

Westfalische
Wilhelms-Universität Münster

CHARACTERIZATION OF HUMAN CYTOCHROME P450 ENZYMES INVOLVED IN THE METABOLISM OF cPLA α INHIBITORS WITH 1-INDOL-1-YLPOPAN-2-ONE SKELETON

Jörg Fabian, Matthias Lehr
Institute of Pharmaceutical and Medicinal Chemistry, University of Münster
Hittorfstr. 58-62, 48149 Münster, Germany

Introduction:

Inhibitors of cytosolic phospholipase $A_{2} a\left(c P L A_{2} a\right)$ are assumed to provide a novel therapeutic with application in many inflammatory diseases [1]. Certain 1-indol-1-ylpopan-2-ones, such as compounds $\mathbf{1}$ [2] and $\mathbf{2}$ [3], are potent inhibitors of cPLA ${ }_{2} a$.
An important part of the pharmacophore of these substances is the activated electrophilic ketone moiety, which is supposed to form covalent binding interactions with a serine of the active site of $\mathrm{CPLA}_{2} \mathrm{a}$. In earlier investigations metabolic reduction of the ketone by rat liver microsomes led to the alcohols 4 [4] and 5, respectively, which are inactive against $\mathrm{CPLA}_{2} \mathrm{a}$.

As inter-species differences and variations of CYP isoforms are known [5] we now investigated, which human CYP450 isoenzyms are responsible for metabolism of compound $\mathbf{2}$ by inhibitor approach [6].

Incubation procedure:

$2 \mu \mathrm{l}$ of analyte solution (final concentration $25 \mu \mathrm{M}$) and -where required- $1 \mu \mathrm{l}$ inhibitor solution dissolved in DMSO were added to potassium phophate buffer ($100 \mathrm{mM}, \mathrm{pH} 7.4 / 3 \mathrm{mM} \mathrm{MgCl})_{2}$) containing 20 pmol BD Supermix ${ }^{\mathrm{TM}}$ cDNA-expressed CYP450 isoenzymes (1A2, 2C8, 2C9, 2C19, 2D6 and 3A4) cocktail to give a final volume of $200 \mu \mathrm{l}$. The reaction was started by the addition of 50μ I NADPH solution (15 mM) and carried out at $37^{\circ} \mathrm{C}$ in a shaking water bath for 2 h . Reference incubations were performed without NADPH. The incubations were stopped by the addition of ice-cold $375 \mu \mathrm{l}$ MeCN with $0.5 \% \mathrm{HCOOH}(v / v)$. The samples were centrifuged and the supernatants were analysed. The analyte solution were shown to be stable at $10^{\circ} \mathrm{C}$ for 24 h .
For LC-MS investigations 250μ l of ice-cold MeCN was used as stop solution. After acidification with $625 \mu \mathrm{l}$ of 0.1 M phosphoric acid liquid-liquidextraction of the samples with $2 \times 2.5 \mathrm{ml}$ diethylether was accomplished. The separated organic layers were concentrated under a stream of nitrogen and the residue was reconstituted in $300 \mu \mathrm{l}$ mobile phase.

LC-Analysis:

A $100 \mu \mathrm{l}$ of sample was injected onto Kromasil 100-5 ODS ($150 \times 3.2 \mathrm{~mm}$, with securityguard ${ }^{\text {TM }}$ cartridge) column (Phenomenex) at a flow rate of 0.6 $\mathrm{ml} / \mathrm{min}$, column oven temperature of $30^{\circ} \mathrm{C}$ and a UV detection wavelength of 235 nm . The mobile phase consisted of MeCN / 20 mM ammonium formiate $20: 80(0.2 \% \mathrm{HCOOH})(\mathrm{A})$ and $\mathrm{MeCN} / 20 \mathrm{mM}$ ammonium formiate 85:15 ($0.2 \% \mathrm{HCOOH}$) (B). The following gradient was applied (A\%): 0 min $90,23 \mathrm{~min}: 10,24 \mathrm{~min}: 10,25 \mathrm{~min}: 90,35 \mathrm{~min}: 90$.

Results - Metabolism:

The chromatogram of the reference incubation (Fig. 2) displays the hydrate [4] and the analyte peak of 2. The incubation (Fig. 1) resulted in the formation of metabolites (M1: $16.9 \mathrm{~min}, \mathbf{M 2}$: 18,5 min, M3: 22,0 min, Scheme 1). M 3 was the main metabolite with about 30 \% relative peak area. M2 was formed by about 10 \% and M1 derived out of $\mathbf{5}$ at circa 6%. Approximately 53% of $\mathbf{2}$ were not metabolised within 120 min .
After spiking the incubation probe with substance 5, it could be assumed that this compound was the main metabolite.

Results - Inhibition Investigation:

Inhibition assays (Table 1) revealed CYP 2C19 and 2C8 as the main metabolic pathways of 2 (Scheme 1). Quercetine inhibited the reduction of $\mathbf{2}$ and in minor the hydroxylation of the phenylfunction. Tranylcypromine exclusively avoided the hydroxylation of the aryl-group of $\mathbf{2}$ and 5, respectively. As the 4'-fluorophenyl-derivate 3 did not show hydroxylation (Fig. 6), the 4^{\prime}-position can be assumed as the preferred reaction site. CYP 3A4 is involved in hydroxylation reaction inferior.

LC/MS ${ }^{\text {n }}$-Analysis:

LC/MS ${ }^{\text {n }}$ and counter synthesis were employed to verify the metabolites of $\mathbf{2}$ and 3, respectively.
A $60 \mu \mathrm{l}$ ($70 \mu \mathrm{l}$ at LC/MS ${ }^{3}$) volume of reconstitued assay residue was injected onto Kromasil 100-5 ODS ($150 \times 3.2 \mathrm{~mm}$, with securityguard ${ }^{T M}$ cartridge) column (Phenomenex) at a flow rate of $0.6 \mathrm{ml} / \mathrm{min}$ and a UV detection wavelength of 235 nm . The mobile phase consisted of MeCN / 20 mM ammonium formiate 20:80 (A) and MeCN / 20 mM ammonium formiate 85:15 (B). The following gradient was applied (A\%): $0 \mathrm{~min}: 90,23 \mathrm{~min}: 0$, $24 \mathrm{~min}: 0,25 \mathrm{~min}: 90,35 \mathrm{~min}: 90$. Three minutes after injection, the MSdetector (LCQ ${ }^{\circledR}$ Thermo-Finnigan) was activated and structure determination was performed using ESI-MS ${ }^{\mathrm{n}}$ in negative mode.

Results - LC/MS ${ }^{\text {n }}$

LC/MS ${ }^{\text {n }}$ investigations of the metabolism of $\mathbf{2}$ confirm the alcohol 5 (M3) as the main and 7/8 (M2/M1) as minor metabolites (Scheme 1). Representive ESI-MS ${ }^{2 / 3}$ data of the incubation assay are shown in Fig. 3. Isolation and fragmentation of the formiate adduct of 5 at $m / z 448 \quad[M+45]^{-}$yields the daughter ion at m / z $402[\mathrm{M}-\mathrm{H}]^{-}$, which fragments mainly to MS/MS product ions at $m / z 216$ and 185 . The assumed structures are represented in Scheme 2. The MS^{3}-spectrum of a reference probe spiked with $\mathbf{5}$ (Fig. 4) corresponds to latter fragmentation pattern. The MS² data of 8 ($\mathrm{m} / \mathrm{z} 418$) (Fig. 3) shows fragments at $m / z 216$ and 201. The product ion $m / z 201$ illustrates the hydroxylation at the phenyloxyphenyl-part. 7 can be detected at $m / z 416$.
Incubation of $\mathbf{5}$ forms the expected metabolite 8, which was verified by the fragmentation pattern (Fig. 5).
Incubation of the 4'-fluorophenyl-derivate 3 yields 6 ($\mathrm{m} / \mathrm{z} 420$) and no further hydroxylation can be observed (Fig. 6). The fragmentation pattern of a spiked reference probe confirms 6 as the main metabolite (Fig. 7)

Literature:

[1] Lehr M., Anti-Inflamm Anti-Allergy Agents Med Chem 2006, 5, 149-161 [2] Ludwig J. et al., J Med Chem 2006, 49, 2611-2620
[3] Drews A. et al., unpublished results
[4] Fabian J., Lehr M., J Pharm Biomed Anal 2007, 43, 601-605
[5] Zuber R. et al., J Cell Mol Med 2002, 6, 189-98
[6] Bourrie M. et al., J Pharmacol Exp Ther. 1996, 277, 321-32

