## Problem 1: Commutator relations for fermions

a) The anticommutator of the operators $\hat{A}$ and $\hat{B}$ is given by

$$
[\hat{A}, \hat{B}]_{+}=\hat{A} \hat{B}+\hat{B} \hat{A}
$$

Show that the following relation holds for an additional operator $\hat{D}$

$$
[\hat{A}, \hat{B} \hat{D}]_{-}=[\hat{A}, \hat{B}]_{+} \hat{D}-\hat{B}[\hat{A}, \hat{D}]_{+} .
$$

b) The creation and annihilation operators $\hat{c}_{j}^{+}$and $c_{j}$ have been introduced in the lecture. Use the anticommutator relations of these operators to calculate the following commutator $[\hat{A}, \hat{B}]_{-}=\hat{A} \hat{B}-\hat{B} \hat{A}$
i)

$$
\left[\hat{n}_{j}, \hat{c}_{k}\right]_{-} \quad \text { and } \quad\left[\hat{n}_{j}, \hat{c}_{k}^{+}\right]_{-} \quad \text { with } \quad \hat{n}_{j}=\hat{c}_{j}^{+} \hat{c}_{j} .
$$

ii)

$$
\left[\hat{c}_{i}^{+} \hat{c}_{j}, \hat{c}_{l}^{+} \hat{c}_{m}\right]_{-}=\alpha \cdot \hat{c}_{i}^{+} \hat{c}_{m}+\beta \hat{c}_{l}^{+} \hat{c}_{j} .
$$

Calculate $\alpha$ and $\beta$.
iii)

$$
\begin{aligned}
{\left[\hat{c}_{i}^{+} \hat{c}_{j} \hat{c}_{l}^{+} \hat{c}_{m}, \hat{c}_{n}^{+} \hat{c}_{p}\right]_{-} } & =\left(\alpha \cdot \hat{c}_{i}^{+} \hat{c}_{p}+\beta \cdot \hat{c}_{n}^{+} \hat{c}_{j}\right) \hat{c}_{l}^{+} \hat{c}_{m} \\
& +\hat{c}_{i}^{+} \hat{c}_{j}\left(\gamma \cdot \hat{c}_{l}^{+} \hat{c}_{p}+\zeta \cdot \hat{c}_{n}^{+} \hat{c}_{m}\right)
\end{aligned}
$$

Calculate $\alpha, \beta, \gamma$ and $\zeta$.
Useful relation:

$$
[\hat{A} \hat{B}, \hat{D}]_{-}=[\hat{A}, \hat{D}]_{-} \hat{B}+\hat{A}[\hat{B}, \hat{D}]_{-}
$$

## Problem 2: Expectation values for fermions

The eigenstates of the Hamilton operator

$$
\hat{H}=\sum_{j=1}^{\infty} \varepsilon_{j} \hat{c}_{j}^{+} \hat{c}_{j}
$$

have the form

$$
|\phi\rangle=\prod_{j=1}^{\infty}\left(\hat{c}_{j}^{+}\right)^{n_{j}}|0\rangle
$$

a) Calculate

$$
\hat{n}_{l}|\phi\rangle \quad \text { with } \quad \hat{n}_{l}=\hat{c}_{l}^{+} \hat{c}_{l} .
$$

b) Determine the expectation values
a) $\langle\phi| \hat{c}_{l}^{+} \hat{c}_{m}|\phi\rangle$,
b) $\langle\phi| \hat{c}_{i}^{+} \hat{c}_{l}^{+} \hat{c}_{k} \hat{c}_{m}|\phi\rangle$.

Use the occupation numbers $n_{k}$ and $n_{m}$ to represent your result.

The operator of the particle density has the form (position representation)

$$
\hat{\rho}(\vec{r})=\sum_{i=1}^{N} \delta\left(\vec{r}-\vec{r}_{i}\right) .
$$

a) Transform this operator into the occupation number representation $\hat{\rho}_{F}(\vec{r})$ with the creation and annihilation operators $\hat{c}_{\vec{k} \sigma}^{+}$and $\hat{c}_{\vec{k}^{\prime}, \sigma^{\prime}}$.
Use plane waves as single-particle basis

$$
\psi_{\vec{k} \sigma}(\vec{r})=\frac{1}{\sqrt{\Omega}} \cdot \mathrm{e}^{i \vec{k} \vec{r}} \cdot \chi_{\sigma}
$$

with the volume $\Omega$.
b) Calculate the Fourier transform of $\hat{\rho}_{F}(\vec{r})$

$$
\tilde{\hat{\rho}}_{F}(\vec{q})=\frac{1}{\Omega} \int_{\Omega} \mathrm{e}^{-i \vec{q} \vec{r}} \hat{\rho}_{F}(\vec{r}) d^{3} r
$$

## Problem 4: Two-level system

The Hamilton operator of a system with two spin degenerate energy levels $\varepsilon_{a}$ and $\varepsilon_{b}$ has the form

$$
\hat{H}=\varepsilon_{a}\left(\hat{c}_{a \uparrow}^{+} \hat{c}_{a \uparrow}+\hat{c}_{a \downarrow}^{+} \hat{c}_{a \downarrow}\right)+\varepsilon_{b}\left(\hat{c}_{b \uparrow}^{+} \hat{c}_{b \uparrow}+\hat{c}_{b \downarrow}^{+} \hat{c}_{b \downarrow}\right) .
$$

a) Show that the state

$$
\left|\phi_{1}\right\rangle=\hat{c}_{a \uparrow}^{+} \hat{c}_{b \uparrow}^{+}|0\rangle
$$

is an eigenstate of the system. Which energy has the system in this state?
b) Show that the state

$$
\left|\phi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\hat{c}_{a \uparrow}^{+}+\hat{c}_{a \downarrow}^{+}\right) \hat{c}_{b \uparrow}^{+}|0\rangle
$$

is normalized. Is $\left|\phi_{2}\right\rangle$ an eigenstate of the system?
c) Calculate for $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$, respectively, the expectation values for the spin operators

$$
\hat{S}_{z}=\frac{\hbar}{2} \sum_{j}\left(\hat{c}_{j \uparrow}^{+} c_{j \uparrow}-\hat{c}_{j \downarrow}^{+} \hat{c}_{j \downarrow}\right) \quad \text { und } \quad \hat{S}_{x}=\frac{\hbar}{2} \sum_{j}\left(\hat{c}_{j \uparrow}^{+} \hat{c}_{j \downarrow}+\hat{c}_{j \downarrow}^{+} c_{j \uparrow}\right)
$$

with $j=a, b$.

