Off-resonant excitation swing up of a quantum emitter **T. Bracht¹**, M. Cosacchi², T. Seidelmann², M. Cygorek³, A. Vagov^{2,4}, V.M. Axt², T. Heindel⁵, D. E. Reiter¹ WWU

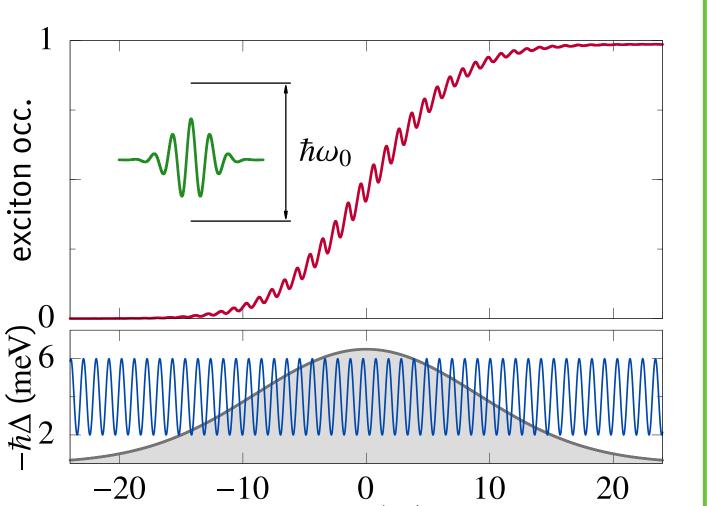
¹Institut für Festkörpertheorie, Universität Münster ²Theoretische Physik III, Universität Bayreuth ³Heriot-Watt University, Edinburgh ⁴ITMO University, St. Petersburg ⁵Institut für Festkörperphysik, TU Berlin

Introduction

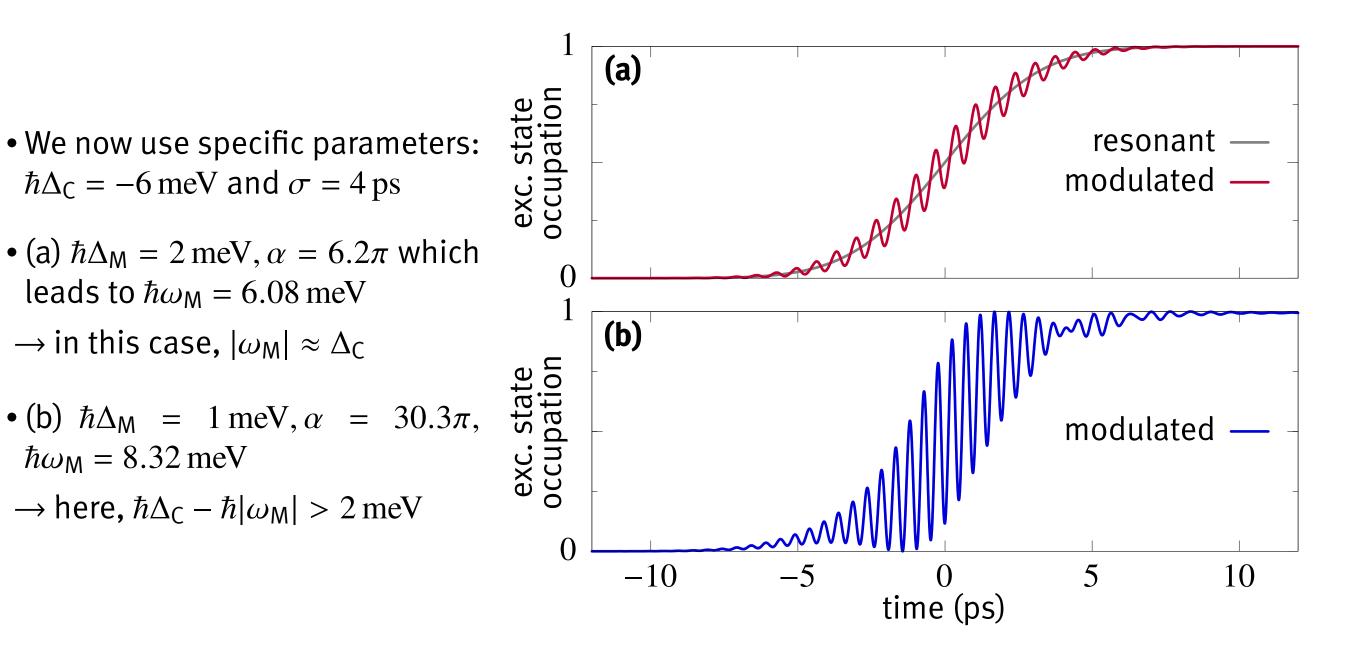
- Two level system (eg. Quantum dot):
- determinsitc preparation of the excited state needed for usage as single photon source

MÜNSTER

- existing scheme like Rabi rotations or phononassisted preparation with different advantages and disadvantages
- New proposal: TLS excited by modulated laser pulse
- \Rightarrow Modulation leads to a swing up of the excited state occupation



Frequency modulation: side bands and performance



time (ps)

Two level dynamics

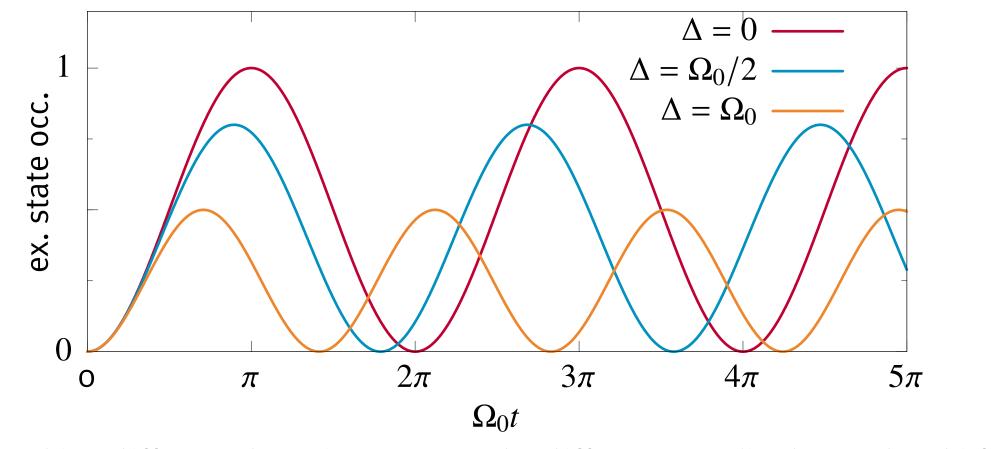
• Simple model: general TLS consisting of ground state $|g\rangle$ and excited state $|x\rangle$ with time-dependent driving term

 $H = \hbar\omega_0 |x\rangle \langle x| - \frac{\hbar}{2} \Omega^*(t) |g\rangle \langle x| - \frac{\hbar}{2} \Omega(t) |x\rangle \langle g|$

• For constant driving, this system performs Rabi oscillations. If excited with frequency ω_L , the detuning is $\Delta = \omega_L - \omega_0$. For laser envelope Ω_0 , the frequency Ω_R and amplitude *a* of the Rabi oscillations then reads

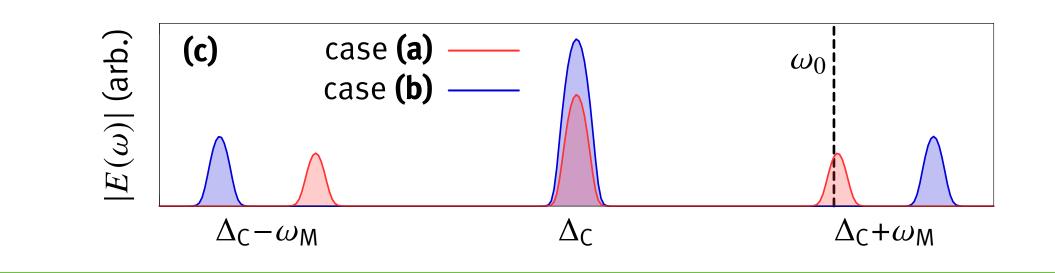
$$\Omega_R = \sqrt{\Omega_0^2 + \Delta^2}, \quad a = (\Omega_0 / \Omega_R)^2$$

• For larger detuning, the oscillations are faster and the maximum occupation is decreased



 \Rightarrow We want to combine different detunings to use the different amplitudes and Rabi frequencies to

- (a) has a shape very similar to that of a resonant excitation, overlayed with small oscillations
- (b) looks distinct from (a) in that it shows high-amplitude oscillations and an irregularity towards the end of the pulse
- In all cases, the frequency modulation leads to side-bands in the spectrum, depending on the amplitude and frequency of the modulation term in Eq. 1
- (c) shows the spectrum of the laser pulses used in (a) and (b). For (a), a resonant side band exists while in (b) no spectral components are resonant

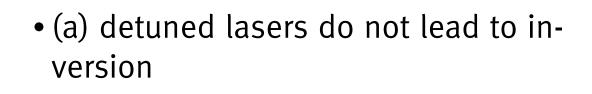


Two color approach

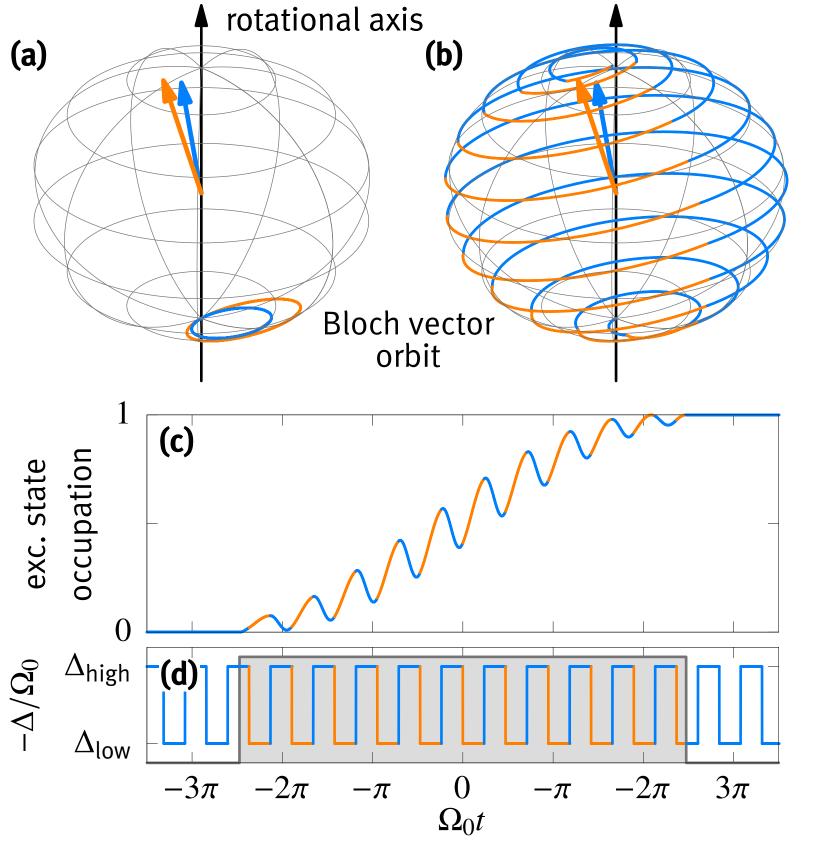
- In the scheme using frequency modulation, multiple spectral components of the pulse exist, spaced by the modulation frequency corresponding to the Rabi frequency at the pulse maximum
- \rightarrow Use two pulses, with the second pulsed spectrally displaced by the Rabi frequency corresponding to the first one

increase the occupation

Swing-up using frequency modulation



- (b) combination of both detunings: swing-up effect occurs
- for this, the frequency of the pulse is modulated, it switches between the two detunings
- occupation dynamics for the • (C) bloch sphere in (b)
- (d) pulse shape and rectangular frequency modulation of the pulse



• The swing-up dynamics occur because of the different Rabi frequencies

• during the lower detuning (slow but higher amplitude Rabi oscillation) the occupation rises (orange color)

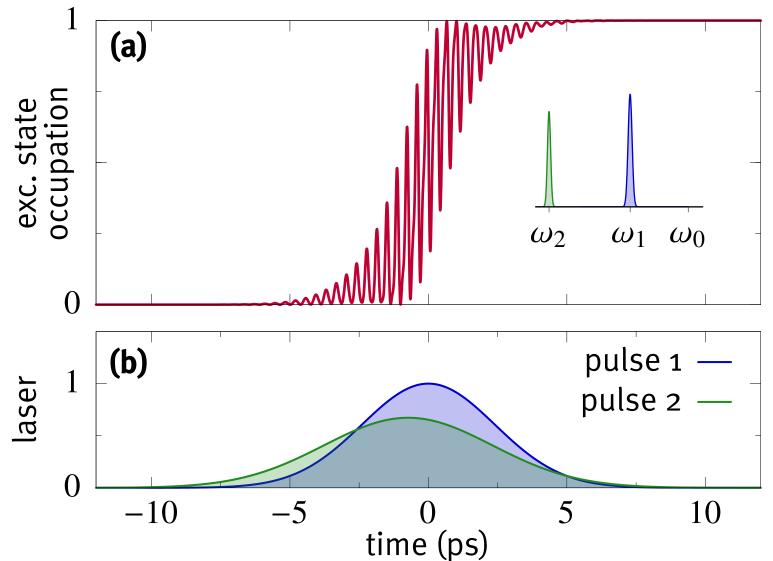
• this can also be understood as an amplitude modulation due to the beat effect of the two lasers

• (a) time evolution of exciton occupation for pulse sequence in (b)

• pulse 1: $\sigma = 2.4 \text{ ps}, \alpha = 22.65 \pi$, $\Delta = -8 \text{ meV}$

• pulse 2: σ = 3.04 ps, α = 19.29 π , $\Delta = -19.163 \,\mathrm{meV}$

• pulse separation: 0.73 ps



• for the two color scheme, the driving laser is

 $\Omega(t) = \Omega_1(t)e^{-i\omega_1 t} + \Omega_2(t-\tau)e^{-i\omega_2 t}$

 \rightarrow the two pulses now have a constant frequency!

• We choose the detuning of the first pulse and then calculate that of the second:

$$\Delta_2 = \Delta_1 - \sqrt{\Omega_1^2(t=0) + \Delta_1^2}$$

 \rightarrow this is always less than Δ_1 . If Δ_1 is below the transition energy, so is Δ_2

If we choose $\Delta_1 < 0$, both pulses are below the transition energy. The excitation then happens in the transparent region of the material

• during the higher detuning (fast but lower amplitude Rabi oscillation) the occupation falls (blue color)

• the switching occurs with the rabi frequency $\Omega_R = \sqrt{\Omega_0^2 + \Delta^2}$ induced by a constant pulse with mean detuning $\Delta = (\Delta_{high} + \Delta_{low})/2$

The same effect can be used with Gaussian pulses!

 $\Omega(t) = \Omega_0(t)e^{-i\phi(t)}, \quad \Omega_0(t) = \frac{\alpha}{\sqrt{2\pi\sigma^2}}e^{-t^2/(2\sigma^2)}$

We choose a smooth modulation with a frequency ω_M close to the Rabi frequency at the pulse maximum

$$\Delta(t) = \Delta_{\rm C} + \Delta_{\rm M} \sin(\omega_{\rm M} t), \quad \omega_{\rm M} \approx \sqrt{\Omega_0^2 + \Delta_{\rm C}^2}$$

Conclusions

• Modulation of the pulses opens up a class of interesting excitation schemes

• Using these schemes, true off-resonant excitation can be achieved, relying only on the carrier-light interaction

• This is universal for all driven two-level systems!

living.knowledge

t.bracht@uni-muenster.de

(2)