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Date of issue: 28.04.2015 Deadline: 05.05.2015

Problem 5: Hartree-Fock approximation (3 points)

The Hamilton operator of interacting electrons in a potential V (�r ) has the form

Ĥ =
N∑

j = 1

(
p̂2

j

2m
+ V (�rj)

)
+

1
2

∑
j �= j′

e2

4π ε0

1
|�rj − �rj|

.

In the occupation number representation (basis: ψl (�r, �s ) = ψl (�x )), the Hamilton operator is given
by

Ĥ =
∑
i, l

Ail ĉ
+
i ĉl +

∑
i, j, l, m

1
2

Bijlm ĉ+
i ĉ+

j ĉl ĉm .

a) Which relation exists between Bijlm and Bjiml?

b) In the Hartree-Fock approach, Ĥ is approximated by the effective Hamilton operator

Ĥeff = ĤHF + W with ĤHF =
∑
i, l

Dil ĉ
+
i ĉl .

The term W does not contain any creation or annihilation operators. The approximation is
realized by the following substitution of the product of four operators:

ĉ+
i ĉ+

j ĉl ĉm ≈ ĉ+
i cm 〈ĉ+

j cl〉0 + ĉ+
j ĉl 〈ĉ+

i ĉm〉0
− 〈ĉ+

i ĉm〉0 〈ĉ+
j ĉl〉0

− ĉ+
i ĉl 〈ĉ+

j cm〉0 − ĉ+
j ĉm 〈ĉ+

i ĉl〉0
+ 〈ĉ+

i ĉl〉0 〈ĉ+
j ĉm〉0 .

The expectation values 〈 〉0 are calculated with the eigenfunctions of the effective Hamilton
operator. Then:

〈ĉ+
i cm〉0 = nm · δi, m .

i) Calculate Dil and W . Represent your result in terms of Ail, Bijjl, Bijlj and nj.

Hint: Use an appropriate substitution for the variables in the summation.

ii) The coefficients Dil of the operator ĤHF can be written as

Dil =
∫

ψ∗
i (�x ) Ô (�r )ψl (�x ) d3 x .

The functions ψl (�x ) are chosen to be eigenfunctions of Ô

Ô ψl (�x ) = λl ψl (�x ) .

This leads to
Dil = λl δi, l .

Compare this eigenvalue problem for Ô with the Hartree-Fock equation in the position-spin
representation (see last semester).
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Problem 6: Dielectric function of the electron gas (4 points)

The dielectric function of the three-dimensional electron gas has the form (Random phase
approximation and T = 0)

ε (�q, ω) = 1 − e2

ε0 Ω
2
q2

∑
�k

|�k | ≤ kF

(
1

E (�k) − E (�k + �q ) + h̄ ω
+

1

E (�k ) − E (�k + �q ) − h̄ ω

)
.

We consider the static limit ω = 0.

a) Calculate ε (�q, 0). To this end, substitute the sum over �k by an integral.

b) Consider the case q � 2 kF and take terms up to the order
1
q2

into account. Calculate the

screened potential in this case

Ṽeff (�q ) =
Ṽel (�q )
ε (�q )

with Ṽel (�q ) = − e2

ε0 Ω
1
q2

.

Use Ṽeff (�q ) to determine the screened potential Veff (�r ) in real space.

c) Discuss the behaviour of ε (�q, 0) in the limit q → ∞?

d) Plot ε (�q, 0).

Hint: ∫
x ln

∣∣∣∣ax + b

a x − b

∣∣∣∣ =
b

a
x +

1
2

(
x2 − b2

a2

)
ln

∣∣∣∣ax + b

a x − b

∣∣∣∣ .

Problem 7: Lorentz oscillator (3 points)

In a classical model for the screening in a solid, we assume that an external field

�E (t) = �E0 · e−i ω t

shifts the electrons in a solid by �r (t). A “restoring force“ −m ω2
0 �r (t) and the friction force −2m γ �̇r (t)

are acting in addition to the field �E on the electron. The displacement induces a dipol moment, which
leads to a polarisation �P = −e · n�r (t) with the electron density n.

a) Solve Newton’s equation of motion for this system.

b) Use
ε0 ε (ω) �E (ω) = ε0

�E (ω) + �P (ω)

to calculate the dielectric function.

Use the plasma frequency

ω2
p =

e2

ε0

n

m

to represent your result.

c) Decompose ε (ω) into the real part ε1 (ω) and the imaginary part ε2 (ω). Plot both functions.
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