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Symmetry relations for macroscopic constants are derived. Especially it is shown 
that the Voigt-symmetry holds for the indices of the elastic constants. This has been 
doubted several times for lattices of particles with additional degrees of freedom. In 
the second part a simple model for Br 2- and J2-1attices is discussed. The intermole- 
cular forces are assumed to be van-der-Waals-forces. The influence of the internal 
degrees of freedom on lattice dynamics is calculated especially for the elastic constants. 
Further the limiting frequencies for q ~ 0  are given and compared with experimental 
values. 

Introduction 

In a former  paper  general relations for  elastic constants of molecular 
crystals have been derived neglecting the contr ibut ion of the intramole- 
cular degrees of f reedom to the lattice dynamical  properties 1. The 
method is essentially that  used by Born and Huang  2' 3 in obtaining the 
constants of lattices with basis. The question has been raised whether 
the Voigt-symmetry of the elastic constants (interchange of the tensor 
indices) is satisfied or  no t  4. This question has been settled for  lattices of 
point  ions 1 's '6 .  I t  has been shown that  the Voigt-symmetry can be 
derived f rom general invariance relations. The problem has not  been 
settled for  lattices of particles with additional degrees of f reedom (e. g. 
rigid molecules) as stated in 1. In  the following we give the proof  for  the 
Voigt-symmetries of the elastic constants of molecular  lattices. 

In  order  to illustrate these relations and to investigate further  the 
influence of the intramolecular  motions to the lattice properties, we use 

1 Ludwig, W.: Springer Tracts in Modern Physics 43, 1-301 (1967). 
2 Huang, K. : Proc. Roy. Soc. (London) Ser. A 203, 178 (1950). 
3 Born, M., Huang, K. : Dynamical theory of crystal lattices. Oxford 1954. 
4 Laval, J.: Compt. Rend. 232, 1947 (1951); 238, 1773 (1954);- Ann. Inst. Henri 

Poincar6, 1, No. 4, 329 (1964). 
5 Leibfried, G., Ludwig, W.: Z. Physik 160, 80 (1960). 
6 Wallace, D. C.: Rev. Mod. Phys. 37, 57 (1965). 
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the simplest possible model for solid bromine and iodine. These crystals 
are considered because they have a simple geometrical structure (2 mole- 
cules = 4 particles per unit cell) as well as simple intermolecular forces 
(van der Waals-forces). We can treat these lattices as consisting of point 
ions with central forces (spring constants) between the ions. By taking 
the limit of infinite intramolecular spring constant, we obtain a mole- 
cular crystal of rigid dumbbell molecules. 

Voig t -Symmetry  of  Elast ic  Constants  

We consider the simplest case, which already shows the problem: 
a molecular crystal with one rigid molecule per unit cell. This implies, 
that all the molecules have the same orientation. The equations of 
motion then read~: 

IIIi1 

�9 = ] u T - E k g ~ ] o  7, (1) i/~7' = - Z  ~e~ J 
nJ u J  

�9 " m  i / i n  i n n  

�9 k j - ~ . ~ 2  . (2) �9 j a 
a j  n g  

M and Ilk denote mass and tensor moment of inertia, resp. u~ is the dis- 
placement, o9~ is the infinitesimal libration of the molecule n. Mean 
indices 1 and 2 denote translational or librational motion, resp. Con- 
cerning the lower coordinate indices, we use a summation convention. 

The coupling constants T ~  obey a number of invariance relations1: ~J 

m n  a m  m n  m + h  n + h  

~g~ ~ = Up ~ ; ~g~ P = ~ P ; (3 a, b) i j  j i  i j  i j 

~ J - ~  ~ J 
(4) 

or 

m n  mn mn 

inn n m n  

E ~1~. 1. X k ~ , l k j =  2 ~17 2 .  ( 5 b )  
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i t  i t  

X~' is the center of mass coordinate of molecule n, e i j  k is the totally 
antisymmetric tensor of 3rd rank. 

By taking slowly varying displacement and libration fields we obtain 
the long wave elastic limit in the usual way 1 using the stationary solutions 
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of (2): 
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P ~li= {Cij,  k l+  fro, ik Rmn Cn, jr} Ujlkl= elk, j t  Ujlkt 

with p = M~ Vz (Vz = volume of unit cell) and 

1 oh 
d i J =  - - - - ~ V g  ~/2 2 ; i  j det (~ij ~ O; 

Ci, j k =  ~ - ~ h  Oh - e ~  ~ x ~ ;  
12 

1 Oh h h 
- - -  PiIX X d,j,~,= 2 ~ Y  . .  ~ ,. h t J  

R i j = ( C - 1 ) u ;  

(6) 

(7a) 

(7b) 

(7c) 

Further we introduce 

s , . j k = ~ L  ~'~. ~.xTx~. (8) 
F i n n  ~ J 

By using (3, 4) and neglecting surface contributions to the sum in (7c) 
it is simple to prove 

Cij, kt = �89 jk + g~k, j3" (9) 

The first step now is the derivation of the symmetry properties of (7) 
from (3)-(5). Some of them have been given in 1 already: 

Cis=Cj , ;  R s , = n i j ;  (lOa) 

C~, jk--  Ci, k j = Cu elk j; (lOb) 

Cij, kt = Cj~,kZ= Cij, Zk" (10C) 

The essential symmetry relation now is related to (8). This has not been 
realized in i. Obviously from definition we have 

Sit, jk = Sjk, it. (11) 

By multiplying (5) with the center-of-mass-coordinates, we obtain 

all, jk -- all, k j = -- Cs, il 8,k j ,  (12a) 

and from this using (11) 

gU, jk--gU, jk = --C, , jkS,  u .  (12b) 

Now, from (9) and (11, 12) the essential relation 

dlk, i j--di j ,  lk=�89 fl~skjJFf,,kjSs,iJFfs, jlSskiJl-Cs, kiSslj} (13) 

follows. 
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The elastic constants  Cik , j  l are defined by (6), but because only the 
symmetric part in k, l enters (6), we have 

�89 j; + C~l, jk) = A~ j, kl (14a) 
with 

- -  ^ 1 ^ ~ ^ ^ Aij ,  k l - -Ci j ,  k l+~{Cm,  ikRmnCn, j l + C m ,  iiRmnCn, jk} .  (14b) 

Formally these expressions are identical with the corresponding ex- 
pressions for the elastic constants in point ion lattices with basis. For 
these one can show that both the contributions in (14b) already have 
the correct and necessary symmetries which allow for a solution of (14a) 
with respect to the elastic constants C i k , j t .  It is obvious from (10b) 
and (14) that in the case of molecular lattices neither the first nor the 
second part in (14b) has the correct symmetries. But now we are able 
to show that the sum of both, i.e. Ai j , k  t has the correct symmetries, 
which essentially means, that the parts with incorrect symmetries in 
both the contributions of (14b) just cancel out. From (14b) it follows 
immediately 

Ai j, kl = Aji ,  kl = Ai  j, lk, (15a) 

if (10a) and (10c) are taken into account. For Ak t, i j  we obtain with (13) 
and (10b) 

Ak I _ 1 ^ , i j - -A f j ,  kl-Jt'g{l~mik(Cm, j l - -  Urn, l j ) - ~ s j k ( d s ,  i l-- ds, li)} 

"]-�89 {~,rnik dmsSs j l '~  llmil drns~sjk } �9 

Using (10b) again for the differences in the first curly brackets, we get 
expressions which just cancel the expressions in the second curly brackets, 
so that 

Akl, i j = A i j ,  kl. (15b) 

(15a) and (15b) are necessary and sufficient for solving (14a); the 
solution is given by 

Cik, j l = A i j ,  k l+ Akj,  i l - -Aki ,  jl  . (16) 

By (16) the elastic constants are related to the microscopic force-con- 
stants of molecular lattices when Eqs. (7) and (14b) are taken into 
account. 

Model  Calculations for Br z and -12 

The simplest molecular lattices seem to be solid Br 2- and JE-crystals. 
This statement is related to the geometrical structure (Fig. 1) as well as 
to the molecular interaction. The latter should be essentially determined 
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Fig. 1. Br2-1attice. The hatched particles belong to planes at distance 1)[2 below or 
above the drawing plane. In the J2-1attice, the distance between particles 2 and 3 is 

relatively smaller compared to the distance between 1 and 2 

by the van-der-Waals-interaction between two molecules # and v 

I~ Iv ,~00 N ( v )  ((~i k - -  3 nl nk) ((~yt --  3 nj hi) 
qS~'v = 4 (I~, + Iv) ~ j ~kl (R~, v) 6 

(17) 

In deriving (17) the same approximations as for atomic van-der-Waals- 
interactions have been used. I .  is the ionization energy of the molecule, 

2 2 
(18a) 

its polarizability tensor, where 10) denotes the ground state of the 
molecule. Ru, is the distance between the centers-of-mass and n = Ru v/R~, v. 
In the case of a lattice with equal dumbbell molecules the polarizability 
can be written as 

a}~ ) = a• 6i j -  (al  - all) rn} ~) rn}U); (18 b) 

m} ~) is the unit vector in the direction of the dumbbell axis, all the main 
polarizability in this direction, and a• the polarizability perpendicular 
to the dumbbell axis. 

For  the repulsive interaction we may use an angle-dependent power 
law, e.g. an expansion with respect to spherical harmonics for the 
relative orientation. For  simplicity we have assumed the same angle- 
dependence as given by (17) and (18a), which is in accordance with the 
geometrical shape of the molecules; we used the repulsive power 12. 
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Table 1 
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~l ~11 I a b c l Z 
(A3) (/~3) (eV) (A) (A) (A) (A) (~ 

Br 2 4.65 11.2 13 4.48 6.67 8.72 2.27 31.31 
Jz 7.2 15.93 9.7 4.774 7.250 9.772 2.70 32.71 

The polarizabilities of Brz and J2 have not been measured. With a 
relation given by Silberstein 7 they can be obtained approximately f rom 
those of HBr  and HJ. The values are given in Table 1. The only para- 
meter we are left with is the repulsion constant, which can be taken 
f rom the equilibrium conditions (four conditions, three for the lattice 
constants, one for the orientation of the rigid dumbbells). We have 
determined this parameter  by the equilibrium condition for the lattice 
constants a and c. Then the other conditions are not satisfied, or the 
other parameters are about  30 ~o in error, resp. Nevertheless, we used 
this procedure to have a simple model. 

F rom the potential thus given we can obtain the force-constants by 
taking the corresponding derivatives with respect to translations (of the 
center-of-mass) and infinitesimal rotation angles. We then have the 
interaction in a lattice of rigid molecules. 

Our aim is to investigate the contribution of the intramolecular 
motions to the elastic constants and to show that the Voigt-symmetries 
hold for rigid-molecular lattices as well as for non-rigid-molecular 
lattices. To include the intramolecular motions we replace the inter- 
actions by those between the single constituents of the lattice. We put 
the force constants between seventh and heigher neighbors equal to 
zero. The intramolecular constant f l  is taken from the eigenfrequency 
of the free molecule*, the other ones are chosen in such a way that the 
interaction discussed above is described by the effective spring constants. 
The rigid molecules can be obtained in the l i m i t f l ~ o o .  The set of 
force-constants used is given in Table 2 (see Fig. 1 for the meaning). 

The calculation of the elastic constants is then straight-forward using 
the method described in 8 e.g. for four atoms per unit cell. From this 
procedure it is obvious that the Voigt-symmetry of the elastic constants 
holds. Then taking the limit f l  ~ o o  one can see immediately that the 

* It seems that the force constants f 1 in the solid state are different from those of the 
free molecule. 

7 Silberstein, L.: Phil. Mag. 3, 33, 92, 215, 521 (1927). 
8 Leibfried, G.: Handbuch der Physik, VII/l, S. 104. Berlin-GSttingen-Heidelberg: 

Springer 1955. 
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Table 2. Force constants between atoms (see Fig. 1) 

2--1 2--3 2--7 2--5 2--6 2--8 
A A A /4 A A 

Br z 24.6 0.271 0.213 0.077 0 . 0 7 2  --0.017 �9 104 
J2 17.2 0.235 0.269 0.032 0.041 -- 0.014 dya" cm -1 

Table 3 

Br2 J2 

A=24.6-104 f a = ~  A=17.2"104 A=cx3 

cxx 0.528 0.683 0.475 0.546 
c22 0.460 0.456 0.213 0.211 
c33 0.570 0.519 0.547 0.479 
cx2 0.067 0.148 0.059 0.063 
c13 0.552 0.551 0.483 0.490 
c23 0.035 0.056 0.026 0.006 
c44 0.084 0.084 0.088 0.088 
c55 0.420 0.461 0.361 0.338 
c66 0.153 0.153 0.077 0.077 
1#c 0.320 0.352 0.263 0.262 

.1011 dyn/cm 2 

Voigt-symmetry is not changed by taking the limit. This, of course, only 
verifies the statements of (15) and (16) for our simple example. 

The explicit expressions for the elastic constants are very lengthy 
and cannot be given here. The numerical values of the constants are 
given in Table 3. Though the intramolecular force constant is about 75 
to 90 times larger than the others, the table shows that  the influence of 
the intramolecular motions cannot be neglected in every case. I t  depends 
on the stresses applied whether the spring in the molecule is forced 
strongly compared to the springs between different molecules. 

A comparison with experimental data can be given only for the com- 
pressibility of J2: l / t r  1 0 1 1 d y n . c m  -2. This value is about 
thrice the value of Table 3. The reasons for this can be found in the 
intermolecular potential. If, in an atomic van-der-Waals-lattice the con- 
stants are calculated with the van-der-Waals-parameters taken f rom gas 
data, the constants are wrong by a factor of about  two 8. The values can 
be improved by taking other parameters in the repulsive part  of the 
interaction. Further, anharmonicities should not be neglected. But all 
these changes would not be sufficient to shift the values by a factor of 
three. 
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Table 4 
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Br2 "]'2 

A=24.6-104 f l=oo  A=17.2.104 A=oo  

Cll 1.805 2.064 1.404 1.640 �9 1011 dyn/cm z 
c22 1.372 1.366 0.636 0.633 
c33 1.844 1.556 1.616 1.438 
c12 0.393 0.443 0.180 0.187 
c13 1.712 1.651 1.438 1.470 
c23 0.107 0.168 --0.006 0.017 
c44 0.246 0.246 0.267 0.267 
c55 1.247 1.145 1.181 1.014 
c66 0.459 0.459 0.232 0.232 
1/to 1.049 1.057 0.764 0.784 exp: 0.756 

Table 5 

O1 03 L4 L3 L2 L1 /1 /2 

Br 2 1.06 1.13 0.62 0.70 1.25 1.44 6,11 6.16 �9 1013sec -1 
f l =  oo 1.21 1.39 

J2 0.78 0.84 0.27 0.35 1.00 1.I1 4.07 4.11 
fl--~O0 1.00 1.11 

The vibration frequency of the free molecule is 6.09. 1013 sec -1 for Br2, 
4.04 �9 1013 sec -1 for J z. 

Another possibility is to take the potential in the form (17), but to 
determine the van-der-Waals-parameter [the factor in the expression (17)] 
by fitting it to the experimental compressibility. In the simplest way of 
fitting this would mean to change the intermolecular spring constants 
f2-f6 by a factor of three (one parameter  is fitted). The resulting elastic 
constants are given in Table 4. 

A further comparison with experimental data is possible if we use 
optical data related to the eigenfrequencies in the limit of infinite wave 
length. We use the force-constants which have been taken for the elastic 
constants given in Table 4. In the l imit  q = 0 only the highest libration 
frequencies (L1, L2) are coupled to the internal vibrations of the mole- 
cules (/1, 12). The expressions are given in the Appendix, whereas the 
numerical values can be found in Table 5. Fig. 2 gives the eigenvectors 
of the vibration states. 

In our model the mode 02 is unstable. This is directly related to the 
fact, that the equilibrium condition for the lattice constant b is not 
satisfied. A slight improvement of the repulsive part  of the potential 
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Fig. 2. Eigenvectors for the vibrations in the long wave limit q-----0. Only the dis- 
placements for the molecules in one unit cell (molecules 1-2 and 3-4 of Fig. 1) are 
shown. +, - indicate motions perpendicular to the drawing plane. The states LI, 
I 1 or Lz, 12, resp. are weekly coupled. Therefore the displacements do not have 

exactly the "ideal" direction indicated in the figure 

would  change f6 to  a posi t ive value,  which makes  the  mode  stable.  In  
any case, this mode  should  have the lowest  f requency (apar t  f rom the 
t rans la t iona l  modes  wi th  q =  0). 

Some of the frequencies can be c o m p a r e d  with  exper imenta l  da t a  9,10 
The opt ica l  frequencies (O1, 03)  have been measured  at  77 ~ The  

9 Wagner, v. :  Phys. Letters 22, 58 (1960);- Z. Physik 224, 353 (1969)and private 
communication. 

10 Walmley, S. H., Anderson, A.: MOl. Phys. 7, 411 (1963). 
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values are 0.92 and 1.40.1013 sec -1 for Br2, 0.77 and 1.22 �9 1013 sec -1 
for J2, resp. They are in a qualitative agreement with the values in 
Table 5. The agreement is better for the Ol-mode than for the 03-mode, 
which again is related to the force-constant f6 (see Appendix). A positive 
sign for f6 would give a much better agreement. 

One of the intramolecular frequencies is found to be 5.65 for Br2 
and 3.38 �9 1013 sec -1 for J2. These values are smaller then those of the 
free molecules. This cannot be explained by a change in the van-der- 
Waals-interaction, because the coupling of the internal vibrations (11, 12) 
to the libration modes (L1, L2) is not very strong (Table 5). This can be 
seen from a comparison of the values with f l  < 0o and f l  = 0o in Table 5. 
For  J2 the difference occurs only in the third decimal. The behavior of 
Br2 and J2 in this respect is related to the fact that f2 >f3  for Br2 and 
f2 <f3  for J2 in our model (Table 2). 

To explain the difference between experimental and theoretical 
values of the internal frequencies we have to assume different internal 
springs (f l )  in solid and free state. This seems to be not very surprising. 
Further anharmonic effects may not be neglected. An indication for this 
statement can be found in the strong temperature dependence of the 
modes 9. 

The qualitative behavior is quite well described by our model. By 
fitting one parameter to the compressibility of J2, we can even explain 
the frequencies of Br2 when the same procedure is used. The complete 
dispersion curves and an improvement of the model will be given in 
another paper. 

Appendix 
Force-Constant Tensors 

for the numeration of the atoms. Central forces are See Fig. 1 
assumed. 

/ logO: / 2 - 1 :  0 0 ; 2 - 3 :  0 

L~I 0 oq t62 0 ~2J 

o / 
2 - 7 :  0 0 ; 2 - 5 : e 4  e4 64 

[63 0 ~3 ~4 ~4 P4 

il {i~176 1 2 - 6 :  s as ; 2 - 8 :  ~6 66" 
0 06 t6 

The values of these force-constants can be calculated from the spring 
constants (Table 2), if the lattice constants of Table 1 are used. 

19 Z. Physik, Bd. 242 
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Limit ing frequencies for infinite wave length. 

0 1 : M 0 9 2 = - 4 f l 2  

0 2 :  = --4Cr 6 

Oa: = --4ct2--4f16 

L4: = --4c~4--4~6 

L a : = - 4 ~  4 

L2: =Dq-F-]//(D-F)2+4B z 

L l :  =A+C-] / / (A-C)2+4B 2 

I i :  =A+C+] / (A-C)2+ 4Bz 

12: =D+F+V(D-F)2+4B 2 . 

This paper has been done in connection with the "Sonderforschungsprogramm" 
der DFG (SFB 65). 
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A =  - i l l  - 2 f l 2 -  ~a - 2 7 4  

C =  - ~ l - f 1 3 - 2 f 1 4  

B = - 6 1 - 6 3 - 2 ~  4 

D = - fli - cq - 2 V4 

F =  - ~ l  - 2c~2- f13 - 2 f l 4 -  2fl6 


