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Introduction

Motivation

This diploma thesis deals with o-minimal structures. Those are a creation of model
theorists, but they are also useful to prove some interesting facts in differential
topology. Thus in tame topology we pay special attention to sets definable in a
model-theoretic structure, particulary in an o-minimal structure. For example the
sets definable in the ordered field of real numbers R = (R, <,+,−, ·, 1, 0) can be
characterized as semi-algebraic sets, i.e. finite unions of subsets of Rn of the form
{x ∈ Rn | f1(x) = · · · = fk(x) = 0 ∧ g1(x) > 0 ∧ · · · ∧ gl(x) > 0}, where
fi, gj ∈ R[X] are polynomials in the variables x1, . . . , xn and x = (x1, . . . , xn). These
sets are the easiest example for an o-minimal structure over the ordered field R =
(R, <,+,−, ·, 1, 0). But for talking about o-minimal structures we have to take a
look at the definition.

Definition 0.0.1 (Wilkie). A structure on R is a sequence S = 〈Sn : n ≥ 1〉, where
each Sn is a collection of subsets of Rn such that:

(S1) Sn is a boolean algebra, i.e. it is closed under union, intersection and comple-
ment and contains the whole and the empty set;

(S2) Sn contains every semi-algebraic subset of Rn;

(S3) if A ∈ Sn and B ∈ Sm, then A× B ∈ Sn+m;

(S4) if m ≥ n,A ∈ Sm, then π[A] ∈ Sn where π : Rm → Rn is projection onto the
first n coordinates.

S is called an o-minimal structure (over the real field) if

(S5) the boundary of every set in S1 is finite.

Many of the properties of semi-algebraic sets can be generalized to o-minimal ex-
pansions of R.

However, semi-algebraic sets are not enough to practize some analysis on the reals,
so the question is how we can expand o-minimal structures while keeping the o-
minimality.
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Another famous application for o-minimal structures is the (sub)analytic topology
and geometry. First of all there is an interest in objects defined over the category
of subanalytic sets and maps. Now, van den Dries and Miller noticed in [vdDM96]
that they can generalize the behaviour of the category of subanalytic sets in analytic
geometric categories. They worked out that every analytic geometric category is
connected to an o-minimal structure by identifying the analytic manifold Rn with
an open subset of the projective space Pn(R). This is done via the map (y1, . . . , yn) 7→
|1 : y1 : · · · : yn] from Rn to Pn(R), which allows us to connect the structure S to
a geometrical category C defined by S := {X ⊆ Rn | X ∈ C(Pn(R))}. Hence, the
geometrical category of subanalytic sets corresponds to the o-minimal structure Ran.
Look for more details in [vdDM96].

Thus, there is interest in o-minimal expansions of the ordered field of real numbers.

That is why we look also at Pfaffian functions, i.e. a finite sequence of functions
which is closed under taking derivatives.

Definition 0.0.2. A C1 function f : Rn → R is called Pfaffian function if there
exist C1 functions f1, . . . , fk : Rn → R with f = fk, such that for each 1 ≤ i ≤ k
and 1 ≤ j ≤ n, ∂fi

∂xj
is expressible as a polynomial in x1, . . . , xn, f1, . . . fi.

We can expand structures by means of Pfaffian functions, for example we examine
the definable sets in the structure Rexp or in the structure Ran,exp, where we take the
sets definable in R by restricted analytic functions and by the exponential function.
Wilkie proved in [Wil99] that the structure generated by R expanded by all Pfaffian
functions is again o-minimal.

A more general possibility to build up new structures is the so-called Pfaffian closure
which is generated by adding Rolle leaves to an existing structure. Rolle leaves are
manifolds on a given set and an 1-form with some nice properties. Speisegger proved
in [Spe99] that this construction enables us to expand an o-minimal structure on the
reals and preserve the o-minimality of the structure.

In this thesis we will develop a different way to prove this statement. It can be
applied to the special case of Pfaffian functions, since the graph of any Pfaffian
function is a Rolle leaf and so for example Rexp is again an o-minimal structure or
more general R expanded by any Pfaffian function generates an o-minimal structure.

A powerful method to expand o-minimal structures is Wilkie’s theorem of the com-
plement. There we assume that we have a collection of sets which satisfies some
properties of an o-minimal structure, such as containing semi-algebraic sets, the
cartesian product, the intersection of two sets and the image under a linear bijec-
tion. Then we take the Charbonnel closure, which satisfies nearly all properties of
an o-minimal structure. The only thing missing is that the Charbonnel closure is
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not necessarily closed under complementation. Wilkie’s theorem of the complement
states that an additional assumption, which says that every set in the collection can
be written as a projection of a zero set of some function, is enough to verify the
closure under complementation. This is the reason for the name “theorem of the
complement ”. In this diploma thesis we will examine and improve Wilkie’s theorem
of the complement by reducing the requirements on the functions.

This theorem can also be applied to the Pfaffian closure and using this we prove that
the Charbonnel closure of the Pfaffian closure of any o-minimal structure is again
an o-minimal structure. Therefore we follow some ideas of Karpinski and Macintyre
in [KM99], but in their paper there are some mistakes and some proofs are not as
obvious as they look at first sight. These proofs are carried out and corrected here.

Content

In the first chapter the subject is introduced and we give the general definitions of
o-minimal structures and Wilkie’s modification to o-minimal weak structures. These
modificated structures, so-called weak structures, have some properties of structures.
However, the o-minimality conditions for weak structures are quite stronger than
those for structures. Hence for example the number of connected components of
intersections with an affine hyperplane must be bounded. The requirement to an
o-minimal structure S only expects that the number of connected components of sets
in S and in R must be finite. We also recall the instrument of cell decomposition,
which means dividing sets into cells, that are constructed with intervals and CN

functions. Furthermore, we prove that all (o-minimal) structures are (o-minimal)
weak structures.

The second chapter deals with the Charbonnel closure, which is the closure of a
weak structure under projection, union and algebraic closure. We compare different
equivalent definitions of Wilkie in [Wil99] and Berarducci and Servi in [BS04] and
recall the fact that if a weak structure is o-minimal, then the Charbonnel closure is
an o-minimal weak structure as well.

In the third chapter we formulate an improved version of Wilkie’s theorem of the
complement and prove it in several steps, similar as Wilkie did in [Wil99]. We
examine Wilkie’s determined by smooth functions condition and the DCN condition
with CN functions of Karpinski and Macintyre in [KM99] and obtain a so-called
DPCN condition by replacing the smooth functions by partially defined CN functions
with closed graph. So the DPCN condition states that each set is a projection of a
union of zero sets of partial defined CN functions in the Pfaffian closure with closed
graph. To prove the modified theorem, we first approximate the sets in the weak
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structure and the Charbonnel closure by CN functions in the Charbonnel closure.
Therefore we use the DPCN condition and do an induction along the construction
of the sets in the Charbonnel closure of our given weak structure. The projection
case is the most interesting and complicated part, there we need to differentiate the
functions to get the right approximant. The second step is to prove with the help of
Sard’s lemma that for every set X in the Charbonnel closure S̃ of our weak structure,
there is a set in S̃ with empty interior containing the boundary of X. After that we
can apply the same cell decomposition argument as Wilkie in [Wil99].

The fourth chapter deals with the converse of the theorem of the complement,
i.e. that we can write every structure as Charbonnel closure of some o-minimal weak
structure satisfying the DCN condition. We simply prove that every o-minimal
structure satisfies this condition. The Charbonnel closure now is the structure itself.

In the fifth and last chapter the theorem of the complement is applied to the Pfaffian
closure. At the beginning we consider the basic definitions of Rolle leaves and of
the Pfaffian closure of an o-minimal structure. In order to show that the Pfaffian
closure is again an o-minimal structure, we apply the theorem of the complement,
which we proved in Chapter 3. First we have to verify that the Pfaffian closure
of an o-minimal structure is an o-minimal weak structure, what is done with the
help of some results Speisegger proved in [Spe99]. The difficult part is to verify the
DPCN condition. Therefore we examine the cell decomposition of the basic sets and
distingiush between open and closed cells. At last we put all functions together and
obtain the DPCN condition for an arbitrary set in the Pfaffian closure.
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1 Basics of O-Minimal (Weak)
Structures

In this chapter we will recall the definitions of structures and o-minimality. Further-
more, we will introduce the concept of (o-minimal) weak structures, as Wilkie does
in [Wil99]. In general, a weak structure has less properties than a structure. For
instance it is not necessarily closed under complementation. O-minimality of a weak
structure requires indeed some more assumptions than o-minimality of a structure.
These assumptions are needed for the expansion of an o-minimal weak structure to
an o-minimal structure in Wilkie’s theorem of the complement. Additionally, we
recall the instrument of cell decomposition for proofs on o-minimal structures in
section 1.2. At last, we prove that every o-minimal structure is also an o-minimal
weak structure.

1.1 Structures and Weak Structures, O-Minimality

The easiest o-minimal structure in Wilkie’s sense contains all semi-algebraic sets, so
semi-algebraic sets are a quite important concept for the following definitions.

Definition 1.1.1 (Semi-Algebraic Set). A semi-algebraic set is a finite union of sets
in Rn of the form

{x ∈ Rn | f1(x) = · · · = fk(x) = 0 ∧ g1(x) > 0 ∧ · · · ∧ gl(x) > 0},

where fi, gj ∈ R[X1, . . . , Xn] are polynomials in the variables x1, . . . , xn and x =
(x1, . . . , xn).

Convention 1.1.2. We will use the following conventions in the rest of the thesis.

• The boundary of a set A is the set ∂A = A−int(A), while A is the topological
closure and int(A) is the interior of A.

• Let π denote the natural projection to the first n coordinates, so π : Rm → Rn.
We write πm

n if the indices are not clear from the context.
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1 Basics of O-Minimal (Weak) Structures

For structures and o-minimality, we will use the following definition by Wilkie, given
in [Wil99].

Definition 1.1.3 (Wilkie). A structure on R is a sequence S = 〈Sn : n ≥ 1〉, where
each Sn is a collection of subsets of Rn such that for all n,m ≥ 1:

(S1) Sn is a boolean algebra, i.e. it is closed under union, intersection and comple-
ment and contains the whole and the empty set;

(S2) Sn contains every semi-algebraic subset of Rn;

(S3) if A ∈ Sn and B ∈ Sm, then A× B ∈ Sn+m;

(S4) if m ≥ n,A ∈ Sm, then π[A] ∈ Sn where π : Rm → Rn is projection onto the
first n coordinates.

The structure S is called o-minimal if

(S5) the boundary of every set in S1 is finite.

Remark 1.1.4. This notation differs from the usual model theory notation of an
o-minimal structure. It is stronger, since it demands that all semi-algebraic sets are
in the structure.

In Definition (2.1) in [vdD98], Chapter 1, van den Dries demands that all sets of the
form {(x1, . . . , xn) ∈ Rn | x1 = xn} are in Sn, instead of (S2). According to van den
Dries’ definition it is sufficient for o-minimality that {(x, y) ∈ R2 | x < y} ∈ S2 and
that the sets in S1 are exactly the finite unions of intervals and points.

Thus it is possible to prove that the semi-algebraic sets form an o-minimal structure
in van den Dries’ sense.

On the other hand the o-minimality structure conditions of Wilkie implies the clas-
sical o-minimality conditions, since {(x1, . . . , xn) ∈ Rn | x1 = xn} and {(x, y) ∈ R2 |
x < y} are semi-algebraic sets. Let A be a set in S1, in an o-minimal structure in
Wilkie’s sense. Then the boundary has to be finite by (S5). Now we check the classic
o-minimality condition. Every connected component has at most two points in the
boundary, so there are only finitely many connected components of A. A connected
component in R must be a point or an interval, so A is a finite union of points and
intervals. On the other hand a singleton {a} is the zero set of the polynomial x− a
and an interval (a, b) is equal to {x ∈ R | a − x < 0 ∧ x − b < 0}, so just another
semi-algebraic set. So every finite union of points and intervals is in S1.

Thus Wilkie’s definition is a specialized version on R of the o-minimal structure in
[vdD98].
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1.1 Structures and Weak Structures, O-Minimality

Example 1.1.5. The easiest example for an o-minimal structure S on R is given by
the collection of all semi-algebraic sets.

Most properties of an o-minimal structure are easy to verify:

(S1) Finite unions are by definition in S, intersections are easy, too. Furthermore,
∅ = {x | x > 0 ∧ − x > 0} ∈ S, the same with the whole set. The complement
of any set is in S: By f(x) 6= 0 ⇔ f(x) < 0 ∨ f(x) > 0 and g(x) ≤ 0 ⇔
−g(x) > 0 ∨ g(x) = 0 and (A∩B)C = AC ∪BC the claim can be verified with
an easy calculation.

(S2) Trivial.

(S3) Trivial.

(S5) Let A be a semi-algebraic set in S. If all occurring polynomials fi are zero, then
A has no boundary (since it is empty or whole Rn), otherwise the boundary is
a finite union of zero sets of polynomials. Furthermore zero sets of non-zero
polynomials are finite.

It is more difficult to verify (S4), i.e. that a projection of a semi-algebraic set is again
a semi-algebraic set. This is the statement of the Tarski-Seidenberg theorem; a proof
can be found in [vdD98], Chapter 2.

The o-minimal structure theory helps us to characterize the definable sets of an
ordered field as we see in the following corollary.

Corollary 1.1.6 (Corollary (2.11) in [vdD98], Chapter 2). The definable sets in
the model-theoretic structure R = (R, <, 0, 1,+,−, ·) (definable with parameters) are
exactly the semi-algebraic sets.

Proof. The definable sets (with parameters) are the sets in the smallest structure
containing the constants 0, 1, the relation < and the graphs of +,−, ·. The set
{(x, y) | x < y} = {(x, y) | y − x > 0} is semi-algebraic and so are {0}, {1} and the
graphs of +,−, ·. Since the semi-algebraic sets form a structure, the structure of the
definable sets must be contained in the structure of the semi-algebraic sets.

Every semi-algebraic set is obviously definable and so containend in the structure of
the definable sets.

Have a look at another example, presented in [vdD96].
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1 Basics of O-Minimal (Weak) Structures

Example 1.1.7. [Example (c) in [vdD96], Section 0] Look at the class of sets de-
finable in the structure Ran := (R, (f)), where f ranges over all restricted analytic
functions, i.e. over all functions f : Rn → R such that f ↾ [−1, 1]n is analytic and f
is identically 0 outside [−1, 1]n. By Gabrielov’s Theorem of the Complement Ran is
model complete and by results of Łojasiewicz it is an o-minimal structure.

The o-minimality of the structure leads to a characterization of definable sets. The
set X ⊆ Rm is definable in Ran if and only if for some n, some real polynomial p in
m + n variables and some analytic function f : [−1, 1] → R we have Y = {(x, y) ∈
Rm ×[−1, 1]n | p(x, y) = 0 ∧ f(y) = 0} and X = πm+n

m [Y ].

For the references to these facts see Example (c) in [vdD96], Section 0.

Example 1.1.8. Lessly, we look at the collection of sets definable in Ran,exp, where
we expand the structure Ran by the exponential function x 7→ ex.

We will give a proof of the fact that these sets form an o-minimal structure in Chapter
5. It is an example for the application of Wilkie’s theorem of the complement and
the Pfaffian closure.

In Wilkie’s theorem of the complement, the basic idea is that some properties of
a (weak) structure are easier to verify than the fact that the structure contains a
complement of any set. Thus we introduce a new notation for an o-minimal weak
structure, that has basic properties of a structure. For the o-minimality of a weak
structure we need some more properties than in an o-minimal structure.

Definition 1.1.9. Suppose n ≥ 1 and let A ⊆ Rn. Then cc(A) denotes the number
of connected components of A.

Let γ(A) be the smallest natural number N with the following property: For any
affine subspace X of Rn, the number of connected components cc(A∩X) is restricted
by N . If no such N exists we define γ(A) = +∞.

Definition 1.1.10 (Definition 1.1 in [Wil99]). A weak structure is a sequence S =
〈Sn : n ≥ 1〉, where each Sn is a collection of subsets of Rn, such that for all n,m ≥ 1:

(WS1) if A,B ∈ Sn, then A ∩B ∈ Sn;

(WS2) Sn contains every semi-algebraic subset of Rn;

(WS3) if A ∈ Sn and B ∈ Sm, then A× B ∈ Sn+m;

(WS4) if A ∈ Sm, then σ[A] ∈ Sn where σ : Rn → Rn is a linear bijection.

A weak structure S is called o-minimal if, in addition to (WS1)-(WS4), it satisfies:

(WS5) for all n ≥ 1 and A ∈ Sn it is γ(A) <∞;
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1.2 Cell Decomposition

(WS6) for all n ≥ 1 and A ∈ Sn, there exist an m ≥ n and a closed set B ∈ Sm

such that A = πm
n [B].

Remark 1.1.11. In some literature as in [Max98] an o-minimal weak structure is
called tame R-system.

The following lemma and Theorem 1.3.1 show that this definition of an (o-minimal)
weak structure is in line with the definition of an (o-minimal) structure.

Lemma 1.1.12. Every structure is a weak structure.

Proof. Let S be a structure. (WS2) and (WS3) are exactly the same conditions as
(S2) and (S3). (WS1) follows from the fact, that S is a boolean algebra.

To show (WS4) let σ : Rn → Rn be a linear bijection and let A be in Sn. The set
{(y, x) ∈ Rn ×Rn | y−σ(x) = 0} is a semi-algebraic subset of Rn+n and so in Sn+n.
Look at

πn+n
n [{(y, x) ∈ Rn ×Rn | y−σ(x) = 0} ∩ (Rn ×A)] = σ[A].

This set is constructed by Cartesian product (WS3), intersection (WS1) and projec-
tion (S4) of sets in S and so itself a set in Sn.

Remark 1.1.13. In [BS04] (WS2) is replaced by the weaker condition that Sn con-
tains every set of the form {x ∈ Rn | p1(x) = 0, . . . , pm(x) = 0}, where p1, . . . , pm ∈
Z[x]. However, this does not affect the following proofs.

1.2 Cell Decomposition

The cell decomposition is a basic instrument to prove results about structures; we
will recall it in this section, since we will use it several times. First, we give the
definitions of a cell and a (cell) decomposition, then we state the cell decomposition
theorem. Here, we use the version with CN functions presented in [vdDM96].

Definition 1.2.1. Let S ⊆ Rn ×Rk, y ∈ Rk. Define the section

Sy := {x ∈ Rn | (x, y) ∈ S}.

We define cells, which are some kind of basic building blocks in an o-minimal struc-
ture, in the following.
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1 Basics of O-Minimal (Weak) Structures

Definition 1.2.2 (Definition (2.3) in [vdD98], Chapter 3 with CN cells). Let FCN =
{f : C → R | f is CN ∧ f ∈ S} ∪ {∞,−∞}. We say that f ∈ S, if the graph of f ,
Γ(f) ∈ S. Sometimes we write f = ±∞ for the function which satisfies f(x) = ±∞
for all x.

Define a CN cell C in Rn by the following inductive definition.

• For every N , a CN cell in R is either a singleton {a} ∈ S1 or an open interval
(a, b) ∈ S1.

• Let C be an arbitrary CN cell in Rn−1. Then a CN cell in Rn is either a graph
of a function Γ(f), where f : C → R is CN and in S or a set of the form
(f, g)C , where f, g ∈ FCN such that f < g. We define

(f, g)C := {(x, y) | x ∈ C, f(x) < y < g(x)}.

Definition 1.2.3 (Definition (2.10) in [vdD98], Chapter 3). A CN (cell) decomposi-
tion of Rn is a special kind of partition of Rn into finitely many cells. The definition
works by induction on n:

• A decomposition of R is a collection

{
(−∞, a1), (a1, a2), . . . , (ak,∞), {a1}, . . . , {ak}

}
,

where a1, . . . , ak ∈ R.

• A decomposition of Rn+1 is a finite partition of Rn+1 into CN cells C such that
the projections πn+1

n [C] form a decomposition of Rn.

Definition 1.2.4. Let S be an o-minimal structure and A ∈ Sn. Let D be a
CN decomposition of Rn. The decomposition D is called compatible with A (or it
partitions the set A as in [vdD98]) if for every cell C ∈ D holds C ⊆ A or C ∩A = ∅.

Remark 1.2.5. If the decomposition D is compatible with A ∈ S, we can write
A =

⋃
{C | C cell in D ∧ C ⊆ A}.

Theorem 1.2.6. [Cell Decomposition (4.2) in [vdDM96]] Let S be an o-minimal
structure.

a) Given A1, . . . , Ak ∈ Sn, there is a CN decomposition of Rn compatible with
A1, . . . , Ak.

b) For every function f : A → R belonging to S where A ⊆ Rn, there is a CN

decomposition D of Rn compatible with A such that f |D : D → R is of class
CN for each D ∈ D with D ⊆ A.
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1.3 O-Minimal Structures are O-Minimal Weak Structures

1.3 O-Minimal Structures are O-Minimal Weak

Structures

In this section we will prove the continuity of the property of o-minimality in a weak
structure. Hence we prove the o-minimality of a structure in the weak structure
sense. Furthermore we give some technical lemmas to check the membership of a set
in a (weak) structure.

Theorem 1.3.1. Every o-minimal structure S is an o-minimal weak structure.

To prove this theorem, we have to verify the two conditions for o-minimality in a
weak structure.

Lemma 1.3.2. Every o-minimal structure satisfies (WS5).

Proof. We can define any set A in an o-minimal structure by a formula of the corre-
sponding language. (If the structure consists of definable sets in a certain language,
the language is clear, otherwise we can construct a language by taking additional
relation symbols for sets in the structure.) An affine subspace X is in general a zero
set of a linear polynomial p(x, a) = a0 +a1 ·x1 + · · ·+an ·xn, where a are parameters
in the structure. This zero set of a polynomial can be described by a formula φ(x, a).
So the number of connected components of A∩X is bounded by the following result
of Knight, Pillow and Steinhorn.

Theorem 1.3.3. [Theorem 0.3 in [KPS86]]

a) Let M be o-minimal, i.e. the definable sets in M form an o-minimal structure
and let φ(x, y) be any formula of the language of M . Then there is a K ∈ N
such that for any b ∈ Mm, the set X(x, b)M = {a ∈ Mn | M � φ(a, b)} has at
most K definably connected components.

b) If M is a o-minimal expansion of (R, <), then we can replace definably con-
nected by connected.

Lemma 1.3.4. Every o-minimal structure satisfies (WS6).

To prove the above lemma, we need some rules to show that some sets are in a
structure or the Charbonnel Closure of a weak structure. In the next lemmas we
state some rules that will also help us in the next chapters.

Lemma 1.3.5. Let S be an o-minimal weak structure.
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1 Basics of O-Minimal (Weak) Structures

a) Let f : B → R, B ⊆ Rn be in S and let p ∈ R[X1, . . . , Xn+1] be a polynomial.
Then {(x, f(x)) ∈ B×R | p(x, f(x)) = 0} is in S. In general in semi-algebraic
sets we can replace arbitrary many coordinates by values of S-functions while
maintaining the property of being in S.

b) Every polynomial function is in S, i.e. its graph is in S.

c) If a function f > 0 is in S, then so is the function 1
f
.

Proof. a) We construct the forementioned set as follows:

{(x, f(x)) ∈ B × R | p(x, f(x)) = 0} = Γ(f) ∩ {(x, y) | p(x, y) = 0} .

So we intersect a semi-algebraic set which is in S by (WS2) with Γ(f), which
is in S by assumption and we can apply (WS1).

b) The graph of a polynomial is a semi-algebraic set.

c) The graph of the function Γ( 1
f
) = {(x, y) | 1

f(x)
= y} = {(x, y) | f(x) · y = 1} is

by a) in S.

Lemma 1.3.6. Let S be an o-minimal structure.

a) By interpreting the logical operators as terms of operations (union, intersec-
tion) we can apply logical operators to define a set in S.

b) If A ∈ S, then the topological closure A ∈ S.

c) If g : B × U → R is a continuous function in S, where B ⊆ Rn and U ⊆ Rm

such that g ≥ 0, then f : B×R → R, defined by f(x) = inf{g(x, y) | y ∈ U} is
again in S.

d) For S ⊆ B × A, we define Sa := {b ∈ B | (b, a) ∈ S}. If S,B ∈ S, then so is
Sa.

Proof. a) Clear.

b) Look at Lemma (3.4) in [vdD98], Chapter 1.

c) Now define A := π2n+1
n+1 [{(x, r, y) | x ∈ B ∧ y ∈ U ∧ r = g(x, y)}]. By a) this is

a set in S. Next, we want to minimize r, the value of the function. Therefore
look at

Γ(f) := {(x, r) ∈ A | r = inf{g(x, y) | y ∈ U}}

= {(x, r) ∈ A | ∀r′ (x, r′) ∈ A⇒ r < r′}

As this is realizable as projection of an intersection of members in S it is again
in S. The infimum exists everywhere, since g ≥ 0 and R is complete.
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1.3 O-Minimal Structures are O-Minimal Weak Structures

d) Note that Sa = π[B × {a} ∩ S)] by definition.

We can now prove (WS6) for open sets.

Lemma 1.3.7. Let S be an o-minimal structure. For every open set U ∈ Sn there
exists a closed set B ∈ Sn+1 such that π[B] = U and B = Γ(f) for a CN function
f : U → R, which is in S.

Proof. Notate UC for the complement of U in Rn. Define f : U → R through

f(x) = d(x, UC)2 := inf{| x− y |2 | y ∈ Rn −U}.

Define B := Γ( 1
f
). So π[B] = U and obviously 1

f
is a CN function on U .

Furthermore, B ∈ Sn+1: By Lemma 1.3.6, b) and c) we have f ∈ S. An appliance
of Lemma 1.3.5 c) supplies B ∈ Sn+1.

Additionally B is closed: Let xn → x ∈ ∂U . Then 1
f(xn)

→ ∞. By Remark 1.3.8

Γ( 1
f
) = B is closed.

The following remark is often needed to check, whether a function has a closed graph.
That is why we state and prove it separately here.

Remark 1.3.8. Let U be an open set in Rn and f : U → Rk be a C1 function, then
the following holds: Γ(f) is (topological) closed if and only if for all sequences (xn)n

with xn ∈ U and xn → x ∈ ∂U it is |f(xn)| → ∞.

Proof. ⇐: Let (xn, yn) ∈ Γ(f) such that (xn, yn) → (x, y) ∈ Rn+k. We show that
(x, y) ∈ Γ(f). Assume x /∈ U , so x ∈ ∂U . Then | yn | = |f(xn)| → ∞, but
| yn | → | y | < ∞. Contradiction. So x ∈ U and since f is continuous (xn, yn) =

(xn, f(xn)) → (x, f(x))
lim unique

= (x, y) ∈ Γ(f).

⇒: Let Γ(f) be closed. Assume xn → x with xn ∈ U , x ∈ ∂U and |f(xn)| → z <∞.
So the sequence (xn, f(xn)) is bounded and by the Theorem of Bolzano-Weierstrass
there exists a convergent subsequence (xnk

, f(xnk
)) → (x, y). Since Γ(f) is closed,

we have (x, y) ∈ Γ(f), particularly x ∈ U . However x /∈ U (since U is open), so
(x, y) /∈ Γ(f). Contradiction.

Lemma 1.3.9. Let C be a CN cell of S in Rn. Then there exists a closed set
B ∈ Sn+1 such that π[B] = C and B is a graph of a CN function in S defined on C.
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1 Basics of O-Minimal (Weak) Structures

Proof. Every CN cell is by a coordinate projection CN homeomorphic to an open
cell in Rk for some k < n. (Look at Lemma (2.7) in [vdD98], Chapter 3.) So let
φ : C → D ⊆ Rk be this projection. The inverse function φ−1 is in S, since all
functions defining cells are in S.

Since D is an open cell, there exists by Lemma 1.3.7 a closed set B′ in Sk+1 such
that π[B′] = D and B′ is a graph of a CN function. Define B := {(x, y) ∈ C × R |
(φ(x), y) ∈ B′}. Obviously, B ∈ S is still a graph of a CN function, since φ−1 is CN ,
and π[B] = C.

Now we prove Lemma 1.3.4.

Proof. Let A ∈ Sn. Do a finite cell decomposition of Rn compatible with A. For each
cell C of this decomposition there exists by Lemma 1.3.9 a closed set BC ⊆ Rn+1

such that π[BC ] = C. The cell decomposition is compatible with A, so each cell C is
contained in A or disjoint from A. Hence we can write A =

⋃
{C | C cell ∧C ⊆ A}.

Take B :=
⋃
{BC | C ⊆ A}. Of course, B is closed, since the cell decomposition is

finite and the BC are closed. Furthermore B ∈ S, since the BC are in S. Obviously,
π[B] = A.

Now Theorem 1.3.1 follows from Lemma 1.1.12, which proves that each structure is
a weak structure and Lemmas 1.3.2 and 1.3.4.
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2 The Charbonnel Closure

The Charbonnel closure is an expansion of an o-minimal weak structure that equips
it with additional operations. So in the Charbonnel closure we can take the union,
the topological closure and the projection of sets. It preserves the properties of an
o-minimal weak structure and hence we can use it to build up an o-minimal structure
in later chapters.

2.1 Definitions of the Charbonnel Closure

First, we cite two different definitions of the Charbonnel Closure. Then we show
that the definitions are equivalent in the case, where we need them.

Wilkie uses in [Wil99] the following definition to prove his theorem of the comple-
ment.

Definition 2.1.1 (Definition (1.3) in [Wil99]). Let S = 〈Sn : n ≥ 1〉 be a weak
structure. Define:

a) Su = 〈Su
n : n ≥ 1〉 where Su

n := {
⋃p

i=1Ai | p ≥ 1, A1, . . . , Ap ∈ Sn};

b) Spr = 〈Spr
n : n ≥ 1〉 where Spr

n := {πm
n [A] | m ≥ n,A ∈ Sm};

c) Scl〈Scl
n : n ≥ 1〉 where Scl

n := {A0 ∩
⋂p

i=1Ai | p ≥ 0, A0, . . . , Ap ∈ Sn}.

Let S(0) := S and S(i+1) := ((S(i)u)pr)cl for i ≥ 0. The Charbonnel closure is defined

as S̃ :=
⋃

i≥0 S
(i).

One of the central facts we use in our proof of the theorem of the complement is that
a Charbonnel closure is again an (o-minimal) weak structure if the basic structure
has these properties.

Lemma 2.1.2 (Charbonnel, Lemma (1.4) in [Wil99]). If S is a weak structure, then
so are Su,Spr,Scl. If further, S is o-minimal, then Su,Spr,Scl are, too.
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2 The Charbonnel Closure

Proof. Let S be a weak structure.

For Su (WS1) to (WS4) are trivial. If S is o-minimal, the boundary of connected
components in (WS5) is simply the sum of both boundaries. Let now A,B ∈ S; then
there exist by (WS6) C,D ∈ S such that A = πn+m

n [C] and B = πn+m′

n [D]. Without
loss of generality, we can assume m′ ≤ m, thus B∩ (D×Rm−m′

) is a closed set (with
(WS1) to (WS4) in S) satisfying (WS6) for A ∪B.

The expansion Spr satisfies obviously (WS2) to (WS4). So check (WS1): Let A,B ∈
Spr, i.e. A = πn+m

n [C] and B = πn+m′

n [D]. Then we have A∩B = {(x, y, z) | (x, y) ∈
C ∧ (x, z) ∈ D}, i.e. A∩B = πn+m+m′

n [C ×Rm′

∩σ[D×Rm]], where the permutation
σ swaps y and z. This is obviously a set in Spr.

If further S is o-minimal, (WS6) is obvious and (WS5) holds by the proof of Lemma
(1.6) in [Max98].

Again, for Scl (WS1) and (WS2) hold by definition, (WS3) is trivial and (WS4)
follows from the fact that linear bijections preserves convergence of sequences. If S
is o-minimal, (WS5) and (WS6) for Scl are proved in Lemma (1.8) in [Max98].

Corollary 2.1.3. If S is an (o-minimal) weak structure, then so is S̃.

Proof. This fact follows by induction out of the above lemma.

In the following we will not only use the definition above, but also the following
definition of the Charbonnel closure, which is given in [BS04]. Their definition allows
us to follow the proof of the theorem of the complement given in [BS04], which is
more clear than the one in [Wil99].

Definition 2.1.4. [Definition (4.4) in [BS04]] Let S = 〈Sn : n ≥ 1〉. The Charbonnel

closure is the smallest set S̃ satisfying the following conditions.

a) Ch(base): S̃n is a collection of subsets of Rn and Sn ⊆ S̃n for each n;

b) Ch(∪): for A,B ∈ S̃ holds A ∪ B ∈ S̃;

c) Ch(∩l): if A ∈ S̃n and L ⊆ Rn is a zero set of linear polynomials with coeffi-

cients in Z (L is called Z-affine set), then A ∩ L ∈ S̃n;

d) Ch(π): if A ∈ S̃n+k, then the projection πn+k
n [A] ∈ S̃n;

e) Ch(A): if A ∈ S̃n, then the topological closure A ∈ S̃n.

Lemma 2.1.5. If S is an o-minimal weak structure, then the two definitions of S̃
are equivalent.
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2.2 Induction on the Charbonnel Closure

Proof. Denote the collection given by the first definition by S̃
1
, the one given by

the second definition by S̃
2
. We show that both collections are closed under the

operations of the other one.

It holds S̃
1
⊆ S̃

2
: By Ch(∪) and Ch(π) finite unions and projections are also in S̃

2
.

So let A = A0∩
⋂p

i=1Ai ∈ S̃
1

n such that A0, . . . , Ap ∈ S̃
2

n. By Lemma (4.8) in [BS04],

the intersection of two sets in S̃
2

is again in S̃
2
. This fact and Ch(A) supply A ∈ S̃

2
.

We have also S̃
2
⊆ S̃

1
: It is clear, that sets constructed by Ch(base),Ch(π) and

Ch(∪) are in S̃
1
. Let A ∈ S̃

1

n. The topological closure A = Rn ∩A is by definition

in S̃
1
. Lastly, assume L is an Z-affine set. Hence L is the zero set of a polynomial,

so it is a semi-algebraic set and in S̃
1
. Additionally, L = L, so A ∩ L = A ∩ L is in

S̃
1
.

2.2 Induction on the Charbonnel Closure

The following definition of Berarducci and Servi helps us to do an induction along
the construction of a set in the Charbonnel closure. We use it to prove a modified
version of Wilkie’s theorem of the complement in the next chapter.

Definition 2.2.1 (Definition (4.5) in [BS04]). A Ch-description of A ∈ S̃ is an
expression, that illustrates one of the possible ways to obtain A from sets in S using
the Ch-operations in Definition 2.1.4.

First fix a set of symbols (called labels) Σ with the same cardinality as
⋃

n Sn and a
surjection from Σ to

⋃
n∈N

Sn, so that every set A ∈ S has a label A ∈ Σ. For every
set A ∈ S its Ch-description is the corresponding label A.

Let B,C ∈ S̃ with Ch-descriptions B, C. Then

• B∪C is a Ch-description for B ∪ C;

• B∩L is a Ch-description for B ∩ L (L Z-affine set);

• πn+k
n B is a Ch-description for πn+k

n [B];

• B is a Ch-description for B.

The label set Σ must not contain any of these constructed strings. Hence we obtain
a surjection from the set containing all Ch-descriptions to S̃, by mapping a Ch-
description A to the corresponding set A.

Note that the Ch-description of a set is not unique.
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2 The Charbonnel Closure

Definition 2.2.2. [Definition (4.5) in [BS04]] The rank ρ of a Ch-description is
defined as follows.

• ρ(A) = 0 if the Ch-description of A is a label in Σ;

• ρ(B∪C) = 1 + max{ρ(B), ρ(C)};

• ρ(B∩L) = 1 + ρ(B);

• ρ(πn+k
n B) = 1 + ρ(B);

• ρ(B) = 4 + ρ(B).

The reason for the bigger factor for the algebraic closure will get clear in the main
proof of Chapter 3.

Remark 2.2.3. In [BS04], the rank of any set A ∈ S̃ is defined as the least possible
rank of a Ch-description of A. Here it is enough (and more descriptive) to work
directly with the rank of Ch-descriptions.

We need two more facts about the rank of more complicate sets and their descrip-
tions, given in [BS04], Chapter 4.

Lemma 2.2.4. [Lemma (4.7) in [BS04]] Let A,B be Ch-descriptions for some sets

A,B ∈ S̃. Then A×B ∈ S̃ and there exists a Ch-description C of C = A×B such
that ρ(C) ≤ ρ(A) + ρ(B).

Proof. Look at the proof of Lemma (4.7) in [BS04].

Lemma 2.2.5. [Lemma (4.8) in [BS04]] Let A,B be Ch-descriptions for A,B ∈ S̃.

Then A ∩ B ∈ S̃ and there exists a Ch-description C of C = A ∩ B such that
ρ(C) ≤ 2 + ρ(A) + ρ(B).

Proof. Look at the proof of Lemma (4.8) in [BS04].
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3 Generalization of Wilkie’s
Theorem of the Complement

In this chapter we prove a generalized version of Wilkie’s theorem of the complement.

To do this we have a closer look at the proof of the theorem of the complement given
in [KM99] and we explain in detail how we change the proof of Wilkie’s theorem of
the complement given in [BS04]. We generalize the definition of DCN for all N given
in [KM99]. This definition provides a general description of sets in a weak structure
S as projections of zero sets of functions. We replace the functions in S by partial
defined functions with closed graph in S̃, which is a weaker assumption on the sets
in S.

The further generalization of the theorem of the complement is necessary, since in
the proof of [KM99] that the Pfaffian closure satisfies the DCN condition for all N
not everything is correct. In particular, it seems to be not easy or impossible to
prove that there is a total CN function satisfying the DCN condition for all N . To
fix this issue, we introduce the weaker condition working with partial functions. It
is possible to verify this property for the Pfaffian closure as we will see in the last
part of Chapter 5.

3.1 Definitions and Formulation of the Theorem of

the Complement

The basic property used in Wilkie’s theorem of the complement is given in the next
definition.

Definition 3.1.1 (Definition (1.7) in [Wil99]). A prestructure S = 〈Sn : n ≥ 1〉 is
determined by its smooth functions (DSF) if, for each n ≥ 1 and A ∈ Sn, there exist
an m ≥ n and a C∞ function f : Rm → R with f ∈ S such that A = πm

n [Z(f)]
where Z(f) = {x ∈ Rm | f(x) = 0} is the zero set of f .

Karpinkski and Macintyre prove the theorem of the complement under the following
assumption, which weakens the DSF property.
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3 Generalization of Wilkie’s Theorem of the Complement

Definition 3.1.2 (Definition (1) in [KM99]). A prestructure 〈Sn : n ≥ 1〉 satisfies
the DCN condition (determined by CN functions) for all N if for each A ∈ Sn, there
exists an m ≥ n such that for each N , there exists a CN function fN : Rm → R in
S such that A = πm

n [Z(fN)].

The next definition is the generalization to some partial functions, which we will
need in the following version of the theorem of the complement.

Definition 3.1.3 (Partial DCN Condition). A prestructure 〈Sn : n ≥ 1〉 satisfies
DPCN (determined by partial C functions) for all N if for each A ∈ Sn, there exists
an m ≥ n such that for each N , there exist finitely many functions f1, . . . , fr such
that A = πm

n [Z(f1)∪· · ·∪Z(fr)] where for each i = 1, . . . , r the functions fi : Ui → R
are CN and in S̃ with Γ(fi) closed and domains Ui, which are open subsets of Rm

for i = 1, . . . , r.

Now we state the modified theorem of the complement. We will prove it in the rest
of this chapter.

Theorem 3.1.4. Suppose S is an o-minimal weak structure satisfying DPCN for
all N . Then S̃ is an o-minimal structure and the smallest structure containing S.

Recall Corollary 2.1.3, which states that if we take the Charbonnel closure of an
o-minimal weak structure, the properties of a weak structure and o-minimality are
preserved. This fact reduces the proof of our theorem to the problem that S̃ is closed
under complementation.

3.2 First Step: Find Approximants

In the first step of the proof we will approximate the sets in S̃ by MN (S)-sets, which

are based on graphs of S̃-functions. This is done by induction on the Ch-description
of the sets. Therefore we walk along Chapter 10 of [BS04] and change the proofs,
where it is necessary.

We start with the definition of MN (S) functions, inspired by a similar construction
in Definition (6.5) in [BS04], where we replace the C∞ functions by finitely often
differentiable functions and simplify the definition.

Definition 3.2.1. Let S be an o-minimal weak structure. Let MN (S) contain all
functions f : U → R, such that there is an n ≥ 1 and

• U ⊆ Rn open,

• f is CN ,
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3.2 First Step: Find Approximants

• f ∈ S̃, i.e. Γ(f) ∈ S̃,

• the graph Γ(f) is closed in Rn+1.

We write MN(S)n for functions with fixed n, i.e. the domain U ⊆ Rn.

Remark 3.2.2. For all f : U → R in MN (S) the set U = πn+1
n [Γ(f)] is in S̃.

Remark 3.2.3. We can formulate the DPCN condition as: For every set A ∈ Sn

there exist m ≥ n and for each N finite many functions f1, . . . , fr ∈ MN (S)m such
that A =

⋃r

i=1 π
m
n [Z(fi)].

For some proofs it is necessary to work with non-negative functions, so we often
use f 2 instead of f . The following remark states that MN (S) is closed under this
operation.

Remark 3.2.4. Let f : U → R be in MN (S). Then f 2 ∈ MN(S), too.

Proof. It is obvious that f 2 is CN and the domain of f 2 is also U , hence still open.
Furthermore,

Γ(f 2) = {(x, f 2(x)) | x ∈ U}

= {(x, y) | ∃z y = z2 ∧ f(x) = z}

= π
(
{(x, y, z) | y − z2 = 0} ∩ {(x, y, z) | f(x) = z}

)

The second set in the intersection is a permutation of coordinates of Γ(f)×R, so it

is in S̃. The first set is semi-algebraic and so in S̃. Since S̃ is a weak structure and
fulfills (WS1) and (WS4) and is closed under projection we obtain Γ(f 2) ∈ S̃.

Let (xn)n∈N be a sequence in U with xn → x ∈ ∂U . Since Γ(f) closed it follows by
Remark 1.3.8 that |f(xn)| → ∞ and also |(f(xn))2| → ∞. Another application of
Remark 1.3.8 yields that Γ(f 2) is closed.

Convention 3.2.5. The next definitions express some notations for the next proofs.

a) Given A ⊆ Rn and ε ∈ R+, define the ε-neighborhood Aε of A as the set
{x ∈ Rn | ∃y ∈ A |x− y| < ε}.

b) Recall also that Sy := {x ∈ Rn | (x, y) ∈ S}.

c) We write ∀s ε φ (spoken as for all sufficient small ε) as a shorthand for ∃µ∀ ε <
µ φ, where µ, ε ∈ R+.

The aim is to approximate all sets in S̃ by a set of a special form, obtained by
functions in MN (S). For this we use the following definition.
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3 Generalization of Wilkie’s Theorem of the Complement

A

Aε0

Sε

Figure 3.1: The set S approximates A from below.

Sε

Sε0

ε

A

B 1

ε0

(0)

Figure 3.2: The set S approximates A from above on bounded sets.

Definition 3.2.6 (Definition (6.4) in [BS04]). Let A ⊆ Rn and S ⊆ Rn ×Rk
+.

a) The set S approximates A from below, if

∀s ε0 ∀
sε1 . . .∀

sεk Sε1,...,εk
⊆ Aε0 .

b) The set S approximates A from above on bounded sets if

∀sε0 ∀
sε1 . . .∀

sεk A ∩ B 1

ε0

(0) ⊆ Sε0

ε1,...,εk

where B 1

ε0

(0) is the compact ball of radius 1
ε0

centered in the origin.

Definition 3.2.7 (Definition (6.6) in [BS04]). Let N ∈ N and S be an o-minimal
weak structure.

a) An MN (S)-constituent is a set of the form

{
(x, ε) ∈ Rn ×Rk

+ | ∃y ∈ Rk−1 (x, y) ∈ B ∧ F (x, y) = ε
}
,

where there is some open U ⊆ Rn+k−1 such that F : U → Rk belongs to
MN (S)k.
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3.2 First Step: Find Approximants

b) An MN (S)-set is a finite union of MN (S)-constituents in Rn ×Rk
+.

c) For a given set A ∈ S̃n, an MN (S)-set S ⊆ Rn+k is called an MN (S)- approxi-
mant forA if S approximates ∂A from above on bounded sets and approximates
A from below.

Now it is possible to formulate the first central statement for the proof of the theorem
of the complement. We express that we can approximate each set in a weak structure.
Here we replace the DSF condition in Theorem (6.11) in [BS04] by the DPCN

condition for all N .

Theorem 3.2.8 (Approximation, Theorem (6.11) in [BS04], modified). Suppose S
is an o-minimal weak structure satisfying DPCN for all N . Let n ≥ 1 and A ∈ Sn.
Then, for every N ∈ N, there exists an MN(S)-approximant for A.

We prove this theorem by induction on the structure of A. The proof will take the
rest of this section and the next section, where we deal with the projection case,
which requires some more work.

Lemma 3.2.9. [Lemma of the Union] Let A1, A2 be subsets of Rn which have MN(S)-
approximants S1, S2. Then S1 ∪ S2 is an MN(S)-approximant for A1 ∪ A2.

Proof. For

T =
{
(x, ε) ∈ Rn ×Rk

+ | ∃y ∈ Rk−1(x, y) ∈ U ∧ F (x, y) = ε
}

define

T ′ =
{
(x, ε, εk+1) ∈ Rn ×Rk+1

+ | ∃y ∈ Rk−1 (x, y) ∈ U ∧ F (x, y) = ε
}

Then, for all εk+1 ∈ R+ we have T(ε1,...,εk) = T ′
(ε1,...,εk,εk+1)

. So if T approximates

any set A from above on bounded sets or from below, it is equivalent, that T ′

approximates A in the same way. So we can assume that all MN(S)-constituents
which form S1 and S2 have the same k.

1. The set S1 ∪ S2 is an MN(S)-set. This is clear by definition.

2. The MN(S)-set S1 ∪ S2 approximates A1 ∪ A2 = A1 ∪ A2 from below.

Since Si approximates Ai from below (i = 1, 2), we have:

∃µ1,0∀ ε1,0 < µ1,0 . . .∃µ1,k∀ ε1,k < µ1,k S1ε1,1,...,ε1,k
⊆ A1

ε1,0

∃µ2,0∀ ε2,0 < µ2,0 . . .∃µ2,k∀ ε2,k < µ2,k S2ε2,1,...,ε2,k
⊆ A2

ε2,0
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3 Generalization of Wilkie’s Theorem of the Complement

We notice that µ1,j and µ2,j depend on the choice of ε0, . . . , εj−1. So define for the
union µj(ε0, . . . , εj−1) := min{µ1,j(ε0, . . . , εj−1)), µ2,j(ε0, . . . , εj−1)} for 0 ≤ j ≤ k.
Then clearly,

∀sε0 . . .∀
sεk ∀sε0 . . .∀

sεk S1 ∪ S2ε1,...,εk
⊆ A1

ε0

∪ A2
ε0

.

Since A1 ∪A2 = A1 ∪A2 the union S1 ∪ S2 approximates A1 ∪ A2 from below.

3. The MN(S)-set S1 ∪ S2 approximates ∂A1 ∪ A2 from above.

The following calculation holds for all sufficient small ε.

∂A1 ∪ A2 ∩ B 1

ε0

(0)

⊆
(
∂A1 ∩B 1

ε0

(0)
)
∪

(
∂A2 ∩ B 1

ε0

(0)
)

Si approximates ∂Ai from above

⊆ S1
ε0

ε1,...,εk
∪ S2

ε0

ε1,...,εk

= (S1 ∪ S2)
ε0

ε1,...,εk
.

The following lemma helps to check that the condition of the closed graph is preserved
in several of the following proofs.

Lemma 3.2.10. Let f : U → Rk be a continuous function in S̃ with U ⊆ Rn and
Γ(f) closed. Let g : U ×R → R be a second continuous function. Then the function
(f, g) : U × R → Rk+1 defined by (f, g)(x, y) = (f(x), g(x, y)) has a closed graph.

Proof. By Remark 1.3.8 we have to show that for each (xn, yn) ∈ U × R with
(xn, yn) → (x, y) ∈ ∂(U × R) the limit |(f, g)(xn, yn)| → ∞. But since Γ(f) is
closed and xn → x ∈ ∂U , it is clear that |f(xn)| → ∞. Hence |(f, g)(xn, yn)|2 ≤
|f(xn)|2 + |g(xn, yn)|

2 → ∞.

The next lemma is about MN (S)-approximations to zero sets of MN (S) functions.

Lemma 3.2.11. [Lemma (10.3) in [BS04] with a partial function] If f : U → R is

in MN(S) and U ⊆ Rn, then its zero-set Z(f) has an MN(S)-approximant S ∈ S̃n+2.

Proof. The proof follows mainly the proof of Berarducci and Servi in [BS04], but it is
necessary to make some modifications to keep the lemma true for partial functions.

Without loss of generality, we can assume that U is connected: Due to the fact that
by (WS5) it has only finitely many connected components, we can take the union
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3.2 First Step: Find Approximants

of the corresponding MN(S)-approximants to obtain an MN(S)-approximant for U ,
what is possible by Lemma 3.2.9.

Additionally we can assume that f ≥ 0. Otherwise replace f by f 2, which is still in
MN (S) by Remark 3.2.4.

Exactly as in [BS04], let

S :=

{
(x, ε1, ε2) ∈ U × R2

+ | |(1, x)|2 ≤
1

ε1
∧ f(x) = ε2

}
.

1. The set S is an MN(S)-set.

Note that |(1, x1, . . . , xn)|2 ≤ 1
ε1

if and only if ∃y(1 + x2
1 + · · ·+ x2

n + y2)−1 = ε1. The

function g : U × R → R, (x1, . . . , xn, y) 7→ (1 + x2
1 + · · · + x2

n + y2)−1 belongs to
MN(S) for all N , since the graph is a semi-algebraic set as we can see easily. The
function f is in MN(S) and CN . Define F = (f, g) : U × R → R2

+.

The graph of F is closed by Lemma 3.2.10. Γ(F ) is in S̃, because f ∈ S̃ by assump-

tion and Γ(g) is in S̃ and so Γ(F ) = {(x, y, z, z′) | (x, z) ∈ Γ(f)∧ (x, y, z′) ∈ Γ(g)} is

at last an intersection of sets in S̃ which is in S̃ by (WS1). Hence

S =
{
(x, ε1, ε2) ∈ Rn ×R2

+ | ∃y ∈ R ((x, y) ∈ U × R ∧ F (x, y) = (ε1, ε2))
}

is an MN(S)-set.

2. The set S approximates Z(f) from below.

We have to show ∀sε0 ∀
sε1 ∀

sε2 Sε1,ε2
⊆ Z(f)ε0 .

Fix ε1. Then K :=
{

(x ∈ Rn | |(1, x)|2 ≤ 1
ε1

}
is compact and contains (with a look

at the definition of S) the set Sε1,ε2
for all ε2.

This set K is defined in the same way in [BS04]. They continue with the argument
that K − Z(f)ε0 is compact and the minimum of f(x) is taken in this set. But this
works only if f is defined on the whole set, what we cannot assume in our case, where
f is only defined on some set U . Since U is open, it is still not enough to intersect
with U . To obtain a compact set and finish the proof as in [BS04], we have to add
one dimension and use the fact that the graph of f is closed.

Define K ′ :=
{

(x, y) | x ∈ K ∧ y ≤ 1
ε0

}
. Since K is compact, so is K ′. Now let

C := (Γ(f) − (Z(f)ε0 × R)) ∩K ′.

Then C is compact: Γ(f) is closed and Z(f)ε0 × R is open, K ′ is closed, so C is
closed. It is bounded, since K ′ is bounded.
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3 Generalization of Wilkie’s Theorem of the Complement

U
Z(f)ε0

K
Z(f)

Figure 3.3: Sets needed for the approximation from below

Suppose, ε2 < min{f(x) | (x, y) ∈ C} (the minimum always exists since C is com-
pact) and ε2 <

1
ε0

. So ε2 depends on ε0 and ε1.

Now let x ∈ Sε1,ε2
, thus x ∈ U , x ∈ K and f(x) = ε2. Since x ∈ K we have

f(x) = ε2 <
1
ε0

, hence (x, f(x)) ∈ K ′. So (x, f(x)) ∈ Γ(f) ∩ K ′. Because of the
choice of ε2 we have (x, f(x)) /∈ C = (Γ(f) − (Z(f)ε0 × R)) ∩ K ′, hence (x, f(x))
must be in Γ(f) ∩ (Z(f)ε0 × R) ∩K ′. Particularly x ∈ Z(f)ε0 , what we wanted to
show.

3. S approximates ∂Z(f) from above on bounded sets.

We have to show that ∀sε0 ∀
sε1 ∀

sε2 ∂Z(f)∩B 1

ε0

(0) ⊆ Sε0

ε1,ε2
. Fix ε0 and let ε1 = ε1(ε0)

be small enough, such that K (as above) contains B 1

ε0

(0).

The following claim is Lemma (10.2) in [BS04]; at some point in the proof we have
to care about the partial defined functions and we need that U is open and Γ(f) is
closed, so we cannot take over the proof of Berarducci and Servi directly.

Claim : The graph Γ(f) = {(x, ε2) | f(x) = ε2} approximates ∂Z(f) from above
on bounded sets, that is

∀sε0 ∀
sε2 ∂Z(f) ∩ B 1

ε0

(0) ⊆ {x | f(x) = ε2}
ε0 .

Proof: Let ε0 > 0. We assume that there exists a sequence tn → 0 such
that ∂Z(f) ∩ B 1

ε0

(0) * {x | f(x) = tn}
ε0. So for every n ∈ N there is a point

xn ∈ ∂Z(f) ∩ B 1

ε0

(0) such that xn /∈ {x | f(x) = tn}
ε0 = f−1(tn)ε0 . Since B 1

ε0

(0) is

compact and ∂Z(f) is closed, we can choose a subsequence xn which converges to
some x ∈ ∂Z(f) ∩B 1

ε0

(0).

Let O ε0
2
(x) be the open ball with radius ε0

2
around x. We can assume O ε0

2
(x) ⊆ U :

Since x ∈ U and U is open, there exists an ε′0 < ε0 such that O ε′
0
2

(x) ⊆ U . The
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3.2 First Step: Find Approximants

x

y

Z(f)
O ε

2
(x)

U

Figure 3.4: How to find y such that f(y) > 0.

properties of (xn)n are conserved: Since {x | f(x) = tn}
ε′
0 ⊆ {x | f(x) = tn}

ε0 we
obtain xn /∈ f−1(tn)ε′0 and since B 1

ε0

(0) ⊆ B 1

ε′
0

(0) we have xn, x ∈ ∂Z(f) ∩ B 1

ε′
0

(0).

Berarducci and Servi take on this point of the proof directly an y ∈ O ε0
2
(x) where

f takes a positive value, but for this purpose we have to check that f is not the zero
function on its domain intersected with O ε0

2
(x). We will see that we need that the

domain is open.
Notice that ∂Z(f) ⊆ U : Let z ∈ ∂Z(f) such that zn → z with f(zn) = 0, then if

z ∈ U , f(z) = 0 since f is continuous. But z must be in U , since (zn, 0) ∈ Γ(f) and
Γ(f) is closed, so the limit (z, 0) must be in Γ(f), too.

As O ε0
2
(x) is open and x is in the boundary of the zero set we have O ε0

2
(x)−Z(f) 6=

∅ and since f ≥ 0 a positive value is taken, hence there exists a y ∈ O ε0
2
(x) ⊆ U

with f(y) = η > 0. Now we can proceed as in the proof of Lemma (10.3) in [BS04].
We have f(y) = η and f(x) = 0. As f is continuous, f takes all values in the

interval [0, η] in O ε0
2
. Take n big enough that tn < η and xn ∈ O ε0

2
(x); then the

value tn is taken at yn ∈ O ε0
2
(x), so f(yn) = tn. So yn ∈ O ε0

2
(x)∩{x | f(x) = tn} and

since ∀z ∈ O ε0
2
(x) |z − yn| < ε0 and xn ∈ O ε0

2
(x), it follows that xn ∈ O ε0

2
(x) ⊆ {x |

f(x) = tn}
ε0 . But we assumed xn /∈ {x | f(x) = tn}

ε0 . Contradiction! (Claim)

Hence we have ∂Z(f) ∩ B 1

ε0

(0) ⊆ {x | f(x) = ε2}
ε0 .

Furthermore ∂Z(f) ∩B 1

ε0

(0) ⊆ K =
{

x ∈ Rn | |(1, x)|2 ≤ 1
ε1

}
and as

Sε0

ε1,ε2
= {x | f(x) = ε2}

ε0 ∩K

the proof is finished.

Lemma 3.2.12. [Approximant for the Projection, Lemma (10.6) in [BS04], modi-
fied] If A ⊆ Rn+1 has an MN+1(S)-approximant S ⊆ Rn+1 ×Rk

+, then there exists
an MN(S)-approximant S ′ ⊆ Rn ×Rk+1

+ for πn+1
n [A] ⊆ Rn.

The proof of this lemma is quite lengthy, so we move it into the next section.
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3 Generalization of Wilkie’s Theorem of the Complement

A ∩B

K

(A ∩B)ε1

Aε2

A

B

Bε2

Figure 3.5: Intersection and ε-neighborhoods (Lemma 3.2.13)

Lemma 3.2.13. [Lemma (10.7) in [BS04]] Let A,B ⊆ Rn be closed sets, K ⊆ Rn

compact. Then

∀sε1 ∀
sε2 Aε2 ∩ Bε2 ∩K ⊆ (A ∩ B)ε1

Proof. By the sketch in Figure 5, the definition of

ε2 :=
1

3
min {d(x, y) | x, y ∈ K ∧ x, y /∈ (A ∩B)ε1 ∧ x ∈ A ∧ y ∈ B} ,

and a few calculations the fact is clear.

Lemma 3.2.14. [Approximant for Intersection with Affine Set, Lemma (10.8) in

[BS04], modified] Let A ∈ S̃n have an MN(S)-approximant S ⊆ Rn ×Rk
+ and let L

be an (n− 1) dimensional Z-affine set such that A ∩ L = ∂A ∩ L. Then there is an
MN(S)-approximant S ′ ⊆ Rn ×Rk+2

+ for A ∩ L.

Proof. Look at the proof of Lemma 10.8. in [BS04]. We take the same definitions,
only with partial functions and see that the proof works.

S ′
ε1,...,εk+2

:= Sε3,...,εk+2
∩ L(ε2) ∩Kε1

where L(ε2) =
{
x | ∃xn+k+1 l(x1, . . . , xn)2 + x2

n+k+1 = ε2

}
, where l is a polynomial

with L = Z(l) and Kε1
=

{
x | ∃xn+k(1 +

∑n

i=1 x
2
i + x2

n+k)
−1 = ε1

}
. So it is S ′ :={

(x, ε1, . . . , εk+2) ∈ Rn ×Rk+2 | (x, ε3, . . . , εk+2) ∈ S ∧ x ∈ L(ε2) ∧ x ∈ Kε1

}
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3.2 First Step: Find Approximants

1. The set S ′ is an MN(S)-set. Let S =
⋃s

i=1 Ti with Ti the MN(S)-constituents
described through MN(S)-functions fi : Ui → Rk. Then if T ′

i is defined in the same
way as S ′, we have

T ′
i =

{
(x1, . . . , xn, ε1, . . . , εk+2) | ∃xn+1, . . . , xn+k−1

(
x ∈ Ui

∧ fi(x) = (ε3, . . . , εk+1)
)

∧ ∃xn+k+1l(x1, . . . , xn)2 + x2
n+k+1 = ε2

∧ ∃xn+k

(
1 +

n∑

i=1

x2
i + x2

n+k

)−1
= ε1

}

⇔ T ′
i =

{
(x1, . . . , xn, ε1, . . . , εk+2) |

∃xn+1, . . . , xn+k+1

(
x ∈ Ui × R×R

∧
(
1 +

n∑

i=1

x2
i + x2

n+k

)−1
= ε1

∧ l(x1, . . . , xn)2 + x2
n+k+1 = ε2

∧ fi(x1, . . . , xn+k−1) = (ε3, . . . , εk+1)
)}

Obviously S ′ =
⋃s

i=1 T
′
i , all additional occurring functions are C∞ and in S̃ and

since Ui × R×R is open the T ′
i are MN(S)-constituents if we can prove that the

graph of (h, g, fi) is closed where g(x) := l(x1, . . . , xn)2 + x2
n+k+1 and h(x) := (1 +∑n

i=1 x
2
i + x2

n+k) and (h, g, fi) : Ui × R×R → Rk+2 is defined by (f, g, h)(x) :=
(h(x), g(x), f(x1, . . . , xn)). To see this, apply the Lemma of closed graphs 3.2.10 two
times. Then S ′ is an MN(S)-set.

2. The set S ′ approximates A∩L from below. By Lemma 3.2.13 ∀sε0 ∀
sε2 A

ε2

∩
B 1

ε0

(0)ε2 ∩L(ε2) ⊆ (A ∩ L)ε0 . And since S approximates A from above on bounded

sets, we have ∀sε0 . . .∀
sεk+2 S ′

ε1,...,εk+1
⊆ Sε3,...,εk+2

⊆ A
ε2

. Furthermore S ′
ε1,...,εk+1

⊆

Kε1
∩ L(ε2), hence S ′

ε1,...,εk+1
⊆ (A ∩ L)ε0.

3. The set S ′ approximates ∂(A ∩ L) from above on bounded sets. By
precondition we have ∀sε2 . . .∀

sεk+2 ∂A ∩ B 1

ε2

(0) ⊆ Sε2

ε3,...,εk+2
. Of course,

∀sε1 ∀
sε2 B 1

ε2

(0) ⊆ Kε1
.

So we have ∀sε0 . . .∀
sεk+2

∂(A∩L) ⊆ A ∩ L
precondition

= ∂A ∩ L ⊆ (Sε2

ε3,...,εk+2
∩ L(ε2) ∩Kε1

)ε0

= (S ′
ε1,...,εk+2

)ε′0 ,
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3 Generalization of Wilkie’s Theorem of the Complement

where ε2 + ε0 ≤ ε′0, but this is possible to achieve by choosing the ε0 and ε2 depend
on ε′0.

Now we prove Theorem 3.2.8, which was stated at the beginning of this section,
along the proof of Theorem (6.11) in [BS04]. Some arguments are given here in
more details than in [BS04]. However, since all lemmas proved in this section are
nearly the same as in [BS04], Section 11, the principles are very similar. We just
have to replace DSF by DPCN for all N .

Proof. The proof works by induction on the rank of the Ch-description of A ∈ Sn,
recall Definition 2.2.2. Let A be a Ch-description of A such that ρ(A) = k.

Induction hypothesis: Assume that if B is a Ch-description of a set B with
ρ(B) < k, then there exists for all N ∈ N an MN(S)-approximant for B.

First fix N ∈ N. Then examine the different possibilities of A.

a) A ∈ Σ, so A ∈ Sn. By assumption S has DPCN for all N , so there exists
an m ≥ n such that for all N ′ there exist CN ′

functions fi : Ui → R in
MN ′

(S)m for i = 1, . . . , r (where r is an arbitrary finite index) such that A =
πm

n [Z(f1)∪· · ·∪Z(fr)]. Particularly, there exist CN+m−n functions fi : U → R
in S̃ with Ui ⊆ Rm open for i = 1, . . . , r such that A = πm

n [Z(f1)∪ · · · ∪Z(fr)]
and Γ(fi) closed. By the Lemma of the zero-set 3.2.11 there is an MN+m−n(S)-
approximant for Z(fi) for every i = 1, . . . , r. Then we apply the Lemma of the
union 3.2.9 and the Lemma of the projection 3.2.12 m−n-times and obtain an
MN(S)-approximant for A. This is the only place where the DPCN condition
for all N is used.

b) A = πn+h
n B such that B is a Ch-description of a set B ∈ S̃ with ρ(A) =

1 + ρ(B). So ρ(B) < k. By induction hypothesis there exists an MN+h(S)-
approximant for B. Apply now the Lemma of the projection 3.2.12 h times.

c) A = A1 ∪A2. Then ρ(A) = 1 + max{ρ(A1), ρ(A2)}, so ρ(A1), ρ(A2) < k. By
induction hypothesis there exist MN(S)-approximants for A1 and A2. Apply
the Lemma for the union 3.2.9 on A1 and A2.

d) A = B. Hence ρ(B) = ρ(A) − 4 < k. By the definition of the approximants,
which works with the closure of any set, the MN(S)-approximant for B (which
we have by induction hypothesis) is already one for A.

e) A = B∩L where L is a Z-affine set. Note that k = ρ(A) = ρ(B) + 1. Here we
have to examine several cases.

• B ∈ Σ, so B ∈ S. Then B∩L ∈ S, since L is a semi-algebraic set. Apply
the case a).
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3.2 First Step: Find Approximants

• B = B1 ∪B2 with ρ(B1), ρ(B2) < ρ(B). Then B∩L = (B1∩L)∪(B2∩L)
and ρ(Bi ∩L) = ρ(Bi) + 1 < ρ(B) + 1 = ρ(B∩L). Hence we can apply
the induction hypothesis on Bi∩L with Ch-description Bi ∩L. The union
case supplies an approximant for B ∩ L.

• B = B1. Hence B = B1. Since L is a zero set of a polynomial
and therefore finite and hence closed, we obtain B ∩ L = B1 ∩ L. As
ρ(B1 ∩L) < ρ(B∩L) we can apply the induction hypothesis. The closure
case provides the desired result.

• B = πn+h
n D. Recognize, that

πn+h
n [D] ∩ L = πn+h+n

n [(D × L) ∩ ∆]

where ∆ = {(x, y, x) | x ∈ Rn ∧ y ∈ Rh} is obviously an Z-affine set
and particularly in S. Also, L ∈ S, so there exists a label L ∈ Σ (i.e.
ρ(L) = 0), which is a Ch-description of L. By Lemma 2.2.4 there exists a
Ch-description C of C := D× L such that ρ(C) ≤ ρ(D) + ρ(L) = ρ(D) =
ρ(B) − 1 < ρ(B). So ρ(C∩∆) = ρ(C) + 1 ≤ ρ(B) < ρ(A). Hence we
can use the induction hypothesis, which supplies for all N ′ an MN ′

(S)-
approximant for C ∩∆. Take an MN+h+n(S)-approximant and apply the
lemma of the projection h+n-times and obtain an MN(S)-constituent for
A.

• B = D∩L′ where L′ is a Z-affine set and D ∈ S̃. Then L′ ∩ L is a
Z-affine set and A = D ∩ (L ∩ L′) with ρ(D) < ρ(B) < ρ(A). So apply
the induction hypothesis on D∩(L ∩ L′).

• B = D. Write L = Y1 ∩ · · · ∩ Yk with Z-affine sets Yi with co-dimension
1, so Y1 = Z(l), the zero set of a polynomial l. With Y +

1 = {x ∈ Rn |
l(x) > 0} and Y −

1 = {x ∈ Rn | l(x) < 0} we obtain

D∩Y1 = D ∩ Y1 ∪ (D ∩ Y +
1 ∩ Y1) ∪ (D ∩ Y −

1 ∩ Y1).

(This is a simple calculation: Take x ∈ D ∩ Y1 ⇒ ∃(xn)n∈N ⊆ D∩Y1 xn →

x
Y1 closed
⇒ x ∈ D ∧ x ∈ Y1. Also clear is that x ∈ D ∩ Y +

1 ∩ Y1 ⇒ x ∈

L

D

D ∩ L

Figure 3.6: For a Z-affine set L regard D∩L 6= D ∩ L.
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3 Generalization of Wilkie’s Theorem of the Complement

D∩Y1. Now let x ∈ D∩Y1 ⇒ ∃ xn ∈ D xn → x ∧ x ∈ Y1. By taking a
subsequence, we can assume

(∀n xn ∈ D ∩ Y1) ∨ (∀n xn ∈ D ∩ Y +
1 ) ∨ (∀n xn ∈ D ∩ Y −

1 )

and then x is in the right side of the equation.)

The set Y +
1 is semi-algebraic, hence in S and so there exists a Ch-

description Y+
1 ∈ Σ for Y +

1 such that ρ(Y+
1 ) = 0. By Lemma 2.2.5 there

exists a Ch-description C of C := D ∩ Y +
1 such that ρ(C) ≤ 2 + ρ(D) +

ρ(Y+
1 ) = 2 + ρ(D) < 4 + ρ(D) = ρ(D) < k. Hence, we can apply the

induction hypothesis on D∩Y+
1 . Now, D ∩ Y +

1 ∩ Y1 = ∂
(
D ∩ Y +

1

)
∩ Y1,

so we can apply the Lemma of the approximation of the intersection with

an affine set 3.2.14 and obtain an approximant for D ∩ Y +
1 ∩ Y1.

Analogously, there exists an approximant for D ∩ Y −
1 ∩ Y1. Furthermore,

by induction hypothesis there is an MN(S)-approximant for D ∩ Y1, since
ρ(D∩Y1) = 1 + ρ(D) = ρ(B) − 3 < k. By definition, it is an MN(S)-
approximant for D ∩ Y1.

The union case c) supplies an MN(S)-approximant for D∩Y1.

The set D∩Y1 has empty interior, so we can apply the Lemma of the
approximation of the intersection with an affine set 3.2.14 on (D∩Y1)∩Y2.
This again has empty interior, so we can proceed and at last obtain an
approximant for D∩Y1 ∩ · · · ∩ Yk = A.

3.3 Approximant for the Projection

To approximate the projection of a set we need some more work. We access several
lemmas in [Wil99] and [BS04].

The following lemma helps us to maintain the property of an empty interior while
taking the closure of a set in the o-minimal weak structure S.

Lemma 3.3.1. [Charbonnel, Lemma (2.1) in [Wil99]] Let S an o-minimal weak

structure. Suppose n ≥ 1 and A ∈ S̃n. Then the following are equivalent:

a) A has no interior points;

b) A has measure zero (in the Lebesgue measure on Rn);

c) A has no interior points;
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3.3 Approximant for the Projection

d) A has measure zero.

Proof. This fact is proved in Corollary (2.8) in [Max98].

For the approximant of the projection we use the partial derivatives of the function,
hence we need some propositions about the derivatives and their singular and regular
values.

Lemma 3.3.2. [Theorem (2.6) Closure under Differentiation in [Wil99]] Let S be

an o-minimal weak structure. Suppose n ≥ 1, U ∈ S̃n is open and let f : U → R be
a C1-function in S̃. Then the parital derivatives of F are also in S̃.

The Theorem of weak selection (Theorem (2.3) in [Wil99]) and an improvement with
the Theorem of the almost everywhere smoothness of functions (Theorem (2.4) in
[Wil99]) imply the following lemma.

Lemma 3.3.3. [Lemma of Weak Selection, Remark (2.5) in [Wil99]] Let S an o-

minimal weak structure. Suppose A ∈ S̃n, B ∈ S̃n+m and that A contains an interior
point. Suppose further that ∀ x ∈ A ∃ y ∈ Rm (x, y) ∈ B. Then there exists an open

set U ∈ S̃n with U ⊆ A, and a function φ : U → Rm which is CN (for a given N)
such that ∀ x ∈ U(x, φ(x)) ∈ B.

The next theorem of Wilkie has to be changed because we want to use it for partial
defined functions.

Lemma 3.3.4. [Theorem (2.8) in[Wil99] with partial functions] Let S be an o-
minimal weak structure. Suppose n > m ≥ 1 and consider C1-functions F : U → Rk

and f : U → R in S̃, where U ⊆ Rn+k open and Γ(F ) closed, F, f ∈ S̃. Let a ∈ Rk

be a regular value of F . Then there are at most finitely many b ∈ R such that (a, b)
is a singular value of the function (F, f) : U → Rk+1. Moreover the function (F, f)
has a closed graph.

Proof. The proof of this lemma is given in [Wil99], the restriction to partial functions
does not change the proof, as we will see here. Let F = (F1, . . . , Fk). The point
(a, b) is a singular value of (F, f) if and only if

∃ x ∈ U f(x) = a ∧ f(x) = b ∧ dxF1, . . . , dxFk, dxf are linearly dependent.

By the closure under differentiation (Lemma 3.3.2) we know dxF1, . . . , dxFk, dxf ∈ S̃.
Since we can express the linearly dependence through a formula and replace variables
by values of functions by Lemma 1.3.5 it isA := {b ∈ R | (a, b) singular value of (F, f)} ∈

S̃.
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3 Generalization of Wilkie’s Theorem of the Complement

We show now by contradiction that A must be finite. Assume, that A is infinite. By
(WS5), A has only finitely many connected components, so it must contain an open
interval, particularly an interior point. Define

S := {(t, x) | t ∈ A ∧ (F, f)(x) = (a, t) ∧ (a, t) singular value of (F, f)}.

This is a set in S̃. Then for all t ∈ A there exists x ∈ Rn+k such that (t, x) ∈ S, so

we can apply the weak selection (Lemma 3.3.3) and obtain an interval (α, β) ∈ S̃
and a function φ : (α, β) → Rn+k such that ∀t ∈ (α, β) (t, φ(t)) ∈ S, i.e.

(∗) f(φ(t)) = t and

(∗∗) F (φ(t)) = a

and dφ(t)F1, . . . , dφ(t)Fk, dφ(t) are linearly dependant.

However, by differentiation we obtain from (*) that dφ(t)f ◦ dtφ = 1 and out of
(**) that dφ(t)Fi ◦ dtφ = 0 for i ∈ {1, . . . , m}. This leads already to the fact that
dφ(t)F1, . . . dφ(t)Fk are linearly dependant for all t ∈ (α, β), which is a contradiction
to the fact that F (φ(t)) = a is a regular value.

The graph of the function (F, f) is closed, since the graph of F is closed and and
because of a similar calculation as in Lemma 3.2.10.

Lemma 3.3.5. [Corollary (2.9) in [Wil99], modified] Let S be an o-minimal weak

structure. Let n, k ≥ 1 and F : U → Rk a C1 function in S̃ with U ⊆ Rn+k open
and Γ(F ) closed. Let a be a regular value of F and U be an open ball in Rn such
that that the set X := F−1(a) ∩ (U × Rk) is non-empty and bounded. Then either

a) πn+k
n [X] = U or

b) there exists η > 0 and distinct i1, . . . ik ∈ {1, . . . , m+ k} such that

det

(
∂(F1, . . . , Fk)

∂(xi1 , . . . , xik)

)2

↾ X

takes all values in the interval [0, η], where F = (F1, . . . , Fk).

Without loss of generality, we can assume in b) that 1 ≤ i1 < · · · < ik ≤ m+ k.

Proof. In this proof we need to check some details, since our function is only partial
defined. Particularly we need that F is defined on an open set.

Case 1: π[X] is finite.

Let b ∈ π[X]. Then there exists c ∈ Rk such that (b, c) ∈ X. It is contained in a
connected component of F−1(a), call it Y .
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3.3 Approximant for the Projection

We show π(Y ) = {b}: If another point b
′
6= b is contained in π(Y ), there must exist c′

with (b
′
, c′) ∈ Y and since Y is connected, there is a path γ : [0, 1] → F−1(a) between

the points (b, c) and (b
′
, c′). Since U is open and b ∈ U there exists t > 0 such that

γ(t) 6= b and π[γ([0, t])] ⊆ U and γ([0, t]) ⊆ F−1(a), therefore π[γ([0, t])] ⊆ π[X].
Since π[γ([0, t])] is connected, it is infinite, which is a contradiction to our assumption
that π[X] is finite.

Thus we have Y ⊆ X and since X is bounded, Y is bounded, too.

In the proof of the fact that Y is compact, we have to take care of the only partial
defined function, since F−1(a) is in general not closed for partial functions. (For
example take f : (0, 1) → R, defined by f(x) = 1. Then f−1(1) = (0, 1) is open.)

The set Y is a connected component of D := π−1(b) ∩ F−1(a), which is a closed set
in U (since F and π are continuous and {b}, {a} are closed). Now we prove that D is
closed: Take a sequence xn → x such that xn ∈ F−1(a). So F (xn) = a for all n ∈ N.
Therefore (xn, a) → (x, a). Since (xn, a) ∈ Γ(F ), which is closed, (x, a) ∈ Γ(F ). In
particular, x ∈ F−1(a). This shows that F−1(a) is closed. The set π−1({b}) is closed,
since {b} is closed and π continuous on Rn+k. So D is closed as an intersection of
two closed sets.

Then Y as a connected component of a closed set is closed itself. Hence Y is compact.

Since a is a regular value of F and F (b, c) = 0 the derivation has full rank, so there

exists 1 ≤ i1 < · · · < ik ≤ n + k such that det
(

∂F
∂(xi1

,...,xik
)

)
(b, c) = η 6= 0. The next

part will be a bit more detailed than in [Wil99], since it was difficult to understand
his proof.

Permute coordinates and write (u, v) ∈ Rn ×Rk with v = (xi1 , . . . , xik) and u collects
the rest coordinates, call it (xj1 , . . . , xjn

). Since Y is compact, the maximum of
x → xj1 is taken, let us call the corresponding point (y, z) (coordinates as said
above) with yj1

is maximal.

Claim : The partial ∂F
∂v

is not invertable in (y, z).

Proof: Assume, det
(

∂F
∂v

)
(y, z) 6= 0. Since F is defined on an open set, there exists

some open U0 ⊆ Rn, V0 ⊆ Rk such that (y, z) ∈ U0 × V0 and F is defined on U0 × V0.
By the implicit function theorem now there exist some open neighborhoods of U ′

of y and V of z and a CN function g : U ′ → V such that g(y) = z and F (y′, g(y′)) = a
for all y′ ∈ U ′. So F−1(a) ⊇ Γ(g). Since U ′ is open, there exists an ε > 0 such that
y + ε ej1 ∈ U ′, so c = (y + ε ej1 , g(y + ε ej1)) ∈ F−1(a). If ε is small enough, c is in
the same connected components as (y, z) and π(c) ∈ U ′ and therefore in Y . But
πj1(c) = yj1

+ ε > yj1
, which was chosen as maximum. Contradiction. (Claim)
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3 Generalization of Wilkie’s Theorem of the Complement

Thus det
(

∂F
∂v

)
(y, z) = 0, so det

(
∂F
∂v

)
must take all values between 0 and η (since it

is continuous), what was to prove.

Case 2: π[X] is infinite.

Then there exists an i ∈ {1, . . . , n} such that πi ◦π(X) is infinite (with πi projection
on the i-th coordinate). Apply now Lemma 3.3.4 on f = πi ◦ π. So we can choose
b ∈ πi(U) such that (a, b) is a regular value of (F, πi ◦ π) : U → Rk+1. Define

Û =
{
(x1, . . . , xn−1) ∈ Rn−1 | (x1, . . . , xi−1, b, xi, . . . , xn−1+k) ∈ U

}

and F̂ : Û → R by F̂ (x1, . . . , xn−1+k) = F (x1, . . . , xi−1, b, xi, · · ·xn−1+k).

It is clear, that Û is an open ball and in S̃, since U is open and in S̃. The graph of
F̂ is closed: Assume that (x

(i)
1 , . . . , x

(i)
n−1+k, F̂ (x(i)) → (x1, . . . , xn−1+k, z). Then

(
x

(i)
1 , . . . , b, . . . , x

(i)
n−1+k, F̂ (x(i))

)
→ (x1, . . . , b, . . . , xn−1+k, z),

since (x
(i)
1 , . . . , b, . . . , x

(i)
n−1+k, F̂ (x(i))) ∈ Γ(F ), which is closed and so we obtain that

the limit (x1, . . . , xn−1+k, z) ∈ Γ(F̂ ).

Now a is a regular value of F̂ : By assumption (a, b) is a regular value of (F, πi ◦ π),

so we get that the vectors ∂(F,πi◦π)
∂xj1

, . . . , ∂(F,πi◦π)
∂xjk+1

are linearly independent. But only

for jl = i we have πi◦π
∂xi

6= 0. (There exists an l with jl = i, otherwise ∂F
∂xj1

, . . . , ∂F
∂xjk+1

would be independent, but these are k + 1 vectors of dimension k.) Hence we can
take the rest of the vectors, which are derivations of F̂ , too and they are linear
independent.

At last define X̂ = F̂−1(a) ∩ (Û × Rk) and π̂ : Rn−1+k → Rn−1.

Now there are again two cases:

a. π̂[X̂] is finite and n > 1.

Apply the argument of Case 1 to F̂ , Û and X̂ and obtain the second conclusion for
F̂ . It is obvious that the same i1, . . . , ik satisfy the condition for F .

b. π̂[X̂] is infinite and n > 1 or n = 1.

Apply Case 2 to F̂ , Û and X̂ (if n > 1).

Continue in this way until Case 1 is reached and therefore the second conclusion or
until we find b ∈ U such that (a, b) is a regular value of the function (F, π) = (F, π1◦
π, . . . , πn ◦ π). (This happen at least if we reach n = 1.) So there exists a c ∈ Rk

such that (F, π)(b, c) = (a, b) and so (b, c) ∈ X and det
(

∂F
∂xn+1,...,xn+k

)
(b, c) 6= 0.
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3.3 Approximant for the Projection

Regard the connected component Y of F−1(a) containing (b, c). Y is bounded, since
X is bounded.

Now it is possible that π(X) = U , then we reached the first condition.

So assume π(X) 6= U , hence there exists b
′
∈ U such that b

′
/∈ F−1(a). By assump-

tion X is bounded and F−1(a) is closed, so π(X) must be closed in U . (If xn → x
in U , xn ∈ π(X) ∩ U , so there exists zn such that (xn, zn) ∈ X. As X is bounded,
there is a subsequence which converges, so we can assume (xn, zn) → (x, z) with
(xn, zn) ∈ F−1(a) and since this is closed we obtain (x, z) ∈ F−1(a), i.e. x ∈ π(X).)

Let γ : [0, 1] → U be a path from b to b
′
. Since π(F−1(a)) is closed in U , there exist

t ∈ [0, 1] such that γ(t) ∈ π(F−1(a)) and γ(s) /∈ π(F−1(a) for all s > t.

Now there exists (y, z) ∈ U × Rk and y = γ(t) and if we assume

det

(
∂F

∂xn+1, . . . xn+k

)
(y, z) 6= 0

it follows by the implicit function theorem that (γ(t+ ε), g(γ(t+ ε))) ∈ F−1(a)
(similar to the first case). This is a contradiction to our choice of γ and t.

To use this lemma in our context, Berarducci and Servi modified it. It is no difference
with partial functions on open sets. They do not give a proof, so we do here. In this
form the lemma helps us to find conditions for the new approximants of projections.

Lemma 3.3.6. [Lemma (10.4) in [BS04], slightly modified] Let S be an o-minimal

weak structure. Let F : U → Rk be a C1 function in S̃, U ∈ S̃m+k open and Γ(F )
closed. Let a ∈ Rk be a regular value of F . Define V := F−1(a). Let O be an open
ball in Rm such that O ∩ ∂πm+k

m V 6= ∅. Then for every sufficient small ε > 0 is
O ∩ πm+k

m V [ε] 6= ∅ where V [ε] ⊆ V is defined as the set of points (x1, . . . , xm+k) ∈ V
satisfying one of the following conditions:

• |(1, xm+1, . . . , xm+k)| = 1
ε

• det( ∂F
∂xi1

,...,xik

)2 = ε for some 1 ≤ i1 < · · · < ik ≤ m+ k.

The set V [ε] is called the critical part of V .

Proof. By assumption O∩ ∂πm+k
m [F−1(a)] 6= ∅. Then X := F−1(a)∩ (O×Rk) is not

empty.

1. Case: X bounded.
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3 Generalization of Wilkie’s Theorem of the Complement

Rm

π[V ]

V

O

F

a

Rkπ

U
V [ε]

Figure 3.7: Sketch to Lemma 3.3.6.

Apply Lemma 3.3.5 on F and O. Assume that the first condition πm+k
m (X) = O

holds. We have V ⊇ X, so π[F−1(a)] ⊇ π[X] = O. Since O is open, we obtain
(∂π[F−1(a)]) ∩ O = ∅, which is contradiction to our assumption.

So the second condition must hold and there exist η < 0 and 1 ≤ i1 < · · · < ik ≤

m + k such that det
(

∂F
∂(xi1

,...,xik
)

)2

↾ X takes all values in the interval [0, η]. Hence

for all sufficient small ε > 0 the value ε is taken in X and so πm+k
m (V [ε]) ∩ O =

πm+k
m (F−1(a)[ε]) ∩O 6= ∅.

2. Case: X unbounded. Due to the fact that O is bounded, the other components
must be unbounded, so for a sufficient small ε there have to be x1, . . . , xm+k such
that (x1, . . . , xm+k) ∈ X and |(1, xm+1, . . . , xm+k)|

2 = 1
ε
. So O ∩ π(V [ε]) 6= ∅.

The next two lemmas helps us to provide regularity, that we need to apply the above
lemma.

Lemma 3.3.7. [Lemma (3.4) in [Wil99]] Let S be an o-minimal weak structure, k ≥

1, A ∈ S̃k and suppose A contains no interior points. Then ∀sε1 . . .∀
sεk (ε1, . . . , εk) /∈

A.

Proof. Look at Lemma (3.4) in [Wil99].

Before we can start to prove that there exist approximants for projections, we need
one last helpful lemma about the singular values of the functions we need in the
approximants, again to guarantee regularity.
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3.3 Approximant for the Projection

Lemma 3.3.8. [Singular Values, Lemma (2.7) in [Wil99]] Let S be an o-minimal
weak structure. Suppose that n ≥ m ≥ 1 and that F : U → Rm is a C1 function in
S̃, where U is an open subset of Rn. Then the subset Sing(F ) of Rm consisting of

the singular values of F is a set in S̃ containing no interior points.

Proof. Look at Lemma (2.7) in [Wil99].

Now we have collected all necessary statements and can prove that there is an ap-
proximant for a projection of a set that has already an approximant. Recall the
corresponding lemma.

Lemma 3.3.9 (Approximant for Projections, Lemma 3.2.12). Let S be an o-minimal
weak structure. If A ⊆ Rn+1 has an MN+1(S)-approximant S ⊆ Rn+1 ×Rk

+, then
there is an MN(S)-approximant S ′ ⊆ Rn ×Rk+1

+ for πn+1
n [A] ⊆ Rn.

Proof. Look at S =
⋃s

i=1 Si, where Si is a MN+1(S)-constituent, let

Si =
{
(x, ε) ∈ Rn+1 ×Rk

+ | ∃y ∈ Rk−1 (x, y) ∈ Ui ∧ Fi(x, y) = ε
}
,

where Fi : Ui → Rk is a MN+1(S)-function, particularly CN+1. Note that

Si,ε1,...,εk
=

{
x ∈ Rn+1 | ∃y ∈ Rk−1 (x, y) ∈ Ui ∧ Fi(x, y) = ε

}

= πn+1+k−1
n+1 [F−1

i (ε)]

Then we have obviously Sε1,...,εk
=

⋃s

i=1 Si,ε1,...,εk
.

We can assume that ε is regular for all Fi: By Lemma 3.3.8 about singular values
Sing(Fi) contains no interior points and by Lemma 3.3.7 for all sufficient small
ε0, . . . , εk we have (ε1, . . . , εk) /∈ Sing(Fi). Taking the minimum of the boundaries
of the εi over the finite count of the Fi, we can assume that ε is regular for all Fi for
all sufficient small ε.

Let Vi := F−1
i (ε1, . . . , εk) and Vi[εk+1] be as defined in Lemma 3.3.6.

Define S ′ by the sections S ′
ε1,...,εk+1

⊆ Rn:

S ′
ε1,...,εk+1

= πn+1
n

[
s⋃

i=1

πn+1+k−1
n+1

[
F−1

i (ε1, . . . , εk)[εk+1]
]
]

1. S ′ is an MN(S)-set.
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3 Generalization of Wilkie’s Theorem of the Complement

We use the following abbreviations to simplify the calculation: Set x = (x1, . . . , xn),
y = (xn+2, . . . , xn+k), and ε = (ε1, . . . , εk). Assume that there is only one constituent
for S and take the union afterwards.

(x, ε, εk+1) ∈ S ′

⇔ ∃xn+1(x, xn+1, ε, εk+1) ∈ V [εk+1]

⇔ ∃xn+1(x, xn+1, ε) ∈ V ∧(
|(1, y)| <

1

εk+1
∨ det

(
∂F

∂xi1 , . . . xik−1

)
= εk+1

)

⇔ ∃ y
(
(x, xn+1, y) ∈ U ∧ F (x, xn+1, y) = ε

∧
(
∃xn+1+k|(1, y, xn+1+k)|)

−1 = εk+1

∨ det

(
∂F

∂xi1 , . . . xik−1

)
= εk+1

))

⇔
(
∃xn+1∃ y ∃xn+1+k

(
(x, xn+1, y, xn+1+k) ∈ U × R

∧F (x, xn+1, y) = ε∧ |(1, y, xn+1+k)|
−1 = εk+1

))

∨
(
∃xn+1∃ y

(
(x, xn+1, y) ∈ U ∧ F (x1, . . . , xn+1+k−1) = ε

∧ det

(
∂Fi

∂xi1 , . . . xik−1

)
= εk+1

))

⇔ (x, ε, εk+1) ∈
{

(x, ε, εk+1) | ∃xn+1∃ y ∃xn+1+k

(
(x, xn+1, y, xn+1+k) ∈ U × R∧ F (x, xn+1, y) = ε

∧ |(1, y, xn+1+k)|
−1 = εk+1

)}

∪
{

(x, ε, εk+1) | ∃xn+1∃ y
(
(x, xn+1, y) ∈ U

∧F (x1, . . . , xn+1+k−1) = ε∧ det

(
∂F

∂xi1 , . . . xik−1

)
= εk+1

)}

The function g(x, xn+1, y, xn+1+k) := |(1, y, xn+1+k)|
−1 is in MN (S) for all N and it

is defined on U × R, which is an open set in S̃. The graph of (F, g) is closed by
the Lemma of the closed graph 3.2.10. So the first part of the union is an MN(S)-
constituent.

The function det
(

∂Fi

∂xi1
,...xik−1

)
is CN , since Fi was CN+1, and so it is an MN(S)-

function. Again by the Lemma of the closed graph 3.2.10 also the composed function

(Fi,det
(

∂Fi

∂xi1
,...xik−1

)
) : Ui → Rk+1 has a closed graph. Hence S ′ is an MN(S)-set.

42



3.4 Second Step: A Set containing the Boundary

2. S ′ approximates πn+1
n (A) from below.

We have to show ∀sε0 . . .∀
sεk+1 S ′

ε1,...,εk+1
⊆ πn+1

n [A]
ε0

. We know already that S ap-

proximates A from below, thus we have ∀sε0 . . .∀
sεk Sε1,...,εk

⊆ A
ε0

. By the definition

Vi[εk+1] ⊆ Vi, so S ′
ε1,...,εk+1

⊆ πn+1
n (S ′

ε1,...,εk
) ⊆ πn+1

n [A]ε0 ⊆ πn+1
n [A]

ε0

.

3. S ′ approximates ∂πn+1
n A from above on bounded sets.

We have to show ∀sε0 . . .∀
sεk+1 ∂πn+1

n [A] ∩ B 1

ε0

(0) ⊆ S ′ ε0

ε1,...,εk
. Let ε0 > 0. The

bounded set ∂πn+1
n [A] ∩ B 1

ε0

(0) is compact, so it is possible to find open balls

O1, . . . , Om of radius ε0

2
such that ∂πn+1

n [A] ∩ B 1

ε0

(0) ⊆ O1 ∪ · · · ∪ Om and Oi ∩

∂πn+1
n [A] 6= ∅. Therefore Oi * πn+1

n [A] for i = 1, . . . , m.

Claim : The ball Oi is not included in π(Sε1,...,εk
) for all sufficient small

ε = (ε1, . . . , εk).

Proof: Assume that ∀µ1∃ ε1 < µ1 . . .∀µk∃ εk < µk such that Oi ⊆ π(Sε).
We know that S approximates A from below, so for all sufficient small δ we have

∀sε1 . . .∀
sεk Sε ⊆ A

δ
. So there exist for every i some ε1, . . . , εk with Oi ⊆ πn+1

n [Sε] ⊆

πn+1
n [A

δ
] ⊆ πn+1

n [A]2δ. Since δ > 0 was arbitrary we have O ⊆ π(A), which contra-
dicts to Oi ∩ ∂πn+1

n [A] 6= ∅, since πn+1
n [A] is closed and Oi open. (Claim)

Furthermore Oi ∩ πn+1
n [Sε1,...,εk

] 6= ∅, hence Oi ∩ ∂πn+1
n [Sε1,...,εk

] 6= ∅. Now by
Lemma 3.3.6 ∀sε1, . . . , ∀

sεk+1Oi ∩ πn+1
n [Sε1,...,εk

[εk+1]] = Oi ∩ S ′
ε1,...,εk+1

6= ∅, so
Oi ⊆ (S ′

ε1,...,εk+1
)ε0 .

Since ∂π(A) ∩ B 1

ε0

(0) is covered by the balls Oi, it is contained in (S ′
ε1,...,εk+1

)ε0 .

This finishes the projection case and so the proof of Theorem 3.2.8.

3.4 Second Step: A Set containing the Boundary

Now we prove the second central statement, that we need to proceed by the cell
decomposition argument Wilkie gives in [Wil99] and prove the theorem of the com-
plement. For every set A in the Charbonnel closure of an o-minimal weak structure
S̃ we construct a closed set in S̃ with empty interior which contains the boundary
of A.

Here the partial defined functions do not lead to additional problems, so we can
follow the proof given in Chapter 6 of [BS04].
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3 Generalization of Wilkie’s Theorem of the Complement

Theorem 3.4.1. Let S be a o-minimal weak structure which satisfies DPCN for all
N . Then for every closed set A ∈ S̃n there exists a closed set B ∈ S̃n such that B
has empty interior and ∂A ⊆ B.

For the empty interior property we need the Morse-Sard-Theorem and apply it on
functions in the Charbonnel closure of our o-minimal weak structure.

Theorem 3.4.2 (Morse-Sard Theorem (1.3) in [Hir94], Chapter 3). Let M,N be
manifolds, let r >max{0, dim(M) − dim(N)} and let f : M → N be a Cr(M,N)
map. Then the set of the critical values of f , Sing(f) has measure zero.

Proof. Look at [Hir94], Chapter 3.

As a direct consequence of applying the above lemma to an open subset B ⊆ Rk as
M and N = Rn, we obtain the following corollary.

Corollary 3.4.3. Let S be an o-minimal weak structure. If f : B → Rn is a C1

function, B ∈ S̃k open with n > k and f ∈ S̃, then im(f) has empty interior.

The next step is a statement about MN(S)-sets. We need it to proceed with the
approximants, which are MN(S)-sets.

Lemma 3.4.4. [Lemma (6.7) in [BS04]] Let S be an o-minimal weak structure and

let N ≥ 2. Every MN(S)-set S ⊆ Rn+k is in S̃n+k and has empty interior.

Proof. It is clear that S ∈ S̃n+k.

Let T = {(x, ε) | ∃ y ∈ Rk−1 F (x, y) = ε} be an MN(S)-constituent of S. Then
T = im(h), where h : Rn+k−1 → Rn+k is defined by h(x, y) = (x, F (x, y)). By
Corollary 3.4.3 we obtain that im(h) has empty interior and so T and S have empty
interior.

Lemma 3.4.5. [Charbonnel, Theorem (2.2) in [Wil99]] Let S be an o-minimal weak

structure. Suppose that A ∈ S̃n+1 and A ⊆ Rn ×R+. Define a set B :=
{

x | (x, 0) ∈

A
}
. Then B ∈ S̃n and if A contains no interior points then nor does B.

Proof. Look at Lemma (4.3) in [Max98].

Lemma 3.4.6. [Lemma (3.3) in [Wil99]] Let S be an o-minimal weak structure. Let

A ∈ S̃n and suppose S ∈ Sn+k has empty interior and approximates ∂A from above
on bounded sets. Then there exists a closed set B ∈ S̃n with empty interior such that
∂A ⊆ B.
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3.4 Second Step: A Set containing the Boundary

T

T ε0

S
ε0

2

0
T

S

εk+1

Figure 3.8: How S
ε0
2

ε,εk+1
is contained in T ε0

ε

Proof. The proof works by induction on k as in Lemma 3.3. in [Wil99] using Lemma
3.4.5.

Consider k = 0. Take B = S. By Lemma 3.3.1 B has empty interior like S. Since
S approximates ∂ A from above, ∀sε0 ∂ A∩B 1

ε0

(0) ⊆ Sε0 . Taking the limit ε0 → 0

we obtain ∂ A ⊆ S = B.

Induction hypothesis: Suppose the lemma is true for all A ∈ S̃n with approxi-
mants in Sn+k.

Now let k → k+1. Let A ∈ S̃n and let S ∈ Sn+k+1 with empty interior approximate
∂ A from above on bounded sets. Define

T := S0 = {(x, ε1, . . . , εk) | (x, ε1, . . . , εk, 0) ∈ S}

By Lemma 3.4.5 T ∈ S̃n+k and T contains no interior points.

The set T approximates ∂ A from above on bounded sets: We have to show that

∀sε0 . . .∀
sεk ∂ A∩B 1

ε0

(0) ⊆ T ε0

ε = S
ε0

0 .

We know that S approximates ∂A from above on bounded sets, replace there ε0 by
ε0

2
, then ∀s ε0

2
∀sε1 . . .∀

sεk and a given ε > 0 exists εk+1 < ε such that ∂ A∩B 1

ε0

(0) ⊆

S
ε0
2

ε,εk+1
. If ε is small enough (that for all (y, δ) ∈ Sε there exists an x ∈ T such that

|(y, ε, εk+1) − (x, ε, 0)| < ε0) we can assume S
ε0
2

ε,εk+1
⊆ T ε0

ε . Hence T approximates

∂ A from above on bounded sets.

Now we can apply the induction hypothesis on T and obtain the wished set B.

Now we proof Theorem 3.4.1.
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3 Generalization of Wilkie’s Theorem of the Complement

Proof. Take for A an MN(S)-approximant S, where N ≥ 2. Such an S exists by
Theorem 3.2.8. By Lemma 3.4.4 the set S has empty interior. Of course it approxi-
mates ∂A from above on bounded sets. Thus we can apply Lemma 3.4.6 and find a
set B ∈ S̃n with empty interior satisfying ∂A ⊆ ∂A ⊆ B.

3.5 Third Step: Closed under Complementation

In this last step we finish the proof of the theorem of the complement. We cite
therefor some cell decomposition arguments of Wilkie, given in [Wil99]. However, we
will not look at the details of his proof, since we do not need to do any modifications.

Theorem 3.5.1. Let S be an o-minimal weak structure. Then the Charbonnel clo-
sure S̃ is closed under complementation.

Proof. For the proof look at the cell decomposition arguments in Chapter 4 of
[Wil99], or in Chapter 7 of [BS04]. We will give a short sketch of the main ar-
guments here.

At first Wilkie defines S̃-cells and a S̃ cell decomposition by replacing the functions
occurring in the definition of cells (look at Definition 1.2.2) by functions in S̃. Next
he proves the following theorem.

Theorem 3.5.2. [Theorem (4.5) in [Wil99]] Let n ≥ 1 and suppose that D is an

S̃-cell in Rn and A ∈ S̃n such that A ⊆ D closed in D. Then there exists an S̃-cell
decomposition D of D which is compatible with A.

Proof. Therefor two statements are proved simultaneously by induction on n: Firstly
that for every S̃-cell and a closed S̃-subset of this cell, there exists a compatible
S̃-cell decomposition and secondly that finitely many S̃-cell decompositions can be
combined. For this proof the result of Theorem 3.1. in [Wil99] is used. Our Theorem
3.4.1 has exactly the same conclusion, but with different, weaker assumptions on S.
So we can adapt Wilkie’s proof of this theorem in Chapter 4 of [Wil99] without
changes.

To prove Theorem 3.1.4 from Theorem 3.5.2 for a set B, we use a semi-algebraic
diffeomorphism θp from Rp to (−1, 1)p to reduce the problem to a bounded set
(−1, 1)p. Next, we apply the above theorem to the cell (−1, 1)m so that we obtain

an S̃-cell decomposition compatible with θm(B), which can be transformed back into

a S̃-cell decomposition compatible with B which is of course also compatible with
the complement of B. We obtain that the complement of B is again in S̃. For more
details look at the proof of Theorem (4.5) applies Theorem (1.8) in [Wil99].
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3.5 Third Step: Closed under Complementation

It is also clear, that S̃ is the smallest structure containing S: A structure J which
contains S must contain the projection and union of sets by the definition of a
structure. Since the intersections with Z-affine sets are intersections with semi-
algebraic sets, they are in J and the closure of any set by is by Lemma (3.4) in

[vdD98], Chapter 1 in J . So J must contain S̃.

This finishes the proof of the modified Theorem of the Complement 3.1.4.
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4 The Converse of the Theorem of
the Complement

The aim of this chapter is to prove that every o-minimal structure can be character-
ized by the Charbonnel closure of some o-minimal weak structure, which additionally
satisfies the DCN condition for all N . This is in some sense the converse to the the-
orem of the complement. Actually, every o-minimal structure satisfies DCN for all
N itself.

Theorem 4.3. [Theorem 2 in [KM99]] Any o-minimal structure J is of the form

S̃, where S is an o-minimal weak structure satisfying DCN for all N .

The proof goes along the ideas given by Karpinski and Macintyre in [KM99]. First
we need the following lemma of van den Dries and Miller about closed sets, that are
zero sets.

Lemma 4.4. [Theorem (4.22) in [vdDM96]] Let S be an o-minimal structure. Let
A ∈ Sn be closed. Then for every N there exists a CN function f : Rn → R in S
with A = Z(f).

Proof. Look at [vdDM96].

In the next step, we write all sets as a boolean combination of closed sets, so we can
apply Lemma 4.4.

Lemma 4.5. Let S be an o-minimal structure. Every set A ∈ S is a boolean com-
bination of closed sets in S.

Proof. Let A ∈ Sn. Then there exists by Theorem 1.2.6 a finite cell decomposition
compatible with A, so A =

⋃
{C | C cell ∧ C ⊆ A}. So it is enough to show that

every cell C is a boolean combination of closed sets. We prove the following Claim.

Claim : For every cell C there exists an open set U ∈ S such that C = C∩U .

Proof: We prove this claim by induction on the cell, first let C be a cell in R. If
C is a point, C = C∩R. If C = (a, b) is an interval, C = C∩(a, b).
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4 The Converse of the Theorem of the Complement

Now let C ′ be a cell with dimension n− 1. Then by induction hypothesis we have
C ′ = C

′
∩U ′. Examine now an n-dimensional cell C over C ′.

Case 1: Let C = Γ(f) with a CN function f : C ′ → R in S. Then Γ(f)∩U ′×R =
Γ(f) = C.

Case 2: Let C = (f, g) with f, g ∈ FCN as in the definition of cells. Then
C = C ′ × R ∩ {(x, y) | x ∈ U ′ ∧ f(x) < y < g(x)} = C∩U , where U = {(x, y) | x ∈
U ′ ∧ f(x) < y < g(x)} is obviously an open set in S. (Claim)

Hence C = C∩(Rn −UC) is a boolean combination of closed sets.

The following lemma proves directly Theorem 4.3, if we take S = J . Due to the
fact that J is an o-minimal structure directly follows J = J̃ .

Lemma 4.6. Let S be an o-minimal structure. Then S satisfies DCN for all N .

Proof. By Lemma 4.5 we can write each set A ∈ S as boolean combination of closed
sets. By Lemma 4.4 for each closed A set there exists a CN function f : Rn → R in
S such that A = Z(f).

Hence we have to look at the different boolean combinations. A boolean combina-
tion corresponds to a logical formula without quantifiers. We can assume it is in
disjunctive normal form. So the complement is taken only on sets which are closed.

Let A ∈ Sn be a closed set and let the corresponding function fA : Rn → R be CN

and let A = Z(fA) (by Lemma 4.4). Define for the complement f : Rn+1 → R by
f(x, y) = y · fA(x) − 1 = 0. Then

x ∈ π[Z(f)] ⇔ ∃y y · fA(x) − 1 = 0

⇔ ∃y y · fA(x) = 1

⇔ fA(x) 6= 0 ⇔ x /∈ Z(fA)

⇔ x /∈ A.

Now assume there are functions fA : Rn+mA → R, fB : Rn+mB → R which are CN

and in S such that πn+mA
n [Z(fA)] = A and πn+mB

n [Z(fB)]. Without loss of generality
assume mA = mB = m. (Adding some additional coordinates has no influence.)

• For A ∪ B: Define f : Rn+m → R by f(x, y) = fA(x, y) · fB(x, y). Then

x ∈ π[Z(f)] ⇔ ∃ y f(x, y) = 0 ⇔ ∃ y fA(x, y) = 0 ∨ fB(x, y) = 0

⇔ x ∈ π[Z(fA)] ∨ x ∈ π[Z(fB)] ⇔ x ∈ A ∪B.
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• For A ∩ B: Define f : Rn+m+m → R by f(x, y, z) = f 2
A(x, y) + f 2

B(x, z). Then

x ∈ π[Z(f)] ⇔ ∃ y, z f(x, y, z) = 0

⇔ ∃ y, z fA(x, y) = 0 ∧ fB(x, z) = 0

⇔ x ∈ π[Z(fA)] ∧ x ∈ π[Z(fB)] ⇔ x ∈ A ∩B.

This finishes the proof of the converse of the theorem of the complement, Theorem
4.3.
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5 Application to the Pfaffian
Closure

In this chapter we apply the theorem of the complement to extend an o-minimal
structure. It is possible to extend a structure by zero sets of Pfaffian functions. We
will see that the structure generated by this is contained in the Pfaffian Closure,
which is constructed by intersecting with special manifolds, the Rolle leaves. The
theorem of the complement shows that the Charbonnel closure of the Pfaffian Closure
is again an o-minimal structure.

5.1 Rolle Leaves and the Pfaffian Closure

We begin with the basic definitions of Rolle leaves and the Pfaffian closure. In the
following, fix an arbitrary o-minimal structure S.

Definition 5.1.1. Let U ⊆ Rn be open and let ω = a1dx1 + · · ·+andxn be a 1-form
on U of class C1, i.e. each ai : U → R is a C1 function.

a) S(ω) := {x ∈ U | ω(x) = 0} =
⋂n

i=1 a
−1
i (0)

b) Let x ∈ U − S(ω). The kernel of ω(x) is defined as

ker(ω(x)) := {y ∈ Rn | a1(x)y1 + · · · + an(x)yn = 0} .

In the following we assume in general that S(ω) = ∅. This is possible since S(ω) is
closed and so U−S(ω) is still an open set in Rn. Thus we can restrict ω to U−S(ω).

A Rolle leaf is some nice manifold, which respects a given vector field.

Definition 5.1.2. Let U and ω be as in the above definition.

a) An integral manifold M of ω = 0 is an (n − 1)-dimensional immersed C1

manifold of U ⊆ Rn such that TxM = ker(ω(x)).

b) A leaf of ω = 0 is a maximal connected integral manifold of ω = 0.
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5.1 Rolle Leaves and the Pfaffian Closure

ω

γ(0)

γ

γ′(t)

γ(t)

γ(1)
L

Figure 5.1: Example for a Rolle leaf

L

γ

γ(1)

γ(0)

ω

ω

Figure 5.2: Example for a leaf which is not a Rolle leaf

c) A leaf L is a Rolle leaf if L is an embedded submanifold of U , which is
closed in U , such that each C1 curve γ : [0, 1] → U with γ(0), γ(1) ∈ L
is tangential to the hyperplane field defined by ω = 0 at some point, i.e.
∃t ∈ [0, 1] ω(γ(t))(γ′(t)) = 0.

At next, we define the Pfaffian closure, which is generated by an o-minimal structure
and Rolle leaves on this structure.

Definition 5.1.3. Let S be an o-minimal structure. Let n ∈ N

• Define a basic R-Pfaffian set as a set of the form

A ∩ L1 ∩ · · · ∩ Lk

where k ∈ N, A ∈ Sn and every Li is a Rolle leaf, whose base set Ui and 1-form
ωi are in S.
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5 Application to the Pfaffian Closure

• A finite union of basic R-Pfaffian sets in Rn is called Pfaffian set.

• Define Rolle(S)n as the Pfaffian sets in Rn. The collection 〈Rolle(S)n〉n∈N is
called Pfaffian closure.

Now we can formulate the central theorem of this chapter.

Theorem 5.1.4. [Theorem (4.1) in [Spe99]] The Charbonnel closure of the Pfaffian

closure ˜Rolle(S) is an o-minimal structure.

In order to prove this theorem we use our version of the Theorem of the complement
3.1.4. In the next sections we will show that Rolle(S) is an o-minimal weak structure
and that it satisfies DPCN for all N . Afterwards we can apply the theorem of the
complement.

Before we do this, let us take a look at the connection between Rolle leaves and
Pfaffian functions, which gave the name to the Pfaffian closure.

Definition 5.1.5 (Pfaffian Function, [Wil99], footnote on p.398). A C1 function
f : Rn → R is called Pfaffian if there exist C1 functions f1, . . . , fk : Rn → R with
f = fk, such that for each 1 ≤ i ≤ k and 1 ≤ j ≤ n, ∂fi

∂xj
is expressible as a polynomial

in x1, . . . , xn, f1, . . . fi.

The following Lemma of Khovanskii connects Pfaffian functions with Rolle leaves.

Lemma 5.1.6. Let f be a Pfaffian function over an arbitrary expansion of R. Then
the graph of f is a Rolle leaf.

Proof. Look at Example 1.3 in [Spe99].

We do not want to give the proof of this lemma, but here is the special case for the
exponential function. It is similar to Example 1.3 in [Spe99].

Example 5.1.7. The graph of exp is a Rolle leaf.

Define U = R2 and ω(x, y) = ydx − 1dy. Obviously, S(ω) = ∅ and Γ(exp) is
closed and an embedded 1-dimensional C1 manifold of R2. So for every (x, y) =
(x, exp(x)) ∈ Γ(f) look at

T(x,y)Γ(f) = 〈(x,
∂ exp

∂x
(x))〉 = 〈(x, exp(x))〉

= {(v, exp(x)v | v ∈ R} = {(v, w) | exp(x)v − w = 0}

= ker(ω(x, exp(x)).
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5.1 Rolle Leaves and the Pfaffian Closure

x

y

ω
Γ(exp)

γ

Figure 5.3: The graph Γ(exp) is a Rolle leaf.

Hence L is a leaf.

Now check the Rolle condition: Let γ : [0, 1] → R2 such that the values γ(0), γ(1) are
in L. The set U−Γ(f) has two connected components: C1 = {(x, y) ∈ U | y < f(x)}
and C2 = {(x, y) ∈ U | y > f(x)}. Of course, we can assume that ω(γ(0))(γ′(0)) 6= 0,
ω(γ(1))(γ′(1)) 6= 0 and that γ[(0, 1)] is in one of the two connected components.

Claim : The values ω(γ(0))(γ′(0)) and ω(γ(1))(γ′(1)) have a different sign.

Proof: Without loss of generality, assume that ω(γ(0))(γ′(0)) > 0. Then there
exists some ε > 0 such that γ[(0, ε)] ⊆ C1 and so by assumption, γ[(0, 1)] ⊆ C1. If
also ω(γ(1))(γ′(1)) > 0, then there is a 0 < δ < 1 such that γ[(δ, 1)] ⊆ C2, which is
a contradiction. (Claim)

The claim implies, since ω is continuous, that there exists a t ∈ [0, 1] such that
ω(γ(t))(γ′(t)) = 0.

To motivate Theorem 5.1.4 we apply it to Example 1.1.8, which was mentioned in
the beginning of this diploma thesis and involves the exponential function.

Example 5.1.8. By Example 1.1.7 the definable sets in the structure Ran, i.e. R ex-
panded with restricted analytic functions form an o-minimal structure. We examine
Ran,exp = (R, (f), exp) as expansion of Ran. Look at the definable sets

Sn := {A ⊆ Rn | A definable over Ran,exp with parameters}, n ≥ 1

At first, notice that S is a structure: If two sets A = {x ∈ Rn | φ(x)} and B =
{x ∈ Rn | ψ(x)} are in S, trivially A ∩ B,A ∪ B,A × B and AC are in S and
πn

m[A] = {y ∈ Rm | ∃ z ∈ Rn−m φ(y, z)} is in S, too. Thus (S1),(S3) and (S4) are
satisfied. The semi-algebraic sets are already definable in Ran, so they are obviously
in S.
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5 Application to the Pfaffian Closure

By the last example Γ(exp) is a Rolle leave on (R2, ω) and thus a set in ˜Rolle(S).
Note that by the above example, R2 and ω are definable in Ran. Hence Ran,exp ⊆

˜Rolle(Ran). By Theorem 5.1.4 ˜Rolle(Ran) is an o-minimal structure. Trivially, every
substructure A of an o-minimal structure B is also o-minimal. (If A ⊆ R is in A it
is also in B, so by the o-minimality of B it is a finite union of points and intervals.)

Hence the structure Ran,exp ⊆ ˜Rolle(Ran) is o-minimal.

Corollary 5.1.9. The sets definable in Ran,exp form an o-minimal structure.

5.2 Transforming Rolle Leaves

We begin the proof of Theorem 5.1.4 with some facts on Rolle leaves. In some of
the following proofs we need to transform Rolle leaves via a diffeomorphism or a
projection into new Rolle leaves on other basic sets. Some properties of the new
basic sets help us to check some facts about the Rolle leaves.

First we need some terms and facts of differential topology.

Definition 5.2.1. Let φ : V → U be a map between some open sets V, U on
manifolds.

• For every x ∈ V the pushforward φ∗(x) : TxV → Tφ(x)U is defined by φ∗(x) =
dφx, or in other words, if v ∈ TxV , v = c′(0) with c : [− ε, ε] → V , then
φ∗(v) = (φ ◦ c)′(0).

• For a differential form, the pullback φ∗ : T ∗U → T ∗V is ω ∈ T ∗U defined by
φ∗(ω)(x)(v) = ω(φ(x))(φ∗(x)(v)) (x ∈ V , v ∈ TxV ).

The next lemma helps us to transform Rolle leaves into other spaces, look also at
Remark 1.7 in [Spe99]. To prove them, we need the following statement about
manifolds.

Definition 5.2.2 (p.22 in [Hir94]). Let M,N be manifolds and A ⊆ N be a subman-
ifold. A map f : M → N is called transverse to A if and only if for all x ∈ f−1(A)
holds im(dfx) + Tf(x)A = Tf(x)N .

Theorem 5.2.3. [Theorem 3.3. in [Hir94], Chapter 1] Let f : M → N be a Cr

map between two manifolds and A ⊆ N be a Cr submanifold. If f is transverse to
A, then f−1(A) is a Cr submanifold of M . The co-dimension of f−1(A) is the same
as the co-dimension of A in N .

Proof. Look at Chapter 1 in [Hir94].
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5.2 Transforming Rolle Leaves

Lemma 5.2.4. Let V ⊆ Rn and U ⊆ Rm be open sets and let φ : V → U be a
submersion, i.e. the differential is surjective in every point. Furthermore let L be a
(Rolle) leaf on U and some 1-form ω. Then every connected component of φ−1(L)
is a (Rolle) leaf on (V, φ∗ω).

Proof. Without loss of generality we can assume that φ−1(L) is connected, otherwise
we examine only the connected components. (If some set is a manifold, so is every
connected component.)

1. The preimage φ−1(L) is a manifold of dimension n− 1.

Let x ∈ L. Since φ is a submersion dφx is surjective and so im(dφx) = Tφ(x)U and
thus φ is transverse to L. Hence by Theorem 5.2.3 φ−1(L) is a submanifold of V
with co-dimension 1, like L.

2. The manifold φ−1(L) is a leaf on (V, φ∗ω).

We have to show

Txφ
−1(L) = ker(φ∗ω(x))

Let v ∈ Txφ
−1(L). Hence v = c′(0), where c : [− ε, ε] → φ−1(L) is a differen-

tiable curve such that c(0) = x. Then φ ◦ c is a differentiable curve such that
φ ◦ c(0) = φ(x). Thus (φ ◦ c)′(0) ∈ Tφ(x)L. Furthermore (φ ◦ c)′(0) = φ∗(x)(v)
by definition, i.e. φ∗(x)(v) ∈ Tφ(x)L. So φ∗ω(x)(v) = ω(φ(x))(φ∗(x)(v)) = 0, since
Tφ(x)L = ker(ω(φ(x))) by assumption. Hence v ∈ ker(φ∗ω(x)).

Since φ is a submersion, φ∗ has full rank for every x. Hence, we obtain the following
equality:

dim(im(φ∗ω(x))) = dim {φ∗ω(x)(v) | v ∈ TxV }

= dim {ω(φ(x))φ∗ v | v ∈ TxV }
φ∗ surjective

= dim
{
ω(φ(x)) u | u ∈ Tφ(x)U

}

= dim(im(ω(φ(x))))

As L is a Rolle leaf and so an integral manifold of dimension m − 1, for every x ∈
φ−1(L) the tangential space Tφ(x)L = ker(ω(x)) has also dimension m−1. Therefore
dim(im(ω(φ(x)))) = m−(m−1) = 1 and by the above calculation dim(im(φ∗ω(x))) =
1, which implies dim(ker(φ∗ω(x))) = n− 1.

Since φ−1(L) is an (n − 1)-dimensional manifold the tangential space Txφ
−1L has

dimension n− 1 and since we know already Txφ
−1(L) ⊆ ker(φ∗ω(x)) we obtain

Txφ
−1(L) = ker(φ∗ω(x)).
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5 Application to the Pfaffian Closure

3. The leaf φ−1(L) satisfies the Rolle condition, if L does it.

As a preimage of a closed set under a continuous function, φ−1(L) is closed.

Let γ : [0, 1] → V be a path such that γ(0), γ(1) ∈ φ−1(L). Then φ ◦ γ : [0, 1] → U
is a curve with φ ◦ γ(0), φ ◦ γ(1) ∈ L. Since L is Rolle leaf, there exists t ∈ [0, 1] such
that ω(φ ◦ γ(t))(φ ◦ γ)′(t) = 0. We obtain φ∗ω(γ(t)) = ω(φ ◦ γ(t))(φ ◦ γ)′(t) = 0.

Corollary 5.2.5. If φ : V → U is a diffeomorphism and L a Rolle leaf on (U, ω),
then φ−1(L) is a Rolle leaf on (V, φ∗ω).

Corollary 5.2.6. Let L be a Rolle leaf on (U, ω) with ω =
∑n

i=1 aidxi and let
V ⊆ Rm be an open and connected set. Define ω̃ := π∗ω. Then L×V is a Rolle leaf
on (U × V, ω̃).

Proof. Recognize that the projection π : U × V → U is a submersion. Furthermore
V is connected and so L× V is connected.

5.3 The Pfaffian sets form an o-minimal weak

structure

In this section we prove that Rolle(S) is an o-minimal weak structure. This is the
first condition we need to apply the theorem of the complement. For the rest of this
chapter, fix an o-minimal structure S.

The next remark about the basic sets of some Rolle leaves helps us to simplify the
notation in the following proofs.

Remark 5.3.1. [Remark (3.4) in [KM99]] A set of the form A∩L1 ∩ · · · ∩Lk ⊆ Rn

with Li Rolle leaf on (Ui, ωi) and A ∈ S can be represented also by a set of the form
πn·k

n [A′ ∩ L′
1 ∩ · · · ∩ L′

k] where the L′
i are Rolle leaves on (U, ω̃i) (with the same set

U !). We can also assume that U is open and connected.

Proof. We can assume that each Ui is connected, since each Li is connected and we
can restrict to the connected component of Ui containing L. To show the claim,
define

U = U1 × · · · × Uk.

This set is still open and connected. Furthermore for ωj =
∑n

i=1 aji(x1, . . . , xn)dxi

define

ω̃j =

n∑

i=1

aji(xj·(n−1)+1, . . . , xj·n)dxj·(n−1)+i
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5.3 The Pfaffian sets form an o-minimal weak structure

and

L′
j = U1 × · · · × Uj−1 × Lj × Uj+1 × · · · × Uk.

Of course, each L′
j is a Rolle leaf for ω̃j on U and with ∆ = {(x, . . . , x) ∈ (Rn)k} the

diagonal copy of Rn, which is a semialgebraic set, we obtain Ak ∩ ∆ ∈ S and

A = πn·k
n [(Ak ∩ ∆) ∩ L′

1 ∩ · · · ∩ L′
k]

Hence we can assume in the proofs below, that the Rolle leaves are defined on the
same open and connected set U .

Lemma 5.3.2 (Lemma 3 in [KM99]). The Pfaffian closure Rolle(S) is a weak struc-
ture.

Proof. (WS1) Trivial.

(WS2) Clear since S ⊆ Rolle(S).

(WS3) Take A = A1 ∩ L1 ∩ · · · ∩ Lk ∈ Rolle(S)n and B = B1 ∩ L′
1 ∩ · · · ∩ L′

l ∈
Rolle(S)m. Assume that the Li, i = 1, . . . k are Rolle leaves on (U, ωi) (by
Remark 5.3.1) and the L′

j , j = 1, . . . l are Rolle leaves on (U ′, ω′
j) such that U

and U ′ are open and connected. By Corollary 5.2.6 the set U × L′
j is a Rolle

leaf on (U × U ′, (0, ω′
j)) and Li × U ′ is a Rolle leaf on (U × U ′, (ωi, 0)).

A× B = A1 × B1 ∩
k⋂

i=1

(Li × U ′) ∩
l⋂

j=1

(U × L′
j).

So A×B is a set in Rolle(S)n+m.

In general A = A1 ∪ · · · ∪ Ak, B = B1 ∪ · · · ∪ Bl such that Ai, Bj are sets as

examined above. Then A× B =
⋃k

i=1

⋃l

j=1Ai × Bj which is a finite union of
sets of the form Ai ×Bj that are in Rolle(S) by the above argument.

(WS4) If σ : Rn → Rn is a linear bijection (so a diffeomorphism) and B = A∩L1 ∩
· · · ∩Lk ∈ Rolle(S). Then from A ∈ Sn it follows that σ(A) ∈ S by (WS4) for
S. Li is a Rolle leaf on (Ui, ω) and so σ(Li) is a Rolle leaf on (σ(Ui), (σ

−1)∗ω)
by Lemma 5.2.5. Since S is a structure σ(Ui) and (σ−1)∗ω are in S. Hence
σ(B) ∈ Rolle(S).

As above in the proof of (WS3), the argument can be expanded easily to finite
unions of basic Pfaffian sets.
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5 Application to the Pfaffian Closure

The next step is (WS5), i.e. to prove that the number of connected components stays
bounded during intersection with Rolle leaves and affine hyperplanes. Speisegger
proved a bound of connected components for fibers of Pfaffian sets.

Lemma 5.3.3. [Corollary 2.7. in [Spe99]] Assume a ≤ m ≤ n and let A ⊆ Rn be
a set in S. Then there is a K ∈ N such that, whenever a ∈ Rm and Li is a Rolle
leaf of ωi = 0 for each i, then the fiber (A ∩ L1 ∩ · · · ∩ Lq)a is a union of at most K
connected manifolds.

Proof. Look at [Spe99], Section 1 and 2.

Lemma 5.3.4 (Lemma 4 in [KM99]). The Pfaffian closure Rolle(S) satisfies (WS5).

Proof. First assume B = A∩L1 ∩ · · · ∩Lk ∈ Rolle(S)n. We have to show that there
exists a boundary for cc(B ∩X), which is independent from the hyperplane X.

IfX is a hyperplane, X is a zero set of a linear polynomial p(x) = a0+a1x1+· · ·+anxn.
We can consider p as a function depending on a(X) = a = (a0, a1, . . . , an) and
x ∈ Rn. Definem := n+1. Then p : Rn ×Rm → R and (x, a) 7→ a0+a1x1+· · ·+anxn.
Let C := {(x, a) ∈ Rn+m | p(x, a) = 0}. Since p is a polynomial in (x, a) this is a
semialgebraic set and so in S. Obviously, X = Ca(X), which is in S by Lemma 1.3.6
d).

Define A′ := A × Rm and L′
i := Li × Rm for i = 1, . . . , k. By Corollary 5.2.6 every

L′
i is a Rolle leaf. Next, we can apply Lemma 5.3.3 on A′ ∩ C and obtain a K ∈ N

such that whenever a ∈ Rm then the fiber (A′ ∩ C ∩ L′
1 ∩ · · · ∩ L′

k)a is a union of at
most K connected manifolds. Particularly, whenever there is a hyperplane X and
a corresponding a(X) ∈ Rm, we have (A′ ∩ C ∩ L′

1 ∩ · · · ∩ L′
k)a(X) has at most K

connected components. But

(A′ ∩ C ∩ L′
1 ∩ · · · ∩ L′

k)a(X) = ((A ∩ L1 ∩ · · · ∩ Lk) × Rm) ∩ C)a(X)

a(X)∈R
m

= (A ∩ L1 ∩ · · · ∩ Lk) ∩ Ca(X)

= B ∩X

So the number of connected components of B ∩X is bounded by K.

Now assume we have a finite union of sets of the form A ∩ L1 ∩ · · · ∩ Lk, say B =⋃m

i=1Bi. For each Bi the set Bi ∩X is bounded by some Ki, independent from the
hyperplane. So B ∩ X =

⋃m

i=1(Bi ∩ X) is bounded by K :=
∑m

i=1Ki ∈ N, still
independent from the choice of the hyperplane X.

The following lemma about the intersection of projections of closed sets will help us
not only for the proof of the last condition (WS6).
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5.3 The Pfaffian sets form an o-minimal weak structure

Lemma 5.3.5. Let C0 ∈ Rn+m1 , . . . , Ck ∈ Rn+mk be closed sets in Rolle(S) with
πn+mi

n (Ci) = Bi and Ci ∈ Rolle(S) for i = 1, . . . , k. Then there exists a closed set
D ⊆ Rn+m0+···+mk in Rolle(S) such that π(D) = B0 ∩ · · · ∩Bk.

Proof. Write x = (x1, . . . , xn) and yi = (y1, . . . , ymi
).

D := {(x, y0, . . . yk) | (x, y0) ∈ C0 ∧ · · · ∧ (x, yk) ∈ Ck} .

The set D is in Rolle(S), since it is an intersection of sets of the form Ci × Rh (for
some h) with permutated coordinates and Rolle(S) is a weak structure.

It is clear that

π(D) = π(C0) ∩ π(C1) ∩ · · · ∩ π(Ck) = B0 ∩ B1 ∩ · · · ∩ Bk.

The set D is closed: Take zi ∈ D, zi → z = (x, y0, . . . , yk) ∈ Rn+m0+···+mk . Then,
since Ci is closed, (x, yi) ∈ Ci for i = 0 . . . k. So x ∈ D.

Lemma 5.3.6. [Lemma 5 in [KM99]] Rolle(S) satisfies (WS6).

Proof. First, we reduce the claim to Rolle leaves.

Claim : It is enough to show (WS6) for Rolle leaves.

Proof: Let A = B ∩ L1 ∩ · · · ∩ Lk. If we had a finite union of sets of this form,
we can take the finite union of the closed sets that are projected on these sets. So
it is enough to examine a basic Pfaffian set A. By Lemma 1.3.4 (WS6) holds for
S and so there exists a closed set C0 ∈ Rm0 such that B = π(C). If we assume
(WS6) for Rolle leaves, there exists Ci ∈ Rolle(S)mi

, i = 1, . . . , k closed such that
Li = π(Ci). By Lemma 5.3.5 there exists a closed set D ∈ Rolle(S)n+m0+···+mk

with
π(D) = B ∩ L1 ∩ · · · ∩ Lk. (Claim)

Thus let L be a Rolle leaf on (U, ω). By Lemma 1.3.4 every o-minimal structure
satisfies (WS6), hence for U ∈ S there exists a closed set B in some Sn+m such that
π(B) = U .

Define ω̃ on U × Rm through ω̃ = π∗ω. By Corollary 5.2.6 is L′ := L × Rm a Rolle
leaf on (U × Rm, π∗ω). Hence B ∩ L′ is in Rolle(S)n+m. Furthermore it is closed:
Let (xi, yi) ∈ B ∩ L′ with (xi, yi) → (x, y). Because B is closed, (x, y) ∈ B, in
particular x ∈ U , so (x, y) ∈ U ′. Since L′ is closed in U ′, we obtain (x, y) ∈ L′, thus
(x, y) ∈ B ∩ L′.
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5 Application to the Pfaffian Closure

5.4 The Pfaffian sets satisfy DPCN

In this section we prove that Rolle(S) satisfies DPCN for all N . The proof is based
on ideas of Karpinski and Macintyre in [KM99], where they use a cell decomposition
of the basic sets of a Rolle leaf and distinguish between open cells and cells with
lower dimension. It seems to be complex or maybe even impossible to extend a cell
on Rn such that all additional assumptions made on the 1-form ω and the Rolle leaf
are preserved. So we work with partial defined functions with closed graph, which is
enough to apply the theorem of the complement as we have shown it in Chapter 3.

Fix the dimension n. We have to show that for all B ∈ Rolle(S)n there exists an
m ∈ N such that for all N ∈ N there are some CN functions f1 : Bi → R, . . . , fr :

Br → R with closed graph which are in ˜Rolle(S) such that the Bi ⊆ Rn+m are open
and πm

n [Z(f1) ∪ · · · ∪ Z(fr)] = B. In other words we want to prove that there are
fi ∈ MN (Rolle(S)) for i = 1, . . . r such that πm

n [Z(f1) ∪ · · · ∪ Z(fr)] = B. We call
this statement DPCN for B with m, recall the definition in Chapter 3.

The first step is to reduce the problem to Rolle leaves; this is done with the following
lemma.

Lemma 5.4.1. If DPCN holds for all N for Rolle leaves, it holds for all A ∈

Rolle(S). Let A =
⋃r

i=1

(
Ai ∩

⋂ki

j=1L
(i)
j

)
and assume that for each Rolle leaf L

(i)
j ⊆

Rn the m of the DPCN condition is bounded by n+ 2. Then DPCN holds for A for
arbitrary N with m bounded by n+ 2 · max{ki + 1 | i = 1, . . . , r}.

Proof. 1. Reduce on a set of the form A′ ∩ L1 ∩ · · · ∩ Lk ∈ ˜Rolle(S).

If we find functions satisfying the DPCN condition for Bi = Ai ∩
⋂ki

j=1L
(i)
j with

m′
i, then we can take the finite union of these functions extended on the dimension

max{m′
i | i = 1, . . . , r}. As we show in the following, we can boundm′

i by n+2(ki+1),
so m is bounded by n+2 ·max{ki +1 | i = 1, . . . , r}. Hence we assume that we have
a set of the form A = A′ ∩ L1 ∩ · · · ∩ Lk ∈ Rolle(S)n (for some k ∈ N).

2. Defining new functions for the DPCN condition.

By Lemma 4.4 DCN holds for A′ ∈ S (and so DPCN) and so by assumption there

exist mi such that for all N exists CN functions f
(1)
i : U

(1)
i → R, . . . , f (ri)

i : U
(ri)
i → R

in ˜Rolle(S) with closed graph and U
(j)
i ⊆ Rn+mi open for j = 1, . . . , ri such that

πn+m0

n (Z(f
(1)
0 )) = A′ and Li =

⋃ri

j=1 π
n+mi
n (Z(f

(j)
i )) for i = 1, . . . , k.

Define m = n +
∑k

i=0mi. By our second assumption mi ≤ 2, so m ≤ n + 2(k + 1).
Fix N ∈ N.
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5.4 The Pfaffian sets satisfy DPCN

Now for each a = (a0, . . . , ak) ∈ I := {1, . . . , r0} × · · · × {1, . . . rk} define

Ua := {(x, y1, . . . , yk) | (x, y1) ∈ U
(a1)
1 ∧ · · · ∧ (x, yk) ∈ U

(ak)
k }

fa(x, y0, . . . , yk) :=
k∑

i=0

(
f

(ai)
i (x, yi)

)

For every a ∈ I the set Ua ⊆ Rm is open, since all U
(j)
i are open and fa : Ua → R is

a CN function, since it is a combination of CN functions.

3. The functions fa are in MN (Rolle(S)).

It remains to show that for a ∈ I the function fa ∈ ˜Rolle(S) and Γ(fa) is closed. We

begin with two claims about containing closed functions in ˜Rolle(S).

Claim 1: Let g : U → R be in ˜Rolle(S) and let Γ(g) be closed. Then g2 ∈ ˜Rolle(S)
and Γ(g2) is closed.

Proof: Look at Remark 3.2.4. (Claim)

Claim 2: Let f1 : U1 → R and f2 : U2 → R be positive (f1, f2 ≥ 0) functions

in ˜Rolle(S) with closed graph and define U = {(x, y1, y2) ∈ Rn+m1+m2 | (x, y1) ∈
U1 ∧ (x, y2) ∈ U2}. Then the function g : U → R defined by g(x, y1, y2) =

f1(x, y1) + f2(x, y2) is in ˜Rolle(S) and the graph Γ(g) is closed.

Proof:

Γ(g) = {(x, y1, y2, g(x, y1, y2)) | (x, y1) ∈ dom(f1)

∧ (x, y2) ∈ dom(f2)}

=
{
(x, y1, y2, z) | ∃z1, z2 (z = z1 + z2

∧f1(x, y1) = z1 ∧ f2(x, y2) = z2)
}

= π
[
{(x, y1, y2, z, z1, z2) | z − z1 − z2 = 0}

∩ {(x, y1, y2, z, z1, z2) | (x, y1, z1) ∈ Γ(f1)}

∩ {(x, y1, y2, z, z1, z2) | (x, y2, z2) ∈ Γ(f2)}
]

And by Lemma 1.3.5 we have Γ(g) ∈ ˜Rolle(S), since ˜Rolle(S) is an o-minimal weak
structure as Rolle(S) is an o-minimal weak structure by Corollary 2.1.3.

Let (xn, y1,n, y2,n) ∈ U for n ∈ N with (xn, y1,n, y2,n) → (x, y1, y2) ∈ ∂U . Define
U ′

2 = {(x, y1, y2) ∈ Rn+m1+m2 | (x, y2) ∈ U2}. Then U = (U1 × Rm2) ∩ U ′
2. The

following claim shows ∂U ⊆ ∂(U1 × Rm2) ∪ ∂U ′
2.

Claim 3: Let A = B ∩ C. Then ∂A ⊆ ∂B ∪ ∂C.

Proof: Let x ∈ A. Then exists xn → x such that xn ∈ A for all n. By definition,

63



5 Application to the Pfaffian Closure

xn ∈ B and xn ∈ C for all n, so x ∈ B ∩C. Assume x /∈ int(A) but x ∈ int(B) and
x ∈ int(C). Then there exists ε > 0 such that Bε(x) ∈ B ∩ C = A. Contradiction.

(Claim)
As a result, we have (xn, y1,n) → (x, y1) ∈ ∂U1 or (xn, y2,n) → (x, y2) ∈ ∂U2.

Without loss of generality, we can assume the first case. Then, since Γ(f1) is closed,
we obtain |f1(xn, y1,n)| → ∞. As f1 and f2 are positive, we obtain |g(x, y1, y2)| =
|f1(x, y1)| + |f2(x, y2)| → ∞. By Remark 1.3.8 Γ(g) is closed. This completes the
proof of Claim 2. (Claim)

By the above claims for every a ∈ I the function fa ∈ ˜Rolle(S) and has a closed
graph.

4. The equation
⋃

a∈I π[Z(fa)] holds.

Notice that

fa(x, y0, . . . , yk) = 0 ⇔
k∑

i=0

(fai

i )2(x, yi) = 0

⇔ ∀i ∈ {1, . . . , k}f
(ai)
i (x, yi) = 0.

Hence

x ∈
⋃

a∈I

πm
n [Z(fa)] ⇔ ∃ a ∈ I ∃ y0, . . . , yk ∀i f

(ai)
i (x, yi) = 0}

⇔ ∃a0, . . . , ak x ∈ π[Z(f
(a0)
0 )] ∧ . . .

∧ x ∈ π[Z(f
(ak)
k )]

⇔ x ∈
r0⋃

a0=1

π[Z(f
(a0)
0 )] ∧ · · · ∧ x ∈

rk⋃

ak=1

π[Z(f
(ak)
k )]

⇔ x ∈ A′ ∩ L1 ∩ · · · ∩ Lk

In the rest of this chapter, we prove the DPCN condition for Rolle leaves. We prove
the claim for open and non-open cells seperately.

Lemma 5.4.2. Let L be a Rolle leaf on some (U, ω), U, ω ∈ S. Then there exists
for each N some functions fi : Bi → R in MN (Rolle(S)) for i = 1, . . . , r such that
Bi ⊆ Rn+2 and πn+2

n [Z(f1) ∪ · · · ∪ Z(fr)] = L.
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5.4 The Pfaffian sets satisfy DPCN

Proof. This lemma contains the difficult part of the proof. Fix N ∈ N. We begin
with dividing U into cells.

Let ω =
∑n

i=0 aidxi. Define Aj = {x | aj(x) 6= 0} for j = 1, . . . , n. For every j the
set Aj is in S, since ω and therefore aj is in S:

Aj = πn+1
n [Γ(aj) ∩ ({(x, y) | y < 0} ∪ {(x, y) | y > 0})] .

So we can find a CN cell decomposition compatible with U,A1, . . . , An by Theorem
1.2.6. By a further cell decomposition with the decomposition argument for functions
in Theorem 1.2.6 b), we can assume that ω is CN restricted to any cell, particularly
that C ∩L is a CN manifold for each cell C. There are only finitely many cells, so if
there are functions as wished for every cell C such that

⋃r

i=1 π[Z(fC
i )] = C ∩ L, we

can take all this functions and
⋃

C cell

⋃r

i=1 π[Z(fC
i )] = L.

The next step is to findDPCN functions for intersections with open cells. Afterwards
we need these functions to prove the DPCN -statement for intersections with closed
cells.

Lemma 5.4.3. Let C be an open cell such that L ∩ C has all properties of a Rolle
leaf on (C, ω) except connectedness and ω =

∑n

i=1 aidxi is CN on C. Then there
exists open sets Bi ⊆ Rn+1 and MN (Rolle(S))-functions fi : Bi → R for i = 1, . . . , r
such that πn+1

n [Z(f1) ∪ · · · ∪ Z(fr)] = L ∩ C.

Of course, by defining new functions gi(x, y) = fi(x) for i = 1, . . . r we can expand
the function on B × R ⊆ Rn+2.

We prove the lemma in two steps; first we prove a special case, where we assume that
the intersection of a Rolle leaf and a cell is connected and that the last component of
ω is nowwhere zero. In the next step we reduce the general case to this special case
by applying Lemma 5.4.6. Before starting the proof, we recall the inverse function
theorem.

Theorem 5.4.4. [Inverse Function Theorem] Let M ⊆ Rm and N ⊆ Rn two CN

submanifolds of the same dimension k. Let f : M → N be a CN map and let a ∈ M
be a regular point of f . Then there exists an open set U ⊆M and an open set V ⊆ N
such that there exists a CN map g : V → U which is inverse to f ↾ U : U → V .

Proof. By Theorem 3 in [For77], Chapter 8 and the corresponding remarks the the-
orem holds for M = N = Rk. It is easy to carry over this result to CN manifolds:
Look for a ∈ M at the open neighborhoods of a and f(a) which are diffeomorphic
to Rk and compose the corresponding maps.
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5 Application to the Pfaffian Closure

L’

fπ

C

L

Figure 5.4: The Rolle leaf L ∩ C is a graph of a function.

Lemma 5.4.5. Let C be an open cell of the open set U ∈ S and let L be a Rolle
leaf on (U, ω) such that L ∩ C is connected and so a Rolle leaf on (C, ω ↾ C). Let
ω(x) =

∑n

i=1 ai(x)dxi be CN such that an(x) 6= 0 for all x ∈ C. Then:

a) The set L ∩ C is the graph of a function f : L′ → R, where L′ = πn
n−1[L ∩ C].

b) The set L′ is open and connected and the function f is CN .

c) There exists an open set B ⊆ Rn+1 and a function g : B → R which is in
MN (Rolle(S)) such that πn+1

n [Z(g)] = L ∩ C.

Proof. a) Define for all (x1, . . . , xn−1) ∈ L′ := πn
n−1[L ∩ C] the map f through

f(x1, . . . , xn−1) := the unique xn with x ∈ L.

Claim : The function f is well-defined.

Proof: Assume that there are some different points x = (x1, . . . , xn) ∈ L∩C
and x′ = (x1, . . . , xn−1, x

′
n) ∈ L ∩ C. Define γ : [0, 1] → U by

γ(t) = (x1, . . . , xn−1, (1 − t)xn + tx′n)

as the direct path from x to x′. Since C = (g, h) is an open cell we have γ(t) ∈ C
for all t ∈ [0, 1]. By the Rolle leaf condition, there exists t ∈ [0, 1] such that
γ ⊥ ω at γ(t), by definition of γ it is vertical, that means that ω is horizontal.
But his cannot happen, because an(y) 6= 0 for all y ∈ Rn, what implies that it
has a vertical component everywhere. Contradiction! (Claim)
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5.4 The Pfaffian sets satisfy DPCN

γ

L
ω

t
ω(γ(t))

x

x′

Figure 5.5: Assume L∩C is not a graph of a function; then ω must be horizontal in
one point.

Obviously, (π ↾ L ∩ C)−1 = f ↾ L′.

b) Since L ∩ C is connected dom(f) = π[L ∩ C] must be connected.

Take any point x ∈ L′ = π[L ∩ C]. Then there exists a point z ∈ L ∩ C such
that x = π(z). It is TxL = Rn−1 and dπ is surjective, so x is a regular point
of πL : L ∩ C → Rn−1. The leaf L ∩ C is a manifold of dimension n − 1,
so π is a map between to manifolds of the same dimension. Because L is a
CN submanifold of Rn on C, the projection πL is also CN . By the Inverse
Function Theorem 5.4.4, there exist an open neighborhood U ⊆ L of z, an
open neighborhood V ⊆ Rn−1 of x and a CN function g : V → U such that
π ◦ g = idV and g ◦ π = idU . Obviously, g = f ↾ V . So f is CN in x.
Particularly, we have V ⊆ L′, so L′ is open.

c) Note that C is an open CN cell in S, so by Lemma 1.3.9 there exists a closed set
D ∈ Sn+1 such that π[D] = C and D is a graph of a CN function d : C → R.

Define B := ((L′ ×R)∩C)×R ⊆ Rn+1, which is an open set by b) and define
g : B → R by

g(x, x′, y) = (f(x) − x′)2 + (d(x, x′) − y)2 + (d(x, f(x)) − y)2.

Note that

g(x, x′, y) = 0 ⇔ f(x) − x′ = 0 ∧ d(x, x′) − y = 0

∧ d(x, f(x)) − y = 0

⇔ y = d(x, x′) = d(x, f(x))

∧x′ = f(x)
Γ(f)=L,Γ(d)=D

⇔ (x, x′) ∈ L ∧ (x, x′, y) ∈ D
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5 Application to the Pfaffian Closure

Hence

(x, x′) ∈ πn+1
n (Z(g)) ⇔ ∃y ∈ R (x, x′) ∈ L ∧ (x, x′, y) ∈ D

π(D)=C
⇔ (x, x′) ∈ L ∩ C.

Since L′ = π(L ∩ C) ∈ ˜Rolle(S) and C ∈ ˜Rolle(S) and because ˜Rolle(S) is
an o-minimal weak structure by the last section, we can apply Lemma 1.3.5,
a) and replace variables in semi-algebraic sets by values of functions in a set

in ˜Rolle(S). A closer look on the graph of g makes clear that we obtain

Γ(g) ∈ ˜Rolle(S) by this method.

As a combination of CN functions g is a CN function itself.

Lastly, we show that Γ(g) is closed. Let (xn, x
′
n, yn) → (x, x′, y) ∈ ∂B. Recall

Claim 3 in the proof of 5.4.1. So for B = (L′ × R2) ∩ (C ∩ R) holds ∂B ⊆
∂(L′×R2)∩∂(C∩R), i.e. (x, x′, y) ∈ ∂(L′×R2)∪∂(C∩R). Hence (x, x′) ∈ ∂C
or x ∈ ∂L′. In the first case we have (xn, x

′
n) → (x, x′) ∈ ∂C. Since the graph of

d is closed, we obtain d(xn, x
′
n) → ∞. Obviously, g ≥ 0, so g(xn, x

′
n, yn) → ∞.

In the second case, notice that (xn, f(xn)) ∈ L for all N and xn → x ∈ ∂L′,
i.e. (xn, f(xn)) → (x, z) ∈ ∂L (or z = ∞, then we are ready). Since L ∩ C is
closed in C, we obtain (xn, f(xn)) → (x, z) ∈ ∂C. Again we can use that the
graph of d is closed and obtain d(xn, f(xn)) → ∞, i.e. g(xn, x

′
n, yn) → ∞. By

Remark 1.3.8 Γ(g) is closed.

The next step is to show that we can reduce the case of a Rolle leaf L intersected
with an open cell C to the special case we examined in the above lemma. We show
that we can assume that L ∩ C is a connected set and that an(x) 6= 0 for all x ∈ C.

Lemma 5.4.6. Let C ⊆ Rn be an open cell in the above cell decomposition, let L be
a Rolle leaf on U and ω =

∑n

i=1 aidxi, where ω is CN on C and U, ω ∈ S. Then the
DPCN condition holds for L ∩ C with m = n+ 1.

Proof. Since L is a Rolle leaf and C is an open cell, L ∩ C is a manifold. It has all
properties of a Rolle leaf on (C, ω) except connectedness.

1. We can assume L ∩ C is connected. Let C ∈ Sn be an open CN cell. C ∩ L
has only finitely many connected components, because it is in Rolle(S), which is
an o-minimal weak structure. Each connected component is a Rolle leaf. So if we
can find functions fi as desired for each connected component Ci, which are CN , all
these functions will fulfill the DPCN -condition, because

⋃
i π(Z(fi)) =

⋃
i Ci. So it
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5.4 The Pfaffian sets satisfy DPCN

is enough to show the claim for L ∩ C connected. The other properties of a Rolle
leaf are kept in the intersection obviously.

2. We can assume that an(x) 6= 0 for all x ∈ C.

The cell decomposition is compatible with the Aj = {x | aj(x) 6= 0} for j = 1, . . . , n
, that is for every j we have for all x ∈ C that aj(x) = 0 or for all x ∈ C is aj(x) 6= 0.
Furthermore, for all x ∈ C we have ω(x) 6= 0 by the assumption S(ω) = ∅. So there
exists a maximal j0 ∈ {1, . . . , n} such that for all x ∈ C we have aj0(x) 6= 0.

If j0 = n we are finished. So assume j0 6= n. Our aim is now to construct a cell which
is diffeomorphic to C, where still aj 6= 0 holds and where it is possible to change
jth component to the last coordinate. This is achieved if we have a cell of the form
Cj0 × (0, 1)n−j0, where Cj0 is an open cell in Rj0 .

The cell C is open, so it is constructed in the following inductive way out of open
cells: The first cell C1 = (a, b) is an interval in R, the j-th cell is constructed by to
functions fj, gj : Cj−1 → R where Cj = (fj, gj). Note that fj = −∞ and gj = ∞ are
allowed. At last C = Cn = (fn, gn).

Claim : Define a sequence (Dj) of open cells in Rn by Dn = C and Dj :=
Cj × (0, 1)n−j for j = j0, . . . n. Then there exist diffeomorphisms φj : Dj−1 → Dj

and 1-forms ωj−1 =
∑n

i=1 a
j−1
i (x)dxi = φ∗

jω
j beginning from the 1-form ωn = ω =∑n

i=1 aidxi such that the following holds:

For all j0 < j ≤ n we retain ∀ x ∈ Dj aj0(x) 6= 0 ∧ aj
i (x) = 0 for j0 < i ≤ j.

Proof: We do this by induction, beginning with j = n and ending with j = j0.
Induction beginning: It is clear that Dn = C has the wished form and it is not

necessary to construct the homomorphism. By assumption we have for all x ∈ C
that an

i (x) = 0 for j0 < i ≤ n and aj0(x) 6= 0.
Induction hypothesis: Let j ∈ {n, . . . , j0 + 1} and assume that Dj and ωj are

already constructed. For all x ∈ Dj we have aj
j0

(x) = 0 and aj
i (x) = 0 for j0 < i ≤ j.

Induction step: Now examine j 7→ j − 1. Recall Dj−1 := Cj−1 × (0, 1)n−j+1 and
Cj = (fj, gj), where fj, gj : Cj−1 → R.

Let ψa,b : (0, 1) → (a, b) for a ∈ R∪{−∞} and b ∈ R∪{∞} be defined in the
following way:

• If a, b ∈ R, let ψa,b(x) := (b− a)x+ a.

• If a ∈ R, b = ∞, let ψa,b(x) := a− 1 + 1
1−x

.

• If a = −∞, b ∈ R, let ψa,b(x) := b+ 1 − 1
x
.

• If a = −∞, b = ∞, let ψa,b(x) := 1
1−x2 −

1
x2 .
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5 Application to the Pfaffian Closure

Some easy calculations show that ψ′
a,b(x) > 0 for all x ∈ (0, 1) and so the map is

strictly monoton and CN as the inverse map is and so a diffeomorphism between
(0, 1) and (a, b). Note that the map ψ(a, b, x) = ψa,b(x) is also CN in a if a > −∞
and in b if b <∞. Furthermore, its graph is a semialgebraic set and hence in S.

Define φj : Dj−1 → Dj for x = (x1, . . . , xj−1) and y = (xj+1, . . . , xn) through

φj(x, xj , y) = (x, ψfj(x),gj(x)(xj), y).

It is obvious, that φj is well-defined, since

(x, xj+1, y) ∈ Dj−1 = Cj−1 × (0, 1)n−j+1 ⇒ (x, ψfj(x),gj(x)(xj+1)) ∈ Cj

by the definition of ψa,b. Additionally, φj is constructed from the diffeomorphisms
id and ψ and the CN functions fj and gj, so it is again a CN map. It is easy to see
that it is bijective. By the inverse function theorem we obtain that the inverse map
is again CN .

Notice that φ∗
jω

j(x) =
∑n

i=1 a
j−1
i (x)dxi, where

aj−1
i (x) =

n∑

k=1

ak ◦ φj(x)
∂(φj)k

∂xi

.

(This is a simple calculation and needs only the definition of the pullback.) Now
verify that for x ∈ Dj−1 we have aj

j0
(x) 6= 0 and aj

i (x) = 0 for all j0 < i ≤ j − 1.
It is (φj)k = id for k 6= j, so for i 6= j it is

aj−1
i (x) = aj

i ◦ φj(x)
∂(id)i

∂xi

+ aj
j ◦ φj(x)

∂(φj)j

∂xi

= aj
i ◦ φj(x) + aj

j ◦ φj(x)
∂ψ(xi, fj(x), gj(x))

∂xi

By induction hypothesis and since j > j0 we have aj
j(x) = 0 for x ∈ Dj. Hence

aj−1
i (x) = aj

i ◦φj(x) and this is zero, if j0 < i ≤ j−1, again by induction hypothesis.
If i = j0 we have aj−1

j0
(x) = aj

j0
◦ φj(x) 6= 0 for all x ∈ Dj−1, since aj

j0
(x) 6= 0 for all

x ∈ Dj. (Claim)

So after defining this sequences, we define φ := φn ◦ · · · ◦ φj0+1 and obtain a dif-
feomorphism φ : Dj0 → C. The claim implies that φ∗ω(x) =

∑n

i=0 bi(x)dxi, where
bj0(x) 6= 0 for all x ∈ Dj0.

Define now

C ′ :=
{
(x, y, z) ∈ Rj0−1 ×(0, 1)n−j0 × R | (x, z) ∈ Cj0

}
.

Obviously, C ′ is an open CN cell in Rn, simply notice that Cj0−1 × (0, 1)n−j0 is an
open cell in Rn−1 and define f, g : Cj0−1 × (0, 1)n−j0 → R through f(x, y) = fj0(x)
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C

L
L′

σφ

θ

C ′Dj0

R R

h

π π

B′

B

φ̃
Z(h)

Z(h̃)

π

h̃

B̃

Figure 5.6: Transformation of cell and Rolle leaf.

and g(x, y) = gj0(x). In fact, it is only a permutation of coordinates that puts the
coordinate xj0 onto the end. Call this permutation σ : C ′ → Dj0. Then σ∗(φ∗ω) =∑n

i=1 ci(x)dxi, where cn(x) = bj0(x) 6= 0 for all x ∈ C ′, since the permutation swaps
also the coordinate functions in φ∗ω.

By Corollary 5.2.5 φ−1(L) is a Rolle leaf on (Dj0, φ
∗ω). The map σ is as permutation

a diffeomorphism and by notating θ = φ◦σ we obtain also by Corollary 5.2.5 a Rolle
leaf L′ := θ−1(L ∩ C) on (C ′, ω̃), where C ′ is a cell and ω̃ = θ∗ω =

∑n

i=1 ci(x)dxi

such that cn(x) 6= 0 for all x ∈ C ′.

After having constructed this new cell, we transform the functions given by assump-

tion. Let h1, . . . , hr ∈ ˜Rolle(S) be some functions satisfying the DPCN condition
for L′. These functions exist by Lemma 5.4.5 and they are defined on some open sets
B′

1, . . . , B
′
r ⊆ Rn+1, their graphs are closed and we have πn+1

n [Z(h1)∪· · ·∪Z(hr)] = L′.
Define now Bi := {(θ(x), y) | (x, y) ∈ B′

i} ⊆ Rn+1 and h̃i : Bi → R by h̃i(x, y) :=
hi(θ

−1(x), y) for i = 1, . . . , r.

x ∈ πn+1
n [Z(h̃1) ∪ · · · ∪ Z(h̃r)]

⇔ ∃y∃i (x, y) ∈ Z(h̃i)

⇔ ∃y∃i (x, y) ∈ Bi ∧ h̃i(x, y) = 0

⇔ ∃y∃i∃ x′ x = θ(x′) ∧ (x′, y) ∈ B′
i ∧ hi(θ

−1(x), y) = 0

⇔ ∃y∃i∃ x′ x′ = θ−1(x) ∧ (x′, y) ∈ B′
i ∧ hi(x

′, y) = 0

⇔ ∃y∃i (θ−1(x), y) ∈ Z(hi)
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5 Application to the Pfaffian Closure

⇔ θ−1(x) ∈ πn+1
n [Z(h1) ∪ · · · ∪ Z(hr)]

⇔ θ−1(x) ∈ L′

⇔ x ∈ L ∩ C

Thus we find functions h̃1, . . . , h̃r satisfying the DPCN condition for L ∩ C, if we

can show that h̃i ∈ MN (Rolle(S)) for i = 1, . . . , r. Since h1, . . . , hr, φ, σ ∈ ˜Rolle(S)
and CN , so are the compositions h̃1, . . . , h̃r. It is obvious, that B1, . . . , Br are open
sets, since σ and φ are diffeomorphisms and so their inverse function is continuous.

At last, we have to show that the graph of h̃i is closed. For an easier notation
examine only one function and write h̃ : B → R. Let B̃ = {(σ(x), y) | (x, y) ∈ B′}.
Let φ̃ be the extension of φ from B̃ to B, defined by φ̃(x, y) = (φ(x), y). Now we
use Remark 1.3.8 and let zn = (xn, y) ∈ B such that zn → z = (x, y) ∈ ∂B. Write
xn = (vn,wn) ∈ Rj0 ×Rn−j0 and the same for x = (v,w). Then by the definitions of φ
and φ̃ we have φ̃−1(vn,wn, yn) = (vn,w

′
n, yn), where w′

n ∈ (0, 1)n−j0. So the sequence
w′

n is bounded, hence there exists a convergent subsequence. Thus we can assume
that w′

n → w′. We obtain z′n := (vn,w
′
n, yn) → (v,w′, y) =: z′. Now z′ ∈ ∂B̃: Since

z′n ∈ B̃ has the limit z ∈ B̃ and if z′ ∈ B̃ we would obtain that φ̃(z′) is defined and
φ̃(z′) = (v,w, y) = z ∈ B. This is a contradiction to the assumption that z ∈ ∂B and
B is open. As a permutation, σ is defined on whole Rn and preserves convergence. So
we obtain that (θ−1(xn), yn) = (σ−1(vn,w

′
n), yn) → (σ−1(v,w′), y) =: z′′. The same

argument as above justifies z′′ ∈ ∂B′. Because h has a closed graph by assumption,
the limit of |h(θ−1(xn), yn)| is ∞. However, h̃(xn, yn) is defined by h(θ−1(xn), yn) and
so h̃ has a closed graph and the proof is finished.

Not all cells in the cell decomposition are open, so we have to examine also cells with
lower dimension. For this case we will use the following lemma of Speisegger. Recall
that we assumed S(ω) = ∅.

Lemma 5.4.7. [Lemma (1.4) in [Spe99]] Let U ⊆ Rn be open and let ω be a 1-form
of class C1 on U . Let L be an integral manifold of ω = 0 with dim(L) = n − 1.
Let D ⊆ U be a connected manifold of dimension at most n − 1 such that TxD ⊆
ker(ω(x)) for all x ∈ D and D∩L is closed in D. Then either D∩L = ∅ or D ⊆ L.

Proof. This differs slightly from the version of Lemma (1.4) in [Spe99], but a quick
look at the beginning of the proof shows that the condition that there exists K ⊆ Rn

closed with L = K ∩U is only used to proof D ∩L is closed in D, so we can replace
it in the lemma.
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5.4 The Pfaffian sets satisfy DPCN

The following lemma verifies the DPCN condition for Rolle leaves intersected with
closed cells. In the proof we distinguish the two cases, where the Rolle leaf is tangent
to the cell and where it is transverse to the cell. In the first case we can apply
Speisegger’s Lemma, in the second case we reduce to Rolle leaves on open cells of
lower dimension.

Lemma 5.4.8. Let C be a cell with dimension k < n; then there exist finitely many
functions fi : Bi → R in MN (Rolle(S)) (i = 1, . . . , r) satisfying DPCN for L ∩ C
with m = n + 2, i.e.

⋃r

i=1 π
n+2
n [Z(fi)] = L ∩ C and Bi ⊆ Rn+2.

Proof. The proof works by induction on k. If k = 0, C is only a point, let C =
{a} = {(a1, . . . , an)}. Hence L∩C = ∅, which is a trivial case, or L∩C = {a}. This
is the zero set of the function f(x1, . . . , xn) = (x1 − a1)

2 + · · · + (xn − an)2, where

f : Rn → R. The function f is obviously CN and in ˜Rolle(S) and has as totally
defined function a closed graph.

Now let C be a cell with dimension k less than n.

Claim 1: The tangential space TC is in S.

Proof: Define

NC := {(x, v) | x ∈ C ∧ 〈x, v〉 = 0}

= {(x, v) | x ∈ C ∧ ∀ ε > 0 ∃δ > 0 (∀ y ∈ C| x− y | < δ ⇒ 〈y, v〉 < ε)}.

If we can prove, that NC is in S, we notice that TxC = {u | ∃ v(x, v) ∈ NC∧〈v, u〉 =
0} (which is obviously in S if NC is). Since the scalar product is a polynomial and
we can take intersections and projections this is a set in S. To show NC ∈ S, define

H :=
{
(x, v, ε) | x ∈ C ∧ ∃δ > 0(∀ y ∈ C| x− y | < δ ⇒ 〈y, v〉 < ε)

}

= π [{(x, v, ε, δ) | {y ∈ C | | x− y | < δ} ⊆ {y ∈ C | 〈y, v〉 < ε}]

Since A ⊆ B ⇔ A∩BC = ∅, the set H is in S. By Lemma (3.4) in [vdD98] also the
topological closure H is in S. Now

NC = {(x, v) | (x, v, 0) ∈ H}

= {(x, v) | ∃z((x, v, z) ∈ H ∧ z = 0)} ∈ S

(Claim)

Define

X := {x ∈ C | TxC ⊆ ker(ω(x))}.

By the claim and since ω ∈ S we obtain X ∈ S. Examine not the two sets X and
C −X.
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5 Application to the Pfaffian Closure

Claim 2: There exists a CN function fX : Rn+1 → R such that π[Z(fX)] = X∩L.

Proof: Take a cell decomposition compatible with X. Let E ⊆ C be a cell of this
cell decomposition. If E∩X = ∅, especially E∩L = ∅. Now examine the case E ⊆ X.
The set E is a manifold of dimension less than n, the integral manifold L ∩ C of
ω = 0 has dimension n−1 and since L is closed, L∩E is closed in E, so for all x ∈ E
we have TxE ⊆ TxC ⊆ ker(ω(x)). Thus we can apply Lemma 5.4.7 and obtain that
E ∩ L = ∅ or E ⊆ L. Now we can write X ∩ L =

⋃
{E ⊆ X | E cell ∧ E ⊆ L}. So

X ∩L is a finite union of cells which are in S, so it is in S with (WS1). As S satisfies
DCN for all N , by Lemma 4.4 there exists actually a CN function f : Rn → R
such that X ∩ L = Z(f). Define fX : Rn+2 → R by fX(x, y) = f(x). Then
πn+2

n [Z(fX)] = X ∩ L. (Claim)

So examine C − X. Note that X = X(C) depends on the cell C. Do another
cell decomposition which divides C − X into cells. Then for all cells C ′ ⊆ C − X
with the same dimension as C for all x ∈ C ′ holds TxC

′ = TxC since C ′ is open
in C, i.e. X(C) ∩ C ′ = X(C ′). If C ′ is a cell with lower dimension, the tangent
space can be of smaller dimension than C is and so for some x ∈ C ′ it may be
that TxC

′ ⊆ ker(ω(x)). For these cells with lower dimension than k we get some
functions satisfying the DPCN condition for C ′∩L with m = n+2 by the induction
hypothesis. Hence, it is enough to examine the cells C ′ with dimension k, where for
all x ∈ C ′ we have TxC

′ * ker(ω(x)). Write C for such a cell, for an easier notation.

By Lemma (2.7) in [vdD98], Chapter 3, each cell is homeomorphic to an open cell
under a coordinate projection σ : C → C ′, while C ′ is an open cell in Rk. This
coordinate projection is CN , since C is a CN cell. By the inverse function theorem σ
is a CN diffeomorphism. Particularly, C is a graph of a CN function, whose domain
is open.

L

Cω

TxC

x

Figure 5.7: Not all x ∈ L ∩ C must be in X.
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5.4 The Pfaffian sets satisfy DPCN

For every x ∈ C we have TxC + NxC = Rn and TxC ⊥ NxC. By assumption
ω(x) =

∑n

i=1 ai(x)dxi with ai : C → R is a CN function. Hence we can write
a(x) = (a1(x), . . . , an(x) ∈ Rn and so let a(x) = t(x) + n(x) where t(x) ∈ TxC and
n(x) ∈ NxC such that t(x) ⊥ n(x). These functions t and n are CN as a is CN and
C is a CN cell, which implies x 7→ Tx is CN and as t and n are constructed by a
linear separation into direction components. Define τ(x) :=

∑n

i=1 ti(x)dxi.Then τ(x)
is a 1-form and CN , since it depends linearly on ω(x).

Define ω̃ = (σ−1)∗τ .

Claim 3: The set σ(L ∩ C) is a Rolle leaf on (C ′, ω̃).

Proof: 1. The set σ(L ∩ C) is a CN manifold.

Look at TxL + TxC = ker(ω(x)) + TxC = Rn = Tx Rn, since we assumed that
TxC * ker(ω(x)) and dim(ker(ω(x))) = n − 1. So L and C are in general position,
i.e. the inclusion map ι : C → Rn is transverse to L.

Since L is a submanifold of Rn and ι−1(L) = L ∩ C, we obtain by Theorem
5.2.3 that L ∩ C is a submanifold of C with co-dimension 1, so of dimension k − 1.
Furthermore σ is a diffeomorphism, thus σ(L ∩ C) is still a manifold of dimension
k − 1, particularly a submanifold of Rk.

As ω is CN on C, it is also CN on L∩C, so L∩C = ker(ω)∩C is a CN manifold.
2. The manifold σ(L ∩ C) is a leaf on (C ′, ω̃).
First we prove the following statement:

Tx(L ∩ C) = ker(τ(x))

Let v ∈ Tx(L ∩ C), that is v = c′(0), where c : [− ε, ε] → L ∩ C is a C1 curve and
c(0) = y. On the one hand, v ∈ TxC and so n(x)(v) = 0, i.e. ω(x)(v) = τ(x)(v). On
the other hand, v ∈ TxL = ker(ω(x)). Hence 0 = ω(x)(v) = τ(x)(v).

Similar to the proof of Lemma 5.2.4 we obtain

Tyσ(L ∩ C) = ker
(
((σ−1)∗τ)(x)

)
= ker(ω̃(x)).

3. The leaf σ(L ∩ C) is a Rolle leaf on (C ′, ω̃)

C

L

ω(x)
a(x)

C ∩ L

t(x)x

Figure 5.8: Splitting ω(x) into one component on C and one orthographic to it
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5 Application to the Pfaffian Closure

First notice that σ is a diffeomorphism, so L∩C is closed in C and hence σ(L∩C)
is closed in C ′.

Now only the Rolle leaf condition is left to check. So let γ : [0, 1] → C ′ be a graph
such that γ(0), γ(1) ∈ σ(L ∩ C). Look at the graph δ := σ−1 ◦ γ : [0, 1] → C with
δ(0), δ(1) ∈ L∩C, particularly in L. Since C ⊆ U , while U is the set where the Rolle
leaf L is defined on, we obtain that there exists a t ∈ [0, 1] such that ω(δ(t))(δ′(t)) =
0. Since Γ(δ) ∈ C, we have that δ′(t) ∈ Tδ(t)C, hence n(δ(t))(δ′(t)) = 0. So
0 = ω(δ(t))(δ′(t)) = τ(δ(t))(δ′(t)) = τ(σ−1 ◦γ(0))((σ−1 ◦γ)′(0)). Similar to the proof
of Lemma 5.2.4 we obtain that ω̃(γ(t))(γ′(t)) = 0. (Claim)

Next, we apply Lemma 5.4.3 for a Rolle leaf on an open cell on the Rolle leaf
σ(L ∩ C), thus there exists functions fi ∈ MN (Rolle(S)) such that they are defined
on Bi ⊆ Rk+1 for i = 1 . . . r and σ(L ∩ C) = πk+1

k [Z(f1) ∪ . . . Z(fr)].

Additionally C ∈ S, so by Lemma 1.3.9 there exists a closed set D ∈ Sn+1 such that
πn+1

n [D] = C. Since D ∈ S and closed, we can apply Lemma 4.4 and obtain a CN

function g : Rn+1 → R in S such that Z(g) = D and hence πn+1
n [Z(g)] = C.

For an easier notation, we assume that σ is the projection on the first k coordinates.
Note that

L ∩ C = (σ(L ∩ C) × Rn−k) ∩ C.

Define for i = 1, . . . , r

B′
i := {(x, y, z, z′) | (x, z) ∈ Bi ∧ y ∈ Rn−k ∧ z′ ∈ R} ⊆ Rn+2

and gi : B′
i → R by

(x, y, z) 7→ (fi(x, z))
2 + (g(x, y, z′))2.

Then by the Claims 1 and 2 in the proof of Lemma 5.4.1 the functions gi ∈
MN (Rolle(S)) for i = 1, . . . , r. Thus look at

(x, y) ∈ πn+2
n [Z(g1) ∪ · · · ∪ Z(gr)]

⇔ ∃i∃z, z′ (x, y, z, z′) ∈ B′
i ∧ fi(x, z) = 0 ∧ g(x, y, z′) = 0

⇔ x ∈ πk+1
k [Z(f1) ∪ · · · ∪ Z(fr)] ∧ (x, y) ∈ πn+1

n [Z(g)]

⇔ (x, y) ∈ (σ(L ∩ C) × Rn−k) ∩ C = L ∩ C

So the functions g1, . . . , gr satisfy the DPCN condition for L∩C with m = n+2.

At last, we only have to collect all functions we defined for the different cells in-
tersected with L and then we have a projection of a finite union of zero sets of
MN (Rolle(S))-functions satisfying the DPCN condition for the Rolle leaf L. This
finishes the proof of the lemma.
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5.4 The Pfaffian sets satisfy DPCN

This completes the proof of Theorem 5.1.4, so we have shown that the o-minimal
weak structure Rolle(S) satisfies DCN for all N and by the theorem of the comple-
ment it is an o-minimal structure.
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6 Results and Perspective

This thesis dealt with o-minimal structures. We improved Wilkie’s theorem of the
complement and thus provided a method to prove that certain interesting construc-
tions are in fact o-minimal structures. In Wilkie’s theorem, a central requirement
is that the function approximating a set in an o-minimal weak structure must be
smooth. Karpinski and Macintyre’s vary this claim by assuming the existence of
total CN functions. We have shown that this condition can be weakened - there only
have to be finitely many functions which are not defined in the whole space, but only
on some open set and which have a closed graph.

This generalization allows us to apply the theorem to the Pfaffian closure of an o-
minimal structure. Particularly we can use it for the Pfaffian closure of arbitrary
expansions of the real field. For example, we could show that Ran,exp is still an o-
minimal structure. However, we can also expand an o-minimal structure in R by
arbitrary Pfaffian functions.

An interesting question to the theorem of the complement is whether the assumptions
on the functions in the DPCN condition can be further weakened, for example it
will be enough to examine continuous functions, as Wilkie suggests in [Wil99].

Another question with respect to the expansion of o-minimal structures on R may be,
if it is possible to intersect with other manifold then these, which are Rolle leaves.
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