad iff \quad \mathbb{F}_p((t)) \models \varphi.$$

Idea of the proof.

Else, applying compactness, one may find henselian valued fields K, K' of equicharacteristic 0 with $\Gamma \cong \Gamma' \equiv \mathbb{Z}$ and $k \cong k'$ such that $K \models \varphi$ and $K' \models \neg \varphi$, contradicting the AKE principle.

Remark

Ever since the approximate solution to Artin's Conjecture, this kind of transfer principle has shown to be extremely powerful.

QE in p-adic fields

Let $\mathcal{L}_{\text{Mac}} = \mathcal{L}_{\textit{rings}} \cup \{P_n \mid n \geq 1\}$, with P_n a new unary predicate.

Any field K gets an $\mathcal{L}_{\mathrm{Mac}}$ -structure, letting $P_n(x) \leftrightarrow \exists y \ y^n = x$.

If $K=\mathbb{Q}_p$, then \mathbb{Z}_p is $\mathcal{L}_{\mathrm{Mac}}$ -definable in a quantifier-free way:

$$x \in \mathbb{Z}_p \iff \mathbb{Q}_p \models P_2(1+px^2)$$
 (assume $p \neq 2$)

Theorem (Macintyre)

 \mathbb{Q}_p has QE in $\mathcal{L}_{\mathrm{Mac}}$.

Remark

Along with p-adic cell decompostion, this was used by Denef in his work on p-adic integration, giving rationality results for various Poincaré series associated to an algebraic variety.

Angular component maps

A map $ac: K \rightarrow k$ is an angular component if

- ac(0) = 0;
- ▶ $ac \upharpoonright_{K^{\times}} : K^{\times} \to k^{\times}$ is a group homomorphism;
- $ightharpoonup \operatorname{val}(x) = 0 \Rightarrow \operatorname{ac}(x) = \operatorname{res}(x).$

Example

In $K = k((\Gamma))$, mapping an element to its **leading coefficient** defines an angular component map. (This also works in \mathbb{Q}_p .)

Fact

- 1. Let $s: \Gamma \to K^{\times}$ be a cross-section (homomorphic section of val). Then $ac(a) := res(s(a)^{-1}a)$ is an angular component.
- 2. If K is an ℵ₁-saturated valued field, then K admits a cross-section, so in particular an angular component map.

Relative QE in Pas' language

Let $\mathcal{L}_{\mathrm{Pas}} = \mathcal{L}_{k,\Gamma} \cup \{\mathrm{ac}\}$, where $\mathrm{ac}: K \to k$.

Let $\mathcal{T}_{\mathrm{Pas}}$ be the $\mathcal{L}_{\mathrm{Pas}}$ -theory of henselian valued fields of equicharacteristic 0 with an angular component map.

Theorem (Pas)

 $T_{\rm PAS}$ admits elimination of field quantifiers:

If $\varphi(\overline{x}_f, \overline{x}_\gamma, \overline{x}_r)$ is an $\mathcal{L}_{\operatorname{Pas}}$ -formula, with variables $\overline{x}_f, \overline{x}\gamma$ and \overline{x}_r running over the sorts K, Γ and k, respectively, there is an $\mathcal{L}_{\operatorname{Pas}}$ -formula $\psi(\overline{x}_f, \overline{x}_\gamma, \overline{x}_r)$ without field quantifiers such that φ and ψ are equivalent modulo T_{Pas} .

Remark

The map ac is not definable in $\mathcal{L}_{k,\Gamma}$. Thus, passing from $\mathcal{L}_{k,\Gamma}$ to \mathcal{L}_{Pas} leads to more definable sets.

Extensions to valued difference fields

A valued difference field is a valued field K together with a distinguished automorphism $\sigma \in Aut(K)$.

 \Rightarrow get induced automorphisms σ_{Γ} on Γ and $\sigma_{\rm res}$ on k.

Remark

AKE principles and relative QE in Pas' language have recently been obtained for several classes of valued difference fields:

- ▶ in the Witt Frobenius case, where $\sigma_{\Gamma} = id$ (work by Scanlon, Bélair-Macintyre-Scanlon, Azgin-van den Dries);
- ▶ in the ω -increasing case (e.g. the non-standard Frobenius), where one has $\gamma > 0 \Rightarrow \sigma_{\Gamma}(\gamma) > n\gamma \, \forall \, n \in \mathbb{N}$ (work by Hrushovski, Azgin).

Context

- \triangleright \mathcal{L} is some countable language (possibly many-sorted);
- ▶ T is a complete L-theory;
- ► U |= T is a fixed universe (i.e. very saturated and homogeneous);
- ▶ all models \mathcal{M} we consider (and all parameter sets A) are small, with $\mathcal{M} \leq \mathcal{U}$;
- ▶ there is a **dominating sort** S_{dom} : for every sort S from \mathcal{L} there is $n \in \mathbb{N}$ and an n-ary function π_S in \mathcal{L} ,

$$\pi_S: S_{dom}^n \to S$$

such that $\pi_S^{\mathcal{U}}$ is surjective.

▶ E.g., the field sort is a dominating sort for a theory of valued fields considered in $\mathcal{L}_{k,\Gamma}$ (3-sorted).

Imaginary Sorts and Elements

Definition

An imaginary element in \mathcal{U} is an equivalence class d/E, where E is a definable equivalence relation on some $D \subseteq_{def} U^n$ and $d \in D(\mathcal{U})$.

If $D = U^n$ for some n and E is definable without parameters, the set of equivalence classes U^n/E is called an imaginary sort.

Examples of Imaginaries I

Unordered Tuples

▶ In any theory, the formula

$$(x = x' \land y = y') \lor (x = y' \land y = x')$$

defines an equiv. relation $(x, y)E_2(x', y')$ on pairs, with

$$(a,b)E_2(a',b') \Leftrightarrow \{a,b\} = \{a',b'\}.$$

Thus, $\{a, b\}$ may be thought of as an imaginary element.

▶ Similarly, $\{a_1, ..., a_n\}$ may be thought of as an imaginary.

Examples of Imaginaries II

A group (G, \cdot) is a definable group in \mathcal{U} if, for some $k \in \mathbb{N}$,

- $ightharpoonup G \subseteq_{def} U^k$ and
- $\Gamma = \{ (f, g, h) \in G^3 \mid f \cdot g = h \} \subseteq_{def} U^{3k}.$

Example (Cosets)

Let (G, \cdot) be definable group in \mathcal{U} , and let $H \leq G$ a definable subgroup of G. Then any coset $g \cdot H$ is an imaginary.

(Note that $gEg' \Leftrightarrow \exists h \in H g \cdot h = g'$ is definable.)

Shelah's \mathcal{M}^{eq} -Construction

There is a canonical way, due to S. Shelah, of expanding

- $ightharpoonup \mathcal{L}$ to a many-sorted language \mathcal{L}^{eq} ,
- lacktriangledown T to a (complete) \mathcal{L}^{eq} -theory T^{eq} and
- $ightharpoonup \mathcal{M} \models T$ to $\mathcal{M}^{eq} \models T^{eq}$ such that
- ▶ $\mathcal{M} \mapsto \mathcal{M}^{eq}$ is an equivalence of categories between $\langle Mod(T), \preccurlyeq \rangle$ and $\langle Mod(T^{eq}), \preccurlyeq \rangle$.

Shelah's \mathcal{M}^{eq} -Construction (continued)

For any \emptyset -definable equivalence relation E on S_{dom}^n we add

- ▶ a new **imaginary sort** S_E (S_{dom} is called the **real sort**), a new function symbol $\pi_E : S_{dom}^n \to S_E$ \Rightarrow obtain \mathcal{L}^{eq} :
- axioms stating that π_E is surjective and that its fibres correspond to E-classes
 ⇒ obtain T^{eq}:
- ▶ the interpretation of π_E and S_E on models $\mathcal{M} \models T$ according to the axioms \Rightarrow obtain \mathcal{M}^{eq} .

Existence of codes for definable sets in \mathcal{U}^{eq}

Fact

For any definable $D \subseteq \mathcal{U}^n$ there exists $c \in \mathcal{U}^{eq}$ such that $\sigma \in \operatorname{Aut}(\mathcal{U})$ fixes D setwise iff it fixes c.

Proof.

Suppose D is defined by $\varphi(\overline{x}, \overline{d})$. Define an equivalence relation

$$E(\overline{z}, \overline{z}') : \Leftrightarrow \forall \overline{x} (\varphi(\overline{x}, \overline{z}) \leftrightarrow \varphi(\overline{x}, \overline{z}')).$$

Then $c := \overline{d}/E$ serves as a code for D.

We sometimes write $\lceil D \rceil = \lceil \varphi(\overline{x}, \overline{b}) \rceil$ for this code (it is unique up to interdefinability).

Galois Correspondence in T^{eq}

The definitions of definable / algebraic closure make sense in \mathcal{U}^{eq} . We write dcl^{eq} or acl^{eq} to stress that we work in \mathcal{U}^{eq} .

- ▶ For $B \subseteq \mathcal{U}^{eq}$, any $\sigma \in \operatorname{Aut}_B(\mathcal{U})$ fixes $\operatorname{acl}^{eq}(B)$ setwise.
- ▶ $Gal(B) := \{ \sigma \upharpoonright_{acl^{eq}(B)} \mid \sigma \in Aut_B(\mathcal{U}) \}$ is called the absolute Galois group of B.

Theorem (Poizat)

The map

$$H \mapsto \{a \in \operatorname{acl}^{eq}(B) \mid h(a) = a \ \forall \ h \in H\}$$

induces a bijection between the set of closed subgroups of Gal(B) and $D = \{A \mid B \subseteq A = dcl^{eq}(A) \subseteq acl^{eq}(B)\}.$

Elimination of Imaginaries

Definition (Poizat)

The theory T eliminates imaginaries if every imaginary element $a \in \mathcal{U}^{eq}$ is interdefinable with a real tuple $\overline{b} \in \mathcal{U}^n$.

Fact

▶ Suppose that for every \emptyset -definable equivalence relation E on \mathcal{U}^n there is an \emptyset -definable function

$$f:\mathcal{U}^n \to \mathcal{U}^m$$
 (for some $m \in \mathbb{N}$)

such that
$$E(\overline{a}, \overline{a}')$$
 if and only if $f(\overline{a}) = f(\overline{a}')$.

Then T eliminates imaginaries.

► The converse is true if there are two distinct ∅-definable elements in U.

Imaginary Galois theory and Elimination of Imaginaries

Examples of theories which eliminate imaginaries

- 1. T^{eq} (for an arbitrary theory T)
- 2. ACF (Poizat)

This follows from

- ▶ the existence of a smallest field of definition of a variety, and
- ▶ the fact that finite sets can be coded using symmetric functions, e.g. {a, b} is coded by (a + b, ab).
- 3. RCF (see the following slides)

Theorem (Definable choice in RCF)

Let $R \models \mathrm{RCF}$ and let $(D_a)_{a \in R^k}$ be a definable family of non-empty subsets of R^n . Then there is a definable function $f: R^k \to R^n$ s.t. $f(a) \in D_a \ \forall \ a \in R^k$. Furthermore, if $D_a = D_b$, then f(a) = f(b).

Proof.

Projecting and using induction, it suffices to treat the case n=1. D_a is a finite union of intervals. Let I be the leftmost interval.

- ▶ If I is reduced to a point, we let f(a) be this point;
- if I = R, let f(a) = 0;
- if $Int(I) =]c, +\infty[$, let f(a) = c + 1;
- ▶ if $Int(I) =]-\infty, c]$, let f(a) = c 1;
- if Int(I) =]c, d[, let $f(a) = \frac{c+d}{2}$.

Clearly, this construction is uniform and gives what we want.

Elimination of imaginaries in RCF and in DOAG

Corollary

The theory RCF eliminates imaginaries.

In proving definable choice, we only used that the theory is an o-minimal expansion of DOAG (with some non-zero element named). From this, one may easily infer the following.

Corollary

DOAG eliminates imaginaries. More generally, any o-minimal expansion of DOAG eliminates imaginaries.

Utility of Elimination of Imaginaries

T has $EI \Rightarrow$ many constructions may be done already in T:

- quotient objects are present in U
 (e.g. a definable group modulo a definable subgroup)
 - \Rightarrow easier to classify e.g. interpretable groups and fields in \mathcal{U} ;
- every definable set admits a real tuple as a code
- get a Galois correspondence in T, replacing dcl^{eq}, acl^{eq} by dcl and acl, respectively.

In search for imaginaries in ACVF

Consider $K \models ACVF$ (in \mathcal{L}_{div}).

- ▶ Clearly, k and Γ are imaginary sorts, i.e. $k, \Gamma \subseteq K^{eq}$.
- ▶ More generally, \mathcal{B}^o and \mathcal{B}^{cl} (the set of open / closed balls) are imaginary sorts.

Fact

There is no definable bijection between k and a subset of K^n , similarly for Γ instead of k.

Proof idea.

- ▶ By QE, any infinite def. subset of *K* contains an open ball.
- Thus, every infinite definable subset of K^n admits definable maps with infinite image to k as well as to Γ.
- ▶ But, using QE in $\mathcal{L}_{k,\Gamma}$, it is easy to see that every definable subset of $k \times \Gamma$ is a finite union of rectancles $D \times E$.

In search for imaginaries in ACVF (continued)

Question

Does (K, k, Γ) eliminate imaginaries (in $\mathcal{L}_{k,\Gamma}$)?

- ► The answer is NO (Holly).
- ▶ The answer is NO even if in addition \mathcal{B}^o and \mathcal{B}^{cl} are added. (Haskell-Hrushovski-Macpherson)

Sketch: Let $\gamma > 0$ and let b_1, b_2 be generic elements of \mathcal{O} .

Let A_i be the set of open balls of radius γ inside $B_{\geq \gamma}(b_i)$. Then A_i is a definable affine space over k.

It can be shown that a generic affine morphism between A_1 and A_2 cannot be coded in $K \cup \mathcal{B}^o \cup \mathcal{B}^{cl}$.

The geometric sorts

- ▶ $s \subseteq K^n$ is a lattice if it is a free \mathcal{O} -submodule of rank n;
- ▶ for $s \subseteq K^n$ a lattice, $s/\mathfrak{m}s \cong_k k^n$.

For
$$n \geq 1$$
, let

$$S_n := \{ \text{lattices in } K^n \},$$

$$T_n := \bigcup_{s \in S_n} s/\mathfrak{m}s.$$

Fact

- 1. S_n and T_n are imaginary sorts, $S_1 \cong \Gamma$ (via $a\mathcal{O} \mapsto val(a)$), and also $k = \mathcal{O}/\mathfrak{m} \subseteq T_1$.
- 2. $S_n \cong \operatorname{GL}_n(K)/\operatorname{GL}_n(\mathcal{O}) \cong \operatorname{B}_n(K)/\operatorname{B}_n(\mathcal{O})$
- 3. There is a similar description of T_n as a finite union of coset spaces.

Classification of Imaginaries in ACVF

 $\mathcal{G} = \{K\} \cup \{S_n, n \geq 1\} \cup \{T_n, n \geq 1\}$ are the geometric sorts. Let $\mathcal{L}_{\mathcal{G}}$ be the (natural) language of valued fields in \mathcal{G} .

Theorem (Haskell-Hrushovski-Macpherson 2006)

ACVF eliminates imaginaries down to **geometric sorts**, i.e. the theory ACVF considered in $\mathcal{L}_{\mathcal{G}}$ has El.

Using this result, Hrushovski and Martin were able to classify the imaginaries in the p-adics:

Theorem (Hrushovski-Martin 2006)

 \mathbb{Q}_p eliminates imaginaries down to $\{K\} \cup \{S_n, \ n \geq 1\}$.

Classification of Imaginaries in ACVF (cont'd)

Some consequences of the classification of imaginaries in ACVF:

- 1. May do Geometric Model Theory in valued fields.
- Development of stable domination as a by-product
 ⇒ apply methods from stability outside the stable context.
- 3. There are striking applications outside model theory:
 - in representation theory (Hrushovski-Martin);
 - in **non-archimedean geometry** (Hrushovski-Loeser).

The notion of a definable type

- ▶ As before, *T* is a **complete** *L*-theory;
- $ightharpoonup \mathcal{U} \models T$ is very saturated and homogeneous.

Definition

Let $\mathcal{M} \models \mathcal{T}$ and $A \subseteq M$. A type $p(\overline{x}) \in S_n(M)$ p is A-definable if for every \mathcal{L} -formula $\varphi(\overline{x}, \overline{y})$ there is an \mathcal{L}_A -formula $d_p\varphi(\overline{y})$ s.t.

$$\varphi(\overline{x},\overline{b}) \in \rho \; \Leftrightarrow \; \mathcal{M} \models d_p \varphi(\overline{b}) \; \; \text{(for every } \overline{b} \in M\text{)}$$

We say p is definable if it is definable over some $A \subseteq M$.

The collection $(d_p\varphi)_{\varphi}$ is called a defining scheme for p.

Remark

If $p \in S_n(M)$ is definable via $(d_p\varphi)_{\varphi}$, then the same scheme gives rise to a (unique) type over any $\mathcal{N} \succcurlyeq \mathcal{M}$, denoted by $p \mid N$.

Definable types: first properties

- (Realised types are definable) Let $\overline{a} \in M^n$. Then $\operatorname{tp}(\overline{a}/M)$ is definable. (Take $\operatorname{d}_p \varphi(\overline{y}) = \varphi(\overline{a}, \overline{y})$.)
- ▶ (Preservation under definable functions) Let $\overline{b} \in \operatorname{dcl}(M \cup {\overline{a}})$, i.e. $f(\overline{a}) = \overline{b}$ for some M-definable function f. Then, if $\operatorname{tp}(\overline{a}/M)$ is definable, so is $\operatorname{tp}(\overline{b}/M)$.
- ▶ (Transitivity) Let $\bar{a} \in N$ for some $\mathcal{N} \succcurlyeq \mathcal{M}$, $A \subseteq M$. Assume
 - $tp(\overline{a}/M)$ is A-definable;
 - ▶ tp(b/N) is $A \cup \{\overline{a}\}$ -definable.

Then $tp(\overline{a}\overline{b}/M)$ is A-definable.

We note that the converse of this is false in general.

Definable 1-types in o-minimal theories

Let T be o-minimal (e.g. T = DOAG) and $D \models T$.

- ▶ Let $p(x) \in S_1(D)$ be a non-realised type.
- ▶ Recall that p is determined by the cut $C_p := \{d \in D \mid d < x \in p\}.$
- ► Thus, by o-minimality, p(x) is definable $\Leftrightarrow d_p \varphi(y)$ exists for $\varphi(x, y) := x > y$ $\Leftrightarrow C_p$ is a definable subset of D $\Leftrightarrow C_p$ is a rational cut
- ▶ e.g. in case $C_p = D$, $d_p \varphi(y)$ is given by y = y;
- ▶ in case $C_p =]-\infty, \delta]$, $d_p\varphi(y)$ is given by $y \leq \delta$ $(p(x) \text{ expresses: } x \text{ is "just right" of } \delta$; this p is denoted by δ^+).

Definable 1-types in o-minimal theories (cont'd)

Corollary

Let $\mathcal{D} \models DOAG$ The following are equivalent:

- 1. $\mathcal{D} \cong (\mathbb{R}, +, <);$
- 2. Any $p \in S_1(D)$ is definable;
- 3. For every $n \ge 1$, any $p \in S_n(D)$ is definable.

Proof.

- $1. \Rightarrow 2$. Clearly, every cut in \mathbb{R} is rational.
- 2. \Rightarrow 3. If $p = \operatorname{tp}(a_1, \dots, a_n/D)$, by QE, p is determined by the 1-types $\operatorname{tp}(a'/D)$, where $a' = \sum_{i=1}^n z_i a_i$ for some $z_i \in \mathbb{Z}$.
- $2. \Rightarrow 1.$ If \mathcal{D} is non-archimedean, choose $0 < \epsilon << d$. Then $\{d \in D \mid d < n\epsilon \text{ for some } n \in \mathbb{N}\}$ is an irrational cut. So \mathcal{D} has to be archimedean, and of course equal to its completion.

Definable 1-types in ACVF

Let $K \models ACVF$, $K \leq L$, $t \in L \setminus K$, and put p := tp(t/K).

▶ If K(t)/K is a residual extension, then p is definable.

Proof.

Replacing t by at + b, WMA val(t) = 0 and $res(t) \notin k_K$.

- \Rightarrow Enough to guarantee definably that $\operatorname{val}(X^n + a_{n-1}X^{n-1} + \ldots + a_0) = 0$ is in p for all $a_i \in \mathcal{O}_K$.
 - ▶ If K(t)/K is a ramified extension, up to a translation WMA $\gamma = \text{val}(t) \notin \Gamma(K)$.

 p is definable \Leftrightarrow the cut def. by val(t) in $\Gamma(K)$ is rational.

(Indeed, p is determined by $p_{\Gamma} := \operatorname{tp}_{\mathrm{DOAG}}(\gamma/\Gamma(K))$, so p is definable $\Leftrightarrow p_{\Gamma}$ is definable.)

Definable 1-types in ACVF (cont'd)

▶ If K(t)/K is an immediate extension, then p is not definable.

(There is no smallest K-definable ball containing t. If p were definable, the intersection of all (closed or open) K-definable balls containing t would be definable.)

Corollary

Let $K \models ACVF$ The following are equivalent:

- 1. K is maximally valued and $\Gamma(K) \cong (\mathbb{R}, +, <)$;
- 2. Any $p \in S_1(K)$ is definable;
- 3. For every $n \ge 1$, any $p \in S_n(K)$ is definable.

Proof.

 $1. \Leftrightarrow 2.$ follows from the above. $1. \Rightarrow 3.$ follows from the detailed analysis of types in ACVF by Haskell-Hrushovski-Macpherson.

Definability of types in ACF

Proposition

In ACF, all types over all models are definable.

Proof.

Let $K \models ACF$ and $p \in S_n(K)$.

Let
$$I(p) := \{ f(\overline{x}) \in K[\overline{x}] \mid f(\overline{x}) = 0 \in p \} = (f_1, \dots, f_r).$$

By QE, every formula is equivant to a boolean combination of polynomial equations. Thus, it is enough to show:

For any d the set of (coefficients of) polynomials $g(\overline{x}) \in K[\overline{x}]$ of degree $\leq d$ such that $g \in I_p$ is definable. This is classical.

Remark

The above result is a consequence of the stability of ACF.

Equivalent definitions of stability

Definition

A theory T is called stable if there is no formula $\varphi(\overline{x}, \overline{y})$ and tuples $(\overline{a}_i, \overline{b}_i)_{i \in \mathbb{N}}$ (in \mathcal{U}) such that $\mathcal{U} \models \varphi(\overline{a}_i, \overline{b}_i) \Leftrightarrow i \leq j$.

Theorem (Shelah)

The following are equivalent:

- 1. T is stable.
- 2. There is an infinite cardinal κ such that for every $A \subseteq U$ with $|A| \leq \kappa$ one has $|S_1(A)| \leq \kappa$.
- 3. All types over all models are definable.
- 3. \Rightarrow 2. There are $\leq |A^{\mathbb{N}}|$ many A-def. types, so $\kappa = 2^{\aleph_0}$ works.
- 2. \Rightarrow 1. T unstable \Rightarrow may code cuts in the type space.
- $1. \Rightarrow 3.$ More difficult.

Examples of stable theories

- ACF, more generally every strongly minimal theory;
- any theory of abelian groups.

Examples of unstable theories

- Every o-minimal theory (e.g. DOAG, RCF);
- ▶ the theory of any non-trivially valued field, e.g. ACVF;
- ▶ the theory of any pseudofinite field...

Uniform definability of types in stable theories

Theorem

Let T be stable and $\varphi(\overline{x}, \overline{y})$ a formula. Then there is a formula $\chi(\overline{y}, \overline{z})$ such that for every type $p(\overline{x})$ (over a model) there is \overline{b} such that $d_p\varphi(\overline{y}) = \chi(\overline{y}, \overline{b})$.

Problem

Is $D_{\varphi,\chi} = \{\overline{b} \in U \mid \chi(\overline{y}, \overline{b}) \text{ is the } \varphi\text{-definition of some type}\}$ always a definable set?

Fact

For T stable, all $D_{\varphi,\chi}$ are definable iff for every formula $\psi(x,\overline{y})$ (in T^{eq}), there is $N_{\psi} \in \mathbb{N}$ such that whenever $\psi(\mathcal{U},\overline{b})$ is finite, one has $|\psi(\mathcal{U},\overline{b})| \leq N_{\psi}$.

Corollary

In ACF, the sets $D_{\varphi,\chi}$ are definable.

Prodefinable sets

Definition

A prodefinable set is a projective limit $D = \varprojlim_{i \in I} D_i$ of definable sets D_i , with def. transition functions $\pi_{i,j} : D_i \to D_j$ and I some small index set. (Identify $D(\mathcal{U})$ with a subset of $\prod D_i(\mathcal{U})$.)

We are only interested in **countable** index sets \Rightarrow WMA $I = \mathbb{N}$.

Example

- 1. (**Type-definable sets**) If $D_i \subseteq U^n$ are definable sets, $\bigcap_{i \in \mathbb{N}} D_i$ may be seen as a prodefinable set: WMA $D_{i+1} \subseteq D_i$, so the transition maps are given by inclusion.
- 2. $U^{\omega} = \varprojlim_{i \in \mathbb{N}} U^i$ is naturally a prodefinable set.

Some notions in the prodefinable setting

Let $D = \varprojlim_{i \in I} D_i$ and $E = \varprojlim_{i \in J} E_i$ be prodefinable.

- ▶ There is a natural notion of a prodefinable map $f: D \rightarrow E$.
- D is called strict prodefinable if it can be written as a prodefinable set with surjective transition functions;
- ▶ D is called iso-definable if it is in prodefinable bijection with a definable set.
- ▶ $X \subseteq D$ is called relatively definable if there is $i \in I$ and $X_i \subseteq D_i$ definable such that $X = \pi_i^{-1}(X_i)$.

Remark

D is strict pro-definable iff $\pi_i(X) \subseteq D_i$ is definable for every relatively definable X and any i.

The set of definable types as a prodefinable set

Assume:

- T has EI and
- ▶ uniform definability of types (e.g. T stable)

For any $\varphi(\overline{x}, \overline{y})$ fix $\chi_{\varphi}(\overline{y}, \overline{z})$ such that for any definable type $p(\overline{x})$ we may take $d_p \varphi(\overline{y}) = \chi_{\varphi}(\overline{y}, \overline{b})$ for some $\overline{b} = \lceil d_p \varphi \rceil$.

 \Rightarrow may identify p (more exactly $p \mid U$) with the tuple $(\lceil d_p \varphi \rceil)_{\varphi}$.

Proposition

- 1. With these identifications, the set of definable n-types $S_{def,n}$ is naturally a prodefinable set. Moreover, if $X \subseteq U^n$ is definable, denoting $S_{def,X}(A)$ the set of A-definable types on X, $S_{def,X}$ is a relatively definable subset of $S_{def,n}$.
- 2. If all $D_{\varphi,\chi}$ are definable, then $S_{def,\chi}$ strict prodefinable.

The space of types in ACF as a prodefinable set

Corollary

Let V be an algebraic variety. There is a strict prodefinable set D (in ACF) such that for any field K, $S_V(K) \cong D(K)$ naturally.

Proposition

- 1. If V is a curve, then S_V is iso-definable.
- 2. If $dim(V) \ge 2$, then S_V is not iso-definable.

Proof sketch.

- 1. is clear, since S_V is the set of realised types (which is always iso-definable) plus a finite number of generic types.
- 2. If $V=\mathbb{A}^2$, one may show that the generic types of the curves given by $y=x^n$ may not be seperated by finitely many φ -types. The result follows. (The general case reduces to this.)

References

- Chatzidakis, Zoé. Théorie des Modèles des corps valués. (Lecture notes, http://www.logique.jussieu.fr/~ zoe/).
- Haskell, Deirdre; Hrushovski, Ehud; Macpherson, Dugald. Definable sets in algebraically closed valued fields: elimination of imaginaries. *J. Reine Angew. Math.* **597**, 175–236, 2006.
- Haskell, Deirdre; Hrushovski, Ehud; Macpherson, Dugald. Stable domination and independence in algebraically closed valued fields. ASL, Chicago, IL, 2008.
- Hrushovski, Ehud; Loeser, François. Non-archimedean tame topology and stably dominated types. *arXiv:1009.0252*.
- Hodges, Wilfrid. Model Theory. CUP, 1993.
- Poizat, Bruno. A Course in Model Theory: An Introduction to Contemporary Mathematical Logic. Springer, 2000.