

Westfälische
Wilhelms-Universität Münster

METABOLISM OF A CYTOSOLIC PHOSPHOLIPASE A \mathbf{A}_{2} INHIBITOR WITH AN ACTIVATED KETO GROUP BY RAT LIVER MICROSOMES

Jörg Fabian, Matthias Lehr
Institute of Pharmaceutical and Medicinal Chemistry, University of Münster Hittorfstr. 58-62, 48149 Münster, Germany

Introduction:

Inhibitors of cytosolic phospholipase $A_{2} \alpha\left(C P L A_{2} \alpha\right)$ are assumed to provide a novel therapeutic with application in many inflammatory diseases. Recently we have found that 1-[3-(4-octylphenoxy)-2-oxypropyl]indole-5-carboxylic acid (1) is a potent inhibitor of $\mathrm{CPLA}_{2} \alpha$ with an activated ketone moiety as pharmacophore (serine trap) [1]. Since it is known that this functional group shows metabolic instability we investigated the metabolism of $\mathbf{1}$ by rat liver microsomes.

It is important to evaluate the metabolic stability of drug candidates toward CYP-mediated metabolism, and to use it as parameter in identifying and optimizing drug candidates for further development [2].
Though inter-species differences and variations of CYP isoforms are known [3] metabolism by rat liver microsomes give an idea about stability and potential bioavailibility of substances.

Microsomal Incubation:

The liver microsomes of male Sprague-Dawley rats were preparated adapted to published procedures [4,5].
Microsomal incubations were carried out in 0.1 M potassium phosphate buffer pH 7.4 at $37^{\circ} \mathrm{C}$ in a shaking water bath and contained rat microsomes ($2.25[\mathrm{mg} / \mathrm{ml}]$ protein / Bradford / BSA standards), 3 mM MgCl_{2} and 1.9 mM NADPH. The final addition of the analyt ($20 \mu \mathrm{M}$) initiated the metabolisation which was carried out for 30 min (2 h for LC/MSanalysis). Reference incubations were performed without NADPH. Liquid-liquid-extraction of the assay with diethylether was accomplished after addition of internal standard, reaction termination by acetonitrile and acidification. The separated organic layer was concentrated under a stream of nitrogen and the residue was dissolved in mobile phase.

LC-Analysis:

As the activated ketone moiety of $\mathbf{1}$ exhibits hydrate formation in aqueous solutions, besides the peak of $\mathbf{1}$ a peak for its hydrate form could be detected during RP-chromatography (see figure 6). Hence, a normal-phase chromatography with isohexane/THF was employed.
A $50 \mu \mathrm{l}$ volume of the resolved assay residue was injected onto Lichrospher 100-5 CN ($250 \times 4 \mathrm{~mm}$, pre column $4 \times 4 \mathrm{~mm}$) column (Merck, Darmstadt) at a flow rate of $0.75 \mathrm{ml} / \mathrm{min}$, column oven temperature of $25^{\circ} \mathrm{C}$ and a UV detection wavelength of 240 nm . The mobile phase consisted of isohexane / THF 92:8 (0.1\% TFA) (A) and isohexane / THF 50:50 (0.1\% TFA) (B). The following gradient was applied (A\%): $0 \mathrm{~min}: 90,15 \mathrm{~min}: 20,18 \mathrm{~min}$: $20,20 \mathrm{~min}$: $90,27 \mathrm{~min}$: 90.

Results:

The chromatogram of the reference (figure 2) displays the internal standard (peak no. 2: 10.8 min) and the analyt peak of 1 (peak no. 8: 14.4 min) as main peaks. The incubation (figure 1) resulted in the formation of metabolites (peak no. 3: 12.3 min, no. 9: 15.5 min, no. 12: 17.2 min). Peak 3 was the main metabolite with about 18% of the peak area ratio of $\mathbf{1}$ in the reference assay. Approximately 69% of $\mathbf{1}$ were not metabolised within 30 min .
After spiking the incubation probe with substance $\mathbf{2}$, it could be assumed that this compound was the main metabolite.

LC/MS ${ }^{\text {n }}$-Analysis:

LC/MSn was employed to verify the alcohol 2 as the main metabolite.
Since LC/MS investigations with normal-phase chromatography were not successful, a RP-chromatographic method had to be developed.
A 100μ l volume of the dissolved assay residue was injected onto Kromasil 100-5 C18 ($60 \times 2 \mathrm{~mm}$, inletfilter $2 \mu \mathrm{~m}$) column (CS, Langerwehe) at a flow rate of $0.4 \mathrm{ml} / \mathrm{min}$ and a UV detection wavelength of 235 nm . The mobile phase consisted of 20 mM ammonium formiate / acetonitrile 80:20 (A) and 20 mM ammonium formiate / acetonitrile 15:85 (B). The following gradient was applied (A\%): $0 \mathrm{~min}: 55,10 \mathrm{~min}: 0,11 \mathrm{~min}: 0,12 \mathrm{~min}: 55$, 15 min : 55
Two minutes after injection, the MS-detector (LCQ ${ }^{\circledR}$ ThermoFinnigan) was activated and structure determination was performed using ESI-MS ${ }^{n}$ in negative mode.

LC/MS ${ }^{\text {n }}$ results:

The alcohol 2 was confirmed as the main metabolite with rat liver microsomes. Representive ESI-MS and MS^{3} data of the incubation assay are shown in figure 3, which reveal a formiate adduct of $\mathbf{2}$ at $\mathrm{m} / \mathrm{z} 468$ $[M+45]^{-}$. After isolation and fragmentation of $m / z 468$ the daughter ion $m / z 422[\mathrm{M}-\mathrm{H}]^{-}$fragmentation pattern exhibits MS/MS product ions at $m / z 378,216$ and 203. The MS^{3}-spectrum of a reference probe spiked with 2 (figure 5) corresponds to latter fragmentation pattern. The MS^{2} data of the hydrate of $\mathbf{1}$ is shown in figure 6 . The formiate adduct $[M+18+45]^{-}$at $m / z 484$ was isolated and the following fragmentation revealed $\mathbf{1}$ as the product ion at $m / z 420[\mathrm{M}-\mathrm{H}]^{-}$. Figure 4 represents a full scan of $\mathbf{1}$ in the range of $8.31-8.41 \mathrm{~min}$.

Literature:

[1] Ludwig J., PhD Thesis, University of Münster (2004)
[2] Ansede, J. H.; Thakker, D. R., J Pharm Sci 2004, 93, (2), 239-55.
[3] Zuber, R.; Anzenbacherova, E.; Anzenbacher, P., J Cell Mol Med 2002, 6, (2), 189-98
[4] Cottrell, L.; Golding, B. T.; Munter, T.; Watson, W. P., Chem Res Toxicol 2001, 14, (11), 1552-62.
[5] Saito, K.; Kim, H. S.; Sakai, N.; Ishizuka, M.; Kazusaka, A.; Fujita, S., J Pharm Sci 2004, 93, (5), 1271-8.

Acknowledgement:

Financial support by Merckle GmbH is greatly appreciated.

