Problem 5: Hartree-Fock approximation

The Hamilton operator of interacting electrons in a potential $V(\vec{r})$ has the form

$$\hat{H} = \sum_{j=1}^{N} \left(\frac{\hat{p}_{j}^{2}}{2m} + V(\vec{r}_{j}) \right) + \frac{1}{2} \sum_{j \neq j'} \frac{e^{2}}{4\pi\varepsilon_{0}} \frac{1}{|\vec{r}_{j} - \vec{r}_{j}|} .$$

In the occupation number representation (basis: $\psi_l(\vec{r}, \vec{s}) = \psi_l(\vec{x})$), the Hamilton operator is given by

$$\hat{H} = \sum_{i,l} A_{il} \, \hat{c}_i^+ \, \hat{c}_l \, + \, \sum_{i,j,l,m} \frac{1}{2} \, B_{ijlm} \, \hat{c}_i^+ \, \hat{c}_j^+ \, \hat{c}_l \, \hat{c}_m \; .$$

- a) Which relation exists between B_{ijlm} and B_{jiml} ?
- b) In the Hartree-Fock approach, \hat{H} is approximated by the effective Hamilton operator

$$\hat{H}_{\text{eff}} = \hat{H}_{\text{HF}} + W$$
 with $\hat{H}_{\text{HF}} = \sum_{i,l} D_{il} \hat{c}_i^+ \hat{c}_l$.

The term W does not contain any creation or annihilation operators. The approximation is realized by the following substitution of the product of four operators:

$$\begin{aligned} \hat{c}_{i}^{+} \, \hat{c}_{j}^{+} \, \hat{c}_{l} \, \hat{c}_{m} &\approx \quad \hat{c}_{i}^{+} \, c_{m} \, \langle \hat{c}_{j}^{+} \, c_{l} \rangle_{0} \,+ \, \hat{c}_{j}^{+} \, \hat{c}_{l} \, \langle \hat{c}_{i}^{+} \, \hat{c}_{m} \rangle_{0} \\ &- \quad \langle \hat{c}_{i}^{+} \, \hat{c}_{m} \rangle_{0} \, \langle \hat{c}_{j}^{+} \, \hat{c}_{l} \rangle_{0} \\ &- \quad \hat{c}_{i}^{+} \, \hat{c}_{l} \, \langle \hat{c}_{j}^{+} \, c_{m} \rangle_{0} \,- \, \hat{c}_{j}^{+} \, \hat{c}_{m} \, \langle \hat{c}_{i}^{+} \, \hat{c}_{l} \rangle_{0} \\ &+ \quad \langle \hat{c}_{i}^{+} \, \hat{c}_{l} \rangle_{0} \, \langle \hat{c}_{j}^{+} \, \hat{c}_{m} \rangle_{0} \,. \end{aligned}$$

The expectation values $\langle \rangle_0$ are calculated with the eigenfunctions of the effective Hamilton operator. Then:

$$\langle \hat{c}_i^+ c_m \rangle_0 = n_m \cdot \delta_{i,m}$$

- i) Calculate D_{il} and W. Represent your result in terms of A_{il} , B_{ijjl} , B_{ijlj} and n_j . *Hint*: Use an appropriate substitution for the variables in the summation.
- ii) The coefficients D_{il} of the operator $\hat{H}_{\rm HF}$ can be written as

$$D_{il} = \int \psi_i^*(\vec{x}) \, \hat{O}(\vec{r}) \, \psi_l(\vec{x}) \, d^3 x \; .$$

The functions $\psi_l(\vec{x})$ are chosen to be eigenfunctions of \hat{O}

$$\tilde{O}\psi_l(\vec{x}) = \lambda_l\psi_l(\vec{x})$$
.

This leads to

$$D_{il} = \lambda_l \, \delta_{i,l}$$

Compare this eigenvalue problem for \hat{O} with the Hartree-Fock equation in the position-spin representation (see last semester).

(3 points)

Problem 6: Dielectric function of the electron gas

The dielectric function of the three-dimensional electron gas has the form (Random phase approximation and T = 0)

$$\varepsilon(\vec{q},\,\omega) \,=\, 1 \,-\, \frac{e^2}{\varepsilon_0\,\Omega}\,\frac{2}{q^2}\,\sum_{\substack{\vec{k}\\|\vec{k}\,|\,\leq\,k_F}}\,\left(\frac{1}{E\,(\vec{k})\,-\,E\,(\vec{k}\,+\,\vec{q}\,)\,+\,\hbar\,\omega}\,+\,\frac{1}{E\,(\vec{k}\,)\,-\,E\,(\vec{k}\,+\,\vec{q}\,)\,-\,\hbar\,\omega}\right)\,.$$

We consider the static limit $\omega = 0$.

- a) Calculate $\varepsilon(\vec{q}, 0)$. To this end, substitute the sum over \vec{k} by an integral.
- b) Consider the case $q \ll 2k_F$ and take terms up to the order $\frac{1}{q^2}$ into account. Calculate the screened potential in this case

$$\tilde{V}_{\mathrm{eff}}\left(\vec{q}\,\right) \,=\, rac{ ilde{V}_{\mathrm{el}}\left(\vec{q}\,
ight)}{arepsilon\left(\vec{q}\,
ight)} \qquad \mathrm{with} \qquad ilde{V}_{\mathrm{el}}\left(\vec{q}\,
ight) \,=\, -rac{e^2}{arepsilon_0\,\Omega}\,rac{1}{q^2} \;.$$

Use $\tilde{V}_{\text{eff}}(\vec{q})$ to determine the screened potential $V_{\text{eff}}(\vec{r})$ in real space.

- c) Discuss the behaviour of $\varepsilon(\vec{q}, 0)$ in the limit $q \to \infty$?
- d) Plot $\varepsilon(\vec{q}, 0)$.

Hint:

$$\int x \ln \left| \frac{a x + b}{a x - b} \right| = \frac{b}{a} x + \frac{1}{2} \left(x^2 - \frac{b^2}{a^2} \right) \ln \left| \frac{a x + b}{a x - b} \right| .$$

Problem 7: Lorentz oscillator

In a classical model for the screening in a solid, we assume that an external field

$$\vec{E}(t) = \vec{E}_0 \cdot e^{-i\omega t}$$

shifts the electrons in a solid by $\vec{r}(t)$. A "restoring force" $-m \omega_0^2 \vec{r}(t)$ and the friction force $-2 m \gamma \dot{\vec{r}}(t)$ are acting in addition to the field \vec{E} on the electron. The displacement induces a dipol moment, which leads to a polarisation $\vec{P} = -e \cdot n \vec{r}(t)$ with the electron density n.

- a) Solve Newton's equation of motion for this system.
- b) Use

$$\varepsilon_{0} \varepsilon(\omega) \vec{E}(\omega) = \varepsilon_{0} \vec{E}(\omega) + \vec{P}(\omega)$$

to calculate the dielectric function.

Use the plasma frequency

$$\omega_p^2 = \frac{e^2}{\varepsilon_0} \frac{n}{m}$$

to represent your result.

c) Decompose $\varepsilon(\omega)$ into the real part $\varepsilon_1(\omega)$ and the imaginary part $\varepsilon_2(\omega)$. Plot both functions.

(4 points)

(3 points)